WorldWideScience

Sample records for heat losses minimization

  1. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  2. Heat loss from Buildings

    DEFF Research Database (Denmark)

    Karlsson, Kenneth; Næraa, Rikke

    1997-01-01

    Determination of heat loss coefficients for buildings in Denmark. The coefficient are determined for 15 building groups and 3 year intervals. They are based on the BBR-registre and assumptions of U-values(W/K*m2)and computed in a simple spreed sheet model.The results are used in the REVEILLE...

  3. Statistical quality control a loss minimization approach

    CERN Document Server

    Trietsch, Dan

    1999-01-01

    While many books on quality espouse the Taguchi loss function, they do not examine its impact on statistical quality control (SQC). But using the Taguchi loss function sheds new light on questions relating to SQC and calls for some changes. This book covers SQC in a way that conforms with the need to minimize loss. Subjects often not covered elsewhere include: (i) measurements, (ii) determining how many points to sample to obtain reliable control charts (for which purpose a new graphic tool, diffidence charts, is introduced), (iii) the connection between process capability and tolerances, (iv)

  4. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    simulations that quantify fan power consumption, heating demand and indoor environmental conditions. The system was designed with minimal pressure loss in the duct system and heat exchanger. Also, it uses state-of-the-art components such as electrostatic precipitators, diffuse ceiling inlets and demand......In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical...... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  5. Opportunity Loss Minimization and Newsvendor Behavior

    Directory of Open Access Journals (Sweden)

    Xinsheng Xu

    2017-01-01

    Full Text Available To study the decision bias in newsvendor behavior, this paper introduces an opportunity loss minimization criterion into the newsvendor model with backordering. We apply the Conditional Value-at-Risk (CVaR measure to hedge against the potential risks from newsvendor’s order decision. We obtain the optimal order quantities for a newsvendor to minimize the expected opportunity loss and CVaR of opportunity loss. It is proven that the newsvendor’s optimal order quantity is related to the density function of market demand when the newsvendor exhibits risk-averse preference, which is inconsistent with the results in Schweitzer and Cachon (2000. The numerical example shows that the optimal order quantity that minimizes CVaR of opportunity loss is bigger than expected profit maximization (EPM order quantity for high-profit products and smaller than EPM order quantity for low-profit products, which is different from the experimental results in Schweitzer and Cachon (2000. A sensitivity analysis of changing the operation parameters of the two optimal order quantities is discussed. Our results confirm that high return implies high risk, while low risk comes with low return. Based on the results, some managerial insights are suggested for the risk management of the newsvendor model with backordering.

  6. Analysis of the internal heat losses in a thermoelectric generator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Christensen, Dennis Valbjørn; Eriksen, Dan

    2014-01-01

    and radiative heat losses, including surface to surface radiation. For radiative heat losses it is shown that for the temperatures considered here, surface to ambient radiation is a good approximation of the heat loss. For conductive heat transfer the module efficiency is shown to be comparable to the case...... of radiative losses. Finally, heat losses due to internal natural convection in the module is shown to be negligible for the millimetre sized modules considered here. The combined case of radiative and conductive heat transfer resulted in the lowest efficiency. The optimized load resistance is found...... to decrease for increased heat loss. The leg dimensions are varied for all heat losses cases and it is shown that the ideal way to construct a TEG module with minimal heat losses and maximum efficiency is to either use a good insulating material between the legs or evacuate the module completely, and use...

  7. Microgrids: Energy management by loss minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.K. [Electrical Engineering Dept., Jadavpur University & 20/2, Khanpur Road, Kolkata 700047 (India); Chowdhury, S.; Chowdhury, S.P. [Electrical Engineering Department, University of Cape Town & Private Bag X3, Menzies Building, Room-517, Rondebosch, Cape Town 7701 (India)

    2011-07-01

    Energy management is a techno-economic issue, which dictates, in the context of microgrids, how optimal investment in technology front could bring optimal power quality and reliability (PQR) of supply to the consumers. Investment in distributed energy resources (DERs), with their connection to the utility grid at optimal locations and with optimal sizes, saves energy in the form of line loss reduction. Line loss reduction is the indirect benefit to the microgrid owner who may recover it as an incentive from utility. The present paper focuses on planning of optimal siting and sizing of DERs based on minimization of line loss. Optimal siting is done, here, on the loss sensitivity index (LSI) method and optimal sizing by differential evolution (DE) algorithms, which is, again, compared with particle swarm optimization (PSO) technique. Studies are conducted on 6-bus and 14-bus radial networks under islanded mode of operation with electric demand profile. Islanding helps planning of DER capacity of microgrid, which is self-sufficient to cater its own consumers without utility's support.

  8. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  9. 24 CFR 3280.506 - Heat loss/heat gain.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  10. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-09-10

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO{sub x} reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO{sub x} reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO{sub x} reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO{sub x} reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO{sub x} reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO{sub x} reduction on the surface of char played important role. Economic analysis confirmed

  11. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Vitali V. Lissianski

    2001-09-07

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO{sub x} and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO{sub x} control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO{sub x} reduction in basic coal reburning depends on process conditions, initial NO{sub x} and coal type. Up to 60% NO{sub x} reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO{sub x} reduction in reburning by coal gasification products. Modeling predicted that

  12. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO x reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO x reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO x reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO x reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO x reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO x reduction on the surface of char played important role. Economic analysis confirmed economic benefits of the FFR

  13. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Zamansky, Vladimir M.; Lissianski, Vitali V.

    2001-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO x and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO x control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO x reduction in basic coal reburning depends on process conditions, initial NO x and coal type. Up to 60% NO x reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO x reduction in reburning by coal gasification products. Modeling predicted that composition of coal

  14. 13 CFR 115.17 - Minimization of Surety's Loss.

    Science.gov (United States)

    2010-01-01

    ... and collateral—(1) Requirements. The Surety must take all reasonable action to minimize risk of Loss... indemnity agreement must be secured by such collateral as the Surety or SBA finds appropriate. Indemnity...

  15. Heat loss from an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  16. Loss Minimization Sliding Mode Control of IPM Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Mehran Zamanifar

    2010-01-01

    Full Text Available In this paper, a nonlinear loss minimization control strategy for an interior permanent magnet synchronous motor (IPMSM based on a newly developed sliding mode approach is presented. This control method sets force the speed control of the IPMSM drives and simultaneously ensures the minimization of the losses besides the uncertainties exist in the system such as parameter variations which have undesirable effects on the controller performance except at near nominal conditions. Simulation results are presented to show the effectiveness of the proposed controller.

  17. Minimization of transmission loss using distributed generation approach

    Directory of Open Access Journals (Sweden)

    Lamin Chaantrea Miky

    2018-01-01

    Full Text Available The goal of this work is to calculate the total loss in the system and minimize this loss by implementation of distributed generation (DG technology. In this paper, load flow analysis method is followed to calculate the loss in the system in conjunction with the line flows. A simple 5 bus system with the main bus of the substation as the slack bus, three Plant generators at the generator bus and three load buses are taken for analysis. For loss minimization two distributed generators at two load buses are connected. One generator is a synchronous type model and the other is asynchronous type model. We searched for the most economical penetration level and the ratings of the distributed generators are decided by the magnitude of penetration power at each load bus. Using software, power system simulation for electrical (PSSE, the system with and without DG technology is modeled and the output from the PSSE is observed.

  18. Loss Minimization and Voltage Control in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for increasing the installation of electric vehicles and solar panels in low-voltage grids, while obeying voltage variation constraints. Our approach employs minimization of active power losses for coordinating consumption and generation of power, as well as reactive...

  19. 13 CFR 115.34 - Minimization of Surety's Loss.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Minimization of Surety's Loss. 115.34 Section 115.34 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SURETY BOND GUARANTEE... strategy in maximizing recovery. See also § 115.17(b). ...

  20. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.

    1979-01-01

    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  1. Constructal entransy dissipation minimization for 'volume-point' heat conduction

    International Nuclear Information System (INIS)

    Chen Lingen; Wei Shuhuan; Sun Fengrui

    2008-01-01

    The 'volume to point' heat conduction problem, which can be described as to how to determine the optimal distribution of high conductivity material through the given volume such that the heat generated at every point is transferred most effectively to its boundary, has became the focus of attention in the current constructal theory literature. In general, the minimization of the maximum temperature difference in the volume is taken as the optimization objective. A new physical quantity, entransy, has been identified as a basis for optimizing heat transfer processes in terms of the analogy between heat and electrical conduction recently. Heat transfer analyses show that the entransy of an object describes its heat transfer ability, just as the electrical energy in a capacitor describes its charge transfer ability. Entransy dissipation occurs during heat transfer processes, as a measure of the heat transfer irreversibility with the dissipation related thermal resistance. By taking equivalent thermal resistance (it corresponds to the mean temperature difference), which reflects the average heat conduction effect and is defined based on entransy dissipation, as an optimization objective, the 'volume to point' constructal problem is re-analysed and re-optimized in this paper. The constructal shape of the control volume with the best average heat conduction effect is deduced. For the elemental area and the first order construct assembly, when the thermal current density in the high conductive link is linear with the length, the optimized shapes of assembly based on the minimization of entransy dissipation are the same as those based on minimization of the maximum temperature difference, and the mean temperature difference is 2/3 of the maximum temperature difference. For the second and higher order construct assemblies, the thermal current densities in the high conductive link are not linear with the length, and the optimized shapes of the assembly based on the

  2. Optimal Allocation of Renewable Energy Sources for Energy Loss Minimization

    Directory of Open Access Journals (Sweden)

    Vaiju Kalkhambkar

    2017-03-01

    Full Text Available Optimal allocation of renewable distributed generation (RDG, i.e., solar and the wind in a distribution system becomes challenging due to intermittent generation and uncertainty of loads. This paper proposes an optimal allocation methodology for single and hybrid RDGs for energy loss minimization. The deterministic generation-load model integrated with optimal power flow provides optimal solutions for single and hybrid RDG. Considering the complexity of the proposed nonlinear, constrained optimization problem, it is solved by a robust and high performance meta-heuristic, Symbiotic Organisms Search (SOS algorithm. Results obtained from SOS algorithm offer optimal solutions than Genetic Algorithm (GA, Particle Swarm Optimization (PSO and Firefly Algorithm (FFA. Economic analysis is carried out to quantify the economic benefits of energy loss minimization over the life span of RDGs.

  3. Ion heat conduction losses in Extrap

    International Nuclear Information System (INIS)

    Tennfors, E.

    1989-08-01

    The classical ion heat conduction losses in Extrap discharges are calculated using polynomial magnetic field profiles and compared to the power input. For polynomials matched to magnetic field profiles measured in present experiments, these losses are small. By varying the coefficients of the polynomials, a region is found, where the power input can balance the classical heat conduction losses. Each set of coefficients corresponds to values of the parameters F and Θ used in RFP physics. The region determines a region in an F-Θ diagram, including the usual RFP region but extending to higher values of Θ and βΘ

  4. Entropy resistance minimization: An alternative method for heat exchanger analyses

    International Nuclear Information System (INIS)

    Cheng, XueTao

    2013-01-01

    In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional

  5. Effective Loss Minimization and Allocation of Unbalanced Distribution Network

    Directory of Open Access Journals (Sweden)

    Manvir Kaur

    2017-11-01

    Full Text Available An efficient distribution network must be able to supply power with good voltage profile. The main objective of the proposed work is to allocate losses of the unbalanced distribution network by the firefly algorithm in regulated and deregulated environments before and after loss minimization. Reconfiguration is one of the methods for loss reduction of unbalanced distribution network. Further, optimal placement of distributed generation and capacitor in the reconfigured unbalanced distribution network can further reduce the loss. The results of reconfigured unbalanced distribution network in regulated environment have already been reported. In this paper reconfiguration of an unbalanced distribution network in a deregulated environment is also carried out using an established Fuzzy Firefly algorithm. Loss sensitivity factor of unbalanced distribution networks is used to get the appropriate location of distributed generation and capacitor to be placed in the unbalanced distribution network. Their ratings have been found out by using bacteria foraging optimization algorithm (BFOA. The suggested loss allocation method using Firefly algorithm is implemented at first on 13 node unbalanced distribution network to check the performance of the proposed loss allocation method when compared to other available method. Finally the proposed method has been implemented on 25 node unbalanced distribution network. Both of the implementations are carried out under MATLAB environment.

  6. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  7. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  8. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  9. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Heat losses in power boilers caused by thermal bridges

    Directory of Open Access Journals (Sweden)

    Kocot Monika

    2017-01-01

    Full Text Available In this article the analysis of heat losses caused by thermal bridges that occur in the steam boiler OP-140 is presented. Identification of these bridges were conducted with use of thermographic camera. Heat losses were evaluated based on methodology of VDI 4610 standard, but instead of its simplified equations, criterial equations based on Nusselt number were used. Obtained values of annual heat losses and heat flux density corresponding to the fully insulated boiler surfaces were compared to heat losses generated by thermal bridges located in the same areas. The emphasis is put on the role of industrial insulation in heat losses reduction.

  11. Heat loss by helicity injection in spheromaks

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1994-01-01

    A model is presented for spheromak buildup and decay including thermal diffusivity associated with magnetic turbulence during helicity injection. It is shown that heat loss by magnetic turbulence scales more favorably than gyroBohm transport. Thus gyroBohm scaling for the proposed ignition experiment would be the conservative choice, though present experiments may be dominated by magnetic turbulence. Because of a change in boundary conditions when the gun is turned off, the model may account for the observed increase in electron temperature in CTX after turnoff

  12. Signal Enhancement as Minimization of Relevant Information Loss

    OpenAIRE

    Geiger, Bernhard C.; Kubin, Gernot

    2012-01-01

    We introduce the notion of relevant information loss for the purpose of casting the signal enhancement problem in information-theoretic terms. We show that many algorithms from machine learning can be reformulated using relevant information loss, which allows their application to the aforementioned problem. As a particular example we analyze principle component analysis for dimensionality reduction, discuss its optimality, and show that the relevant information loss can indeed vanish if the r...

  13. Minimization of Distribution Grid Losses by Consumption Coordination

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Andersen, Palle; Wisniewski, Rafal

    2013-01-01

    for coordinating consumption of electrical energy within the community, with the purpose of reducing grid loading and active power losses. For this we present a simplified model of the electrical grid, including system losses and capacity constraints. Coordination is performed in a distributed fashion, where each...... are obeyed. These objectives are enforced by coordinating consumers through nonlinear tariffs on power consumption. We present simulation test-cases, illustrating that significant reduction of active losses, can be obtained by such coordination. The distributed optimization algorithm, employs the alternating...

  14. Baby-Friendly Practices Minimize Newborn Infants Weight Loss.

    Science.gov (United States)

    Procaccini, Diane; Curley, Ann L Cupp; Goldman, Martha

    2018-04-01

    It is accepted that newborns lose weight in the first few days of life. Baby-Friendly practices that support breastfeeding may affect newborn weight loss. The objective of this study were: 1) To determine whether Baby-Friendly practices are associated with term newborn weight loss day 0-2 in three feeding categories (exclusively breastfed, mixed formula fed and breastfed, and formula fed). 2) To determine whether Baby-Friendly practices increase exclusive breast feeding rates in different ethnic populations. This was a retrospective case-control study. Term newborn birth weight, neonatal weights days 0-2, feeding type, type of birth, and demographic information were collected for 1,000 births for the year before Baby-Friendly designation (2010) and 1,000 in 2013 (after designation). Ultimately 683 in the first group and 518 in the second met the inclusion criteria. Mean weight loss decreased day 0-2 for infants in all feeding types after the initiation of Baby-Friendly practices. There was a statistically significant effect of Baby-Friendly designation on weight loss for day 0-2 in exclusively breastfed infants (p Baby-Friendly practices were put in place. There was a decrease in mean weight loss day 0-2 regardless of feeding type after Baby-Friendly designation. Exclusive breast feeding increased in the presence of Baby-Friendly practices.

  15. Low-Voltage Consumption Coordination for Loss Minimization and Voltage Control

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for minimizing active power losses in low-voltage grids, by coordinating the consumption of electric vehicles and power generation from solar panels. We show that minimizing losses, also reduces voltage variations, and illustrate how this may be employed for increasing...

  16. Minimization of the power losses in televisions. Report no. 1

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard, Leo

    1996-03-01

    In order to achieve a simple and a manageable circuit to analyse, the verical deflection circuit is disregarded and the horizontal deflection/EHT circuit is simplified. In the simplified circuit the EHT generator and the deflection circuit are fully coupled and the east/west modulation and the linearity coil are among other facilities ignored. It is argued for that the simplification does not influence the basic mode of operation of the deflection/EHT circuit and the mode of operation is discussed by means of idealised considerations. A laboratory model of the simplified deflection/EHT circuit has been built and connected in parallel to a 100 HZ television set. By doing this no control circuits are needed in the simplified circuit. Measurements on the simplified defelection/EHT circuit are carried out at three different loads of the DST. The measurements are focused on the voltage and the current waveforms on a circuit level and the influence of the parasitic components is discussed. Besides, a comparison of the waveforms at three different loads is performed and comments and conclusions are presented. A general introduction to the facilities in Saber highlights the primary difference between Spice and Saber with focus on the basic architecture of Saber. The procedure of simulating the simplified deflection/EHT circuit is explained and the demarcations are presented. The simulation is performed with both idealised models of the components and with existing models of the components in Saber. The models of both types of components are shortly presented. The simulated waveforms are in close agreement with the measured waveforms apart from the ringing primary caused by the parasitic components in the DST which are not included in the simulation model. The measuring system, the general measuring process and the data processing used when mapping the power losses in the simplified deflection/EHT circuit are explained. The measurements are performed at the working

  17. Self-heating, gamma heating and heat loss effects on resistance temperature detector (RTD) accuracy

    International Nuclear Information System (INIS)

    Qian, T.; Hinds, H.W.; Tonner, P.

    1997-01-01

    Resistance temperature detectors (RTDs) are extensively used in CANDU nuclear power stations for measuring various process and equipment temperatures. Accuracy of measurement is an important performance parameter of RTDs and has great impact on the thermal power efficiency and safety of the plant. There are a number of factors that contribute to some extent to RTD measurement error. Self-heating, gamma heating and the heat-loss throughout conduction of the thermowell are three of these factors. The degree to which these three affect accuracy of RTDs used for the measurement of reactor inlet header temperature (RIHT) has been analyzed and is presented in this paper. (author)

  18. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  19. Heat loss investigation from spherical cavity receiver of solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, V. C. [Dept. of Mechanical Engineering, NDMVPS KBT College of Engineering, Nashik (India); Dongarwar, P. R. [Dept. of Mechanical Engineering, College of Military Engineering, Pune (India); Gawande, R. P. [Dept. of Mechanical Engineering, B.D.C.O.E. Wardha, Nagpur University, NagpurI (India)

    2016-11-15

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results.

  20. Heat loss investigation from spherical cavity receiver of solar concentrator

    International Nuclear Information System (INIS)

    Shewale, V. C.; Dongarwar, P. R.; Gawande, R. P.

    2016-01-01

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results

  1. Heat Loss Evaluation of the SMART-ITL Primary System

    International Nuclear Information System (INIS)

    Ryu, Sung Uk; Bae, Hwang; Kim, Dong Eok; Park, Keun Tae; Park, Hyun Sik; Yi, Sung Jae

    2013-01-01

    It is considered that the heat loss rate is one of the critical factors affecting the transient behavior of an integral effect test facility. This paper presents the experimental results of the heat loss rate for the primary system of a SMART-ITL (System-Integrated Modular Advanced ReacTor-Integral Test Loop) facility including the pressurizer (PZR). To evaluate the heat loss rate of the primary system, two different approaches were pursued, i. e., integral and differential approaches. The integral approach is a constant temperature method which controls the core and PZR powers at a desired temperature condition and the differential approach is a natural cooling-down measurement method that lasts for a long period of time. In the present work, the heat losses derived from integral and differential approaches were acquired for the primary system of the SMART-ITL. The results obtained by the two approaches were very similar. In addition, an empirical correlation with respect to the difference between the wall temperature and the ambient temperature was proposed to represent the heat loss characteristics of the SMART-ITL facility. The estimated heat losses could be used to estimate the heat loss during the tests and code simulations

  2. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  3. Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization

    OpenAIRE

    Kheldoun Aissa; Khodja Djalal Eddine

    2009-01-01

    The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model ...

  4. Frequency dependent loss analysis and minimization of system losses in switchmode audio power amplifiers

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2014-01-01

    In this paper, frequency dependent losses in switch-mode audio power amplifiers are analyzed and a loss model is improved by taking the voltage dependence of the parasitic capacitance of MOSFETs into account. The estimated power losses are compared to the measurement and great accuracy is achieved...

  5. Improving MODPRESS heat loss calculations for PWR pressurizers

    International Nuclear Information System (INIS)

    Ramos, Natalia V.; Lira, Carlos A. Brayner O.; Castrillho, Lazara S.

    2009-01-01

    The improvement of heat loss calculations in MODPRESS transient code for PWR pressurizer analysis is the main focus of this investigation. Initially, a heat loss model was built based on heat transfer coefficient (HTC) correlations obtained in handbooks of thermal engineering. A hand calculation for Neptunus experimental test number U47 yielded a thermal power loss of 11.2 kW against 17.3 kW given by MODPRESS at the same conditions, while the experimental estimate is given as 17 kW. This comparison is valid only for steady state or before starting the transient experiment, because MODPRESS does not update HTC's when the transient phase begins. Furthermore, it must be noted that MODPRESS heat transfer coefficients are adjusted to reproduce the experimental value of the specific type of pressurizer. After inserting the new routine for HTC's into MODPRESS, the heat loss was calculated as 11.4 kW, a value very close to the first estimate but far below 17 kW found in the U47 experiment. In this paper, the heat loss model and results will be described. Further research is being developed to find a more general HTC that allows the analysis of the effects of heat losses on transient behavior of Neptunus and IRIS pressurizers. (author)

  6. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  7. Guidelines to come to minimized tensile strength loss upon cellulase application

    NARCIS (Netherlands)

    Lenting, H.B.M.; Lenting, H.B.M.; Warmoeskerken, Marinus

    2001-01-01

    Application of cellulase technology in the textile production process often results in a certain loss of tensile strength along with the desired performance. In this paper guidelines are given how to come to minimization or even prevention of tensile strength loss. Part of the considerations is

  8. Orbit losses of strongly ICRF-heated ions

    International Nuclear Information System (INIS)

    Anderson, A.; Dillner, Oe.; Lisak, M.

    1992-01-01

    An approximate analytical investigation is made to assess the importance of orbit losses of strongly ICRF-heated minority ions. Explicit expressions for the fraction of lost minority ions are derived and shown to be in good agreement with numerical simulation results. The results indicate that present day ICRF heating power density levels cannot be raised significantly without causing important particle and energy losses due to unconfined particle orbits. 6 refs., 5 figs

  9. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    Science.gov (United States)

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P body heat storage in young and older women, respectively (both P body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  10. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  11. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  12. Influence of Variable Fluid Properties and Radiative Heat loss on ...

    African Journals Online (AJOL)

    Consequently, comparative analysis is also performed on the wall shear stress and local heat transfer of the present study with the available results.The results show that the inclusion variable viscosity and thermal conductivity, and radiative heat loss mechanism cause significant effects on the fluid flow velocity, temperature ...

  13. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  14. Ripple losses during ICRF heating in Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Eriksson, L.-G.; Bergeaud, V.; Chantant, M.; Martin, G.; Nguyen, F.; Reichle, R.; Vallet, J.C.; Delpeche, L.; Surle, F.

    2004-01-01

    The toroidal field coils in Tore Supra are supra-conducting, and their number is restricted to 18. As a result, the ripple is fairly large, about 7% at the plasma boundary. Tore Supra has consequently been equipped with dedicated ripple loss diagnostics, which has allowed ripple loss studies. This paper reports on the measurements made with these diagnostics and provides an analysis of the experimental results, comparing them with theoretical expectations whenever possible. Furthermore, the main heating source accelerating ions in Tore Supra is ion cyclotron resonance range of frequency (ICRF) heating, and the paper provides new information on the ripple losses of ICRF accelerated ions. (author)

  15. Regenerator heat exchanger – calculation of heat recovery efficiency and pressure loss

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per Kvols

    Performance of heat exchangers is determined based on two main parameters: efficiency to exchange / recover heat and pressure loss due to friction between fluid and exchanger surfaces. These two parameters are contradicting each other which mean that the higher is efficiency the higher becomes...... pressure loss. The aim of the optimized design of heat exchanger is to reach the highest or the required heat efficiency and at the same time to keep pressure losses as low as possible keeping total exchanger size within acceptable size. In this report is presented analytical calculation method...... to calculate efficiency and pressure loss in the regenerator heat exchanger with a fixed matrix that will be used in the decentralized ventilation unit combined in the roof window. Moreover, this study presents sensitivity study of regenerator heat exchanger performance, taking into account, such parameters as...

  16. Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Zavala-Ake, M.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.

    2017-01-01

    The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber:

  17. Quantitative thermography and methods for in-situ determination of heat losses from district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B. [ed.

    1996-11-01

    The course and seminar summarizing application of infrared thermography in district heating systems control gathered Danish specialists with 5 contributions on the subject. Maintenance of the heat distribution pipelines and thermographic inspection of the systems are essential in order to avoid heat losses. (EG)

  18. Modeling heat loss from the udder of a dairy cow.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin

    2016-07-01

    A mechanistic model that predicts sensible and latent heat fluxes from the udder of a dairy cow was developed. The prediction of the model was spot validated against measured data from the literature, and the result agreed within 7% of the measured value for the same ambient temperature. A dairy cow can lose a significant amount of heat (388W/m(2)) from the udder. This suggests that the udder could be considered as a heat sink. The temperature profile through the udder tissue (core to skin) approached the core temperature for an air temperature ≥37°C whereas the profile decreased linearly from the core to skin surface for an air temperature less than 37°C. Sensible heat loss was dominant when ambient air temperature was less than 37.5°C but latent heat loss was greater than sensible heat loss when air temperature was ≥37.5°C. The udder could lose a total (sensible + latent) heat flux of 338W/m(2) at an ambient temperature of 35°C and blood-flow rate of 3.2×10(-3)m(3)/(sm(3) tissue). The results of this study suggests that, in time of heat stress, a dairy cow could be cooled by cooling the udder only (e.g., using an evaporative cooling jacket). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Minimization of heat slab nodes with higher order boundary conditions

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1992-01-01

    The accuracy of a numerical solution can be limited by the numerical approximation to the boundary conditions rather than the accuracy of the equations which describe the interior. The study presented in this paper compares the results from two different numerical formulations of the convective boundary condition on the face of a heat transfer slab. The standard representation of the boundary condition in a test problem yielded an unacceptable error even when the heat transfer slab was partitioned into over 300 nodes. A higher order boundary condition representation was obtained by using a second order approximation for the first derivative at the boundary and combining it with the general equation used for inner nodes. This latter formulation produced reasonable results when as few as ten nodes were used

  20. Analytical minimization of overall conductance and heat transfer area in refrigeration and heat pump systems and its numerical confirmation

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik; Ram Gopal, M.

    2007-01-01

    Minimization of heat exchanger area for a specified capacity is very important in the design of refrigeration and heat pump systems, yielding space, weight and cost benefits. In this study, minimization of overall conductance and total area per unit capacity of refrigeration and heat pump systems has been performed analytically. The analysis is performed for constant temperature heat sources and sinks considering both internal and external irreversibilities. Expressions are obtained for optimum hot and cold side refrigerant temperatures, conductance and heat exchanger area ratios. The analytical results have been confirmed by those obtained from a detailed numerical simulation of actual ammonia based refrigeration and heat pump systems, and good agreement is observed. Such theoretical models can be employed as simple yet effective design guidelines for real systems as demonstrated here

  1. Minimization of Ohmic Losses for Domain Wall Motion in a Ferromagnetic Nanowire

    Science.gov (United States)

    Tretiakov, O. A.; Liu, Y.; Abanov, Ar.

    2010-11-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.

  2. Minimization of Ohmic losses for domain wall motion in ferromagnetic nanowires

    Science.gov (United States)

    Abanov, Artem; Tretiakov, Oleg; Liu, Yang

    2011-03-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic. This work was supported by the NSF Grant No. 0757992 and Welch Foundation (A-1678).

  3. A minimization procedure for estimating the power deposition and heat transport from the temperature response to auxiliary power modulation

    International Nuclear Information System (INIS)

    Eester, Dirk van

    2004-01-01

    A method commonly used for determining where externally launched power is absorbed inside a tokamak plasma is to examine the temperature response to modulation of the launched power. Strictly speaking, this response merely provides a first good guess of the actual power deposition rather than the deposition profile itself: not only local heat sources but also heat losses and heat wave propagation affect the temperature response at a given position. Making use of this, at first sight non-desirable, effect modulation becomes a useful tool for conducting transport studies. In this paper a minimization method based on a simple conduction-convection model is proposed for deducing the power deposition and transport characteristics from the experimentally measured (electron) energy density response to a modulation of the auxiliary heating power. An L-mode JET example illustrates the potential of the technique

  4. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  5. Analysis of decay heat removal following loss of RHR

    International Nuclear Information System (INIS)

    Naff, S.A.; Ward, L.W.

    1991-01-01

    Recent plant experience has included many events occurring during outages at pressurized water reactors. A recent example is the loss of residual heat removal system event that occurred March 20, 1990 at the Vogtle-1 plant following refueling. Plant conditions during outages differ markedly from those prevailing at normal full-power operation on which most past research has concentrated. Specifically, during outages the core power is low, the coolant system may be in a drained state with air or nitrogen present, and various reactor coolant system closures may be unsecured. With the residual heat removal system operating, the core decay heat is readily removed. However, if the residual heat removal system capability is lost and alternative heat removal means cannot be established, heat up of the coolant could lead to core coolant boil-off, fuel rod heat up, and core damage. A study was undertaken by the Nuclear Regulatory Commission to identify what information was needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that might be used, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain into the reactor coolant system, core water boil-off, and reflux condensation cooling processes

  6. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame...

  7. Optimization of the conditions for the precipitation of thorium oxalate. II. Minimization of the product losses

    International Nuclear Information System (INIS)

    Pazukhin, E.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1987-01-01

    The precipitation of thorium as a poorly soluble oxalate was investigated. An equation relating the concentrations of the metal and nitric acid in the initial solution and the amount of precipitant required to minimize the product losses was derived. A graphical solution of the equation is presented for the case where the precipitant is oxalic acid at a concentration of 0.78 M

  8. Significant reduction in blood loss in patients undergoing minimal extracorporeal circulation

    NARCIS (Netherlands)

    Gerritsen, W. B.; van Boven, W. J.; Smelt, M.; Morshuis, W. J.; van Dongen, H. P.; Haas, F. J.; Aarts, L. P.

    2006-01-01

    Several recent studies have shown differences in blood loss and allogeneic transfusion requirements between on-pump and off-pump coronary artery bypass grafting (CABG). Recently a new concept, the mini-extracorporeal circulation, was introduced to minimize the side effects of extracorporeal

  9. Loss minimization control and efficiency determination of electric drives in traction applications

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Thomas; Hofmann, Wilfried [Technische Univ. Dresden (Germany). Lehrstuhl fuer Elektrische Maschinen und Antriebe

    2012-11-01

    High-power electric drives in automotive traction applications consume a large part of the disposable electric energy. For this reason the energy efficiency of the drives is of great importance for range and fuel consumption of the hybrid electric vehicle. The paper describes two possible drives with different electric motors from a control point of view. The electric power losses in the drive system are determined depending on the operating point of the machine. With these loss characteristics the control of the drives is optimized to produce minimal losses. Finally the energy efficiency for a realistic urban bus drive cycle is calculated to compare the two types. (orig.)

  10. Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method

    International Nuclear Information System (INIS)

    Li Min; Lai, Alvin C.K.

    2013-01-01

    Highlights: ► A second-law-based analysis is performed for single U-tube ground heat exchangers. ► Two expressions for the optimal length and flow velocity are developed for GHEs. ► Empirical velocities of GHEs are large compared to thermodynamic optimum values. - Abstract: This paper investigates thermodynamic performance of borehole ground heat exchangers with a single U-tube by the entropy generation minimization method which requires information of heat transfer and fluid mechanics, in addition to thermodynamics analysis. This study first derives an expression for dimensionless entropy generation number, a function that consists of five dimensionless variables, including Reynolds number, dimensionless borehole length, scale factor of pressures, and two duty parameters of ground heat exchangers. The derivation combines a heat transfer model and a hydraulics model for borehole ground heat exchangers with the first law and the second law of thermodynamics. Next, the entropy generation number is minimized to produce two analytical expressions for the optimal length and the optimal flow velocity of ground heat exchangers. Then, this paper discusses and analyzes implications and applications of these optimization formulas with two case studies. An important finding from the case studies is that widely used empirical velocities of circulating fluid are too large to operate ground-coupled heat pump systems in a thermodynamic optimization way. This paper demonstrates that thermodynamic optimal parameters of ground heat exchangers can probably be determined by using the entropy generation minimization method.

  11. The thermodynamic quantity minimized in steady heat and fluid flow processes: A control volume approach

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.

    2012-01-01

    Highlights: ► The optimality in both heat and fluid flow systems has been investigated. ► A new thermodynamic property has been introduced. ► The second law of thermodynamics was extended to present the temheat balance that included the temheat destruction. ► The principle of temheat destruction minimization was introduced. ► It is shown that the rate of total temheat destruction is minimized in steady heat conduction and fluid flow problems. - Abstract: Heat transfer and fluid flow processes exhibit similarities as they occur naturally and are governed by the same type of differential equations. Natural phenomena occur always in an optimum way. In this paper, the natural optimality that exists in the heat transfer and fluid flow processes is investigated. In this regard, heat transfer and fluid flow problems are treated as optimization problems. We discovered a thermodynamic quantity that is optimized during the steady heat transfer and fluid flow processes. Consequently, a new thermodynamic property, the so called temheat, is introduced using the second law of thermodynamics and the definition of entropy. It is shown, through several examples, that overall temheat destruction is always minimized in steady heat and fluid flow processes. The principle of temheat destruction minimization that is based on the temheat balance equation provides a better insight to understand how the natural flow processes take place.

  12. Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance

    Directory of Open Access Journals (Sweden)

    Álvaro Jaramillo-Duque

    2018-02-01

    Full Text Available In this paper, a model and solution approach for minimizing internal power losses in Transformers Connected in Parallel (TCP with tap-changers is proposed. The model is based on power chargeability balance and seeks to keep the load voltage within an admissible range. For achieving this, tap positions are adjusted in such a way that all TCP are set in similar/same power chargeability. The main contribution of this paper is the inclusion of several construction features (rated voltage, rated power, voltage ratio, short-circuit impedance and tap steps in the minimization of power losses in TCP that are not included in previous works. A Genetic Algorithm (GA is used for solving the proposed model that is a system of nonlinear equations with discrete decision variables. The GA scans different sets for tap positions with the aim of balancing the power supplied by each transformer to the load. For this purpose, a fitness function is used for minimizing two conditions: The first condition consists on the mismatching between power chargeability for each transformer and a desired chargeability; and the second condition is the mismatching between the nominal load voltage and the load voltage obtained by changing the tap positions. The proposed method is generalized for any given number of TCP and was implemented for three TCP, demonstrating that the power losses are minimized and the load voltage remains within an admissible range.

  13. Steady-state heat losses in pipes for low-energy district heating

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2010-01-01

    The synergy between highly energy efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy saving policies and energy supply systems based on renewable energy (RE). Distribution heat losses represent a key factor in the design o...

  14. Heat stress causes substantial labour productivity loss in Australia

    Science.gov (United States)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  15. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  16. MATHEMATICAL MODELLING OF OPERATION HEAT NETWORKS IN VIEW OF HEAT LOSS

    Directory of Open Access Journals (Sweden)

    ZBARAZ L. I.

    2016-08-01

    Full Text Available Goal. In recent years, due to a significant rise in price of energy, the reduction of direct costs for heating becomes a priority. In the utilities especially important to optimization of energy heating system equipment. During transport of thermal energy in the distribution networks thermal losses occur along the length of the hydraulic pipes and the coolant pumping losses. These loss-dependence of the particular distribution network. Changing temperature and the hydraulic regime at the source necessary to achieve the minimum cost of transport for today acting tariffs for energy. Scientific novelty. The studies received law changes head to the source at the qualitative and quantitative methods of regulation. Results. A mathematical model of an extensive network of decentralized heat source heating, which are analyzed using different methods of regulating and found the best.

  17. NLP modeling for the optimization of LiBr-H2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Gernaey, Krist; Morosuk, Tatiana

    2016-01-01

    exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit...... and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat...... transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively...

  18. Effect of pipe insulation losses on a loss-of-heat sink accident for an LMR

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.; Wood, P.M.

    1985-01-01

    The efficacy of pipe radiation losses as a heat sink during LOHS in a loop-type LMR plant is investigated. The Super System Code (SSC), which was modified to include pipe radiation losses, was used to simulate such an LOHS in an LMR plant. In order to enhance these losses, the pipes were assumed to be insulated by rock wool, a material whose thermal conductivity increases with increasing temperature. A transient was simulated for a total of eight days, during which the coolant temperatures peaked well below saturation conditions and then declined steadily. The coolant flow rate in the loop remained positive throughout the transient

  19. Review of reactive power dispatch strategies for loss minimization in a DFIG-based wind farm

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    2017-01-01

    power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle......This paper reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and fourWind Turbine (WT) level reactive...... Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations on a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake...

  20. Application of EoEP principle with variable heat transfer coefficient in minimizing entropy production in heat exchangers

    International Nuclear Information System (INIS)

    Balkan, F.

    2005-01-01

    A more realistic application of the entropy minimization principle EoEP is presented. This principle dictates uniform local entropy generations along the heat exchanger in order to minimize the total entropy generation rate due only to heat transfer. For a certain heat duty and area of an existing exchanger, this is done by changing the temperatures of one fluid while the temperatures of the other fluid are held constant. Since the heat duty is fixed, the change in the temperatures of the fluid after the change, however, may sometimes cause a drastic change in its flow rate. This may cause considerable changes in the overall heat transfer coefficient (U) and, consequently, in the entropy generation rate. Depending on the choice of the fluid for changing, the new entropy generation rates may be higher or lower than those based on constant U as is the case in papers recently published. So, the classical application of the EoEP principle needs to be modified to achieve more realistic entropy generation rates. In this study, the principle of EoEP with variable U is applied to some cases of heat exchange, and a simple method is presented as a criterion for the proper choice of the fluid to be changed

  1. Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization

    International Nuclear Information System (INIS)

    Moghadam, Ahmad; Seifi, Ali Reza

    2014-01-01

    Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function

  2. New hybrid frequency reuse method for packet loss minimization in LTE network.

    Science.gov (United States)

    Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H

    2015-11-01

    This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.

  3. Parameter-free Network Sparsification and Data Reduction by Minimal Algorithmic Information Loss

    KAUST Repository

    Zenil, Hector

    2018-02-16

    The study of large and complex datasets, or big data, organized as networks has emerged as one of the central challenges in most areas of science and technology. Cellular and molecular networks in biology is one of the prime examples. Henceforth, a number of techniques for data dimensionality reduction, especially in the context of networks, have been developed. Yet, current techniques require a predefined metric upon which to minimize the data size. Here we introduce a family of parameter-free algorithms based on (algorithmic) information theory that are designed to minimize the loss of any (enumerable computable) property contributing to the object\\'s algorithmic content and thus important to preserve in a process of data dimension reduction when forcing the algorithm to delete first the least important features. Being independent of any particular criterion, they are universal in a fundamental mathematical sense. Using suboptimal approximations of efficient (polynomial) estimations we demonstrate how to preserve network properties outperforming other (leading) algorithms for network dimension reduction. Our method preserves all graph-theoretic indices measured, ranging from degree distribution, clustering-coefficient, edge betweenness, and degree and eigenvector centralities. We conclude and demonstrate numerically that our parameter-free, Minimal Information Loss Sparsification (MILS) method is robust, has the potential to maximize the preservation of all recursively enumerable features in data and networks, and achieves equal to significantly better results than other data reduction and network sparsification methods.

  4. Firefly algorithm based solution to minimize the real power loss in a power system

    Directory of Open Access Journals (Sweden)

    P. Balachennaiah

    2018-03-01

    Full Text Available This paper proposes a method to minimize the real power loss (RPL of a power system transmission network using a new meta-heuristic algorithm known as firefly algorithm (FA by optimizing the control variables such as transformer taps, UPFC location and UPFC series injected voltage magnitude and phase angle. A software program is developed in MATLAB environment for FA to minimize the RPL by optimizing (i only the transformer tap values, (ii only UPFC location and its variables with optimized tap values and (iii UPFC location and its variables along with transformer tap setting values simultaneously. Interior point successive linear programming (IPSLP technique and real coded genetic algorithm (RCGA are considered here to compare the results and to show the efficiency and superiority of the proposed FA towards the optimization of RPL. Also in this paper, bacteria foraging algorithm (BFA is adopted to validate the results of the proposed algorithm.

  5. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    Science.gov (United States)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  6. A trim-loss minimization in a produce-handling vehicle production plant

    Directory of Open Access Journals (Sweden)

    Apichai Ritvirool

    2007-01-01

    Full Text Available How to cut out the required pieces from raw materials by minimizing waste is a trim-loss problem. The integer linear programming (ILP model was developed to solve this problem. In addition, this ILPmodel could be used for planning an order over some future time period. Time horizon of ordering raw material including weekly, monthly, quarterly, and annually could be planned to reduce the trim loss. Thenumerical examples using an industrial case study of a produce-handling vehicle production plant were presented to illustrate how the proposed ILP model could be applied to actual systems and the types ofinformation that was obtained relative to implementation. The results showed that the proposed ILP model can be used as a decision support tool for selecting time horizon of order planning and cutting patterns todecrease material cost and waste from cutting raw material.

  7. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis; Zellhuber, Mathieu; Komarek, Thomas; Im, Hong G.; Polifke, Wolfgang

    2015-01-01

    relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability

  8. Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Wang, A.; Zhao, J.; Robinson, S.J.; Bowden, S.; Green, M.A. [New South Wales Univ., Kensington, NSW (Australia). Centre for Photovoltaic Devices and Systems; Heiser, G. [New South Wales Univ., Sydney, NSW (Australia). School of Computer Science and Engineering; Aberle, A.G. [Institut fuer Solarenergieforschung (ISFH), Emmerthal (Germany)

    1996-11-01

    This paper presents an improved method for measuring the total lumped series resistance (R{sub s}) of high-efficiency solar cells. Since this method greatly minimizes the influence of non-linear recombination processes on the measured R{sub s} values, it is possible to determine R{sub s} as a function of external current density over a wide range of illumination levels with a significantly improved level of accuracy. This paper furthermore explains how resistive losses in the emitter, the base, the metal/silicon contacts and the front metal grid can be separately determined by combining measurements and multi-dimensional numerical simulations. A novel combination of device simulation and circuit simulation is introduced in order to simulate complete 2 x 2 cm s sq. P:ERL (`passivated emitter and rear locally-diffused`) silicon solar cells. These computer simulations provide improved insight into the dynamics of resistive losses, and thus allow new strategies for the optimization of resistive losses to be developed. The predictions have been experimentally verified with PERL cells, whose resistive losses were reduced to approximately half of their previous values, contributing to a new efficiency world record (24.0%) for silicon solar cells under terrestrial illumination. The measurement techniques and optimization strategies presented here can be applied to most other types of solar cells, and to materials other than silicon. (Author)

  9. Condensing heat transfer following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Rubin, M.B.

    1978-01-01

    A new method for calculating the steam mass condensation energy removal rates on cold surfaces in contact with an air-steam mixture has been developed. This method is based on the principles of mass diffusion of steam from an area of high concentration to the condensing surface, which is an area of low steam concentration. This new method of calculating mass condensation has been programmed into the CONTEMPT-LT Mod 26 computer code, which calculates the pressure and temperature transients inside a light water reactor containment following a loss-of-coolant accident. The condensing heat transfer coefficient predicted by the mass diffusion method is compared to existing semi-empirical correlations and to the experimental results of the Carolinas Virginia Tube Reactor Containment natural decay test. Closer agreement with test results is shown in the calculation of containment pressure, temperature, and heat sink surface temperature using the mass diffusion condensation method than when using any existing semi-empirical correlation

  10. Chaos of radiative heat-loss-induced flame front instability.

    Science.gov (United States)

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.

  11. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2013-01-01

    Global energy efficiency can be obtained in two ordinary ways. One way is to improve the energy production and supply side, and the other way is, in general, to reduce the consumption of energy in society. This paper has focus on the latter and especially the consumption of energy for heating...... and cooling our houses. There is a huge energy-saving potential in this area for reducing both the global climate problems as well as economy challenges. Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from...... building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning...

  12. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    Science.gov (United States)

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  13. Minimization of transport and distribution cost for district heating study of particular cases

    International Nuclear Information System (INIS)

    Barreau, A.; Caizergues, R.; Moret Bailly, J.

    1977-01-01

    The transport and distribution of hot pressurized water involve different sets of criteria: transport networks, heat distribution networks, storages. The minimization of transport cost is studied together with the distribution of thermal energy. The same parameters are introduced into these programs. The same method is used for rate of flow calculations, but mathematical methods of pipe diameter calculation are different. Some transport and distribution networks are studied with the corresponding computed programs: 52 branches networks-27 terminations; 287 branches networks-148 terminations

  14. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  15. Analytical Approach for Loss Minimization in Distribution Systems by Optimum Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Bakshi Surbhi

    2016-01-01

    Full Text Available Distributed Generation has drawn the attention of industrialists and researchers for quite a time now due to the advantages it brings loads. In addition to cost-effective and environmentally friendly, but also brings higher reliability coefficient power system. The DG unit is placed close to the load, rather than increasing the capacity of main generator. This methodology brings many benefits, but has to address some of the challenges. The main is to find the optimal location and size of DG units between them. The purpose of this paper is distributed generation by adding an additional means to reduce losses on the line. This paper attempts to optimize the technology to solve the problem of optimal location and size through the development of multi-objective particle swarm. The problem has been reduced to a mathematical optimization problem by developing a fitness function considering losses and voltage distribution line. Fitness function by using the optimal value of the size and location of this algorithm was found to be minimized. IEEE-14 bus system is being considered, in order to test the proposed algorithm and the results show improved performance in terms of accuracy and convergence rate.

  16. Enhanced GSA-Based Optimization for Minimization of Power Losses in Power System

    Directory of Open Access Journals (Sweden)

    Gonggui Chen

    2015-01-01

    Full Text Available Gravitational Search Algorithm (GSA is a heuristic method based on Newton’s law of gravitational attraction and law of motion. In this paper, to further improve the optimization performance of GSA, the memory characteristic of Particle Swarm Optimization (PSO is employed in GSAPSO for searching a better solution. Besides, to testify the prominent strength of GSAPSO, GSA, PSO, and GSAPSO are applied for the solution of optimal reactive power dispatch (ORPD of power system. Conventionally, ORPD is defined as a problem of minimizing the total active power transmission losses by setting control variables while satisfying numerous constraints. Therefore ORPD is a complicated mixed integer nonlinear optimization problem including many constraints. IEEE14-bus, IEEE30-bus, and IEEE57-bus test power systems are used to implement this study, respectively. The obtained results of simulation experiments using GSAPSO method, especially the power loss reduction rates, are compared to those yielded by the other modern artificial intelligence-based techniques including the conventional GSA and PSO methods. The results presented in this paper reveal the potential and effectiveness of the proposed method for solving ORPD problem of power system.

  17. Study of high energy ion loss during hydrogen minority heating in TFTR

    International Nuclear Information System (INIS)

    Park, J.; Zweben, S.J.

    1994-03-01

    High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45 degrees below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described

  18. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The results show that 20–55% of the side heat loss drops to layers below in the part of the tank without the presence of thermal stratification. A heat loss removal factor is introduced...

  19. Can Sophie's choice be adequately captured by cold computation of minimizing losses? An fMRI study of vital loss decisions.

    Directory of Open Access Journals (Sweden)

    Qi Li

    Full Text Available The vast majority of decision-making research is performed under the assumption of the value maximizing principle. This principle implies that when making decisions, individuals try to optimize outcomes on the basis of cold mathematical equations. However, decisions are emotion-laden rather than cool and analytic when they tap into life-threatening considerations. Using functional magnetic resonance imaging (fMRI, this study investigated the neural mechanisms underlying vital loss decisions. Participants were asked to make a forced choice between two losses across three conditions: both losses are trivial (trivial-trivial, both losses are vital (vital-vital, or one loss is trivial and the other is vital (vital-trivial. Our results revealed that the amygdala was more active and correlated positively with self-reported negative emotion associated with choice during vital-vital loss decisions, when compared to trivial-trivial loss decisions. The rostral anterior cingulate cortex was also more active and correlated positively with self-reported difficulty of choice during vital-vital loss decisions. Compared to the activity observed during trivial-trivial loss decisions, the orbitofrontal cortex and ventral striatum were more active and correlated positively with self-reported positive emotion of choice during vital-trivial loss decisions. Our findings suggest that vital loss decisions involve emotions and cannot be adequately captured by cold computation of minimizing losses. This research will shed light on how people make vital loss decisions.

  20. Permanent magnet design for magnetic heat pumps using total cost minimization

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.

    2017-11-01

    The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.

  1. Geospatial Analysis of the Building Heat Demand and Distribution Losses in a District Heating Network

    Directory of Open Access Journals (Sweden)

    Tobias Törnros

    2016-11-01

    Full Text Available The district heating (DH demand of various systems has been simulated in several studies. Most studies focus on the temporal aspects rather than the spatial component. In this study, the DH demand for a medium-sized DH network in a city in southern Germany is simulated and analyzed in a spatially explicit approach. Initially, buildings are geo-located and attributes obtained from various sources including building type, ground area, and number of stories are merged. Thereafter, the annual primary energy demand for heating and domestic hot water is calculated for individual buildings. Subsequently, the energy demand is aggregated on the segment level of an existing DH network and the water flow is routed through the system. The simulation results show that the distribution losses are overall the highest at the end segments (given in percentage terms. However, centrally located pipes with a low throughflow are also simulated to have high losses. The spatial analyses are not only useful when addressing the current demand. Based on a scenario taking into account the refurbishment of buildings and a decentralization of energy production, the future demand was also addressed. Due to lower demand, the distribution losses given in percentage increase under such conditions.

  2. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    Science.gov (United States)

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Evaluating the effect placement capacitor and distributed photovoltaic generation for power system losses minimization in radial distribution system

    Science.gov (United States)

    Rahman, Yuli Asmi; Manjang, Salama; Yusran, Ilham, Amil Ahmad

    2018-03-01

    Power loss minimization have many advantagess to the distribution system radial among others reduction of power flow in feeder lines, freeing stress on feeder loading, deterrence of power procurement from the grid and also the cost of loss compensating instruments. This paper, presents capacitor and photovoltaic (PV) placement as alternative means to decrease power system losses. The paper aims to evaluate the best alternative for decreasing power system losses and improving voltage profile in the radial distribution system. To achieve the objectives of paper, they are used three cases tested by Electric Transient and Analysis Program (ETAP) simulation. Firstly, it performs simulation of placement capacitor. Secondly, simulated placement of PV. Lastly, it runs simulation of placement capacitor and PV simultaneously. The simulations were validated using the IEEE 34-bus test system. As a result, they proved that the installation of capacitor and PV integration simultaneously leading to voltage profile correction and power losses minimization significantly.

  4. Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report.

    Science.gov (United States)

    Ganio, Matthew S; Gagnon, Daniel; Stapleton, Jill; Crandall, Craig G; Kenny, Glen P

    2013-01-01

    When exposed to heat stress, increases in cutaneous blood flow and sweating in well-healed grafted skin are severely attenuated, which could impair whole-body heat loss if skin grafts cover a large portion of total body surface area (TBSA). It is unknown to what extent whole-body heat loss is impaired when skin grafts cover a significant (eg, >50%) proportion of TBSA. The authors examined whole-body heat exchange during and after 60 min of cycling exercise in the heat (35°C; 25% relative humidity), at a fixed rate of metabolic heat production (~400 W) in a woman (age, 36 years; mass, 78.2 kg) with well-healed (17+ years) skin grafts covering 75% of TBSA. Her responses were compared with two noninjured control subjects. Whole-body evaporative and dry heat exchange were measured by direct calorimetry. While exercising in the same ambient conditions and at the same rate of heat production, relative evaporative heat loss of nongrafted skin in the grafted subject (ie, evaporative heat loss per m) was nearly twice that of the control subjects. However, total rate of evaporative heat loss reached only 59% of the amount required for heat balance in the skin-grafted subject compared with 92 ± 3% in controls. Thus, the increase in core temperature was 2-fold greater for the grafted (1.22°C) vs control (0.61 ± 0.19°C) individuals. This case study demonstrates that a large area of grafted skin greatly diminishes maximum evaporative heat loss during exercise in the heat, making a compensable environment for control subjects uncompensable for skin-grafted individuals.

  5. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    Science.gov (United States)

    Fujii, Naoto; Meade, Robert D; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah; Kenny, Glen P

    2015-05-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. Copyright © 2015 the American Physiological Society.

  6. Heated CO(2) with or without humidification for minimally invasive abdominal surgery.

    Science.gov (United States)

    Birch, Daniel W; Manouchehri, Namdar; Shi, Xinzhe; Hadi, Ghassan; Karmali, Shahzeer

    2011-01-19

    Intraoperative hypothermia during both open and laparoscopic abdominal surgery may be associated with adverse events. For laparoscopic abdominal surgery, the use of heated insufflation systems for establishing pneumoperitoneum has been described to prevent hypothermia. Humidification of the insufflated gas is also possible. Past studies have shown inconclusive results with regards to maintenance of core temperature and reduction of postoperative pain and recovery times. To determine the effect of heated gas insufflation on patient outcomes following minimally invasive abdominal surgery. The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), MEDLINE (PubMed), EMBASE, International Pharmaceutical Abstracts (IPA), Web of Science, Scopus, www.clinicaltrials.gov and the National Research Register were searched (1956 to 14 June 2010). Grey literature and cross-references were also searched. Searches were limited to human studies without language restriction. All included studies were randomized trials comparing heated (with or without humidification) gas insufflation with cold gas insufflation in adult and pediatric populations undergoing minimally invasive abdominal procedures. Study quality was assessed in regards to relevance, design, sequence generation, allocation concealment, blinding, possibility of incomplete data and selective reporting. The selection of studies for the review was done independently by two authors, with any disagreement resolved in consensus with a third co-author. Screening of eligible studies, data extraction and methodological quality assessment of the trials were performed by the authors. Data from eligible studies were collected using data sheets. Results were presented using mean differences for continuous outcomes and relative risks with 95% confidence intervals for dichotomous outcomes. The estimated effects were calculated using the latest version of RevMan software. Publication bias was taken into

  7. Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Wildi-Tremblay, P.; Gosselin, L. [Universite Laval, Quebec (Canada). Dept. de genie mecanique

    2007-07-15

    This paper presents a procedure for minimizing the cost of a shell-and-tube heat exchanger based on genetic algorithms (GA). The global cost includes the operating cost (pumping power) and the initial cost expressed in terms of annuities. Eleven design variables associated with shell-and-tube heat exchanger geometries are considered: tube pitch, tube layout patterns, number of tube passes, baffle spacing at the centre, baffle spacing at the inlet and outlet, baffle cut, tube-to-baffle diametrical clearance, shell-to-baffle diametrical clearance, tube bundle outer diameter, shell diameter, and tube outer diameter. Evaluations of the heat exchangers performances are based on an adapted version of the Bell-Delaware method. Pressure drops constraints are included in the procedure. Reliability and maintenance due to fouling are taken into account by restraining the coefficient of increase of surface into a given interval. Two case studies are presented. Results show that the procedure can properly and rapidly identify the optimal design for a specified heat transfer process. (author)

  8. A new algorithm for optimum voltage and reactive power control for minimizing transmission lines losses

    International Nuclear Information System (INIS)

    Ghoudjehbaklou, H.; Danai, B.

    2001-01-01

    Reactive power dispatch for voltage profile modification has been of interest to power utilities. Usually local bus voltages can be altered by changing generator voltages, reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control parameters, however, is not simple for modern power system networks. Heuristic and rather intelligent algorithms have to be sought. In this paper a new algorithm is proposed that is based on a variant of a genetic algorithm combined with simulated annealing updates. In this algorithm a fuzzy multi-objective a approach is used for the fitness function of the genetic algorithm. This fuzzy multi-objective function can efficiently modify the voltage profile in order to minimize transmission lines losses, thus reducing the operating costs. The reason for such a combination is to utilize the best characteristics of each method and overcome their deficiencies. The proposed algorithm is much faster than the classical genetic algorithm and cna be easily integrated into existing power utilities software. The proposed algorithm is tested on an actual system model of 1284 buses, 799 lines, 1175 fixed and ULTC transformers, 86 generators, 181 controllable shunts and 425 loads

  9. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  10. Experimental and numerical analysis of convective heat losses from spherical cavity receiver of solar concentrator

    Directory of Open Access Journals (Sweden)

    Shewale Vinod C.

    2017-01-01

    Full Text Available Spherical cavity receiver of solar concentrator is made up of Cu tubing material having cavity diameter 385 mm to analyze the different heat losses such as conduction, convection and radiation. As the convection loss plays major role in heat loss analysis of cavity receiver, the experimental analysis is carried out to study convective heat loss for the temperature range of 55-75°C at 0°, 15°, 30°, 45°, 60°, and 90° inclination angle of downward facing cavity receiver. The numerical analysis is carried out to study convective heat loss for the low temperature range (55-75°C as well as high temperature range (150-300 °C for no wind condition only. The experimental set-up mainly consists of spherical cavity receiver which is insulated with glass wool insulation to reduce the heat losses from outside surface. The numerical analysis is carried out by using CFD software and the results are compared with the experimental results and found good agreement. The result shows that the convective loss increases with decrease in cavity inclination angle and decreases with decrease in mean cavity receiver temperature. The maximum losses are obtained at 0° inclination angle and the minimum losses are obtained at 90° inclination angle of cavity due to increase in stagnation zone in to the cavity from 0° to 90° inclination. The Nusselt number correlation is developed for the low temperature range 55-75°C based on the experimental data. The analysis is also carried out to study the effect of wind speed and wind direction on convective heat losses. The convective heat losses are studied for two wind speeds (3 m/s and 5 m/s and four wind directions [α is 0° (Side-on wind, 30°, 60°, and 90° (head-on wind]. It is found that the convective heat losses for both wind speed are higher than the losses obtained by no wind test. The highest heat losses are found for wind direction α is 60° with respect to receiver stand and lowest heat losses are found

  11. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  12. Assessment of heat loss for RSG-GAS primary cooling system

    International Nuclear Information System (INIS)

    Dibyo, S.

    1998-01-01

    Heat Loss is part term of energy balance equation of system, therefore heat loss very important thing in the thermal dynamic analysis. Heat energy loosed from the surface pipe to the air in the room was calculated. Heat energy pass through by conduction, convection and radiation. The convection process are caused by moving of air density, i.e up flow of the hot air return to be down flow. The heat transfer phenomenon could be determined by empirical correlation of Heilman. The primary cooling system is consisted to the 3 zone : 1). Zone of (safety valves-heat exchanger), 2). Zone of heat exchanger surfaces, 3). Zone of heat exchanger-reactor pool. By using input data of air temperature are about 25 o C, temperature of primary coolant about 45 o C, The heat Loss along the pipes to the air are 23.9 k watt or 0.1%

  13. Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.

    Science.gov (United States)

    Lehmann, Kai S; Poch, Franz G M; Rieder, Christian; Schenk, Andrea; Stroux, Andrea; Frericks, Bernd B; Gemeinhardt, Ole; Holmer, Christoph; Kreis, Martin E; Ritz, Jörg P; Zurbuchen, Urte

    2016-08-01

    The present paper aims to assess the lower threshold of vascular flow rate on the heat sink effect in bipolar radiofrequency ablation (RFA) ex vivo. Glass tubes (vessels) of 3.4 mm inner diameter were introduced in parallel to bipolar RFA applicators into porcine liver ex vivo. Vessels were perfused with flow rates of 0 to 1,500 ml/min. RFA (30 W power, 15 kJ energy input) was carried out at room temperature and 37°C. Heat sink effects were assessed in RFA cross sections by the decrease in ablation radius, area and by a high-resolution sector planimetry. Flow rates of 1 ml/min already caused a significant cooling effect (P ≤ 0.001). The heat sink effect reached a maximum at 10 ml/min (18.4 mm/s) and remained stable for flow rates up to 1,500 ml/min. Minimal vascular flows of ≥1 ml/min cause a significant heat sink effect in hepatic RFA ex vivo. A lower limit for volumetric flow rate was not found. The maximum of the heat sink effect was reached at a flow rate of 10 ml/min and remained stable for flow rates up to 1,500 ml/min. Hepatic inflow occlusion should be considered in RFA close to hepatic vessels. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  14. Children with minimal sensorineural hearing loss: prevalence, educational performance, and functional status.

    Science.gov (United States)

    Bess, F H; Dodd-Murphy, J; Parker, R A

    1998-10-01

    This study was designed to determine the prevalence of minimal sensorineural hearing loss (MSHL) in school-age children and to assess the relationship of MSHL to educational performance and functional status. To determine prevalence, a single-staged sampling frame of all schools in the district was created for 3rd, 6th, and 9th grades. Schools were selected with probability proportional to size in each grade group. The final study sample was 1218 children. To assess the association of MSHL with educational performance, children identified with MSHL were assigned as cases into a subsequent case-control study. Scores of the Comprehensive Test of Basic Skills (4th Edition) (CTBS/4) then were compared between children with MSHL and children with normal hearing. School teachers completed the Screening Instrument for Targeting Education Risk (SIFTER) and the Revised Behavior Problem Checklist for a subsample of children with MSHL and their normally hearing counterparts. Finally, data on grade retention for a sample of children with MSHL were obtained from school records and compared with school district norm data. To assess the relationship between MSHL and functional status, test scores of all children with MSHL and all children with normal hearing in grades 6 and 9 were compared on the COOP Adolescent Chart Method (COOP), a screening tool for functional status. MSHL was exhibited by 5.4% of the study sample. The prevalence of all types of hearing impairment was 11.3%. Third grade children with MSHL exhibited significantly lower scores than normally hearing controls on a series of subtests of the CTBS/4; however, no differences were noted at the 6th and 9th grade levels. The SIFTER results revealed that children with MSHL scored poorer on the communication subtest than normal-hearing controls. Thirty-seven percent of the children with MSHL failed at least one grade. Finally, children with MSHL exhibited significantly greater dysfunction than children with normal hearing

  15. Evaluation of external heat loss from a small-scale expander used in organic Rankine cycle

    International Nuclear Information System (INIS)

    Li Jing; Pei Gang; Li Yunzhu; Ji Jie

    2011-01-01

    With the scaling down of the Organic Rankine Cycle (ORC), the engine shaft power is not only determined by the enthalpy drop in the expansion process but also the external heat loss from the expander. Theoretical and experimental support in evaluating small-scale expander heat loss is rare. This paper presents a quantitative study on the convection, radiation, and conduction heat transfer from a kW-scale expander. A mathematical model is built and validated. The results show that the external radiative or convective heat loss coefficient was about 3.2 or 7.0 W/K.m 2 when the ORC operated around 100 o C. Radiative and convective heat loss coefficients increased as the expander operation temperature increased. Conductive heat loss due to the connection between the expander and the support accounted for a large proportion of the total heat loss. The fitting relationships between heat loss and mean temperature difference were established. It is suggested that low conductivity material be embodied in the support of expander. Mattress insulation for compact expander could be eliminated when the operation temperature is around 100 o C. - Highlights: → A close examination of external heat loss from a small expander is presented. → Theoretical analysis and experimental test were conducted. → The established formulas can be applied to other small ORC expanders. → The results are useful in further research of small-scale ORC.

  16. Minimization of distribution system losses by exploiting storage and anticipating market-driven behaviour of wind power producers

    NARCIS (Netherlands)

    Farrokhseresht, M.; Paterakis, N.G.; Gibescu, M.; Slootweg, J.G.

    2017-01-01

    This paper presents a stochastic bi-level optimization model to determine the optimal dispatch of energy storage systems controlled directly by the distribution system operator (DSO) in order to achieve minimization of active power losses, taking into account the profit-driven participation of

  17. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis

    2015-11-16

    The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

  18. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    Science.gov (United States)

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  19. Test bench HEATREC for heat loss measurement on solar receiver tubes

    Science.gov (United States)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  20. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow...... with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different...

  1. Effect of minimal/mild hearing loss on children's speech understanding in a simulated classroom.

    Science.gov (United States)

    Lewis, Dawna E; Valente, Daniel L; Spalding, Jody L

    2015-01-01

    While classroom acoustics can affect educational performance for all students, the impact for children with minimal/mild hearing loss (MMHL) may be greater than for children with normal hearing (NH). The purpose of this study was to examine the effect of MMHL on children's speech recognition comprehension and looking behavior in a simulated classroom environment. It was hypothesized that children with MMHL would perform similarly to their peers with NH on the speech recognition task but would perform more poorly on the comprehension task. Children with MMHL also were expected to look toward talkers more often than children with NH. Eighteen children with MMHL and 18 age-matched children with NH participated. In a simulated classroom environment, children listened to lines from an elementary-age-appropriate play read by a teacher and four students reproduced over LCD monitors and loudspeakers located around the listener. A gyroscopic headtracking device was used to monitor looking behavior during the task. At the end of the play, comprehension was assessed by asking a series of 18 factual questions. Children also were asked to repeat 50 meaningful sentences with three key words each presented audio-only by a single talker either from the loudspeaker at 0 degree azimuth or randomly from the five loudspeakers. Both children with NH and those with MMHL performed at or near ceiling on the sentence recognition task. For the comprehension task, children with MMHL performed more poorly than those with NH. Assessment of looking behavior indicated that both groups of children looked at talkers while they were speaking less than 50% of the time. In addition, the pattern of overall looking behaviors suggested that, compared with older children with NH, a larger portion of older children with MMHL may demonstrate looking behaviors similar to younger children with or without MMHL. The results of this study demonstrate that, under realistic acoustic conditions, it is difficult to

  2. Method for optimal design of pipes for low-energy district heating, with focus on heat losses

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2011-01-01

    The synergy between highly energy-efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy-saving policies and energy supply systems based on renewable energy (RE). Network transmission and distribution heat loss is one of the k...

  3. Reduction of heat losses from greenhouses by means of internal blinds with low thermal emissivity

    NARCIS (Netherlands)

    Meijer, J.

    1980-01-01

    Heat losses in greenhouses may be substantially reduced by the use of heat reflecting blinds. Quantitative results are obtained solving a mathematical heat flow model by numerical methods. Special attention has been given to the emissivity and transmittance of the screen and the ventilation through

  4. RCS pressure under reduced inventory conditions following a loss of residual heat removal

    International Nuclear Information System (INIS)

    Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

    1992-01-01

    The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes

  5. Spatial light modulator array with heat minimization and image enhancement features

    Science.gov (United States)

    Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  6. A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses

    International Nuclear Information System (INIS)

    Aman, M.M.; Jasmon, G.B.; Bakar, A.H.A.; Mokhlis, H.

    2013-01-01

    Highlights: • A new algorithm is proposed for optimum DG placement and sizing.• I 2 R losses minimization and voltage stability maximization is considered in fitness function.• Bus voltage stability and line stability is considered in voltage stability maximization.• Multi-objective PSO is used to solve the problem.• Proposed method is compared with analytical and grid search algorithm. - Abstract: Distributed Generation (DG) placement on the basis of minimization of losses and maximization of system voltage stability are two different approaches, discussed in research. In the new proposed algorithm, a multi-objective approach is used to combine the both approaches together. Minimization of power losses and maximization of voltage stability due to finding weakest voltage bus as well as due to weakest link in the system are considered in the fitness function. Particle Swarm Optimization (PSO) algorithm is used in this paper to solve the multi-objective problem. This paper will also compare the propose method with existing DG placement methods. From results, the proposed method is found more advantageous than the previous work in terms of voltage profile improvement, maximization of system loadability, reduction in power system losses and maximization of bus and line voltage stability. The results are validated on 12-bus, 30-bus, 33-bus and 69-bus radial distribution networks and also discussed in detailed

  7. Predicting TDN losses from heat damaged hays and haylages with NIR

    Science.gov (United States)

    During the storage of hay or haylage, heating damage may occur and lead to losses of available protein and digestible nutrients. Recent research indicates that losses of TDN may be more significant economically than losses of available protein. Our objectives for this study were to establish a near-...

  8. Radiation loss driven instabilities in laser heated plasmas

    International Nuclear Information System (INIS)

    Evans, R.G.

    1985-01-01

    Any plasma in which a significant part of the power balance is due to optically thin radiative losses may be subject to a radiation cooling instability. A simple analytical model gives the dispersion relation for the instability and inclusion of a realistic radiation loss term in a two dimensional hydrodynamic simulation shows that ''jet'' like features form in moderate to high Z plasmas

  9. Mathematical model and minimal measurement system for optimal control of heated humidifiers in neonatal ventilation.

    Science.gov (United States)

    Verta, Antonella; Schena, Emiliano; Silvestri, Sergio

    2010-06-01

    The control of thermo-hygrometric conditions of gas delivered in neonatal mechanical ventilation appears to be a particularly difficult task, mainly due to the vast number of parameters to be monitored and the control strategies of heated humidifiers to be adopted. In the present paper, we describe the heat and fluid exchange occurring in a heated humidifier in mathematical terms; we analyze the sensitivity of the relative humidity of outlet gas as a function of thermo-hygrometric and fluid-dynamic parameters of delivered gas; we propose a control strategy that will enable the stability of outlet gas thermo-hygrometric conditions. The mathematical model is represented by a hyper-surface containing the functional relations between the input variables, which must be measured, and the output variables, which have to remain constant. Model sensitivity analysis shows that heated humidifier efficacy and stability of outlet gas thermo-hygrometric conditions are principally influenced by four parameters: liquid surface temperature, gas flow rate, inlet gas temperature and inlet gas relative humidity. The theoretical model has been experimentally validated in typical working conditions of neonatal applications. The control strategy has been implemented by a minimal measurement system composed of three thermometers, a humidity sensor, and a flow rate sensor, and based on the theoretical model. Outlet relative humidity, contained in the range 90+/-4% and 94+/-4%, corresponding with temperature variations in the range 28+/-2 degrees C and 38+/-2 degrees C respectively, has been obtained in the whole flow rate range typical of neonatal ventilation from 1 to 10 L/min. We conclude that in order to obtain the stability of the thermo-hygrometric conditions of the delivered gas mixture: (a) a control strategy with a more complex measurement system must be implemented (i.e. providing more input variables); (b) and the gas may also need to be pre-warmed before entering the humidifying

  10. Evaluation of the carotid artery stenosis based on minimization of mechanical energy loss of the blood flow.

    Science.gov (United States)

    Sia, Sheau Fung; Zhao, Xihai; Li, Rui; Zhang, Yu; Chong, Winston; He, Le; Chen, Yu

    2016-11-01

    Internal carotid artery stenosis requires an accurate risk assessment for the prevention of stroke. Although the internal carotid artery area stenosis ratio at the common carotid artery bifurcation can be used as one of the diagnostic methods of internal carotid artery stenosis, the accuracy of results would still depend on the measurement techniques. The purpose of this study is to propose a novel method to estimate the effect of internal carotid artery stenosis on the blood flow based on the concept of minimization of energy loss. Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss. We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.

  11. Recouping the thermal-to-electric conversion loss by the use of waste heat

    International Nuclear Information System (INIS)

    Bradley, W.J.

    1976-01-01

    This paper looks at ways to recoup the thermal-to-electric conversion loss of our thermal power generating stations. These stations now produce twice as much low-grade waste heat as they do electricity. We can improve the situation in two ways: by improving the station efficiency, and by utilizing the low-grade heat beneficially. The following options are examined: N 2 O 4 turbines condensing at 10 deg C; power from moderator waste heat; 50 MW heat pump for district heating; industrial parks with integrated waste heat upgrading station. (author)

  12. Plate heat exchanger - inertia flywheel performance in loss of flow transient

    International Nuclear Information System (INIS)

    Abou-El-Maaty, Talal; Abd-El-Hady, Amr

    2009-01-01

    One of the most versatile types of heat exchangers used is the plate heat exchanger. It has principal advantages over other heat exchangers in that plates can be added and/or removed easily in order to change the area available for heat transfer and therefore its overall performance. The cooling systems of Egypt's second research reactor (ETRR 2) use this type of heat exchanger for cooling purposes in its primary core cooling and pool cooling systems. In addition to the change in the number of heat exchanger cooling channels, the effect of changing the amount of mass flow rate on the heat exchanger performance is an important issues in this study. The inertia flywheel mounted on the primary core cooling system pump with the plate heat exchanger plays an important role in the case of loss of flow transients. The PARET code is used to simulate the effect of loss of flow transients on the reactor core. Hence, the core outlet temperature with the pump-flywheel flow coast down is fed into the plate heat exchanger model developed to estimate the total energy transferred to the cooling tower, the primary side heat exchanger temperature variation, the transmitted heat exchanger power, and the heat exchanger effectiveness. In addition, the pressure drop in both, the primary side and secondary side of the plate heat exchanger is calculated in all simulated transients because their values have limits beyond which the heat exchanger is useless. (orig.)

  13. Heat loss may explain bill size differences between birds occupying different habitats.

    Directory of Open Access Journals (Sweden)

    Russell Greenberg

    Full Text Available Research on variation in bill morphology has focused on the role of diet. Bills have other functions, however, including a role in heat and water balance. The role of the bill in heat loss may be particularly important in birds where water is limiting. Song sparrows localized in coastal dunes and salt marsh edge (Melospiza melodia atlantica are similar in size to, but have bills with a 17% greater surface area than, those that live in mesic habitats (M. m. melodia, a pattern shared with other coastal sparrows. We tested the hypotheses that sparrows can use their bills to dissipate "dry" heat, and that heat loss from the bill is higher in M. m. atlantica than M. m. melodia, which would indicate a role of heat loss and water conservation in selection for bill size.Bill, tarsus, and body surface temperatures were measured using thermal imaging of sparrows exposed to temperatures from 15-37°C and combined with surface area and physical modeling to estimate the contribution of each body part to total heat loss. Song sparrow bills averaged 5-10°C hotter than ambient. The bill of M. m atlantica dissipated up to 33% more heat and 38% greater proportion of total heat than that of M. m. melodia. This could potentially reduce water loss requirements by approximately 7.7%.This >30% higher heat loss in the bill of M. m. atlantica is independent of evaporative water loss and thus could play an important role in the water balance of sparrows occupying the hot and exposed dune/salt marsh environments during the summer. Heat loss capacity and water conservation could play an important role in the selection for bill size differences between bird populations and should be considered along with trophic adaptations when studying variation in bill size.

  14. Use of L-cysteine for minimization of inorganic Hg loss during thermal neutron irradiation

    International Nuclear Information System (INIS)

    Anderson, D.L.

    2009-01-01

    Thermal neutron irradiation experiments performed with cellulose-based L-cysteine-treated and untreated Hg standards showed Hg losses of 59-81% for untreated standards but only about a 0.2% loss for treated standards. These results and others for multielement standards showed that Hg loss is highly dependent on total mass and placement of materials in the irradiation vessel and that distribution of volatilized Hg was fairly uniform throughout the sample-containing region of the vessel. Polyethylene trapped volatile Hg much more efficiently than cellulose and a multielement standard containing inorganic Se selectively trapped Hg lost from a co-irradiated multielement standard containing Hg. (author)

  15. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  16. Oceans and continents: Similarities and differences in the mechanisms of heat loss

    International Nuclear Information System (INIS)

    Sclater, J.G.; Parsons, B.; Jaupart, C.

    1981-01-01

    The principal objective of this paper is to present a simple and self-consistent review of the basic physical processes controlling heat loss from the earth. To accomplish this objective, we give a short summary of the oceanic and continental data and compare and contrast the respective mechanisms of heat loss . In the oceans we concentrate on the effect of hydrothermal circulation, and on the continents we consider in some detail a model relating surface heat flow to varying depth scales for the distribution of potassium, thorium, and uranium. From this comparison we conclude that the range in possible geotherms at depths below 100 to 150 km under continents and oceans overlaps and the thermal structure beneath an old stable continent is indistinguishable from that beneath an ocean were it at equilibrium. Oceans and continents are part of the same thermal system. Both have an upper rigid mechanical layer where heat loss is by conduction and a lower thermal boundary layer where convection is dominant. The simple conductive definition of the plate thickness is an oversimplification. The observed distribution of area versus age in the ocean allows us to investigate the dominant mechanism of heat loss which is plate creation. This distribution and an understanding of the heat flow through oceans and continents can be used to calculate the heat loss of the earth. This heat loss is 10 13 cal/s (4.2 x 10 13 W) of which more than 60% results from the creation of oceanic plate. The relation between area and age of the oceans is coupled to the ridge and subducting slab forces that contribute to the driving mechanism for plate motions. These forces are self-regulating and maintain the rate of plate generation required to achieve a balance between heat loss and heat generation

  17. Age, Loss Minimization, and the Role of Probability for Decision-Making.

    Science.gov (United States)

    Best, Ryan; Freund, Alexandra M

    2018-04-05

    Older adults are stereotypically considered to be risk averse compared to younger age groups, although meta-analyses on age and the influence of gain/loss framing on risky choices have not found empirical evidence for age differences in risk-taking. The current study extends the investigation of age differences in risk preference by including analyses on the effect of the probability of a risky option on choices in gain versus loss situations. Participants (n = 130 adults aged 19-80 years) chose between a certain option and a risky option of varying probability in gain- and loss-framed gambles with actual monetary outcomes. Only younger adults displayed an overall framing effect. Younger and older adults responded differently to probability fluctuations depending on the framing condition. Older adults were more likely to choose the risky option as the likelihood of avoiding a larger loss increased and as the likelihood of a larger gain decreased. Younger adults responded with the opposite pattern: they were more likely to choose the risky option as the likelihood of a larger gain increased and as the likelihood of avoiding a (slightly) larger loss decreased. Results suggest that older adults are more willing to select a risky option when it increases the likelihood that larger losses be avoided, whereas younger adults are more willing to select a risky option when it allows for slightly larger gains. This finding supports expectations based on theoretical accounts of goal orientation shifting away from securing gains in younger adulthood towards maintenance and avoiding losses in older adulthood. Findings are also discussed in respect to the affective enhancement perspective and socioemotional selectivity theory. © 2018 S. Karger AG, Basel.

  18. Heat loss and fluid leakage tests of the ROSA-III facility

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Shiba, Masayoshi

    1981-12-01

    The report presents characteristic test results about the steady state heat loss, one of the inherent characteristics of the ROSA-III test facility. The steady state heat loss tests were conducted at five different temperature conditions between 111 0 C and 290 0 C . Net heat loss rates were obtained by estimating the electric power supplied to the core, heat input from the recirculation pumps and steam leakage rate. The heat loss characteristics have important contribution to analyses of the ROSA-III small break tests. A following simple relation was obtained between the net heat loss rate Q*sub(HL) (kJ/s) (*: radical) of the ROSA-III facility and the temperature difference ΔT ( 0 C) between the fluid temperature of the system and the room temperature, Q*sub(HL) = 0.56 x ΔT. (*: radical) And the steam leak flow at normal operating condition of the ROSA-III test, (P = 7.2 MPa) was obtained as 8.9 x 10 -3 kg/s and corresponding steam leakage energy as 10.5 kJ/s. The heat input from the recirculation pumps was indirectly estimated under a constant speed by assuming the heat input was equal to the brake horce power of the pumps. (author)

  19. MeV ion loss during 3He minority heating in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Hammett, G.; Boivin, R.; Phillips, C.; Wilson, R.

    1992-01-01

    The loss of MeV ions during 3 He ICRH minority heating experiments has been measured using scintillator detectors near the wall of TFTR. The observed MeV ion losses to the bottom (90 degrees poloidal) detector are generally consistent with the expected first-orbit loss of D- 3 He alpha particle fusion products, with an inferred global reaction rate up to ∼10 16 reactions/sec. A qualitatively similar but unexpectedly large loss occurs 45 degrees poloidally below the outer midplane. This additional loss might be due to ICRH tail ions or to ICRH wave-induced loss of previously confined fusion products

  20. Heat loss during carbon dioxide insufflation: comparison of a nebulization based humidification device with a humidification and heating system.

    Science.gov (United States)

    Noll, Eric; Schaeffer, Roland; Joshi, Girish; Diemunsch, Sophie; Koessler, Stefanie; Diemunsch, Pierre

    2012-12-01

    This study compared the heat loss observed with the use of MR860 AEA Humidifier™ system (Fisher & Paykel Healthcare, New Zealand), which humidifies and heats the insufflated CO(2), and the use of the AeronebPro™ device (Aerogen, Ireland), which humidifies but does not heat the insufflated CO(2). With institutional approval, 16 experiments were conducted in 4 pigs. Each animal, acting as its own control, was studied at 8-day intervals in randomized sequence with the following four conditions: (1) control (C) no pneumoperitoneum; (2) standard (S) insufflation with nonhumidified, nonheated CO(2); (3) Aeroneb™ (A): insufflation with humidified, nonheated CO(2); and (4) MR860 AEA humidifier™ (MR): insufflation with humidified and heated CO(2). The measured heat loss after 720L CO(2) insufflation during the 4 h was 1.03 ± 0.75 °C (mean ± SEM) in group C; 3.63 ± 0.31 °C in group S; 3.03 ± 0.39 °C in group A; and 1.98 ± 0.09 °C in group MR. The ANOVA showed a significant difference with time (p = 0.0001) and with the insufflation technique (p = 0.024). Heat loss in group C was less than in group S after 60 min (p = 0.03), less than in group A after 70 min (p = 0.03), and less than in group MR after 150 min (p = 0.03). The heat loss in group MR was less than in group S after 50 min (p = 0.04) and less than in group A after 70 min (p = 0.02). After 160 min, the heat loss in group S was greater than in group A (p = 0.03). As far as heat loss is concerned, for laparoscopic procedures of less than 60 min, there is no benefit of using any humidification with or without heating. However, for procedures greater than 60 min, use of heating along with humidification, is superior.

  1. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  2. NLP modeling for the optimization of LiBr-H_2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    International Nuclear Information System (INIS)

    Mussati, Sergio F.; Gernaey, Krist V.; Morosuk, Tatiana; Mussati, Miguel C.

    2016-01-01

    Highlights: • A NLP model is used for simultaneous optimization of sizes and operating conditions. • Total exergy loss rate and transfer area are optimized as single objective functions. • Theoretical and practical bounds for cost optimization problems are computed. • A systematic solution strategy is proposed for total annual cost optimization. • Relevance of components is ranked by heat transfer area, exergy loss rate, and cost. - Abstract: Based on a nonlinear mathematical programming model, the sizes and operating conditions of the process units of single-effect absorption refrigeration systems operating with a LiBr–H_2O solution are optimized for a specified cooling capacity by minimizing three single objective functions: the total exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively and quantitatively with increasing available total heat transfer area. These optimization results allowed to find a “practical” value of the total heat transfer area, i.e. no benefits can be obtained by increasing the available total heat transfer area above this value since the minimal total exergy loss value cannot

  3. A Hybrid Optimization Method for Reactive Power and Voltage Control Considering Power Loss Minimization

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Bak, Claus Leth

    2015-01-01

    This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...

  4. A New GIS-Nitrogen Trading Tool Concept to Minimize Reactive Nitrogen losses to the Environment

    Science.gov (United States)

    Nitrogen (N) is an essential element which is needed to maximize agricultural production and sustainability of worldwide agroecosystems. N losses to the environment are impacting water and air quality that has become an environmental concern for the future generations. It has led to the need for dev...

  5. Control and modulation for loss minimization for dc/dc converters in wind farm

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne

    2016-01-01

    For a DC wind turbine, a single phase series-resonant converter for unidirectional power is studied. This paper aims to identify and compare impact on electrical losses and component ratings from the choice of three candidate control strategies. The evaluation is purely based on circuit simulatio...

  6. Minimizing blood loss in liver transplantation : Progress through research and evolution of techniques

    NARCIS (Netherlands)

    de Boer, MT; Molenaar, IQ; Hendriks, HGD; Slooff, MJH; Porte, RJ

    2005-01-01

    Blood loss during liver transplantation has long been recognized as an important cause of morbidity and, especially in the early days, also mortality. It is well known that blood transfusions are associated with an increased risk of postoperative complications, such as infections, pulmonary

  7. Tritium permeation losses in HYLIFE-II heat exchanger tubes

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1990-01-01

    Tritium permeation through the intermediate heat exchanger of the HYLIFE-II inertial fusion design concept is evaluated for routine operating conditions. The permeation process is modelled using the Lewis analogy combined with surface recombination. It is demonstrated that at very low driving potentials, permeation becomes proportional to the first power of the driving potential. The model predicts that under anticipated conditions the primary cooling loop will pass about 6% of the tritium entering it to the intermediate coolant. Possible approached to reducing tritium permeation are explored. Permeation is limited by turbulent diffusion transport through the molten salt. Hence, surface barriers with impendance factors typical of present technology can do very little to reduce permeation. Low Flibe viscosity is desirable. An efficient tritium removal system operating on the Flibe before it gets to the intermediate heat exchanger is required. Needs for further research are highlighted. 9 refs., 2 figs., 1 tab

  8. Treatment of the loss of ultimate heat sink initiating events in the IRSN level 1 PSA

    International Nuclear Information System (INIS)

    Dupuy, Patricia; Georgescu, Gabriel; Corenwinder, Francois

    2014-01-01

    The total loss of the ultimate heat sink is an initiating event which, even it is mainly of external origin, has been considered in the frame of internal events Level 1 PSA by IRSN. The on-going actions on the development of external hazards PSA and the recent incident of loss of the heat sink induced by the ingress of vegetable matter that occurred in France in 2009 have pointed out the need to improve the modeling of the loss of the heat sink initiating event and sequences to better take into account the fact that this loss may be induced by external hazards and thus affect all the site units. The paper presents the historical steps of the modeling of the total loss of the heat sink, the safety stakes of this modeling, the main assumptions used by IRSN in the associated PSA for the 900 MWe reactors and the results obtained. The total loss of the heat sink was not initially addressed in the safety demonstration of French NPPs. On the basis of the insights of the first probabilistic assessments performed in the 80's, the risks associated to this 'multiple failure situation' turned out to be very significant and design and organisational improvements were implemented on the plants. Reviews of the characterization of external hazards and of their consequences on the installations and French operating feedback have revealed that extreme hazards may induce a total loss of the heat sink. Moreover, the accident that occurred at Fukushima in 2011 has pointed out the risk of such a loss of long duration at all site units in case of extreme hazards. In this context, it seems relevant to further improve the modelling of the total loss of the heat sink by considering the external hazards that may cause this loss. In a first step, IRSN has improved the assumptions and data used in the loss of the heat sink PSA model, in particular by considering that such a loss may affect all the site units. The next challenge will be the deeper analysis of the impact of external hazards on

  9. Heat loss of heat pipelines in insulation moisture conditions with the evaporation

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2014-01-01

    Full Text Available Results of numerical simulation of heat and mass transfer in a wet fibroporous material in conditions of evaporation and steam diffusion were obtained. Values of heat and mass fluxes were established. The contribution of evaporation effect to total heat flux and need to consider volume fractions of water and steam into the structure of fibroporous material in calculation of effective thermal conductivity were shown. Nonstationarity of heat and mass transfer in conditions of considered problem can be ignored.

  10. Measuring and heat losses for district heating systems in detached house areas; Maet- och vaermefoerluster foer fjaerrvaermesystem i smaahusomraaden

    Energy Technology Data Exchange (ETDEWEB)

    Cederborg, Frederick; Nordgren, Ola [FVB Sverige ab, Vaesteraas (Sweden)

    2005-07-01

    Within 'low heat load' areas e.g. residential areas, with low energy consumption per individual customer, the resulting relationship between the heat loss and the energy sales is big. For these customers with low energy consumption, in particular during the summer season, concerns have been raised regarding the ability of the heat volume meters to register the true energy consumption. In order to determine the magnitude of the losses, the Swedish District Heating Association, has initiated a measuring project where measurements have been made in two separate residential areas with different system configurations and different temperature control programs. The measurements were performed from May 15, 2003 to September 23, 2004. The main objective for the project was to gather data and to analyse the magnitude of the total losses in the building systems. The relation between the heat losses and the measuring losses was also studied briefly. Two types of systems have been studied, on one hand a conventional district heating area with primary connected houses and on the other hand an area with secondary connected houses with PEX-pipes in Enkoeping. The heat and measuring losses at the area Munksundet in Enkoeping is 17 % at a 'load density' of 0,84. This value is somewhat lower than the accounted annual relative loss of 22-23 % stated in the report 'FVF 1997:11 Fjaerrvaerme till smaahus'. The results show that a secondary connected low temperature system with PEX-pipes is an interesting connection alternative for small houses. Also at the residential area Rotskaer in Skutskaer, the heat and measuring losses are lower than the accounted annual relative loss, about 24 % at a 'load density' of 0,49,which is to be compared with about 33 % annual relative loss according to the report 'FVF 1997:11'. Within this assignment there are difficulties to divide the measuring losses in short circuit flows and errors in the heat

  11. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  12. Thin minimal rim width at Bruch’s membrane opening is associated with glaucomatous paracentral visual field loss

    Directory of Open Access Journals (Sweden)

    Taniguchi EV

    2017-12-01

    between eyes with early paracentral VF loss and those with isolated peripheral VF loss (187.6±43.4 vs 200.6±36.3 µm; p>0.99. In contrast, the minimal BMO-MRW was lower in eyes with early paracentral loss (69.0±33.6 µm than in eyes with isolated peripheral loss (107.7±40.2 µm; p=0.03 or control eyes (200.1±40.8 µm; p<0.001. Average and thinnest RNFL thickness did not differ between OAG groups (p=0.61 and 0.19, respectively. Horizontal and vertical LCD did not differ among the OAG groups and controls (p=0.80 and 0.82, respectively. Multivariable linear regression analysis among OAG cases confirmed the association between lower minimal BMO-MRW and early paracentral VF loss (β=–38.3 µm; 95% confidence interval, –69.8 to –6.8 µm; p=0.02 after adjusting for age, gender, MD, and disc size.Conclusion: Thin minimal BMO-MRW may represent a new structural biomarker associated with early glaucomatous paracentral VF loss. Keywords: paracentral loss, BMO-MRW, open angle glaucoma, optic nerve damage, swept-source OCT

  13. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang; Im, Hong G.; Shim, Eun Bo

    2016-01-01

    The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  14. DISTRIBUTION NETWORK RECONFIGURATION FOR POWER LOSS MINIMIZATION AND VOLTAGE PROFILE ENHANCEMENT USING ANT LION ALGORITHM

    Directory of Open Access Journals (Sweden)

    Maryam Shokouhi

    2017-06-01

    Full Text Available Distribution networks are designed as a ring and operated as a radial form. Therefore, the reconfiguration is a simple and cost-effective way to use existing facilities without the need for any new equipment in distribution networks to achieve various objectives such as: power loss reduction, feeder overload reduction, load balancing, voltage profile improvement, reducing the number of switching considering constraints that ultimately result in the power loss reduction. In this paper, a new method based on the Ant Lion algorithm (a modern meta-heuristic algorithm is provided for the reconfiguration of distribution networks. Considering the extension of the distribution networks and complexity of their communications networks, and the various parameters, using smart techniques is inevitable. The proposed approach is tested on the IEEE 33 & 69-bus radial standard distribution networks. The Evaluation of results in MATLAB software shows the effectiveness of the Ant Lion algorithm in the distribution network reconfiguration.

  15. Numerical quantification and minimization of perimeter losses in high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Heiser, Gernot; Green, M.A. [New South Wales Univ., Kensington, NSW (Australia)

    1996-09-01

    This paper presents a quantitative analysis of perimeter losses in high-efficiency silicon solar cells. A new method of numerical modelling is used, which provides the means to simulate a full-sized solar cell, including its perimeter region. We analyse the reduction in efficiency due to perimeter losses as a function of the distance between the active cell area and the cut edge. It is shown how the optimum distance depends on whether the cells in the panel are shingled or not. The simulations also indicate that passivating the cut-face with a thermal oxide does not increase cell efficiency substantially. Therefore, doping schemes for the perimeter domain are suggested in order to increase efficiency levels above present standards. Finally, perimeter effects in cells that remain embedded in the wafer during the efficiency measurement are outlined. (author)

  16. Use of infrared thermography for the evaluation of heat losses during coal storage

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Pierrot, A.; Gómez-Landesa, E.; Arriaga, A.; Schmal, D.

    1999-01-01

    The exothermic processes during coal storage reduce the calorific value of the coal which in turn results in financial losses. An accurate and easy calculation of the losses may be an efficient tool to evaluate the effectiveness of the measures taken to reduce the spontaneous heating of coal and to

  17. A model for particle and heat losses by type I edge localized modes

    International Nuclear Information System (INIS)

    Tokar, M Z; Gupta, A; Kalupin, D; Singh, R

    2007-01-01

    A model to estimate the particle and energy losses caused in tokamaks by type I edge localized modes (ELMs) is proposed. This model is based on the assumption that the increase in transport by ELM is due to flows along magnetic field lines perturbed by ballooning-peeling MHD modes. The model reproduces well the experimentally found variation of losses with the plasma collisionality ν*, namely, the weak dependence of the particle loss and significant reduction of the energy loss with increasing ν*. It is argued that the electron parallel heat conductivity is dominating in the energy loss at not very large ν*

  18. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Coryell, E.W.; Siefken, L.J.; Paik, S.

    1998-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and non-porous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of non-porous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  19. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  20. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  1. Heat losses and thermal imaging of ferroic components

    International Nuclear Information System (INIS)

    Ilyashenko, S E; Ivanova, A I; Gasanov, O V; Grechishkin, R M; Tretiakov, S A; Yushkov, K B; Linde, B B J

    2015-01-01

    A study is made of spatial and temporal temperature variations in working devices based on ferroic functional materials. The measurement of the sample's temperature is complemented with direct observation of its distribution over the sample surface. For the latter purpose a thermovision infrared videocamera technique was employed. Specific features of the temperature distribution and its evolution during heating and cooling of a number of piezoelectric, acoustooptic and shape memory components are revealed. Examples of hot spot observations indicative of structural defects in the samples under study are given thus suggesting the use of thermal vision for nondestructive testing. A proposal is made to combine the thermovision method with that of thermomagnetic analysis for the study of ferromagnetic shape memory alloys

  2. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  3. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend to ......, 0.3–0.5 % (wt.%) Xanthan Gum or 1–2% (wt.%) of some solid or liquid polymers as additives had significantly higher heat contents compared to samples of sodium acetate trihydrate suffering from phase separation....

  4. Sauropod necks: are they really for heat loss?

    Directory of Open Access Journals (Sweden)

    Donald M Henderson

    Full Text Available Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating.

  5. Integrating Solar Heating into an Air Handling Unit to Minimize Energy Consumption

    OpenAIRE

    Wilson, Scott A

    2010-01-01

    The purpose of this project was to test a method of integrating solar heating with a small commercial air handling unit (AHU). In order to accomplish this a heat exchanger was placed in the reheat position of the AHU and piped to the solar heating system. This heat exchanger is used to supplement or replace the existing electric reheat. This method was chosen for its ability to utilize solar energy on a more year round basis when compared to a traditional heating system. It allows solar h...

  6. Enhanced O2 Loss at Mars Due to an Ambipolar Electric Field from Electron Heating

    Science.gov (United States)

    Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; Delory, G. T.; Andrews, D. J.; Eriksson, A. I.; Mcenulty, T.; Morooka, M. W.; hide

    2016-01-01

    Recent results from the MAVEN Langmuir Probe and Waves (LPW) instrument suggest higher than predicted electron temperatures (T sub e) in Mars dayside ionosphere above approx. 180 km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer (NGIMS) indicate significant abundances of O2+ up to approx. 500 km in altitude, suggesting that O2+ may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher T(sub e) (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher T(sub e) may greatly increase O2+ loss at Mars. In particular, enhanced T(sub e) in Mars ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (e) of several k(sub b)T(sub e), which draws ions out of the region allowing for enhanced escape. With active solar wind, electron and ion heating, direct O2+ loss could match or exceed loss via dissociative recombination of O2+. These results suggest that direct loss of O2+ may have played a significant role in the loss of oxygen at Mars over time.

  7. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  8. Heat Loss Measurements in Buildings Utilizing a U-value Meter

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance...... of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning and mechanical ventilation in the tropical countries contribute to an enormous energy consumption and corresponding CO2 emission. In order to establish...... the best basis for upgrading the energy performance, it is important to measure the heat losses at different locations on a building facade, in order to optimize the energy performance. The author has invented a U-value meter, enabling measurements of heat transfer coefficients. The meter has been used...

  9. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  10. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  11. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang

    2016-02-02

    Background Allometric scaling, which represents the dependence of biological trait or process relates on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. Methods A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. Results A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value smaller than 2/3. Conclusion The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  12. Loss of ATRX in chondrocytes has minimal effects on skeletal development.

    Directory of Open Access Journals (Sweden)

    Lauren A Solomon

    Full Text Available BACKGROUND: Mutations in the human ATRX gene cause developmental defects, including skeletal deformities and dwarfism. ATRX encodes a chromatin remodeling protein, however the role of ATRX in skeletal development is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: We induced Atrx deletion in mouse cartilage using the Cre-loxP system, with Cre expression driven by the collagen II (Col2a1 promoter. Growth rate, body size and weight, and long bone length did not differ in Atrx(Col2cre mice compared to control littermates. Histological analyses of the growth plate did not reveal any differences between control and mutant mice. Expression patterns of Sox9, a transcription factor required for cartilage morphogenesis, and p57, a marker of cell cycle arrest and hypertrophic chondrocyte differentiation, was unaffected. However, loss of ATRX in cartilage led to a delay in the ossification of the hips in some mice. We also observed hindlimb polydactily in one out of 61 mutants. CONCLUSIONS/SIGNIFICANCE: These findings indicate that ATRX is not directly required for development or growth of cartilage in the mouse, suggesting that the short stature in ATR-X patients is caused by defects in cartilage-extrinsic mechanisms.

  13. Reconfiguration of distribution networks to minimize loss and disruption costs using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, Juan Carlos; Kagan, Nelson [Department of Electrical Engineering, University of Sao Paulo, Escola Politecnica, Av. Prof. Luciano Gualberto, travessa 3 n 380 - CEP - 05508-970 - Sao Paulo (Brazil)

    2010-01-15

    In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (author)

  14. Minimization of sucrose losses in sugar industry by pH and temperature optimization

    International Nuclear Information System (INIS)

    Panpae, Kornvalai; Jaturonrusmee, Wasna; Mingvanish, Withawat; Santudrob, Kittisak; Triphanpitak, Siriphan

    2008-01-01

    Invert sugar has several disadvantage properties that play an important role in many food applications. It has a high affinity for water and is the cause of making products retain moisture. Invert sugar also affects the carmelization process, producing a browning effect. In this study, the possibility of minimization of sucrose inversion during the industrial production of sugar cane was investigated by the variation of the important parameters, i.e. temperature and pH of sugar cane juice for each of samples. The amounts of sucrose and reducing sugar alerting during the sucrose inversion process were determined by the values of % Pol and % reducing sugar (% RS), respectively. Starting with the study of temperature and pH effects of the sucrose solution with the concentration of 16 Brix, used as a sample model, it was found that no change in amounts of reducing sugar and sucrose was observed at room temperature (34 degree Celsius) in the pH range of 5-11. At pH 3, the amounts of reducing sugar increased and the amount of sucrose decreased as the time increased. These indicated that the process of sucrose inversion should better occur in more acidic solutions. Compared to the room temperature, it was found that the increment of temperature led to enhance the process of sucrose inversion. This was depicted by higher values of % RS and lower value of % Pol as the temperatures were elevated. The experiments were also done with real sugar cane juice, i.e. first, last, and mixed juice. The tendency of changes of the amounts of reducing sugar and sucrose in sugar cane samples by varying temperature and pH were found to resemble to those for the sample model. The increment of temperatures have also affected on a reduction of amounts of sucrose in each sugar cane juice. In addition, it could be concluded that the acidity of the solution affects sucrose easier to be broken down to glucose and fructose molecules. (author)

  15. Application of the entropy generation minimization method to a solar heat exchanger: A pseudo-optimization design process based on the analysis of the local entropy generation maps

    International Nuclear Information System (INIS)

    Giangaspero, Giorgio; Sciubba, Enrico

    2013-01-01

    This paper presents an application of the entropy generation minimization method to the pseudo-optimization of the configuration of the heat exchange surfaces in a Solar Rooftile. An initial “standard” commercial configuration is gradually improved by introducing design changes aimed at the reduction of the thermodynamic losses due to heat transfer and fluid friction. Different geometries (pins, fins and others) are analysed with a commercial CFD (Computational Fluid Dynamics) code that also computes the local entropy generation rate. The design improvement process is carried out on the basis of a careful analysis of the local entropy generation maps and the rationale behind each step of the process is discussed in this perspective. The results are compared with other entropy generation minimization techniques available in the recent technical literature. It is found that the geometry with pin-fins has the best performance among the tested ones, and that the optimal pin array shape parameters (pitch and span) can be determined by a critical analysis of the integrated and local entropy maps and of the temperature contours. - Highlights: ► An entropy generation minimization method is applied to a solar heat exchanger. ► The approach is heuristic and leads to a pseudo-optimization process with CFD as main tool. ► The process is based on the evaluation of the local entropy generation maps. ► The geometry with pin-fins in general outperforms all other configurations. ► The entropy maps and temperature contours can be used to determine the optimal pin array design parameters

  16. Enhanced loss of fusion products during mode conversion heating in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-07-01

    Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v perpendicular due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to ∼1.5 times their birth energy

  17. Extra Heat Loss Through Light Weight Roofs Due to Latent Heat

    DEFF Research Database (Denmark)

    Rode, Carsten

    1996-01-01

    that changes phase at the terminals of its passage.Note however, that convection of air most often will have an important effect on the overall heat flow - but that is a different topic.Macroscopic latent heat transferConsider the following scenario: Initially, moisture is present in its condensed or frozen......This report is one in a series of papers in Task 5 of IEA Annex 24 on how moisture and air movements affect the energy performance of building constructions. The effect of latent heat flow will be demonstrated by means of an example: a light weight flat roof.Latent heat flow is one of three...... processes by which moisture affects energy performance:Higher thermal conductivityMoist materials have higher thermal con-ductivity than when they are dry. This is because thermally conducting moisture replaces the better insulating air in the pores of the materials. Moisture also enhan-ces the thermal...

  18. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

    International Nuclear Information System (INIS)

    Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei

    2014-01-01

    Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and

  19. A comparison of different methods for in-situ determination of heat losses form district heating pipes

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Benny [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark)

    1996-11-01

    A comparison of different methods for in-situ determination of heat losses has been carried out on a 273 mm transmission line in Copenhagen. Instrumentation includes temperature sensors, heat flux meters and an infrared camera. The methods differ with regard to time consumption and costs of applying the specific method, demand on accuracy of temperature measurements, sensitivity to computational parameters, e.g. the thermal conductivity of the soil, response to transients in water temperature and the ground, and steady state assumptions in the model used in the interpretation of the measurements. Several of the applied methods work well. (au)

  20. Thermal performance of a porus radial fin with natural convection and radiative heat losses

    Directory of Open Access Journals (Sweden)

    Darvishi M.T.

    2015-01-01

    Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.

  1. Reducing heat loss from the energy absorber of a solar collector

    Science.gov (United States)

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  2. Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-overpower accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E. E.; Nuclear Engineering Division

    2007-10-08

    The sensitivities of various output parameters to selected input parameters in unprotected combined loss of heat-sink and loss-of-flow (ULOHS), loss-of-flow (ULOF), and transient-overpower (UTOP) accidents are explored in this report. This line of investigation was suggested by R. A. Wigeland. For an initial examination of potential sensitivities, the MATWS computer program has been compiled as part of a dynamic link library (DLL) so that uncertain input parameters can be sampled from their probability distributions using the GoldSim simulation software. The MATWS program combines the point-kinetics module from the SAS4A/SASSYS computer code with a simplified representation of the reactor heat removal system. Coupling with the GoldSim software by means of a DLL not only provides a convenient mechanism for sampling the stochastic input parameters but also allows the use of various tools that are available in GoldSim for analyzing the dependence of various MATWS outputs on these parameters. Should a decision be made to continue this investigation, the techniques used to couple MATWS and GoldSim could also be applied to couple the SAS4A/SASSYS computer code with GoldSim. The work described here illustrates the type of results that can be obtained from the stochastic analysis.

  3. Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-overpower accidents

    International Nuclear Information System (INIS)

    Morris, E.E.

    2007-01-01

    The sensitivities of various output parameters to selected input parameters in unprotected combined loss of heat-sink and loss-of-flow (ULOHS), loss-of-flow (ULOF), and transient-overpower (UTOP) accidents are explored in this report. This line of investigation was suggested by R. A. Wigeland. For an initial examination of potential sensitivities, the MATWS computer program has been compiled as part of a dynamic link library (DLL) so that uncertain input parameters can be sampled from their probability distributions using the GoldSim simulation software. The MATWS program combines the point-kinetics module from the SAS4A/SASSYS computer code with a simplified representation of the reactor heat removal system. Coupling with the GoldSim software by means of a DLL not only provides a convenient mechanism for sampling the stochastic input parameters but also allows the use of various tools that are available in GoldSim for analyzing the dependence of various MATWS outputs on these parameters. Should a decision be made to continue this investigation, the techniques used to couple MATWS and GoldSim could also be applied to couple the SAS4A/SASSYS computer code with GoldSim. The work described here illustrates the type of results that can be obtained from the stochastic analysis

  4. Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs

    Directory of Open Access Journals (Sweden)

    Sonia E. Eynard

    2018-01-01

    Full Text Available Genomic selection (GS is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations.

  5. Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs.

    Science.gov (United States)

    Eynard, Sonia E; Croiseau, Pascal; Laloë, Denis; Fritz, Sebastien; Calus, Mario P L; Restoux, Gwendal

    2018-01-04

    Genomic selection (GS) is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC) strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations. Copyright © 2018 Eynard et al.

  6. Systematic losses of outdoor production from heat stress and climate change

    Science.gov (United States)

    Buzan, J. R.; Huber, M.

    2017-12-01

    Heat stress impacts humans today with heat waves, worker reductions, and health issues. Here we show novel results in labor productivity for outdoor work due to global warming. We use the HumanIndexMod to calculate 4x daily values of Simplified Wet Bulb Globe Temperature index (sWBGT) from the CMIP5 archive normalized by global mean surface temperature changes. Previous work shows that scaling of sWBGT is robust across the CMIP5 archive. We calculate total annual outdoor labor capacity from our scaled sWBGT results. Our results show modern day losses due to heat stress impacting outdoor work for low latitudes (and parts of Eastern China and the Southern United States). At 2°C of climate change, up to 20% losses to total capacity impact Midwestern United States, while the Southern United States suffers >20% losses. Western Coastal Africa suffers annual losses at >80%, along with the Amazon Basin and the greater South East Asia region. India suffers losses >50% annually. At +5°C, the estimated mean global change by 2100, the Equatorial region (Northern Australia and Northern Bolivia to Western Coastal Africa and Southern India) has complete cessation of annual outdoor work. The Midwest United States suffers losses up to 30%, and the Gulf of Mexico suffers losses >50%. Our results imply that small changes in global mean surface temperature (2°C) will lead to crippling losses to outdoor work annually, and ≥5°C losses will lead to cessation of labor for more than half the world's population.

  7. Enhanced loss of fast ions during mode conversion ion Bernstein wave heating in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-12-01

    A strong interaction of fast ions with ion Bernstein waves has been observed in TFTR. It results in a large increase in the fast ion loss rate, and heats the lost particles to several MeV. The lost ions are observed at the passing/trapped boundary and appear to be either DD fusion produced tritons or accelerated D neutral beam ions. Under some conditions, enhanced loss of DT alpha particles is also seen. The losses provide experimental support for some of the elements required for alpha energy channeling

  8. Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss

    Science.gov (United States)

    Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.

    2016-02-01

    The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.

  9. Minimum success criteria at SGTR combined with loss of secondary heat sink

    International Nuclear Information System (INIS)

    Parzer, I.; Petelin, S.

    1993-01-01

    A parametric analysis has been performed investigating minimum success criteria for the hypothetical Steam Generator Tube Rupture (SGTR) accident in a Pressurized Water Reactor (PWR) Nuclear Power Plant, combined with the total loss of secondary heat sink. The analyses have been performed by RELAP5/MOD2 and MOD3 computer codes using Krsko NPP input deck. The Krsko NPP is a 2-loop Westinghouse PWR, 640 MWe, located in Slovenia and operating from 1981. Two break sizes have been chosen for the SGTR event: 2 and 5 double-ended broken tubes have been assumed. Total loss of secondary heat sink has been assumed from the beginning of the calculation. The ways of cooling down the plant after the postulated accident have been investigated, including Bleed ampersand Feed through the primary system. The NPP Krsko Emergency Operating Procedures (EOP) have been verified for this case. Some suggestions have been made, how to improve FR-H.1 procedure (Loss of Secondary Heat Sink), to include some steps, which take into account also SGTR when it is combined with loss of secondary heat sink. Possible misinterpretations of E-0 procedure (Reactor Trip or Safety Injection) have been studied

  10. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    Science.gov (United States)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  11. The influence of soil moisture transfer on building heat loss via the ground

    NARCIS (Netherlands)

    Janssen, H.M.; Carmeliet, J.; Hens, H.

    2004-01-01

    In this paper, the influence of soil moisture transfer on building heat loss via the ground is investigated by comparing fully coupled simulations with linear thermal simulations. The observed influences of coupling are (1) the larger amplitude of surface temperature, (2) the variation of thermal

  12. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Science.gov (United States)

    Heenan, Caragh B; Seymour, Roger S

    2012-01-01

    Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis) and yellow-throated miner (Manorina flavigula), were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  13. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Directory of Open Access Journals (Sweden)

    Caragh B Heenan

    Full Text Available Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis and yellow-throated miner (Manorina flavigula, were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  14. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  15. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    Science.gov (United States)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  16. Study of alternative materials to minimize erosion in heat exchanger tubes used in thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Arnt, A.B.C.; Paula, M.M. da S. Paula; Rocha, M.R. da; Angioletto, E.; Zanini, L.C.; Miranda, R.; Zanelatto, C.C. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil)], e-mails: anb@unesc.net, mms@unesc.net, marcio2r@terra.com.br, an@unesc.net, elucaslcz@yahoo.com.br, frdgmiranda@hotmail.com, gcrisrincao20@yahoo.com.br; Felippe, L. [Universidade do Extremo Sul Catarinense (UNESC), Capivari de Baixo, SC (Brazil)], e-mail: hlfelippe@tractebelenergia.com.br

    2007-07-01

    The machinery used in coal thermo electrical plants usually is submitted to erosive wear. The erosive wear occurs mainly in the metallic pipe set of heat exchangers due the flow of hot gases carrying erosive particles. Jaguar Ludicrous thermo electrical complex at Capivari de Baixo city holds seven power units, where two units use approximately 20 000 ASTM A178 heat pipes. The set is submitted to a semester maintenance schedule (preventive and corrective) where the damaged pipes are changed. So, in this work a set of erosive wear accelerated tests according ASTM G76 were performed in order to develop and specify materials and methods to diminish the erosive action caused by the combustion gases over the heat pipes. Specimens were coated with WC12Co and Cr{sub 3}C{sub 2}-25NiCr alloys using the HVOF technique and the coated specimens were tested at 450 deg C, the heat pipes working temperature. Silica was used as abrasive material at 30 deg and 45 deg impact angles, simulating a harder erosive condition than the real condition. The best performance coating at laboratory scale was later used in field condition. The results showed the coated specimen performance is better than the ASTM A178 alloy. The erosion resistance of the Cr{sub 3}C{sub 2}-25NiCr and WC12Co coatings is eight times higher than the uncoated alloy, and the coatings also presented a better corrosion resistance. This feature is important, because despite the erosive action the circulating gases also present a large amount of sulfur in their composition. Sulfur at lower temperatures forms H{sub 2}SO{sub 4}, causing intense corrosion of the pipes located at the heat exchangers colder parts. Based on the results and considering the coating costs the Cr{sub 3}C{sub 2}-25NiCr alloy was selected to coat a set of pipes mounted at the region of the heat exchanger with the most intense erosive wear. At the moment these coated tubes are in field operation and under observation regarding their performance in

  17. Evaluation of Heat Losses Behind the Front of the Detonation Moving Along the Metallic Porous Surface

    Directory of Open Access Journals (Sweden)

    S. V. Golovastov

    2016-01-01

    Full Text Available The paper considers a computational technique of the heat flow from the hot products of detonation combustion into the porous coating and estimates the efficiency of the coating layer that results in slowing the flame front down with disregard the transverse displacement of the combustion products weight of a hydrogen-air mixture.Initial thermodynamic parameters of combustion products on the porous coating surface have been estimated. A drag (stagnation temperature of flow was determined.The statement of task was to calculate the heat flow into the long cylindrical metal fiber with radius of 15 μm. The reference values of heat capacity and heat diffusivity were used to estimate a thermal diffusivity in a wide range of temperatures. An approximation of the parameters is given for a wide range of temperatures.The calculation algorithm using an explicit four-point scheme is presented. The convergence and accuracy of the results were confirmed. The theoretical estimation using cylindrical Bessel functions was made to prove the accuracy of the results.Total heat loss was estimated using the photos of moving detonation front and hot combustion gases.Comparison of the total heat loss and the amount of energy absorbed by a single fiber allowed us to find that the porous coating thickness, resulting in attenuation of detonation wave, is efficient.

  18. Modeling and simulation of loss of the ultimate heat sink in a typical material testing reactor

    International Nuclear Information System (INIS)

    El-Khatib, Hisham; El-Morshedy, Salah El-Din; Higazy, Maher G.; El-Shazly, Karam

    2013-01-01

    Highlights: ► A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in MTR. ► The model involves three coupled sub-models for core, heat exchanger and cooling tower. ► The model is validated against PARET for steady-state and verified by operation data for transients. ► The model is used to simulate the behavior of the reactor under a loss of the ultimate heat sink. ► The model results are analyzed and discussed. -- Abstract: A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in a typical material testing reactor (MTR). The model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The model is validated against PARET code for steady-state operation and verified by the reactor operation records for transients. Then, the model is used to simulate the thermal–hydraulic behavior of the reactor under a loss of the ultimate heat sink event. The simulation is performed for two operation regimes: regime I representing 11 MW power and three cooling tower cells operated, and regime II representing 22 MW power and six cooling tower cells operated. In regime I, the simulation is performed for 1, 2 and 3 cooling tower cells failed while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower cells failed. The simulation is performed under protected conditions where the safety action called power reduction is triggered by reactor protection system to decrease the reactor power by 20% when the coolant inlet temperature to the core reaches 43 °C and scram is triggered if the core inlet temperature reaches 44 °C. The model results are analyzed and discussed.

  19. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  20. Energy reduction in buildings in temperate and tropic regions utilizing a heat loss measuring device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2012-01-01

    There exist two ordinary ways to obtain global energy efficiency. One way is to make improvements on the energy production and supply side, and the other way is, in general, to reduce the consume of energy in the society. This paper has focus on the latter and especially the consume of energy...... for heating up, and cooling down our houses. There is a huge energy saving potential on this area reducing both the World climate problems and economy challenges as well. Heating of buildings in Denmark counts for approximately 40% of the entire national energy consume. Of this reason a reduction of heat...... losses from building envelopes are of great impor­tance in order to reach the Bologna CO2-emission reduction goals. Energy renovation of buildings is a topic of huge focus around the world these years. Not only expenses for heating in the tempered and arctic regions are of importance, but also expenses...

  1. Heat loss in air of an Antarctic marine mammal, the Weddell seal.

    Science.gov (United States)

    Mellish, Jo-Ann; Hindle, Allyson; Skinner, John; Horning, Markus

    2015-01-01

    The conflicting needs of homeostasis in air versus water complicate our understanding of thermoregulation in marine mammals. Large-scale modeling efforts directed at predicting the energetic impact of changing sea ice conditions on polar ecosystems require a better understanding of thermoregulation in air of free-ranging animals. We utilized infrared imaging as an indirect approach to determine surface temperatures of dry, hauled-out Weddell seals (Leptonychotes weddellii, n = 35) of varying age and body condition during the Antarctic summer. The study groups provided a fivefold range in body mass and a threefold range in blubber depth. Surface temperature (T s) did not vary by body region (head, shoulder, axilla, torso, hip, flippers). Average seal T s (mean 13.9 ± 11.2 °C) was best described through a combination of the physical traits of body mass and environmental variables of ambient temperature T air, and wind speed. Additional factors of ice temperature (T ice), relative humidity and cloud cover did not improve the model. Heat transfer model estimates suggested that radiation contributed 56.6 ± 7.7 % of total heat loss. Convection and conduction accounted for the remaining 15.7 ± 12.3 and 27.7 ± 9.3 %, respectively. Heat loss by radiation was primarily influenced by body mass and wind speed, whereas convective heat loss was influenced primarily by blubber depth and wind speed. Conductive heat loss was modeled largely as a function of physical traits of mass and blubber depth rather than any environmental covariates, and therefore was substantially higher in animals in leaner condition.

  2. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-01-01

    The ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated, including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using results based on Monte Carlo simulations (Murakami, S., et al., Fusion Eng. Des. 26 (1995) 209). The global energy confinement time including the energetic ion effect can be expressed in heliotrons in terms of ICRF heating power, plasma density and magnetic field strength. Results in plasmas at CHS show a systematic decrease of the global energy confinement time due to energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. The model is also applied to ICRF minority heating in LHD plasmas in two cases of typical magnetic configurations. A clear increase of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while a decrease is observed in the 'standard' configuration. (author)

  3. The Importance of Green Spaces in Minimizing Urban Heat in The Istanbul Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Çağdaş KUŞÇU ŞİMŞEK

    2012-04-01

    Full Text Available Increasing environmental and atmospheric pollution due to urbanization, industrialization and global warming is increasing with every passing day. Life in water, air and on land is threatened by environmental problems and disasters caused by this pollution. In addition to global climate change, changes also occur in urban microclimate and regional heat islands are occurring in urban areas. This dual effect and resulting vicious circle increasingly affect human health and natural life negatively. In this context, urban climate studies have come into question in recent years. Results have showed that increasing numbers of built-up areas are linked toincreases in urban temperature and conversely larger areas of vegetation improve the city’s ventilation and climatic comfort. The Istanbul Metropolitan Area is in a period of regeneration as it attempts to prepare for the expected earthquake and as a result of global dynamics. The resulting massive building campaigns and rapid destruction of green areas have a potential to trigger climatic threats. The effects of vegetation on the urban surface temperature in the Istanbul Metropolitan Area have contributed to the improved health construction strategies. Surface Heat Islands (SHI and Normalized Difference Vegetation Index (NDVI values were determined from remote sensing techniques. The dependent variable is temperature and independent variable is NDVI values and the regression analysis was carried out. Then the heat model for NDVI was established with decision tree. The results of regression analysis were R=0.452; R2= 20%; sig.=0.00 and so the analysis was significant in 95%. As a result of the analysis of the residential area of İstanbul, the difference between the expected temperature of the minimum and maximum vegetation clusters was calculated as 4.24.

  4. ANALYSIS OF THERMAL PROPERTIES AND HEAT LOSS IN CONSTRUCTION AND ISOTHERMAL MATERIALS OF MULTILAYER BUILDING WALLS

    Directory of Open Access Journals (Sweden)

    Arkadiusz Urzędowski

    2017-06-01

    Full Text Available The article discusses the impact of vertical partition, technology on thermal insulation of the building, and the resulting savings and residents thermal comfort. The study is carried out as an analysis of three selected design solutions including such materials as: aerated concrete elements, polystyrene, ceramic elements, concrete, mineral plaster. Simulation results of heat transfer in a multi-layered wall, are subjected to detailed analysis by means of thermal visual methods. The study of existing structures, helped to identify the local point of heat loss by means of infrared technology leading to determination of U-value reduction by 36% in maximum for the described 3 types of structure.

  5. Probabilistic analysis of the loss of the decay heat removal function for Creys-Malville reactor

    International Nuclear Information System (INIS)

    Lanore, J.M.; Villeroux-Lombard, C.; Bouscatie, F.; Pavret de la Rochefordiere, A.

    1982-01-01

    The classical fault tree/event tree methods do not take into account the dependence in time of the systems behaviour during the sequences, and that is quite unrealistic for the decay heat removal function. It was then necessary to use a new methodology based on functional states of the whole system and on transition laws between these states. Thus, the probabilistic analysis of the decay heat removal function for Creys-Malville plant is performed in a global way. The main accident sequences leading to the loss of the function are then determined a posteriori. The weak points are pointed out, in particular the importance of common mode failures

  6. Oscillating-flow loss test results in rectangular heat exchanger passages

    Science.gov (United States)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  7. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kutscher, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-05-01

    Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative to previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.

  8. Monitoring the risk of loss of heat sink during plant shutdowns at Bruce Generating Station 'A'

    International Nuclear Information System (INIS)

    Krishnan, K.S.; Mancuso, F.; Vecchiarelli, D.

    1996-01-01

    A relatively simple loss of shutdown heat sink fault tree model has been developed and used during unit outages at Bruce Nuclear Generation Station 'A' to assess, from a risk and reliability perspective, alternative heat sink strategies and to aid in decisions on allowable outage configurations. The model is adjusted to reflect the various unit configurations planned during a specific outage, and identifies events and event combinations leading to loss of fuel cooling. The calculated failure frequencies are compared to the limits consistent with corporate and international public safety goals. The importance measures generated by the interrogation of the fault tree model for each outage configuration are also used to reschedule configurations with high fuel damage frequency later into the outage and to control the configurations with relatively high probability of fuel damage to short intervals at the most appropriate time into the outage. (author)

  9. The influence of soil moisture in the unsaturated zone on the heat loss from buildings via the ground

    NARCIS (Netherlands)

    Janssen, H.; Carmeliet, J.; Hens, H.

    2002-01-01

    In calculations of building heat loss via the ground, the coupling with soil moisture transfer is generally ignored, an important hypothesis which will be falsified in this paper. Results from coupled simulations - coupled soil heat and moisture transfer equations and complete surface heat and

  10. Heat deposition on the first wall due to ICRF-induced loss of fast ions in JT-60U

    International Nuclear Information System (INIS)

    Kusama, Y.; Tobita, K.; Kimura, H.; Hamamatsu, K.; Fujii, T.; Nemoto, M.; Saigusa, M.; Moriyama, S.; Tani, K.; Koide, Y.; Sakasai, A.; Nishitani, T.; Ushigusa, K.

    1995-01-01

    In JT-60U, the heat deposition on the first wall due to the ICRF-induced loss of fast ions was investigated by changing the position of the resonance layer in the ripple-trapping region. A heat spot appears on the first wall of the same major radius as the resonance layer of the ICRF waves. The broadening of the heat spot in the major radius direction is consistent with that of the resonance layer due to the Doppler broadening. The heat spot is considered to be formed by the ICRF-induced ripple-trapped loss of fast ions. Although the total ICRF-induced loss power to the heat spot is as low as 2% of the total ICRF power, the additional heat flux will become a new issue because of the localized heat deposition on the first wall. ((orig.))

  11. Method for reducing heat loss during injection of hot water into an oil stratum

    Energy Technology Data Exchange (ETDEWEB)

    Evgenev, A E; Kalashnikov, V N; Raiskii, Yu D

    1968-07-01

    A method is described for reduction of heat loss during the injection of hot water into an oil stratum. During the transportation of the hot water to the face of the bore holes, it has high-molecular polymers added to it. The high-molecular polymer may be guanidine or polyoxyethylene in the quantity of 0.01 to 0.03% by wt.

  12. Finite time thermodynamic analysis and optimization of solar-dish Stirling heat engine with regenerative losses

    Directory of Open Access Journals (Sweden)

    Sharma Arjun

    2011-01-01

    Full Text Available The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process time. The results indicate that exergy efficiency of dish system increases as the effectiveness of regenerator increases but decreases with increase in regenerative time coefficient. It is also found that optimal range of collector temperature and corresponding concentrating ratio are 1000 K~1400 K and 1100~1400, respectively in order to get maximum value of exergy efficiency. It is reported that the exergy efficiency of this dish system can reach the maximum value when operating temperature and concentrating ratio are 1150 K and 1300, respectively.

  13. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    International Nuclear Information System (INIS)

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  14. Superconductor design and loss analysis for a 20 MJ induction heating coil

    International Nuclear Information System (INIS)

    Walker, M.S.; Declercq, J.G.; Zeitlin, B.A.

    1980-01-01

    The design of a 50 k Ampere conductor for use in a 20 MJ Induction Heating Coil is described. The conductor is a wide flat cable of 36 subcables, each of which contains six NbTi strands around a stainless steel core strand. The 2.04 mm (0.080'') diameter monolithic strands allow bubble clearing for cryostable operation at a pool boiling heat transfer from the unoccluded strand surface of 0.26 Watts/cm 2 . A thin, tough polyester amide-imide (Westinghouse Omega) insulation provides a rugged coating that will resist flaking and chipping during the cabling and compaction operations and provide (1) a reliable adherent surface for enhanced heat transfer, and (2) a low voltage standoff preventing interstrand coupling losses. The strands are uniquely configured using CuNi elements to provide low ac losses with NbTi filaments in an all-copper matrix. AC losses are expected to be approximately 0.3% of 20 MJ for a -7.5 T to 7.5 T one-second 1/2-cosinusoidal bipolar operation in a 20 MJ coil. They will be approximately 0.1% of 100 MJ for 1.8 second -8 T and +8 T ramped operation in a 100 MJ coil. The design is firmly based on the results of tests performed on prototype strands and subcables

  15. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  16. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    International Nuclear Information System (INIS)

    Hanson, D.J.; Golden, D.W.; Chambers, R.; Miller, J.D.; Hallbert, B.P.; Dobbe, C.A.

    1990-10-01

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of ∼922 K (1200 degree F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs

  17. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Golden, D.W.; Chambers, R.; Miller, J.D.; Hallbert, B.P.; Dobbe, C.A. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-10-01

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of {approximately}922 K (1200{degree}F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs.

  18. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  19. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  20. Loss of CDX2 Expression and Microsatellite Instability Are Prominent Features of Large Cell Minimally Differentiated Carcinomas of the Colon

    Science.gov (United States)

    Hinoi, Takao; Tani, Masachika; Lucas, Peter C.; Caca, Karel; Dunn, Rodney L.; Macri¶, Ettore; Loda¶, Massimo; Appelman, Henry D.; Cho, Kathleen R.; Fearon, Eric R.

    2001-01-01

    Most large bowel cancers are moderately to well-differentiated adenocarcinomas comprised chiefly or entirely of glands lined by tall columnar cells. We have identified a subset of poorly differentiated colon carcinomas with a distinctive histopathological appearance that we term large cell minimally differentiated carcinomas (LCMDCs). These tumors likely include a group of poorly differentiated carcinomas previously described by others as medullary adenocarcinomas. To better understand the pathogenesis of these uncommon neoplasms, we compared molecular features of 15 LCMDCs to those present in 25 differentiated adenocarcinomas (DACs) of the colon. Tumors were examined for alterations commonly seen in typical colorectal carcinomas, including increased p53 and β-catenin immunoreactivity, K-ras gene mutations, microsatellite instability, and loss of heterozygosity of markers on chromosomes 5q, 17p, and 18q. In addition, tumors were evaluated by immunohistochemistry for CDX2, a homeobox protein whose expression in normal adult tissues is restricted to intestinal and colonic epithelium. Markedly reduced or absent CDX2 expression was noted in 13 of 15 (87%) LCMDCs, whereas only 1 of the 25 (4%) DACs showed reduced CDX2 expression (P < 0.001). Nine of 15 (60%) LCMDCs had the high-frequency microsatellite instability phenotype, but only 2 of 25 (8%) DACs had the high-frequency microsatellite instability phenotype (P = 0.002). Our findings provide support for the hypothesis that the molecular pathogenesis of LCMDCs is distinct from that of most DACs. CDX2 alterations and DNA mismatch repair defects have particularly prominent roles in the development of LCMDCs. PMID:11733373

  1. Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2018-06-01

    Full Text Available Integrated energy systems (IESs are considered a trending solution for the energy crisis and environmental problems. However, the diversity of energy sources and the complexity of the IES have brought challenges to the economic operation of IESs. Aiming at achieving optimal scheduling of components, an IES operation optimization model including photovoltaic, combined heat and power generation system (CHP and battery energy storage is developed in this paper. The goal of the optimization model is to minimize the operation cost under the system constraints. For the optimization process, an optimization principle is conducted, which achieves maximized utilization of photovoltaic by adjusting the controllable units such as energy storage and gas turbine, as well as taking into account the battery lifetime loss. In addition, an integrated energy system project is taken as a research case to validate the effectiveness of the model via the improved differential evolution algorithm (IDEA. The comparison between IDEA and a traditional differential evolution algorithm shows that IDEA could find the optimal solution faster, owing to the double variation differential strategy. The simulation results in three different battery states which show that the battery lifetime loss is an inevitable factor in the optimization model, and the optimized operation cost in 2016 drastically decreased compared with actual operation data.

  2. Discussion on the applicability of entropy generation minimization and entransy theory to the evaluation of thermodynamic performance for heat pump systems

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2014-01-01

    Highlights: • Seven parameters are applied to the analyses of heat pump systems. • Applicability of entropy generation minimization and entransy theory is discussed. • All concepts except for entransy increase rate (EI) decreases with increasing COP. • Only EI increases with increasing heat flow into the high temperature heat sink. • Applicability of both theories is conditional, depending on the objectives. - Abstract: Based on the entropy generation minimization and entransy theory, we discuss the applicability of the concepts of entropy generation rate, entropy generation number, revised entropy generation number, exergy efficiency, entransy increase rate, entransy increase coefficient and entransy efficiency to the analyses of heat pump systems in this paper. The theoretical analyses show that all the concepts except for the entransy increase rate decrease monotonically with increasing COP, while only the entransy increase rate increases monotonically with increasing heat flow pumped into the high temperature heat sink. It is shown that the entransy increase rate is not as convenient as the other concepts for the COP analyses, while it is suitable for the analyses of the heat flow into the high temperature heat sources. Some numerical examples are also presented, and the results have verified the theoretical analyses. Therefore, the applicability of entropy generation minimization and entransy theory to the analyses of heat pump systems is conditional, depending on the design objectives

  3. Modeling Loss-of-Flow Accidents and Their Impact on Radiation Heat Transfer

    Directory of Open Access Journals (Sweden)

    Jivan Khatry

    2017-01-01

    Full Text Available Long-term high payload missions necessitate the need for nuclear space propulsion. The National Aeronautics and Space Administration (NASA investigated several reactor designs from 1959 to 1973 in order to develop the Nuclear Engine for Rocket Vehicle Application (NERVA. Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. In this work, a system model based on RELAP5 is developed to simulate loss-of-flow accidents on the Pewee I test reactor. This paper investigates the radiation heat transfer between the fuel elements and the structures around it. In addition, the impact on the core fuel element temperature and average core pressure was also investigated. The following expected results were achieved: (i greater than normal fuel element temperatures, (ii fuel element temperatures exceeding the uranium carbide melting point, and (iii average core pressure less than normal. Results show that the radiation heat transfer rate between fuel elements and cold surfaces increases with decreasing flow rate through the reactor system. However, radiation heat transfer decreases when there is a complete LOFA. When there is a complete LOFA, the peripheral coolant channels of the fuel elements handle most of the radiation heat transfer. A safety system needs to be designed to counteract the decay heat resulting from a post-LOFA reactor scram.

  4. Optimizing the District Heating Primary Network from the Perspective of Economic-Specific Pressure Loss

    Directory of Open Access Journals (Sweden)

    Haichao Wang

    2017-07-01

    Full Text Available A district heating (DH system is one of the most important components of infrastructures in cold areas. Proper DH network design should balance the initial investment and the heat distribution cost of the DH network. Currently, this design is often based on a recommended value for specific pressure loss (R = ∆P/L in the main lines. This will result in a feasible network design, but probably not be optimal in most cases. The paper develops a novel optimization model to facilitate the design by considering the initial investment in the pipes and the heat distribution costs. The model will generate all possible network scenarios consisting of different series of diameters for each pipe in the flow direction of the network. Then, the annuity on the initial investment, the heat distribution cost, and the total annual cost will be calculated for each network scenario, taking into account the uncertainties of the material prices and the yearly operating time levels. The model is applied to a sample DH network and the results indicate that the model works quite well, clearly identifying the optimal network design and demonstrating that the heat distribution cost is more important than the initial investment in DH network design.

  5. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  6. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  7. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo; Kim, Seoungrae

    2014-01-01

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident

  8. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  9. Influence of the heat losses and accumulated heat upon the evolution of the thermohydraulic processes in the transients as applied to the ISB-WWER integral test facility

    International Nuclear Information System (INIS)

    Gashenko, I.V.; Melikhov, O.I.; Shmal, I.I.; Kouznetsov, V.D.

    2001-01-01

    The results of the calculational study using the RELAP5/MOD3.2 thermalhydraulic code performed on the influence of the heat losses to the ambient and the heat accumulated in the pipelines walls upon the evolution of the thermalhydraulic processes in the primary circuit of the integral test facility ISB-WWER when simulating the transients caused by the loss of the coolant are presented in the paper. (authors)

  10. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  11. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  12. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  13. Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities

    Directory of Open Access Journals (Sweden)

    M. Prakash

    2013-01-01

    Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.

  14. Minimal Evidence for a Secondary Loss of Strength After an Acute Muscle Injury: A Systematic Review and Meta-Analysis

    OpenAIRE

    Warren, Gordon L.; Call, Jarrod A.; Farthing, Amy K.; Baadom-Piaro, Bemene

    2016-01-01

    Background An immediate loss of strength follows virtually all types of muscle injury but there is debate whether the initial strength loss is maximal or if a secondary loss of strength occurs during the first 3?days post-injury. Objective The objective of this analysis was to conduct a systematic review and meta-analysis of the research literature to determine if a secondary loss of strength occurs after an injurious initiating event. Methods Literature searches were performed using eight el...

  15. Heat exchange apparatus

    International Nuclear Information System (INIS)

    Thurston, G.C.; McDaniels, J.D.; Gertsch, P.R.

    1979-01-01

    The present invention relates to heat exchangers used for transferring heat from the gas cooled core of a nuclear reactor to a secondary medium during standby and emergency conditions. The construction of the heat exchanger described is such that there is a minimum of welds exposed to the reactor coolant, the parasitic heat loss during normal operation of the reactor is minimized and the welds and heat transfer tubes are easily inspectable. (UK)

  16. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    International Nuclear Information System (INIS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-01-01

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  17. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  18. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    International Nuclear Information System (INIS)

    Rack, Michael Thomas

    2014-01-01

    losses in the presence of resonant magnetic perturbation fields, is presented. It is used to investigate the impact of various types of perturbation field, static and rotating, on the losses. The investigations of the heat load deposition profiles show important features of the resonant magnetic perturbation fields. Firstly, the heat can be favourably redistributed to reduce the local heat fluxes; secondly, a physical process is observed that appears to be linked to the heat redistribution and causes a slow propagation of a heat flux pattern long before the major energy is ejected. This opens a new view on the physics of resonant magnetic perturbation fields as it shows that processes on different time-scales are involved during the control of the plasma edge instabilities. The control of these instabilities can benefit from the new method of applying resonant magnetic perturbation fields using lower hybrid waves. This method provides high flexibility as needed to optimize the heat load redistribution. It is proven to create perturbation fields that are always resonant in the plasma edge region. In addition, it was found that no clear drawbacks appear over a wide range of perturbation fields; moreover, strong indications for an improvement of the fast ion confinement are seen. The overall results provide a positive outlook for the application of resonant magnetic perturbation fields to control edge instabilities: (a) an advantageous redistribution of transient heat loads is achievable, (b) lower hybrid waves can be used for the production of highly flexible resonant magnetic perturbation fields, and (c) resonant magnetic perturbation fields do not necessarily reduce the fast ion confinement. These results show that an optimization of the applied magnetic perturbation fields is able to solve the problem of transient heat loads without any drawbacks for the crucial fast ion confinement.

  19. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael Thomas

    2014-07-11

    losses in the presence of resonant magnetic perturbation fields, is presented. It is used to investigate the impact of various types of perturbation field, static and rotating, on the losses. The investigations of the heat load deposition profiles show important features of the resonant magnetic perturbation fields. Firstly, the heat can be favourably redistributed to reduce the local heat fluxes; secondly, a physical process is observed that appears to be linked to the heat redistribution and causes a slow propagation of a heat flux pattern long before the major energy is ejected. This opens a new view on the physics of resonant magnetic perturbation fields as it shows that processes on different time-scales are involved during the control of the plasma edge instabilities. The control of these instabilities can benefit from the new method of applying resonant magnetic perturbation fields using lower hybrid waves. This method provides high flexibility as needed to optimize the heat load redistribution. It is proven to create perturbation fields that are always resonant in the plasma edge region. In addition, it was found that no clear drawbacks appear over a wide range of perturbation fields; moreover, strong indications for an improvement of the fast ion confinement are seen. The overall results provide a positive outlook for the application of resonant magnetic perturbation fields to control edge instabilities: (a) an advantageous redistribution of transient heat loads is achievable, (b) lower hybrid waves can be used for the production of highly flexible resonant magnetic perturbation fields, and (c) resonant magnetic perturbation fields do not necessarily reduce the fast ion confinement. These results show that an optimization of the applied magnetic perturbation fields is able to solve the problem of transient heat loads without any drawbacks for the crucial fast ion confinement.

  20. Distance determination of NPP and oil reservoir on enhanced oil recovery based on heat loss and safety in view point

    International Nuclear Information System (INIS)

    Erlan Dewita; Dedy Priambodo; Sudi Ariyanto

    2013-01-01

    EOR is a method used to increasing oil recovery by injecting material or other to the reservoir. There are 3 EOR technique have been used in the world, namely thermal injection, chemical injection dan Miscible. Thermal injection method is the method most widely used in the world, however, one drawback is the loss of heat during steam distribution to the injection wells. In Indonesia, EOR application has been successfully done in the field of Duri, Chevron uses steam injection method, but still use petroleum as a fuel for steam production. In order to save oil reserves, it was done the introduction of co-generation nuclear power plants to supply some of the heat of nuclear power plants for EOR processes. In cogeneration nuclear power plant, the safety aspect is main priority. The purpose of the study was to evaluate the distance NPP with oil wells by considering heat loss and safety aspects. The method of study and calculations done using Tempo Cycle program. The study results showed that in the distance of 400 meter as exclusion zone of PBMR reactor, with pipe insulation thickness 1 in, the amount of heat loss of 277, 883 kw, while in pipe isolation thickness 2 in, amount of heat loss became 162,634 kw and with isolation thickness 3 in, amount of heat loss 120,767 kw., heat loss can be overcome and provide insulation pipes and improve the quality of saturated steam into superheated. (author)

  1. The dry-heat loss effect of melt-spun phase change material fibres.

    Science.gov (United States)

    Tjønnås, Maria Suong; Færevik, Hilde; Sandsund, Mariann; Reinertsen, Randi E

    2015-01-01

    Phase change materials (PCM) have the ability to store latent heat when they change phases, a property that gives clothing that incorporates PCM its cooling effect. This study investigated the effect of dry-heat loss (cooling) of a novel melt-spun PCM fibre on the basis of the area covered, mass, the latent heat of fusion and melting temperature, compared to a known PCM clothing product. PCM fibres with melting temperatures of 28.4 and 32.0°C and PCM packs with melting temperatures of 28.0 and 32.0°C were studied. The results showed that the PCM fibres had a larger initial peak cooling effect than that of the PCM packs. The duration of the cooling effect of PCM fibres was primarily dependent on the PCM mass and the latent heat of fusion capacity, and secondly on the covered area and melting temperature of the PCM. This study investigates the cooling effect of PCM fibres on a thermal manikin. The PCM fibres had a high but short-lasting cooling effect. This study contributes to the knowledge of how the body's temperature regulation may be affected by the cooling properties of clothing that incorporates PCM.

  2. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss

    Science.gov (United States)

    Anweiler, Stanisław; Piwowarski, Dawid; Ulbrich, Roman

    2017-10-01

    This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.

  3. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss

    Directory of Open Access Journals (Sweden)

    Anweiler Stanisław

    2017-01-01

    Full Text Available This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR and efficient heat loss monitoring system. The system consists of a small (<2kg multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.

  4. SODHA. A data program for minimizing the cost function of a solar farm with storage connected to a district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, R; Rolandsson, S

    1982-05-03

    SODHA is a program for minimizing the investment needed for a solar plant supplying a district heating system. The plant consists of a solar farm, storage and a heat exchanger connected to a district heating network. By using SODHA it is possible to optimize solar collector area storage volume, insulation thickness and magnitude of heat exchanger. The calculation gives the best estimated configuration of the system, within given margins and specified regulation principles. The program can be used for an arbitrary period, e.g. one season (year). This work is financed by NE, the National Swedish Board for Energy Source Development.

  5. ATHENA simulations of divertor pump trip and loss of heat sink transients for the GSSR

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, A

    2001-04-01

    The ITER-FEAT Generic Site Safety Report includes evaluations of the consequences of various types of conceivable transients that may occur during operation. The transients that have to be considered in this respect are specified in the Accident Analysis Specifications document of the safety report. For the divertor primary heat transport system the ranges of transients include amongst others a trip of the main circulation pump in the divertor cooling loop as well as a loss of heat sink, both initiated at full fusion power operation. The thermal-hydraulic consequences related to the coolability of the divertor primary heat transport system components for these two transients have been evaluated and summarized in the safety report and in the current report an overview of those efforts and associated outcome is provided. The analyses have been made with the ATHENA thermal-hydraulic code using a separately developed ATHENA model of the ITER-FEAT divertor cooling system. The results from the analyses indicate that for the pump trip transient the margin against overheating of critical highly loaded parts of the divertor cassette is small but seems sufficient. In case of the loss of heat sink transient the conservative analysis reveals that the pressurizer safety valve will be opened for an extended period of time and the long term transient development indicates a risk of completely filling up the pressurizer vessel. Thus the margins against jeopardizing the integrity of the divertor cooling system with the current design are for this case small but can for a long term operation at associate conditions pose a problem.

  6. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    DEFF Research Database (Denmark)

    Haller, M.Y.; Yazdanshenas, Eshagh; Andersen, Elsa

    2010-01-01

    process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged......A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification...

  7. A Numerical Study on Effect of Gas-Phase Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames

    International Nuclear Information System (INIS)

    Sohn, Chae Hoon

    2007-01-01

    Extinction characteristics of hydrogen-air diffusion flames are investigated numerically by adopting counterflow flame configuration. At various pressures, effect of radiative heat loss on flame extinction is examined. Only gas-phase radiation is considered here. Radiative heat loss depends on flame thickness, temperature, H 2 O concentration, and pressure. From flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of H 2 O increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate

  8. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Louie, Jeffrey C; Poirier, Martin P; Kenny, Glen P

    2018-01-01

    What is the central question of this study? Aerobic fitness modulates heat loss, but the heat-load threshold at which fitness-related differences in heat loss occur in young healthy men remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that aerobic fitness modulates heat loss in a heat-load-dependent manner, with fitness-related differences occurring between young men who have low and high fitness when the heat load is ∼≥500 W. Although aerobic fitness has been known for some time to modulate heat loss, our findings define the precise heat-load threshold at which fitness-related differences occur. The effect of aerobic fitness (defined as rate of peak oxygen consumption) on heat loss during exercise is thought to be related to the level of heat stress. However, it remains unclear at what combined exercise and environmental (net) heat-load threshold these fitness-related differences occur. To identify this, we assessed whole-body heat exchange (dry and evaporative) by direct calorimetry in young (22 ± 3 years) men matched for physical characteristics with low (Low-fit; 39.8 ± 2.5 ml O 2  kg -1  min -1 ), moderate (Mod-fit; 50.9 ± 1.2 ml O 2  kg -1  min -1 ) and high aerobic fitness (High-fit; 62.0 ± 4.4 ml O 2  kg -1  min -1 ; each n = 8), during three 30 min bouts of cycling in dry heat (40°C, 12% relative humidity) at increasing rates of metabolic heat production of 300 (Ex1), 400 (Ex2) and 500 W (Ex3), each followed by a 15 min recovery period. Each group was exposed to a similar net heat load (metabolic plus ∼100 W dry heat gain; P = 0.83) during each exercise bout [∼400 (Ex1), ∼500 (Ex2) and ∼600 W (Ex3); P fit (Ex2, 466 ± 21 W; Ex3, 557 ± 26 W) compared with the Low-fit group (Ex2, 439 ± 22 W; Ex3, 511 ± 20 W) during Ex2 and Ex3 (P ≤ 0.03). Conversely, evaporative heat loss for the Mod-fit group did not differ from either the High-fit or Low

  9. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  10. Stochastic LMP (Locational marginal price) calculation method in distribution systems to minimize loss and emission based on Shapley value and two-point estimate method

    International Nuclear Information System (INIS)

    Azad-Farsani, Ehsan; Agah, S.M.M.; Askarian-Abyaneh, Hossein; Abedi, Mehrdad; Hosseinian, S.H.

    2016-01-01

    LMP (Locational marginal price) calculation is a serious impediment in distribution operation when private DG (distributed generation) units are connected to the network. A novel policy is developed in this study to guide distribution company (DISCO) to exert its control over the private units when power loss and green-house gases emissions are minimized. LMP at each DG bus is calculated according to the contribution of the DG to the reduced amount of loss and emission. An iterative algorithm which is based on the Shapley value method is proposed to allocate loss and emission reduction. The proposed algorithm will provide a robust state estimation tool for DISCOs in the next step of operation. The state estimation tool provides the decision maker with the ability to exert its control over private DG units when loss and emission are minimized. Also, a stochastic approach based on the PEM (point estimate method) is employed to capture uncertainty in the market price and load demand. The proposed methodology is applied to a realistic distribution network, and efficiency and accuracy of the method are verified. - Highlights: • Reduction of the loss and emission at the same time. • Fair allocation of loss and emission reduction. • Estimation of the system state using an iterative algorithm. • Ability of DISCOs to control DG units via the proposed policy. • Modeling the uncertainties to calculate the stochastic LMP.

  11. Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m

    International Nuclear Information System (INIS)

    Mitarai, O.; Sagara, A.; Chikaraishi, H.; Imagawa, S.; Shishkin, A.A.; Motojima, O.

    2006-10-01

    Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, lower density limit margin reduces the external heating power, and over 300 s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils. (author)

  12. Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H.; Togashi, K. [Kyoto Univ. (Japan). School of Medicine; Sato, N.; Saga, T.; Nakamoto, Y.; Ishimori, T.; Konishi, J. [Dept. of Nuclear Medicine and Medical Imaging, Kyoto Univ. Graduate School of Medicine, Kyoto (Japan); Toyama, S. [Inst. for Virus Research, Kyoto Univ., Kyoto (Japan); Brechbiel, M.W. [Chemistry Section, Radiation Oncology Branch, National Cancer Inst., National Inst. of Health, Bethesda, Md. (United States)

    2000-09-01

    indium and gadolinium, and did so with minimal loss of immunoreactivity. When we achieved radiolabeling with maximum specific activity, Gd conjugate showed better biodistribution than In conjugate. (orig.)

  13. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Science.gov (United States)

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  14. ATHENA simulations of divertor loss of heat sink transient for the GSSR - Final report with updates

    Energy Technology Data Exchange (ETDEWEB)

    Sponton, L.L

    2001-05-01

    The ITER-FEAT Generic Site Safety Report includes evaluations of the consequences of various types of conceivable transients that can occur during operation. The transients that have to be considered in this respect are specified in the Accident Analysis Specifications document of the safety report. For the divertor primary heat transport system the ranges of transients include amongst others a loss of heat sink at full fusion power operation. The thermal-hydraulic consequences related to the coolability of the divertor primary heat transport system components for this transient have been evaluated and summarised in the safety report and in the current report an overview of those efforts and associated outcome is provided. The analyses have been made with the ATHENA thermal-hydraulic code using a separately developed ATHENA model of the ITER-FEAT divertor cooling system. In the current report results from calculations with an updated pressurizer model and pressurizer control system are outlined. The results show that the pressurizer safety valve does not open, that the pressurizer level increase is moderate and that no temperature increases jeopardize the structure integrity.

  15. ATHENA simulations of divertor loss of heat sink transient for the GSSR - Final report with updates

    International Nuclear Information System (INIS)

    Sponton, L.L.

    2001-05-01

    The ITER-FEAT Generic Site Safety Report includes evaluations of the consequences of various types of conceivable transients that can occur during operation. The transients that have to be considered in this respect are specified in the Accident Analysis Specifications document of the safety report. For the divertor primary heat transport system the ranges of transients include amongst others a loss of heat sink at full fusion power operation. The thermal-hydraulic consequences related to the coolability of the divertor primary heat transport system components for this transient have been evaluated and summarised in the safety report and in the current report an overview of those efforts and associated outcome is provided. The analyses have been made with the ATHENA thermal-hydraulic code using a separately developed ATHENA model of the ITER-FEAT divertor cooling system. In the current report results from calculations with an updated pressurizer model and pressurizer control system are outlined. The results show that the pressurizer safety valve does not open, that the pressurizer level increase is moderate and that no temperature increases jeopardize the structure integrity

  16. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    Science.gov (United States)

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Analysis of unscrammed loss of flow and heat sink for PRISM with GEM

    International Nuclear Information System (INIS)

    Slovik, G.C.; Van Tuyle, G.J.; Kennett, R.J.

    1991-01-01

    The US Department of Energy is sponsoring an advanced liquid-metal reactor design by General Electric Company (GE) called PRISM. The intent is to design a reactor with passively safe responses to many operational and severe accidents. PRISM is under review at the US Nuclear Regulatory Commission for licensability with Brookhaven National Laboratory providing technical assistance. Recently, the PRISM design has been modified to include three gas expansion modules (GEMs) on its core periphery. The GEMs were added to quickly reduce the power (by inserting negative reactivity) during loss-of-flow events to curtail peak fuel and clad temperatures predicted in the previous design. The GEM prototypes have been tested at the Fast Flux Test Facility. The significance of the GEMs in PRISM is discussed in this paper through the evaluation of the unprotected loss of flow (ULOF) and loss of heat sink using the SSC code. It has been demonstrated in the past that SSC predicts results similar to GE and other liquid-metal reactor codes

  18. Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches

    Directory of Open Access Journals (Sweden)

    Angel Marinov

    2014-08-01

    Full Text Available This paper presents a power loss analysis for a Single Ended Parallel Resonance (SEPR Converter used for induction heating. The analysis includes a comparison of the losses in the electronic switch when the circuit is realized using a conventional Silicon (Si based IGBT or when using Silicon Carbide (SiC based MOSFET. The analysis includes modelling and simulation as well as experimental verification through power loss and heat dissipation measurement. The presented results can be used as a base of comparison between the switches and can be a starting point for efficiency based design of those types of converters.

  19. Effect of prolonged heat treatments at low temperature on shear force and cooking loss in cows and young bulls

    DEFF Research Database (Denmark)

    Christensen, L.; Andersen, L.; Løje, Hanne

    2011-01-01

    and cooking loss in semitendinosus from cows (4-6 years) and young bulls (12-14 months), representing 2 categories of beef with varying thermal strength of connective tissue. Vacuum packed muscle samples were heat treated at 53°C, 55°C, 58°C and 63°C in water baths for 2½, 7½ and 19½ h. Cooking loss...... 53°C to 55°C, or when increasing heating time from 2½ to 7½ h at 53°C. In semitendinosus from cows shear force decreased significantly with increasing temperature, and with increasing heating time from 2½ to 19½ h at 55°C and 63°C. Cooking loss increased with increasing heating temperature in both...

  20. Use of glutaraldehyde and benzalkonium chloride for minimizing post-harvest physio-chemical and microbial changes responsible for sucrose losses in sugar cane.

    Science.gov (United States)

    Singh, Pushpa; Arya, Namita; Tiwari, Priyanka; Suman, Archna; Rai, R K; Shrivastava, A K; Solomon, S

    2008-08-27

    Sugar cane is sensitive to enormous sucrose losses induced by physio-chemical and microbial changes, the severity being increased during the time lag between harvest and crushing in the mills. Minimization of the sucrose losses in the field is essential for better sugar recovery and prevention of sucrose losses. An experiment was conducted to evaluate the efficacy of glutaraldehyde and benzalkonium chloride for their effects on the microbial counts and physio-chemical changes responsible for sucrose losses. Glutaraldehyde and benzalkonium chloride (1000 + 250 ppm) reduced the losses in sucrose content to 7.1% as compared to the 30.8% loss in the control, thus improving the performance by 76.9%. The application of chemicals reduced the acid invertase activity (by 60%), lowered weight loss, titrable acidity, reducing sugars content, dextran, ethanol, and ethylene production and respiration rates. The application led to the reduction in the total bacterial, fungal, Leuconostoc, and yeast counts by 67.92, 51.3%, 26.08, and 51.2%, respectively.

  1. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Rev. 1

    International Nuclear Information System (INIS)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  2. Life cycle biological efficiency of mice divergently selected for heat loss.

    Science.gov (United States)

    Bhatnagar, A S; Nielsen, M K

    2014-08-01

    Divergent selection in mice for heat loss was conducted in 3 independent replicates creating a high maintenance, high heat loss (MH) and low maintenance, low heat loss (ML) line and unselected control (MC). Improvement in feed efficiency was observed in ML mice due to a reduced maintenance energy requirement but there was also a slight decline in reproductive performance, survivability, and lean content, particularly when compared to MC animals. The objective of this study was to model a life cycle scenario similar to a livestock production system and calculate total inputs and outputs to estimate overall biological efficiency of these lines and determine if reduced feed intake resulted in improved life cycle efficiency. Feed intake, reproductive performance, growth, and body composition were recorded on 21 mating pairs from each line × replicate combination, cohabitated at 7 wk of age and maintained for up to 1 yr unless culled. Proportion of animals at each parity was calculated from survival rates estimated from previous research when enforcing a maximum of 4, 8, or 12 allowed parities. This parity distribution was then combined with values from previous studies to calculate inputs and outputs of mating pairs and offspring produced in a single cycle at equilibrium. Offspring output was defined as kilograms of lean output of offspring at 49 d. Offspring input was defined as megacalories of energy intake for growing offspring from 21 to 49 d. Parent output was defined as kilograms of lean output of culled parents. Parent input was defined as megacalories of energy intake for mating pairs from weaning of one parity to weaning of the next. Offspring output was greatest in MC mice due to superior BW and numbers weaned, while output was lowest in ML mice due to smaller litter sizes and lean content. Parent output did not differ substantially between lines but was greatest in MH mice due to poorer survival rates resulting in more culled animals. Input was greatest in

  3. Effects of heat loss as percentage of fuel's energy, friction and variable specific heats of working fluid on performance of air standard Otto cycle

    International Nuclear Information System (INIS)

    Lin, J.-C.; Hou, S.-S.

    2008-01-01

    The objective of this study is to analyze the effects of heat loss characterized by a percentage of the fuel's energy, friction and variable specific heats of working fluid on the performance of an air standard Otto cycle with a restriction of maximum cycle temperature. A more realistic and precise relationship between the fuel's chemical energy and the heat leakage that is based on a pair of inequalities is derived through the resulting temperature. The variations in power output and thermal efficiency with compression ratio, and the relations between the power output and the thermal efficiency of the cycle are presented. The results show that the power output as well as the efficiency where maximum power output occurs will increase with increase of the maximum cycle temperature. The temperature dependent specific heats of the working fluid have a significant influence on the performance. The power output and the working range of the cycle increase with the increase of specific heats of the working fluid, while the efficiency decreases with the increase of specific heats of the working fluid. The friction loss has a negative effect on the performance. Therefore, the power output and efficiency of the cycle decrease with increasing friction loss. It is noteworthy that the effects of heat loss characterized by a percentage of the fuel's energy, friction and variable specific heats of the working fluid on the performance of an Otto cycle engine are significant and should be considered in practical cycle analysis. The results obtained in the present study are of importance to provide good guidance for performance evaluation and improvement of practical Otto engines

  4. Effects of entrance configuration on pressure loss and heat transfer of transitional gas flow in a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Kawamura, Hiroshi

    1986-01-01

    Pressure loss and heat transfer of a transitional gas flow are affected significantly by the entrance configuration. The friction factor and the heat transfer coefficient were measured using a circular tube with four different kinds of entrance configurations. The Reynolds number at the transition from laminar to intermittent flow was varied from about 1,940 to 9,120. The intermittency factor was measured for heated and unheated flows ; and the relation between the intermittency and the friction factor or heat transfer coefficient was examined. Several existing correlations were tested and found to correlate with the experimental results fairly well. (author)

  5. A assessment of loss-of-heat-sink accident with scram in the LMFBR

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Pratt, W.T.; Sun, Y.H.

    1978-01-01

    A description of a slow core meltdown in a liquid metal fast breeder reactor is presented for conditions of loss-of-heat-sink following neutronic shutdown. Simple models are developed for the prediction of phase changes and/or relocation of the core materials including fuel, clad, ducts, control rod absorber material (B 4 C), and plenum gases. The sequence of events is accounted for and the accident progression is described up to the point of recriticality. The neutronic behavior of the disrupted core is analyzed in R-Z geometry with a static transport theory code. For most scenarios assessed, the reactor is expected to become recritical although large ramp rates are not anticipated. (author)

  6. Assessment of the loss-of-heat-sink accident with scram in the LMFBR

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Pratt, W.T.; Sun, Y.H.

    1978-01-01

    A description of a slow core meltdown in a liquid metal fast breeder reactor is presented for the conditions of loss-of-heat-sink following neutronic shutdown. Simple models are developed for the prediction of phase changes and/or relocation of the core materials including fuel, clad, ducts, control rod absorber material (B 4 C), and plenum gases. The sequence of events is accounted for and the accident progression is described up to the point of recriticality. The neutronic behavior of the disrupted core is analyzed in R-Z geometry with a static transport theory code. For most scenarios assessed, the reactor is expected to become recritical although large ramp rates are not anticipated

  7. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  8. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    International Nuclear Information System (INIS)

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab

  9. Minimizing coupling loss by selection of twist pitch lengths in multi-stage cable-in-conduit conductors

    International Nuclear Information System (INIS)

    Rolando, G; Nijhuis, A; Devred, A

    2014-01-01

    The numerical code JackPot-ACDC (van Lanen et al 2010 Cryogenics 50 139–48, van Lanen et al 2011 IEEE Trans. Appl. Supercond. 21 1926–9, van Lanen et al 2012 Supercond. Sci. Technol. 25 025012) allows fast parametric studies of the electro-magnetic performance of cable-in-conduit conductors (CICCs). In this paper the code is applied to the analysis of the relation between twist pitch length sequence and coupling loss in multi-stage ITER-type CICCs. The code shows that in the analysed conductors the coupling loss is at its minimum when the twist pitches of the successive cabling stages have a length ratio close to one. It is also predicted that by careful selection of the stage-to-stage twist pitch ratio, CICCs cabled according to long twist schemes in the initial stages can achieve lower coupling loss than conductors with shorter pitches. The result is validated by AC loss measurements performed on prototype conductors for the ITER Central Solenoid featuring different twist pitch sequences. (paper)

  10. A Post-Harvest Prediction Mass Loss Model for Tomato Fruit Using A Numerical Methodology Centered on Approximation Error Minimization

    Directory of Open Access Journals (Sweden)

    Francisco Javier Bucio

    2017-10-01

    Full Text Available Due to its nutritional and economic value, the tomato is considered one of the main vegetables in terms of production and consumption in the world. For this reason, an important case study is the fruit maturation parametrized by its mass loss in this study. This process develops in the fruit mainly after harvest. Since that parameter affects the economic value of the crop, the scientific community has been progressively approaching the issue. However, there is no a state-of-the-art practical model allowing the prediction of the tomato fruit mass loss yet. This study proposes a prediction model for tomato mass loss in a continuous and definite time-frame using regression methods. The model is based on a combination of adjustment methods such as least squares polynomial regression leading to error estimation, and cross validation techniques. Experimental results from a 50 fruit of tomato sample studied over a 54 days period were compared to results from the model using a second-order polynomial approach found to provide optimal data fit with a resulting efficiency of ~97%. The model also allows the design of precise logistic strategies centered on post-harvest tomato mass loss prediction usable by producers, distributors, and consumers.

  11. Mitigation Measures Following a Loss-of-Residual-Heat-Removal Event During Shutdown

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung

    2000-01-01

    The transient following a loss-of-residual-heat-removal event during shutdown was analyzed to determine the containment closure time (CCT) to prevent uncontrolled release of fission products and the gravity-injection path and rate (GIPR) for effective core cooling using the RELAP5/MOD3.2 code. The plant conditions of Yonggwang Units 3 and 4, a pressurized water reactor (PWR) of 2815-MW(thermal) power in Korea, were reviewed, and possible event sequences were identified. From the CCT analysis for the five cases of typical plant configurations, it was estimated for the earliest CCT to be 40 min after the event in a case with a large cold-leg opening and emptied steam generators (SGs). However, the case with water-filled SGs significantly delayed the CCT through the heat removal to the secondary side. From the GIPR analysis for the six possible gravity-injection paths from the refueling water storage tank (RWST), the case with the injection point and opening on the other leg side was estimated to be the most suitable path to avoid core boiling. In addition, from the sensitivity study, it was evaluated for the plant to be capable of providing the core cooling for the long-term transient if nominal RWST water is available. As a result, these analysis methods and results will provide useful information in understanding the plant behavior and preparing the mitigation measures after the event, especially for Combustion Engineering-type PWR plants. However, to directly apply the analysis results to the emergency procedure for such an event, additional case studies are needed for a wide range of operating conditions such as reactor coolant inventory, RWST water temperature, and core decay heat rate

  12. Free convective heat loss from cavity-type solar furnace; Solar receiver kara no shizen tairyu ni yoru netsusonshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Ito, N [Meiji University, Tokyo (Japan)

    1996-10-27

    Free convective heat loss from solar heat receivers was studied, using three laboratory model receivers (different in depth L and aperture diameter d) heated by electric heaters. Most of the heat produced by heaters was transmitted to the air inside. The cylindrical vessel walls were fully insulated against heat. Heat loss being supposed to result mainly from transfer by free convection, the experiment results were edited by use of Nusselt number Nu and Rayley number Ra. Relations between Nu(D/d){sup m1} and Ra(L/D){sup m2} were plotted in a chart. Here, D is the receiver inner diameter, and m1 and m2 are constants that can be determined by computation. Tests points were provided approximately lineally, irrespective of D, L, or receiver inclination. Air currents were found to produce one or more swirls inside, thanks to the current visualization technique, when the receiver inclination was not sharper than 120{degree} (except 0{degree}). The number of swirls increased as the inner wall temperature rose. This kind of behavior of air currents directly affects the degree of heat loss. 9 refs., 4 figs.

  13. Physiological Responses and Lactation to Cutaneous Evaporative Heat Loss in , , and Their Crossbreds

    Directory of Open Access Journals (Sweden)

    Wang Jian

    2015-11-01

    Full Text Available Cutaneous evaporative heat loss in Bos indicus and Bos taurus has been well documented. Nonetheless, how crossbreds with different fractional genetic proportions respond to such circumstances is of interest. A study to examine the physiological responses to cutaneous evaporative heat loss, also lactation period and milk yield, were conducted in Sahiwal (Bos indicus, n = 10, 444±64.8 kg, 9±2.9 years, Holstein Friesian (Bos taurus, HF100% (n = 10, 488±97.9 kg, 6±2.8 years and the following crossbreds: HF50% (n = 10, 355±40.7 kg, 2±0 years and HF87.5% (n = 10, 489±76.8 kg, 7±1.8 years. They were allocated so as to determine the physiological responses of sweating rate (SR, respiration rate (RR, rectal temperature (RT, and skin temperature (ST with and without hair from 06:00 h am to 15:00 h pm. And milk yield during 180 days were collected at days from 30 to 180. The ambient temperature-humidity-index (THI increased from less than 80 in the early morning to more than 90 in the late afternoon. The interaction of THI and breed were highly affected on SR, RR, RT, and ST (p0.05 but did change over time. The ST with and without hair were similar, and was higher in HF100% (37.4°C; 38.0°C and their crossbred HF50% (35.5°C; 35.5°C and HF87.5% (37.1°C; 37.9°C than Sahiwal (34.8°C; 34.8°C (p<0.01. Moreover, the early lactation were higher at HF100% (25 kg and 87.5% (25 kg than HF50% (23 kg which were higher than Sahiwal (18 kg while the peak period of lactation was higher at HF100% (35 kg than crossbreds both HF87.5% and HF50% (32 kg which was higher than Sahiwal (26 kg (p<0.05. In conclusion, sweating and respiration were the main vehicle for dissipating excess body heat for Sahiwal, HF and crossbreds, respectively. The THI at 76 to 80 were the critical points where the physiological responses to elevated temperature displayed change.

  14. Silver chemical vapor generation for atomic absorption spectrometry: Minimization of transport losses, interferences and application to water analysis

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Kratzer, Jan; Vobecký, Miloslav; Benada, Oldřich; Matoušek, Tomáš

    2010-01-01

    Roč. 25, č. 10 (2010), s. 1618-1626 ISSN 0267-9477 R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z50200510 Keywords : chemical vapor generation * 111Ag radioindicator * transport losses Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.372, year: 2010

  15. In-vessel natural circulation during a hypothetical loss-of-heat-sink accident in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Perkins, K.R.; Bari, R.A.; Pratt, W.T.

    1979-05-01

    The capability to remove decay heat from the FFTF core via in-vessel natural circulation has been analyzed for the preboiling phase using a lumped parameter model. The results indicate that boiling will occur in the average fuel assembly for a wide spectrum of initial conditions which appear to be representative of the hypothetical loss-of-heat-sink accident. Two-phase pressure drop calculations indicate that, once the saturation temperature is reached, coolability can only be assured for decay heat levels which are less than 0.5% of the operating power. A review of the limited sodium boiling data indicates that boiling-induced natural circulation may support up to 4% of the operating power, but geometric atypicalities and a large degree of inlet subcooling for the existing data limit the applicability to the loss-of-heat-sink accident in FFTF

  16. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Ha, Sang Jun [KHNP CRI, Daejeon (Korea, Republic of); Han, Kee Soo [Nuclear Engineering Service and Solution (NESS) Co. Ltd., Deajeon (Korea, Republic of); Park, Chan Eok [KEPCO Engineering and Constructd., Deajeon (Korea, Republic of)

    2016-10-15

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings.

  17. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Ha, Sang Jun; Han, Kee Soo; Park, Chan Eok

    2016-01-01

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings

  18. The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Ng, K. C.

    2012-01-01

    We present the experimental investigation on the performance of multi-bed desiccant dehumidification system (MBDD) using a thermodynamic framework with an entropy generation analysis. The cyclic steady state performance of adsorption-desorption processes at the assorted heat source temperatures, and typical ambient humidity conditions was carried out. MBDD unit uses type-RD silica gel pore surface area with of 720 m 2/g. It has a nominal diameter range of 0.4 to 0. 7 mm. The key advantages of MBDD are: (i) it has no moving parts rendering less maintenance, (ii) energy-efficient means of dehumidification by adsorption process with low temperature heat source as compared to the conventional methods, (iii) although it is a pecked bed desiccant, a laminar chamber is employed by arranging the V-shaped configuration of heat exchangers and (iv) it is environmental friendly with the low-carbon footprint. Entropy generation analysis was performed at the assorted heat source temperatures to investigate the performance of MBDD. By conducting the entropy minimization, it is now able to locate the optimal operating conditions of the system while the specific entropy generation is found to be minimal. This analysis shows that the minimization of entropy generation in the dehumidification cycle leads to the maximization of COP in the MBDD and thus, higher delivery of useful effects at the same input resources. © 2011 Elsevier Ltd. All rights reserved.

  19. The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation

    KAUST Repository

    Myat, Aung

    2012-06-01

    We present the experimental investigation on the performance of multi-bed desiccant dehumidification system (MBDD) using a thermodynamic framework with an entropy generation analysis. The cyclic steady state performance of adsorption-desorption processes at the assorted heat source temperatures, and typical ambient humidity conditions was carried out. MBDD unit uses type-RD silica gel pore surface area with of 720 m 2/g. It has a nominal diameter range of 0.4 to 0. 7 mm. The key advantages of MBDD are: (i) it has no moving parts rendering less maintenance, (ii) energy-efficient means of dehumidification by adsorption process with low temperature heat source as compared to the conventional methods, (iii) although it is a pecked bed desiccant, a laminar chamber is employed by arranging the V-shaped configuration of heat exchangers and (iv) it is environmental friendly with the low-carbon footprint. Entropy generation analysis was performed at the assorted heat source temperatures to investigate the performance of MBDD. By conducting the entropy minimization, it is now able to locate the optimal operating conditions of the system while the specific entropy generation is found to be minimal. This analysis shows that the minimization of entropy generation in the dehumidification cycle leads to the maximization of COP in the MBDD and thus, higher delivery of useful effects at the same input resources. © 2011 Elsevier Ltd. All rights reserved.

  20. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-01-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω e τ e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω e τ e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics

  1. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    Science.gov (United States)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  2. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-04-01

    Full Text Available The variability of specific heats, internal irreversibility, heat and frictional losses are neglected in air-standard analysis for different internal combustion engine cycles. In this paper, the performance of an air-standard Diesel cycle with considerations of internal irreversibility described by using the compression and expansion efficiencies, variable specific heats, and losses due to heat transfer and friction is investigated by using finite-time thermodynamics. Artificial neural network (ANN is proposed for predicting the thermal efficiency and power output values versus the minimum and the maximum temperatures of the cycle and also the compression ratio. Results show that the first-law efficiency and the output power reach their maximum at a critical compression ratio for specific fixed parameters. The first-law efficiency increases as the heat leakage decreases; however the heat leakage has no direct effect on the output power. The results also show that irreversibilities have depressing effects on the performance of the cycle. Finally, a comparison between the results of the thermodynamic analysis and the ANN prediction shows a maximum difference of 0.181% and 0.194% in estimating the thermal efficiency and the output power. The obtained results in this paper can be useful for evaluating and improving the performance of practical Diesel engines.

  3. Formulation and evaluation of the use of edible coatings based on gellan chunks of fresh pineapple cut to minimize deterioration of quality attributes and mass loss

    International Nuclear Information System (INIS)

    Saborio Marin, Laura

    2014-01-01

    The result of the use of edible coatings on special based of gellan in various formulations applied on pieces of fresh cut pineapple is evaluated to reduce the degradation of the quality characteristics and mass loss, as a plan to increase the usefulness. The effect of storage time of the fruit before processing (TAP), the application of vacuum pressure and concentration has been studied of the active components (gellan (0,50-1,00%), oil (0,00 -0,20%), glycerol and sorbitol (1,5-2,5%), CaCl 2 (1.0-10,0%)) of the forming solutions of coating. Several parameters are evaluated: the loss of juice, weight and composition of O 2 and CO 2 in the headspace, content of soluble solids (SS), titratable acidity (TA) color, darkening and appearance of pineapple chunks. The effect of forming solutions is measured on the adhesion, uniformity, coverage and determination of the water vapor resistance (RVA) coating and the presence of molds and yeasts during refrigerated storage at 5 degrees Celsius and 80% relative humidity. Another finding was that the loss of juice of the pieces uncoated increased (p≤0,05) as the increase TAP of 1 to 3 weeks, still higher than those of the coated pieces (0,50-0,75% gellan ), which have been minimal, while weight loss has decreased. The application of a vacuum pressure of 0,08 MPa before coating the pieces has favored the juice loss after the first two weeks of storage and reduced weight loss of uncoated pieces along the storage. The formulation comprised of 0,75% gellan, 1,5% glycerol, 0,10% oil and 1,0% of CaCl 2 has been which allows further reduction of juice loss and weight of pineapple chunks stored at 5 degrees Celsius and 80% RH [es

  4. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss

    Science.gov (United States)

    Olyaee, Saeed; Taghipour, Fahimeh

    2011-02-01

    Photonic crystal fibers (PCFs) are highly suitable transmission media for wavelength-division-multiplexing (WDM) systems, in which low and ultra-flattened dispersion of PCFs is extremely desirable. It is also required to concurrently achieve both a low confinement loss as well as a large effective area in a wide range of wavelengths. Relatively low dispersion with negligible variation has become feasible in the wavelength range of 1.1 to 1.8μm through the proposed design in this paper. According to a new structure of PCF presented in this study, the dispersion slope is 6.8×10-4ps/km.nm2 and the confinement loss reaches below 10-6 dB/km in this range, while at the same time an effective area of more than 50μm2 has been attained. For the analysis of this PCF, finite-difference time-domain (FDTD) method with the perfectly matched layers (PML) boundary conditions has been used.

  5. Design of Matched Cladding Fiber with UV-sensitive Cladding for Minimization of Claddingmode Losses in Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Berendt, Martin Ole; Bjarklev, Anders Overgaard

    2000-01-01

    The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found to be adv......The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found...... to be advantageous to increase the extent of the photosensitive region. However, no significant improvement is obtained by extending the photosensitive region more than approximately 10 mu m into the cladding. This result is not in agreement with a simple analysis that neglects UV absorption, which suggests...... that the radius of the photosensitive region should be close to twice as large. (C) 2000 Academic Press....

  6. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    International Nuclear Information System (INIS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-01-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  7. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    Science.gov (United States)

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  8. Design and construction of an injector for an electron/positron Linac optimized for positron yield and minimal particle loss

    International Nuclear Information System (INIS)

    Liebig, Clemens

    2014-11-01

    The Linac II is the first part of the accelerator chain supplying PETRA III. Since the start of PETRA III operation, highest reliability is demanded and several updates are required. Part of these is the new injection system. Beam loss at high energies and the associated activation have to be avoided. At energies above 80 MeV particle loss of 20% occurred. Additionally, an alternative to the old gun, operating in an oil bath and for which cathode preparation is not available, is required. The new system will be commissioned while the old bombarder gun injector is kept for redundancy. In order to obtain the space for joining the beam lines of both electron sources, one accelerator section must be removed. Electron pulses of 6 A beam current and 2 to 30 ns length are provided by the new injection system. The gun uses a thermionic cathode, 100 kV voltage for acceleration and is built as a triode. Longitudinal focusing is performed by a prebuncher and a hybrid buncher structure, both operating at 3 GHz. The buncher is a traveling wave structure to which a short cell has been added, operated in π mode with a standing wave. That way, better electron capture is achieved. A magnetic chicane serves for energy filtering. The design of the injection system, as well as the old injector, have been optimized in simulations and transmission in the linac has been compared. Possible reasons for beam loss are beam loading and misaligned components. For the bombarder gun particle tracking, a loss of 1% at high energies was observed due to beam loading. The additional beam optics and steering options in the beam line allow for compensation of the misalignment of preceding and succeeding components. The complete new injection system has been operated in a test stand and has undergone extensive tests. After successive enhancement of technically critical components, reliable operation was possible. Investigations of the electron capture and bunching procedure have been carried out by

  9. Minimally invasive piezosurgery for a safe placement of blade dental implants in jaws with severe bone loss

    Directory of Open Access Journals (Sweden)

    F. Rossi

    2014-10-01

    Full Text Available Aim :Severe atrophies of edentulous jaws require major reconstructive bone surgery in order to allow the placement of root-form implants with standard diameter. These bone augmentation techniques represent the best option reported in the literature, but they are often rejected by patients because of their high economic and biological costs in addition to the possibility of failure in the short and/or long term. In the maxilla regenerative methods (onlay, inlay, and distraction have high success rates, whereas in the mandible, especially in the distal atrophic area, they are not so predictable. In such situations an alternative technique for fixed prosthethic rebilitation is the insertion of platform blade implants, which have their elective indication for atrophic bone ridges with reduced width, owing to their reduced thickness. The aim of this study is to assess the effectiveness of the use of piezoelectric ultrasonic handpieces, in order to simplify the placement of blade implants, making it safer and less traumatic than with conventional surgical procedures. Materials and methods: Platform blade implants are extension implant functionally and aesthetically reliable, even if they require a more difficult surgical technique compared with the one currently in use for screw implants. A minimally invasive procedure by means of piezosurgery that was performed on 142 subjects is presented and a case is reported which highlights the successful results. Results: and conclusion The use of piezoelectric ultrasonic handpieces simplifies the surgical procedure for the placement of blade implant, making it safer and less traumatic.

  10. Heat transfer and loss by whole-body hyperthermia during severe lower-body heating are impaired in healthy older men.

    Science.gov (United States)

    Brazaitis, Marius; Paulauskas, Henrikas; Eimantas, Nerijus; Obelieniene, Diana; Baranauskiene, Neringa; Skurvydas, Albertas

    2017-10-01

    Most studies demonstrate that aging is associated with a weakened thermoregulation. However, it remains unclear whether heat transfer (for heat loss) from the lower (uncompensable) to the upper (compensable) body during passively-induced severe lower-body heating is delayed or attenuated with aging. Therefore, the main purpose of this study was to investigate heat transfer from uncompensable to compensable body areas in young men and healthy older men during passively-induced whole-body hyperthermia with a demonstrated post-heating change in core body (rectal; T re ) temperature. Nine healthy older men and eleven healthy young men (69±6 vs. 21±1 years old, mean±SD, Pheating in water at approximately 43°C. Despite a similar increment in T re (approximately 2.5°C) in both groups, the heating rate was significantly lower in older men than in young men (1.69±0.12 vs. 2.47±0.29°C/h, respectively; Pheat in the skin and deep muscles than young men, and this was associated with a greater heat-transfer delay and subsequent inertia in the increased core body (T re ) temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  12. Loss of residual heat removal system: Diablo Canyon, Unit 2, April 10, 1987

    International Nuclear Information System (INIS)

    1987-06-01

    This report presents the findings of an NRC Augmented Inspection Team (AIT) investigation into the circumstances associated with the loss of residual heat removal (RHR) system capability for a period of approximately one and one-half hours at the Diablo Canyon, Unit 2 reactor facility on April 10, 1987. This event occurred while the Diablo Canyon, Unit 2, a pressurized water reactor, was shutdown with the reactor coolant system (RCS) water level drained to approximately mid-level of the hot leg piping. The reactor containment building equipment hatch was removed at the time of the event, and plant personnel were in the process of removing the primary side manways to gain access into the steam generator channel head areas. Thus, two fission product barriers were breached throughout the event. The RCS temperature increased from approximately 87 0 F to bulk boiling conditions without RCS temperature indication available to the plant operators. The RCS was subsequently pressurized to approximately 7 to 10 psig. The NRC AIT members concluded that the Diablo Canyon, Unit 2 plant was, at the time of the event, in a condition not previously analyzed by the NRC staff. The AIT findings from this event appear significant and generic to other pressurized water reactor facilities licensed by the NRC

  13. Block selective redaction for minimizing loss during de-identification of burned in text in irreversibly compressed JPEG medical images.

    Science.gov (United States)

    Clunie, David A; Gebow, Dan

    2015-01-01

    Deidentification of medical images requires attention to both header information as well as the pixel data itself, in which burned-in text may be present. If the pixel data to be deidentified is stored in a compressed form, traditionally it is decompressed, identifying text is redacted, and if necessary, pixel data are recompressed. Decompression without recompression may result in images of excessive or intractable size. Recompression with an irreversible scheme is undesirable because it may cause additional loss in the diagnostically relevant regions of the images. The irreversible (lossy) JPEG compression scheme works on small blocks of the image independently, hence, redaction can selectively be confined only to those blocks containing identifying text, leaving all other blocks unchanged. An open source implementation of selective redaction and a demonstration of its applicability to multiframe color ultrasound images is described. The process can be applied either to standalone JPEG images or JPEG bit streams encapsulated in other formats, which in the case of medical images, is usually DICOM.

  14. An Approximate Solution for Predicting the Heat Extraction and Preventing Heat Loss from a Closed-Loop Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Bisheng Wu

    2017-01-01

    Full Text Available Approximate solutions are found for a mathematical model developed to predict the heat extraction from a closed-loop geothermal system which consists of two vertical wells (one for injection and the other for production and one horizontal well which connects the two vertical wells. Based on the feature of slow heat conduction in rock formation, the fluid flow in the well is divided into three stages, that is, in the injection, horizontal, and production wells. The output temperature of each stage is regarded as the input of the next stage. The results from the present model are compared with those obtained from numerical simulator TOUGH2 and show first-order agreement with a temperature difference less than 4°C for the case where the fluid circulated for 2.74 years. In the end, a parametric study shows that (1 the injection rate plays dominant role in affecting the output performance, (2 higher injection temperature produces larger output temperature but decreases the total heat extracted given a specific time, (3 the output performance of geothermal reservoir is insensitive to fluid viscosity, and (4 there exists a critical point that indicates if the fluid releases heat into or absorbs heat from the surrounding formation.

  15. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    International Nuclear Information System (INIS)

    Harvego, E. A.; Siefken, L. J.

    2000-01-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident

  16. Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident

    Science.gov (United States)

    Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.

    2018-02-01

    RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.

  17. Psychophysical and cerebral responses to heat stimulation in patients with central pain, painless central sensory loss, and in healthy persons.

    Science.gov (United States)

    Casey, Kenneth L; Geisser, Michael; Lorenz, Jürgen; Morrow, Thomas J; Paulson, Pamela; Minoshima, Satoshi

    2012-02-01

    Patients with central pain (CP) typically have chronic pain within an area of reduced pain and temperature sensation, suggesting an impairment of endogenous pain modulation mechanisms. We tested the hypothesis that some brain structures normally activated by cutaneous heat stimulation would be hyperresponsive among patients with CP but not among patients with a central nervous system lesion causing a loss of heat or nociceptive sensation with no pain (NP). We used H(2)(15)O positron emission tomography to measure, in 15 healthy control participants, 10 NP patients, and 10 CP patients, increases in regional cerebral blood flow among volumes of interest (VOI) from the resting (no stimulus) condition during bilateral contact heat stimulation at heat detection, heat pain threshold, and heat pain tolerance levels. Both patient groups had a reduced perception of heat intensity and unpleasantness on the clinically affected side and a bilateral impairment of heat detection. Compared with the HC group, both NP and CP patients had more hyperactive and hypoactive VOI in the resting state and more hyperresponsive and hyporesponsive VOI during heat stimulation. Compared with NP patients, CP patients had more hyperresponsive VOI in the intralaminar thalamus and sensory-motor cortex during heat stimulation. Our results show that focal CNS lesions produce bilateral sensory deficits and widespread changes in the nociceptive excitability of the brain. The increased nociceptive excitability within the intralaminar thalamus and sensory-motor cortex of our sample of CP patients suggests an underlying pathophysiology for the pain in some central pain syndromes. Published by Elsevier B.V.

  18. Optimum design of heat exchanger for environmental control system of an aircraft using entropy generation minimization (EGM) technique

    CSIR Research Space (South Africa)

    Bello-Ochende, T

    2016-07-01

    Full Text Available in the system are incorporated in the numerical analysis to minimize the exergy destruction of the system. The ECS analysed was based on a bootstrap air cycle with two cooling streams; ram air and air bled from engine fan. The paper proposes optimum air...

  19. Body temperature depression and peripheral heat loss accompany the metabolic and ventilatory responses to hypoxia in low and high altitude birds.

    Science.gov (United States)

    Scott, Graham R; Cadena, Viviana; Tattersall, Glenn J; Milsom, William K

    2008-04-01

    The objectives of this study were to compare the thermoregulatory, metabolic and ventilatory responses to hypoxia of the high altitude bar-headed goose with low altitude waterfowl. All birds were found to reduce body temperature (T(b)) during hypoxia, by up to 1-1.5 degrees C in severe hypoxia. During prolonged hypoxia, T(b) stabilized at a new lower temperature. A regulated increase in heat loss contributed to T(b) depression as reflected by increases in bill surface temperatures (up to 5 degrees C) during hypoxia. Bill warming required peripheral chemoreceptor inputs, since vagotomy abolished this response to hypoxia. T(b) depression could still occur without bill warming, however, because vagotomized birds reduced T(b) as much as intact birds. Compared to both greylag geese and pekin ducks, bar-headed geese required more severe hypoxia to initiate T(b) depression and heat loss from the bill. However, when T(b) depression or bill warming were expressed relative to arterial O(2) concentration (rather than inspired O(2)) all species were similar; this suggests that enhanced O(2) loading, rather than differences in thermoregulatory control centres, reduces T(b) depression during hypoxia in bar-headed geese. Correspondingly, bar-headed geese maintained higher rates of metabolism during severe hypoxia (7% inspired O(2)), but this was only partly due to differences in T(b). Time domains of the hypoxic ventilatory response also appeared to differ between bar-headed geese and low altitude species. Overall, our results suggest that birds can adjust peripheral heat dissipation to facilitate T(b) depression during hypoxia, and that bar-headed geese minimize T(b) and metabolic depression as a result of evolutionary adaptations that enhance O(2) transport.

  20. A study on emergency response guideline during the loss of steam generator secondary heat sink in pressurizer water reactor

    International Nuclear Information System (INIS)

    Yoon, D. J.; Lee, J. Y.; Song, D. S.

    1999-01-01

    A loss of secondary heat sink can occur as a result of several different initiating events, which are a loss of main feedwater during power operation, a loss of off-site power, or any other scenario for which main feedwater is isolated or lost. At this point the opening and closing of the PORV or safety valves will result in a loss of RCS inventory similar in nature to a small break loss of coolant accident. If operator action is not taken, the pressurizer PORV or safety valves will continue to cycle open and closed at the valve setpoint pressure removing RCS inventory and a limited amount of core decay heat until eventually enough inventory will be lost to result in core uncovery. We conclude that a requirement to successfully initiate bleed and feed on steam generator dryout, without any significant core uncovery expected to occur, is that the PORV flow to power ratio must exceed 140 (lbm/hr)/Mwt. For all plants whose PORV capacity is less than 140 (lbm/hr)/Mwt, since symptoms of SG dryout cannot be used to initiate bleed and feed, increasing RCS pressure and temperature or pressure greater than 2335 psig cannot be used. The only alternative symptom available is SG narrow range level. Since Kori 1,2,3 and 4' PORV capacity is more than the criteria, the bleed and feed operation can be initiated at steam generator dryout

  1. XML Survey of the productivity loss due to heat stress in different tasks of farmers in Darreh Shahr city

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam Esmaielpou

    2015-09-01

    Full Text Available Introduction: Heat is one of the hazardous physical agents in the workplace. Exposure to heat and consequent thermal stress influence workers productivity in addition to adverse health effects. The aim of this study was to determine the heat stress induced productivity loss related to different tasks of farmers in Darreh Shahr city, during summer. Material and Method: This cross-sectional study was conducted in summer, 2014, among farmers in Darreh Shahr city. After determining the sample size, farmers’ activities were determined using hierarchical task analysis (HTA, and WBGT measurements were done according to the ISO7243. Metabolism was estimated by the ISO8996. Following, the type of activities were identified according their required metabolism. Knowing WBGT and workload and using the work capacity model, the productivity loss in different tasks and ultimately total productivity loss were calculated. Result: The mean WBGT activities for plowing, terracing, planting seeds, watering, fertilizing, weeding, spraying, and harvesting were 29.98 °C, 31.28 °C,30.66 °C,31.39 °C,31.99 °C,31.75 °C,31.08 °C, and 30.3 °C, respectively. WBGT values were higher than the permissible level provided by ISO7243 in all farming activities. Maximum value of WBGT was belonged to fertilizing activity (31.99 °C and the lowest value was for plowing (29.98 °C. ANOVA test results did not show a significant difference in WBGT at head, waist, and ankle height. The highest and lowest amount of productivity loss was estimated respectively for weeding and plowing activities. The total productivity loss for farming was calculated 69.3 percent in an hour which is due to high physical activity, working outdoor, with exposure to direct solar radiation, and consequent heat stress imposed to workers. Conclusion: Productivity is a factor which is affected by the workplace heat stress. According to results of the present research, the amount of productivity is reduced

  2. Survey of the productivity loss due to heat stress in different tasks of farmers in Darreh Shahr city

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam Esmaielpour

    2015-09-01

    Full Text Available Introduction: Heat is one of the hazardous physical agents in the workplace. Exposure to heat and consequent thermal stress influence workers productivity in addition to adverse health effects. The aim of this study was to determine the heat stress induced productivity loss related to different tasks of farmers in Darreh Shahr city, during summer. . Material and Method: This cross-sectional study was conducted in summer, 2014, among farmers in Darreh Shahr city. After determining the sample size, farmers’ activities were determined using hierarchical task analysis (HTA, and WBGT measurements were done according to the ISO7243. Metabolism was estimated by the ISO8996. Following, the type of activities were identified according their required metabolism. Knowing WBGT and workload and using the work capacity model, the productivity loss in different tasks and ultimately total productivity loss were calculated. .Result: The mean WBGT activities for plowing, terracing, planting seeds, watering, fertilizing, weeding, spraying, and harvesting were 29.98 °C, 31.28 °C,30.66 °C,31.39 °C,31.99 °C,31.75 °C,31.08 °C, and 30.3 °C, respectively. WBGT values were higher than the permissible level provided by ISO7243 in all farming activities. Maximum value of WBGT was belonged to fertilizing activity (31.99 °C and the lowest value was for plowing (29.98 °C. ANOVA test results did not show a significant difference in WBGT at head, waist, and ankle height. The highest and lowest amount of productivity loss was estimated respectively for weeding and plowing activities. The total productivity loss for farming was calculated 69.3 percent in an hour which is due to high physical activity, working outdoor, with exposure to direct solar radiation, and consequent heat stress imposed to workers. .Conclusion: Productivity is a factor which is affected by the workplace heat stress. According to results of the present research, the amount of productivity is

  3. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  4. Infrared thermography applied to the evaluation of metabolic heat loss of chicks fed with different energy densities

    Directory of Open Access Journals (Sweden)

    VMOS Ferreira

    2011-06-01

    Full Text Available Brazil must comply with international quality standards and animal welfare requirements in order to maintain its position as world's largest exporter of poultry meat. With the scenario of global climate change there is the forecast of occurrence of extreme events with characteristics of both excess cold and heat for several regions of the country. This study aimed to evaluate the effectiveness of using images of infrared thermography to evaluate the loss of sensible heat in young broilers fed different dietary energy levels. Twenty birds were reared in a house with appropriate brooding using infrared lamps. Birds were distributed in a completely randomized experimental into two treatments: T1 (control diet with 2950 kcal ME/kg-1, and T2 (high-energy diet with 3950 kcal ME/kg-1. Infrared thermographic images of the birds were recorded for four consecutive days. One bird was randomly chosen per treatment, and had special images taken and analyzed. Average surface temperature of the body area was calculated using the surface temperature recorded at 100 spots (50 at the front and 50 at the lateral side of the bird's body. Mean surface temperature of the flock was calculated recording 100 spots on the group of birds. Total radiant heat loss was calculated based on the average data of surface temperature. The results indicated that the young broilers fed the high-energy diet presented a metabolic energy loss equivalent to 0.64 kcal h-1, while the birds fed with the control diet lost 2.18 kcal h-1. This finding confirms that oil supplementation to the diet reduces bird heat loss. The infrared camera was able to record young broilers' surface temperature variation when birds were fed diets with different energy contents.

  5. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms

    Directory of Open Access Journals (Sweden)

    Ambika Ramamoorthy

    2016-01-01

    Full Text Available Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF and weak (WK bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5 and PQ capacities of DGs (P alone, Q alone, and  P and Q both are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology.

  6. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms.

    Science.gov (United States)

    Ramamoorthy, Ambika; Ramachandran, Rajeswari

    2016-01-01

    Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology.

  7. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    Science.gov (United States)

    Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.

    2005-01-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  8. Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators

    Directory of Open Access Journals (Sweden)

    A.A. Boroujerdi

    2015-12-01

    Full Text Available In this paper, new relations for calculating heat transfer and pressure drop characteristics of oscillatory flow through wire-mesh screen regenerator such as Darcy permeability, Forchheimer’s inertial coefficient, and heat transfer area per unit volume, as a function of the wire diameter are presented. According to the derived relations, thinner wires have higher pressure drop and higher heat transfer rate. The relations are applicable for all regenerative cryocoolers. Embedding the new relations into a numerical model, three Stirling-type orifice pulse tube cryocoolers with three regenerators different in length and diameter but same volume in a variety of wire diameters, have been modeled. The results achieved by the model reveal that the local heat transfer coefficient decreases with increase of the wire diameter and the length-to-diameter ratio. In addition, it was shown that the mean absolute gas–solid wire temperature difference is a linear function of wire diameter in the range investigated. The results show that for larger length-to-diameter ratios, Forchheimer’s effect will dominate frictional losses, and the variations of the frictional losses are proportional to the inverse of the wire diameter. Wire diameter has been optimized to maximize the coefficient of performance of the cryocooler. Shorter regenerators have thinner optimum wires.

  9. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube

    International Nuclear Information System (INIS)

    Perroud, P.; De La Harpe, A.; Rebiere, J.

    1960-12-01

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm 2 , flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x s > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [fr

  10. Morphological dependency of cutaneous blood flow and sweating during compensable heat stress when heat-loss requirements are matched across participants.

    Science.gov (United States)

    Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S

    2016-07-01

    Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.3-292.7 cm(2)/kg), but of similar age, aerobic fitness, and adiposity. Subjects completed two trials under compensable conditions (28.1°C, 36.8% relative humidity), each involving rest (20 min) and steady-state cycling (45 min) at two matched metabolic heat-production rates (light, ∼135 W/m(2); moderate, ∼200 W/m(2)). Following equivalent mean body temperature changes, forearm blood flow and vascular conductance (r = 0.63 and r = 0.65) shared significant, positive associations with the mass-specific surface area during light work (P < 0.05), explaining ∼45% of the vasomotor variation. Conversely, during light and moderate work, whole body sweat rate, as well as local sweat rate and sudomotor sensitivity at three of four measured sites, revealed moderate, negative relationships with the mass-specific surface area (correlation coefficient range -0.37 to -0.73, P < 0.05). Moreover, those relationships could uniquely account for between 10 and 53% of those sweating responses (P < 0.05). Therefore, both thermoeffector responses displayed a significant morphological dependency in the presence of equivalent thermoafferent drive. Indeed, up to half of the interindividual variation in these effector responses could now be explained through morphological differences and the first principles governing heat transfer. Copyright © 2016 the American Physiological Society.

  11. Visual Occlusion During Minimally Invasive Surgery: A Contemporary Review of Methods to Reduce Laparoscopic and Robotic Lens Fogging and Other Sources of Optical Loss.

    Science.gov (United States)

    Manning, Todd G; Perera, Marlon; Christidis, Daniel; Kinnear, Ned; McGrath, Shannon; O'Beirne, Richard; Zotov, Paul; Bolton, Damien; Lawrentschuk, Nathan

    2017-04-01

    Maintenance of optimal vision during minimally invasive surgery is crucial to maintaining operative awareness, efficiency, and safety. Hampered vision is commonly caused by laparoscopic lens fogging (LLF), which has prompted the development of various antifogging fluids and warming devices. However, limited comparative evidence exists in contemporary literature. Despite technologic advancements there remains no consensus as to superior methods to prevent LLF or restore visual acuity once LLF has occurred. We performed a review of literature to present the current body of evidence supporting the use of numerous techniques. A standardized Preferred Reporting Items for Systematic Reviews and Meta-Analysis review was performed, and PubMed, Embase, Web of Science, and Google Scholar were searched. Articles pertaining to mechanisms and prevention of LLF were reviewed. We applied no limit to year of publication or publication type and all articles encountered were included in final review. Limited original research and heterogenous outcome measures precluded meta-analytical assessment. Vision loss has a multitude of causes and although scientific theory can be applied to in vivo environments, no authors have completely characterized this complex problem. No method to prevent or correct LLF was identified as superior to others and comparative evidence is minimal. Robotic LLF was poorly investigated and aside from a single analysis has not been directly compared to standard laparoscopic fogging in any capacity. Obscured vision during surgery is hazardous and typically caused by LLF. The etiology of LLF despite application of scientific theory is yet to be definitively proven in the in vivo environment. Common methods of prevention of LLF or restoration of vision due to LLF have little evidence-based data to support their use. A multiarm comparative in vivo analysis is required to formally assess these commonly used techniques in both standard and robotic laparoscopes.

  12. Investigation on heat transfer enhancement and pressure loss of double swirl chambers cooling

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2013-09-01

    Full Text Available By merging two standard swirl chambers, an alternative cooling configuration named double swirl chambers (DSC has been developed. In the DSC cooling configuration, the main physical phenomena of the swirl flow in swirl chamber and the advantages of swirl flow in heat transfer augmentation are maintained. Additionally, three new physical phenomena can be found in DSC cooling configuration, which result in a further improvement of the heat transfer: (1 impingement effect has been observed, (2 internal heat exchange has been enhanced between fluids in two swirls, and (3 “∞” shape swirl has been generated because of cross effect between two chambers, which improves the mixing of the fluids. Because of all these improvements, the DSC cooling configuration leads to a higher globally-averaged thermal performance parameter (Nu¯¯/Nu∞/(f/f01/3 than standard swirl chamber. In particular, at the inlet region, the augmentation of the heat transfer is nearly 7.5 times larger than the fully developed non-swirl turbulent flow and the circumferentially averaged Nusselt number coefficient is 41% larger than the standard swirl chamber. Within the present work, a further investigation on the DSC cooling configuration has been focused on the influence of geometry parameters e.g. merging ratio of chambers and aspect ratio of inlet duct on the cooling performance. The results show a very large influence of these geometry parameters in heat transfer enhancement and pressure drop ratio. Compared with the basic configuration of DSC cooling, the improved configuration with 20% to 23% merging ratio shows the highest globally-averaged thermal performance parameter. With the same cross section area in tangential inlet ducts, the DSC cooling channel with larger aspect ratio shows larger heat transfer enhancement and at the same time reduced pressure drop ratio, which results in a better globally-averaged thermal performance parameter.

  13. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    Science.gov (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  14. Heat production, respiratory quotient, and methane loss subsequent to LPS challenge in beef heifers

    Science.gov (United States)

    Respiration calorimetry was used to measure energy utilization during an acute phase response (APR) to lipopolysaccharide (LPS). Eight Angus heifers (208 +/- 29.2 kg) were randomly assigned to one of two calorimeters in four 2-day periods for measurement of heat production (HP), methane (CH4), and r...

  15. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  16. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    International Nuclear Information System (INIS)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-01

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO 3 or LiNbO 3 as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm 2 10 kW/cm 2 and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor

  17. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, A.V.; Levinsky, H.B.

    1999-09-01

    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser-induced fluorescence (LIF) and coherent anti-Stokes Raman scattering (CARS), respectively. Upstream heat loss to the burner was varied by changing the exit velocity of the fuel-air mixture at a constant equivalence ratio of 1,3; this alters the structure of the flame from an axisymmetric Bunsen-type to a strongly stabilized flat flame. To facilitate analysis of the results, a method is derived for separating the effects of dilution from those of chemical reaction based on the relation between the measured temperature and the local mixture fraction, including the effects of upstream heat loss. Using this method, the amount of NO formed during burnout of the hot, fuel-rich combustion products can be ascertained. In the Bunsen-type flame, it is seen that {approximately}40 ppm of NO are produced in this burnout region, at temperatures between {approximately}2,100 K and {approximately}1,900 K, probably via the Zeldovich mechanism. Reducing the exit velocity of 12 cm/s reduces the flame temperature substantially, and effectively eliminates this contribution. At velocities of 12 and 8 cm/s, {approximately}10 ppm of NO are formed in the burnout region, even though the gas temperatures are too low for Zeldovich NO to be significant. Although the mechanism responsible for these observations is as yet unclear, the results are consistent with the idea that the low temperatures in the fuel-rich gases caused by upstream heat loss retard the conversion of HCN (formed via the Fenimore mechanism) to NO, with this residual HCN then being converted to NO during burnout.

  18. THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING

    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov

    2015-01-01

    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  19. Radiation loss and global energy balance of ohmically heated divertor discharge in JT-60 tokamak

    International Nuclear Information System (INIS)

    Koide, Yoshihiko; Yamada, Kimio; Yoshida, Hidetoshi; Nakamura, Hiroo; Niikura, Setsuo; Tsuji, Shunji

    1986-03-01

    Divertor experiment in JT-60 with a small divertor chamber has been successfully performed up to 1.6 MA discharge. Several divertor effects were experimentally confirmed as follows. Radiation loss in main plasma saturates with the increase of plasma current and its ratio to the input power is about 20 % at 1.5 MA. The rest of input power is exhausted into the divertor chamber and a half of it is dissipated as the radiation loss. Impurity accumulation is not observed during a few sec without internal MHD activity and gross impurity confinement time is several hundred msec. (author)

  20. Evaluation of a loss of residual heat removal event during mid-loop operation

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Lee, Sukho; Kim, Hho Jung

    1996-01-01

    The potential for the RELAP5/MOD3.2 was assessed for the loss-of -RHR event during the mid-loop operation and the predictability of major thermal-hydraulic phenomena was also evaluated for the long term transient. The analysis results of the typical two cases(cold leg opening case and pressurizer opening case) were compared with experimental data which was conducted at ROSA-IV/LSTF in Japan. As a result, it was shown that the code was capable of simulating the thermal-hydraulic transport process with appropriate time step during the reduced inventory operation with the loss-of-RHR system

  1. Comparison of the superelasticity of different nickel?titanium orthodontic archwires and the loss of their properties by heat treatment

    OpenAIRE

    Bellini, Humberto; Moyano, Javier; Gil, Javier; Puigdollers, Andreu

    2016-01-01

    The aim of this work is to describe and compare mechanical properties of eight widely used nickel?titanium orthodontic wires under uniform testing conditions and to determine the influence of the heat treatments on the loss of the superelasticity. Ten archwires from two batches from eight different manufacturers were evaluated. A three-point bending test was performed, in accordance with ISO 15841:2006, on 80 round nickel?titanium archwire segments of 0.016?inch. To obtain a load-deflection c...

  2. ITER SAFETY TASK NID-5D: Operational tritium loss and accident investigation for heat transport and water detritiation systems

    International Nuclear Information System (INIS)

    Kalyanam, K.M.; Fong, C.; Moledina, M.; Natalizio, A.

    1995-02-01

    The task objectives are to: a) determine major pathways for tritium loss during normal operation of the cooling systems and water detritiation system, b) estimate operational losses and environmental tritium releases from the heat transport and water detritiation systems of ITER, and c) prepare a preliminary Failure Modes and Effects Analysis (FMEA) for the ITER Water Detritiation System. The analysis will be used to estimate chronic environmental tritium releases (airborne and waterborne) for the ITER Cooling Systems and Water Detritiation System. The assessment will form the basis for demonstrating the acceptability of ITER for siting in the Early Safety and Environmental Characterization Study (ESECS), to be issued in early 1995. (author). 7 refs., 10 tabs., 11 figs

  3. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  4. Impairment in explicit visuomotor sequence learning is related to loss of microstructural integrity of the corpus callosum in multiple sclerosis patients with minimal disability.

    Science.gov (United States)

    Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M

    2011-07-15

    Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter

  5. EFFECTIVENESS OF USING POLYURETHANE FOAM TO REDUCE HEAT LOSS IN THE PREMISES FOR BREEDING

    Directory of Open Access Journals (Sweden)

    Medvedev A.Y.

    2013-10-01

    Full Text Available It is proved that the use of polyurethane foam insulation for the purpose of walling premises for breeding allows them to halve the deficit of heat in winter. Because of this more efficient use of feed, increases the intensity and the level of growth of young comprehensive energp $rocess in the energy of live weight gain of cattle while increasing the profitability of its cultivation for meat.

  6. Experimental investigation of airfoil trailing edge heat transfer and aerodynamic losses

    Energy Technology Data Exchange (ETDEWEB)

    Brundage, A.L. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Plesniak, M.W.; Lawless, P.B. [School of Mechanical Engineering, Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, IN 47907 (United States); Ramadhyani, S. [132 Cecil Street SE, Minneapolis, MN 55414 (United States)

    2007-01-15

    Modern gas turbine development is being driven by the often-incompatible goals of increased efficiency, better durability, and reduced emissions. High turbine inlet temperatures and ineffective cooling at the trailing edge of a first-stage stator vane lead to corrosion, oxidation, and thermal fatigue. Observations of this region in engines frequently reveal burn marks, cracks, and buckling. Fundamental studies of the importance of trailing edge heat transfer to the design of an optimal cooling scheme are scarce. An experimental study of an actively cooled trailing edge configuration, in which coolant is injected through a slot, is performed. Trailing edge heat transfer and aerodynamic measurements are reported. An optimum balance between maximizing blade row aerodynamic efficiency and improving thermal protection at the trailing edge is estimated to be achieved when blowing ratios are in the range between 2.1% and 2.8%. The thermal phenomena at the trailing edge are dominated by injection slot heat transfer and flow physics. These measured trends are generally applicable over a wide range of gas turbine applications. (author)

  7. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung

    2008-01-01

    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the service

  8. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-05-15

    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the

  9. Physical and transcript map of the region between D6S264 and D6S149 on chromosome 6q27, the minimal region of allele loss in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Liu, Ying; Emilion, Gracy; Mungall, Andrew J

    2002-01-01

    We have previously shown a high frequency of allele loss at D6S193 (62%) on chromosomal arm 6q27 in ovarian tumours and mapped the minimal region of allele loss between D6S297 and D6S264 (3 cM). We isolated and mapped a single non-chimaeric YAC (17IA12, 260-280 kb) containing D6S193 and D6S297...

  10. Analysis of loss of decay heat removal sequences at Browns Ferry Unit One: Chapter 17

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1983-01-01

    This paper summarizes the Oak Ridge National Laboratory (ORNL) report ''Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis'' (NUREG/CR-2973). The Loss of DHR investigation is the third in a series of accident studies concerning the BWR 4 - MK I containment plant design. These studies, sponsored by the Nuclear Regulatory Commission Severe Accident Sequence Analysis (SASA) program, have been conducted at ORNL with the full cooperation of the Tennessee Valley Authority (TVA), using Unit One of the Browns Ferry Nuclear Plant as the model design. Each unit of this three-unit plant has a maximum authorized power of 3293 MW(t) or 1067 net MW(e). The primary containments are of the Mark I pressure suppression pool type and the three units share a secondary containment of the controlled leakage, elevated release design. Each unit occupies a separate reactor building located in one structure underneath the common refueling floor

  11. The effects of heating on mechanical loss in tantala/silica optical coatings

    International Nuclear Information System (INIS)

    Abernathy, Matthew R.; Harry, Gregory M.; Travasso, Flavio; Martin, Iain; Reid, Stuart; Rowan, Sheila; Hough, Jim; Fejer, Martin M.; Route, Roger; Penn, Steve; Armandula, Helena; Gretarsson, Andri

    2008-01-01

    Second-generation interferometric gravitational-wave detectors will operate at temperatures noticeably above room temperature. Study was done to determine what effect elevated temperatures would have on the Q and coating thermal noise of the detector mirrors. Results show that increased temperature increases loss angle in a manner that is more significant at higher frequencies. Trends show that the increased temperature will have a negligible effect at the low (100 Hz) frequencies important to second-generation detectors

  12. The Scaling of Loss Pathways and Heat Transfer in Small Scale Internal Combustion Engines

    Science.gov (United States)

    2016-09-16

    to the time required for mass transport in the system and describes how fast combustion will propagate relative to the rate that mass is transported ...it had much lower parasitic losses [117]. 3.6.2. Fuel AKI Reduction and Alternative Fuels As the largest single consumer of transport fuel in the...United States, the Air Force also has a vested interest in alternative fuels. Groenewegen et al. [120] investigated algae and Camelia biodiesels as

  13. Flux loss and heating during the formation of a field-reversed configuration

    International Nuclear Information System (INIS)

    Sgro, A.G.; Armstrong, W.T.; Lipson, J.; Tuszewski, M.G.; Cochrane, J.C.

    1982-01-01

    The simulated time evolution of magnetic field profiles and trapped flux in a field-reversed configuration, when compared with the experiment, implies that the rapid decay of the initial reversed flux is due to a resistivity that is anomalously enhanced over its classical value. A tenuous plasma between the field-reversed configuration and the wall carries a significant fraction of the current, and about half of the anomalous Joule heating must be deposited directly in the ions in order to calculate the correct ion temperature. The fractional flux retention is most sensitive to an increase of applied bias field

  14. Winter reduction in body mass in a very small, nonhibernating mammal: consequences for heat loss and metabolic rates.

    Science.gov (United States)

    Taylor, Jan R E; Rychlik, Leszek; Churchfield, Sara

    2013-01-01

    Low temperatures in northern winters are energetically challenging for mammals, and a special energetic burden is expected for diminutive species like shrews, which are among the smallest of mammals. Surprisingly, shrews shrink their body size in winter and reduce body and brain mass, an effect known as Dehnel's phenomenon, which is suggested to lower absolute energy intake requirements and thereby enhance survival when food availability is low. Yet reduced body size coupled with higher body-surface-to-mass ratio in these tiny mammals may result in thermoregulatory heat production at a given temperature constituting a larger proportion of the total energy expenditure. To evaluate energetic consequences of reduced body size in winter, we investigated common shrews Sorex araneus in northeastern Poland. Average body mass decreased by 19.0% from summer to winter, and mean skull depth decreased by 13.1%. There was no difference in Dehnel's phenomenon between years despite different weather conditions. The whole-animal thermal conductance (proportional to absolute heat loss) in shrews was 19% lower in winter than in summer; the difference between the two seasons remained significant after correcting for body mass and was caused by improved fur insulation in winter. Thermogenic capacity of shrews, although much enhanced in winter, did not reach its full potential of increase, and this corresponded with relatively mild subnivean temperatures. These findings indicate that, despite their small body size, shrews effectively decrease their costs of thermoregulation. The recorded decrease in body mass from summer to winter resulted in a reduction of overall resting metabolic rate (in thermoneutrality) by 18%. This, combined with the reduced heat loss, should translate to food requirements that are substantially lower than would be the case if shrews did not undergo seasonal decrease in body mass.

  15. The Weight Loss Effect of Heated Inner Cylinder by Free Convection in Horizontal Cylindrical Enclosure

    Science.gov (United States)

    Sboev, I. O.; Kondrashov, A. N.; Rybkin, K. A.; Burkova, L. N.; Goncharov, M. M.

    2018-03-01

    The work presents results of numerical simulations of natural convection in cavity formed by the surfaces of two horizontal coaxial cylinders. The temperature of the outer cylinder is constant. The area between the cylinders is filled with an ideal incompressible fluid. The inner cylinder is set as the heater. The solution of the equations of thermal convection in a two-dimensional approximation performed by the software package ANSYS Fluent with finite volume method. The study compares the results of numerical simulation with several well-known theoretical and experimental results. The nature of interaction of the inner cylinder with a convection current created in the gap was observed. It was shown that the flux appeared around a heated cylinder affects the weight of the heat source and causes an additional lift force from the surrounding fluid. The various Rayleigh numbers (from 1.0 ṡ 103 to 1.5 ṡ 106) and fluid with different Prandtl number (from 0.5 to 1.0 ṡ 105) are considered.

  16. Regulatory analysis for the resolution of Generic Issue 99: Loss of RHR [residual heat removal] capability in PWRs

    International Nuclear Information System (INIS)

    Spano, A.H.

    1989-02-01

    Generic Issue 99 is concerned with the loss of residual heat removal (RHR) capability in pressurized water reactors during cold-plant outage operations. The issue focuses on two risk-significant common-cause failure modes of the RHR system: (1) air binding of the RHR pumps during reduced-inventory operations and (2) spurious closure of the RHR suction valves due to misapplication of the autoclosure interlocks. Resolution of this issue involves consideration of the adequacy of plant capabilities for (1) preventing losses of RHR, (2) responding promptly and effectively to such challenges in order to prevent core damage, and (3) ensuring timely containment protection against the release of radioactivity to the environment in the unlikely event of core damage due to loss of shutdown cooling. This entails examination of (1) relevant operational and accident response procedures, (2) the instrumentation available to the operator for accident diagnosis and mitigation, and (3) the administrative controls available for ensuring control room cognizance of ongoing maintenance activities that could potentially affect the stability of the reactor coolant system. This regulatory analysis provides quantitative assessments of the costs and benefits associated with several alternatives considered for the resolution of Generic Issue 99. 24 refs

  17. Comparison of three different methods to prevent heat loss in healthy dogs undergoing 90 minutes of general anesthesia.

    Science.gov (United States)

    Clark-Price, Stuart C; Dossin, Olivier; Jones, Katherine R; Otto, Angela N; Weng, Hsin-Yi

    2013-05-01

    To compare a towel under, a warm water pad under or a forced warm air blanket over dogs as techniques to reduce heat loss during a standardized anesthetic. Prospective, randomized, crossover study. Eight, healthy, mixed breed dogs weighing 16.3-19.6 kg. Dogs were anesthetized four times for 90 minutes. Dogs were placed on a steel table (treatment TA), with a cotton towel (treatment TO) or a circulating warm water pad (treatment WP) between the dog and the table, or with, a towel under the dog and covered with a forced warm air blanket (treatment WAB). Rectal temperature (RT) was recorded at 5 minute intervals. Changes in temperature (ΔRT) were calculated as the RT at a given point subtracted from the RT before anesthesia (baseline) and compared over time. After 90 minutes of anesthesia, the ΔRT was 3.42 °C ± 0.29 for TA, 2.78 °C ± 0.43 for TO, 1.98 °C ± 0.29 for WP, and 0.91 °C ± 0.27 for WAB. Significant differences in ΔRT occurred between TA and WAB at 20 minutes (0.94 °C ± 0.42, p = 0.0206), between TO and WAB at 30 minutes (1.16 °C ± 0.62, p = 0.0063), between WP and WAB at 50 minutes (0.96 °C ± 0.98, p = 0.0249), between TA and WP at 35 minutes (1.19 °C ± 0.54, p = 0.0091), between TO and WP at 70 minutes (1.12 °C ± 0.56, p = 0.0248), and between TA and TO at 75 minutes (0.96 °C ± 0.62, p = 0.0313). These differences in ΔRT between each treatment persisted from the times indicated until the end of the anesthesia. During anesthesia, forced warm air blankets were superior to other methods tested for limiting heat loss. An efficient heat loss technique should be used for anesthesia longer than 20 minutes duration in medium sized dogs. © 2013 The Authors. Veterinary Anaesthesia and Analgesia © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  18. Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling.

    Directory of Open Access Journals (Sweden)

    Hannes Gatterer

    Full Text Available Assessment of post-exercise changes in hydration with bioimpedance (BI is complicated by physiological adaptations that affect resistance (R and reactance (Xc values. This study investigated exercise-induced changes in R and Xc, independently and in bioelectrical impedance vector analysis, when factors such as increased skin temperature and blood flow and surface electrolyte accumulation are eliminated with a cold shower.Healthy males (n = 14, 24.1±1.7 yr; height (H: 182.4±5.6 cm, body mass: 72.3±6.3 kg exercised for 1 hr at a self-rated intensity (15 BORG in an environmental chamber (33°C and 50% relative humidity, then had a cold shower (15 min. Before the run BI, body mass, hematocrit and Posm were measured. After the shower body mass was measured; BI measurements were performed continuously every 20 minutes until R reached a stable level, then hematocrit and Posm were measured again.Compared to pre-trial measurements body mass decreased after the run and Posm, Hct, R/H and Xc/H increased (p<0.05 with a corresponding lengthening of the impedance vector along the major axis of the tolerance ellipse (p<0.001. Changes in Posm were negatively related to changes in body mass (r = -0.564, p = 0.036 and changes in Xc/H (r = -0.577, p = 0.041.Present findings showed that after a bout of exercise-induced dehydration followed by cold shower the impedance vector lengthened that indicates fluid loss. Additionally, BI values might be useful to evaluate fluid shifts between compartments as lower intracellular fluid loss (changed Xc/R indicated greater Posm increase.

  19. Numerical analysis of Eucalyptus grandis × E. urophylla heat-treatment: A dynamically detecting method of mass loss during the process

    Science.gov (United States)

    Zhao, Zijian; Ma, Qing; Mu, Jun; Yi, Songlin; He, Zhengbin

    Eucalyptus particles, lamellas and boards were applied to explore a simply-implemented method with neglected heat and mass transfer to inspect the mass loss during the heat-treatment course. The results revealed that the mass loss of a certain period was theoretically the definite integration of loss rate to time in this period, and a monitoring model for mass loss speed was developed with the particles and validated with the lamellas and boards. The loss rate was correlated to the temperature and temperature-evolving speed in the model which was composed of three functions during different temperature-evolving period. The sample mass loss was calculated in the MATLAB for the lamellas and boards and the model was validated and adjusted based on the difference between the computed results and the practically measured loss values. The error ranges of the new models were -16.30% to 18.35% for wood lamellas and -9.86% to 6.80% for wood boards. This method made it possible to acquire the instantaneous loss value through continuously detecting the wood temperature evolution. This idea could provide a reference for the Eucalyptus heat-treatment to detect the treating course and control the final material characteristics.

  20. Shifts of heat availability and stressful temperatures in Russian Federation result in gains and losses of wheat thermal suitability

    Science.gov (United States)

    Di Paola, Arianna; Caporaso, Luca; Santini, Monia; Di Paola, Francesco; Vasenev, Ivan; Valentini, Riccardo

    2017-04-01

    Climate changes are likely to shift the suitability of lands devoted to cropping systems. We explored the past-to-future thermal suitability of Russian Federation for wheat (Triticum aestivum) culture through an ensemble of bias corrected CMIP5-GCMs outputs considering two representative concentration pathways (RCP 4.5 and 8.5). Thermal suitability assesses where wheat heat requirement, counted from suggested sowing dates, is satisfied without the occurrence of stressful hot and frost temperatures. Thermal requirement was estimated by means of phenological observations on soft wheat involving different wheat cultivar collected in different regions of Russian Federation, Azerbaidhan, Kazakhstan and Tadzhikistan, whilst stressful temperatures were taken from a literature survey. Results showed projected geographical shift of heat resource toward the north-eastern regions, currently mainly covered by forests and croplands, but also an increase of very hot temperatures in the most productive areas of the southern regions. Gains and losses were then quantified and discussed from both agronomical and climatic perspective.

  1. Simple method for calculation of heat loss through floor/beam-wall intersections according to ISO 9164

    International Nuclear Information System (INIS)

    Dilmac, Sukran; Guner, Abdurrahman; Senkal, Filiz; Kartal, Semiha

    2007-01-01

    The international standards for calculation of energy consumption for heating are ISO 9164 and EN 832. Although they are based on similar principles, there are significant differences in the calculation procedure of transmission heat loss coefficient, H T , especially in the evaluation of thermal bridges. The calculation of H T and the way thermal bridges are to be taken into consideration are explained in detail in EN 832 and in a series of other linked standards. In ISO 9164, the parameters used in the relevant equations are cited, but there is a lack of explanation about how they will be determined or calculated. Although in ISO 6946-2, the earlier version of the same standard, the calculation methods of these quantities were explained for column-wall intersections; in the revised ISO 6946, these explanations have been removed. On the other hand, these parameters had never been defined for floor/beam-wall intersections. In this paper, a new method is proposed for calculation of the parameters cited in ISO 9164 for floor/beam-wall intersections. The results obtained by the proposed method for typical floor with beam sections are compared with the results obtained by the methods stated in EN 832/EN 13789/EN ISO 14683 and the results obtained from 2D analysis. Different methods are evaluated as to their simplicity and agreement

  2. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    Science.gov (United States)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    winter, ranging from 10-50 % during solar maximum to 2-10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  3. Domestic hot water. Measurements of consumption and heat loss from circulation pipes; Varmt brugsvand. Maaling af forbrug og varmetab fra cirkulationsledninger

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B.; Schroeder, F.; Bergsoee, N.C.

    2009-07-01

    It is likely that the production and distribution of domestic hot water (DHW) in buildings will constitute a dominant share of both the present and in particular future energy design requirements. The goal of this project has been to propose more energy efficient and environmentally friendly solutions for DHW systems based on analyses of existing conditions. The possibilities include new types of circulation pipes, which have the potential of a 40 per cent reduction of heat losses. In addition to the reduction of heat losses inside the building, a low return temperature from the hot water system will have a large impact on the heat losses from the district heating network when the building is being heated by district heating. The results of this project could influence not only future buildings but also existing buildings in case of renovation of the installations. In this project measurements of water and energy consumptions have been carried out in a number of buildings, and heat losses from the production of domestic hot water and the distribution lines have been measured. In addition to the measurements, analyses and simulations have been carried out. Two models have been developed: One of an apartment room with vertical pipes passing through the room, and one of a room above a basement with horizontal heating pipes. The models make it possible to assess how much of the heat loss from the heating pipes is utilised for space heating. The following recommendations are pointed out: 1) In large buildings e.g. apartment buildings and office buildings the technical installations should be provided with meters so that it is possible to separate the energy consumption for DHW, space heating and ventilation, respectively. 2) In new buildings and in case of retrofitting existing buildings, careful planning of the placement and disposition of hot water taps compared with the location of the hot water tank or heat exchanger is recommended. Also, the necessity of a

  4. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  5. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India.

    Science.gov (United States)

    Lundgren, Karin; Kuklane, Kalev; Venugopal, Vidhya

    2014-01-01

    Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS) model. All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature =29.7), often reaching the international standard safe work values (ISO 7243:1989). Most workers had moderate to high workloads (170-220 W/m2), with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo) while working. When analysing heat strain--in terms of core temperature and dehydration--and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the first time the PHS model has been used for this purpose. An exploratory

  6. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  7. Dependence of the coefficient of environmental thermal losses of radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid from their average operating and ambient temperatures

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    The approximation formula is derived for calculating the normalized coefficient of thermal losses of flat solar collectors (FSCs) for heating heat-transfer fluid (HTF). These are used in hot water supply systems in the warmer part of the year, depending on the average working surface temperature of their radiation-absorbing thermal exchange panels (RATEPs) (t"-_w_s_r) and the ambient temperature (t_a_m_b) in their realistic variation range. (author)

  8. An efficient approach to characterizing and calculating carrier loss due to heating and barrier height variation in vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Jian, Wu; Summers, H. D.

    2010-01-01

    It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty in deriving the parameters relating to the quantum well structure. In this paper, we describe an efficient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AlInGaAs–AlGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs. (classical areas of phenomenology)

  9. Comparison of the superelasticity of different nickel-titanium orthodontic archwires and the loss of their properties by heat treatment.

    Science.gov (United States)

    Bellini, Humberto; Moyano, Javier; Gil, Javier; Puigdollers, Andreu

    2016-10-01

    The aim of this work is to describe and compare mechanical properties of eight widely used nickel-titanium orthodontic wires under uniform testing conditions and to determine the influence of the heat treatments on the loss of the superelasticity. Ten archwires from two batches from eight different manufacturers were evaluated. A three-point bending test was performed, in accordance with ISO 15841:2006, on 80 round nickel-titanium archwire segments of 0.016 inch. To obtain a load-deflection curve, the centre of each segment was deflected to 3.1 mm and then unloaded until force became zero. On the unloading curve, deflection at the end of the plateau and forces delivered at that point, and at 3, 2, 1 and 0.5 mm of deflection, were recorded. Plateau slopes were calculated from 3 and from 2 mm of deflection. Data obtained were statistically analysed to determine inter-brand, intra-brand and inter-batch differences (P Sentalloy M (1.001 N)] was 0.998 N (102 gf). The Nitinol SuperElastic plateau slope (0.353 N/mm) was the only one that was statistically different from 2 mm of deflection, as compared with the other brand values (0.129-0.155 N/mm). Damon Optimal Force described the gentlest slope from 3 mm of deflection (0.230 N/mm) and one of the longest plateaus. Titanol and Orthonol showed the most notable intra-brand differences, whereas inter-batch variability was significant for Nitinol (Henry Schein), Euro Ni-Ti and Orthonol. Superelasticity degree and exerted forces differed significantly among brands. Superelasticity of Nitinol SuperElastic was not observed, while Damon Optimal Force and Proclinic Ni-Ti Superelástico (G&H) showed the most superelastic curves. Intra-brand and inter-batch differences were observed in some brands. In all cases, the heat treatment at 600 °C produces precipitation in the matrix. The precipitates are rich in titanium and this fact produce changes in the chemical composition of the matrix and the loss of

  10. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, M. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ebrahimi, R. [Faculty of Aerospace Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shams, M., E-mail: shams@kntu.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis St., Molla-Sadra Ave, Vanak. Sq., P.O. Box: 19395-1999, Tehran (Iran, Islamic Republic of)

    2011-06-13

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  11. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    Science.gov (United States)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  12. Modeling of flows in heat exchangers with distributed load loss. Simulation of wet-type cooling tower operation with the two-dimensional calculation code ETHER

    International Nuclear Information System (INIS)

    Coic, P.

    1984-01-01

    The principle of a cooling tower is first presented. The equations of the problem are given; the modeling of load losses and heat transfer is described. Then, the numerical method based on a finite difference discrete method is described. Finally, the different results of the calculations carried out in the case of an industrial operation are presented [fr

  13. Impact of Subgrid Scale Models and Heat Loss on Large Eddy Simulations of a Premixed Jet Burner Using Flamelet-Generated Manifolds

    Science.gov (United States)

    Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.

    2017-11-01

    Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.

  14. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    the models in nearly every polar winter, ranging from 10–50 % during solar maximum to 2–10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming, in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling. This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  15. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    International Nuclear Information System (INIS)

    Hamm, L.L.

    1998-01-01

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers

  16. Reduction of heat losses on the skid pipe system of a pusher type furnace; Verringerung der Waermeverluste am Tragrohrsystem eines Stossofens

    Energy Technology Data Exchange (ETDEWEB)

    Hoffelner, Mario; Winter, Franz [voestalpine Grobblech GmbH, Linz (Austria); Springer, Michael; Huegel, Frank [FBB Engineering GmbH, Moenchengladbach (Germany); Buhr, Andreas [Almatis GmbH, Frankfurt (Germany); Kockegey-Lorenz, Rainer [Almatis GmbH, Ludwigshafen (Germany)

    2013-06-15

    This paper discusses how energy consumption and energy loss can be reduced in reheating furnaces of hot rolling mills by new lightweight refractory materials and a new modular lining concept for the skid pipe insulation using pre-fabricated shells. The target is to optimise the hot rolling process from an energy point of view, and to reduce the operational cost of the furnaces. The new lightweight pre-fabricated shells based on the microporous castable and a thermotechnical optimised sandwich design can significantly reduce the heat losses compared to dense castable. Industrial application of the new system in a 110 t/h pusher type furnace at voestalpine Grobblech GmbH in Linz, Austria, resulted in reduction of heat loss about 30 %. The annualised energy saving gives a cost reduction of more than Euro 200,000 a year. Costs for the complete new lining about Euro 170,000 result in a payback period of less than one year. (orig.)

  17. Improving the performance of district heating systems by utilization of local heat boosters

    DEFF Research Database (Denmark)

    Falcone, A.; Dominkovic, D. F.; Pedersen, A. S.

    was to evaluate the possibilities to lower the forward temperature of the heat supply in order to reduce the heat losses of the system. Booster heat pumps are introduced to increase the water temperature close to the final users. A Matlab model was developed to simulate the state of the case study DH network...... was set to minimize the system heat losses. * Corresponding author 0303-1 1 This goal was achieved by lowering the forward temperature to 40°C and relying on the installed heat pumps to boost the water temperature to the admissible value needed for the domestic hot water preparation. Depending......District Heating (DH) plays an important role into the Danish energy green transition towards the future sustainable energy systems. The new, 4 th generation district heating network, the so called Low Temperature District Heating (LTDH), tends to lower the supply temperature of the heat down to 40...

  18. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  19. The condensation of steam on the external surfaces of the shells of HIFAR heavy water heat exchangers during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Chapman, A.G.

    1987-03-01

    A study of steam condensation rates on the HIFAR heavy water heat exchangers was undertaken to predict thermohydraulic conditions in the HIFAR containment during a postulated loss-of-coolant accident (LOCA). The process of surface condensation from a mixture of air and steam, and methods for calculating the rate of condensation, are briefly reviewed. Suitable experimental data are used to estimate coefficients of condensation heat transfer to cool surfaces in a reactor containment during a LOCA. The relevance of the available data to a LOCA in the HIFAR materials testing reactor is examined, and two sets of data are compared. The differences between air/H 2 O and air/D 2 O mixtures are discussed. Formulae are derived for the estimation of the coefficient of heat transfer from the heat exchanger shells to the cooling water, and a method of calculating the rate of condensation per unit area of surface is developed

  20. Thermal storage in a heat pump heated living room floor for urban district power balancing - effects on thermal comfort, energy loss and costs for residents

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    2014-01-01

    For the Dutch smart grid demonstration project Meppelenergie, the effects of controlled thermal energy storage within the floor heating structure of a living room by a heat pump are investigated. Storage possibilities are constrained by room operative and floor temperatures. Simulations indicate

  1. Changes in body temperature in king penguins at sea: the result of fine adjustments in peripheral heat loss?

    Science.gov (United States)

    Schmidt, Alexander; Alard, Frank; Handrich, Yves

    2006-09-01

    To investigate thermoregulatory adjustments at sea, body temperatures (the pectoral muscle and the brood patch) and diving behavior were monitored during a foraging trip of several days at sea in six breeding king penguins Aptenodytes patagonicus. During inactive phases at sea (water temperature: 4-7 degrees C), all tissues measured were maintained at normothermic temperatures. The brood patch temperature was maintained at the same values as those measured when brooding on shore (38 degrees C). This high temperature difference causes a significant loss of heat. We hypothesize that high-energy expenditure associated with elevated peripheral temperature when resting at sea is the thermoregulatory cost that a postabsorptive penguin has to face for the restoration of its subcutaneous body fat. During diving, mean pectoral temperature was 37.6 +/- 1.6 degrees C. While being almost normothermic on average, the temperature of the pectoral muscle was still significantly lower than during inactivity in five out of the six birds and underwent temperature drops of up to 5.5 degrees C. Mean brood patch temperature was 29.6 +/- 2.5 degrees C during diving, and temperature decreases of up to 21.6 degrees C were recorded. Interestingly, we observed episodes of brood patch warming during the descent to depth, suggesting that, in some cases, king penguins may perform active thermolysis using the brood patch. It is hypothesized that functional pectoral temperature may be regulated through peripheral adjustments in blood perfusion. These two paradoxical features, i.e., lower temperature of deep tissues during activity and normothermic peripheral tissues while inactive, may highlight the key to the energetics of this diving endotherm while foraging at sea.

  2. Memory Loss and the Onset of Alzheimer's Disease Could Be Under the Control of Extracellular Heat Shock Proteins.

    Science.gov (United States)

    Arispe, Nelson; De Maio, Antonio

    2018-04-17

    Alzheimer's disease (AD) is a major contemporary and escalating malady in which amyloid-β (Aβ) peptides are the most likely causative agent. Aβ peptides spontaneously tend to aggregate in extracellular fluids following a progression from a monomeric state, through intermediate forms, ending in amyloid fibers and plaques. It is generally accepted now that the neurotoxic agents leading to cellular death, memory loss, and other AD characteristics are the Aβ intermediate aggregated states. However, Aβ peptides are continuously produced, released into the extracellular space, and rapidly cleared from healthy brains. Coincidentally, members of the heat shock proteins (hsp) family are present in the extracellular medium of healthy cells and body fluids, opening the possibility that hsps and Aβ could meet and interact in the extracellular milieu of the brain. In this perspective and reflection article, we place our investigation showing that the presence of Hsp70s mitigate the formation of low molecular weight Aβ peptide oligomers resulting in a reduction of cellular toxicity, in context of the current understanding of the disease. We propose that it may be an inverse relationship between the presence of Hsp70, the stage of Aβ oligomers, neurotoxicity, and the incidence of AD, particularly since the expression and circulating levels of hsp decrease with aging. Combining these observations, we propose that changes in the dynamics of Hsp70s and Aβ concentrations in the circulating brain fluids during aging defines the control of the formation of Aβ toxic aggregates, thus determining the conditions for neuron degeneration and the incidence of AD.

  3. Yeast culture increased plasma niacin concentration, evaporative heat loss, and feed efficiency of dairy cows in a hot environment.

    Science.gov (United States)

    Dias, Julia D L; Silva, Rayana B; Fernandes, Tatiane; Barbosa, Eugenio F; Graças, Larissa E C; Araujo, Rafael C; Pereira, Renata A N; Pereira, Marcos N

    2018-04-04

    The supplementation of dairy cows with yeast culture may increase diet digestibility, plasma niacin concentration, heat dissipation, and lactation performance. Our objective was to evaluate the response of Holstein cows in late lactation (234 ± 131 d in milk) to dead yeast culture (YC, 15 g/d, Factor SC, GRASP, Saccharomyces cerevisiae) during Brazilian summer (temperature-humidity index >68 for 92.2% of the time). Thirty-two cows were individually fed a standard total mixed ration for 14 d and control (CTL) or YC treatments for 35 d, in a covariate adjusted complete randomized block design. Response was evaluated in wk 5 or as repeated measures over time. Cows were milked 3 times per day and treatments (YC or placebo) were orally dosed to each cow before each milking. Plasma niacin was 1.50 for CTL and 1.66 µg/mL for YC. The YC reduced rectal temperature, respiration rate, and skin temperature, whereas it tended to increase sweating rate. The proportion of cows with rectal temperature ≥39.2°C on CTL and YC was, respectively, 8 and 0% at 0730 h, 52 and 25% at 1500 h, and 35 and 26% at 2200 h. Plasma glucose was increased by YC. The total-tract apparent digestibility of nutrients, plasma urea N concentration, molar proportion of ruminal VFA, and urinary allantoin excretion were not affected by YC. Cows fed YC were less selective against feed particles >19 mm in the morning, in the afternoon were more selective against long feed particles and in favor of particles loss, and feed efficiency of late lactation dairy cows by reducing intake at similar milk yield. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Experimental investigation of a multicylinder unmodified diesel engine performance, emission, and heat loss characteristics using different biodiesel blends: rollout of B10 in Malaysia.

    Science.gov (United States)

    Abedin, M J; Masjuki, H H; Kalam, M A; Varman, M; Arbab, M I; Fattah, I M Rizwanul; Masum, B M

    2014-01-01

    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.

  5. Experimental Investigation of a Multicylinder Unmodified Diesel Engine Performance, Emission, and Heat Loss Characteristics Using Different Biodiesel Blends: Rollout of B10 in Malaysia

    Directory of Open Access Journals (Sweden)

    M. J. Abedin

    2014-01-01

    Full Text Available This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ‘‘energy flows’’ across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.

  6. Improvements in modelling (by ESCADRE mod1.0) radiative heat losses through gas and aerosols generated by molten corium-concrete interactions

    International Nuclear Information System (INIS)

    Passalacqua, R.

    1996-01-01

    Aerosols generated during the molten core-concrete interaction (MCCI) influence the reactor cavity thermal hydraulics: the cloud of aerosols, located inside the reactor cavity, restrains the upward-directed heat exchange consequently the cool-down of the high-temperature molten corium for a considerable period of time. IPSN is developing a computer code system for source predictions in severe accident scenarios. This code system is named ESCADRE. WECHSL/CALTHER is internal module dealing with MCCI (it is also a stand-alone code): it models the heat transfers involving the superior volume of the cavity. When modelling the upward-directed power distribution by WECHSL/CALTHER, a faster concrete basemat penetration takes place due to the low heat losses of the closed MCCI cavity enclosure. The model, here presented, is going to be validated with data from the AEROSTAT experiment. This experiment, planned at CEA Cadarache, will evaluate the influence of aerosols on the global power distribution in the reactor cavity. Radiative heat losses are important especially for cavity configurations such as those of new plant designs (equipped with a core-catcher) where the upward power losses are promoted by the corium spreading in a flat cavity

  7. Minimal Loss of Lifetime for Patients With Diffuse Large B-Cell Lymphoma in Remission and Event Free 24 Months After Treatment

    DEFF Research Database (Denmark)

    Jakobsen, Lasse Hjort; Bøgsted, Martin; Brown, Peter de Nully

    2017-01-01

    Purpose The general outlook for patients with diffuse large B-cell lymphoma (DLBCL) in first remission is important information for patients and for planning post-treatment follow-up. The purpose of this study was to evaluate the survival of patients with DLBCL in remission compared with a matched......). During the first 8 years after pEFS24, the average loss of lifetime was 0.31 mo/y (95% CI, 0.11 to 0.50 mo/y). Excess mortality diminished when analyzing death from lymphoma as competing event to death from other causes, suggesting that early and late relapse is responsible for increased mortality...

  8. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India

    Science.gov (United States)

    Lundgren, Karin; Kuklane, Kalev; Venugopal, Vidhya

    2014-01-01

    Background Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Design Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS) model. Results and conclusions All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature x¯ =29.7), often reaching the international standard safe work values (ISO 7243:1989). Most workers had moderate to high workloads (170–220 W/m2), with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo) while working. When analysing heat strain – in terms of core temperature and dehydration – and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the first time the PHS

  9. Mathematical model for heat loss calculation through a window; Modelo para el calculo de la perdida de calor por una ventana

    Energy Technology Data Exchange (ETDEWEB)

    Fissore Sch, Adelqui; Cuevas B, Cristian [Universidad de Concepcion (Chile). Facultad de Ingenieria. Dept. de Ingenieria Mecanica]. E-mail: afissore@udec.cl; ccuevas@udec.cl

    2000-07-01

    In the present work a semi-empirical model for heat loss by convection at an indoor window surface with curtain or blind is given. With this model, the convection heat transfer coefficient and temperature of the air at confined space between the curtain and the glass can be calculated. The curtain was modeled with a paper due to the low thermal inertia that it has. The model is based on experimental data obtained for four separations between the paper and the window. Data from numerical simulation program are also used. (author)

  10. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933: a case study from workplaces in Chennai, India

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2014-11-01

    Full Text Available Background: Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Design: Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS model. Results and conclusions: All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature x¯ =29.7, often reaching the international standard safe work values (ISO 7243:1989. Most workers had moderate to high workloads (170–220 W/m2, with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo while working. When analysing heat strain – in terms of core temperature and dehydration – and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the

  11. An estimation of core damage frequency of a pressurized water reactor during midloop operation due to loss of residual heat removal

    International Nuclear Information System (INIS)

    Chao, C.C.; Chen, C.T.; Lee, M.

    1995-01-01

    The core damage frequency caused by loss of residual heat removal (RHR) events was assessed during midloop operation of a Westinghouse-designed three-loop pressurized water reactor. The assessment considers two types of outages (refueling and drained maintenance) and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events were identified and human error probabilities were quantified using the human cognitive reliability (HCR) and the technique for human error rate prediction (THERP) models. The results showed that the core damage frequency caused by loss of RHR events during midloop operation was 3.4 x 10 -5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering midloop operation. The establishment of reflux cooling, i.e., decay heat removal through the steam generator secondary side, also plays an important role in mitigating the loss of RHR events during midloop operation

  12. Traits in Spring Wheat Cultivars Associated with Yield Loss Caused by a Heat Stress Episode after Anthesis

    DEFF Research Database (Denmark)

    Vignjevic, Marija; Wang, Xiao; Olesen, Jørgen E

    2015-01-01

    with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield...... in the grain-filling period was negatively correlated with grain nitrogen yield (r = −0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water-soluble carbohydrates (WSC...

  13. Cooldown to residual heat removal entry conditions using atmospheric dump valves and auxiliary pressurizer spray following a loss-of-offsite power at Calvert Cliffs, Unit 1

    International Nuclear Information System (INIS)

    Jenks, R.P.

    1984-01-01

    An investigation of cooldown using atmospheric dump valves (ADVs) and auxiliary pressurizer spray (APS) following loss-of-offsite power at Calvert Cliffs-1 showed residual heat removal entry conditions could not be reached with the plant ADVs alone. Use of APS with the plant ADVs enhanced depressurization, but still provided insufficient cooldown. Effective cooldown and depressurization was shown to occur when rated steady state flow through the ADVs was increased by a factor of four. 6 refs., 30 figs., 2 tabs

  14. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Saha, Bidyut Baran; Ng, K. C.

    2012-01-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  15. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung

    2012-10-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  16. Large Eddy Simulations of a Premixed Jet Combustor Using Flamelet-Generated Manifolds: Effects of Heat Loss and Subgrid-Scale Models

    KAUST Repository

    Hernandez Perez, Francisco E.; Lee, Bok Jik; Im, Hong G.; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, Philip H.

    2017-01-01

    Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.

  17. Large Eddy Simulations of a Premixed Jet Combustor Using Flamelet-Generated Manifolds: Effects of Heat Loss and Subgrid-Scale Models

    KAUST Repository

    Hernandez Perez, Francisco E.

    2017-01-05

    Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.

  18. The free-piston Vuilleumier machine: a new refrigerating sink from heat loss recovery?; La machine de Vuilleumier a pistons libres: une nouvelle source de froid par recuperation?

    Energy Technology Data Exchange (ETDEWEB)

    Rochelle, P. [Laboratoire de Mecanique Physique, UP6, 78 - Saint Cyr l' Ecole (France); Rochelle, P.; Grosu, L. [Laboratoire d' Energetique et d' Economie de l' Energie, UP10, 92 - Ville d' Avray (France)

    2002-07-01

    The Vuilleumier machine combines two Stirling cycles: a prime mover and a refrigerating cycle. lt could produce cold and heat at low temperature levels from heat loss recovered at the exhaust of heat generating processes (industrial transforming processes, thermal engines,...). Here, these regenerating dual cycle machines and their potential applications, particularly those concerning transportation vehicles, are examined. Towards this purpose, the Vuilleumier machine principles are briefly described along with a more in-depth look at the free-piston configuration type. In principle, these machines are simple to build, but specific starting and continuous running conditions must be met, and here they are established. Then, we discuss the applicability of these systems to vehicles, and the usable geometrical configurations are shortly examined with, as an application, the pre-design calculus of a 'pancake' machine. (authors)

  19. Cooling of safety rods in the Savannah River K Reactor during the gamma heating phase of a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Unal, C.; Motley, F.E.; Rodriguez, S.B.

    1992-01-01

    This paper documents the heat-transfer analysis for the safety rod placed in a perforated guide tube during the gamma heating phase of a large-break loss of coolant accident in Savannah River K-reactor. The cooling mechanisms are natural convection to air and radiation to the surrounding structures. The limiting component is the guide tube. The guide tube is shown to remain coolable below its thermal limit for the anticipated reactor powers unless it is contacted by the hotter safety rod. Sample calculations are performed for various contact scenarios, and the results are reported within the paper. The results indicate that the most limiting contact scenario results when the safety rod heats up to its maximum temperature while remaining concentric in the guide tube and then contacts the guide tube. The worse contact location appears to be in line with the slugs-cladding contact and in between the rows of holes in the guide tube

  20. Model of the process with piecewise-constant extremals to minimize losses of vitamins during the melting of melons and gourds

    Directory of Open Access Journals (Sweden)

    E. V. Inochkina

    2017-01-01

    Full Text Available The extension of periods of storage of fruits of gourds is an urgent task processing industry. The most developed and available for injection is a method of dehydration of raw materials due to supply of heat transfer fluids. In addition to solid dry frame in raw materials is 80–90% water. In the period of moisture removal from raw material changes of thermal-physical and structural-mechanical and physicochemical characteristics. The ratio of water and dry matter in vegetative raw materials largely determines the modes of drying and storage conditions of the finished product. During drying, there are a number of limitations: the drying temperature should not exceed the degradation temperature of vitamins and proteins, and the magnitude of course, the moisture content of the product depends on the reaction prevention malonodinitrile sugars at the critical moisture content. An important problem of the drying of production is quality control stages of drying, the dynamics of which is quite difficult to describe using mathematical models. The main factors of optimization of industrial drying processes is preservation of valuable components of the feedstock, the drying time, energy and resource conservation. Development of effective control algorithm for the process of dehydration of raw materials described in the article on the example of drying of slices of melon. Experimental approach a two-stage process of drying of melon varieties Taman, the proposed regression model with the relaxation-based on humidity and content of vitamin C from the variable in time temperature and pressure, based on the available literature and own experimental data. According to the optimal control of the drying process to search for the thermobaric regime that maximizes the vitamin C content at the end of the drying, under specified conditions, the humidity. The main findings are the solution of the problem for the case of piecewise constant temperature and pressure in

  1. Ice on wind power plants. Detection, frequency, minimizing risk for injuries to humans and production loss; Is paa vindkraftverk. Detektering, utbredning, personskaderiskminimering och produktionsbortfall

    Energy Technology Data Exchange (ETDEWEB)

    Westerlund, Rolf (HoloOptics, Stockholm (Sweden))

    2009-02-15

    The project had three different objectives:- To calibrate an icing sensor, developed with the support of Vindforsk, according to the amount of ice on the rotor blades.- To determine at which degree of icing measures has to be taken to reduce the risk of public health hazards due to ice throws.- To give a general indication of the performance losses due to icing In the study a coastal shore based turbine (Vestas V44, situated close to Haernoesand in the northern Sweden) was used as the test object, a turbine placed at 176 m above sea level and 4 km away from the open sea. The turbine is also close to an attractive alpine ski-slope. Due to this the plant is closed 2-3 weeks per year to reduce the risk of ice throw. In the study two ice sensors were used, one with automatic de-icing and one without de-icing. The icing signal was sent to the operator and HoloOptics via SMS. The SMS sender was also connected to a temperature sensor. Furthermore, 12 'IceMarkers' were mounted on one of the rotor blades to verify the distribution of ice. To log the output of the turbine a logger was installed. The logger measured the 10 minutes mean power output. Wind-speed, wind-direction and temperatures were available from a mast located at a distance of 400 m to the wind turbine. Study period: March-December 2008 of which, at this location, four month are prone to icing. By the use of the IceMarkers it was found that shortly after the icing began the whole blade was relatively simultaneous covered with, minimum, a thin layer of ice (maybe less than 0,1 mm in thickness). The distribution of ice on the blade was verified by the use of a flash and a camera. However it was found to be difficult to verify at times with fog or precipitation. When temperatures varied around zero C the relation between indication and actual icing was less obvious. Sometimes the blades became/were de-iced without any indication from the corresponding indicator. The indicators themselves, without any

  2. Attempts of Thermal Imaging Camera Usage in Estimations of the Convective Heat Loss From a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Denda Hubert

    2014-01-01

    Full Text Available In this paper a new method for determining heat transfer coefficients using a gradient method has been developed. To verify accuracy of the proposed method vertical isothermal heating plate with natural convection mechanism has been examined. This configuration was deliberately chosen, because of the fact that such case is historically the earliest and most thoroughly studied and its rich scientific documentation – the most reliable. New method is based on temperature field visualization made in perpendicular plane to the heating surface of the plate using infrared camera. Because the camera does not record temperature of air itself but the surface only, therefore plastic mesh with low thermal conductivity has been used as a detector. Temperature of each mesh cell, placed perpendicular to the vertical heating surface and rinsed with convection stream of heated air could be already recorded by infrared camera. In the same time using IR camera surface of heating plate has been measured. By numerical processing of the results matrix temperature gradient on the surface ∂T/∂x │ x=0, local heat transfer coefficients αy, and local values of Nusselt number Nuy, can be calculated. After integration the average Nusselt number for entire plate can be calculated. Obtained relation characteristic numbers Nu = 0.647 Ra 0.236 (R2 = 0.943, has a good correlation with literature reports and proves usefulness of the method.

  3. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    Science.gov (United States)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-06-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.

  4. Estimation of the temperature, heat gain and heat loss by solar parabolic trough collector under Algerian climate using different thermal oils

    International Nuclear Information System (INIS)

    Ouagued, Malika; Khellaf, Abdallah; Loukarfi, Larbi

    2013-01-01

    Highlights: • Estimation of direct solar radiations for different tracking systems at six typical locations in Algeria. • PTC thermal model uses energy balances from the HTF to the atmosphere. • The model depends on the collector type, nature of HTF, optical properties, and ambient conditions. • Estimation of temperature, heat gain and energy cost of thermal oils used in the model. • Comparison between monthly mean heat gain of the various thermal oils for six Algerian locations. - Abstract: Algeria is blessed with a very important renewable, and more particularly solar, energy potential. This potential opens for Algeria reel opportunities to cope with the increasing energy demand and the growing environmental problems link to the use of fossil fuel. In order to develop and to promote concrete actions in the areas of renewable energy and energy efficiency, Algeria has introduced a national daring program for the period 2011–2030. In this program, solar energy, and more particularly solar thermal energy plays an important role. In this paper, the potential of direct solar irradiance in Algeria and the performance of solar parabolic trough collector (PTC) are estimated under the climate conditions of the country. These two factors are treated as they play an important role in the design of solar thermal plant. In order to determine the most promising solar sites in Algeria, monthly mean daily direct solar radiation have been estimated and compared for different locations corresponding to different climatic region. Different tilted and tracking collectors are considered so as to determine the most efficient system for the PTC. In order to evaluate the performance of a tracking solar parabolic trough collector, a heat transfer model is developed. The receiver, heat collector element (HCE), is divided into several segments and heat balance is applied in each segment over a section of the solar receiver. Different oils are considered to determine the thermal

  5. Taxonomic minimalism.

    Science.gov (United States)

    Beattle, A J; Oliver, I

    1994-12-01

    Biological surveys are in increasing demand while taxonomic resources continue to decline. How much formal taxonomy is required to get the job done? The answer depends on the kind of job but it is possible that taxonomic minimalism, especially (1) the use of higher taxonomic ranks, (2) the use of morphospecies rather than species (as identified by Latin binomials), and (3) the involvement of taxonomic specialists only for training and verification, may offer advantages for biodiversity assessment, environmental monitoring and ecological research. As such, formal taxonomy remains central to the process of biological inventory and survey but resources may be allocated more efficiently. For example, if formal Identification is not required, resources may be concentrated on replication and increasing sample sizes. Taxonomic minimalism may also facilitate the inclusion in these activities of important but neglected groups, especially among the invertebrates, and perhaps even microorganisms. Copyright © 1994. Published by Elsevier Ltd.

  6. Using flowering and heat-loss models for improving greenhouse energy-use efficiency in annual bedding plant production

    Science.gov (United States)

    In temperate climates, annual bedding plants are typically produced in heated greenhouses from late winter through early summer. Temperature, photoperiod, light intensity, and transplant date are commonly manipulated during commercial production so that plants are in flower for predetermined market ...

  7. Enhancing the moderator effectiveness as a heat sink during loss-of-coolant accidents in CANDU-PHW reactors using glass-peened surfaces

    International Nuclear Information System (INIS)

    Nitheanandan, T.; Tiede, R.W.; Sanderson, D.B.; Fong, R.W.L.; Coleman, C.E.

    1998-08-01

    The horizontal fuel channel concept is a distinguishing feature of the CANDU-PHW reactor. Each fuel channel consists of a Zr-2.5Nb pressure tube and a Zircaloy-2 calandria tube, separated by a gas filled annulus. The calandria tube is surrounded by heavy-water moderator that also provides a backup heat sink for the reactor core. This heat sink (about 10 mm away from the hot pressure tube) ensures adequate cooling of fuel in the unlikely event of a loss-of-coolant accident (LOCA). One of the ways of enhancing the use of the moderator as a heat sink is to improve the heat-transfer characteristics between the calandria tube and the moderator. This enhancement can be achieved through surface modifications to the calandria tube which have been shown to increase the tube's critical heat flux (CHF) value. An increase in CHIF could be used to reduce moderator subcooling requirements for CANDU fuel channels or increase the margin to dryout. A series of experiments was conducted to assess the benefits provided by glass-peening the outside surface of calandria tubes for postulated LOCA conditions. In particular, the ability to increase the tube's CHF, and thereby reduce moderator subcooling requirements was assessed. Results from the experiments confirm that glass-peening the outer surface of a tube increases its CHF value in pool boiling. This increase in CHF could be used to reduce moderator subcooling requirements for CANDU fuel channels by at least 5 degrees C. (author)

  8. Effects of synthetic oil in a compression refrigeration system using R410A. Part II: quality of heat transfer and pressure losses within the heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Guillemet, P. [Ecole Polytechnique de l' Universite de Nantes (France). Laboratoire de Thermocinetique; Lebreton, J-M. [Electricite de France, Moret sur Loing (France)

    2003-11-01

    The consequences of the oil rejected by the compressor of a vapour-compression refrigeration system on the operation of the evaporator and condenser are analysed. The modelled prototype uses the mixture of HFC R410A and a synthetic polyolester (POE) oil. The rise of the amount of lubricant circulating in the system leads to a progressive change in the behaviour of the mixture of refrigerant and oil that, for the higher oil mass fraction, evolves like a zeotropic mixture. One also observes that the presence of lubricant is generally associated with a fall of the performances of the heat exchangers, except however in the evaporator where an optimum is observed when the quantity of oil is equal to 0.1% of the total mass of the mixture. Some conclusions are drawn about the choice of correlations for the calculation of the refrigerant side heat transfer coefficient in a plate evaporator. (author)

  9. Analysis of heat and mass transfer to determine heat loss and the rate of condensation of the MVSTs off-gas ducts

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Yang, G.; Bigzadeh, E.; Walker, J.F.; Abraham, T.J.

    1992-01-01

    Reduction of the existing nuclear waste in the Melton Valley Storage Tanks (MVSTs) at the Oak Ridge National Laboratory (ORNL) is of utmost concern to the scientists at this facility. This paper provides proof that a combination of vault heating, sparged air heating, and prevention of condensation is the best alternative to achieve this goal. Therefore, in this study a general system of mathematical equations has been developed taking into account all of the parameters affecting evaporation and condensation. This evaporation process has been analyzed by the careful modeling of a bubble chain through the extremely viscous, radioactive liquid contained in the storage tanks. This paper discusses in detail the evaporation procedure using bubble formation, air velocity, and determining the rate at which this liquid waste can be removed from the MVSTs by evaporation under different conditons of the sparging air. An additional objective is to study the heating/cooling of the condensation process of the off-gas piping inside the vault. A laboratory scale model has also been assembled for this purpose at ORNL to verify the accuracy of the mathematical modeling. A comparison of the experimental findings with the mathematical modeling shows excellent agreement. (orig.)

  10. Using single-step genomic best linear unbiased predictor to enhance the mitigation of seasonal losses due to heat stress in pigs.

    Science.gov (United States)

    Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Bradford, H L; Gray, K A; Huang, Y; Misztal, I

    2016-12-01

    The purposes of this study were to analyze the impact of seasonal losses due to heat stress in pigs from different breeds raised in different environments and to evaluate the accuracy improvement from adding genomic information to genetic evaluations. Data were available for 2 different swine populations: purebred Duroc animals raised in Texas and North Carolina and commercial crosses of Duroc and F females (Landrace × Large White) raised in Missouri and North Carolina; pedigrees provided links for animals from different states. Pedigree information was available for 553,442 animals, of which 8,232 pure breeds were genotyped. Traits were BW at 170 d for purebred animals and HCW for crossbred animals. Analyses were done with an animal model as either single- or 2-trait models using phenotypes measured in different states as separate traits. Additionally, reaction norm models were fitted for 1 or 2 traits using heat load index as a covariable. Heat load was calculated as temperature-humidity index greater than 70 and was averaged over 30 d prior to data collection. Variance components were estimated with average information REML, and EBV and genomic EBV (GEBV) with BLUP or single-step genomic BLUP (ssGBLUP). Validation was assessed for 146 genotyped sires with progeny in the last generation. Accuracy was calculated as a correlation between EBV and GEBV using reduced data (all animals, except the last generation) and using complete data. Heritability estimates for purebred animals were similar across states (varying from 0.23 to 0.26), and reaction norm models did not show evidence of a heat stress effect. Genetic correlations between states for heat loads were always strong (>0.91). For crossbred animals, no differences in heritability were found in single- or 2-trait analysis (from 0.17 to 0.18), and genetic correlations between states were moderate (0.43). In the reaction norm for crossbreeds, heritabilities ranged from 0.15 to 0.30 and genetic correlations

  11. Detection and analysis of thermal energy loss in the Atucha I nuclear power plant residual heat removal system

    International Nuclear Information System (INIS)

    Berra, Sandra; Guala, Mariana I.; Khon, Hector; Lorenzo, Andrea T.; Raffo Calderon, Maria C.; Urrutia, Guillermo

    1999-01-01

    It is presented the methodology used to detect and to measure energy losses which are existent in the Atucha I nuclear power plant. They were not directly detected, since the magnitude of those was below of the instrumentation precision which is used to measure the electric and thermal power in the plant. To achieve this work temperature special measurements were made. In this way it was possible to quantify the energy losses after operational long periods. (author)

  12. Study of heat generation and cutting force according to minimization of grain size (500 nm to 180 nm) of WC ball endmill using FEM

    Science.gov (United States)

    Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.

    2018-03-01

    As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.

  13. Minimization of thermal insulation thickness taking into account condensation on external walls

    OpenAIRE

    Nurettin Yamankaradeniz

    2015-01-01

    Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calcu...

  14. Micro-Scale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  15. Waste minimization assessment procedure

    International Nuclear Information System (INIS)

    Kellythorne, L.L.

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative

  16. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales

    Science.gov (United States)

    Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.

    2017-06-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.

  17. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Lissianski, Vitali V.; Loc Ho; Maly, Peter M.; Zamansky, Vladimir M.

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The FFR can be retrofit to existing boilers and can be configured in several ways depending on the boiler, coal characteristics, and NO x control requirements. Fly ash generated by the technology will be a saleable byproduct for use in the cement and construction industries. FFR can also reduce NO x by 60%-70%, achieving an emissions level of 0.15 lb/10 6 Btu in many coal-fired boilers equipped with Low NO x Burners. Total process cost is expected to be one third to one half of that for Selective Catalytic Reduction (SCR). Activities during reporting period included design, manufacture, assembly, and shake down of the coal gasifier and pilot-scale testing of the efficiency of coal gasification products in FFR. Tests were performed in a 300 kW Boiler Simulator Facility. Several coals with different volatiles content were tested. Data suggested that incremental increase in the efficiency of NO x reduction due to the gasification was more significant for less reactive coals with low volatiles content. Experimental results also suggested that the efficiency of NO x reduction in FFR was higher when air was used as a transport media. Up to 14% increase in the efficiency of NO x reduction in comparison with that of basic reburning was achieved with air transport. Temperature and residence time in the gasification zone also affected the efficiency of NO x reduction

  18. Minimal resonator loss for circuit quantum electrodynamics

    NARCIS (Netherlands)

    Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.J.; Zijlstra, T.; Klapwijk, T.M.; Diener, P.; Yates, S.J.C.; Baselmans, J.J.A.

    2010-01-01

    We report quality factors of up to 500x10³ in superconducting resonators at the single photon levels needed for circuit quantum electrodynamics. This result is achieved by using NbTiN and removing the dielectric from regions with high electric fields. As demonstrated by a comparison with Ta, the

  19. Uranium ore processing minimizing reagent losses

    International Nuclear Information System (INIS)

    Shaogiang, Chen; Moret, J.; Lyaudet, G.

    1989-01-01

    The uranium ore is treated by sodium carbonates and the solution is divided in two parts: a production solution which is decarbonated by an acid before uranium precipitation with sodium hydroxide and a recycling solution directly treated by sodium hydroxide for precipitation of about 85% of uranium and total transformation of sodium bicarbonate into sodium carbonate, the quantity of sodium hydroxide used on the recycling solution brings sodium ions required for attack of the ore [fr

  20. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-01

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows

  1. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2003-01-01

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows

  2. The two types of a loss of sight (blindness) exhibited by cats and dogs after local irradiation of heat

    International Nuclear Information System (INIS)

    Ushakov, I.B.; Razgovorov, B.L.

    1985-01-01

    After local irradiation of heads with doses of 50 to 100 Gy cats and dogs exhibited two types of a loss of sight: early blindness (during the first two hours) noted only in cats after a dose of 100 Gy, and delayed blindness in cats after a dose of 50 Gy, and in dogs after all doses under study

  3. Reduction of heat losses on the skid pipe system of reheating furnaces in the steel industry; Verringerung der Waermeverluste am Tragrohrsystem von Waermeoefen in der Stahlindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Michael; Huegel, Frank [FBB Engineering GmbH, Moenchengladbach (Germany)

    2011-06-15

    New technology can improve the energy efficiency of thermo processing equipment, innovative technology can ultimately help to reduce CO{sub 2} emissions from existing facilities and simultaneously ensure that the equipment can also operate more economically. The result of consequent development at FBB ENGINEERING GmbH for insulation of skid pipe systems of reheating furnaces in steel industry (walking beam -, pusher type furnace) are efficient pre-fabricated shells made of ultra-light weight castable FLB-11/150-I1 with thermo technical optimized sandwich design that lead to significant and sustainable reduction of heat losses and are responsible for high energy saving potential. Thermo technical CFD simulations, laboratory tests, field trials and complete installations of skid pipe systems show that compared to dense castable heat loss in the skid pipe cooling systems can be reduced up to 30 % and more with pre-fabricated shells made of ultra-light weight castable FLB-11/150-I1. (orig.)

  4. Self-propagating high-temperature synthesis flammable range and dominant parameters for synthesizing several ceramics and intermetallic compounds under heat-loss condition

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1996-01-01

    Extensive comparisons have been conducted between experimental and theoretical results for the nonadiabatic self-propagating high-temperature synthesis combustion characteristics of many solid-solid systems subjected to volumetric heat loss. The nonadiabatic flame propagation theory--which describes the premixed mode of bulk flame propagation supported by the nonpremixed reaction of dispersed nonmetal (or higher-melting point metal) particles in the liquid metal, with finite-rate reaction at the particle surface and temperature-sensitive Arrhenius-type condensed-phase mass diffusivity--is used to compare with experimental results with heat loss. Systems examined are ceramics (TiC, TiB 2 , and ZrB 2 ) and intermetallic compounds (NiAl, TiCo, and TiNi). By using a consistent set of physicochemical parameters for these systems, satisfactory quantitative agreement is demonstrated for the flammable range (defined in terms of the mixture ratio, degree of dilution, particle size, and/or compact diameter)

  5. Effect of a heat and moisture exchanger on heat loss in isoflurane-anesthetized dogs undergoing single-limb orthopedic procedures.

    Science.gov (United States)

    Hofmeister, Erik H; Brainard, Benjamin M; Braun, Christina; Figueiredo, Juliana P

    2011-12-15

    To determine whether a heat and moisture exchange device (HME) prevents a decrease in body temperature in isoflurane-anesthetized dogs undergoing orthopedic procedures. Blinded randomized controlled clinical trial. 60 privately owned dogs weighing at least 15 kg (33 lb). Dogs were randomly assigned to 1 of 3 treatment groups (n = 20/group): HME placed immediately after anesthetic induction with isoflurane, after transfer to the operating room, or not at all. The device consisted of a hygroscopic filter placed between the endotracheal tube and the Y piece of the anesthesia circuit. Each dog was positioned on a circulating warm water blanket and had a forced-air warming blanket placed over its body. Body temperature was monitored after transfer to the operating room with a probe placed in the thoracic aspect of the esophagus. Study groups did not differ significantly with respect to body weight, body condition score, reproductive status, breed, surgical procedure, preoperative sedative and opioid administration, anesthetic induction drug, local nerve block technique, or operating room assignment. There were no significant differences among groups in esophageal temperature variables, interval between anesthetic induction and surgery, surgery duration, anesthesia duration, or oxygen flow rate. However, the relationship between temperature delta and body weight was significant and relevant (R(2) = 0.23), as was the association between temperature nadir and body weight (R(2)= 0.10). As body weight increased, the temperature delta decreased and temperature nadir increased. No other significant relationships were identified. Inclusion of an HME in healthy dogs undergoing anesthesia for an elective orthopedic surgery did not facilitate maintenance of body temperature throughout the procedure.

  6. Bacterial ice nuclei impact cloud lifetime and radiative properties and reduce atmospheric heat loss in the BRAMS simulation model

    International Nuclear Information System (INIS)

    Costa, Tassio S; Gonçalves, Fábio L T; Yamasoe, Marcia A; Martins, Jorge A; Morris, Cindy E

    2014-01-01

    This study examines the effect of the bacterial species Pseudomonas syringae acting as ice nuclei (IN) on cloud properties to understand its impact on local radiative budget and heating rates. These bacteria may become active IN at temperatures as warm as −2 °C. Numerical simulations were developed using the Brazilian Regional Atmospheric Model System (BRAMS). To investigate the isolated effect of bacterial IN, four scenarios were created considering only homogeneous and bacterial ice nucleation, with 1, 10 and 100 IN per cubic meter of cloud volume and one with no bacteria. Moreover, two other scenarios were generated: the BRAMS default parameterization and its combination with bacterial IN. The model reproduced a strong convective cell over São Paulo on 3 March 2003. Results showed that bacterial IN may change cloud evolution as well as its microphysical properties, which in turn influence cloud radiative properties. For example, the reflected shortwave irradiance over an averaged domain in a scenario considering bacterial IN added to the BRAMS default parameterization was 14% lower than if bacteria were not considered. Heating rates can also be impacted, especially due to differences in cloud lifetime. Results suggest that the omission of bacterial IN in numerical models, including global cloud models, could neglect relevant ice nucleation processes that potentially influence cloud radiative properties. (letter)

  7. Kinetic analysis of cooking losses from beef and other animal muscles heated in a water bath--effect of sample dimensions and prior freezing and ageing.

    Science.gov (United States)

    Oillic, Samuel; Lemoine, Eric; Gros, Jean-Bernard; Kondjoyan, Alain

    2011-07-01

    Cooking loss kinetics were measured on cubes and parallelepipeds of beef Semimembranosus muscle ranging from 1 cm × 1 cm × 1 cm to 7 cm × 7 cm × 28 cm in size. The samples were water bath-heated at three different temperatures, i.e. 50°C, 70°C and 90°C, and for five different times. Temperatures were simulated to help interpret the results. Pre-freezing the sample, difference in ageing time, and in muscle fiber orientation had little influence on cooking losses. At longer treatment times, the effects of sample size disappeared and cooking losses depended only on the temperature. A selection of the tests was repeated on four other beef muscles and on veal, horse and lamb Semimembranosus muscle. Kinetics followed similar curves in all cases but resulted in different final water contents. The shape of the kinetics curves suggests first-order kinetics. Copyright © 2011 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  8. Detection of gastrointestinal blood loss with 99mTc-labeled, heat-treated red blood cells

    International Nuclear Information System (INIS)

    Som, P.; Oster, Z.H.; Atkins, H.L.; Goldman, A.G.; Sacker, D.F.; Harold, W.H.; Fairchild, R.G.; Richards, P.; Brill, A.B.

    1981-01-01

    Studies in dogs showed that heat-treated 99mTc-labeled red blood cells (HT/RBC) afford a highly sensitive means of detecting gastrointetinal bleeding as low as 0.12 ml/min., which could not be seen with unheated 99mTc-RBC, 99mTc-sulfur colloid, or 99mTc-DTPA. In addition, as the right upper quadrant and epigastrium remained free of activity, only one fifth to one tenth of the dose of 99mTc was needed. The safety of HT/RBC in humans has been documented, and the experiments in dogs suggest that it may have advantages over other agents in detecting gastrointestinal bleeding

  9. Detection of gastrointestinal blood loss with /sup 99m/Tc-labeled, heat-treated red blood cells

    International Nuclear Information System (INIS)

    Som, P.; Oster, Z.H.; Atkins, H.L.; Goldman, A.G.; Sacker, D.F.; Harold, W.H.; Fairchild, R.G.; Richards, P.; Brill, A.B.

    1981-01-01

    Studies in dogs showed that heat-treated /sup 99m/Tc-labeled red blood cells (HT/RBC) afford a highly sensitive means of detecting gastrointestinal bleeding as low as 0.12 ml/min, which could not be seen with unheated /sup 99m/Tc-RBC, /sup 99m/Tc-sulfur colloid, or /sup 99m/Tc-DTPA. In addition, as the right upper quadrant and epigastrium remained free of activity, only one fifth to one tenth of the dose of /sup 99m/Tc was needed. The safety of HT/RBC in humans has been documented, and the experiments in dogs suggest that it may have advantages over other agents in detecting gastrointestinal bleeding

  10. Loss of proteostatic control as a substrate for Atrial Fibrillation; a novel target for upstream therapy by Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Roelien Amanda Marjolein Meijering

    2012-02-01

    Full Text Available Atrial Fibrillation (AF is the most common, sustained clinical tachyarrhythmia associated with significant morbidity and mortality. AF is a persistent condition with progressive structural remodeling of the atrial cardiomyocytes due to the AF itself, resulting in cellular changes commonly observed in ageing and in other heart diseases. While rhythm control by electrocardioversion or drug treatment is the treatment of choice in symptomatic AF patients, its effectiveness is still limited. Current research is directed at preventing new-onset AF by limiting the development of substrates underlying AF promotion and resembles mechanism-based therapy. Upstream therapy refers to the use of non-ion channel anti-arrhythmic drugs that modify the atrial substrate- or target-specific mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention or recurrence of the arrhythmia following (spontaneous conversion (secondary prevention.Heat shock proteins (HSPs are molecular chaperones and comprise a large family of proteins involved in the protection against various forms of cellular stress. Their classical function is the conservation of proteostasis via prevention of toxic protein aggregation by binding to (partially unfolded proteins. Our recent data reveal that HSPs prevent electrical, contractile and structural remodeling of cardiomyocytes, thus attenuating the AF substrate in cellular, Drosophila melanogaster and animal experimental models. Furthermore, studies in humans suggest a protective role for HSPs against the progression from paroxysmal AF to persistent AF and in recurrence of AF. In this review, we discuss upregulation of the heat shock response system as a novel target for upstream therapy to prevent derailment of proteostasis and consequently promotion and recurrence of AF.

  11. Comparison of feed energy costs of maintenance, lean deposition, and fat deposition in three lines of mice selected for heat loss.

    Science.gov (United States)

    Eggert, D L; Nielsen, M K

    2006-02-01

    Three replications of mouse selection populations for high heat loss (MH), low heat loss (ML), and a nonselected control (MC) were used to estimate the feed energy costs of maintenance and gain and to test whether selection had changed these costs. At 21 and 49 d of age, mice were weighed and subjected to dual x-ray densitometry measurement for prediction of body composition. At 21 d, mice were randomly assigned to an ad libitum, an 80% of ad libitum, or a 60% of ad libitum feeding group for 28-d collection of individual feed intake. Data were analyzed using 3 approaches. The first approach was an attempt to partition energy intake between costs for maintenance, fat deposition, and lean deposition for each replicate, sex, and line by multiple regression of feed intake on the sum of daily metabolic weight (kg(0.75)), fat gain, and lean gain. Approach II was a less restrictive attempt to partition energy intake between costs for maintenance and total gain for each replicate, sex, and line by multiple regression of feed intake on the sum of daily metabolic weight and total gain. Approach III used multiple regression on the entire data set with pooled regressions on fat and lean gains, and subclass regressions for maintenance. Contrasts were conducted to test the effect of selection (MH - ML) and asymmetry of selection [(MH + ML)/2 - MC] for the various energy costs. In approach I, there were no differences between lines for costs of maintenance, fat deposition, or protein deposition, but we question our ability to estimate these accurately. In approach II, selection changed both cost of maintenance (P = 0.03) and gain (P = 0.05); MH mice had greater per unit costs than ML mice for both. Asymmetry of the selection response was found in approach II for the cost of maintenance (P = 0.06). In approach III, the effect of selection (P maintenance cost, but asymmetry of selection (P > 0.17) was not evident. Sex effects were found for the cost of fat deposition (P = 0.02) in

  12. Simulation Models to Size and Retrofit District Heating Systems

    Directory of Open Access Journals (Sweden)

    Kevin Sartor

    2017-12-01

    Full Text Available District heating networks are considered as convenient systems to supply heat to consumers while reducing CO 2 emissions and increasing renewable energies use. However, to make them as profitable as possible, they have to be developed, operated and sized carefully. In order to cope with these objectives, simulation tools are required to analyze several configuration schemes and control methods. Indeed, the most common problems are heat losses, the electric pump consumption and the peak heat demand while ensuring the comfort of the users. In this contribution, a dynamic simulation model of all the components of the network is described. It is dedicated to assess some energetic, environmental and economic indicators. Finally, the methodology is used on an existing application test case namely the district heating network of the University of Liège to study the pump control and minimize the district heating network heat losses.

  13. Analysis of the Processes in Spent Fuel Pools in Case of Loss of Heat Removal due to Water Leakage

    Directory of Open Access Journals (Sweden)

    Algirdas Kaliatka

    2013-01-01

    Full Text Available The safe storage of spent fuel assemblies in the spent fuel pools is very important. These facilities are not covered by leaktight containment; thus, the consequences of overheating and melting of fuel in the spent fuel pools can be very severe. On the other hand, due to low decay heat of fuel assemblies, the processes in pools are slow in comparison with processes in reactor core during LOCA accident. Thus, the accident management measures play a very important role in case of some accidents in spent fuel pools. This paper presents the analysis of possible consequences of fuel overheating due to leakage of water from spent fuel pool. Also, the accident mitigation measure, the late injection of water was evaluated. The analysis was performed for the Ignalina NPP Unit 2 spent fuel pool, using system thermal hydraulic code for severe accident analysis ATHLET-CD. The phenomena, taking place during such accident, are discussed. Also, benchmarking of results of the same accident calculation using ASTEC and RELAP/SCDAPSIM codes is presented here.

  14. Study on the Development of an Optimal Heat Supply Control Algorithm for Group Energy Apartment Buildings According to the Variation of Outdoor Air Temperature

    Directory of Open Access Journals (Sweden)

    Dong-Kurl Kwak

    2012-05-01

    Full Text Available In the present study, we have developed an optimal heat supply algorithm which minimizes the heat loss through the distribution pipe line in a group energy apartment. Heating load variation of a group energy apartment building according to the outdoor air temperature was predicted by a correlation obtained from calorimetry measurements of all households in the apartment building. Supply water temperature and mass flow rate were simultaneously controlled to minimize the heat loss rate through the distribution pipe line. A group heating apartment building located in Hwaseong city, Korea, which has 1473 households, was selected as the object building to test the present heat supply algorithm. Compared to the original heat supply system, the present system adopting the proposed control algorithm reduced the heat loss rate by 10.4%.

  15. Transient characteristics of current lead losses for the large scale high-temperature superconducting rotating machine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Park, S. I.; Kim, D. J.; Kim, H. M.; Lee, H. G.; Yoon, Y. S.; Jo, Y. S.; Yoon, K. Y.

    2014-01-01

    To minimize most heat loss of current lead for high-temperature superconducting (HTS) rotating machine, the choice of conductor properties and lead geometry - such as length, cross section, and cooling surface area - are one of the various significant factors must be selected. Therefore, an optimal lead for large scale of HTS rotating machine has presented before. Not let up with these trends, this paper continues to improve of diminishing heat loss for HTS part according to different model. It also determines the simplification conditions for an evaluation of the main flux flow loss and eddy current loss transient characteristics during charging and discharging period.

  16. Inner ear malformations in patients with sensorineural heating loss: detection with gradient-echo (3DFT-CISS) MRI

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, J.W. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Kuhweide, R. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Ampe, W. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); D`Hont, G.D. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Offeciers, E.F. [ENT Dept., Sint-Augustinus Medical Inst., Univ. of Antwerp (Belgium); Faes, W.K. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Pattyn, G. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium)

    1996-04-01

    The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)

  17. Inner ear malformations in patients with sensorineural heating loss: detection with gradient-echo (3DFT-CISS) MRI

    International Nuclear Information System (INIS)

    Casselman, J.W.; Kuhweide, R.; Ampe, W.; D'Hont, G.D.; Offeciers, E.F.; Faes, W.K.; Pattyn, G.

    1996-01-01

    The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)

  18. The specific heat loss combined with the thermoelastic effect for an experimental analysis of the mean stress influence on axial fatigue of stainless steel plain specimens

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2014-10-01

    Full Text Available The energy dissipated to the surroundings as heat in a unit volume of material per cycle, Q, was recently proposed by the authors as fatigue damage index and it was successfully applied to correlate fatigue data obtained by carrying out fully reversed stress- and strain-controlled fatigue tests on AISI 304L stainless steel plain and notched specimens. The use of the Q parameter to analyse the experimental results led to the definition of a scatter band having constant slope from the low- to the high-cycle fatigue regime. In this paper the energy approach is extended to analyse the influence of mean stress on the axial fatigue behaviour of unnotched cold drawn AISI 304L stainless steel bars. In view of this, stress controlled fatigue tests on plain specimens at different load ratios R (R=-1; R=0.1; R=0.5 were carried out. A new energy parameter is defined to account for the mean stress effect, which combines the specific heat loss Q and the relative temperature variation due to the thermoelastic effect corresponding to the achievement of the maximum stress level of the stress cycle. The new two-parameter approach was able to rationalise the mean stress effect observed experimentally. It is worth noting that the results found in the present contribution are meant to be specific for the material and testing condition investigated here.

  19. Decay heat measurement of U-235

    International Nuclear Information System (INIS)

    Baumung, K.

    1976-01-01

    The calorimeter and the transport mechanism for the fuel samples was designed and is under construction now. Calculations of the heat-source distributions for different 235U-contents led to an optimal enrichment of the UO 2 -samples which minimizes the effects of the bad heat conductivity of the oxide on temperature measurement. Monte-Carlo-calculations of the γ-leakage-spectra yielded data which allow, from the γ-energy-flow measurements, to calculate the total γ-energy loss as well as the portions of the β- and γ-heating. (orig.) [de

  20. Derivation of guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Mancini, Roberta; Zühlsdorf, Benjamin

    2017-01-01

    integration in a spray drying facility. A numerical model of the evaporator is combined with cycle calculations, for estimating the impact of heat transfer area and pressure drop on the coefficient of performance and costs. Common trends are obtained as optimal configurations for the four considered fluids...... minimization of area and pressure drop is found by assessing the relative impact on costs of the heat exchanger area and pressure losses of both working fluid and heat source. The result shows that it is not always convenient to minimize the heat transfer area, since the mixture pressure drop negatively...

  1. Consensus recommendations on training and competing in the heat

    DEFF Research Database (Denmark)

    Racinais, Sébastien; Alonso, Juan-Manuel; Coutts, Aaron J

    2015-01-01

    Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient...... and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vests), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large...

  2. Consensus recommendations on training and competing in the heat

    DEFF Research Database (Denmark)

    Racinais, S; Alonso, J M; Coutts, A J

    2015-01-01

    Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient...... and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large...

  3. MINIMAL LOSS RECONFIGURATION CONSIDERING RANDOM LOAD: APPLICATIONS TO REAL NETWORKS RECONFIGURACIÓN A MÍNIMAS PÉRDIDAS, CONSIDERANDO LA ALEATORIEDAD DE LA CARGA: APLICACIÓN A SISTEMAS

    Directory of Open Access Journals (Sweden)

    Hugo Opazo Mora

    2008-06-01

    Full Text Available This paper approaches the minimal loss reconfiguration problem, taking into account the load variations of the systems, through a stochastic reconfiguration process. The Monte Carlo method is used to consider the natural load variation. A normal probability function is used to generate aleatory load levels in the nodes. The results of this work show the existence of a set of branches that are frequently eliminated. This generates a tree branch set that best represents the universal randomness of the load. We call it "Expected Branch Set (EBS". The topology associated to the EBS coincides with that obtained using the average demand values. This makes it unnecessary to generate a considerable number of tests to find that topology that best considers the load variation. The proposed algorithm was applied to two test networks and to a large real network.Este trabajo se plantea la reconfiguración a mínimas pérdidas, tomando en cuenta las variaciones de carga del sistema, a través de un proceso de reconfiguración estocástico. El Método de Monte Carlo es usado para considerar las variaciones naturales de la carga, utilizando una función de probabilidad normal para generar niveles aleatorios de carga en los nudos. Los resultados de este trabajo muestran la existencia de un conjunto de ramas que son frecuentemente eliminadas en el proceso de reconfiguración. Esto genera un conjunto de ramas de un árbol, las que mejor representan aleatoriedad universal de la carga. La topología obtenida la denominamos "Conjunto de Ramas Esperadas" (Expected Branch Set, EBS. La topología asociada al EBS es casi similar a la topología obtenida usando los valores de demanda promedio. Esto hace innecesario el realizar un considerable número de pruebas para encontrar la topología que mejor considera las variaciones de carga. El algoritmo propuesto fue aplicado a dos sistemas de prueba y a un sistema real de gran envergadura.

  4. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  5. Student Energy Cuts Heat Loss.

    Science.gov (United States)

    Sirote, Patrice J.

    1981-01-01

    Under the skilled supervision of a master carpenter hired to direct this Comprehensive Employment and Training Act project, seven high school students and two beginning workers are learning the varied and complex skills of building maintenance, renewing their city's schools, and bringing home a badly needed paycheck. (LRA)

  6. Effect of heat-killed Lactobacillus brevis SBC8803 on cutaneous arterial sympathetic nerve activity, cutaneous blood flow and transepidermal water loss in rats.

    Science.gov (United States)

    Horii, Y; Kaneda, H; Fujisaki, Y; Fuyuki, R; Nakakita, Y; Shigyo, T; Nagai, K

    2014-05-01

    To evaluate the efficacy of the effects of heat-killed Lactobacillus brevis SBC8803 (HK-SBC8803) on the standard physiological markers of skin health of cutaneous arterial sympathetic nerve activity (CASNA), cutaneous blood flow and transepidermal water loss (TEWL) and to determine whether SBC8803 targets serotonin 5-HT3 receptors in rats. A set of three experiments were conducted to examine the effects of SBC8803 on CASNA, cutaneous blood flow and TEWL using Wistar and hairless rats. Two additional experiments further attempted to determine whether HK-SBC8803 was targeting the serotonin 5-HT3 receptors by pretreatment with the 5-HT3 antagonist granisetron. Administration of HK-SBC8803 in the first three experiments caused marked inhibition of CASNA and significant elevation of cutaneous blood flow under urethane anaesthesia as well as significant decrease in TEWL on the dorsal skin of conscious hairless rats. Pretreatment with granisetron decreased the effects of HK-SBC8803 on CASNA and cutaneous blood flow. These findings suggest that HK-SBC8803 reduces CASNA, increases cutaneous blood flow and decreases TEWL and that 5-HT3 receptors may be involved in CASNA and cutaneous blood flow responses. HK-SBC8803 could be a useful substance in the treatment/prevention of skin problems, specifically chapped or dry skin. © 2014 The Society for Applied Microbiology.

  7. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  8. Minimizando perdas e maximizando eficiência na detecção de casos de desnutrição aguda severa Minimizing losses and maximizing efficiency in the detection of acute severe malnutrition

    Directory of Open Access Journals (Sweden)

    Michael E Reichenheim

    2001-02-01

    hospitals. To determine the ideal cut-off point of weight-for-age (WFA, the following estimators are of interest: the proportion of false negatives (PFN, false positives (PFP and the percentage of total gain by time (ptg. Weight-for-height (WFH (cut-off point at -2 SDs is used as reference for establishing severe acute malnutrition. RESULTS: The magnitude of false negatives declines steadily until the 3rd WFA percentile (P3 and reaches zero close to P9. At this point, the PFP is around 0.4. The ptg decreases sharply up to P4, declining smoothly towards P10 thereafter (54.5%. CONCLUSIONS: The WFA P10 can be recommended for the screening phase. At this cut-off point, there is still efficiency whereas losses of true cases of severe acute malnutrition are minimized.

  9. CATHARE2 analysis on the loss of residual heat removal system during mid-loop operation : pressurizer and SGI outlet plenum manways open

    International Nuclear Information System (INIS)

    Chung, Young Jong; Chang, Won Pyo.

    1997-06-01

    The present study is to analyze the BETHSY test 6.9c using CATHARE2 v1.3u. BETHSY test 6.9c simulates plant conditions following loss of residual heat removal system under mid-loop operation. The configuration is that the pressurizer and steam generator outlet plenum manways are opened as vent paths in order to protect the system from overpressurization by removing the steam generated in the core. Most of the important physical phenomena are observed in the experiment have been predicted reasonably by the CATHARE2 code. Since the differential pressure between the pressurizer and the surge line is overestimated, the peak pressure in the upper plenum is predicted higher than the experimental value by 11 kPa and occurrence is delayed by 210s. Also earlier core uncovery is predicted, mainly due to overprediction of the manway flows. The analysis results are demonstrated that opening of the pressurizer and the steam generator outlet plenum manways is effective to prevent the core uncovery by only gravity feed injection. Although some disagreements found in detailed phenomena, the prediction of the overall system behavior by the code does not deviate from the experimental results unacceptably. The core bypass flowrate is found to be very sensitive to mass distribution in the core and the system behaviors are strongly affected by phase separation modeling under low pressure and particularly stratified flow condition. the main purpose of the present study is to understand physical phenomena under the accident and to assess the capability of CATHARE2 prediction for enhancement of reliability in actual plant analyses. (author). 11 refs., 3 tabs., 41 figs

  10. A contribution to a theory of two-phase flow with phase change and addition of heat in a coolant channel of a LWR-fuel element during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gaballah, I.

    1978-09-01

    A contribution to a theory of two-phase flow with phase change and addition of heat in a coolant channel of a LWR-fuel element during a loss-of-coolant accident. A theory was developed for the calculation of a dispersed two phase flow with heat addition in a channel with general area change. The theory was used to study different thermodynamic and gasdynamic processes, which may occur during the emergency cooling after a LOCA of a pressurized water reactor. The basic equations were formulated and solved numerically. The heat transfer mechanism was examined. Calculations have indicated that the radiative heat flux component is small compared to the convective component. A drop size spectrum was used in the calculations. Its effect on the heat transfer was investigated. It was found that the calculation with a mean drop diameter gives good results. Significant thermal non-equilibrium has been evaluated. The effect of different operating parameters on the degree of thermal non-equilibrium was studied. The flow and heat transfer in a channel with cross-sectional area change were calculated. It was shown that the channel deformation affects the state properties and the heat transfer along the channel very strongly. (orig.) 891 GL [de

  11. Optimizing Processes to Minimize Risk

    Science.gov (United States)

    Loyd, David

    2017-01-01

    NASA, like the other hazardous industries, has suffered very catastrophic losses. Human error will likely never be completely eliminated as a factor in our failures. When you can't eliminate risk, focus on mitigating the worst consequences and recovering operations. Bolstering processes to emphasize the role of integration and problem solving is key to success. Building an effective Safety Culture bolsters skill-based performance that minimizes risk and encourages successful engagement.

  12. Modeling of a District Heating System and Optimal Heat-Power Flow

    Directory of Open Access Journals (Sweden)

    Wentao Yang

    2018-04-01

    Full Text Available With ever-growing interconnections of various kinds of energy sources, the coupling between a power distribution system (PDS and a district heating system (DHS has been progressively intensified. Thus, it is becoming more and more important to take the PDS and the DHS as a whole in energy flow analysis. Given this background, a steady state model of DHS is first presented with hydraulic and thermal sub-models included. Structurally, the presented DHS model is composed of three major parts, i.e., the straight pipe, four kinds of local pipes, and the radiator. The impacts of pipeline parameters and the environment temperature on heat losses and pressure losses are then examined. The term “heat-power flow” is next defined, and the optimal heat-power flow (OHPF model formulated as a quadratic planning problem, in which the objective is to minimize energy losses, including the heat losses and active power losses, and both the operational constraints of PDS and DHS are respected. The developed OHPF model is solved by the well-established IPOPT (Interior Point OPTimizer commercial solver, which is based on the YALMIP/MATLAB toolbox. Finally, two sample systems are served for demonstrating the characteristics of the proposed models.

  13. Control strategy minimizing the converter-alternating current motor losses: application to electric traction; Strategies de commande minimisant les pertes d'un ensemble convertisseur - machine alternative: application a la traction electrique

    Energy Technology Data Exchange (ETDEWEB)

    Bastiani, Ph.

    2001-02-01

    Improving the efficiency of the converter-alternating current motor system is a major task in electric traction. Global energy optimisation implies a specific approach at system scale. To reach this goal, we have chosen an algebraic method using sub-system models. To start with, a synchronous machine Park model is developed to take account magnetic saturation and iron losses. Then, an averaged model of the voltage inverter is used in order to obtain a simplified model of the losses to be implemented in our optimisation method. This is how the global model is built including losses in the synchronous machine along with the losses of the power converter. Experimental results are there to validate our approach. This study proposes a method based on algebraic formulation of the general laws to control torque. Algorithms take into account magnetic circuits saturation and power losses in both the machine and its converter. Here again, experimental results validate the algorithm on several test benches. Achieved efficiency improvement is important compared to existing usual control strategies. The proposed method can be generalised to other machine-converter systems. As a matter of fact we have extended our study to the induction machine. As a complement ti this study we have looked at the effects natural limitations of voltages and currents in the torque-speed plane. Therefore algebraic formulation of the torque-speed plane and optimisation strategies are proposed including those constraints. (author)

  14. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    Science.gov (United States)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  15. Some conclusions obtained from the thermo-hydraulic behavior analysis of the nuclear power plant Atucha I, in case of loss of coolant accident with second heat sink

    International Nuclear Information System (INIS)

    Ventura, Mirta A.

    2003-01-01

    This paper is based on the recompilation, analysis and elaboration of the results of the operator (NA-SA), in the framework of the Atucha I Second Heat Sink project. The results have been compared with those obtained for the same power plant without second heat sink. The conclusions of the work permit the establishment of the operation rules of the plant. (author)

  16. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  17. Minimization of heatwave morbidity and mortality.

    Science.gov (United States)

    Kravchenko, Julia; Abernethy, Amy P; Fawzy, Maria; Lyerly, H Kim

    2013-03-01

    Global climate change is projected to increase the frequency and duration of periods of extremely high temperatures. Both the general populace and public health authorities often underestimate the impact of high temperatures on human health. To highlight the vulnerable populations and illustrate approaches to minimization of health impacts of extreme heat, the authors reviewed the studies of heat-related morbidity and mortality for high-risk populations in the U.S. and Europe from 1958 to 2012. Heat exposure not only can cause heat exhaustion and heat stroke but also can exacerbate a wide range of medical conditions. Vulnerable populations, such as older adults; children; outdoor laborers; some racial and ethnic subgroups (particularly those with low SES); people with chronic diseases; and those who are socially or geographically isolated, have increased morbidity and mortality during extreme heat. In addition to ambient temperature, heat-related health hazards are exacerbated by air pollution, high humidity, and lack of air-conditioning. Consequently, a comprehensive approach to minimize the health effects of extreme heat is required and must address educating the public of the risks and optimizing heatwave response plans, which include improving access to environmentally controlled public havens, adaptation of social services to address the challenges required during extreme heat, and consistent monitoring of morbidity and mortality during periods of extreme temperatures. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Minimally invasive orthognathic surgery.

    Science.gov (United States)

    Resnick, Cory M; Kaban, Leonard B; Troulis, Maria J

    2009-02-01

    Minimally invasive surgery is defined as the discipline in which operative procedures are performed in novel ways to diminish the sequelae of standard surgical dissections. The goals of minimally invasive surgery are to reduce tissue trauma and to minimize bleeding, edema, and injury, thereby improving the rate and quality of healing. In orthognathic surgery, there are two minimally invasive techniques that can be used separately or in combination: (1) endoscopic exposure and (2) distraction osteogenesis. This article describes the historical developments of the fields of orthognathic surgery and minimally invasive surgery, as well as the integration of the two disciplines. Indications, techniques, and the most current outcome data for specific minimally invasive orthognathic surgical procedures are presented.

  19. Correlates of minimal dating.

    Science.gov (United States)

    Leck, Kira

    2006-10-01

    Researchers have associated minimal dating with numerous factors. The present author tested shyness, introversion, physical attractiveness, performance evaluation, anxiety, social skill, social self-esteem, and loneliness to determine the nature of their relationships with 2 measures of self-reported minimal dating in a sample of 175 college students. For women, shyness, introversion, physical attractiveness, self-rated anxiety, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. For men, physical attractiveness, observer-rated social skill, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. The patterns of relationships were not identical for the 2 indicators of minimal dating, indicating the possibility that minimal dating is not a single construct as researchers previously believed. The present author discussed implications and suggestions for future researchers.

  20. Hexavalent Chromium Minimization Strategy

    Science.gov (United States)

    2011-05-01

    Logistics 4 Initiative - DoD Hexavalent Chromium Minimization Non- Chrome Primer IIEXAVAJ ENT CHRO:M I~UMI CHROMIUM (VII Oil CrfVli.J CANCEfl HAnRD CD...Management Office of the Secretary of Defense Hexavalent Chromium Minimization Strategy Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2011 4. TITLE AND SUBTITLE Hexavalent Chromium Minimization Strategy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  1. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  2. Performance investigations of liquid-metal heat pipes for space and terrestrial applications

    International Nuclear Information System (INIS)

    Kemme, J.E.; Keddy, E.S.; Phillips, J.R.

    1978-01-01

    The high heat transfer capacity of liquid-metal heat pipes is demonstrated in performance tests with mercury, potassium, sodium, and lithium working fluids and wick structures which serve to minimize liquid pressure losses and vapor/liquid interactions. Appropriate wicks for horizontal and vertical operation are described. It is shown that heat-transfer with these wicks is limited by vapor flow effects. Examples are given of particular effects associated with a long adiabatic section between evaporator and condenser and with a heat source of uniform temperature as opposed to a source of uniform power

  3. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  4. Plate heat exchangers in air conditioning applications. Development of air-coolers, air-heaters and air-conditioning units with low pressure loss. Plattenwaermetauscher in raumlufttechnischen Anlagen. Entwicklung stroemungsoptimierter Luftkuehler, Lufterhitzer und Klimageraete

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Diemer, R; Eisenmann, G; Goettling, D; Madjidi, M

    1989-08-01

    To prepare the development of a water to air plate heat exchanger the state of the art, i.e. the technological knowhow and the design basis are given. The concept and ideas are presented which lead to a slightly wavy plate. Furthermore an exemplary design of a plate heat exchanger and an air-conditioning unit is described and finally the application of plate heat exchangers as direct evaporators and the potential icing problems are investigated. Comparing measured and calculated data shows that the performance of plates with plane surfaces can be predicted fairly well by the presented design methods. The performance of plates with strongly wavy surface however has to be measured. Optimization calculations yield to an air gap of slightly over 4 mm. Comparison with an air-conditioning unit demonstrates that the strongest advantage is for the air cooler (one third of the pressure loss) that a new concept of an air-conditioning unit has lower losses in the fan unit and that it does not need an eliminator. This results in half the volume for the new unit, in a pressure drop of 88%, fan power of 90% and fan revolutions of 50%. (orig./GL).

  5. COMPUTER PROGRAM FOR CALCULATION MICROCHANNEL HEAT EXCHANGERS FOR AIR CONDITIONING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Olga V. Olshevska

    2016-08-01

    Full Text Available Creating a computer program to calculate microchannel air condensers to reduce design time and carrying out variant calculations. Software packages for thermophysical properties of the working substance and the coolant, the correlation equation for calculating heat transfer, aerodynamics and hydrodynamics, the thermodynamic equations for the irreversible losses and their minimization in the heat exchanger were used in the process of creating. Borland Delphi 7 is used for creating software package.

  6. Minimizing Mutual Couping

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna.......Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna....

  7. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail; Pottmann, Helmut; Grohs, Philipp

    2011-01-01

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ

  8. Hearing loss

    Science.gov (United States)

    Decreased hearing; Deafness; Loss of hearing; Conductive hearing loss; Sensorineural hearing loss; Presbycusis ... Symptoms of hearing loss may include: Certain sounds seeming too loud Difficulty following conversations when two or more people are talking ...

  9. Loss of the precise control of photosynthesis and increased yield of non-radiative dissipation of exitation energy after mild heat treatment of barley leaves

    International Nuclear Information System (INIS)

    Bukhov, N.G.; Boucher, N.; Carpentier, R.

    1998-01-01

    The after effects of a short exposure of intact barley leaves to moderately elevated temperature (40°C, 5 min) on the induction transients and the irradiance dependencies of photosynthesis and chlorophyll fluorescence are presented. This mild heat treatment strongly reduced the oscillations in the rate of photosynthesis and in the yield of chlorophyll fluorescence. However, only a 25% irreversible inhibition of maximum photosynthetic capacity of photosystem II (PSII) measured by oxygen evolution was produced and the intrinsic quantum yield of PSII measured by the chlorophyll fluorescence ratio (F m - F o )/Fm decreased by only 15%. In contrast, the above treatment increased radiationless dissipation processes in PSII by a factor of two. In heat-treated leaves, photosynthesis was not saturated even by strong light. Both ΔpH-dependent quenching of excitons in PSII (including formation of zeaxanthin) and state 1/state 2 transition were found to be stimulated. Heat exposure enhanced the control of PSII activity by PSI, as evidenced by a significant increase in the quenching effect of far-red light on the maximum yield of chlorophyll fluorescence. It was deduced that after mild heat treatment, the photosynthetic apparatus in leaves lacks the precise coordinating control of electron transport and carbon metabolism owing to the inability of PSII to support electron transport at a level adequate for carbon metabolism. This effect was not related to the small irreversible thermal damage to PSII, but was rather due to a significant increase in non-photochemical quenching of excitation energy. (author)

  10. ANALYSIS OF THE IMPACT PROPERTIES OF THE COOLANT RECOVERY SYSTEM HEAT LOSSES OF COMBINED COMPRESSOR-POWER PLANT ON ITS CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Yusha V.L.

    2012-12-01

    Full Text Available The paper presents results of theoretical analysis of the effectiveness of an ideal thermodynamic cycle internal combustion engine combined with an external utilization of exhaust heat. The influence of the properties of the coolant circuit of utilization on its operational parameters and characteristics of the power plant.

  11. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm2 in the cold leg of primary loop using RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2017-01-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  12. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm{sup 2} in the cold leg of primary loop using RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  13. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  14. Development of Abnormal Operating Strategies for Loss of Ultimate Heat Sink (LOUHS) at Shutdown Mode in Westinghouse Type Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Duk-Joo; Lee, Seung-Chan; Sung, Je-Joong; Ha, Sang Jun [KHNP CRI, Daejeon (Korea, Republic of); Hwang, Su-Hyun [FNC Tech. Co., Yongin (Korea, Republic of)

    2016-10-15

    Loss of all AC power is classified as one of multiple failure accident by regulatory guide of Korean accident management program. Therefore we need develop strategies for the abnormal operating procedure both of power operating and shutdown mode. This paper developed abnormal operating guideline for loss of all AC power by analysis of accident scenario in pressurized water reactor. This paper analyzed the extended SBO in shutdown operating mode and developed the operating strategy of the abnormal operation procedure. Operator action for the emergency are not required to take in 500 minutes and 60 minutes in intact and opened RCS state respectively.

  15. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    International Nuclear Information System (INIS)

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman

    2007-01-01

    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000 C) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900 C, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE's) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger

  16. A Study on Heat-up Phenomena of the RHR Pump Room in KORI Unit 2 for the Loss of HVAC Accidents

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Jin Hee; Lim, Ho Gon; Han, Sang Hoon

    2009-01-01

    In PSA(Probabilistic Safety Analysis) Models, the HVAC(Heating, Ventilation, and Air Condition) system is essential for the various vital mitigation safety systems operating during a mission time. So far, the unavailability of a safety system when the HVAC system fails has been applied conservatively or optimistically based on operating experience and expert judgment, so the total core damage frequency could be unrealistic. When the HVAC system of a nuclear power plant fails, it is one of the main issues in a PSA FT (Fault Tree) model to estimate the transient temperature variations of some component rooms. The purpose of this study is to establish a heat-up prediction model by using direct measuring and CFD(Computational Fluid Dynamics) analyses

  17. Minimizing Exposure at Work

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticide Health and Safety Information Safe Use Practices Minimizing Exposure at Work Pesticides - Pennsylvania State University Cooperative Extension Personal Protective Equipment for Working

  18. Minimalism. Clip and Save.

    Science.gov (United States)

    Hubbard, Guy

    2002-01-01

    Provides background information on the art movement called "Minimalism" discussing why it started and its characteristics. Includes learning activities and information on the artist, Donald Judd. Includes a reproduction of one of his art works and discusses its content. (CMK)

  19. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail

    2011-10-30

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ) + λ(sin φ, cos φ, 0), where A,B,C,D ε ℝ are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. © 2011 Springer-Verlag.

  20. Minimal and careful processing

    OpenAIRE

    Nielsen, Thorkild

    2004-01-01

    In several standards, guidelines and publications, organic food processing is strongly associated with "minimal processing" and "careful processing". The term "minimal processing" is nowadays often used in the general food processing industry and described in literature. The term "careful processing" is used more specifically within organic food processing but is not yet clearly defined. The concept of carefulness seems to fit very well with the processing of organic foods, especially if it i...

  1. External corners as heat bridges

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1984-08-01

    The maximum additional heat loss in vertical external corners depending on wall thickness is determined. In order to amire at a low k-value, a much smaller wall thickness is required in externally insulated walls than in monolithic constructions; the greater loss of heat bridge with external insulation stands in contrast to a higher loss in thick, monolithic walls. In relation to total losses, the additional losses through external corners are practically negligible.

  2. Pregnancy Loss

    Science.gov (United States)

    ... To receive Pregnancy email updates Enter email Submit Pregnancy loss Pregnancy loss is a harsh reality faced ... have successful pregnancies. Expand all | Collapse all Why pregnancy loss happens As many as 10 to 15 ...

  3. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...

  4. Minimal quantization and confinement

    International Nuclear Information System (INIS)

    Ilieva, N.P.; Kalinowskij, Yu.L.; Nguyen Suan Han; Pervushin, V.N.

    1987-01-01

    A ''minimal'' version of the Hamiltonian quantization based on the explicit solution of the Gauss equation and on the gauge-invariance principle is considered. By the example of the one-particle Green function we show that the requirement for gauge invariance leads to relativistic covariance of the theory and to more proper definition of the Faddeev - Popov integral that does not depend on the gauge choice. The ''minimal'' quantization is applied to consider the gauge-ambiguity problem and a new topological mechanism of confinement

  5. Minimal Composite Inflation

    DEFF Research Database (Denmark)

    Channuie, Phongpichit; Jark Joergensen, Jakob; Sannino, Francesco

    2011-01-01

    We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity, and that the u......We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity...

  6. Minimalism and Speakers’ Intuitions

    Directory of Open Access Journals (Sweden)

    Matías Gariazzo

    2011-08-01

    Full Text Available Minimalism proposes a semantics that does not account for speakers’ intuitions about the truth conditions of a range of sentences or utterances. Thus, a challenge for this view is to offer an explanation of how its assignment of semantic contents to these sentences is grounded in their use. Such an account was mainly offered by Soames, but also suggested by Cappelen and Lepore. The article criticizes this explanation by presenting four kinds of counterexamples to it, and arrives at the conclusion that minimalism has not successfully answered the above-mentioned challenge.

  7. Minimal open strings

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo

    2008-01-01

    We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.

  8. Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers

    DEFF Research Database (Denmark)

    Ioannou, Leonidas G; Tsoutsoubi, Lydia; Samoutis, George

    2017-01-01

    .6% of the variance in WTL (p manager's WTL estimate was too optimistic (p Time-motion analysis accurately assesses WTL, evaluating every second spent by each worker during every work shift......Introduction: In this study we (i) introduced time-motion analysis for assessing the impact of workplace heat on the work shift time spent doing labor (WTL) of grape-picking workers, (ii) examined whether seasonal environmental differences can influence their WTL, and (iii) investigated whether...... their WTL can be assessed by monitoring productivity or the vineyard manager's estimate of WTL. Methods: Seven grape-picking workers were assessed during the summer and/or autumn via video throughout four work shifts. Results: Air temperature (26.8 ± 4.8°C), wet bulb globe temperature (WBGT; 25.2 ± 4.1°C...

  9. Minimal model holography

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Gopakumar, Rajesh

    2013-01-01

    We review the duality relating 2D W N minimal model conformal field theories, in a large-N ’t Hooft like limit, to higher spin gravitational theories on AdS 3 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. (review)

  10. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  11. Hazardous waste minimization

    International Nuclear Information System (INIS)

    Freeman, H.

    1990-01-01

    This book presents an overview of waste minimization. Covers applications of technology to waste reduction, techniques for implementing programs, incorporation of programs into R and D, strategies for private industry and the public sector, and case studies of programs already in effect

  12. Minimally invasive distal pancreatectomy

    NARCIS (Netherlands)

    Røsok, Bård I.; de Rooij, Thijs; van Hilst, Jony; Diener, Markus K.; Allen, Peter J.; Vollmer, Charles M.; Kooby, David A.; Shrikhande, Shailesh V.; Asbun, Horacio J.; Barkun, Jeffrey; Besselink, Marc G.; Boggi, Ugo; Conlon, Kevin; Han, Ho Seong; Hansen, Paul; Kendrick, Michael L.; Kooby, David; Montagnini, Andre L.; Palanivelu, Chinnasamy; Wakabayashi, Go; Zeh, Herbert J.

    2017-01-01

    The first International conference on Minimally Invasive Pancreas Resection was arranged in conjunction with the annual meeting of the International Hepato-Pancreato-Biliary Association (IHPBA), in Sao Paulo, Brazil on April 19th 2016. The presented evidence and outcomes resulting from the session

  13. Minimal DBM Substraction

    DEFF Research Database (Denmark)

    David, Alexandre; Håkansson, John; G. Larsen, Kim

    In this paper we present an algorithm to compute DBM substractions with a guaranteed minimal number of splits and disjoint DBMs to avoid any redundance. The substraction is one of the few operations that result in a non-convex zone, and thus, requires splitting. It is of prime importance to reduce...

  14. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  15. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  16. Loss of vital ac power and the residual heat removal system during mid-loop operations at Vogtle Unit 1 on March 20, 1990

    International Nuclear Information System (INIS)

    1990-06-01

    On March 20, 1990, the Vogtle Electric Generating Plant Unit 1, located in Burke County, Georgia, about 25 miles southeast of Augusta, experienced a loss of all safety (vital) ac power. The plant was in cold shutdown with reactor coolant level lowered to ''mid-loop'' for various maintenance tasks. Both the containment building personnel hatch and equipment hatch were open. One emergency diesel generator and one reserve auxiliary transformer were out of service for maintenance, with the remaining reserve auxiliary transformer supplying both Unit 1 safety buses. A truck in the low voltage switchyard backed into the support column for an offsite power feed to the reserve auxiliary transformer which was supplying safety power. The insulator broke, a phase-to-ground fault occurred, and the feeder circuit breakers for the safety buses opened. The operable emergency diesel generator started automatically because of the undervoltage condition on the safety bus, but tripped off after about 1 minute. About 20 minutes later the diesel generator load sequencer was reset, causing the diesel generator to start a second time. The diesel generator operated for about 1 minute, and tripped off. The diesel generator was restarted in the manual emergency mode 36 minutes after the loss of power. The generator remained on line and provided power to its safety bus. During the 36 minutes without safety bus power, the reactor coolant system temperature rose from about 90 degree F to 136 degree F. This report documents the results of an Incident Investigation Team sent to Vogtle by the Executive Director for Operations of the US Nuclear Regulatory Commission to determine what happened, identify the probable causes, and make appropriate findings and conclusions. 79 figs., 16 tabs

  17. Out of the frying pan into the air--emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus).

    Science.gov (United States)

    Gibson, Daniel J; Sylvester, Emma V A; Turko, Andy J; Tattersall, Glenn J; Wright, Patricia A

    2015-10-01

    Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min(-1)) than those in a high humidity environment (1.6°C min(-1)). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change. © 2015 The Author(s).

  18. Out of the frying pan into the air—emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus)

    Science.gov (United States)

    Gibson, Daniel J.; Sylvester, Emma V. A.; Turko, Andy J.; Tattersall, Glenn J.; Wright, Patricia A.

    2015-01-01

    Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min−1) than those in a high humidity environment (1.6°C min−1). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change. PMID:26490418

  19. Loss-minimal Algorithmic Trading Based on Levy Processes

    Directory of Open Access Journals (Sweden)

    Farhad Kia

    2014-08-01

    Full Text Available In this paper we optimize portfolios assuming that the value of the portfolio follows a Lévy process. First we identify the parameters of the underlying Lévy process and then portfolio optimization is performed by maximizing the probability of positive return. The method has been tested by extensive performance analysis on Forex and SP 500 historical time series. The proposed trading algorithm has achieved 4.9\\% percent yearly return on average without leverage which proves its applicability to algorithmic trading.

  20. An approach to fundamental study of beam loss minimization

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1999-01-01

    The accelerator design rules involving rms matching, developed at CERN in the 1970's, are discussed. An additional rule, for equipartitioning the beam energy among its degrees of freedom, may be added to insure an rms equilibrium conditions. If the strong stochasticity threshold is avoided, as it is in realistic accelerator designs, the dynamics is characterized by extremely long transient settling times, making the role of equipartitioning hard to explain. An approach to systematic study using the RFQ accelerator as a simulation testbed is discussed. New methods are available from recent advances in research on complexity, nonlinear dynamics, and chaos

  1. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  2. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  3. Heat stress-induced loss of eukaryotic initiation factor 5A (eIF-5A) in a human pancreatic cancer cell line, MIA PaCa-2, analyzed by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Takeuchi, Kana; Nakamura, Kazuyuki; Fujimoto, Masanori; Kaino, Seiji; Kondoh, Satoshi; Okita, Kiwamu

    2002-02-01

    Alterations of intracellular proteins during the process of heat stress-induced cell death of a human pancreatic cancer cell line, MIA PaCa-2, were investigated using two-dimensional gel electrophoresis (2-DE), agarose gel electrophoresis, and cell biology techniques. Incubation of MIA PaCa-2 at 45 degrees C for 30 min decreased the cell growth rate and cell viability without causing chromosomal DNA fragmentation. Incubation at 51 degrees C for 30 min suppressed cell growth and again led to death without DNA fragmentation. The cell death was associated with the loss of an intracellular protein of M(r) 17,500 and pI 5.2 on 2-DE gel. This protein was determined to be eukaryotic initiation factor SA (eIF-5A) by microsequencing of the N-terminal region of peptide fragments obtained by cyanogen bromide treatment of the protein blotted onto a polyvinylidene difluoride (PVDF) membrane. The sequences detected were QXSALRKNGFVVLKGRP and STSKTGXHGHAKVHLVGID, which were homologous with the sequence of eIF-5A from Gln 20 to Pro 36 and from Ser 43 to Asp 61, respectively. Furthermore, the result of sequencing suggested that the protein was an active form of hypusinated eIF-5A, because Lys 46 could be detected but not Lys 49, which is the site for hypusination. These results suggest that loss of the active form of eIF-5A is an important factor in the irreversible process of heat stress-induced death of MIA PaCa-2 cells.

  4. Minimal abdominal incisions

    Directory of Open Access Journals (Sweden)

    João Carlos Magi

    2017-04-01

    Full Text Available Minimally invasive procedures aim to resolve the disease with minimal trauma to the body, resulting in a rapid return to activities and in reductions of infection, complications, costs and pain. Minimally incised laparotomy, sometimes referred to as minilaparotomy, is an example of such minimally invasive procedures. The aim of this study is to demonstrate the feasibility and utility of laparotomy with minimal incision based on the literature and exemplifying with a case. The case in question describes reconstruction of the intestinal transit with the use of this incision. Male, young, HIV-positive patient in a late postoperative of ileotiflectomy, terminal ileostomy and closing of the ascending colon by an acute perforating abdomen, due to ileocolonic tuberculosis. The barium enema showed a proximal stump of the right colon near the ileostomy. The access to the cavity was made through the orifice resulting from the release of the stoma, with a lateral-lateral ileo-colonic anastomosis with a 25 mm circular stapler and manual closure of the ileal stump. These surgeries require their own tactics, such as rigor in the lysis of adhesions, tissue traction, and hemostasis, in addition to requiring surgeon dexterity – but without the need for investments in technology; moreover, the learning curve is reported as being lower than that for videolaparoscopy. Laparotomy with minimal incision should be considered as a valid and viable option in the treatment of surgical conditions. Resumo: Procedimentos minimamente invasivos visam resolver a doença com o mínimo de trauma ao organismo, resultando em retorno rápido às atividades, reduções nas infecções, complicações, custos e na dor. A laparotomia com incisão mínima, algumas vezes referida como minilaparotomia, é um exemplo desses procedimentos minimamente invasivos. O objetivo deste trabalho é demonstrar a viabilidade e utilidade das laparotomias com incisão mínima com base na literatura e

  5. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  6. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... moist, pale skin, rapid pulse, elevated or lowered blood pressure, nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the person further by positioning ...

  7. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool ...

  8. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with these ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the ...

  9. Prinsip Umum Penatalaksanaan Cedera Olahraga Heat Stroke

    OpenAIRE

    Ade Tobing, Saharun Iso

    2016-01-01

    Exercises that are conducted in an extreme heat environment can cause heat injury. Heatinjury is associated with disturbance to temperature regulation and cardiovascular systems. Heatstroke is the most severe type of heat injury. Heat stroke is associated with high morbidity andmortality numbers, particularly if therapy treatment is delayed. In general, heat stroke is caused bytwo things, namely increase in heat production and decrease in heat loss.Heat stroke signs include: (1) rectal temper...

  10. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  11. A method for the measurement of physiologic evaporative water loss.

    Science.gov (United States)

    1963-10-01

    The precise measurement of evaporative water loss is essential to an accurate evaluation of this avenue of heat loss in acute and chronic exposures to heat. In psychological studies, the quantitative measurement of palmar sweating plays an equally im...

  12. Linearly convergent stochastic heavy ball method for minimizing generalization error

    KAUST Repository

    Loizou, Nicolas

    2017-10-30

    In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss and not on finite-sum minimization, which is typically a much harder problem. While in the analysis we constrain ourselves to quadratic loss, the overall objective is not necessarily strongly convex.

  13. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  14. Polymorphisms of heat shock protein 70 genes (HSPA1A, HSPA1B and HSPA1L and susceptibility of noise-induced hearing loss in a Chinese population: A case-control study.

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    Full Text Available Noise-induced hearing loss (NIHL is the second-most frequent form of sensorineural hearing loss. When exposed to the same noise, some workers develop NIHL while others do not, suggesting that NIHL may be associated with genetic factors. To explore the relationship between single nucleotide polymorphisms (SNPs in heat shock protein 70 (HSP70 genes (HSPA1A, HSPA1B and HSPA1L and susceptibility to NIHL in Han Chinese workers exposed to noise, a case-control association study was carried out with 286 hearing loss cases and 286 matched with gender, age, type of work, and exposure time, drawn from a population of 3790 noise-exposed workers. Four SNPs were selected and genotyped. Subsequently, the effects of the alleles and genotypes of the three HSP70 genes (HSPA1A, HSPA1B and HSPA1L on NIHL were analyzed by using a conditional logistic regression. A generalized multiple dimensionality reduction (GMDR was applied to further detect an interaction between the four SNPs. Compared with the combined genotypes CC/TC, carriers of the TT genotype of rs2763979 appeared to show greater susceptibility to NIHL (P = 0.042, adjusted OR = 1.731, 95% CI 1.021-2.935. A significant interaction between rs2763979 and CNE was found (P = 0.029, and a significant association was found between TT of s2763979 and NIHL (P = 0.024, adjusted OR = 5.694, 95%CI 1.256-25.817 in the 96 dB (A≤CNE<101 dB (A group. The results suggest that the rs2763979 locus of the HSP70 genes may be associated with susceptibility to NIHL in Chinese individuals, and other HSP70 genes may also be susceptibility genes for NIHL, but the results must be further replicated in additional independent sample sets.

  15. Legal incentives for minimizing waste

    International Nuclear Information System (INIS)

    Clearwater, S.W.; Scanlon, J.M.

    1991-01-01

    Waste minimization, or pollution prevention, has become an integral component of federal and state environmental regulation. Minimizing waste offers many economic and public relations benefits. In addition, waste minimization efforts can also dramatically reduce potential criminal requirements. This paper addresses the legal incentives for minimizing waste under current and proposed environmental laws and regulations

  16. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  17. The ZOOM minimization package

    International Nuclear Information System (INIS)

    Fischler, Mark S.; Sachs, D.

    2004-01-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete

  18. Minimizing the Pacman effect

    International Nuclear Information System (INIS)

    Ritson, D.; Chou, W.

    1997-10-01

    The Pacman bunches will experience two deleterious effects: tune shift and orbit displacement. It is known that the tune shift can be compensated by arranging crossing planes 900 relative to each other at successive interaction points (lPs). This paper gives an analytical estimate of the Pacman orbit displacement for a single as well as for two crossings. For the latter, it can be minimized by using equal phase advances from one IP to another. In the LHC, this displacement is in any event small and can be neglected

  19. Minimally Invasive Parathyroidectomy

    Directory of Open Access Journals (Sweden)

    Lee F. Starker

    2011-01-01

    Full Text Available Minimally invasive parathyroidectomy (MIP is an operative approach for the treatment of primary hyperparathyroidism (pHPT. Currently, routine use of improved preoperative localization studies, cervical block anesthesia in the conscious patient, and intraoperative parathyroid hormone analyses aid in guiding surgical therapy. MIP requires less surgical dissection causing decreased trauma to tissues, can be performed safely in the ambulatory setting, and is at least as effective as standard cervical exploration. This paper reviews advances in preoperative localization, anesthetic techniques, and intraoperative management of patients undergoing MIP for the treatment of pHPT.

  20. A majorization-minimization approach to design of power distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jason K [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

    2010-01-01

    We consider optimization approaches to design cost-effective electrical networks for power distribution. This involves a trade-off between minimizing the power loss due to resistive heating of the lines and minimizing the construction cost (modeled by a linear cost in the number of lines plus a linear cost on the conductance of each line). We begin with a convex optimization method based on the paper 'Minimizing Effective Resistance of a Graph' [Ghosh, Boyd & Saberi]. However, this does not address the Alternating Current (AC) realm and the combinatorial aspect of adding/removing lines of the network. Hence, we consider a non-convex continuation method that imposes a concave cost of the conductance of each line thereby favoring sparser solutions. By varying a parameter of this penalty we extrapolate from the convex problem (with non-sparse solutions) to the combinatorial problem (with sparse solutions). This is used as a heuristic to find good solutions (local minima) of the non-convex problem. To perform the necessary non-convex optimization steps, we use the majorization-minimization algorithm that performs a sequence of convex optimizations obtained by iteratively linearizing the concave part of the objective. A number of examples are presented which suggest that the overall method is a good heuristic for network design. We also consider how to obtain sparse networks that are still robust against failures of lines and/or generators.