WorldWideScience

Sample records for heat flux removed

  1. Heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    International Nuclear Information System (INIS)

    Islam, M.S.; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio; Monde, Masanori.

    1997-03-01

    Heat transfer augmentation in narrow rectangular channels in a target system is a very important method to remove high heat flux up to 12 MW/m 2 generated at target plates of a high-intensity proton accelerator of 1.5 GeV and 1 mA with a proton beam power of 1.5 MW. In this report, heat transfer coefficients and friction factors in narrow rectangular channels with one-sided rib-roughened surface were evaluated for fully developed flows in the range of the Reynolds number from 6,000 to 1,00,000; the rib pitch-to-height ratios (p/k) were 10,20 and 30; the rib height-to-equivalent diameter ratios (k/De) were 0.025, 0.03 and 0.1 by means of previous existing experimental correlations. The rib-roughened surface augmented heat transfer coefficients approximately 4 times higher than the smooth surface at Re=10,000, p/k=10 and k/De=0.1; friction factors increase around 22 times higher. In this case, higher heat flux up to 12 MW/m 2 could be removed from the rib-roughened surface without flow boiling which induces flow instability; but pressure drop reaches about 1.8 MPa. Correlations obtained by air-flow experiments have showed lower heat transfer performance with the water-flow conditions. The experimental apparatus was proposed for further investigation on heat transfer augmentation in very narrow channels under water-flow conditions. This report presents the evaluation results and an outline of the test apparatus. (author)

  2. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.S.; Monde, Masanori [Saga Univ. (Japan); Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10{sup 5}, p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m{sup 2} generated at target plates in a high-intensity proton accelerator system. (author). 54 refs.

  3. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    International Nuclear Information System (INIS)

    Islam, M.S.; Monde, Masanori; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio.

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10 5 , p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m 2 generated at target plates in a high-intensity proton accelerator system. (author). 54 refs

  4. High heat flux cooling for accelerator targets

    International Nuclear Information System (INIS)

    Silverman, I.; Nagler, A.

    2002-01-01

    Accelerator targets, both for radioisotope production and for high neutron flux sources generate very high thermal power in the target material which absorbs the particles beam. Generally, the geometric size of the targets is very small and the power density is high. The design of these targets requires dealing with very high heat fluxes and very efficient heat removal techniques in order to preserve the integrity of the target. Normal heat fluxes from these targets are in the order of 1 kw/cm 2 and may reach levels of an order of magnitude higher

  5. The steady-state modeling and optimization of a refrigeration system for high heat flux removal

    International Nuclear Information System (INIS)

    Zhou Rongliang; Zhang Tiejun; Catano, Juan; Wen, John T.; Michna, Gregory J.; Peles, Yoav; Jensen, Michael K.

    2010-01-01

    Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.

  6. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Ronald D. [Prairie View A& M Univ., TX (United States)

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  7. Modeling of a heat sink and high heat flux vapor chamber

    Science.gov (United States)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  8. An experimental study of high heat flux removal by shear-driven liquid films

    Directory of Open Access Journals (Sweden)

    Zaitsev Dmitry

    2017-01-01

    Full Text Available Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films, are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems.

  9. A constant heat flux plasma limiter for TEXTOR

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1980-10-01

    In future large tokamak machines heat removal from the plasma is going to play an important role. In TEXTOR the total plasma power is expected to be in the range of 0.5-2.5 MW. Typical fractions of about 50% of this power have to be removed from the plasma by limiters. The power flux from the limiter scrape-off layer to the limiter surface decays rapidly with distance into the scrape-off layer resulting in a highly space-dependent heat load on the limiter. Therefore, limiters are shaped in a way to smooth of the heat load, and the ideal limiter shape should produce a constant heat flux over the whole limiter surface. The ideally shaped limiter offers a better chance to handle the high heat loads with the preferred materials like stainless steel (or inconel 625 as in the case of TEXTOR). (orig./GG)

  10. Heat removal in INTOR via a toroidal limiter

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1981-01-01

    In the present paper the potential of removing about 100 MW of thermal plasma power via a toroidal limiter in INTOR is studied. The heat flux distributions on various limiter configurations are calculated and the thermal response of a graphite tile limiter is estimated on the base of a one-dimensional heat conduction approach. The evaporation rates which have to be expected for the given energy flux densities and radiation cooled graphite tiles are evaluated. According to the present understanding it should be possible to remove 100 MW power from the INTOR plasma via a radiation cooled toroidal limiter. (author)

  11. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    International Nuclear Information System (INIS)

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  12. High heat flux tests at divertor relevant conditions on water-cooled swirl tube targets

    International Nuclear Information System (INIS)

    Schlosser, J.; Boscary, J.

    1994-01-01

    High heat flux experiments were performed to provide a technology for heat flux removal under NET/ITER relevant conditions. The water-cooled rectangular test sections were made of hardened copper with a stainless steel twisted tape installed inside a circular channel and one-side heated. The tests aimed to investigate the heat transfer and the critical heat flux in the subcooled boiling regime. A CHF data base of 63 values was established. Test results have shown the thermalhydraulic ability of swirl tubes to sustain an incident heat flux up to a 30 MW.m -2 range. (author) 10 refs.; 7 figs

  13. Liquid jet impingement cooling with diamond substrates for extremely high heat flux applications

    International Nuclear Information System (INIS)

    Lienhard V, J.H.

    1993-01-01

    The combination of impinging jets and diamond substrates may provide an effective solution to a class of extremely high heat flux problems in which very localized heat loads must be removed. Some potential applications include the cooling of high-heat-load components in synchrotron x-ray, fusion, and semiconductor laser systems. Impinging liquid jets are a very effective vehicle for removing high heat fluxes. The liquid supply arrangement is relatively simple, and low thermal resistances can be routinely achieved. A jet's cooling ability is a strong function of the size of the cooled area relative to the jet diameter. For relatively large area targets, the critical heat fluxes can approach 20 W/mm 2 . In this situation, burnout usually originates at the outer edge of the cooled region as increasing heat flux inhibits the liquid supply. Limitations from liquid supply are minimized when heating is restricted to the jet stagnation zone. The high stagnation pressure and high velocity gradients appear to suppress critical flux phenomena, and fluxes of up to 400 W/mm 2 have been reached without evidence of burnout. Instead, the restrictions on heat flux are closely related to properties of the cooled target. Target properties become an issue owing to the large temperatures and large temperature gradients that accompany heat fluxes over 100 W/mm 2 . These conditions necessitate a target with both high thermal conductivity to prevent excessive temperatures and good mechanical properties to prevent mechanical failures. Recent developments in synthetic diamond technology present a possible solution to some of the solid-side constraints on heat flux. Polycrystalline diamond foils can now be produced by chemical vapor deposition in reasonable quantity and at reasonable cost. Synthetic single crystal diamonds as large as 1 cm 2 are also available

  14. Modes of heat removal from a heat-generating debris bed

    International Nuclear Information System (INIS)

    Squarer, D.; Hochreiter, L.E.; Piecznski, A.T.

    1984-01-01

    In the worst hypothetical accident in a light water reactor, when all protection systems fail, the core could be converted into a deep particulate bed either in-vessel or ex-vessel. The containment of such an accident depends on the coolability of a heat-generating debris bed. Some recent experimental and analytical studies that are concerned with heat removal from such a particulate bed are reviewed. Studies have indicated that bed dryout flux and, therefore, the heat removal rate from the particulate bed increases with the particle diameter (i.e., the permeability) for pool boiling conditions and can exceed the critical heat flux of a flat plate. Bed dryout in a large particle bed (i.e., a few millimetres) was found to be closely related to the ''flooding'' limit of the bed. Dryout under forced flow conditions was found to be affected by both forced and natural convection for mass flow rate smaller than m /SUB cr/ , whereas above this mass flow rate, bed dryout is proportional to the mass flow rate. Recent analyses were found to be in agreement with experimental data; however, additional research is needed to assess factors not accounted for in previous studies (e.g., effect of pressure, multidimensionality, stratification, etc.). Based on the expected pressure and particle sizes in a postulated severe accident sequence, a debris bed should be coolable, given a sufficient water supply

  15. Heat flux microsensor measurements

    Science.gov (United States)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  16. Numerical investigation of passive heat removal system via steam generator in VVER 1200

    International Nuclear Information System (INIS)

    Dinh Anh Tuan; Duong Thanh Tung; Tran Chi Thanh; Nguyen Van Thai

    2015-01-01

    Passive heat removal system (PHRS) via Steam Generator is an important part in VVER design. In case of Design Basic Accidents such as blackout, failure of feed water supply to steam generator or coolant leakage with failure of emergency core cooling at high pressure. PHRS is designed to remove the residual heat from reactor core through steam generator to heat exchanger which is placed outside reactor vessel. In order to evaluate the passive system, a numerical investigation using a CFD code is performed. However, PHRS has complex geometry for using CFD simulation. Thus, RELAP5 is applied to provide the wall heat flux of tube in the heat exchanger tank. The natural convection in the heat exchanger tank is investigated in this report. Numerical results show temperature and velocity distribution in the heat exchanger tank are calculated with different wall heat flux corresponding to various transient conditions. The calculated results contribute to the capacity analysis of passive heat removal system and giving valuable information for safe operation of VVER 1200. (author)

  17. Critical heat fluxes in tubular fuel elements of nuclear power reactors

    International Nuclear Information System (INIS)

    Subbotin, V.I.; Alekseev, G.V.; Peskov, O.L.

    1974-01-01

    The results of the experiments carried out show that with appropriate choice of tube, type and dimensions of intensifier the attainment of critical conditions at certain parameters is not accompanied by sharp or considerable increases in temperature of the heat removing surface. Increase in power to above critical under these conditions does not lead to considerable variation in temperature either. Thus, it appears possible to change from heat removal by steam-water mixture to convective heat removal by wet steam without manifestation of intolerable temperature conditions of the heating surface (Fig. 6). A change to convective heat removal by wet steam is possible at different levels of heat fluxes which depend during constant conditions at the inlet on tube length and the degree of the disturbing influence on the flow. This is especially important since in principle the possibility arises for developing a power reactor with tubular fuel elements, in which a once-through cycle with steam superheat involving no intermediate separation can be realised

  18. Divertor heat flux control and plasma-material interaction

    International Nuclear Information System (INIS)

    Kikuchi, Yusuke; Nagata, Masayoshi; Sawada, Keiji; Takamura, Shuichi; Ueda, Yoshio

    2014-01-01

    Development of reliable radiative-cooling divertors is essential in DEMO reactor because it uses low-activation materials with low heat removal and the plasma heat flux exhausted from the confined region is 5 times as large as in ITER. It is important to predict precisely the heat and particle flux toward the divertor plate by simulation. In this present article, theoretical and experimental data of the reflection, secondary emission and surface recombination coefficients of the divertor plate by ion bombardment are given and their effects on the power transmission coefficient are discussed. In addition, some topics such as the erosion process of the divertor plate by ELM and the plasma disruption, the thermal shielding due to the vapor layer on the divertor plate and the formation of fuzz structure on W by helium plasma irradiation, are described. (author)

  19. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  20. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  1. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  2. Dry-out heat fluxes of falling film and low-mass flux upward-flow in heated tubes

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ueda, Tatsuhiro; Matsuo, Teruyuki; Miyota, Yukio

    1998-01-01

    Dry-out heat fluxes were investigated experimentally for a film flow falling down on the inner surface of vertical heated-tubes and for a low mass flux forced-upward flow in the tubes using R 113. This work followed the study on those for a two-phase natural circulation system. For the falling film boiling, flow state observation tests were also performed, where dry-patches appearing and disappearing repeatedly were observed near the exit end of the heated section at the dry-out heat flux conditions. Relation between the dry-out heat flux and the liquid film flow rate is analyzed. The dry-out heat fluxes of the low mass flux upflow are expressed well by the correlation proposed in the previous work. The relation for the falling film boiling shows a similar trend to that for the upflow boiling, however, the dry-out heat fluxes of the falling film are much lower, approximately one third, than those of the upward flow. (author)

  3. After-heat removing device

    International Nuclear Information System (INIS)

    Iwashige, Kengo; Otsuka, Masaya; Yokoyama, Iwao; Yamakawa, Masanori.

    1990-01-01

    The present invention concerns an after-heat removing device for first reactors. A heat accumulation portion provided in a cooling channel of an after-heat removing device is disposed before a coil-like heat conduction pipe for cooling of the after-heat removing device. During normal reactor operation, the temperature in the heat accumulation portion is near the temperature of the high temperature plenum due to heat conduction and heat transfer from the high temperature plenum. When the reactor is shutdown and the after-heat removing device is started, coolants cooled in the air cooler start circulation. The coolants arriving at the heat accumulation portion deprive heat from the heat accumulation portion and, ion turn, increase their temperature and then reach the cooling coil. Subsequently, the heat calorie possessed in the heat accumulation portion is reduced and the after-heat removing device is started for the operation at a full power. This can reduce the thermal shocks applied to the cooling coil or structures in a reactor vessel upon starting the after-heat removing device. (I.N.)

  4. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-01-01

    Efficient techniques for rapid tritium removal will be necessary for ITER to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 ms is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  5. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  6. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  7. The effect of different aspect ratio and bottom heat flux towards contaminant removal using numerical analysis

    International Nuclear Information System (INIS)

    Saadun, M N A; Manaf, M Z A; Zakaria, M S; Hafidzal, M H M; Azwadi, C S Nor; Malek, Z A A

    2013-01-01

    Cubic Interpolated Pseudo-particle (CIP) numerical simulation scheme has been anticipated to predict the interaction involving fluids and solid particles in an open channel with rectangular shaped cavity flow. The rectangular shaped cavity is looking by different aspect ratio in modelling the real pipeline joints that are in a range of sizes. Various inlet velocities are also being applied in predicting various fluid flow characteristics. In this paper, the constant heat flux is introduced at the bottom wall, showing the buoyancy effects towards the contaminant's removal rate. In order to characterize the fluid flow, the numerical scheme alone is initially tested and validated in a lid driven cavity with a single particle. The study of buoyancy effects and different aspect ratio of rectangular geometry were carried out using a MATLAB govern by Navier-Stokes equation. CIP is used as a model for a numerical scheme solver for fluid solid particles interaction. The result shows that the higher aspect ratio coupled with heated bottom wall give higher percentage of contaminant's removal rate. Comparing with the benchmark results has demonstrated the applicability of the method to reproduce fluid structure which is complex in the system. Despite a slight deviation of the formations of vortices from some of the literature results, the general pattern is considered to be in close agreement with those published in the literature

  8. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  9. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube

    International Nuclear Information System (INIS)

    Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)

  10. Heat removal capability of core-catcher with inclined cooling channels

    International Nuclear Information System (INIS)

    Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.

    2009-01-01

    A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)

  11. White dwarf heating and the ultraviolet flux in dwarf novae

    International Nuclear Information System (INIS)

    Pringle, J.E.

    1988-01-01

    An investigation is made of the heating of the outer layers of the white dwarf which is likely to occur during a dwarf nova outburst. It is shown that the decline in IUE flux, observed during quiescent intervals in the dwarf novae VW Hydri and WX Hydri, may be due to the outer layers cooling off once the heat source is removed. The calculations here assume uniformity of the heat source over the white dwarf surface. This is unlikely to be realized from disc accretion, and we discuss that further calculations are required. (author)

  12. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.

  13. Techniques for measurement of heat flux in furnace waterwalls of boilers and prediction of heat flux – A review

    International Nuclear Information System (INIS)

    Sankar, G.; Chandrasekhara Rao, A.; Seshadri, P.S.; Balasubramanian, K.R.

    2016-01-01

    Highlights: • Heat flux measurement techniques applicable to boiler water wall are elaborated. • Applications involving heat flux measurement in boiler water wall are discussed. • Appropriate technique for usage in high ash Indian coal fired boilers is required. • Usage of chordal thermocouple is suggested for large scale heat flux measurements. - Abstract: Computation of metal temperatures in a furnace waterwall of a boiler is necessary for the proper selection of tube material and thickness. An adequate knowledge of the heat flux distribution in the furnace walls is a prerequisite for the computation of metal temperatures. Hence, the measurement of heat flux in a boiler waterwall is necessary to arrive at an optimum furnace design, especially for high ash Indian coal fired boilers. Also, a thoroughly validated furnace model will result in a considerable reduction of the quantum of experimentation to be carried out. In view of the above mentioned scenario, this paper reviews the research work carried out by various researchers by experimentation and numerical simulation in the below mentioned areas: (i) furnace modeling and heat flux prediction, (ii) heat flux measurement techniques and (iii) applications of heat flux measurements.

  14. CRBRP decay heat removal systems

    International Nuclear Information System (INIS)

    Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

    1977-01-01

    The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented

  15. Maximum heat flux in boiling in a large volume

    International Nuclear Information System (INIS)

    Bergmans, Dzh.

    1976-01-01

    Relationships are derived for the maximum heat flux qsub(max) without basing on the assumptions of both the critical vapor velocity corresponding to the zero growth rate, and planar interface. The Helmholz nonstability analysis of vapor column has been made to this end. The results of this examination have been used to find maximum heat flux for spherical, cylindric and flat plate heaters. The conventional hydrodynamic theory was found to be incapable of producing a satisfactory explanation of qsub(max) for small heaters. The occurrence of qsub(max) in the present case can be explained by inadequate removal of vapor output from the heater (the force of gravity for cylindrical heaters and surface tension for the spherical ones). In case of flat plate heater the qsub(max) value can be explained with the help of the hydrodynamic theory

  16. Research on cooling of ultra high critical heat flux with external flow boiling of water. Challenge to achieve ultra high critical heat flux and improvement in estimation of critical heat flux. JAERI's nuclear research promotion program, H11-004 (Contract research)

    International Nuclear Information System (INIS)

    Monde, Masanori; Mitsutake, Yuichi; Ishida, Kenji; Hino, Ryutaro

    2003-03-01

    An ultra high critical heat flux (CHF) has been challenged with a highly subcooled water jet impinging on a small rectangular heated surface. Major objective of the study is to achieve an ultra high heat flux cooling as large as 100 MW/m 2 and to establish an accurate estimation method of the CHF. The experiments were carried out over the experimental range; a fixed jet diameter of 2 mm, jet velocity of 5 - 35 m/s, degree of subcooling of 80 - 170 K and system pressure of 0.1 - 1.0 MPa. The rectangular heated surface with a thin nickel foil of 0.03 - 0.3 mm in thickness, 5 and 10 mm in length, and 4 mm in width and heated by a direct current. Effects of thickness of heater wall, jet velocity and subcooling on the CHF were experimentally elucidated. The experimental results show that the CHF decreases about 50% as the heater thickness, namely heat capacity of heater decreases. Characteristics of the CHF with heater length of 10 mm are correlated within ±20% by the generalized correlation of subcooled CHF proposed by the authors. However, the CHF with the shorter heater length of 5 mm shows large deviation of -40% especially at lower subcooling and higher velocity. The maximum CHF of 212 MW/m 2 was achieved at the subcooling of 151 K, the jet velocity of 35 m/s and system pressure of 0.5 MPa. The maximum CHF under atmospheric pressure approaches to 48% of the ultimate maximum heat flux given by the assumptions that vapor molecules leave a liquid-vapor interface at the average speed of a Boltzman-Maxwellian gas and any molecules returning to the interface are not permitted. The ratio of the CHF and ultimate maximum heat flux was considerably enhanced from the existing record of 30%. This study can give the feasibility of ultra high heat flux removal facing in a development of components such as a diverter of a fusion reactor. (author)

  17. High heat flux facility GLADIS

    International Nuclear Information System (INIS)

    Greuner, H.; Boeswirth, B.; Boscary, J.; McNeely, P.

    2007-01-01

    The new ion beam facility GLADIS started the operation at IPP Garching. The facility is equipped with two individual 1.1 MW power ion sources for testing actively cooled plasma facing components under high heat fluxes. Each ion source generates heat loads between 3 and 55 MW/m 2 with a beam diameter of 70 mm at the target position. These parameters allow effective testing from probes to large components up to 2 m length. The high heat flux allows the target to be installed inclined to the beam and thus increases the heated surface length up to 200 mm for a heat flux of 15 MW/m 2 in the standard operating regime. Thus the facility has the potential capability for testing of full scale ITER divertor targets. Heat load tests on the WENDELSTEIN 7-X pre-series divertor targets have been successfully started. These tests will validate the design and manufacturing for the production of 950 elements

  18. Analysis of heat transfer under high heat flux nucleate boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Dinh, N. [3145 Burlington Laboratories, Raleigh, NC (United States)

    2016-07-15

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  19. Analysis of heat transfer under high heat flux nucleate boiling conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Dinh, N.

    2016-01-01

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  20. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  1. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.

  2. Heat flux microsensor measurements and calibrations

    Science.gov (United States)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  3. Evaluation of empirical heat transfer models using TFG heat flux sensors

    International Nuclear Information System (INIS)

    De Cuyper, T.; Broekaert, S.; Chana, K.; De Paepe, M.; Verhelst, S.

    2017-01-01

    Thermodynamic engine cycle models are used to support the development of the internal combustion engine (ICE) in a cost and time effective manner. The sub model which describes the in-cylinder heat transfer from the working gases to the combustion chamber walls plays an important role in the accuracy of these simulation tools. The heat transfer affects the power output, engine efficiency and emissions of the engine. The most common heat transfer models in engine research are the models of Annand and Woschni. These models provide an instantaneous spatial averaged heat flux. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux behavior within a production spark ignition (SI) engine as they are small, robust and able to capture the highly transient temperature swings. An inlet valve and two different zones of the cylinder head are instrumented with multiple TFG sensors. The heat flux traces are used to calculate the convection coefficient which includes all information of the convective heat transfer phenomena inside the combustion chamber. The implementation of TFG sensors inside the combustion chamber and the signal processing technique are discussed. The heat transfer measurements are used to analyze the spatial variation in heat flux under motored and fired operation. Spatial variation in peak heat flux was observed even under motored operation. Under fired operation the observed spatial variation is mainly driven by the flame propagation. Next, the paper evaluates the models of Annand and Woschni. These models fail to predict the total heat loss even with calibration of the models coefficients using a reference motored operating condition. The effect of engine speed and inlet pressure is analyzed under motored operation after calibration of the models. The models are able to predict the trend in peak heat flux value for a varying engine speed and inlet pressure. Next, the accuracy of the

  4. Concept Design of a Gravity Core Cooling Tank as a Passive Residual Heat Removal System for a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Kwonyeong; Chi, Daeyoung; Kim, Seong Hoon; Seo, Kyoungwoo; Yoon, Juhyeon

    2014-01-01

    A core downward flow is considered to use a plate type fuel because it is benefit to install the fuel in the core. If a flow inversion from a downward to upward flow in the core by a natural circulation is introduced within a high heat flux region of residual heat, the fuel fails instantly due to zero flow. Therefore, the core downward flow should be sufficiently maintained until the residual heat is in a low heat flux region. In a small power research reactor, inertia generated by a flywheel of the PCP can maintain a downward flow shortly and resolve the problem of a flow inversion. However, a high power research reactor more than 10 MW should have an additional method to have a longer downward flow until a low heat flux. Usually, other research reactors have selected an active residual heat removal system as a safety class. But, an active safety system is difficult to design and expensive to construct. A Gravity Core Cooling Tank (GCCT) beside the reactor pool with a Residual Heat Removal Pipe connecting two pools was developed and designed preliminarily as a passive residual heat removal system for an open-pool type research reactor. It is very simple to design and cheap to construct. Additionally, a non-safety, but active residual heat removal system is applied with the GCCT. It is a Pool Water Cooling and Purification System. It can improve the usability of the research reactor by removing the thermal waves, and purify the reactor pool, the Primary Cooling System, and the GCCT. Moreover, it can reduce the pool top radiation level

  5. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  6. Heat Flux Inhibition by Whistlers: Experimental Confirmation

    International Nuclear Information System (INIS)

    Eichler, D.

    2002-01-01

    Heat flux in weakly magnetized collisionless plasma is, according to theoretical predictions, limited by whistler turbulence that is generated by heat flux instabilities near threshold. Observations of solar wind electrons by Gary and coworkers appear to confirm the limit on heat flux as being roughly the product of the magnetic energy density and the electron thermal velocity, in agreement with prediction (Pistinner and Eichler 1998)

  7. A simple heat transfer model for a heat flux plate under transient conditions

    International Nuclear Information System (INIS)

    Ryan, L.; Dale, J.D.

    1985-01-01

    Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)

  8. RELAP5/MOD2 benchmarking study: Critical heat flux under low-flow conditions

    International Nuclear Information System (INIS)

    Ruggles, E.; Williams, P.T.

    1990-01-01

    Experimental studies by Mishima and Ishii performed at Argonne National Laboratory and subsequent experimental studies performed by Mishima and Nishihara have investigated the critical heat flux (CHF) for low-pressure low-mass flux situations where low-quality burnout may occur. These flow situations are relevant to long-term decay heat removal after a loss of forced flow. The transition from burnout at high quality to burnout at low quality causes very low burnout heat flux values. Mishima and Ishii postulated a model for the low-quality burnout based on flow regime transition from churn turbulent to annular flow. This model was validated by both flow visualization and burnout measurements. Griffith et al. also studied CHF in low mass flux, low-pressure situations and correlated data for upflows, counter-current flows, and downflows with the local fluid conditions. A RELAP5/MOD2 CHF benchmarking study was carried out investigating the performance of the code for low-flow conditions. Data from the experimental study by Mishima and Ishii were the basis for the benchmark comparisons

  9. Anthropogenic heat flux estimation from space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2016-01-01

    H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts

  10. ANthropogenic heat FLUX estimation from Space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-01-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the

  11. Thin Film Heat Flux Sensors: Design and Methodology

    Science.gov (United States)

    Fralick, Gustave C.; Wrbanek, John D.

    2013-01-01

    Thin Film Heat Flux Sensors: Design and Methodology: (1) Heat flux is one of a number of parameters, together with pressure, temperature, flow, etc. of interest to engine designers and fluid dynamists, (2) The measurement of heat flux is of interest in directly determining the cooling requirements of hot section blades and vanes, and (3)In addition, if the surface and gas temperatures are known, the measurement of heat flux provides a value for the convective heat transfer coefficient that can be compared with the value provided by CFD codes.

  12. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  13. Critical heat flux, post dry-out and their augmentation

    International Nuclear Information System (INIS)

    Celata, G.P.; Mariani, A.

    1999-01-01

    The report shows the state of art review on the critical heat flux and the post-dryout heat transfer. The work, which is a merge of original researches carried out at the Institute of Thermal Fluid Dynamic of ENEA (National Agency for New Technology, Energy and the Environment) and a thorough review of the recent literature, is divided in four chapters: critical heat flux in subcooled flow boiling; critical heat flux in saturated flow boiling; post-dryout heat transfer; enhancement of critical heat flux and post-dryout heat transfer [it

  14. Fast heat flux modulation at the nanoscale

    OpenAIRE

    van Zwol, P. J.; Joulain, K.; Abdallah, P. Ben; Greffet, J. J.; Chevrier, J.

    2011-01-01

    We introduce a new concept for electrically controlled heat flux modulation. A flux contrast larger than 10 dB is expected with switching time on the order of tens of nanoseconds. Heat flux modulation is based on the interplay between radiative heat transfer at the nanoscale and phase change materials. Such large contrasts are not obtainable in solids, or in far field. As such this opens up new horizons for temperature modulation and actuation at the nanoscale.

  15. Study on minimum heat-flux point during boiling heat transfer on horizontal plates

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1985-01-01

    The characteristics of boiling heat transfer are usually shown by the boiling curve of N-shape having the maximum and minimum points. As for the limiting heat flux point, that is, the maximum point, there have been many reports so far, as it is related to the physical burn of heat flux-controlling type heating surfaces. But though the minimum heat flux point is related to the quench point as the problems in steel heat treatment, the core safety of LWRs, the operational stability of superconducting magnets, the start-up characteristics of low temperature machinery, the condition of vapor explosion occurrence and so on, the systematic information has been limited. In this study, the effects of transient property and the heat conductivity of heating surfaces on the minimum heat flux condition in the pool boiling on horizontal planes were experimentally examined by using liquid nitrogen. The experimental apparatuses for steady boiling, for unsteady boiling with a copper heating surface, and for unsteady boiling with a heating surface other than copper were employed. The boiling curves obtained with these apparatuses and the minimum heat flux point condition are discussed. (Kako, I.)

  16. Structures for handling high heat fluxes

    International Nuclear Information System (INIS)

    Watson, R.D.

    1990-01-01

    The divertor is recognized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand heat fluxes >5 MW/m 2 . High velocity, sub-cooled water with twisted tape inserts for enhanced heat transfer provides a critical heat flux limit of 40-60 MW/m 2 . Uncertainties in physics and engineering heat flux peaking factors require that the design heat flux not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and heat sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high heat flux components. (orig.)

  17. Investigation of characteristics of passive heat removal system based on the assembled heat transfer tube

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang Cheng; Yan, Changqi; Meng, Zhao Ming; Chen, Kailun; Song, Shao Chuang; Yang, Zong Hao; Yu, Jie [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2016-12-15

    To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450 .deg. C to 700 .deg. C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  18. Investigation of Characteristics of Passive Heat Removal System Based on the Assembled Heat Transfer Tube

    Directory of Open Access Journals (Sweden)

    Xiangcheng Wu

    2016-12-01

    Full Text Available To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450°C to 700°C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  19. Characteristics of heat flux and particle flux to the divertor in H-mode of JT-60U

    International Nuclear Information System (INIS)

    Itami, K.; Hosogane, N.; Asakura, N.; Kubo, H.; Tsuji, S.; Shimada, M.

    1995-01-01

    Heat flux and particle flux behavior in H-mode is studied in a comparative manner. It was confirmed that the multiple peak structure of heat flux during ELM activity has a role in reducing the average value of a peak heat flux at the divertor. In order to characterize heat and particle flux during ELM activity, the ELM part and the steady state part of heat flux and particle flux were determined and statistically analyzed. A large in-out asymmetry of peak ELM heat flux density was found. The asymmetry is almost unaffected by the ion grad-B drift direction. In-out asymmetry of both ELM and steady-state parts of the particle flux were found to be similar. ((orig.))

  20. Diameter effect on critical heat flux

    International Nuclear Information System (INIS)

    Tanase, A.; Cheng, S.C.; Groeneveld, D.C.; Shan, J.Q.

    2009-01-01

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods

  1. Consideration of critical heat flux margin prediction by subcooled or low quality critical heat flux correlations

    International Nuclear Information System (INIS)

    Hejzlar, P.; Todreas, N.E.

    1996-01-01

    The accurate prediction of the critical heat flux (CHF) margin which is a key design parameter in a variety of cooling and heating systems is of high importance. These margins are, for the low quality region, typically expressed in terms of critical heat flux ratios using the direct substitution method. Using a simple example of a heated tube, it is shown that CHF correlations of a certain type often used to predict CHF margins, expressed in this manner, may yield different results, strongly dependent on the correlation in use. It is argued that the application of the heat balance method to such correlations, which leads to expressing the CHF margins in terms of the critical power ratio, may be more appropriate. (orig.)

  2. Measurement of Critical Heat Flux Using the Transient Inverse Heat Conduction Method in Spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeung Chan [Andong Nat’l Univ., Andong (Korea, Republic of)

    2016-10-15

    A study on the measurement of critical heat flux using the transient inverse heat conduction method in spray cooling was performed. The inverse heat conduction method estimates the surface heat flux or temperature using a measured interior temperature history. The effects of the measuring time interval and location of temperature measurement on the measurement of critical heat flux were primarily investigated. The following results were obtained. The estimated critical heat flux decreased as the time interval of temperature measurement increased. Meanwhile, the effect of measurement location on critical heat flux was not significant. It was also found, from the experimental results, that the critical superheat increased as the measurement location of thermocouple neared the heat transfer surface.

  3. Measurement of Critical Heat Flux Using the Transient Inverse Heat Conduction Method in Spray cooling

    International Nuclear Information System (INIS)

    Kim, Yeung Chan

    2016-01-01

    A study on the measurement of critical heat flux using the transient inverse heat conduction method in spray cooling was performed. The inverse heat conduction method estimates the surface heat flux or temperature using a measured interior temperature history. The effects of the measuring time interval and location of temperature measurement on the measurement of critical heat flux were primarily investigated. The following results were obtained. The estimated critical heat flux decreased as the time interval of temperature measurement increased. Meanwhile, the effect of measurement location on critical heat flux was not significant. It was also found, from the experimental results, that the critical superheat increased as the measurement location of thermocouple neared the heat transfer surface.

  4. A technical basis for the flux corrected local conditions critical heat flux correlation

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    The so-called 'flux-corrected' local conditions CHF correlation was developed at Ontario Hydro in the 1980's and was demonstrated to successfully correlate the Onset of Intermittent Dryout (OID) CHF data for 37-element fuel with a downstream-skewed axial heat flux distribution. However, because the heat flux correction factor appeared to be an ad-hoc, albeit a successful modifying factor in the correlation, there was reluctance to accept the correlation more generally. This paper presents a thermalhydraulic basis, derived from two-phase flow considerations, that supports the appropriateness of the heat flux correction as a local effects modifying factor. (author)

  5. Transient critical heat flux under flow coast-down in vertical annulus with non-uniform heat flux distribution

    International Nuclear Information System (INIS)

    Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K.

    2001-01-01

    An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)

  6. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    Science.gov (United States)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  7. Dynamic ignition regime of condensed system by radiate heat flux

    International Nuclear Information System (INIS)

    Arkhipov, V A; Zolotorev, N N; Korotkikh, A G; Kuznetsov, V T

    2017-01-01

    The main ignition characteristics of high-energy materials are the ignition time and critical heat flux allowing evaluation of the critical conditions for ignition, fire and explosive safety for the test solid propellants. The ignition process is typically studied in stationary conditions of heat input at constant temperature of the heating surface, environment or the radiate heat flux on the sample surface. In real conditions, ignition is usually effected at variable time-dependent values of the heat flux. In this case, the heated layer is formed on the sample surface in dynamic conditions and significantly depends on the heat flux change, i.e. increasing or decreasing falling heat flux in the reaction period of the propellant sample. This paper presents a method for measuring the ignition characteristics of a high-energy material sample in initiation of the dynamic radiant heat flux, which includes the measurement of the ignition time when exposed to a sample time varying radiant heat flux given intensity. In case of pyroxyline containing 1 wt. % of soot, it is shown that the ignition times are reduced by 20–50 % depending on the initial value of the radiant flux density in initiation by increasing or decreasing radiant heat flux compared with the stationary conditions of heat supply in the same ambient conditions. (paper)

  8. The transient transpiration heat flux meter

    International Nuclear Information System (INIS)

    Martins, N.; Calisto, H.; Afgan, N.; Leontiev, A.I.

    2006-01-01

    A new heat flux measurement principle, based on the transient response of a transpiration radiometer, is proposed. The measurement principle of current transpiration radiometers is based on a steady-state temperature measurement in a porous element. Since it may typically take several seconds to reach these conditions, there are obvious benefits in reducing the instrument response time. This can be achieved through the analysis of its transient response in order to predict the incident heat flux. In addition, the proposed methodology enables the separate measurement of the radiative and convective components of incident heat fluxes, without compromising the known advantages of transpiration radiometers. The availability of such an instrument may enable the development of advanced monitoring, diagnostic and control systems for thermal equipment

  9. High heat flux device of thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo.

    1994-01-01

    The present invention provides an equipments for high heat flux device (divertor) of a thermonuclear device, which absorbs thermal deformation during operation, has a high installation accuracy, and sufficiently withstands for thermal stresses. Namely, a heat sink member is joined to a structural base. Armour tiles are joined on the heat sink member. Cooling pipes are disposed between the heat sink member and the armour tiles. With such a constitution, the heat sink member using a highly heat conductive material having ductility, such as oxygen free copper, the cooling pipes using a material having excellent high temperature resistance and excellent elongation, such as aluminum-dispersed reinforced copper, and the armour tiles are completely joined on the structural base. Therefore, when thermal deformation tends to cause in the high heat flux device such as a divertor, cooling pipes cause no plastic deformation because of their high temperature resistance, but the heat sink member such as a oxygen free copper causes plastic deformation to absorb thermal deformation. As a result, the high heat flux device such as a divertor causes no deformation. (I.S.)

  10. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  11. Numerical simulation in a subcooled water flow boiling for one-sided high heat flux in reactor divertor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: pinliu@aust.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, X.D. [Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Huang, S.H. [University of Science and Technology of China, Hefei 230026 (China); Mao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The Eulerian multiphase models coupled with Non-equilibrium Boiling model can effectively simulate the subcooled water flow boiling. • ONB and FDB appear earlier and earlier with the increase of heat fluxes. • The void fraction increases gradually along the flow direction. • The inner CuCrZr tube deteriorates earlier than the outer tungsten layer and the middle OFHC copper layer. - Abstract: In order to remove high heat fluxes for plasma facing components in International Thermonuclear Experimental Reactor (ITER) divertor, a numerical simulation of subcooled water flow boiling heat transfer in a vertically upward smooth tube was conducted in this paper on the condition of one-sided high heat fluxes. The Eulerian multiphase model coupled with Non-equilibrium Boiling model was adopted in numerical simulation of the subcooled boiling two-phase flow. The heat transfer regions, thermodynamic vapor quality (x{sub th}), void fraction and temperatures of three components on the condition of the different heat fluxes were analyzed. Numerical results indicate that the onset of nucleate boiling (ONB) and fully developed boiling (FDB) appear earlier and earlier with increasing heat flux. With the increase of heat fluxes, the inner CuCrZr tube will deteriorate earlier than the outer tungsten layer and the middle oxygen-free high-conductivity (OFHC) copper layer. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.

  12. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Clark, F.H.; Mullens, J.A.; Otaduy, P.J.; Wehe, D.K.

    1985-01-01

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  13. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  14. Thermalhydraulic behavior of electrically heated rods during critical heat flux transients

    International Nuclear Information System (INIS)

    Lima, Rita de Cassia Fernandes de

    1997-01-01

    In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed utilizing heated rods to simulate operational and accidental conditions of nuclear fuel rods, with special attention to the phenomenon of boiling crisis. The use of mechanisms which detect the abrupt temperature rise allows the electric power switch off. These facts prevent the test section from damage. During the critical heat flux phenomenon the axial heat conduction becomes very important. The study of the dryout and rewetting fronts yields the analysis, planning and following of critical heat flux experiments. These facts are important during the reflooding of nuclear cores at severe accidents. In the present work it is performed a theoretical analysis of the drying and rewetting front propagation during a critical heat flux experiment, starting with the application of an electrical power step or power slope from steady state condition. After the occurrence of critical heat flux, it is predicted the drying front propagation. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. In all these transients the coolant pressure is 13,5 MPa. For one of them, comparisons are done with a pressure of 8,00 MPa. Mass flow and enthalpy influences on the fronts velocities are also analysed. These results show that mass flow has more importance on the drying front velocities whereas the pressure alters strongly the rewetting ones. (author)

  15. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    International Nuclear Information System (INIS)

    Araki, Masanori

    1993-03-01

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 ± 1 MW/m 2 was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate has been analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads. (J.P.N.) 62 refs

  16. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  17. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  18. Burnout heat flux in natural flow boiling

    International Nuclear Information System (INIS)

    Helal, M.M.; Darwish, M.A.; Mahmoud, S.I.

    1978-01-01

    Twenty runs of experiments were conducted to determine the critical heat flux for natural flow boiling with water flowing upwards through annuli of centrally heated stainless steel tube. The test section has concentric heated tube of 14mm diameter and heated lengthes of 15 and 25 cm. The outside surface of the annulus was formed by various glass tubes of 17.25, 20 and 25.9mm diameter. System pressure is atmospheric. Inlet subcooling varied from 18 to 5 0 C. Obtained critical heat flux varied from 24.46 to 62.9 watts/cm 2 . A number of parameters having dominant influence on the critical heat flux and hydrodynamic instability (flow and pressure oscillations) preceeding the burnout have been studied. These parameters are mass flow rate, mass velocity, throttling, channel geometry (diameters ratio, length to diameter ratio, and test section length), and inlet subcooling. Flow regimes before and at the moments of burnout were observed, discussed, and compared with the existing physical model of burnout

  19. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  20. Study on diverse passive decay heat removal approach

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    One of the most important principles for nuclear safety is the decay heat removal in accidents. Passive decay heat removal systems are extremely helpful to enhance the safety. In currently design of many advanced nuclear reactors, kinds of passive systems are proposed or developed, such as the passive residual heat removal system, passive injection system, passive containment cooling system. These systems provide entire passive heat removal paths from core to ultimate heat sink. Various kinds of passive systems for decay heat removal are summarized; their common features or differences on heat removal paths and design principle are analyzed. It is found that, these passive decay heat removal paths are similarly common on and connected by several basic heat transfer modes and steps. By the combinations or connections of basic modes and steps, new passive decay heat removal approach or diverse system can be proposed. (authors)

  1. Miniaturized heat flux sensor for high enthalpy plasma flow characterization

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Lohlec, Stefan; Jullien, Pierre; Van Ootegemd, Bruno; Couzie, Jacques; Lasserre, Jean-Pierre

    2013-01-01

    An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)

  2. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  3. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  4. Numerical prediction of dryout heat flux in vertical uniformly heated round tubes

    International Nuclear Information System (INIS)

    Okawa, Tomio; Kotani, Akio; Kataoka, Isao; Naito, Masanori

    2003-01-01

    Dryout heat fluxes in vertical uniformly heated round tubes were predicted using a film flow model. The correlations adopted in the present analysis were summarized as follows: (1) Entrainment rate and deposition rate were evaluated by the correlations whose validity was confirmed in wide range of thermal-hydraulic conditions. (2) In addition to the droplet entrainment due to interfacial shear force, the entrainment resulting from the boiling in liquid film was considered. (3) The vapor quality at the onset of annular flow was evaluated by the correlation based on the measurement of minimum droplet flowrate. (4) It was postulated that the droplet flowrate at the starting point of annular flow was to be approximated by that in equilibrium state. (5) The onset of critical heat flux condition was determined by the complete disappearance of liquid film. Though several assumptions were used in the present model, all the correlations adopted here were based on experimental data or considerations of the physical processes in annular flow. The resulting model required no parameters that should be adjusted from the measured data of critical heat flux. A number of experimental data of critical heat flux in forced flow of water in vertical uniformly heated round tubes were used to test the basic performance of the model. The comparisons between the calculated and measured critical heat fluxes showed that the predicted results by the present model agree with the experimental data fairly well if the flow pattern at burnout is considered annular flow. The predictive capability was not deteriorated even in the cases of small diameter tube, short length tube as well as low vapor quality at the onset of critical heat flux condition. (author)

  5. Effect of axial heat flux distribution on CHF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol

    2000-10-01

    Previous investigations for the effect of axial heat flux distributions on CHF and the prediction methods are reviewed and summarized. A total of 856 CHF data in a tube with a non-uniform axial heat flux distribution has been compiled from the articles and analyzed using the 1995 Groeneveld look-up table. The results showed that two representative correction factors, K5 of the look-up table and Tongs F factor, can be applied to describe the axial heat flux distribution effect on CHF. However, they overpredict slightly the measured CHF, depending on the quality and flux peak shape. Hence, a corrected K5 factor, which accounts for the axial heat flux distribution effect is suggested to correct these trends. It predicted the CHF power for the compiled data with an average error of 1.5% and a standard deviation of 10.3%, and also provides a reasonable prediction of CHF locations.

  6. Quantitative method for measuring heat flux emitted from a cryogenic object

    Science.gov (United States)

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  7. Quantitative method for measuring heat flux emitted from a cryogenic object

    International Nuclear Information System (INIS)

    Duncan, R.V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices

  8. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  9. Critical heat flux, post dry-out and their augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Energia

    1999-07-01

    The report shows the state of art review on the critical heat flux and the post-dryout heat transfer. The work, which is a merge of original researches carried out at the Institute of Thermal Fluid Dynamic of ENEA (National Agency for New Technology, Energy and the Environment) and a thorough review of the recent literature, is divided in four chapters: critical heat flux in subcooled flow boiling; critical heat flux in saturated flow boiling; post-dryout heat transfer; enhancement of critical heat flux and post-dryout heat transfer. [Italian] Si passa in rassegna lo stato dell'arte sulla crisi termica e sullo scambio termico post-crisi, che compendia studi tradizionali condotti dall'ENEA. Il rapporto e' suddiviso in quattro parti: crisi termica in ebollizione sottoraffreddata; crisi termica in ebollizione satura; scambio termico dopo la crisi termica; incremento del flusso termico critico e dello scambio termico post-crisi.

  10. Critical heat flux, post dry-out and their augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G P; Mariani, A [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Energia

    1999-07-01

    The report shows the state of art review on the critical heat flux and the post-dryout heat transfer. The work, which is a merge of original researches carried out at the Institute of Thermal Fluid Dynamic of ENEA (National Agency for New Technology, Energy and the Environment) and a thorough review of the recent literature, is divided in four chapters: critical heat flux in subcooled flow boiling; critical heat flux in saturated flow boiling; post-dryout heat transfer; enhancement of critical heat flux and post-dryout heat transfer. [Italian] Si passa in rassegna lo stato dell'arte sulla crisi termica e sullo scambio termico post-crisi, che compendia studi tradizionali condotti dall'ENEA. Il rapporto e' suddiviso in quattro parti: crisi termica in ebollizione sottoraffreddata; crisi termica in ebollizione satura; scambio termico dopo la crisi termica; incremento del flusso termico critico e dello scambio termico post-crisi.

  11. The comparison of heat flux pattern on lower divertor in KSTAR

    International Nuclear Information System (INIS)

    Bang, Eunnam; Hong, Suk-Ho; Bak, JunGyo; Kim, Kyungmin; Kim, Hongtack; Kim, Hakkun; Yang, H.L.

    2015-01-01

    Highlights: • The heat flux on the lower divertor is higher than upper divertor. • The heat flux on OD is decreased with IVCP. • The heat flux on CD is decreased with RMP, but that on OD is increased. • Because the strike point was shifted from CD toward OD due to the RMP. - Abstract: The heat flux in KSTAR is estimated for various discharge conditions by using thermocouple arrays. The heat flux on the divertor is higher than that on inboard limiter or passive stabilizer by a factor of 2. Although the plasma configuration in KSTAR has been set to a double-null configuration, the heat flux on lower divertor is higher than that on upper divertor by 3–8 times, indicating a lower-single-null-like configuration. It is observed that the operation of the in-vessel cryo-pump (IVCP) changes the heat flux pattern significantly: When the IVCP was not operated, the heat fluxes on inboard divertor (ID), central divertor (CD) and outboard divertor (OD) were similar, but when the IVCP was operated, the heat fluxes on ID and CD were increased slightly and that on OD was decreased by 2–3 times. The heat flux on divertor was decreased from 35 to 26 kW/m"2 with the use of the resonant magnetic perturbation (RMP), especially that on CD was decreased by 2–4 times, while that on OD is increased by 2–3 times than without RMP. For the longest H-mode pulse of 22 s shot, the heat flux on lower OD was 73 kW/m"2, which is the maximum heat flux among the shots obtained in 2013 campaign.

  12. Data bank of critical heat flux

    International Nuclear Information System (INIS)

    Balino, J.L.; Ruival, M.H.

    1985-01-01

    More than 13.000 measurements of critical heat flux are classified in a data bank. From each experiment the following information can be obtained: cooling medium (light water, freon 12 or freon 21), geometry of the test section and thermalhydraulic parameters. The data management is performed by a computer program called CHFTRAT. A brief study of the influence of different parameters in the critical heat flux is presented, as an example of how to use the program. (M.E.L.) [es

  13. Characterization of ion fluxes and heat fluxes for PMI relevant conditions on Proto-MPEX

    Science.gov (United States)

    Beers, Clyde; Shaw, Guinevere; Biewer, Theodore; Rapp, Juergen

    2016-10-01

    Plasma characterization, in particular, particle flux and electron and ion temperature distributions nearest to an exposed target, are critical to quantifying Plasma Surface Interaction (PSI). In the Proto-Material Plasma Exposure eXperiment (Proto-MPEX), the ion fluxes and heat fluxes are derived from double Langmuir Probes (DLP) and Thomson Scattering in front of the target assuming Bohm conditions at the sheath entrance. Power fluxes derived from ne and Te measurements are compared to heat fluxes measured with IR thermography. The comparison will allow conclusions on the sheath heat transmission coefficient to be made experimentally. Different experimental conditions (low and high density plasmas (0.5 - 6 x 1019 m-3) with different magnetic configuration are compared. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  14. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  15. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  16. Thin film heat flux sensors for accurate transient and unidirectional heat transfer analysis

    International Nuclear Information System (INIS)

    Azerou, B; Garnier, B; Lahmar, J

    2012-01-01

    Heat flux measurement is needed in many heat transfer studies. For the best unbiased heat flux sensors (HFS), the heat flux is obtained using temperature measurements at different locations and also an inverse heat conduction method (function specification...) in order to calculate the heat flux. Systematic errors can come from the uncertainty in the wire thermocouples locations and from errors in the knowledge of distances between two consecutive wire thermocouples. The main idea in this work is to use thin film thermoresistances deposited on a flexible thin polymer substrate instead of wire thermocouples welded on metallic sample. The interest of using thin film thermoresistances instead of wire thermocouples is a lower disturbance due to the smaller thickness of the thin film sensors (typically less than 1μm) and a much better knowledge of the distances between the different thin film thermoresistances which are precisely defined in the mask used for the metallic thin film pattern fabrication. In this paper, we present the fabrication of the new heat flux sensor with thin film thermoresistances, the study of the effect of the self heating (due to Joule effect in thermoresistances) and the performances of this new HFS with the comparison with classical HFS using wire thermocouples. For this study, a symmetric experimental setup is used with metallic samples equipped with an etched foil heater and both classical and new HFS. For several heating conditions, it appears that a better accuracy is always obtained with the new HFS using thin film thermoresistances.

  17. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  18. Gradient heat flux measurement as monitoring method for the diesel engine

    Science.gov (United States)

    Sapozhnikov, S. Z.; Mityakov, V. Yu; Mityakov, A. V.; Vintsarevich, A. V.; Pavlov, A. V.; Nalyotov, I. D.

    2017-11-01

    The usage of gradient heat flux measurement for monitoring of heat flux on combustion chamber surface and optimization of diesel work process is proposed. Heterogeneous gradient heat flux sensors can be used at various regimes for an appreciable length of time. Fuel injection timing is set by the position of the maximum point on the angular heat flux diagram however, the value itself of the heat flux may not be considered. The development of such an approach can be productive for remote monitoring of work process in the cylinders of high-power marine engines.

  19. Experimental determination of local heat flux variation in an electrically heated BR-2 rod

    International Nuclear Information System (INIS)

    Meyer, L.; Merschroth, F.

    1977-08-01

    The installation of thermocouples within the cladding of an electrically heated BR-2 rod might cause local variations of heat flux. In order to detect a resulting temperature variation at the outer surface, experiments with a single electrically heated rod with heat fluxes up to 30.80 W/cm 2 and heat transfer coefficients up to 1000 W/m 2 K by forced convection in air were conducted. The surface temperatures were measured with an optical pyrometer. The experiment showed about 0.6% variation in the surface temperature. An analysis with the TAC2D-code shows that local variation in the heat flux under these conditions is less than 1.2%. (orig.) [de

  20. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  1. Critical heat flux and post-critical heat flux performance of a 6-m, 37-element fully segmented bundle cooled by Freon-12

    International Nuclear Information System (INIS)

    Nickerson, J.R.

    1982-05-01

    A 6-m, 37-element, electrically heated bundle with full end plate simulation, cooled by Freon-12, has been tested for CHF (critical heat flux) and post-CHF conditions in the MR-3 Freon loop. The bundle was tested in a horizontal attitude and had a uniform axial heat flux distribution and radial heat flux depression. A total of 110 CHF points have been collected over the following range of water equivalent conditions: exit pressure 8.27 - 11.03 MPa, mass flux 1.38 - 8.14 Mg.m -2 .s -1 , inlet subcooling 0 - 500 kJ.kg -1 , outlet quality 10% - 37%. The data have been correlated on both a systems and local conditions basis over a limited mass flux range to within 2.8% rms. Significant CHF increases over smooth bundle results have been observed along with significant CHF improvement over a two end plate bundle simulation in the lower mass flux ranges. A satisfactory axial drypatch spreading correlation has been determined and extensive drypatch wall superheat mapping has been performed

  2. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  3. Study of heat flux deposition in the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Carpentier, S.

    2009-02-01

    Accurate measurements of heat loads on internal tokamak components is essential for protection of the device during steady state operation. The optimisation of experimental scenarios also requires an in depth understanding of the physical mechanisms governing the heat flux deposition on the walls. The objective of this study is a detailed characterisation of the heat flux to plasma facing components (PFC) of the Tore Supra tokamak. The power deposited onto Tore Supra PFCs is calculated using an inverse method, which is applied to both the temperature maps measured by infrared thermography and to the enthalpy signals from calorimetry. The derived experimental heat flux maps calculated on the toroidal pumped limiter (TPL) are then compared with theoretical heat flux density distributions from a standard SOL-model. They are two experimental observations that are not consistent with the model: significant heat flux outside the theoretical wetted area, and heat load peaking close to the tangency point between the TPL and the last closed field surface (LCFS). An experimental analysis for several discharges with variable security factors q is made. In the area consistent with the theoretical predictions, this parametric study shows a clear dependence between the heat flux length λ q (estimated in the SOL (scrape-off layer) from the IR measurements) and the magnetic configuration. We observe that the spreading of heat fluxes on the component is compensated by a reduction of the power decay length λ q in the SOL when q decreases. On the other hand, in the area where the derived experimental heat loads are not consistent with the theoretical predictions, we observe that the spreading of heat fluxes outside the theoretical boundary increases when q decreases, and is thus not counterbalanced. (author)

  4. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  5. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux

    International Nuclear Information System (INIS)

    Kuang, Y.W.; Wang, Wen; Zhuan, Rui; Yi, C.C.

    2015-01-01

    Highlights: • A boiling flow model in a separate type heat pipe with 65 mm diameter tube. • Nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux. • The two-phase heat transfer coefficient is less sensitive to the total mass flux. - Abstract: The separate type heat pipe heat exchanger is considered to be a potential selection for developing passive cooling spent fuel pool – for the passive pressurized water reactor. This paper simulates the boiling flow behavior in the evaporator of separate type heat pipe, consisting of a bundle of tubes of inner diameter 65 mm. It displays two-phase characteristic in the evaporation section of the heat pipe working in low heat flux. In this study, the two-phase flow model in the evaporation section of the separate type heat pipe is presented. The volume of fluid (VOF) model is used to consider the interaction between the ammonia gas and liquid. The flow patterns and flow behaviors are studied and the agitated bubbly flow, churn bubbly flow are obtained, the slug bubble is likely to break into churn slug or churn froth flow. In addition, study on the heat transfer coefficients indicates that the nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux, with the heat transfer coefficient being less sensitive to the total mass flux

  6. Critical heat flux evaluation

    International Nuclear Information System (INIS)

    Banner, D.

    1995-01-01

    Critical heat flux (CHF) is of importance for nuclear safety and represents the major limiting factors for reactor cores. Critical heat flux is caused by a sharp reduction in the heat transfer coefficient located at the outer surface of fuel rods. Safety requires that this phenomenon also called the boiling crisis should be precluded under nominal or incidental conditions (Class I and II events). CHF evaluation in reactor cores is basically a two-step approach. Fuel assemblies are first tested in experimental loops in order to determine CHF limits under various flow conditions. Then, core thermal-hydraulic calculations are performed for safety evaluation. The paper will go into more details about the boiling crisis in order to pinpoint complexity and lack of fundamental understanding in many areas. Experimental test sections needed to collect data over wide thermal-hydraulic and geometric ranges are described CHF safety margin evaluation in reactors cores is discussed by presenting how uncertainties are mentioned. From basic considerations to current concerns, the following topics are discussed; knowledge of the boiling crisis, CHF predictors, and advances thermal-hydraulic codes. (authors). 15 refs., 4 figs

  7. Heat flux anomalies in Antarctica revealed from satellite magnetic data

    DEFF Research Database (Denmark)

    Maule, Cathrine Fox; Purucker, Michael E.; Olsen, Nils

    2005-01-01

    a method that uses satellite magnetic data to estimate the heat flux underneath the Antarctic ice sheet. We found that the heat flux underneath the ice sheet varies from 40 to 185 megawatts per square meter and that areas of high heat flux coincide with known current volcanism and some areas known to have...

  8. Fast nanoscale heat-flux modulation with phase-change materials

    OpenAIRE

    Van Zwol , Pieter; Joulain , Karl; Ben-Abdallah , Philippe; Greffet , Jean-Jacques; Chevrier , Joël

    2011-01-01

    International audience; We introduce a new concept for electrically controlled heat flux modulation. A flux contrast larger than 10 dB is expected with switching time on the order of tens of nanoseconds. Heat flux modulation is based on the interplay between radiative heat transfer at the nanoscale and phase change materials. Such large contrasts are not obtainable in solids, or in far field. As such this opens up new horizons for temperature modulation and actuation at the nanoscale.

  9. Thermalhydraulic behavior of electrically heated rod during a critical heat flux transient

    International Nuclear Information System (INIS)

    Lima, Rita de Cassia Fernandes de; Carajilescov, Pedro

    1997-01-01

    In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed using electrically heated rods to simulate operational and accidental conditions of nuclear fuel rods. In the present work, a theoretical analysis of the drying and rewetting front propagation is performed during a critical heat flux experiment, starting with the application of slope of electrical power from steady state condition. After the occurrence of critical heat flux, the drying front propagation is predicted. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. Studies done with several values of coolant mass flow rate show that this variable has more influence on the drying front velocity than on the rewetting one. (author)

  10. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  11. Study on diverse passive decay heat removal approach and principle

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    Decay heat removal in post-accident is one of the most important aspects concerned in the reactor safety analysis. Passive decay heat removal approach is used to enhance nuclear safety. In advanced reactors, decay heat is removed by multiple passive heat removal paths through core to ultimate heat sink by passive residual heat removal system, passive injection system, passive containment cooling system and so on. Various passive decay heat removal approaches are summarized in this paper, the common features and differences of their heat removal paths are analyzed, and the design principle of passive systems for decay heat removal is discussed. It is found that. these decay heat removal paths is combined by some basic heat transfer processes, by the combination of these basic processes, diverse passive decay heat removal approach or system design scheme can be drawn. (authors)

  12. Optimized design of an ex-vessel cooling thermosyphon for decay heat removal in SFR

    International Nuclear Information System (INIS)

    Choi, Jae Young; Jeong, Yong Hoon; Song, Sub Lee; Chang, Soon Heung

    2017-01-01

    Passive decay heat removal and sodium fire are two major key issues of nuclear safety in sodium-cooled fast reactor (SFR). Several decay heat removal systems (DHR) were suggested for SFR around the world so far. Those DHRS mainly classified into two concepts: Direct reactor cooling system and ex-vessel cooling system. Direct reactor cooling method represented by PDHRS from PGSFR has disadvantages on its additional in-vessel structure and potential sodium fire risk due to the sodium-filled heat exchanger exposed to air. Contrastively, ex-vessel cooling method represented by RVACS from PRISM has low decay heat removal performance, which cannot be applicable to large scale reactors, generally over 1000 MWth. No passive DHRSs which can solve both side of disadvantages has been suggested yet. The goal of this study was to propose ex-vessel cooling system using two-phase closed thermosyphon to compensate the disadvantages of the past DHRSs. Reference reactor was Innovative SFR (iSFR), a pool-type SFR designed by KAIST and featured by extended core lifetime and increased thermal efficiency. Proposed ex-vessel cooling system consisted of 4 trains of thermosyphons and designed to remove 1% of thermal power with 10% of margin. The scopes of this study were design of proposed passive DHRS, validation of system analysis and optimization of system design. Mercury was selected as working fluid to design ex-vessel thermosyphon in consideration of system geometry, operating temperature and required heat flux. SUS 316 with chrome coated liner was selected as case material to resist against high corrosivity of mercury. Thermosyphon evaporator was covered on the surface of reactor vessel as the geometry of hollow shell filled with mercury. Condenser was consisted of finned tube bundles and was located in isolated water pool, the ultimate heat sink. Operation limits and thermal resistance was estimated to guarantee whether the design was adequate. System analysis was conducted by in

  13. ANL ITER high-heat-flux blanket-module heat transfer experiments

    International Nuclear Information System (INIS)

    Kasza, K.E.

    1992-02-01

    An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER

  14. Passive heat removal from containment

    International Nuclear Information System (INIS)

    Gou, P.F.; Townsend, H.E.

    1990-01-01

    This patent describes a heat removal system for removing heat from a containment of a nuclear reactor. It comprises: a sealed suppression chamber in the containment; means for venting steam from the nuclear reactor into the suppression chamber upon occurrence of an event requiring dissipation of heat from the nuclear reactor. The suppression chamber containing a quantity of water; the suppression chamber having a gas-containing space above the water; a heat exchanger disposed within the gas-containing space of the suppression chamber; the heat exchanger including an enclosed structure for holding a heat-exchange fluid; means for metering a supply of heat-exchange fluid to the heat exchanger to maintain a predetermined level thereof in the enclosed structure. The heat-exchange fluid boiling in the heat exchanger in consequence of heat transfer thereto from steam present in the suppression chamber; means for separating a heat-exchange fluid vapor in the heat exchanger from the heat-exchange fluid; and means for discharging the vapor immediately following its separation from heat-exchange fluid directly from the heat exchanger to a location exterior of the containment, whereby heat is discharged from the suppression chamber, and the containment is maintained at a temperature and pressure below its design value

  15. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  16. Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control

    National Research Council Canada - National Science Library

    Corbin, Michael

    2002-01-01

    .... Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play...

  17. Flow-excursion-induced dryout at low-heat-flux

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1983-01-01

    Flow-excursion-induced dryout at low-heat-flux natural-convection boiling, typical of liquid-metal fast-breeder reactors, is addressed. Steady-state calculations indicate that low-quality boiling is possible up to the point of Ledinegg instability leading to flow excursion and subsequent dryout in agreement with experimental data. A flow-regime-dependent dryout heat flux relationship based upon saturated boiling criterion is also presented. Transient analysis indicates that premature flow excursion can not be ruled out and sodium boiling is highly transient dependent. Analysis of a high-heat-flux forced convection, loss-of-flow transient shows a significantly faster flow excursion leading to dryout in excellent agreement with parallel calculations using the two-dimensional THORAX code. 17 figures

  18. Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy

    Science.gov (United States)

    Kwon, Y. J.; Lee, D. K.

    2017-12-01

    Raised concerns about possible contribution from urban heat island to global warming is about 30 percent. Therefore, mitigating urban heat island became one of major issues to solve among urban planners, urban designers, landscape architects, urban affair decision makers and etc. Urban heat island effect on a micro-scale is influenced by factors such as wind, water vapor and solar radiation. Urban heat island effect on a microscale is influenced by factors like wind, water vapor and solar radiation. These microscopic climates are also altered by factors affecting the heat content in space, like SVF and aspect ratio depending on the structural characteristics of various urban canyon components. Indicators of heat mitigation in urban design stage allows us to create a spatial structure considering the heat balance budget. The spatial characteristics affect thermal change by varying heat storage, emitting or absorbing the heat. The research defines characteristics of the space composed of the factors affecting the heat flux change as the potential urban heat island space. Potential urban heat island spaces are that having higher heat flux than periphery space. The study is to know the spatial characteristics that affects the subsequent temperature rise by the heat flux. As a research method, four types of potential heat island space regions were analyzed. I categorized the spatial types by comparing parameters' value of energy balance in day and night: 1) day severe areas, 2) day comfort areas, 3) night severe areas, 4) night comfort areas. I have looked at these four types of potential urban heat island areas from a microscopic perspective and investigated how various forms of heat influences on higher heat flux areas. This research was designed to investigate the heat indicators to be reflected in the design of urban canyon for heat mitigation. As a result, severe areas in daytime have high SVF rate, sensible heat is generated. Day comfort areas have shadow effect

  19. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  20. A comparison of critical heat flux in tubes and bilaterally heated annuli

    Energy Technology Data Exchange (ETDEWEB)

    Doerffer, S.; Groeneveld, D.C.; Cheng, S.C. [Univ. of Ottawa (Canada)

    1995-09-01

    This paper examines the critical heat flux (CHF) behaviour for annular flow in bilaterally heated annuli and compares it to that in tubes and unilaterally heated annuli. It was found that the differences in CHF between bilaterally and unilaterally heated annuli or tubes strongly depend on pressure and quality. the CHF in bilaterally heated annuli can be predicted by tube CHF prediction methods for the simultaneous CHF occurrence at both surfaces, and the following flow conditions: pressure 7-10 MPa, mass flux 0.5-4.0 Mg/m{sup 2}s and critical quality 0.23-0.9. The effect on CHF of the outer-to-inner surface heat flux ratio, was also examined. The prediction of CHF for bilaterally heated annuli was based on the droplet-diffusion model proposed by Kirillov and Smogalev. While their model refers only to CHF occurrence at the inner surface, we extended it to cases where CHF occurs at the outer surface, and simultaneously at both surfaces, thus covering all cases of CHF occurrence in bilaterally heated annuli. From the annuli CHF data of Becker and Letzter, we derived empirical functions required by the model. the proposed equations provide good accuracy for the CHF data used in this study. Moreover, the equations can predict conditions at which CHF occurs simultaneously at both surfaces. Also, this method can be used for cases with only one heated surface.

  1. Size effects in non-linear heat conduction with flux-limited behaviors

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  2. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  3. Behavior of tungsten coatings on CuCrZr heat sink with the different interlayers under high heat flux

    International Nuclear Information System (INIS)

    Chong, F.L.; Chen, J.L.; Li, J.G.; Zheng, X.B.; Hu, D.Y.; Ding, C.X.

    2007-01-01

    In recent years, tungsten coated CuCrZr by means of vacuum plasma spraying technology was studied at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Plasma spraying technology is a good integration way of armor material and heat sink, which overcomes the disadvantage of heavy weight and poor workability of tungsten, and offers the ability to coat large area, even complex shapes and in situ repair of damaged parts. But tungsten coated CuCrZr is a challenge due to the larger mismatch of their thermal expansion coefficients (CTE), which will induce the stress concentration on the joint interface of plasma facing component. In order to enhance the adhesion of W coating on CuCrZr substrate and avoid the thermal stress concentration, it is necessary to use a compliant interlayer. At present, titanium (Ti), nickel-chromium-aluminum (NiCrAl) alloys and W/Cu mixtures were chosen as the compliant layers to insert between W coating and CuCrZr substrate. The adhesion strength was performed at RT. The behaviors of W/Cu mock up under high heat flux were carried out by means of the electron beam facility with actively cooling. The results indicated that the mock-ups with the interlayer architectures can withstand the higher heat flux compared to that with the sharp interface, which exhibited the effect of interlayers on reducing the maximum stress and enhancing the properties of resistant heat flux load, though the maximum surface temperature increased due to inserting the interlayers. Among three interlayers, W/Cu interlayer was much better due to its good heat removal capability and flexible W/Cu ratios. Meanwhile, the behaviors of W/Cu mock-ups with the different interlayers were analyzed and optimized by ANSYS finite element code. (authors)

  4. Predicting critical heat flux in slug flow regime of uniformly heated ...

    African Journals Online (AJOL)

    Numerical computation code (PWR-DNBP) has been developed to predict Critical Heat Flux (CHF) of forced convective flow of water in a vertical heated channel. The code was based on the liquid sub-layer model, with the assumption that CHF occurred when the liquid film thickness between the heated surface and vapour ...

  5. Comparison of heat flux measurement techniques during the DIII-D metal ring campaign

    Science.gov (United States)

    Barton, J. L.; Nygren, R. E.; Unterberg, E. A.; Watkins, J. G.; Makowski, M. A.; Moser, A.; Rudakov, D. L.; Buchenauer, D.

    2017-12-01

    The heat fluxes expected in the ITER divertor raise concerns about the damage tolerances of tungsten, especially due to thermal transients caused by edge localized modes (ELMs) as well as frequent temperature cycling from high to low extremes. Therefore we are motivated to understand the heat flux conditions that can cause not only enhanced erosion but also bulk thermo-mechanical damage to a tungsten divertor. For the metal ring campaign in DIII-D, tungsten-coated TZM tile inserts were installed making two toroidal arrays of metal tile inserts in the lower divertor. This study examines the deposited heat flux on these rings with embedded thermocouples (TCs) sampling at 10 kHz and compares them to Langmuir probe (LP) and infrared thermography (IRTV) heat flux measurements. We see agreement of the TC, LP, and IRTV data within 20% of the heat flux averaged over the entire discharge, and that all three diagnostics suggest parallel heat flux at the OSP location increases linearly with input heating power. The TC and LP heat flux time traces during the discharge trend together during large changes to the average heat flux. By subtracting the LP measured inter-ELM heat flux from TC data, using a rectangular ELM energy pulse shape, and taking the relative size and duration of each ELM from {{D}}α measurements, we extract the ELM heat fluxes from TC data. This over-estimates the IRTV measured ELM heat fluxes by a factor of 1.9, and could be due to the simplicity of the TC heat flux model and the assumed ELM energy pulse shape. ELM heat fluxes deposited on the inserts are used to model tungsten erosion in this campaign. These TC ELM heat flux estimates are used in addition to IRTV, especially in cases where the IRTV view to the metal ring is obstructed. We observe that some metal inserts were deformed due to exposed leading edges. The thermal conditions on these inserts are investigated with the thermal modeling code ABAQUS using our heat flux measurements when these edges

  6. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    Science.gov (United States)

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  7. High geothermal heat flux measured below the West Antarctic Ice Sheet

    Science.gov (United States)

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  8. Heat tranfer decrease during water boiling in a tube for the heat flux step distribution by the tube length

    International Nuclear Information System (INIS)

    Remizov, O.V.; Sergeev, V.V.; Yurkov, Yu.I.

    1983-01-01

    The effect of the heat flux distribution along the circular tube length on supercritical convective heat transfer at parameters typical for steam generators heated by liquid metal is studied. The effect of conditions in a under- and a supercritical zones of a vertical tube with independently heated lower and upper sections on supercritical convective heat transfer is studied on a water circulation loop at 9.8-17.7 MPa pressure and 330-1000 kg/m 2 s mass velocities. The experimental heat fluxes varied within the following limits: at the upper section from 0 to 474 kW/m 2 , at the lower section from 190 to 590 kW/m 2 . Analysis of the obtained data shows that when heat flux changes in the supercritical zone rewetting of the heated surface and simultaneous existence of two critical zones are observed. The effect of heat flux in the supercritical zone on convective heat transfer is ambiguous: the heat flux growth up to 60-100 kW/m 2 leads to increasing minimum values of the heat transfer factor in the supercritical zone, and a further heat flux growth - to their reduction. The conclusion is made that the value of heat flux in the undercritical zone affects convective heat transfer in the supercritical zone mainly through changing the value of critical vapour content

  9. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  10. An inverse hyperbolic heat conduction problem in estimating surface heat flux by the conjugate gradient method

    International Nuclear Information System (INIS)

    Huang, C.-H.; Wu, H.-H.

    2006-01-01

    In the present study an inverse hyperbolic heat conduction problem is solved by the conjugate gradient method (CGM) in estimating the unknown boundary heat flux based on the boundary temperature measurements. Results obtained in this inverse problem will be justified based on the numerical experiments where three different heat flux distributions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the boundary heat flux. Moreover, the drawbacks of the previous study for this similar inverse problem, such as (1) the inverse solution has phase error and (2) the inverse solution is sensitive to measurement error, can be avoided in the present algorithm. Finally, it is concluded that accurate boundary heat flux can be estimated in this study

  11. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    Science.gov (United States)

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  12. Satellite-based Calibration of Heat Flux at the Ocean Surface

    Science.gov (United States)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  13. Solar wind heat flux regulation by the whistler instability

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.

    1977-01-01

    This paper studies the role of the whistler instability in the regulation of the solar wind heat flux near 1 AU. A comparison of linear and second-order theory with experimental results provides strong evidence that the whistler may at times contribute to the limitation of this heat flux

  14. Poloidal and toroidal heat flux distribution in the CCT tokamak

    International Nuclear Information System (INIS)

    Brown, M.L.; Dhir, V.K.; Taylor, R.J.

    1990-01-01

    Plasma heat flux to the Faraday shield panels of the UCLA Continuous Current Tokamak (CCT) has been measured calorimetrically in order to identify the dominant parameters affecting the spatial distribution of heat deposition. Three heating methods were investigated: audio frequency discharge cleaning, RF heating, and AC ohmic. Significant poloidal asymmetry is present in the heat flux distribution. On the average, the outer panels received 25-30% greater heat flux than the inner ones, with the ratio of maximum to minimum values attaining a difference of more than a factor of 2. As a diagnostic experiment the current to a selected toroidal field coil was reduced in order to locally deflect the toroidal field lines outward in a ripple-like fashion. Greatly enhanced heat deposition (up to a factor of 4) was observed at this location on the outside Faraday panels. The enhancement was greatest for conditions of low toroidal field and low neutral pressure, leading to low plasma densities, for which Coulomb collisions are the smallest. An exponential model based on a heat flux e-folding length describes the experimentally found localization of thermal energy quite adequately. (orig.)

  15. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  16. Two-phase jet impingement cooling for high heat flux wide band-gap devices using multi-scale porous surfaces

    International Nuclear Information System (INIS)

    Joshi, Shailesh N.; Dede, Ercan M.

    2017-01-01

    Highlights: • Jet impingement with phase change on multi-scale porous surfaces is investigated. • Porous coated flat, pin-fin, open tunnel, and closed tunnel structures are studied. • Boiling curve, heat transfer coefficient, and pressure drop metrics are reported. • Flow visualization shows vapor removal from the surface is a key aspect of design. • The porous coated pin-fin surface exhibits superior two-phase cooling performance. - Abstract: In the future, wide band-gap (WBG) devices such as silicon carbide and gallium nitride will be widely used in automotive power electronics due to performance advantages over silicon-based devices. The high heat fluxes dissipated by WBG devices pose extreme cooling challenges that demand the use of advanced thermal management technologies such as two-phase cooling. In this light, we describe the performance of a submerged two-phase jet impingement cooler in combination with porous coated heat spreaders and multi-jet orifices. The cooling performance of four different porous coated structures was evaluated using R-245fa as the coolant at sub-cooling of 5 K. The results show that the boiling performance of a pin-fin heat spreader is the highest followed by that for an open tunnel (OPT), closed tunnel (CLT), and flat heat spreader. Furthermore, the flat heat spreader demonstrated the lowest critical heat flux (CHF), while the pin-fin surface sustained a heat flux of 218 W/cm 2 without reaching CHF. The CHF values of the OPT and CLT surfaces were 202 W/cm 2 and 194 W/cm 2 , respectively. The pin-fin heat spreader has the highest two-phase heat transfer coefficient of 97,800 W/m 2 K, while the CLT surface has the lowest heat transfer coefficient of 69,300 W/m 2 K, both at a heat flux of 165 W/cm 2 . The variation of the pressure drop of all surfaces is similar for the entire range of heat fluxes tested. The flat heat spreader exhibited the least pressure drop, 1.73 kPa, while the CLT surface had the highest, 2.17 kPa at a

  17. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    Science.gov (United States)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  18. GEM-CEDAR Challenge: Poynting Flux at DMSP and Modeled Joule Heat

    Science.gov (United States)

    Rastaetter, Lutz; Shim, Ja Soon; Kuznetsova, Maria M.; Kilcommons, Liam M.; Knipp, Delores J.; Codrescu, Mihail; Fuller-Rowell, Tim; Emery, Barbara; Weimer, Daniel R.; Cosgrove, Russell; hide

    2016-01-01

    Poynting flux into the ionosphere measures the electromagnetic energy coming from the magnetosphere. This energy flux can vary greatly between quiet times and geomagnetic active times. As part of the Geospace Environment Modeling-coupling energetics and dynamics of atmospheric regions modeling challenge, physics-based models of the 3-D ionosphere and ionospheric electrodynamics solvers of magnetosphere models that specify Joule heat and empirical models specifying Poynting flux were run for six geomagnetic storm events of varying intensity. We compared model results with Poynting flux values along the DMSP-15 satellite track computed from ion drift meter and magnetic field observations. Although being a different quantity, Joule heat can in practice be correlated to incoming Poynting flux because the energy is dissipated primarily in high latitudes where Poynting flux is being deposited. Within the physics-based model group, we find mixed results with some models overestimating Joule heat and some models agreeing better with observed Poynting flux rates as integrated over auroral passes. In contrast, empirical models tend to underestimate integrated Poynting flux values. Modeled Joule heat or Poynting flux patterns often resemble the observed Poynting flux patterns on a large scale, but amplitudes can differ by a factor of 2 or larger due to the highly localized nature of observed Poynting flux deposition that is not captured by the models. In addition, the positioning of modeled patterns appear to be randomly shifted against the observed Poynting flux energy input. This study is the first to compare Poynting flux and Joule heat in a large variety of models of the ionosphere.

  19. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Ohashi, Yukio.

    1990-01-01

    The after-heat removing system of the present invention removes the after heat generated in a reactor core without using dynamic equipments such as pumps or blowers. There are disposed a first heat exchanger for heating a heat medium by the heat in a reactor container and a second heat exchanger situated above the first heat exchanger for spontaneously air-cooling the heat medium. Recycling pipeways connect the first and the second heat exchangers to form a recycling path for the heat medium. Then, since the second heat exchanger for spontaneously air-cooling the heat medium is disposed above the first heat exchanger and they are connected by the recycling pipeways, the heat medium can be circulated spontaneously. Accordingly, dynamic equipments such as pumps or blowers are no more necessary. As a result, the after-heat removing system of the FBR type reactor of excellent safety and reliability can be obtained. (I.S.)

  20. A review of dryout heat fluxes and coolability of particle beds. APRI 4, Stage 2 Report

    International Nuclear Information System (INIS)

    Lindholm, Ilona

    2002-04-01

    Dryout heat flux experiments on particle beds have been reviewed. The observed dryout heat flux varies from some tens of kW/m 2 to well over 1 MW/m 2 . The variation can be qualitatively and to some extent also quantitatively explained. The effect of particle diameter has been clearly demonstrated. For particles having diameter less than about 1 mm, the dryout heat flux on the order of 100-200 kW/m 2 , and increases on square of the particle diameter. For larger than 1 mm particles the dryout heat flux increases on square root of the particle diameter. Typical values for ∼ 5 mm particles is 500 kW/m 2 to 1 MW/m 2 . An effect of bed thickness can be seen for small particles and medium range (50-500 mm) beds. For thick beds, > 500 mm, the dryout heat flux does not any more change as the bed height increases. The dryout heat flux increases with increasing coolant pressure. This can be explained by the increasing vapour density, which can remove more latent heat from the bed. Debris bed stratification, with small particles on top, clearly decreases the dryout heat flux. The dryout heat flux in a stratified bed can even be smaller than a heat flux of an equivalent debris bed consisting of the smaller particles alone. This is due to the capillary force, which draws liquid towards the smaller particles and causes the dryout to occur at the interface of the particle layers. A model has been developed by Lipinski to estimate dryout heat fluxes in a particle bed. The model has been derived based on solution of momentum, energy and mass conservation equations for two phases. The 1-D model can take into account variable particle sizes (stratification) along the bed and different coolant entry positions. It has been shown that the model can quite well predict the observed dryout characteristics in most experiments. The simpler 0-D model can give reasonable estimates for non-stratified beds. Results and observations of several tests on melt jet fragmentation in a water pool

  1. Steady state and transient critical heat flux examinations

    International Nuclear Information System (INIS)

    Szabados, L.

    1978-02-01

    In steady state conditions within the P.W.R. parameter range the critical heat flux correlations based on local parameters reproduce the experimental data with less deviations than those based on system parameters. The transient experiments were restricted for the case of power transients. A data processing method for critical heat flux measurements has been developed and the applicability of quasi steady state calculation has been verified. (D.P.)

  2. Electron heat flux instabilities in the solar wind

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.; Forslund, D.W.; Montgomery, M.D.

    1975-01-01

    There are at least three plasma instabilities associated with the electron heat flux in the solar wind. This letter reports the study of the unstable fast magnetosonic, Alfven and whistler modes via a computer code which solves the full electromagnetic, linear, Vlasov dispersion relation. Linear theory demonstrates that both the magnetosonic and Alfven instabilities are candidates for turbulent limitation of the heat flux in the solar wind at 1 A.U

  3. Evaluation of Heat Removal Performance of Passive Decay Heat Removal system for S-CO{sub 2} Cooled Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The modular systems is able to be transported by large trailer. Moreover, dry cooling system is applied for waste heat removal. The characteristics of MMR takes wide range of construction area from coast to desert, isolated area and disaster area. In MMR, Passive decay heat removal system (PDHRS) is necessary for taking the advantage on selection of construction area where external support cannot be offered. The PDHRS guarantees to protect MMR without external support. In this research, PDHRS of MMR is introduced and decay heat removal performance is analyzed. The PDHRS guarantees integrity of reactor coolant system. The high level of decay heat (2 MW) can be removed by PDHRS without offsite power.

  4. Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux

    International Nuclear Information System (INIS)

    Bhattacharyya Krishnendu

    2013-01-01

    In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting

  5. After-heat removal system

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Mitani, Shinji.

    1982-01-01

    Purpose: To prevent contamination of suppression pool water and intrusion of corrosion products into a nuclear reactor. Constitution: Upon stop of an after-heat removing system, reactor water contained in pipelines is drained out to a radioactive wastes processing facility at the time the cooling operation mode has been completed. At the same time, water is injected from a pure water supply system to the after-heat removing system to discharge corrosion product and activated materials while cleaning the inside of the pipelines. Then, pure water is held in the pipelines and it is discharged again and replaced with pure water before entering the cooling mode operation. Thereafter, the cooling mode operation upon reactor shutdown is performed. (Yoshino, Y.)

  6. Tests of a robust eddy correlation system for sensible heat flux

    Science.gov (United States)

    Blanford, J. H.; Gay, L. W.

    1992-03-01

    Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.

  7. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  8. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    Science.gov (United States)

    Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.

    2015-01-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  9. An iterative procedure for estimating areally averaged heat flux using planetary boundary layer mixed layer height and locally measured heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R. L.; Gao, W.; Lesht, B. M.

    2000-04-04

    Measurements at the central facility of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) are intended to verify, improve, and develop parameterizations in radiative flux models that are subsequently used in General Circulation Models (GCMs). The reliability of this approach depends upon the representativeness of the local measurements at the central facility for the site as a whole or on how these measurements can be interpreted so as to accurately represent increasingly large scales. The variation of surface energy budget terms over the SGP CART site is extremely large. Surface layer measurements of the sensible heat flux (H) often vary by a factor of 2 or more at the CART site (Coulter et al. 1996). The Planetary Boundary Layer (PBL) effectively integrates the local inputs across large scales; because the mixed layer height (h) is principally driven by H, it can, in principal, be used for estimates of surface heat flux over scales on the order of tens of kilometers. By combining measurements of h from radiosondes or radar wind profiles with a one-dimensional model of mixed layer height, they are investigating the ability of diagnosing large-scale heat fluxes. The authors have developed a procedure using the model described by Boers et al. (1984) to investigate the effect of changes in surface sensible heat flux on the mixed layer height. The objective of the study is to invert the sense of the model.

  10. Evaluation of upward heat flux in ex-vessel molten core heat transfer using MELCOR

    International Nuclear Information System (INIS)

    Park, S.Y.; Park, J.H.; Kim, S.D.; Kim, D.H.; Kim, H.D.

    2000-01-01

    The purpose of this study is to share experiences of MELCOR application to resolve the molten corium-concrete interaction (MCCI) issue in the Korea Next Generation Reactor (KNGR). In the evaluation of concrete erosion, the heat transfer modeling from the molten corium internal to the corium pool surface is very important and uncertain. MELCOR employs Kutateladze or Greene's bubble-enhanced heat transfer model for the internal heat transfer. The phenomenological uncertainty is so large that the model provides several model parameters in addition to the phenomenological model for user flexibility. However, the model parameters do not work on Kutateladze correlation at the top of the molten layer. From our experience, a code modification is suggested to match the upward heat flux with the experimental results. In this analysis, minor modification was carried out to calculate heat flux from the top molten layer to corium surface, and efforts were made to find out the best value of the model parameter based on upward heat flux of MACE test M1B. Discussion also includes its application to KNGR. (author)

  11. Heat flux driven ion turbulence

    International Nuclear Information System (INIS)

    Garbet, X.

    1998-01-01

    This work is an analysis of an ion turbulence in a tokamak in the case where the thermal flux is fixed and the temperature profile is allowed to fluctuate. The system exhibits some features of Self-Organized Critical systems. In particular, avalanches are observed. Also the frequency spectrum of the thermal flux exhibits a structure similar to the one of a sand pile automaton, including a 1/f behavior. However, the time average temperature profile is found to be supercritical, i.e. the temperature gradient stays above the critical value. Moreover, the heat diffusivity is lower for a turbulence calculated at fixed flux than a fixed temperature gradient, with the same time average temperature. This behavior is attributed to a stabilizing effect of avalanches. (author)

  12. Prediction of critical heat flux in vertical pipe flow

    International Nuclear Information System (INIS)

    Levy, S.; Healzer, J.M.; Abdollahian, D.

    1981-01-01

    A previously developed semi-empirical model for adiabatic two-phase annular flow ix extended to predict the critical heat flux (CHF) in a vertical pipe. The model exhibits a sharply declining curve of CHF versus steam quality (X) at low X, and is relatively independent of the heat flux distribution. In this region, vaporization of the liquid film controls. At high X, net deposition upon the liquid film becomes important and CHF versus X flattens considerably. In this zone, CHF is dependent upon the heat flux distribution. Model predictions are compared to test data and an empirical correlation. The agreement is generally good if one employs previously reported mass transfer coefficients. (orig.)

  13. A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production

    Science.gov (United States)

    Burton-Johnson, A.; Halpin, J.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.

    2017-12-01

    We present recently published findings (Burton-Johnson et al., 2017) on the variability of Antarctic sub-glacial heat flux and the impact from upper crustal geology. Our new method reveals that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial heat flux, and that heat flux values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south of the Peninsula (mean 81 mWm-2) where silicic rocks predominate, than on the west and north (mean 67 mWm-2) where volcanic arc and quartzose sediments are dominant. Whilst the data supports the contribution of HPE-enriched granitic rocks to high heat flux values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and dataset facilitate improved numerical model simulations of ice sheet dynamics. The most significant challenge faced remains accurate determination of crustal structure, particularly the depths of the HPE-enriched sedimentary basins and the sub-glacial geology away from exposed outcrops. Continuing research (particularly detailed geophysical interpretation) will better constrain these unknowns and the effect of upper crustal geology on the Antarctic ice sheet. Burton-Johnson, A., Halpin, J.A., Whittaker, J.M., Graham, F.S., and Watson, S.J., 2017, A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production: Geophysical Research Letters, v. 44, doi: 10.1002/2017GL073596.

  14. Icebase: A suborbital survey to map geothermal heat flux under an ice sheet

    Science.gov (United States)

    Purucker, Michael E.; Connerney, John E. P.; Blakely, Richard J.; Bracken, Robert E.; Nowicki, Sophie; Le, Guan; Sabaka, Terence J.; Bonalsky, Todd M.; Kuang, Weijia; Ravat, Dhananjay; Ritz, Catherine; Vaughan, Alan P. M.; Gaina, Carmen; McEnroe, Suzanne; Lesur, Vincent

    2013-04-01

    NASA will solicit suborbital missions as part of its Earth Venture program element in the coming year. These missions are designed as complete PI-led investigations to conduct innovative hypothesis or scientific question-driven approaches to pressing questions in Earth System science. We propose to carry out a suborbital magnetic survey of Greenland using NASA's Global Hawk unmanned aerial vehicle to produce the first-ever map of the geothermal heat flux under an ice sheet. Better constraints on geothermal heat flux will reduce the uncertainty in future sea level rise, in turn allowing a more informed assessment of its impact on society. The geothermal heat flux depends on conditions such as mantle heat flux, and the tectonic history and heat production of the crust, all of which vary spatially. Underneath ice sheets, the geothermal heat flux influences the basal ice. Therefore heat flux is an important boundary condition in ice sheet modeling. Using magnetic data to constrain heat flux is possible because the magnetic properties of rocks are temperature dependent until they reach the Curie temperature. The technique has applications to understanding the response of Greenland ice sheet to climate forcing because the basal heat flux provides one of the boundary conditions. The technique also helps to locate the oldest ice. The oldest ice in Greenland should be found in areas of very low heat flux, and the identification of those areas is provided by this technique. Ice cores from the areas of oldest ice help to decipher past temperatures and CO2 contents. Our latest model of the geothermal heat flux under the Greenland ice sheet (http://websrv.cs.umt.edu/isis/index.php/Greenland_Basal_Heat_Flux) is based on low- resolution satellite observations collected by the CHAMP satellite between 2000 and 2010. Those observations will be enhanced by the upcoming Swarm gradient satellite mission, but the resolution will improve by less than a factor of two, from 400 km

  15. Study on critical heat flux based on wavelet transform in rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun

    2014-01-01

    Critical heat flux is very important for nuclear reactor safety, and observing temperature rise rate is a feasible method. Through using the wavelet transform to analyze the CHF temperature rise curves in rectangular narrow channels, it can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by, temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is for guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)

  16. 2-D temperature distribution and heat flux of PFC in 2011 KSTAR campaign

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Eunnam, E-mail: bang14@nfri.re.kr; Hong, Suk-Ho; Yu, Yaowei; Kim, Kyungmin; Kim, Hongtack; Kim, Hakkun; Lee, Kunsu; Yang, Hyunglyul

    2013-10-15

    Highlights: • The heat flux on PFC tiles of 12 s pulse duration and 630 kA plasma current is about 0.02 MW/m{sup 2}. • When the cryopump is operated, the heat flux of CD is higher than without cryopump. • The more H-mode duration is long, the more heat flux on divertor is high. -- Abstract: KSTAR has reached a plasma current up to 630 kA, plasma duration up to 12 s, and has achieved high confinement mode (H-mode) in 2011 campaign. The heat flux of PFC tile was estimated from the temperature increase of PFC since 2010. The heat flux of PFC tiles increases significantly with higher plasma current and longer pulse duration. The time-averaged heat flux of shots in 2010 campaign (with 3 s pulse durations and I{sub p} of 611 kA) is 0.01 MW/m{sup 2} while that in 2011 campaign (with 12 s pulse duration and I{sub p} of 630 kA) is about 0.02 MW/m{sup 2}. The heat flux at divertor is 1.4–2 times higher than that at inboard limiter or passive stabilizer. With the cryopump operation, the heat flux at the central divertor is higher than that without cryopump. The heat flux at divertor is proportional to, of course, the duration of H-mode. Furthermore, a software tool, which visualizes the 2D temperature distribution of PFC tile and estimates the heat flux in real time, is developed.

  17. Critical heat flux determination in an annulus section

    International Nuclear Information System (INIS)

    Reyes C, C.A.

    1997-01-01

    The present report explains the phenomenon of Critical heat flux. The study of this physical phenomenon is carried out during the boiling of a liquid and is of supreme importance for the calculation and operation of a nuclear reactor even in the moderns generators of steam (thermoelectric and nucleoelectrics), industrial cooling and in all those industrial process that use a liquid subject to sources of heating and to conditions of work excessively high (temperatures and pressures) so that stay in operation in an appropriate manner and sure. Once well-known this value, the equipment used in these process works with a maximum heat that is smaller than the Critical Heat Flux. The study of the Critical Heat Flux has achieved important advances in the last years, mainly for the enormous obligation that in this moment involved the safety to world level, this has forced to researchers and designers of this type of equipment to center their attention in the obtaining of a correlation which of general way explains it. In this reports two correlations will be compared that they contribute to the evaluation of the Critical Heat Flux in annulus and that they try to be generals in this type of geometry, the Shah correlation's and the Katto correlation's. The same as most of the correlations, these have been calculated so that the fluid of work is water, although they have also been proven with others fluids. The results obtained in this report only will show the degree of advance which the investigation of this phenomenon has achieved in annulus and to low amounts of flow of liquid, like which they are in the Experimental Heat Transfer Circuit located in the Department of Physics of the National Institute of Nuclear Research. (Author)

  18. Examination of W7-X target elements after high heat flux testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Durocher, A.; Schlosser, J.; Greuner, H.; Schedler, B.

    2007-01-01

    Full text of publication follows: The target elements of Wendelstein 7-X (W7-X) divertor are designed to sustain a stationary heat flux of 10 MW/m 2 and to remove a maximum power load up to 100 kW. The plasma-facing material is made of CFC NB31 flat tiles bonded to a CuCrZr copper alloy water-cooled heat sink. Before launching the serial fabrication, pre-series activities aimed at qualifying the design, the manufacturing route, the relevant non-destructive examination (NDE) methods, and at defining the acceptance criteria for the serial production. High heat flux (HHF) testing is the central activity of this qualification phase and represents a fundamental tool to predict 'critical' defects assembling. Within the framework of this qualification activity, the reception tests performed in the transient infrared thermography test bed SATIR at CEA-Cadarache and HHF testing carried out in the ion beam facility GLADIS at IPP-Garching, exhibited some tiles with thermal inhomogeneities, which initiated and developed during high heat flux testing. Hence, studies were launched in order to better understand this behaviour during cyclic heat loading. This post testing examination was mainly focused on the interface between CFC flat tiles and CuCrZr heat sink to improve if necessary the current design. HHF thermal cycling tests at ∼10 MW/m 2 for 10 s pulse duration each, allowed to assess the performances of target elements and showed some tiles with hot spots close to the edge (stable or progressing). Finally, after the HHF experimental campaign, a comprehensive analysis of some tested elements was carried out by means of infrared thermography inspection SATIR and metallographic examinations. Afterwards correlations between the non destructive SATIR inspection, HHF testing GLADIS and metallographic observation were investigated to assess damage detection, to analyse defect propagation, and to adjust the acceptance criteria valuable for the serial production. This paper will

  19. On the use of flat tile armour in high heat flux components

    Science.gov (United States)

    Merola, M.; Vieider, G.

    1998-10-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution.

  20. On the use of flat tile armour in high heat flux components

    International Nuclear Information System (INIS)

    Merola, M.; Vieider, G.

    1998-01-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution. (orig.)

  1. Systems with a constant heat flux with applications to radiative heat transport across nanoscale gaps and layers

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2018-06-01

    We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.

  2. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    International Nuclear Information System (INIS)

    Ruggles, A.E.; Morris, D.G.

    1989-01-01

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab

  3. Third law of thermodynamics in the presence of a heat flux

    International Nuclear Information System (INIS)

    Camacho, J.

    1995-01-01

    Following a maximum entropy formalism, we study a one-dimensional crystal under a heat flux. We obtain the phonon distribution function and evaluate the nonequilibrium temperature, the specific heat, and the entropy as functions of the internal energy and the heat flux, in both the quantum and the classical limits. Some analogies between the behavior of equilibrium systems at low absolute temperature and nonequilibrium steady states under high values of the heat flux are shown, which point to a possible generalization of the third law in nonequilibrium situations

  4. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W; van Breugel, PB; Moors, EJ; Nieveen, JP

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m(-2), or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less

  5. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W.; Breugel, van P.B.; Moors, E.J.; Nieveen, J.P.

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W mm2, or 16 f the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than

  6. Effect of local heat flux spikes on DNB in non-uniformly heated rod bundles

    International Nuclear Information System (INIS)

    Cadek, F.F.; Hill, K.W.; Motley, F.E.

    1975-02-01

    High pressure water tests were carried out to measure the DNB heat flux using an electrically heated rod bundle in which three adjacent rods had 20 percent heat flux spikes at the axial location where DNB is most likely to occur. This test series was run at the same conditions as those of two earlier test series which had unspiked rods, so that spiked and unspiked runs could be paired and spike effects could thus be isolated. Results are described. 7 references. (U.S.)

  7. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  8. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  9. On the use of flat tile armour in high heat flux components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M.; Vieider, G

    1998-10-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution. (orig.) 7 refs.

  10. Effects of nonuniform surface heat flux and uniform volumetric heating on blanket design for fusion reactors

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1988-05-01

    An analytical solution for the temperature profile and film temperature drop for fully-developed, laminar flow in a circular tube is provided. The surface heat flux varies circcimferentally but is constant along the axis of the tube. The volulmetric heat generation is uniform in the fluid. The fully developed laminar velocity profile is approximated by a power velocity profile to represent the flattening effect of a perpendicular magnetic field when the coolant is electrivally conductive. The presence of volumetric heat generation in the fluid adds another component to the film temperature drop to that due to the surface heat flux. The reduction of the boundary layer thickness by a perpendicular magnetic field reduces both of these two film temperature drops. A strong perpendicular magnetic field can reduce the film termperatiure drop by a factor of two if the fluid is electrically conducting. The effect of perpendicualr magnetic field )or the flatness of the velocity profile) is less pronounced on teh film termperature drop due to nonuniform surfacae heat flux than on that due to uniform surface heat flux. An example is provided to show the relative effects on these two film temperd

  11. Measurement of critical heat flux in narrow gap with two-dimensional slices

    International Nuclear Information System (INIS)

    Kim, Yong Hoon; Kim, Sung Joong; Noh, Sang Woo; Suh, Kune Y.

    2002-01-01

    A cooling mechanism due to boiling in a gap between the debris crust and the reactor pressure vessel (RPV) wall was proposed for the TMI-2 reactor accident analysis. If there is enough heat transfer through the gap to cool the outer surface of the debris and the inner surface of the wall, the RPV wall may preserve its integrity during a severe core melt accident. If the heat removal through gap cooling relative to the counter-current flow limitation (CCFL) is pronounced, the safety margin of the reactor can be far greater than what had been previously known in the severe accident management arena. Should a severe accident take place, the RPV integrity will be maintained because of the inherent nature of degraded core coolability inside the lower head due to boiling in a narrow gap between the debris crust and the RPV wall. As a defense-in-depth measure, the heat removal capability by gap cooling coupled with external cooling can be examined for the Korean Standard Nuclear Power Plant (KSNPP) and the Advanced Power Reactor 1400MWe (APR1400) in light of the TMI-2 vessel survival. A number of studies were carried out to investigate the complex heat transfer mechanisms for the debris cooling in the lower plenum. However, these heat transfer mechanisms have not been clearly understood yet. The CHFG (Critical Heat Flux in Gap) experiments at KAERI were carried out to develop the critical heat flux (CHF) correlation in a hemispherical gap, which is the upper limit of the heat transfer. According to the CHFG experiments performed with a pool boiling condition, the CHF in a parallel gap was reduced by 1/30 compared with the value measured in the open pool boiling condition. The correlation developed from the CHFG experiment is based on the fact that the CHF in a hemispherical gap is governed by the CCFL and a Kutateladze type CCFL parameter correlates CCFL data well in hemispherical gap geometry. However, the results of the CHFG experiments appear to be limited in their

  12. A simple mathematical procedure to estimate heat flux in machining using measured surface temperature with infrared laser

    Directory of Open Access Journals (Sweden)

    Hocine Mzad

    2015-09-01

    Full Text Available Several techniques have been developed over time for the measurement of heat and the temperatures generated in various manufacturing processes and tribological applications. Each technique has its own advantages and disadvantages. The appropriate technique for temperature measurement depends on the application under consideration as well as the available tools for measurement. This paper presents a procedure for a simple and accurate determination of the time-varying heat flux at the workpiece–tool interface of three different metals under known cutting conditions. A portable infrared thermometer is used for surface temperature measurements. A spline smoothing interpolation of the surface temperature history enables to determine the local heat flux produced during stock removal. The measured temperature is represented by a third-order spline approximation. Nonetheless, the accuracy of polynomial interpolation depends on how close are the interpolated points; an increase in degree cannot be used to increase the accuracy. Although the data analysis is relatively complicated, the computing time is very small.

  13. Study on critical heat flux based on wavelet transform in rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun

    2014-01-01

    Critical heat flux is very important for the safety of nuclear reactor, and observing temperature rise rate is a feasible method. The wavelet transform is used to analyze the CHF temperature rise curves in rectangular narrow channels, which can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is to guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)

  14. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    Science.gov (United States)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  15. Turbine blade and vane heat flux sensor development, phase 2

    Science.gov (United States)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  16. Two-wavelength Method Estimates Heat fluxes over Heterogeneous Surface in North-China

    Science.gov (United States)

    Zhang, G.; Zheng, N.; Zhang, J.

    2017-12-01

    Heat fluxes is a key process of hydrological and heat transfer of soil-plant-atmosphere continuum (SPAC), and now it is becoming an important topic in meteorology, hydrology, ecology and other related research areas. Because the temporal and spatial variation of fluxes at regional scale is very complicated, it is still difficult to measure fluxes at the kilometer scale over a heterogeneous surface. A technique called "two-wavelength method" which combines optical scintillometer with microwave scintillometer is able to measure both sensible and latent heat fluxes over large spatial scales at the same time. The main purpose of this study is to investigate the fluxes over non-uniform terrain in North-China. Estimation of heat fluxes was carried out with the optical-microwave scintillometer and an eddy covariance (EC) system over heterogeneous surface in Tai Hang Mountains, China. EC method was set as a benchmark in the study. Structure parameters obtained from scintillometer showed that the typical measurement values of Cn2 are around 10-13 m-2/3 for microwave scintillometer, and values of Cn2 were around 10-15 m-2/3 for optical scintillometer. The correlation of heat fluxes (H) derived from scintillometer and EC system showed as a ratio of 1.05,and with R2=0.75, while the correlation of latent heat fluxes (LE) showed as 1.29 with R2=0.67. It was also found that heat fluxes derived from the two system showed good agreement (R2=0.9 for LE, R2=0.97 for H) when the Bowen ratio (β) was 1.03, while discrepancies showed significantly when β=0.75, and RMSD in H was 139.22 W/m2, 230.85 W/m2 in LE respectively.Experiment results in our research shows that, the two-wavelength method gives a larger heat fluxes over the study area, and a deeper study should be conduct. We expect that our investigate and analysis can be promoted the application of scintillometry method in regional evapotranspiration measurements and relevant disciplines.

  17. Steady-state nucleate pool boiling mechanism at low heat fluxes

    International Nuclear Information System (INIS)

    Bastos, L.E.G.

    1979-01-01

    Heat is transfered in the steady state to a horizontal cooper disc inmersed in water at saturation temperature. Levels of heat flux are controlled so that convection and the nucleate boiling can be observed. The value of heat flux is determined experimentally and high speed film is used to record bubble growth. In order to explain the phenomenon the oretical model is proposed in which part of the heat is transfered by free convection during nucleate boiling regime. Agreement between the experiments and the theoretical model is good. (Author) [pt

  18. On the Partitioning of Wall Heat Flux in Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Chu, In-Cheol; Hoang, Nhan Hien; Euh, Dong-Jin; Song, Chul-Hwa

    2015-01-01

    This region has been treated successfully by two-fluid model coupled with a population balance model or interfacial area transport equation (IATE). The second region is near-wall heat transfer which has been commonly described by a wall heat flux partitioning model coupled with models of nucleation site density (NSD), bubble departure diameter and bubble release frequency. Since the phase change process in the near-wall heat transfer is really complex, comprising different heat transfer mechanisms, bubble dynamics, bubble nucleation and thermal response of heated surface, the modeling of the second region is still a great challenge despite intensive efforts. Numerous models and correlations have been proposed to aim for computing the near-wall heat transfer. The models of nucleation site density, bubble departure diameter and bubble release frequency are used to quantify these components. The models closely related to each other. The heat flux partitioning model controls the wall and liquid temperatures. Then, it turns to control the boiling parameters, i.e. nucleation site density, bubble departure diameter and bubble release frequency. In this study, the partitioning of wall heat flux is taken into account. The existing issues occurred with previous models of the heat flux partitioning are pointed out and then a new model which considers the heat transfer caused by evaporation of superheated liquid at bubble boundary and the actual period of transient conduction term is formulated. The new model is then validated with a collected experimental database. This paper presented a new heat flux partitioning model in which the heat transfer by evaporation of the superheated liquid at the bubble boundary and the active period of the transient conduction were considered. The new model was validated with the experimental data of the subcooled flow boiling of water obtained by Phillips

  19. Analysis of decay heat removal following loss of RHR

    International Nuclear Information System (INIS)

    Naff, S.A.; Ward, L.W.

    1991-01-01

    Recent plant experience has included many events occurring during outages at pressurized water reactors. A recent example is the loss of residual heat removal system event that occurred March 20, 1990 at the Vogtle-1 plant following refueling. Plant conditions during outages differ markedly from those prevailing at normal full-power operation on which most past research has concentrated. Specifically, during outages the core power is low, the coolant system may be in a drained state with air or nitrogen present, and various reactor coolant system closures may be unsecured. With the residual heat removal system operating, the core decay heat is readily removed. However, if the residual heat removal system capability is lost and alternative heat removal means cannot be established, heat up of the coolant could lead to core coolant boil-off, fuel rod heat up, and core damage. A study was undertaken by the Nuclear Regulatory Commission to identify what information was needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that might be used, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain into the reactor coolant system, core water boil-off, and reflux condensation cooling processes

  20. Effects of heat flux on dropwise condensation on a superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung Won; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of); Kim, Dong Hyun [KAERI, Daejeon (Korea, Republic of); Jo, Hang Jin [University of Wisconsin-Madison, Wisconsin (United States); Kim, Moo Hwan [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The condensation heat transfer efficiencies of superhydrophobic surfaces that have ∼160.deg. contact angle under atmospheric conditions were investigated experimentally. The departing diameter and the contact angle hysteresis of droplets were measured by capturing front and tilted side views of condensation phenomena with a high speed camera and an endoscope, respectively. Condensation behaviors on the surface were observed at the micro-scale using an Environmental scanning electron microscope (ESEM). Apparently-spherical droplets formed at very low heat flux q' ∼20 kW/m{sup 2} but hemispherical droplets formed at high q' ∼ 440 kW/m{sup 2} . At high q', heat transfer coefficients were lower on the superhydrophobic surface than on a hydrophobic surface although the superhydrophobic surface is water repellent so droplets roll off. The results of contact angle hysteresis and ESEM image revealed that the reduced heat transfer of the surface can be attributed to the large size of departing droplets caused by adhesive condensed droplets at nucleation sites. The results suggest that the effect of q' or degree of sub-cooling of a condensation wall determine the droplet shape, which is closely related to removal rates of condensates and finally to the heat transfer coefficient.

  1. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  2. Critical heat flux and transition boiling characteristics for a sodium-heated steam generator tube for LMFBR applications

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, S.; Holmes, D.H.

    1977-04-01

    An experimental program was conducted to characterize critical heat flux (CHF) in a sodium-heated steam generator tube model at a proposed PLBR steam generator design pressure of 7.2 MPa. Water was circulated vertically upward in the tube and the heating sodium was flowing counter-current downward. The experimental ranges were: mass flux, 110 to 1490 kg/s.m/sup 2/ (0.08 to 1.10 10/sup 6/ lbm/h.ft/sup 2/); critical heat flux, 0.16 to 1.86 MW/m/sup 2/ (0.05 to 0.59 10/sup 6/ Btu/h.ft/sup 2/); and critical quality, 0.48 to 1.0. The CHF phenomenon for the experimental conditions is determined to be dryout as opposed to departure from nucleate boiling (DNB). The data are divided into high- and low-mass flux regions.

  3. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  4. Recent High Heat Flux Tests on W-Rod-Armored Mockups

    International Nuclear Information System (INIS)

    Nygren, Richard E.; Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Miszkiel, Mark E.

    2000-01-01

    In the authors initial high heat flux tests on small mockups armored with W rods, done in the small electron beam facility (EBTS) at Sandia National Laboratories, the mockups exhibited excellent thermal performance. However, to reach high heat fluxes, they reduced the heated area to only a portion (approximately25%) of the sample. They have now begun tests in their larger electron beam facility, EB 1200, where the available power (1.2 MW) is more than enough to heat the entire surface area of the small mockups. The initial results indicate that, at a given power, the surface temperatures of rods in the EB 1200 tests is somewhat higher than was observed in the EBTS tests. Also, it appears that one mockup (PW-10) has higher surface temperatures than other mockups with similar height (10mm) W rods, and that the previously reported values of absorbed heat flux on this mockup were too high. In the tests in EB 1200 of a second mockup, PW-4, absorbed heat fluxes of approximately22MW/m 2 were reached but the corresponding surface temperatures were somewhat higher than in EBTS. A further conclusion is that the simple 1-D model initially used in evaluating some of the results from the EBTS testing was not adequate, and 3-D thermal modeling will be needed to interpret the results

  5. Experimental study on the effect of heat flux tilt on rod bundle dryout limitation

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, S; Terunuma, K; Kamoshida, H [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-12-31

    The effect of heat flux tilt on rod bundle dryout limitation was studied experimentally using a full-scale mock-up test facility and simulated 36-rod fuel bundles in which heater pins have azimuthal nonuniform heat flux distribution (i.e., heat flux tilt). Experimental results for typical lateral power distribution in the bundle indicate that the bundle dryout power with azimuthal heat flux tilt is higher than that without azimuthal heat flux tilt in the entire experimental range. Consequently, it is concluded that the dryout experiment using the test bundle with heater pins which has circumferentially uniform heat flux distribution gives conservative results for the usual lateral power distribution in a bundle in which the relative power of outermost-circle fuel rods is higher than those of middle- and inner-circle ones. (author). 15 refs., 2 tabs., 8 figs.

  6. Experimental study on the effect of heat flux tilt on rod bundle dryout limitation

    International Nuclear Information System (INIS)

    Sugawara, S.; Terunuma, K.; Kamoshida, H.

    1995-01-01

    The effect of heat flux tilt on rod bundle dryout limitation was studied experimentally using a full-scale mock-up test facility and simulated 36-rod fuel bundles in which heater pins have azimuthal nonuniform heat flux distribution (i.e., heat flux tilt). Experimental results for typical lateral power distribution in the bundle indicate that the bundle dryout power with azimuthal heat flux tilt is higher than that without azimuthal heat flux tilt in the entire experimental range. Consequently, it is concluded that the dryout experiment using the test bundle with heater pins which has circumferentially uniform heat flux distribution gives conservative results for the usual lateral power distribution in a bundle in which the relative power of outermost-circle fuel rods is higher than those of middle- and inner-circle ones. (author). 15 refs., 2 tabs., 8 figs

  7. Prediction of Heat Removal Capacity of Horizontal Condensation Heat Exchanger submerged in Pool

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Park, Goon-Cherl [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    As representative passive safety systems, there are the passive containment cooling system (PCCS) of ESBWR, the emergency condenser system (ECS) of the SWR-1000, the passive auxiliary feed-water system (PAFS) of the APR+ and etc. During the nuclear power plant accidents, these passive safety systems can cool the nuclear system effectively via the heat transfer through the steam condensation, and then mitigate the accidents. For the optimum design and the safety analysis of the passive safety system, it is essential to predict the heat removal capacity of the heat exchanger well. The heat removal capacity of the horizontal condensation heat exchanger submerged in a pool is determined by a combination of a horizontal in-tube condensation heat transfer and a boiling heat transfer on the horizontal tube. Since most correlations proposed in the previous nuclear engineering field were developed for the vertical tube, there is a certain limit to apply these correlations to the horizontal tube. Therefore, this study developed the heat transfer model for the horizontal Ushaped condensation heat exchanger submerged in a pool to predict well the horizontal in-tube condensation heat transfer, the boiling heat transfer on the horizontal tube and the overall heat removal capacity of the heat exchanger using the best-estimate system analysis code, MARS.

  8. On dryout heat flux and pressure drop of a submerged inductively heated bed flow from below

    International Nuclear Information System (INIS)

    Tsai, F.F.; Catton, I.

    1983-01-01

    An experimental investigation of dryout heat flux in a saturated porous medal with forced flow from below has been conducted using methanol as a coolant. The mass flux varied from 0 to 0.557 kg/m 2 sec. Particle sizes were 590-790 μm, 1.6 mm, 3.2 mm, and 4.8 mm. The dryout heat flux increases as the mass flux increases, and asymptotically goes to the total evaporation energy of the inlet flow. The pressure drop across the bed changed very rapidly near the dryout point due to the formation of dry zone

  9. Heat flux variations over sea-ice observed at the coastal area of the Sejong Station, Antarctica

    Science.gov (United States)

    Park, S.; Choi, T.; Kim, S.

    2012-12-01

    This study presents variations of sensible heat flux and latent heat flux over sea-ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from June to November was divided into three parts: "Freezing", "Frozen", and "Melting" periods based on daily monitoring of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. The division of periods enabled us to look into the heat flux variations depending on the sea-ice conditions. Over freezing sea surface during the freezing period of late June, daily mean sensible heat flux was -11.9 Wm-2 and daily mean latent heat flux was +16.3 Wm-2. Over the frozen sea-ice, daily mean sensible heat flux was -10.4 Wm-2 while daily mean latent heat flux was +2.4 Wm-2. During the melting period of mid-October to early November, magnitudes of sensible heat flux increased to -14.2 Wm-2 and latent heat flux also increased to +13.5 Wm-2. In short, latent heat flux was usually upward over sea-ice most of the time while sensible heat flux was downward from atmosphere to sea-ice. Magnitudes of the fluxes were small but increased when freezing or melting of sea-ice was occurring. Especially, latent heat flux increased five to six times compared to that of "frozen" period implying that early melting of sea-ice may cause five to six times larger supply of moisture to the atmosphere.

  10. Calculation of heat fluxes induced by radio frequency heating on the actively cooled protections of ion cyclotron resonant heating (ICRH) and lower hybrid (LH) antennas in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, G., E-mail: Guillaume.ritz@gmail.com [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Corre, Y., E-mail: Yann.corre@cea.fr [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Rault, M.; Missirlian, M. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint Paul-lez-Durance (France); Martinez, A.; Ekedahl, A.; Colas, L.; Guilhem, D.; Salami, M.; Loarer, T. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► The heat flux generated by radiofrequency (RF) heating was calculated using Tore Supra's heating antennas. ► The highest heat flux value, generated by ions accelerated in RF-rectified sheath potentials, was 5 MW/m{sup 2}. ► The heat flux on the limiters of antennas was in the same order of magnitude as that on the toroidal pumping limiter. -- Abstract: Lower hybrid current drive (LHCD) and ion cyclotron resonance heating (ICRH) are recognized as important auxiliary heating and current drive methods for present and next step fusion devices. However, these radio frequency (RF) systems generate a heat flux up to several MW/m{sup 2} on the RF antennas during plasma operation. This paper focuses on the determination of the heat flux deposited on the lateral protections of the RF antennas in Tore Supra. The heat flux was calculated by finite element method (FEM) using a model of the lateral protection. The FEM calculation was based on surface temperature measurements using infrared cameras monitoring the RF antennas. The heat flux related to the acceleration of electrons in front of the LHCD grills (LHCD active) and to the acceleration of ions in RF-rectified sheath potentials (ICRH active) were calculated. Complementary results on the heat flux related to fast ions (ICRH active with a relatively low magnetic field) are also reported in this paper.

  11. Analysis of high heat flux testing of mock-ups

    International Nuclear Information System (INIS)

    Salavy, J.-F.; Giancarli, L.; Merola, M.; Picard, F.; Roedig, M.

    2003-01-01

    ITER EU Home Team is performing a large R and D effort in support of the development of high heat flux components for ITER. In this framework, this paper describes the thermal analyses, the fatigue lifetime evaluation and the transient VDE with material melting related to the high heat flux thermo-mechanical tests performed in the JUDITH facility. It reports on several mock-ups representative of different proposed component designs based on Be, W and CFC as armour materials

  12. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    Science.gov (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  13. Heat flux exchange estimation by using ATSR SST data in TOGA area

    Science.gov (United States)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    The study of phenomena such as ENSO requires consideration of the dynamics and thermodynamics of the coupled ocean-atmosphere system. The dynamic and thermal properties of the atmosphere and ocean are directly affected by air-sea transfers of fluxes of momentum, heat and moisture. In this paper, we present results of turbulent heat fluxes calculated by using two years (1992 and 1993) monthly average TOGA data and ATSR SST data in TOGA area. A comparison with published results indicates good qualitative agreement. Also, we compared the results of heat flux exchange by using ATSR SST data and by using the TOGA bucket SST data. The ATSR SST data set has been shown to be useful in helping to estimate the large space scale heat flux exchange.

  14. Heat flux characteristics in an atmospheric double arc argon plasma jet

    International Nuclear Information System (INIS)

    Tu Xin; Yu Liang; Yan Jianhua; Cen Kefa; Cheron, Bruno

    2008-01-01

    In this study, the axial evolution of heat flux excited by a double arc argon plasma jet impinging on a flat plate is determined, while the nonstationary behavior of the heat flux is investigated by combined means of the fast Fourier transform, Wigner distribution, and short-time Fourier transform. Two frequency groups (<1 and 2-10 kHz) are identified in both the Fourier spectrum and the time-frequency distributions, which suggest that the nature of fluctuations in the heat flux is strongly associated with the dynamic behavior of the plasma arc and the engulfment of ambient air into different plasma jet regions

  15. Alongshore wind stress and heat flux divergence off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, B.P.; Rao, D.P.

    Annual variation of heat flux divergence (Qv) was computed for the coastal waters of Visakhapatnam. The mean values of net heat exchange (Qn) and heat flux divergence (Qv) were found to be 114 and 115 W.m/2 respectively on annual scale. The net heat...

  16. Heat Flux of a Transferred Arc Driven by a Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Naomi Matsumoto

    2009-01-01

    Full Text Available Theoretical consideration of a magnetically driven arc was performed to elucidate the variation of heat flux with an imposed DC magnetic field. Experiments were conducted to confirm the validity of the theoretical model. The heat flux decreased concomitantly with increased imposed magnetic flux density. Theoretical predictions agreed with experimental results.

  17. Prediction of strongly-heated gas flows in a vertical tube using explicit algebraic stress/heat-flux models

    International Nuclear Information System (INIS)

    Baek, Seong Gu; Park, Seung O.

    2003-01-01

    This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions

  18. Burnout in a channel with non-uniform circumferential heat flux

    International Nuclear Information System (INIS)

    Lee, D.H.

    1966-03-01

    Burnout experiments are reported for uniform flux and circumferential flux tilt (maximum/average flux about 1.25) with tubes and annuli, all the experiments having uniform axial heating. These show similar results, the burnout power with flux tilt being within 10% of that with uniform flux. For the same mean exit steam quality, the local maximum flux is higher than the predicted burnout value and generally a better prediction is obtained using the average flux. (author)

  19. Flow boiling heat transfer of R134a and R404A in a microfin tube at low mass fluxes and low heat fluxes

    Science.gov (United States)

    Spindler, Klaus; Müller-Steinhagen, Hans

    2009-05-01

    An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and -20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.

  20. Heat flux estimation in an infrared experimental furnace using an inverse method

    International Nuclear Information System (INIS)

    Le Bideau, P.; Ploteau, J.P.; Glouannec, P.

    2009-01-01

    Infrared emitters are widely used in industrial furnaces for thermal treatment. In these processes, the knowledge of the incident heat flux on the surface of the product is a primary step to optimise the command emitters and for maintenance shift. For these reasons, it is necessary to develop autonomous flux meters that could provide an answer to these requirements. These sensors must give an in-line distribution of infrared irradiation in the tunnel furnace and must be able to measure high heat flux in severe thermal environments. In this paper we present a method for in-line assessments solving an inverse heat conduction problem. A metallic mass is instrumented by thermocouples and an inverse method allows the incident heat flux to be estimated. In the first part, attention is focused on a new design tool, which is a numerical code, for the evaluation of potential options during captor conception. In the second part we present the realization and the test of this 'indirect' flux meter and its associated inverse problem. 'Direct' detectors based on thermoelectric devices are compared with this new flux meter in the same conditions in the same furnace. Results prove that this technique is a reliable method, appropriate for high temperature ambiances. This technique can be applied to furnaces where the heat flux is inaccessible to 'direct' measurements.

  1. After-heat removal system of fast reactor

    International Nuclear Information System (INIS)

    Otsuka, Masaya; Shibata, Yoji; Ikeda, Takashi; Iwashige, Kengo; Yoneda, Yoshiyuki.

    1988-01-01

    Purpose: To remove after-heat by natural convection without disposing a movable portion even in a large-scaled reactor. Constitution: The exit of a reactor wall air-cooling duct disposed to the outside of a safety vessel is connected to the secondary inlet of an air cooler that conducts heat exchange with sodium in a high temperature plenum. That is, after-heat is removed only through the natural convection by a structure in which the reactor wall air-cooling duct and the secondary side of the air cooler are connected in series. Air exhausted from the exit of the air-cooling duct by the air cooler is further heated with sodium in the high temperature plenum. The flow rate of air flowing through the air-cooling duct is increased as compared with the case where the air cooler is not present. Accordingly, the flow rate of air at low temperature flowing through the inlet of the air duct is increased to increase the heat conduction amount. In this way, after-heat can be removed only by means of natural convection without providing movable portions even in a large-scaled reactor with the thermal power in excess of 2,000 MW. (Horiuchi, T.)

  2. Advances in technologies for decay heat removal

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Berkovich, V.; Bianchi, A.; Chen B.; Meseth, J.; Vecchiarelli, J.; Vidard, M.

    1999-01-01

    The various decay heat removal concepts that have been used for the evolutionary water reactor plant designs developed worldwide are examined and common features identified. Although interesting new features of the 'classical' plants are mentioned, the emphasis is on passive core and containment decay heat removal systems. The various systems are classified according to the function they have to accomplish; they often share common characteristics and similar equipment. (author)

  3. Comparison between different methods of measurement of momentum and sensible heat fluxes over canopies

    Directory of Open Access Journals (Sweden)

    Marc Aubinet

    1997-01-01

    Full Text Available Différent methods of measurement of momentum and sensible heat flux densifies are presented and compared above a gras covered fallow. The aerodynamic (AD and eddy covariance (EC methods are presented and compared for both momentum and sensible heat measurements. In addition, the temperature fluctuation (TF method is compared to the HEC method for the sensible heat flux measurement. The AD and EC methods are in good agreement for the momentum flux measurements. For the sensible heat flux, the AD method is very sensible to temperature errors. So it is unusable during night and gives biased estimations during the day. The TF method gives only estimations of the sensible heat flux. It is in good agreement with the EC method during the day but diverges completely during night, being unable to disceming positive from négative fluxes. From the three methods, the EC method is the sole that allows to measure continuously both momentum and sensible heat flux but it requires a loud data treatment. We présent in this paper the algorithm used for this treatment.

  4. An investigation of critical heat fluxes in vertical tubes internally cooled by Freon-12. Part I - Critical heat flux experiments with axially uniform and non-uniform heating and comparisons of data with selected correlations

    International Nuclear Information System (INIS)

    Green, W.J.; Stevens, J.R.

    1981-08-01

    Experiments have been performed using vertical heated tubes, cooled internally by Freon-12, to determine critical heat fluxes (CHFs) for both a uniformly heated section and an exit region with a separately controlled power supply. Heated lengths of the main separately were 2870 mm (8.48 and 16.76 mm tube bores) and 3700 mm (for 21.34 mm tube bore); heated length of the exit section was 230 mm. Coolant pressures, exit qualities and mass fluxes were in the range 0.9 to 1.3 MPa, 0.19 to 0.86, and 380 to 2800 kg m -2 s -1 , respectively. The data have been compared with published empirical correlations specifically formulated to predict CHFs in Freon-cooled, vertical tubes; relevant published CHF data have also been compared with these correlations. These comparisons show that, even over the ranges of conditions for which the correlations were developed, predicted values are only accurate to within +-20 per cent. Moreover, as mass fluxes increase above 3500 kg m -2 s -1 , the modified Groeneveld correlation becomes increasingly inadequate, and the Bertoletti and modified Bertoletti correlations under-predict CHF values by increasing amounts. At mass fluxes below 750 kg m -2 s -1 the Bertoletti correlations exhibit increasing inaccuracy with a decrease in mass flux. For non-uniform heating, the correlations are at variance with the experimental data

  5. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  6. Effects of Liquid Metal Fin on Critical Heat Flux under IVR-ERVC Condition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    The molten fuel is relocated to bottom of reactor vessel after core is damaged and not cooled continuously. In-vessel retention through external reactor vessel cooling (IVR-ERVC) is presented to terminate the progression of accidents by removing the decay heat. IVR-ERVC is suitable for small size reactors like AR-600, AP-1000. There is uncertainty for high power reactor like APR-1400 and CAP-1400. This uncertainty originates from the thermal margin between the CHF value and real heat flux on the reactor vessel under severe accidents. The main mechanism of heat removal on IVR-ERVC strategy is boiling on the outer wall of reactor vessel. The boiling heat transfer is limited due to the CHF phenomenon. There should be an enough margin for preventing the CHF in boiling heat transfer systems. The CHF tests for IVR-ERVC system were conducted to confirm or increase the thermal margin. The design of thermal insulator was changed to vent the vapor smoothly. Forming the coating layer on the vessel surface was proposed to enhance the CHF margin. The liquid metal was designed to flood the space around the reactor vessel. The liquid metal has high boiling point and superb thermal conductivity in comparison with the coolant. In this work, experimental tests were conducted to validate the CFD results about the IVR-ERVC system with liquid metal. The behavior of vapor was observed to predict the tendency of CHF increase with small-scaled facility to simulate the IVR-ERVC system.

  7. Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data

    DEFF Research Database (Denmark)

    Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils

    The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland...

  8. Measurements of Critical Heat Flux using Mass Transfer System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Hyun; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    In a severe accident, the reactor vessel is heated by the decay heat from core melts and the outer surface of reactor vessel is cooled by the natural convection of water pool. When the heat flux increases, boiling will start. Further increase of the heat flux may result in the CHF, which is generated by the bubble combinations. The CHF means that the reactor vessel was separated with coolant and wall temperature is raised rapidly. It may damage the reactor vessel. Also the CHF indicates the maximum cooling capability of the system. Therefore, the CHF has been used as a criterion for the regulatory and licensing. Mechanism of hydrogen vapor bubbles generated and combined can be simulated water bubbles mechanism. And also the both heat and mass transfer mechanism of CHF can be identified in the same methods. Therefore, the CHF phenomena can be simulated enough by mass transfer.

  9. First-wall heat-flux measurements during ELMing H-mode plasma

    International Nuclear Information System (INIS)

    Lasnier, C.J.; Allen, S.L.; Hill, D.N.; Leonard, A.W.; Petrie, T.W.

    1994-01-01

    In this report we present measurements of the diverter heat flux in DIII-D for ELMing H-mode and radiative diverter conditions. In previous work we have examined heat flux profiles in lower single-null diverted plasmas and measured the scaling of the peak heat flux with plasma current and beam power. One problem with those results was our lack of good power accounting. This situation has been improved to better than 80--90% accountability with the installation of new bolometer arrays, and the operation of the entire complement of 5 Infrared (IR) TV cameras using the DAPS (Digitizing Automated Processing System) video processing system for rapid inter-shot data analysis. We also have expanded the scope of our measurements to include a wider variety of plasma shapes (e.g., double-null diverters (DND), long and short single-null diverters (SND), and inside-limited plasmas), as well as more diverse discharge conditions. Double-null discharges are of particular interest because that shape has proven to yield the highest confinement (VH-mode) and beta of all DIII-D plasmas, so any future diverter modifications for DIII-D will have to support DND operation. In addition, the proposed TPX tokamak is being designed for double-null operation, and information on the magnitude and distribution of diverter heat flux is needed to support the engineering effort on that project. So far, we have measured the DND power sharing at the target plates and made preliminary tests of heat flux reduction by gas injection

  10. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  11. Experimental data on heat flux distribution from a volumetrically heated pool with frozen boundaries

    International Nuclear Information System (INIS)

    Helle, Maria; Kymaelaeinen, Olli; Tuomisto, Harri

    1999-01-01

    The COPO II experiments are confirmatory experiments and a continuation project to the earlier COPO I experiments. As in COPO 1, a molten corium pool on the lower head of a RPV is simulated by a two - dimensional slice of it in linear scale 1:2. The corium is simulated by water-zinc sulfate solution with volumetric Joule heating. The heat flux distribution on the boundaries and the temperature distribution in the pool are measured. The major new feature in COPO II is the cooling arrangement which is based on circulation of liquid nitrogen on the outside of the pool boundaries. The use of liquid nitrogen leads to formation of ice on the inside of boundaries. Two geometrically different versions of the COPO II facility have been constructed: one with a tori-spherical bottom shape, simulating the RPV of a VVER-440 reactor as COPO I, and another one with semicircular bottom simulating a western PWR such as AP600. The modified Rayleigh number in the COPO II experiments corresponds to the one in a prototypic corium pool (∼ 10 15 ). This paper reports results from the COPO II-Lo and COPO II-AP experiments with homogenous pool. Results indicate that the upward heat fluxes are in agreement with the results of the COPO I experiments. Also, as expected, the time averaged upward heat flux profile was relatively flat. On the other hand, the heat fluxes at the side and bottom boundaries of the pool were slightly higher in COPO II-Lo than in COPO I. In COPO II-AP, the average heat transfer coefficients to the curved boundary were higher than predicted by Jahn's and Mayinger's correlation, but slightly lower than in BALI experiments. (authors)

  12. Flow and Heat Transfer Characteristics of Turbulent Gas Flow in Microtube with Constant Heat Flux

    International Nuclear Information System (INIS)

    Hong, Chungpyo; Matsushita, Shinichi; Ueno, Ichiro; Asako, Yutaka

    2012-01-01

    Local friction factors for turbulent gas flows in circular microtubes with constant wall heat flux were obtained numerically. The numerical methodology is based on arbitrary-Lagrangian-Eulerian method to solve two-dimensional compressible momentum and energy equations. The Lam-Bremhorst's Low-Reynolds number turbulence model was employed to calculate eddy viscosity coefficient and turbulence energy. The simulations were performed for a wide flow range of Reynolds numbers and Mach numbers with different constant wall heat fluxes. The stagnation pressure was chosen in such a way that the outlet Mach number ranged from 0.07 to 1.0. Both Darcy friction factor and Fanning friction factor were locally obtained. The result shows that the obtained both friction factors were evaluated as a function of Reynolds number on the Moody chart. The values of Darcy friction factor differ from Blasius correlation due to the compressibility effects but the values of Fanning friction factor almost coincide with Blasius correlation. The wall heat flux varied from 100 to 10000 W/m 2 . The wall and bulk temperatures with positive heat flux are compared with those of incompressible flow. The result shows that the Nusselt number of turbulent gas flow is different from that of incompressible flow.

  13. Heat flux and quantum correlations in dissipative cascaded systems

    Science.gov (United States)

    Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio

    2015-02-01

    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the heat-flux rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.

  14. Turbulent transport regimes and the SOL heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2014-10-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks, and for seeking possible mitigation schemes. Simulation and theory results using reduced edge/SOL turbulence models have produced SOL widths and scalings in reasonable accord with experiments in many cases. In this work, we attempt to qualitatively and conceptually understand various regimes of edge/SOL turbulence and the role of turbulent transport in establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. Recent SOLT turbulence code results are employed to understand the roles of these considerations and to develop analytical scalings. We find a heat flux width scaling with major radius R that is generally positive, consistent with older results reviewed in. The possible relationship of turbulence mechanisms to the heuristic drift mechanism is considered, together with implications for future experiments. Work supported by US DOE grant DE-FG02-97ER54392.

  15. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.

    2016-01-01

    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  16. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Anoda, Yoshinari

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m 2 s - 1651 kg/m 2 s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of the grid

  17. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwaki, Chikako [Toshiba Corp., Tokyo (Japan)

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m{sup 2}s - 1651 kg/m{sup 2}s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of

  18. Options for a high heat flux enabled helium cooled first wall for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: f.arbe@kit.edu; Chen, Yuming; Ghidersa, Bradut-Eugen; Klein, Christine; Neuberger, Heiko; Ruck, Sebastian; Schlindwein, Georg; Schwab, Florian; Weth, Axel von der

    2017-06-15

    Highlights: • Design challenges for helium cooled first wall reviewed and otimization approaches explored. • Application of enhanced heat transfer surfaces to the First Wall cooling channels. • Demonstrated a design point for 1 MW/m{sup 2} with temperatures <550 °C and acceptable stresses. • Feasibility of several manufacturing processes for ribbed surfaces is shown. - Abstract: Helium is considered as coolant in the plasma facing first wall of several blanket concepts for DEMO fusion reactors, due to the favorable properties of flexible temperature range, chemical inertness, no activation, comparatively low effort to remove tritium from the gas and no chemical corrosion. Existing blanket designs have shown the ability to use helium cooled first walls with heat flux densities of 0.5 MW/m{sup 2}. Average steady state heat loads coming from the plasma for current EU DEMO concepts are expected in the range of 0.3 MW/m{sup 2}. The definition of peak values is still ongoing and depends on the chosen first wall shape, magnetic configuration and assumptions on the fraction of radiated power and power fall off lengths in the scrape off layer of the plasma. Peak steady state values could reach and excess 1 MW/m{sup 2}. Higher short-term transient loads are expected. Design optimization approaches including heat transfer enhancement, local heat transfer tuning and shape optimization of the channel cross section are discussed. Design points to enable a helium cooled first wall capable to sustain heat flux densities of 1 MW/m{sup 2} at an average shell temperature lower than 500 °C are developed based on experimentally validated heat transfer coefficients of structured channel surfaces. The required pumping power is in the range of 3–5% of the collected thermal power. The FEM stress analyses show code-acceptable stress intensities. Several manufacturing methods enabling the application of the suggested heat transfer enhanced first wall channels are explored. An

  19. Numerical Analysis on Heat Flux Distribution through the Steel Liner of the Ex-vessel Core Catcher

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Hong; Choi, Choeng Ryul [ELSOLTEC, Yongin (Korea, Republic of); Kim, Byung Jo; Lee, Kyu Bok [KEPCO, Gimcheon (Korea, Republic of); Hwang, Do Hyun [KHNP-CRI, Daejeon (Korea, Republic of)

    2016-05-15

    In order to prevent material failure of steel container of the core catcher system due to high temperatures, heat flux through the steel liner wall must be kept below the critical heat flux (CHF), and vapor dry-out of the cooling channel must be avoided. In this study, CFD methodology has been developed to simulate the heat flux distribution in the core catcher system, involving following physical phenomena: natural convection in the corium pool, boiling heat transfer and solidification/melting of the corium. A CFD methodology has been developed to simulate the thermal/hydraulic phenomena in the core catcher system, and a numerical analysis has been carried out to estimate the heat flux through the steel liner of the core catcher. High heat flux values are formed at the free surface of the corium pool. However, the heat flux through the steel liner is maintained below the critical heat flux.

  20. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  1. Tabular method of critical heat flux description in square packing rod bundles

    International Nuclear Information System (INIS)

    Bobkov, V.P.; Smogalev, I.P.

    2003-01-01

    Elaborations of harnessing tabular method for the description and calculation of critical heat fluxes in square packing rod bundles are presented. The tabular method for fuel rod triangular assemblies derived from using basic table for critical heat fluxes in triangular fuel assemblies demonstrates good results. For the harnessing tabular method in square packing rod bundles correction functions reflecting specific geometry were found. Comparative evaluations of calculated values for the critical heat fluxes with experimental ones are presented. Good agreement of calculations with experiments is noted in all range of parameters [ru

  2. High heat flux thermal-hydraulic analysis of ITER divertor and blanket systems

    International Nuclear Information System (INIS)

    Raffray, A.R.; Chiocchio, S.; Ioki, K.; Tivey, R.; Krassovski, D.; Kubik, D.

    1998-01-01

    Three separate cooling systems are used for the divertor and blanket components, based mainly on flow routing access and on grouping together components with the highest heat load levels and uncertainties: divertor, limiter/outboard baffle, and primary first wall/inboard baffle. The coolant parameters for these systems are set to accommodate peak heat load conditions with a reasonable critical heat flux (CHF) margin. Material temperature constraints and heat transport system space and cost requirements are also taken into consideration. This paper summarises the three cooling system designs and highlights the high heat flux thermal-hydraulic analysis carried out in converging on the design values for the coolant operating parameters. Application of results from on-going high heat flux R and D and a brief description of future R and D effort to address remaining issues are also included. (orig.)

  3. Analytical studies on the impact of using repeated-rib roughness in LMR [Liquid Metal Reactor] decay heat removal systems

    International Nuclear Information System (INIS)

    Obot, N.T.; Tessier, J.H.; Pedersen, D.R.

    1988-01-01

    A numerical study was carried out to determine the effects of roughness on the thermal performance of Liquid Metal Reactor (LMR) decay heat removal systems for a range of possible design configurations and operating conditions. The ranges covered for relative rib height (e/D/sub h/), relative pitch (p/e) and flow attack angle were 0.026--0.103, 5--20 and 0--90 degrees, successively. The heat flux was varied between 1.1 and 21.5 kW/m 2 (0.1 and 2.0 kW/ft 2 ). Calculations were made for three cases: smooth duct with no ribs, ribs on both the guard vessel and collector wall, and ribs on the collector wall only. The results indicate that significant benefits, amounting to nearly two-fold reductions in guard vessel and collector wall temperatures, can be realized by placing repeated ribs on both the guard vessel and the collector wall. The magnitudes of the reduction in the reactor vessel temperature are considerably smaller. In general, the level of improvement, be it with respect to temperature or heat flux, is only mildly affected by changes in rib height or pitch but exhibits greater sensitivity to the assumed value for the system form loss. When the ribs are placed only on the collector wall, the heat removal capability is substantially reduced

  4. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  5. Study of dryout heat fluxes in beds of inductively heated particles

    International Nuclear Information System (INIS)

    Dhir, V.K.; Catton, I.

    1977-02-01

    Experimental observations of the dryout heat fluxes for inductively heated particulate beds have been made. The data were obtained when steel and lead particles in the size distribution 295-787 microns were placed in a 4.7 cm diameter pyrex glass jar and inductively heated by passing radio frequency current through a 13.3 cm diameter multi-turn work coil encircling the jar. Distilled water, methanol and acetone were used as coolants in the experiments, while the bed height was varied from 1.0 to 8.9 cm. Different mechanisms for the dryout in deep and shallow beds have been identified. Dryout in shallow beds is believed to occur when the vapor velocity in the gas jets exceeds a certain critical velocity at which choking of the vapor occurs, leading to obstruction in the flow of the liquid toward the bed. However, deep beds dry out when gravitational force can no longer maintain a downward coolant flow rate necessary to dissipate the heat generated in the bed. The heat flux data of the investigation and that from two previous investigations made at Argonne Laboratory and at UCLA have been correlated with semi-theoretical correlations based on the proposed hydrodynamic models. The deep and shallow bed correlations are used to predict the bed height at which transition from deep to shallow bed would occur. An application of the study has been made to determine the maximum coolable depths of the core debris as a function of the particle size, bed porosity and decay heat

  6. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  7. Fabrication of Anodic Aluminum Oxide Membrane for High Heat Flux Evaporation

    OpenAIRE

    McGrath, Kristine

    2016-01-01

    As electronics become more powerful and have higher energy densities, it is becoming more and more necessary to find solutions to dissipate these high heat fluxes. One solution to this problem is nanopore evaporative cooling. Based on current literature, the experimental data is far below what is expected from the theoretical calculations.In this thesis, the experimental results produced heat fluxes much closer to the theoretical values. Experimentally, a maximum heat dissipation of 103 W was...

  8. High heat flux x-ray monochromators: What are the limits?

    International Nuclear Information System (INIS)

    Rogers, C.S.

    1997-06-01

    First optical elements at third-generation, hard x-ray synchrotrons, such as the Advanced Photon Source (APS), are subjected to immense heat fluxes. The optical elements include crystal monochromators, multilayers and mirrors. This paper presents a mathematical model of the thermal strain of a three-layer (faceplate, heat exchanger, and baseplate), cylindrical optic subjected to narrow beam of uniform heat flux. This model is used to calculate the strain gradient of a liquid-gallium-cooled x-ray monochromator previously tested on an undulator at the Cornell High Energy Synchrotron Source (CHESS). The resulting thermally broadened rocking curves are calculated and compared to experimental data. The calculated rocking curve widths agree to within a few percent of the measured values over the entire current range tested (0 to 60 mA). The thermal strain gradient under the beam footprint varies linearly with the heat flux and the ratio of the thermal expansion coefficient to the thermal conductivity. The strain gradient is insensitive to the heat exchanger properties and the optic geometry. This formulation provides direct insight into the governing parameters, greatly reduces the analysis time, and provides a measure of the ultimate performance of a given monochromator

  9. A combined ANN-GA and experimental based technique for the estimation of the unknown heat flux for a conjugate heat transfer problem

    Science.gov (United States)

    M K, Harsha Kumar; P S, Vishweshwara; N, Gnanasekaran; C, Balaji

    2018-05-01

    The major objectives in the design of thermal systems are obtaining the information about thermophysical, transport and boundary properties. The main purpose of this paper is to estimate the unknown heat flux at the surface of a solid body. A constant area mild steel fin is considered and the base is subjected to constant heat flux. During heating, natural convection heat transfer occurs from the fin to ambient. The direct solution, which is the forward problem, is developed as a conjugate heat transfer problem from the fin and the steady state temperature distribution is recorded for any assumed heat flux. In order to model the natural convection heat transfer from the fin, an extended domain is created near the fin geometry and air is specified as a fluid medium and Navier Stokes equation is solved by incorporating the Boussinesq approximation. The computational time involved in executing the forward model is then reduced by developing a neural network (NN) between heat flux values and temperatures based on back propagation algorithm. The conjugate heat transfer NN model is now coupled with Genetic algorithm (GA) for the solution of the inverse problem. Initially, GA is applied to the pure surrogate data, the results are then used as input to the Levenberg- Marquardt method and such hybridization is proven to result in accurate estimation of the unknown heat flux. The hybrid method is then applied for the experimental temperature to estimate the unknown heat flux. A satisfactory agreement between the estimated and actual heat flux is achieved by incorporating the hybrid method.

  10. Decay heat removal for the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Zemanick, P.P.; Brown, N.W.

    1975-01-01

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. A statement of the high reliability of the Clinch River Breeder reactor Plant decay heat removal systems and a summary of the supporting arguments is presented. (U.S.)

  11. Decay Heat Removal for the Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zemanick, P. P.; Brown, N. W.

    1975-10-15

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. The paper closes with a statement of the high reliability of the Clinch River Breeder Reactor Plant decay heat removal systems and a summary of the supporting arguments. (author)

  12. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  13. An innovative pool with a passive heat removal system

    International Nuclear Information System (INIS)

    Vitale Di Maio, Damiano; Naviglio, Antonio; Giannetti, Fabio; Manni, Fabio

    2012-01-01

    Heat removal systems are of primary importance in several industrial processes. As heat sink, a water pool or atmospheric air may be selected. The first solution takes advantage of high heat transfer coefficient with water but it requires active systems to maintain a constant water level; the second solution takes benefit from the unlimited heat removal capacity by air, but it requires a larger heat exchanger to compensate the lower heat transfer coefficient. In NPPs (nuclear power plants) during a nuclear reactor shutdown, as well as in some chemical plants to control runaway reactions, it is possible to use an innovative heat sink that joins the advantages of the two previous solutions. This solution is based on a special heat exchanger submerged in a water pool designed so that when heat removal is requested, active systems are not required to maintain the water level; due to the special design, when the pool is empty, atmospheric air becomes the only heat sink. The special heat exchanger design allows to have a heat exchanger without being oversized and to have a system able to operate for unlimited period without external interventions. This innovative system provides an economic advantage as well as enhanced safety features.

  14. Stretched flow of Oldroyd-B fluid with Cattaneo-Christov heat flux

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The objective of present attempt is to analyse the flow and heat transfer in the flow of an Oldroyd-B fluid over a non-linear stretching sheet having variable thickness. Characteristics of heat transfer are analyzed with temperature dependent thermal conductivity and heat source/sink. Cattaneo-Christov heat flux model is considered rather than Fourier’s law of heat conduction in the present flow analysis. Thermal conductivity varies with temperature. Resulting partial differential equations through laws of conservation of mass, linear momentum and energy are converted into ordinary differential equations by suitable transformations. Convergent series solutions for the velocity and temperature distributions are developed and discussed. Keywords: Oldroyd-B fluid, Variable sheet thickness, Cattaneo-Christov heat flux model, Heat source/sink, Temperature dependent thermal conductivity

  15. Copper alloys for high heat flux structure applications

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Fabritsiev, S.A.

    1994-01-01

    The mechanical and physical properties of copper alloys are reviewed and compared with the requirements for high heat flux structural applications in fusion reactors. High heat flux structural materials must possess a combination of high thermal conductivity and high mechanical strength. The three most promising copper alloys at the present time are oxide dispersion-strengthened copper (Cu-Al 2 O 3 ) and two precipitation-hardened copper alloys (Cu-Cr-Zr and Cu-Ni-Be). These three alloys are capable of room temperature yield strengths >400 MPa and thermal conductivities up to 350 W/m-K. All of these alloys require extensive cold working to achieve their optimum strength. Precipitation-hardened copper alloys such Cu-Cr-Zr are susceptible to softening due to precipitate overaging and recrystallization during brazing, whereas the dislocation structure in Cu-Al 2 O 3 remains stabilized during typical high temperature brazing cycles. All three alloys exhibit good resistance to irradiation-induced softening and void swelling at temperatures below 300 degrees C. The precipitation-strengthened allows typically soften during neutron irradiation at temperatures above about 300 degrees C and therefore should only be considered for applications operating at temperatures 2 O 3 ) is considered to be the best candidate for high heat flux structural applications

  16. Heat and Flux. Enabling the Wind Turbine Controller

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, P. [ECN Wind Energy, Petten (Netherlands)

    2006-09-15

    In the years 1999-2003 ECN invented and patented the technique 'Heat and Flux'. The idea behind Heat and Flux is that tuning turbines at the windward side of a wind farm more transparent than usual, i.e. realising an axial induction factor below the Lanchester-Betz optimum of 1/3, should raise net farm production and lower mechanical turbine loading without causing draw-backs. For scaled farms in a boundary layer wind tunnel this hypothesis has been proved in previous projects. To enable alternative turbine transparencies, the wind turbine controller must support the additional control aim 'desired transparency'. During this study we have determined a general method to design a transparency control algorithm. This method has been implemented in ECN's 'Control Tool' for designing wind turbine control algorithms. The aero-elastic wind turbine code Phatas has been used to verify the resulting control algorithm. Heat and Flux does not fundamentally change the control of horizontal axis variable speed wind turbines. The axial induction can be reduced by an offset on blade pitch or generator torque. Weighing reliability against performance profits, it appeared to be advisable to adapt only blade angle control.

  17. The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core

    Science.gov (United States)

    Davies, C. J.; Mound, J. E.

    2017-12-01

    Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.

  18. Study on thermal-hydraulic phenomena identification of passive heat removal facilities

    International Nuclear Information System (INIS)

    Park, J. Y.

    2011-01-01

    Recently, passive heat removal facilities have been integral features of new generation or future reactor designs worldwide. This is because the passive heat removal facilities depending on a natural force such as buoyancy can give much higher operational reliability compared to active heat removal facilities depending on pumped fluid flow and as a result they can decrease core damage frequency of a nuclear power plant drastically ever achievable before. Keeping pace with this global trend, SMART and APR+ reactors also have introduced passive heat removal features such as a passive residual heat removal system (PRHRS) and a passive auxiliary feed water system (PAFS) in their designs. Since many thermal-hydraulic (T-H) phenomena including steam condensation are involved during operation of the passive heat removal facilities, they ought to be properly simulated by T-H codes such as MARS-KS and RELAP5 in order to guarantee reliable safety analysis by these codes. Unfortunately, however, these T-H codes are not well validated with respect to phenomena related to passive heat removal mechanism because previous focus on these codes validation was mainly on the LB LOCA and resulting phenomena. To resolve this gap, Korea Institute of Nuclear Safety has initiated a research program on the development of safety analysis technology for passive heat removal facilities. The main target of this program is PRHRS and PAFS in SMART and APR+ reactors and through this program, validation of capability of existing T-H codes and improvement of codes regarding passive facilities analysis are to be sought. In part of this research, T-H phenomena important to passive heat removal facilities (PRHRS and PAFS) are investigated in the present study

  19. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    International Nuclear Information System (INIS)

    Kuznetsov, E A; Poniaev, S A

    2015-01-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)

  20. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    Science.gov (United States)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  1. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    International Nuclear Information System (INIS)

    Gavila, P.; Riccardi, B.; Pintsuk, G.; Ritz, G.; Kuznetsov, V.; Durocher, A.

    2015-01-01

    foresaw the performance of 5000 cycles at 10 MW/m"2 and 300 + 700 cycles at 20 MW/m"2, 10 s power on and 10 s dwell time with ITER relevant hydraulic parameters. The test results fulfilled the ITER qualification requirements, although a few items did not sustain the extended test program (additional 700 cycles at 20 MW/m"2), the analysis of the results gave indications on potential improvements, in particular concerning the W material itself with the objective to remove the self-castellation of the W monoblocks and concerning the thermo-mechanical fatigue performances of the CuCrZr heat sink. In addition, some critical heat flux experiments, whose results confirmed those previously obtained were also performed.

  2. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Gavila, P., E-mail: pierre.gavila@f4e.europa.eu [Fusion for Energy, 08019 Barcelona (Spain); Riccardi, B. [Fusion for Energy, 08019 Barcelona (Spain); Pintsuk, G. [Forschungszentrum Juelich, 52425 Juelich (Germany); Ritz, G. [AREVA NP, Centre Technique France, 71205 Le Creusot (France); Kuznetsov, V. [JCS “Efremov Institute”, Doroga na Metallostroy 3, Metallostroy, Saint-Petersburg 196641 (Russian Federation); Durocher, A. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul-lez-Durance (France)

    2015-10-15

    program foresaw the performance of 5000 cycles at 10 MW/m{sup 2} and 300 + 700 cycles at 20 MW/m{sup 2}, 10 s power on and 10 s dwell time with ITER relevant hydraulic parameters. The test results fulfilled the ITER qualification requirements, although a few items did not sustain the extended test program (additional 700 cycles at 20 MW/m{sup 2}), the analysis of the results gave indications on potential improvements, in particular concerning the W material itself with the objective to remove the self-castellation of the W monoblocks and concerning the thermo-mechanical fatigue performances of the CuCrZr heat sink. In addition, some critical heat flux experiments, whose results confirmed those previously obtained were also performed.

  3. Test results from a helium gas-cooled porous metal heat exchanger

    International Nuclear Information System (INIS)

    North, M.T.; Rosenfeld, J.H.; Youchison, D.L.

    1996-01-01

    A helium-cooled porous metal heat exchanger was built and tested, which successfully absorbed heat fluxes exceeding all previously tested gas-cooled designs. Helium-cooled plasma-facing components are being evaluated for fusion applications. Helium is a favorable coolant for fusion devices because it is not a plasma contaminant, it is not easily activated, and it is easily removed from the device in the event of a leak. The main drawback of gas coolants is their relatively poor thermal transport properties. This limitation can be removed through use of a highly efficient heat exchanger design. A low flow resistance porous metal heat exchanger design was developed, based on the requirements for the Faraday shield for the International Thermonuclear Experimental Reactor (ITER) device. High heat flux tests were conducted on two representative test articles at the Plasma Materials Test Facility (PMTF) at Sandia National Laboratories. Absorbed heat fluxes as high as 40 MW/m 2 were successfully removed during these tests without failure of the devices. Commercial applications for electronics cooling and other high heat flux applications are being identified

  4. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Nicolette, V.F.; Wix, S.D.

    1993-01-01

    In order to better measure local heat fluxes in open pool fires, an actively cooled calorimeter has been designed and analyzed. As this paper is being prepared, the calorimeter is in fabrication. Following fabrication, testing in a radiant heat facility is planned to assure proper performance before introduction into the pool fire environment. Initially, testing in the SMERF facility will assure reproducibility of tests by removing wind effects. As the program progresses, tests in open facilities, and with different geometries are anticipated. Experimental data from the initial tests will be compared continuously to the gray gas model, and as experiments proceed, the gray gas analytical model will be refined with the goal of improving finite element code analysis of shipping containers. (J.P.N.)

  5. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    International Nuclear Information System (INIS)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G A.; Lydell, B.; Doctor, Steven R.

    2005-01-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp- database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  6. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  7. Critical heat flux tests for a 12 finned-element assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J., E-mail: Jun.Yang@cnl.ca; Groeneveld, D.C.; Yuan, L.Q.

    2017-03-15

    Highlights: • CHF tests for a 12 finned-fuel-element assembly at highly subcooled conditions. • Test approach to maximize experimental information and minimize heater failures. • Three series of tests were completed in vertical upward light water flow. • Bundle simulators of two axial power profiles and three heated lengths were tested. • Results confirm that the prediction method predicts lower CHF values than measured. - Abstract: An experimental study was undertaken to provide relevant data to validate the current critical heat flux (CHF) prediction method of the NRU driver fuel for safety analysis, i.e., to confirm no CHF occurrence below the predicted values. The NRU driver fuel assembly consists of twelve finned fuel elements arranged in two rings – three in the inner ring and nine in the outer ring. To satisfy the experimental objective tests at very high heat fluxes, very high mass velocities, and high subcoolings were conducted where the CHF mechanism is the departure from nucleate boiling (DNB). Such a CHF experiment can be very difficult, costly and time consuming since failure of the heating surface due to rupture or melting (physical burnout) is expected when the DNB type of CHF is reached. A novel experimental approach has been developed to maximize the amount of relevant experimental information on safe operating conditions in the tests, and to minimize any possible heater failures that inherently accompany the CHF occurrence at these conditions. Three series of tests using electrically heated NRU driver fuel simulators with three heated lengths and two axial power profiles (or axial heat flux distribution (AFD)) were completed in vertical upward light water flow. Each series of tests covered two mass flow rates, several heat flux levels, and local subcoolings that bound the ranges of interest for the analysis of postulated slow loss-of-regulation accident (LORA) and loss-of-flow accident (LOFA) scenarios. Tests for each mass flow rate of

  8. Correlation between abnormal deuterium flux and heat flow in a D/Pd system

    International Nuclear Information System (INIS)

    Li Xingzhong; Liu Bin; Tian Jian; Wei Qingming; Zhou Rui; Yu Zhiwu

    2003-01-01

    Deuterium flux through the thin wall of a palladium tube has been studied by monitoring gas pressure and temperature. A high-precision calorimeter (Calvet) was used to detect heat flow when the heater was shut down and the palladium tube was cooling down slowly. At certain temperatures an abnormal deuterium flux appeared. This deuterium flux reached a peak when the temperature of the palladium was decreasing. This abnormal deuterium flux differs from the monotonic feature of a normal diffusive flux and is accompanied by a heat flow

  9. Infrared Camera Diagnostic for Heat Flux Measurements on NSTX

    International Nuclear Information System (INIS)

    D. Mastrovito; R. Maingi; H.W. Kugel; A.L. Roquemore

    2003-01-01

    An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to measure the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 (micro)m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat flux is derived with a classic one-dimensional conduction model. Preliminary results of heat flux scaling are reported

  10. CAREM-25: Residual heat removal system

    International Nuclear Information System (INIS)

    Arvia, Roberto P.; Coppari, Norberto R.; Gomez de Soler, Susana M.; Ramilo, Lucia B.

    2000-01-01

    The objective of this work was the definition and consolidation of the residual heat removal system for the CAREM 25 reactor. The function of this system is cool down the primary circuit, removing the core decay heat from hot stand-by to cold shutdown and during refueling. In addition, this system heats the primary water from the cold shutdown condition to hot stand-by condition during the reactor start up previous to criticality. The system has been designed according to the requirements of the standards: ANSI/ANS 51.1 'Nuclear safety criteria for the design of stationary PWR plants'; ANSI/ANS 58.11 'Design criteria for safe shutdown following selected design basis events in light water reactors' and ANSI/ANS 58.9 'Single failure criteria for light water reactor safety-related fluid systems'. The suggested design fulfills the required functions and design criteria standards. (author)

  11. Heat flux variations over sea ice observed at the coastal area of the Sejong Station, Antarctica

    Science.gov (United States)

    Park, Sang-Jong; Choi, Tae-Jin; Kim, Seong-Joong

    2013-08-01

    This study presents variations of sensible heat flux and latent heat flux over sea ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from July to September was selected as a sea ice period based on daily record of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. For the sea ice period, mean sensible heat flux is about -11 Wm-2, latent heat flux is about +2 W m-2, net radiation is -12 W m-2, and residual energy is -3 W m-2 with clear diurnal variations. Estimated mean values of surface exchange coefficients for momentum, heat and moisture are 5.15 × 10-3, 1.19 × 10-3, and 1.87 × 10-3, respectively. The observed exchange coefficients of heat shows clear diurnal variations while those of momentum and moisture do not show diurnal variation. The parameterized exchange coefficients of heat and moisture produces heat fluxes which compare well with the observed diurnal variations of heat fluxes.

  12. Anthropogenic Heat Flux Estimation from Space: Results of the second phase of the URBANFLUXES Project

    Science.gov (United States)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-04-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts of UEB fluxes on urban heat island and consequently on energy consumption in cities. In URBANFLUXES, the anthropogenic heat flux is estimated as a residual of UEB. Therefore, the rest UEB components, namely, the net all-wave radiation, the net change in heat storage and the turbulent sensible and latent heat fluxes are independently estimated from Earth Observation (EO), whereas the advection term is included in the error of the anthropogenic heat flux estimation from the UEB closure. The Discrete Anisotropic Radiative Transfer (DART) model is employed to improve the estimation of the net all-wave radiation balance, whereas the Element Surface Temperature Method (ESTM), adjusted to satellite observations is used to improve the estimation the estimation of the net change in heat storage. Furthermore the estimation of the turbulent sensible and latent heat fluxes is based on the Aerodynamic Resistance Method (ARM). Based on these outcomes, QF is estimated by regressing the sum of the turbulent heat fluxes versus the available energy. In-situ flux measurements are used to evaluate URBANFLUXES outcomes, whereas uncertainties are specified and analyzed. URBANFLUXES is expected to prepare the ground for further innovative exploitation of EO in scientific activities (climate variability studies at local and regional scales) and future and emerging applications (sustainable urban planning, mitigation technologies) to benefit climate change mitigation/adaptation. This study presents the results of the second phase of the project and detailed information on URBANFLUXES is available at: http://urbanfluxes.eu

  13. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

    International Nuclear Information System (INIS)

    Kitto, J.B. Jr.

    1986-01-01

    An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

  14. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  15. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.; Abualnaja, Yasser; Josey, Simon A.; Bower, Amy; Raitsos, Dionysios E.; Kontoyiannis, Harilaos; Hoteit, Ibrahim

    2013-01-01

    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

  16. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.

    2013-03-01

    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

  17. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  18. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs

  19. Convective boundary layer flow and heat transfer in a nanofluid in the presence of second order slip, constant heat flux and zero nanoparticles flux

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Al-Rashdi, Maryam H. [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Pop, I. [Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca 400084 (Romania)

    2016-02-15

    Highlights: • Convective boundary layer flow and heat transfer in a nanofluid is investigated. • Second order slip increases the rate of shear stress and decreases the rate of heat transfer in a nanofluid. • In nanofluid flow zero normal flux of the nanoparticles at the surface is realistic to apply. • Multiple solutions are identified for certain values of the parameter space. • The upper branch solution is found to be stable, hence physically realizable. - Abstract: In this work, the effects of the second order slip, constant heat flux, and zero normal flux of the nanoparticles due to thermophoresis on the convective boundary layer flow and heat transfer characteristics in a nanofluid using Buongiorno's model over a permeable shrinking sheet is studied theoretically. The nonlinear coupled similarity equations are solved using the function bvp4c using Matlab. Similarity solutions of the flow, heat transfer and nanoparticles volume fraction are presented graphically for several values of the model parameters. The results show that the application of second order slip at the interface is found to be increased the rate of shear stress and decreased the rate of heat transfer in a nanofluid, so need to be taken into account in nanofluid modeling. The results further indicate that multiple solutions exist for certain values of the parameter space. The stability analysis provides guarantee that the lower branch solution is unstable, while the upper branch solution is stable and physically realizable.

  20. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  1. E × B shear pattern formation by radial propagation of heat flux waves

    Energy Technology Data Exchange (ETDEWEB)

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)

    2014-05-15

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.

  2. Thermal and mechanical behavior of APWR-claddings under critical heat flux conditions

    International Nuclear Information System (INIS)

    Diegele, E.; Rust, K.

    1986-10-01

    Helical grid spacers, such as three or six helical fins as integral part of the claddings, are regarded as a more convenient design for the very tight lattice of an advanced pressurized water reactor (APWR) than grid spacers usually used. Furthermore, it is expected that this spacer design allows an increased safety margin against the critical heat flux (CHF), the knowledge of which is important for design, licensing, and operation of water cooled reactors. To address the distribution of the heat flux density at the outer circumference of the cladding geometry under investigation, the temperature fields in claddings without as well with fins were calculated taking into consideration nuclear and electrically heated rods. Besides the thermal behavior of the claddings, the magnitude and distribution of thermal stresses were determined additionally. A locally increased surface heat flux up to about 40 percent was calculated for the fin bases of nuclear as well as indirect electrically heated claddings with six such helical fins. For all investigated cases, the VON MISES stresses are clearly lower than 200 MPa, implying that no plastic deformations are to be expected. The aim of this theoretical analysis is to allow a qualitative assessment of the finned tube conception and to support experimental investigations concerning the critical heat flux. (orig.) [de

  3. Critical heat flux with subcooled boiling of water at low pressure

    International Nuclear Information System (INIS)

    Chen Yuzhou; Zhou Runbin; Hao Laomi; Chen Haiyan

    1997-01-01

    The critical heat flux experiment has been performed in round tubes of 10 and 16 mm in diameter with different heating length, covering the range of pressure 1.5-16.7 bar, velocity 1.4-15.4 m/s and exit subcooling 30-136 K. The experimental data and empirical correlations are presented. Based on the results an evaluation of some correlations and 1995 CHF look-up table is made. For the conditions tested the effect of diameter on the critical heat flux is found to be related to the liquid velocity. (author)

  4. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface

  5. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions.

    Science.gov (United States)

    Hayat, Tasawar; Haider, Farwa; Muhammad, Taseer; Alsaedi, Ahmed

    2017-01-01

    Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field.

  6. Turbulent transport regimes and the scrape-off layer heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  7. Turbulent transport regimes and the scrape-off layer heat flux width

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-01-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments

  8. Using a thermalhydraulics system code to estimate heat transfer coefficients for a critical heat flux experiment

    International Nuclear Information System (INIS)

    Statham, B.A.

    2009-01-01

    RELAP5/SCDAPSIM MOD 3.4 is used to predict wall temperature before and after critical heat flux (CHF) is reached in a vertical, uniformly heated tube using light water as the working fluid. The heated test section is modeled as a 1 m long Inconel 600 tube having an OD of 6.35 mm and ID of 4.57 mm with a 0.5 m long unheated development length at the inlet. Simulations are performed at pressures of 0.5 to 2.0 MPa with mass fluxes from 500 to 2000 kg m -2 s -1 and inlet qualities ranging from -0.2 to 0. Loss of flow simulations are performed with flow reduction rates of 10, 20, 50, and 100 kg m -2 s -2 . Inlet mass flux at CHF was nominally independent of rate in the model; this may or may not be realistic. (author)

  9. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    Science.gov (United States)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  10. Heat transfer augmentation in a tube using nanofluids under constant heat flux boundary condition: A review

    International Nuclear Information System (INIS)

    Singh, Vinay; Gupta, Munish

    2016-01-01

    Highlights: • Reviews heat transfer augmentation of nanofluids in a tube with constant heat flux. • Recent advances in hybrid nanofluids are reviewed. • Identifies and compares significant results. • Scope of future research in this area is discussed. - Abstract: In the last few decades, research on nanofluids has increased rapidly. Traditional heat transfer fluids with order of nanometer sized particles (1–100 nm) suspended in them are termed as nanofluids. Nanofluids have been proved as better heat transfer fluids despite of various contradictions in results by different research groups. The aim of this article is to review and summarize the recent experimental and theoretical studies on convective heat transfer in heat exchangers using constant heat flux boundary condition. The use of different types of nanoparticles with different base fluids by different research groups has been presented and compared. Further an overview of experimental results about heat transfer abilities of hybrid nanofluids from available literature sources is also presented. Finally, the challenges and future directions in which research can be further progress are discussed.

  11. Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS

    Science.gov (United States)

    Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur

    2018-05-01

    Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the

  12. AN EXPERIMENTAL STUDY FOR HEAT TRANSFER ENHANCEMENT BY LAMINAR FORCED CONVECTION FROM HORIZONTAL AND INCLINED TUBE HEATED WITH CONSTANT HEAT FLUX, USING TWO TYPES OF POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Thamir K. Jassem

    2015-02-01

    Full Text Available An experimental forced laminar study was presented in this research for an air flowing through a circular channel for different angles ( ,30o,45o,60o, the channel was heated at constant heat flux , the channel also was packed with steel and glass spheres respectively . The tests were done for three values of Peclets number (2111.71,3945.42,4575.47 with changing the heat flux for each case and five times for each number.The results showed that the dimensionless temperature distribution  will decrease with increasing the dimensionless channel length for all cases with changing Peclet number, heat flux and inclination angles, and its lowest value will be for glass spheres at highest flux, while at lower flux for , and the decreasing in dimensionless temperature was closed for both types of packed at other inclination angles.The study declared that the local Nusselt number decreases with increasing the dimensionless length of the channel for both packeds and for different applied heat flux, also through this study it was declared that the average Nusselt increases as Peclet number increases for both packed. Its value for the glass spheres is greater than the steel spheres with percentage (98.3% at small Peclet, and percentage (97.2% at large Peclet number for the horizontal tube, and (98.3% at small Peclet number and (97.8% at large Peclet number at  .Through this study its was found that average Nusselt number increases along the channel as the heat flux increases, because the bulk temperature will increase as the flow proceeds toward the end of the channel , so the heat transfer coefficient will increase.  It was declared from this study that in the case of the steel packed the heat transfer will occur mainly by conduction, while in the case of glass packed the heat transfer will occur mainly by laminar forced convection, where the lowest Nusselt number (Nu=3.8 was found when the pipe is horizontal and lowest heat flux and lowest Peclet number.  

  13. Active control of divertor heat and particle fluxes in EAST towards advanced steady state operations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dalian University of Technology, Dalian 116024 (China); Guo, H.Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); General Atomics, P. O. Box 85608, San Diego, CA 92186 (United States); Li, J.; Wan, B.N.; Gong, X.Z.; Zhang, X.D.; Hu, J.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Association EURATOM-FZJ, D-52425 Jülich (Germany); Xu, G.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zou, X.L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Maingi, R.; Menard, J.E. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Luo, G.N.; Gao, X.; Hu, L.Q.; Gan, K.F.; Liu, S.C.; Wang, H.Q.; Chen, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-08-15

    Significant progress has been made in EAST towards advanced steady state operations by active control of divertor heat and particle fluxes. Many innovative techniques have been developed to mitigate transient ELM and stationary heat fluxes on the divertor target plates. It has been found that lower hybrid current drive (LHCD) can lead to edge plasma ergodization, striation of the stationary heat flux and lower ELM transient heat and particle fluxes. With multi-pulse supersonic molecular beam injection (SMBI) to quantitatively regulate the divertor particle flux, the divertor power footprint pattern can be actively modified. H-modes have been extended over 30 s in EAST with the divertor peak heat flux and the target temperature being controlled well below 2 MW/m{sup 2} and 250 °C, respectively, by integrating these new methods, coupled with advanced lithium wall conditioning and internal divertor pumping, along with an edge coherent mode to provide continuous particle and power exhaust.

  14. Study on decay heat removal capability of reactor vessel auxiliary cooling system

    International Nuclear Information System (INIS)

    Nishi, Y.; Kinoshita, I.

    1991-01-01

    The reactor vessel auxiliary cooling system (RVACS) is a simple, Passive decay heat removal system for an LMFBR. However, the heat removal capacity of this system is small compared to that of an immersed type of decay heat exchanger. In this study, a high-porosity porous body is proposed to enhance the RVACS's heat transfer performance to improve its applicability. The objectives of this study are to propose a new method which is able to use thermal radiation effectively, to confirm its heat removal capability and to estimate its applicability limit of RVACS for an LMFBR. Heat transfer tests were conducted in an experimental facility with a 3.5 m heat transfer height to evaluate the heat transfer performance of the high-porosity porous body. Using the experimental results, plant transient analyses were performed for a 300 MWe pool type LMFBR under a Total Black Out (TBO) condition to confirm the heat removal capability. Furthermore, the relationship between heat removal capability and thermal output of a reactor were evaluated using a simple parameter model

  15. Regional fluxes of momentum and sensible heat over a sub-arctic landscape during late winter

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik; Hasager, C.B.

    2001-01-01

    flux is determined in two ways, both based on blending height theory. One is a parameterised method, the other represents a numerical solution of an aggregation model. The regional sensible heat flux is determined from the theory of mixed-layer growth. At near neutral conditions the regional momentum......Based on measurements at Sodankyla Meteorological Observatory the regional (aggregated) momentum and sensible heat fluxes are estimated for two days over a site in Finnish Lapland during late winter. The forest covers 49% of the area. The study shows that the forest dominates and controls...... the regional fluxes of momentum and sensible heat in different ways. The regional momentum flux is found to be 10-20% smaller than the measured momentum flux over the forest, and the regional sensible heat flux is estimated to be 30-50% of the values measured over a coniferous forest. The regional momentum...

  16. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    Science.gov (United States)

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. The role of the axial heat fluxes in the thermal fatigue assessment of piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: Oriol.Costa@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon; Shawish, Samir El [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia)

    2013-08-15

    Highlights: ► Existence of axial heat flux in the fluid near the surface influences the inner wall temperature fluctuations. ► In addition to the axial heat flux, the effect of the temperature fluctuations frequency is also investigated. ► Inner wall thermocouple readings are more attenuated but slightly less delayed when considering the axial heat flux. ► Fluid-surface heat transfer coefficient effect on surface temperature amplitudes and phase delay is considered in a sensitivity analysis. -- Abstract: Thermal fatigue is a structural damage of materials induced by the cyclic thermal loads that are frequently generated by the changes of fluid temperature inside of pipes. Among the thermal fatigue assessment methods we find the one-dimensional (1D) approach. Thermal, mechanical and fatigue analyses are performed for the pipe wall assuming that the distribution of temperatures only varies along the wall thickness. On the other hand, pipe regions with higher stress oscillations are those where the fluid temperature changes spatially, meaning cold or hot spots near the pipe surface, and with low frequencies. Spatial fluid temperature differences generate heat fluxes within the pipe wall which can’t be reproduced with 1D methods. For this reason, the present work focuses on understanding the wall temperature distributions for different values of heat fluxes and frequencies of fluid temperature. Due to the implication in wall temperature measurements, the heat fluxes and frequencies effects on temperature readings of wall thermocouples are also investigated. In this paper, the influence of axial heat flux in a pipe wall is studied. The temperature distribution within the pipe wall is analyzed considering a fluid temperature signal in the proximity of the pipe surface with axial temperature dependence. The effect of the temperature fluctuations frequency is also investigated. The two-dimensional finite difference equations for the transient temperature of a

  18. The role of the axial heat fluxes in the thermal fatigue assessment of piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; Cizelj, Leon; Shawish, Samir El

    2013-01-01

    Highlights: ► Existence of axial heat flux in the fluid near the surface influences the inner wall temperature fluctuations. ► In addition to the axial heat flux, the effect of the temperature fluctuations frequency is also investigated. ► Inner wall thermocouple readings are more attenuated but slightly less delayed when considering the axial heat flux. ► Fluid-surface heat transfer coefficient effect on surface temperature amplitudes and phase delay is considered in a sensitivity analysis. -- Abstract: Thermal fatigue is a structural damage of materials induced by the cyclic thermal loads that are frequently generated by the changes of fluid temperature inside of pipes. Among the thermal fatigue assessment methods we find the one-dimensional (1D) approach. Thermal, mechanical and fatigue analyses are performed for the pipe wall assuming that the distribution of temperatures only varies along the wall thickness. On the other hand, pipe regions with higher stress oscillations are those where the fluid temperature changes spatially, meaning cold or hot spots near the pipe surface, and with low frequencies. Spatial fluid temperature differences generate heat fluxes within the pipe wall which can’t be reproduced with 1D methods. For this reason, the present work focuses on understanding the wall temperature distributions for different values of heat fluxes and frequencies of fluid temperature. Due to the implication in wall temperature measurements, the heat fluxes and frequencies effects on temperature readings of wall thermocouples are also investigated. In this paper, the influence of axial heat flux in a pipe wall is studied. The temperature distribution within the pipe wall is analyzed considering a fluid temperature signal in the proximity of the pipe surface with axial temperature dependence. The effect of the temperature fluctuations frequency is also investigated. The two-dimensional finite difference equations for the transient temperature of a

  19. Evapotranspiration and heat fluxes over a patchy forest - studied using modelling and measurements

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Dellwik, Ebba; Boegh, Eva

    using these parameters without a proper interpretation in mesoscale or global circulation models can results in serious bias of estimates of modelled evapotranspiration or heat fluxes from given area. Since representative measurements focused on heterogeneous effects are scarce numerical modelling can...... and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest (Klaassen et al. 2002, Theor. Appl. Climatol. 72, 231-243). Because such flux measurements are very often used for calibration of forest parameters or model constants, further......, Ecological. Appl. 18, 1454-1459). In the present work, we apply the SCADIS with enhanced turbulence closure including buoyancy for investigation of the spatial distribution of latent and sensible heat vertical fluxes over patchy forested terrain in Denmark during selected days in the summer period. A closer...

  20. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  1. Fiscal 2000 project of inviting proposals for international joint research - invitation for international proposal (Energy conservation No.3). Achievement report on development of micro-scale boiling aided high efficiency heat removing device; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (shoe No.3). Micro scale boiling ni yoru kokoritsu honetsu device no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Studies are conducted about basic matters of heat transfer with boiling, such as critical heat flux intensification, prevention of dry-out, and the development of refrigerants suitable for use for heat transfer with boiling, for the purpose of developing boiling heat conduction type high-efficiency heat removing devices for use in electronics, and then heat removing devices usable as power devices in the future are experimentally designed. Activities are conducted in the three fields of (1) the study of basic micro-boiling technology, (2) development of micro-scale boiling element technology, and (3) international joint studies. Efforts are made to develop the technology of removing heat from ultrahigh heat fluxes using a micro-valve in field (1), to develop the technology of heat transfer by boiling in a micro-channel in field (2); and to develop the technology of critical heat flux intensification in a boiling heat exchanger in an electromagnetic field (3). In an effort to develop the technology of heat removal, a heat transfer plate is installed at the bottom of a path which is narrow, horizontal, and rectangular, and distilled water is allowed to flow and boil. Micro-bubble emission boiling occurs by a subcooling degree of 40K at an average flow rate of 0.5 m/s, and an ultrahigh heat flux of 2-7 times 10{sup 6} W/m{sup 2} is obtained. The value is 2-4 times as high as the current IC chip critical heat flux. (NEDO)

  2. Inverse Estimation of Heat Flux and Temperature Distribution in 3D Finite Domain

    International Nuclear Information System (INIS)

    Muhammad, Nauman Malik

    2009-02-01

    Inverse heat conduction problems occur in many theoretical and practical applications where it is difficult or practically impossible to measure the input heat flux and the temperature of the layer conducting the heat flux to the body. Thus it becomes imperative to devise some means to cater for such a problem and estimate the heat flux inversely. Adaptive State Estimator is one such technique which works by incorporating the semi-Markovian concept into a Bayesian estimation technique thereby developing an inverse input and state estimator consisting of a bank of parallel adaptively weighted Kalman filters. The problem presented in this study deals with a three dimensional system of a cube with one end conducting heat flux and all the other sides are insulated while the temperatures are measured on the accessible faces of the cube. The measurements taken on these accessible faces are fed into the estimation algorithm and the input heat flux and the temperature distribution at each point in the system is calculated. A variety of input heat flux scenarios have been examined to underwrite the robustness of the estimation algorithm and hence insure its usability in practical applications. These include sinusoidal input flux, a combination of rectangular, linearly changing and sinusoidal input flux and finally a step changing input flux. The estimator's performance limitations have been examined in these input set-ups and error associated with each set-up is compared to conclude the realistic application of the estimation algorithm in such scenarios. Different sensor arrangements, that is different sensor numbers and their locations are also examined to impress upon the importance of number of measurements and their location i.e. close or farther from the input area. Since practically it is both economically and physically tedious to install more number of measurement sensors, hence optimized number and location is very important to determine for making the study more

  3. SHREDI, Neutron Flux and Neutron Activation in 2-D Shields by Removal Diffusion

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.

    1976-01-01

    1 - Nature of physical problem solved: SHREDI is a removal - diffusion neutron shielding code. The program computes neutron fluxes and activations in bidimensional sections (x,y or r,z) of the shield. It is also possible to consider shielding points with the same y or z coordinate (mono-dimensional problems). 2 - Method of solution: The integrals which define the removal fluxes are computed in some shield points by means of a particular algorithm based on the Simpson's and trapezoidal rules. For the diffusion calculation the finite difference method is used. The removal sources are interpolated in all diffusion points by Chebyshev polynomials. 3 - Restrictions on the complexity of the problem: Maxima: number of removal energy groups NGR = 40; number of diffusion energy groups NGD = 40; number of the reactor core and shield materials NCMP = 50; number of core mesh points in r (or x) direction for integral calculation = 75; number of core mesh points in z (or y) direction for integral calculation = 75; number of core mesh points in theta (or z) direction for integral calculation = 75; number of shield mesh points for the neutron flux calculation in r (or x) direction NPX = 200; number of shield mesh points for the neutron flux calculation in z (or y) direction NPY = 200; n.b. (NPX * NPY) le 12000

  4. Response of concrete exposed to a high heat flux on one surface

    International Nuclear Information System (INIS)

    Muir, J.F.

    1977-11-01

    Experiments were performed to investigate the response of concrete to severe thermal environments such as might be encountered during the interaction of molten reactor core materials with the containment substructure following a hypothetical fuel melt accident. The dominant mechanism for erosion of both limestone and basaltic concrete appears to be melting of the cementitious material in the matrix. The erosion proceeded in a quiescent manner with negligible spallation. The erosion rate increased with heat flux, becoming as large as approximately 70 cm/hr for a net surface heat flux of roughly 190 W/cm 2 . Analyses reveal the surface temperature to be the single most significant parameter affecting the net surface heat flux, through its importance to emitted radiation; and that the greatest fraction of the net energy transmitted to the concrete goes into sensible heat

  5. Minimum heat flux (MHF) point in pool and external-flow boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1983-01-01

    As for the boiling phenomena near a minimum heat flux (MHF) point to which attention has been paid recently concerning the safety analysis of LWR cores, the results of research have not been put in order sufficiently. Therefore in this explanation, the object is limited to pool boiling and external flow boiling, and it is attempted to rearrange the present knowledge on the phenomena near a MHF point from the viewpoint of the relation to the state of solid-liquid contact, the effect of various factors on a MHF point and the modeling of a MHF point. The heat transfer characteristics in boiling phenomena are represented by a curve with one maximum and one minimum points. The MHF point is called also minimum film boiling point. In a heat flux-controlled heating surface, temperature jump arises when heat flux is decreased at a MHF point. The phenomena near a MHF point and the technological background when a MHF point becomes a problem are explained. Near a MHF point, only partial, intermittent solid-liquid contact is maintained. The effects of solid-liquid contact mode, the geometry of a heating surface, pressure and others on a MHF point are discussed. (Kako, I.)

  6. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    International Nuclear Information System (INIS)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon; Bae, Sung-Won; Kwon, Tae-Soon

    2015-01-01

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant

  7. Standard Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using gages inserted flush with the surface. The geometry is the same as heat-flux gages covered by Test Method E 511, but the measurement principle is different. The gages covered by this standard all use a measurement of the temperature gradient normal to the surface to determine the heat that is exchanged to or from the surface. Although in a majority of cases the net heat flux is to the surface, the gages operate by the same principles for heat transfer in either direction. 1.2 This general test method is quite broad in its field of application, size and construction. Two different gage types that are commercially available are described in detail in later sections as examples. A summary of common heat-flux gages is given by Diller (1). Applications include both radiation and convection heat transfer. The gages used for aerospace applications are generally small (0.155 to 1.27 cm diameter), have a fast time response ...

  8. Scaling of divertor heat flux profile widths in DIII-D

    International Nuclear Information System (INIS)

    Lasnier, C.J.; Makowski, M.A.; Boedo, J.A.; Allen, S.L.; Brooks, N.H.; Hill, D.N.; Leonard, A.W.; Watkins, J.G.; West, W.P.

    2011-01-01

    New scalings of the dependence of divertor heat flux peak and profile width, important parameters for the design of future large tokamaks, have been obtained from recent DIII-D experiments. We find the peak heat flux depends linearly on input power, decreases linearly with increasing density, and increases linearly with plasma current. The profile width has a weak dependence on input power, is independent of density up to the onset of detachment, and is inversely proportional to the plasma current. We compare these results with previously published scalings, and present mathematical expressions incorporating these results.

  9. A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; El-Amin, M. F.

    2013-01-01

    In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.

  10. A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

    KAUST Repository

    Salama, Amgad

    2013-03-20

    In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.

  11. Heat flux dropouts in the solar wind and Coulomb scattering effects

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Ogilvie, K.W.

    1992-01-01

    Measurements of solar wind electrons at ISEE 3 located 0.01 AU upstream from the Earth indicate periods of time when the flux of antisunward suprathermal electrons decreases suddenly, leaving the velocity distribution nearly isotropic and causing the solar wind heat flux to drop. These heat flux dropouts (HFDs) are usually found in regions of increased plasma density and decreased electron temperature, and they are associated with sector boundaries. It has been suggested that HFDs may be due either to disconnection from the Sun of the magnetic flux tube in which they are found, or to enhanced Coulomb scattering of halo electrons in transit from the Sun to the Earth. Using the vector electron spectrometer on ISEE 1, the authors have found eight intervals of greatly reduced heat flux which appear to be associated with HFDs at ISEE 3. Five of the eight events were delayed by an appropriate convection time and had approximately the same duration as the corresponding ISEE 3 event. Velocity distributions during HFDs at ISEE 1 show that the depletion of halo electrons traveling away from the Sun is most pronounced in the 100-eV range, while there is essentially no depletion in the 1-keV range, and that in four cases the magnitude of the halo depletion and its upper velocity limit both depend on the density increase in the HFD. These results are shown to be in agreement with the υ -3 dependence of the Coulomb collision frequency. Thus the authors conclude that Coulomb scattering effects play a substantial role in at least some heat flux dropout events

  12. Thermohydraulics in rod bundles and critical heat flux in transient conditions in a tube

    International Nuclear Information System (INIS)

    Courtaud, M.; Roumy, R.

    1975-01-01

    After the determination of the scaling factor of Stevens's similitude for the pressure range of pressurized water vectors by comparison of critical heat flux data in from and in water, some examples of studies performed with freon are shown. The efficiency of the mixing vanes of spacer grids has been determined on the mixing phenomenon in single phase on critical heat flux. A calculation performed with the code FLICA using subchannel analysis on freon data transposed in water is in good agreement with the experiment. The influence of the number of spacer grids has been also shown. Critical heat fluxes have been determined in water at 140 bar in steady state and transient conditions on two tubular test sections. During the transient tests the flow rate was reduced by half in 0.5 seconds and the reincreased heat flux and inlet temperature remaining constant. These tests have shown the validity of the method which consists in using a critical heat flux correlation determined in steady state conditions applied with local transient conditions of enthalpy and mass velocity computed with the FLICA code [fr

  13. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  14. Passive heat removal in CANDU

    International Nuclear Information System (INIS)

    Hart, R.S.

    1997-01-01

    CANDU has a tradition of incorporating passive systems and passive components whenever they are shown to offer performance that is equal to or better than that of active systems, and to be economic. Examples include the two independent shutdown systems that employ gravity and stored energy respectively, the dousing subsystem of the CANDU 6 containment system, and the ability of the moderator to cool the fuel in the event that all coolant is lost from the fuel channels. CANDU 9 continues this tradition, incorporating a reserve water system (RWS) that increases the inventory of water in the reactor building and profiles a passive source of makeup water and/or heat sinks to various key process systems. The key component of the CANDU 9 reserve water system is a large (2500 cubic metres) water tank located at a high elevation in the reactor building. The reserve water system, while incorporating the recovery system functions, and the non-dousing functions of the dousing tank in CANDU 6, embraces other key systems to significantly extend the passive makeup/heat sink capability. The capabilities of the reserve water system include makeup to the steam generators secondary side if all other sources of water are lost; makeup to the heat transport system in the event of a leak in excess of the D 2 O makeup system capability; makeup to the moderator in the event of a moderator leak when the moderator heat sink is required; makeup to the emergency core cooling (ECC) system to assure NPSH to the ECC pumps during a loss of coolant accident (LOCA), and provision of a passive heat sink for the shield cooling system. Other passive designs are now being developed by AECL. These will be incorporated in future CANDU plants when their performance has been fully proven. This paper reviews the passive heat removal systems and features of current CANDU plants and the CANDU 9, and briefly reviews some of the passive heat removal concepts now being developed. (author)

  15. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  16. Energy and variance budgets of a diffusive staircase with implications for heat flux scaling

    Science.gov (United States)

    Hieronymus, M.; Carpenter, J. R.

    2016-02-01

    Diffusive convection, the mode of double-diffusive convection that occur when both temperature and salinity increase with increasing depth, is commonplace throughout the high latitude oceans and diffusive staircases constitute an important heat transport process in the Arctic Ocean. Heat and buoyancy fluxes through these staircases are often estimated using flux laws deduced either from laboratory experiments, or from simplified energy or variance budgets. We have done direct numerical simulations of double-diffusive convection at a range of Rayleigh numbers and quantified the energy and variance budgets in detail. This allows us to compare the fluxes in our simulations to those derived using known flux laws and to quantify how well the simplified energy and variance budgets approximate the full budgets. The fluxes are found to agree well with earlier estimates at high Rayleigh numbers, but we find large deviations at low Rayleigh numbers. The close ties between the heat and buoyancy fluxes and the budgets of thermal variance and energy have been utilized to derive heat flux scaling laws in the field of thermal convection. The result is the so called GL-theory, which has been found to give accurate heat flux scaling laws in a very wide parameter range. Diffusive convection has many similarities to thermal convection and an extension of the GL-theory to diffusive convection is also presented and its predictions are compared to the results from our numerical simulations.

  17. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-04-15

    In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Mueller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail. (orig.)

  18. Critical heat flux analysis on change of plate temperature and cooling water flow rate for rectangular narrow gap with bilateral-heated cases

    International Nuclear Information System (INIS)

    M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan

    2013-01-01

    Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)

  19. The flow distribution in the parallel tubes of the cavity receiver under variable heat flux

    International Nuclear Information System (INIS)

    Hao, Yun; Wang, Yueshe; Hu, Tian

    2016-01-01

    Highlights: • An experimental loop is built to find the flow distribution in the parallel tubes. • With the concentration of heat flux, two-phase flow makes distribution more uneven. • The total flow rate is chosen appropriately for a wider heat flux distribution. • A suitable system pressure is essential for the optimization of flow distribution. - Abstract: As an optical component of tower solar thermal power station, the heliostat mirror reflects sunlight to one point of the heated surface in the solar cavity receiver, called as one-point focusing system. The radiation heat flux concentrated in the cavity receiver is always non-uniform temporally and spatially, which may lead to extremely local over-heat on the receiver evaporation panels. In this paper, an electrical heated evaporating experimental loop, including five parallel vertical tubes, is set up to evaluate the hydrodynamic characteristics of evaporation panels in a solar cavity receiver under various non-uniform heat flux. The influence of the heat flux concentration ratio, total flow rate, and system pressure on the flow distribution of parallel tubes is discussed. It is found that the flow distribution becomes significantly worse with the increase of heat flux and concentration ratio; and as the system pressure decreased, the flow distribution is improved. It is extremely important to obtain these interesting findings for the safe and stable operation of solar cavity receiver, and can also provide valuable references for the design and optimization of operating parameters solar tower power station system.

  20. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

    Science.gov (United States)

    Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

    2017-09-01

    Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

  1. A Comparative Study for Flow of Viscoelastic Fluids with Cattaneo-Christov Heat Flux.

    Science.gov (United States)

    Hayat, Tasawar; Muhammad, Taseer; Alsaedi, Ahmed; Mustafa, Meraj

    2016-01-01

    This article examines the impact of Cattaneo-Christov heat flux in flows of viscoelastic fluids. Flow is generated by a linear stretching sheet. Influence of thermal relaxation time in the considered heat flux is seen. Mathematical formulation is presented for the boundary layer approach. Suitable transformations lead to a nonlinear differential system. Convergent series solutions of velocity and temperature are achieved. Impacts of various influential parameters on the velocity and temperature are sketched and discussed. Numerical computations are also performed for the skin friction coefficient and heat transfer rate. Our findings reveal that the temperature profile has an inverse relationship with the thermal relaxation parameter and the Prandtl number. Further the temperature profile and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to the classical Fourier's law of heat conduction.

  2. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Kilsdonk, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Aeschlimann, R. W. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  3. Magnetic flux tubes and transport of heat in the convection zone of the sun

    International Nuclear Information System (INIS)

    Spruit, H.C.

    1977-01-01

    This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations

  4. The role of the velocity gradient in laminar convective heat transfer through a tube with a uniform wall heat flux

    International Nuclear Information System (INIS)

    Wang Liangbi; Zhang Qiang; Li Xiaoxia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy conservation equation of convective heat transfer is used to explain convective heat transfer there are two points that are difficult for teachers to explain and for undergraduates to understand: thermal diffusivity is placed before the Laplacian operator of temperature; on the wall surface (the fluid side) the velocity is zero, a diffusion equation of temperature is gained from energy conservation equation, however, temperature cannot be transported. Consequently, the real physical meaning of thermal diffusivity is not clearly reflected in the energy conservation equation, and whether heat transfer occurs through a diffusion process or a convection process on the wall surface is not clear. Through a simple convective heat transfer case: laminar convective heat transfer in a tube with a uniform wall heat flux on the tube wall, this paper explains these points more clearly. The results declare that it is easier for teachers to explain and for undergraduates to understand these points when a description of heat transfer in terms of the heat flux is used. In this description, thermal diffusivity is placed before the Laplacian operator of the heat flux; the role of the velocity gradient in convective heat transfer appears, on the wall surface, the fact whether heat transfer occurs through a diffusion process or a convection process can be explained and understood easily. The results are not only essential for teachers to improve the efficiency of university-level physics education regarding heat transfer, but they also enrich the theories for understanding heat transfer

  5. Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux

    Science.gov (United States)

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2017-02-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  6. Thermotronics. Towards nanocircuits to manage radiative heat flux

    International Nuclear Information System (INIS)

    Ben-Abdallah, Philippe; Sherbrooke Univ., PQ; Biehs, Svend-Age

    2017-01-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20 th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  7. Thermotronics. Towards nanocircuits to manage radiative heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe [Univ. Paris-Sud 11, Palaiseau (France). Lab. Charles Fabry; Sherbrooke Univ., PQ (Canada). Dept. of Mechanical Engineering; Biehs, Svend-Age [Oldenburg Univ. (Germany). Inst. fuer Physik

    2017-05-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20{sup th} century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  8. Study of the Relap5/mod3.2 wall heat flux partitioning model

    International Nuclear Information System (INIS)

    Hari, S.; Hassan, Y.A.

    2001-01-01

    The performance of the subcooled boiling model adapted in RELAP5/MOD3.2 computer code has been assessed in detail for low-pressure conditions and it has been found that the void fraction profile is under-predicted. In general, any subcooled boiling model is composed of individual sub-models that account for the different physical mechanism that govern the overall process, as the wall vapor generation, interfacial shear and condensation etc. The wall heat flux partitioning model is one of the important sub-models that is a constituent of any subcooled boiling model. The function of this model is to apportion the wall heat flux to the different components (as the single/two phase fluid or bubble), as the case may be, in a two-phase flow-boiling scenario adjacent to a heated wall. The ''pumping factor'' approach is generally followed by most of the wall heat flux partitioning models, for partitioning the wall heat flux. In this work, the wall heat flux partitioning model of RELAP5/MOD3.2 computer code is studied; in particular, the ''pumping factor'' formulation in the present code version is assessed for its performance under low-pressure conditions. In addition, three different ''pumping factor'' formulations available in the literature have been introduced into the RELAP5/MOD3.2 code. Simulations of two low-pressure subcooled flow boiling experiments were performed with the refined code versions to determine the appropriate pumping factor to be used under these conditions. (author)

  9. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Hassanein, A.

    2002-01-01

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices

  10. PWR passive plant heat removal assessment: Joint EPRI-CRIEPI advanced LWR studies

    International Nuclear Information System (INIS)

    1991-03-01

    An independent assessment of the capabilities of the PWR passive plant heat removal systems was performed, covering the Passive Residual Heat Removal (PRHR) System, the Passive Safety Injection System (PSIS) and the Passive Containment Cooling System (PCCS) used in a 600 MWe passive plant (e.g., AP600). Additional effort included a review of the test programs which support the design and analysis of the systems, an assessment of the licensability of the plant with regard to heat removal adequacy, and an evaluation of the use of the passive systems with a larger plant. The major conclusions are as follows. The PRHR can remove core decay heat, prevents the pressurizer from filling with water for a loss-of-feedwater transient, and provides safety-grade means for maintaining the reactor coolant system in a safe shutdown condition for the case where the non-safety residual heat removal system becomes unavailable. The PSIS is effective in maintaining the core covered with water for loss-of-coolant accident pipe breaks to eight inches. The PCCS has sufficient heat removal capability to maintain the containment pressure within acceptable limits. The tests performed and planned are adequate to confirm the feasibility of the passive heat removal system designs and to provide a database for verification of the analytical techniques used for the plant evaluations. Each heat removal system can perform in accordance with Regulatory requirements, with the exception that the PRHR system is unable to achieve the required cold shutdown temperature of 200 F within the required 36-hour period. The passive heat removal systems to be used for the 600 MWe plant could be scaled up to a 900 MWe passive plant in a straightforward manner and only minimal, additional confirmatory testing would be required. Sections have been indexed separately for inclusion on the data base

  11. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  12. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  13. Prediction of transient maximum heat flux based on a simple liquid layer evaporation model

    International Nuclear Information System (INIS)

    Serizawa, A.; Kataoka, I.

    1981-01-01

    A model of liquid layer evaporation with considerable supply of liquid has been formulated to predict burnout characteristics (maximum heat flux, life, etc.) during an increase of the power. The analytical description of the model is built upon the visual and photographic observations of the boiling configuration at near peak heat flux reported by other investigators. The prediction compares very favourably with water data presently available. It is suggested from the work reported here that the maximum heat flux occurs because of a balance between the consumption of the liquid film on the heated surface and the supply of liquid. Thickness of the liquid film is also very important. (author)

  14. Innovative Divertor Development to Solve the Plasma Heat-Flux Problem

    International Nuclear Information System (INIS)

    Rognlien, T.; Ryutov, D.; Makowski, M.; Soukhanovskii, V.; Umansky, M.; Cohen, R.; Hill, D.; Joseph, I.

    2009-01-01

    Large, localized plasma heat exhaust continues to be one of the critical problems for the development of tokamak fusion reactors. Excessive heat flux erodes and possibly melts plasma-facing materials, thereby dramatically shortening their lifetime and increasing the impurity contamination of the core plasma. A detailed assessment by the ITER team for their divertor has revealed substantial limitations on the operational space imposed by the divertor performance. For a fusion reactor, the problem becomes worse in that the divertor must accommodate 20% of the total fusion power (less any broadly radiated loss), while not allowing excess buildup of tritium in the walls nor excessive impurity production. This is an extremely challenging set of problems that must be solved for fusion to succeed as a power source; it deserves a substantial research investment. Material heat-flux constraints: Results from present-day tokamaks show that there are two major limitations of peak plasma heat exhaust. The first is the continuous flow of power to the divertor plates and nearby surfaces that, for present technology, is limited to 10-20 MW/m 2 . The second is the transient peak heat-flux that can be tolerated in a short time, τ m , before substantial ablation and melting of the surface occurs; such common large transient events are Edge Localized Mode (ELMs) and disruptions. The material limits imposed by these events give a peak energy/τ m 1/2 parameter of ∼ 40 MJ/m 2 s 1/2 (1). Both the continuous and transient limits can be approached by input powers in the largest present-day devices, and future devices are expected to substantially exceed the limits unless a solution can be found. Since the early 90's LLNL has developed the analytic and computational foundation for analyzing divertor plasmas, and also suggested and studied a number of solid and liquid material concepts for improving divertor/wall performance, with the most recent being the Snowflake divertor concept (2

  15. Experience with after-shutdown decay heat removal - BWRs and PWRs

    International Nuclear Information System (INIS)

    Haugh, J.J.; Mollerus, F.J.; Booth, H.R.

    1992-01-01

    Boiling-water reactors (BWRs) and pressurized-water reactors (PWRs) make use of residual heat removal systems (RHRSs) during reactor shutdown. RHRS operational events involving an actual loss or significant degradation of an RHRS during shutdown heat removal are often prompted or aggravated by complex, changing plant conditions and by concurrent maintenance operations. Events involving loss of coolant inventory, loss of decay heat removal capability, or inadvertent pressurization while in cold shutdown have occurred. Because fewer automatic protective fetures are operative during cold shutdowns, both prevention and termination of events depend heavily on operator action. The preservation of RHRS cooling should be an important priority in all shutdown operations, particularly where there is substantial decay heat and a reduced water inventory. 13 refs., 3 figs., 4 tabs

  16. Impact of ELM filaments on divertor heat flux dynamics in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, J.-W., E-mail: jahn@pppl.gov [Oak Ridge National Laboratory, Oak Ridge (United States); Maingi, R. [Princeton Plasma Physics Laboratory, Princeton (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore (United States)

    2015-08-15

    The ELM induced change in wetted area (A{sub wet}) and peak heat flux (q{sub peak}) of divertor heat flux is investigated as a function of the number of striations, which represent ELM filaments, observed in the heat flux profile in NSTX. More striations are found to lead to larger A{sub wet} and lower q{sub peak}. The typical number of striations observed in NSTX is 0–9, while 10–15 striations are normally observed in other machines such as JET, and the ELM contracts heat flux profile when the number of striations is less than 3–4 but broadens it with more of them. The smaller number of striations in NSTX is attributed to the fact that NSTX ELMs are against kink/peeling boundary with lower toroidal mode number (n = 1–5), while typical peeling–ballooning ELMs have higher mode number of n = 10–20. For ELMs with smaller number of striations, relative A{sub wet} change is rather constant and q{sub peak} change rapidly increases with increasing ELM size, while A{sub wet} change slightly increases leading to a weaker increase of q{sub peak} change for ELMs with larger number of striations, both of which are unfavourable trend for the material integrity of divertor tiles.

  17. Design and analysis of a new passive residual heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xing [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China); Peng, Minjun, E-mail: heupmj@163.com [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China); Yuan, Xiao [Guangxi Fangchenggang Nuclear Power Co., Ltd (China); Xia, Genglei [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China)

    2016-07-15

    Highlights: • An air cooling passive residual heat removal System (PRHRs) is designed. • Using RELAP5/MOD3.4 code to analyze the operation characteristics of the PRHRs. • Noncondensable gas is used to simulate the hydrodynamic behavior in the air cooling tower. • The natural circulations could respectively establish in the primary circuit and the PRHRs circuit. • The PRHRs could remove the residual heat effectively. - Abstract: The inherent safety functions will mitigate the consequences of the accidents, and it can be accomplished through the passive safety systems which employed in the typical pressurized water reactor (PWR). In this paper, a new passive residual heat removal system (PRHRS) is designed for a typical nuclear power plant. PRHRS consists of a steam generator (SG), a cooling tank with two groups of cooling pipes, an air-cooling heat exchanger (AHX), an air-cooling tower, corresponding pipes and valves. The cooling tank which works as an intermediate buffer device is used to transfer the core decay heat to the AHX, and then the core decay heat will be removed to the atmosphere finally. The RELAP5/MOD3.4 code is used to analyze the operation characteristics of PRHRS and the primary loop system. It shows PRHRS could remove the decay heat from the primary loop effectively, and the natural circulations can be established in the primary circuit and the PRHRS circuit respectively. Furthermore, the sensitivity study has also been done to research the effect of various factors on the heat removal capacity.

  18. Passive Decay Heat Removal System for Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    Dry cooling system is applied as waste heat removal system therefore it is able to consider wide construction site. Schematic figure of the reactor is shown in Fig. 1. In safety features, the reactor has double containment and passive decay heat removal (PDHR) system. The double containment prevents leakage from reactor coolant system to be emitted into environment. The passive decay heat removal system copes with design basis accidents (DBAs). Micros Modular Reactor (MMR) which has been being developed in KAIST is S-CO{sub 2} gas cooled reactor and shows many advantages. The S-CO{sub 2} power cycle reduces size of compressor, and it makes small size of power plant enough to be transported by trailer.The passive residual heat removal system is designed and thermal hydraulic (TH) analysis on coolant system is accomplished. In this research, the design process and TH analysis results are presented. PDHR system is designed for MMR and coolant system with the PDHR system is analyzed by MARS-KS code. Conservative assumptions are applied and the results show that PDHR system keeps coolant system under the design limitation.

  19. Critical heat flux in vertical flows at low pressures; Flux de chaleur critique en ecoulements verticaux aux pressions faibles

    Energy Technology Data Exchange (ETDEWEB)

    Olekhnowitch, A [Ecole Polytechnique, Montreal, PQ (Canada)

    1994-12-31

    This paper presents some critical heat flux (CHF) data obtained for vertical upflow of water in an 8 mm test section, for exit pressures ranging from 5 to 30 bar. The experiments were carried out for heated lengths of 0.75, 1, 1.4 and 1.8 m. In general, the collected data show trends similar to those described in the open literature. However, it was observed that for low pressures CHF depends on the heated length; this dependence begins to disappear for exit pressure of about 30 bar. The data have been compared with a look-up table and predictions of well known correlations. For low pressures and low mass fluxes, the look-up table seems to give better predictions, but for medium pressures and mass fluxes, the correlations perform better. 19 refs., 5 figs.

  20. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    Energy Technology Data Exchange (ETDEWEB)

    Araki, M.; Kitamura, K.; Suzuki, S. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Urata, K. [Mitsubishi Geavy Industries Ltd., 2-5-1, Marunouchi,Chiyoda-ku, Tokyo 100 (Japan)

    1998-09-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.) 20 refs.

  1. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    International Nuclear Information System (INIS)

    Araki, M.; Kitamura, K.; Suzuki, S.

    1998-01-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.)

  2. An intercomparison between the surface heat flux feedback in five coupled models, COADS and the NCEP reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Frankignoul, C.; Kestenare, E. [Universite Pierre et Marie Curie, Institute Pierre-Simon Laplace, Laboratoire d' Oceanographie Dynamique et de Climatologie, 4 place Jussieu, 75252 Paris Cedex 05 (France); Botzet, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Carril, A.F. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Drange, H. [Nansen Environmental and Remote Sensing Center, Bergen (Norway); Pardaens, A. [Hadley Centre for Climate Prediction and Research, Met Office (United Kingdom); Terray, L.; Sutton, R. [Department of Meteorology, University of Reading (United Kingdom)

    2004-04-01

    The surface heat flux feedback is estimated in the Atlantic and the extra-tropical Indo-Pacific, using monthly heat flux and sea surface temperature anomaly data from control simulations with five global climate models, and it is compared to estimates derived from COADS and the NCEP reanalysis. In all data sets, the heat flux feedback is negative nearly everywhere and damps the sea surface temperature anomalies. At extra-tropical latitudes, it is strongly dominated by the turbulent fluxes. The radiative feedback can be positive or negative, depending on location and season, but it remains small, except in some models in the tropical Atlantic. The negative heat flux feedback is strong in the mid-latitude storm tracks, exceeding 40 W m{sup -2} K{sup -1} at place, but in the Northern Hemisphere it is substantially underestimated in several models. The negative feedback weakens at high latitudes, although the models do not reproduce the weak positive feedback found in NCEP in the northern North Atlantic. The main differences are found in the tropical Atlantic where the heat flux feedback is weakly negative in some models, as in the observations, and strongly negative in others where it can exceed 30 W m{sup -2} K{sup -1} at large scales, in part because of a strong contribution of the radiative fluxes, in particular during spring. A comparison between models with similar atmospheric or oceanic components suggests that the atmospheric model is primarily responsible for the heat flux feedback differences at extra-tropical latitudes. In the tropical Atlantic, the ocean behavior plays an equal role. The differences in heat flux feedback in the tropical Atlantic are reflected in the sea surface temperature anomaly persistence, which is too small in models where the heat flux damping is large. A good representation of the heat flux feedback is thus required to simulate climate variability realistically. (orig.)

  3. The kinetics of removal of heat-induced excess nuclear protein

    International Nuclear Information System (INIS)

    Roti, J.L.R.; Uygur, N.; Higashikubo, R.

    1984-01-01

    To investigate the role of protein content, temperature and heating time in the removal of heat-induced excess protein associated with the isolated nucleus, the kinetics of protein removal was monitored for 6 to 8 hours following exposure to 7 hyperthermic protocols. Four of these (47 0 C-7.5 min., 46 0 C-15 min., 45 0 C-30 min., and 44 0 C-60 min.) resulted in a nuclear protein content approximately twice that of nuclei from unheated cells (2.05 +- .14) following heat exposure. Three protocols (45 0 C-15 min., 44 0 C-30 min. and 43 0 C-60 min.) resulted in a nuclear protein content approximately 1.6 times normal (1.63 +- .12). If nuclear protein content were the only determinant in the recovery rate, then the same half time for nuclear protein removal would be expected within each group of protocols. Rate constants for nuclear protein removal were obtained by regression analysis. The half-time for nuclear protein removal increased with decreasing temperature and increasing heating time for the same nuclear protein content. This result suggests that the heating time and temperature are more of a determinant in the removal kinetics than protein content alone. Extended kinetics of recovery (to 36 hours) showed incomplete recovery and a secondary increase in protein associated with the isolated nucleus. These results were due to cell-cycle rearrangement (G/sub 2/ block) and unbalanced growth

  4. Numerical modeling and validation of helium jet impingement cooling of high heat flux divertor components

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Simonovski, Igor; Norajitra, Prachai

    2009-01-01

    Numerical analyses of jet impingement cooling presented in this paper were performed as a part of helium-cooled divertor studies for post-ITER generation of fusion reactors. The cooling ability of divertor cooled by multiple helium jets was analysed. Thermal-hydraulic characteristics and temperature distributions in the solid structures were predicted for the reference geometry of one cooling finger. To assess numerical errors, different meshes (hexagonal, tetra, tetra-prism) and discretisation schemes were used. The temperatures in the solid structures decrease with finer mesh and higher order discretisation and converge towards finite values. Numerical simulations were validated against high heat flux experiments, performed at Efremov Institute, St. Petersburg. The predicted design parameters show reasonable agreement with measured data. The calculated maximum thimble temperature was below the tile-thimble brazing temperature, indicating good heat removal capability of reference divertor design. (author)

  5. Power load limits of the WENDELSTEIN 7-X target elements-comparison of experimental results and design values for power loads up to the critical heat flux

    International Nuclear Information System (INIS)

    Greuner, H; Boeswirth, B; Boscary, J; Leuprecht, A; Plankensteiner, A

    2007-01-01

    The power load limits of the WENDELSTEIN7-X divertor target elements were experimentally evaluated with heat loads considerably exceeding the expected operating conditions. The water-cooled elements are designed for steady-state heat flux of 10 MW m -2 and to remove a power load up to 100 kW. The elements must allow a limited operation time at 12 MW m -2 steady-state and should not fail for short pulses of up to 15 MW m -2 for cooling conditions in the subcooled nucleate boiling regime. In the framework of the qualification phase, pre-series target elements were loaded up to 24 MW m -2 without loss of CFC tiles. A critical heat flux at the target of 31 MW m -2 was achieved. The paper discusses the results of the tests performed at the high heat flux test facility GLADIS. The experimental results compared to transient nonlinear fine element method (FEM) calculations confirm a high thermal safety margin of the target design sufficient for plasma operation in W7-X

  6. The heat engine cycle, the heat removal cycle, and ergonomics of the control room displays

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1986-01-01

    This paper discusses and illustrates the ergonomics of an integrated display, which will allow operators to monitor the heat engine cycle during normal operation of the plant, and the heat removal cycle during emergency operation of the plant. A computer-based iconic display is discussed as an overview to monitor these cycles. Specific emphasis is placed upon the process variables and process functions within each cycle, and the action of control systems and engineered safeguard systems within each cycle. This paper contains examples of display formats for the heat engine cycle and the heat removal cycle in a pressurized water reactor

  7. Cyro Power and Heat Transfer

    National Research Council Canada - National Science Library

    Chow, L

    1998-01-01

    .... The heat generated from a 9x9-heater array was removed by liquid nitrogen pool boiling. The orientation and space limitation of the array were varied to explore their effects on the critical heat flux (CHF) value...

  8. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  9. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    Science.gov (United States)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more

  10. New geothermal heat flux map of Greenland and the Iceland hotspot track

    Science.gov (United States)

    Martos, Y. M.; Jordan, T. A.; Catalan, M.; Jordan, T. M.; Bamber, J. L.; Vaughan, D. G.

    2017-12-01

    Greenland is the second largest reservoir of water on Earth and about 80% of its surface is covered by ice. It is mainly composed of Archean blocks that collided during the Early Proterozoic. Indirect methods have been used to study its subglacial thermal conditions, geology and lithospheric structure. Numerous regions of basal melting are identified in the central and north Greenland but their relationship with geothermal heat flux is not yet clear. Crustal thickness derived by seismology and gravity data are consistent, showing no significant lateral variations, and providing average values of about 40 and 36 km respectively. Even though Greenland is considered a craton its crust has been affected by the presume passage of the Iceland hotspot since at least 100 Ma. Here we present the newest and highest resolution Curie Depth and geothermal heat flux maps for Greenland as well as their associated uncertainties. For estimating the Curie Depths we applied spectral methods to aeromagnetic data from the World Digital Magnetic Anomaly Map WDMAM2.0. Calculated Curie Depths vary from 25 to 50 km with shallower values located to the east. A thermal model is built based on the 1D heat conduction equation and considering steady state conditions. The thermal parameters are then optimized using local values derived from direct measurements, temperature profiles and more indirect methods such as radar imaging. The heat flux distribution shows higher spatial variability and a very different pattern than previously proposed and with values of 50-80 mW/m2. We identify a NW-SE high heat flux feature crossing Greenland which we correlate with the Iceland hotspot track. Additionally, to evaluate the lithospheric structure we calculate the Bouguer anomaly from GOCO5s satellite free air data and construct several gravity models across the proposed hotspot track. We show that a dense lower crust body in the same location the high heat flux trend is permissible from a gravimetric

  11. Passive heat removal characteristics of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Kwang; Kang, Hyung Seok; Yoon, Joo Hyun; Kim, Hwan Yeol; Cho, Bong Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A new advanced integral reactor of 330 MWt thermal capacity named SMART (System-Integrated Modular Advanced Reactor) is currently under development in Korea Atomic Energy Research Institute (KAERI) for multi-purpose applications. Modular once-through steam generator (SG) and self-pressurizing pressurizer equipped with wet thermal insulator and cooler are essential components of the SMART. The SMART provides safety systems such as Passive Residual Heat Removal System (PRHRS). In this study, a computer code for performance analysis of the PRHRS is developed by modeling relevant components and systems of the SMART. Using this computer code, a performance analysis of the PRHRS is performed in order to check whether the passive cooling concept using the PRHRS is feasible. The results of the analysis show that PRHRS of the SMART has excellent passive heat removal characteristics. 2 refs., 4 figs., 1 tab. (Author)

  12. Estimation of peak heat flux onto the targets for CFETR with extended divertor leg

    International Nuclear Information System (INIS)

    Zhang, Chuanjia; Chen, Bin; Xing, Zhe; Wu, Haosheng; Mao, Shifeng; Luo, Zhengping; Peng, Xuebing; Ye, Minyou

    2016-01-01

    Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D 2 gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m 2 is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.

  13. Estimation of peak heat flux onto the targets for CFETR with extended divertor leg

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuanjia; Chen, Bin [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Xing, Zhe [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Haosheng [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Mao, Shifeng, E-mail: sfmao@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Luo, Zhengping; Peng, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-01

    Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D{sub 2} gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m{sup 2} is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.

  14. Critical heat flux experiments in tight lattice core

    Energy Technology Data Exchange (ETDEWEB)

    Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  15. Critical heat flux experiments in tight lattice core

    International Nuclear Information System (INIS)

    Kureta, Masatoshi

    2002-01-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  16. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Wang, Minglu; Gu, Hanyang; Ye, Cheng

    2015-01-01

    Highlights: • A passively cooling SFP heat pipe with an 8.2 m high evaporator was tested. • Heat removed by the heat pipe is in the range of 3.1–16.8 kW. • The heat transfer coefficient of the evaporator is 214–414 W/m 2 /K. • The heat pipe performance is sensitive to the hot water temperature. - Abstract: A loop-type heat pipe system uses natural flow with no electrically driven components. Therefore, such a system was proposed to passively cool spent fuel pools during accidents to improve nuclear power station safety especially for station blackouts such as those in Fukushima. The heat pipe used for a spent fuel pool is large due to the spent fuel pool size. An experimental heat pipe test loop was developed to estimate its heat removal capacity from the spent fuel pool during an accident. The 7.6 m high evaporator is heated by hot water flowing vertically down in an assistant tube with a 207-mm inner diameter. R134a was used as the potential heat pipe working fluid. The liquid R134a level was 3.6 m. The tests were performed for water velocities from 0.7 to 2.1 × 10 −2 m/s with water temperatures from 50 to 90 °C and air velocities from 0.5 m/s to 2.5 m/s. The results indicate significant heat is removed by the heat pipe under conditions that may occur in the spent fuel pool

  17. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  18. Temperature and heat flux scaling laws for isoviscous, infinite Prandtl number mixed heating convection.

    Science.gov (United States)

    Vilella, Kenny; Deschamps, Frederic

    2018-04-01

    Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean

  19. Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface

    Science.gov (United States)

    Keitzl, T.; Mellado, J. P.; Notz, D.

    2016-12-01

    The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.

  20. Study on subcooled-forced flow boiling heat transfer and critical heat flux of solid particle-water two-phase mixture

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Mochizuki, Manabu; Ohtake, Hiroyasu

    1999-01-01

    The effect of solid particle introduction on forced flow boiling and the critical heat flux was examined for the mixture of subcooled-water and 0.6 mm glass beads. When the particles were introduced, the growth on of a superheated layer near a wall seemed to be suppressed and the onset of nucleate boiling was delayed. The particles tempted for bubbles to condense at nucleation sites, and then the initiation of net vapor generation was also delayed and sifted to a high wall-superheat region. The nucleate boiling heat transfer was augmented by the particles, which considered to be caused by the combination of the suppression of the superheated layer growth and the promotion of the condensation and dissipation of the bubbles. The wall superheat at the critical heat flux condition was sifted to a high wall superheat region and the critical heat flux itself was also elevated a little. (author)

  1. Experimental assessment for instantaneous temperature and heat flux measurements under Diesel motored engine conditions

    International Nuclear Information System (INIS)

    Torregrosa, A.J.; Bermúdez, V.; Olmeda, P.; Fygueroa, O.

    2012-01-01

    Higlights: ► We measured in-cylinder wall heat fluxes. ► We examine the effects of different engine parameters. ► Increasing air mass flow increase heat fluxes. ► The effect of engine speed can be masked by the effect of volumetric efficiency. ► Differences among the different walls have been found. - Abstract: The main goal of this work is to validate an innovative experimental facility and to establish a methodology to evaluate the influence of some of the engine parameters on local engine heat transfer behaviour under motored steady-state conditions. Instantaneous temperature measurements have been performed in order to estimate heat fluxes on a modified Diesel single cylinder combustion chamber. This study was divided into two main parts. The first one was the design and setting on of an experimental bench to reproduce Diesel conditions and perform local-instantaneous temperature measurements along the walls of the combustion chamber by means of fast response thermocouples. The second one was the development of a procedure for temperature signal treatment and local heat flux calculation based on one-dimensional Fourier analysis. A thermodynamic diagnosis model has been employed to characterise the modified engine with the new designed chamber. As a result of the measured data coherent findings have been obtained in order to understand local behaviour of heat transfer in an internal combustion engine, and the influence of engine parameters on local instantaneous temperature and heat flux, have been analysed.

  2. Some aspects of using Be as high heat flux protective armour material

    International Nuclear Information System (INIS)

    Gervash, A.; Mazul, I.; Yablokov, N.; Linke, J.

    2000-01-01

    The beryllium as plasma facing armour material must protect the actively cooled copper alloy heat sink of the First Wall and Divertor components from sputtering erosion, disruption and VDE transients and withstand the number of cycles under expected heat and neutron fluxes. The presented paper discusses some topical questions and presents recent results obtained in Russia in the frame of such consideration. In real operation beryllium as plasma facing component will be subjected to sequence of normal (cyclic heat fluxes) and off-normal (disruption, VDE) heat loads. Aiming to investigate the results of mentioned events the experiments with the number of Russian Be grades (DShG-200, TGP-56, TShG-56, TR-30, Condensed Be) as well as S-65C (ITER reference grade) at simulated disruption loads (∝5 MJ/m 2 ) and subsequent thermal cycling (∝5 MW/m 2 , 1000 cycles) were carried out. Experiments have revealed no macroscopic damage of the tested grades, although significant differences in crack formation and propagation were observed. The main statistics of performed experiments is presented and discussed. One of the main requirements to use Be as a candidate for plasma facing component is providing a reliable joint between Be and Cu-alloy heat sink structure. The unique Russian fast brazing process of joining beryllium to Cu-alloy that allows to survive high heat fluxes ≥10 MW/m 2 during thousand heating/cooling cycles without serious damaging in the armour material and its joint was described in previous works. The main goal of experiments presented in this paper was to study the high heat flux durability limit for joints as function of the pulse duration (i.e. investigation of creep/fatigue interaction). Authors present a description of the testing procedure and discuss the first results of mentioned experiments. (orig.)

  3. Heat flux management via advanced magnetic divertor configurations and divertor detachment

    Energy Technology Data Exchange (ETDEWEB)

    Kolemen, E., E-mail: ekolemen@princeton.edu [Princeton University, Princeton, NJ 08544 (United States); Allen, S.L. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bray, B.D. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Humphreys, D.A.; Hyatt, A.W. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Leonard, A.W. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M.A.; McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Maingi, R.; Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Petrie, T.W. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Unterberg, E.A. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2015-08-15

    The snowflake divertor (SFD) control and detachment control to manage the heat flux at the divertor are successfully demonstrated at DIII-D. Results of the development and implementation of these two heat flux reduction control methods are presented. The SFD control algorithm calculates the position of the two null-points in real-time and controls shaping coil currents to achieve and stabilize various snowflake configurations. Detachment control stabilizes the detachment front fixed at specified distance between the strike point and the X-point throughout the shot.

  4. Critical heat flux concerns during the flow instability phase of a DEGB LOCA

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1990-08-01

    Arguments are presented that support the proposal that a separate burnout risk analysis, for the Flow Instability (FI) phase of a LOCA, not be required for reactor restart. With expected reactor power limits, flow instability will occur before critical heat flux (CHF). Since FI power limits preclude the occurrence of flow instability in a bounding accident, a DEGB LOCA, the risk of CHF and attendant burnout is negligible. A review of RDAP data revealed that in the past reactor assemblies operated at flow and power conditions similar to those expected in a LOCA without burnout occurring. This is strong bounding empirical evidence, without the scaling concerns of laboratory experiments. A bounding analysis of the influences of assembly non-idealities on CHF, power tilts, and channel eccentricity, is included. The margin between operating heat fluxes, during the postulated LOCA, and CHF was quantified by scoping calculations. Based on measured azimuthal power variations, the local heat flux would have to be more than 20 standard deviations above the calculated mean heat flux for CHF to occur

  5. More power and less loads in wind farms. 'Heat and flux'

    Energy Technology Data Exchange (ETDEWEB)

    Corten, G.P.; Schaak, P. [ECN Wind Energy, Petten (Netherlands)

    2004-11-01

    We consider a farm as a single energy extracting body instead of a superposition of individual energy extractors, i.e. wind turbines. As a result we found two new hypotheses called Heat and Flux. Both hypotheses reveal that the classical operation of turbines in a wind farm at the Lanchester-Betz optimum does not lead to maximum farm output. However, when the turbines at the windward side of the farm are operated below their optimum, then the power of the turbines under the lee increases in such a way that the net farm production increases slightly. Next to this production advantage of Heat and Flux operation there is also a loading advantage. The average axial loading of the upwind turbines of a farm is reduced in a 'Heat and Flux'-farm. As a result those turbines generate less turbines so that the fatigue loads of the downwind turbines reduce too. The results were confirmed by in a boundary layer tunnel by means of differential measurements between a 'Heat and Flux'-farm and a classical farm.

  6. A passive decay-heat removal system for an ABWR based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2017-01-15

    Highlights: • A passive decay heat removal system for an ABWR is discussed using combined system of the reactor and an air cooler. • Effect of number of pass of the finned heat transfer tubes on heat removal is investigated. • The decay heat can be removed by air coolers with natural convection. • Two types of air cooler are evaluated, i.e., steam condensing and water cooling types. • Measures how to improve the heat removal rate and to make compact air cooler are discussed. - Abstract: This paper describes the capability of an air cooling system (ACS) operated under natural convection conditions to remove decay heat from the core of an Advanced Boiling Water Reactor (ABWR). The motivation of the present research is the Fukushima Severe Accident (SA). The plant suffered damages due to the tsunami and entered a state of Station Blackout (SBO) during which seawater cooling was not available. To prevent this kind of situation, we proposed a passive decay heat removal system (DHRS) in the previous study. The plant behavior during the SBO was calculated using the system code NETFLOW++ assuming an ABWR with the ACS. However, decay heat removal under an air natural convection was difficult. In the present study, a countermeasure to increase heat removal rate is proposed and plant transients with the ACS are calculated under natural convection conditions. The key issue is decreasing pressure drop over the tube banks in order to increase air flow rate. The results of the calculations indicate that the decay heat can be removed by the air natural convection after safety relief valves are actuated many times during a day. Duct height and heat transfer tube arrangement of the AC are discussed in order to design a compact and efficient AC for the natural convection mode. As a result, a 4-pass heat transfer tubes with 2-row staggered arrangement is the candidate of the AC for the DHRS under the air natural convection conditions. The heat removal rate is re-evaluated as

  7. Dryout heat flux in a debris bed with forced coolant flow from below

    International Nuclear Information System (INIS)

    Bang, Kwang-Hyun; Kim, Jong-Myung

    2004-01-01

    The objective of the present study is to experimentally investigate the enhancement of dryout heat flux in debris beds with coolant flow from below. The experimental facility consists mainly of an induction heater (40 kW, 35 kHz), a double-wall quartz-tube test section containing steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of particle bed was achieved by induction heating. This paper reports the experimental data for 5 mm particle bed and 300 mm bed height. The dryout heat rate data were obtained of both top-flooding case and forced coolant injection from below with the injection mass flux up to 1.5 kg/m 2 s. For the top-flooded case, the volumetric dryout heat rate was about 4 MW/m 3 and it increased as the rate of coolant injection from below was increased. At the coolant injection mass flux of 1.5 kg/m 2 s, the volumetric dryout heat rate was about 10 MW/m 3 , the enhancement factor was more than two. (author)

  8. General correlation for prediction of critical heat flux ratio in water cooled channels

    Energy Technology Data Exchange (ETDEWEB)

    Pernica, R.; Cizek, J.

    1995-09-01

    The paper present the general empirical Critical Heat Flux Ration (CHFR) correlation which is valid for vertical water upflow through tubes, internally heated concentric annuli and rod bundles geometries with both wide and very tight square and triangular rods lattices. The proposed general PG correlation directly predicts the CHFR, it comprises axial and radial non-uniform heating, and is valid in a wider range of thermal hydraulic conditions than previously published critical heat flux correlations. The PG correlation has been developed using the critical heat flux Czech data bank which includes more than 9500 experimental data on tubes, 7600 data on rod bundles and 713 data on internally heated concentric annuli. Accuracy of the CHFR prediction, statistically assessed by the constant dryout conditions approach, is characterized by the mean value nearing 1.00 and the standard deviation less than 0.06. Moverover, a subchannel form of the PG correlations is statistically verified on Westinghouse and Combustion Engineering rod bundle data bases, i.e. more than 7000 experimental CHF points of Columbia University data bank were used.

  9. Using heat to characterize streambed water flux variability in four stream reaches

    Science.gov (United States)

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    International Nuclear Information System (INIS)

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T.

    2012-01-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m 2 s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  11. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    Science.gov (United States)

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.

  12. A passive decay heat removal system for LWRs based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [Graduate School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2015-05-15

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.

  13. After-heat removing device in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, K [Nippon Atomic Industry Group Co. Ltd., Tokyo

    1977-01-14

    Purpose: To prevent water hammer in a BWR type reactor or the like by moving water in pipe lines having stagnant portions in an after-heat removing device. Constitution: To a reactor container, is provided a recycling pump which constitutes a closed loop type recycling system in a nuclear power plant together with a pressure vessel and pipe lines. A pump and a heat exchanger are provided outside of the reactor container and they are connected to up- and down-streams of the recycling pump to form an after-heat removing device in the plant. Upon shutdown of the nuclear power plant, since water in the stagnant portion flows to the intake port of the recycling pump and water from the reactor is spontaneously supplemented thereafter to the stagnant portion, neither pressurized water nor heated steam is generated and thus water hammer is prevented.

  14. Advanced neutron source design: burnout heat flux correlation development

    International Nuclear Information System (INIS)

    Gambill, W.R.; Mochizuki, T.

    1988-01-01

    In the advanced neutron source reactor (ANSR) fuel element region, heat fluxes will be elevated. Early designs corresponded to average and estimated hot-spot fluxes of 11 to 12 and 21 to 22 MW/m 2 , respectively. Design changes under consideration may lower these values to ∼ 9 and 17 MW/m 1 . In either event, the development of a satisfactory burnout heat flux correlation is an important element among the many thermal-hydraulic design issues, since the critical power ratio will depend in part on its validity. Relatively little work in the area of subcooled-flow burnout has been published over the past 12 yr. The authors have compared seven burnout correlations and modifications therefore with several sets of experimental data, of which the most relevant to the ANS core are those referenced. The best overall agreement between the correlations tested and these data is currently provided by a modification of Thorgerson et al. correlation. The variable ranges of the experimental data are outlined and the results of the correlation comparisons are summarized

  15. The study of heat flux for disruption on experimental advanced superconducting tokamak

    Science.gov (United States)

    Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen

    2016-05-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.

  16. Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer

    Directory of Open Access Journals (Sweden)

    Samain Bruno

    2012-05-01

    Full Text Available Evapotranspiration rates at the catchment scale are very difficult to quantify. One possible manner to continuously observe this variable could be the estimation of sensible heat fluxes (H across large distances (in the order of kilometers using a large aperture scintillometer (LAS, and inverting these observations into evapotranspiration rates, under the assumption that the LAS observations are representative for the entire catchment. The objective of this paper is to assess whether measured sensible heat fluxes from a LAS over a long distance (9.5 km can be assumed to be valid for a 102.3 km2 heterogeneous catchment. Therefore, a fully process-based water and energy balance model with a spatial resolution of 50 m has been thoroughly calibrated and validated for the Bellebeek catchmentin Belgium. A footprint analysis has been performed. In general, the sensible heat fluxes from the LAS compared well with the modeled sensible heat fluxes within the footprint. Moreover, as the modeled Hwithin the footprint has been found to be almost equal to the modeled catchment averaged H, it can be concluded that the scintillometer measurements over a distance of 9.5 km and an effective heightof 68 m are representative for the entire catchment.

  17. Effects of the Cattaneo–Christov heat flux model on peristalsis

    Directory of Open Access Journals (Sweden)

    A. Tanveer

    2016-01-01

    Full Text Available This paper addresses the influence of newly-developed Cattaneo–Christov heat flux model on peristalsis. Analysis has been carried out in a two-dimensional planner channel with wall properties and the Soret effect. An incompressible viscous fluid fills the space inside the channel. The relevant mathematical modeling is developed and a perturbation technique is employed to obtain a series form of solutions about small wave numbers. Expressions of velocity, temperature, concentration and heat transfer are treated graphically, corresponding to elasticity parameters, relaxation time and Prandtl numbers specifically. The graphical results are found distinctive that offers challenging role for further research on the topic. Further, the results of Fourier’s law can be verified when the relaxation time of the Cattaneo–Christov heat flux model is considered absent or concepts of large wavelength and small Reynolds numbers are applied.

  18. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-01-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods

  19. Uncertainty analysis of scintillometers methods in measuring sensible heat fluxes of forest ecosystem

    Science.gov (United States)

    Zheng, N.

    2017-12-01

    Sensible heat flux (H) is one of the driving factors of surface turbulent motion and energy exchange. Therefore, it is particularly important to measure sensible heat flux accurately at the regional scale. However, due to the heterogeneity of the underlying surface, hydrothermal regime, and different weather conditions, it is difficult to estimate the represented flux at the kilometer scale. The scintillometer have been developed into an effective and universal equipment for deriving heat flux at the regional-scale which based on the turbulence effect of light in the atmosphere since the 1980s. The parameter directly obtained by the scintillometer is the structure parameter of the refractive index of air based on the changes of light intensity fluctuation. Combine with parameters such as temperature structure parameter, zero-plane displacement, surface roughness, wind velocity, air temperature and the other meteorological data heat fluxes can be derived. These additional parameters increase the uncertainties of flux because the difference between the actual feature of turbulent motion and the applicable conditions of turbulence theory. Most previous studies often focused on the constant flux layers that are above the rough sub-layers and homogeneous flat surfaces underlying surfaces with suitable weather conditions. Therefore, the criteria and modified forms of key parameters are invariable. In this study, we conduct investment over the hilly area of northern China with different plants, such as cork oak, cedar-black and locust. On the basis of key research on the threshold and modified forms of saturation with different turbulence intensity, modified forms of Bowen ratio with different drying-and-wetting conditions, universal function for the temperature structure parameter under different atmospheric stability, the dominant sources of uncertainty will be determined. The above study is significant to reveal influence mechanism of uncertainty and explore influence

  20. Application of the Bowring correlation for calculating the critical heat flux

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1986-01-01

    The evaluation of the critical heat flux is of great importance for the nuclear reactor project, because it permits the verification of the safety margin with respect to fuel rod damage. This work presents a comparison of the original critical heat flux correlation proposed by Bowring with an alternative form derived from it presented in several papers. Very different results have been encountered from the application of the two correlation forms. Therefore, a criterious choice of the correlation form must be done avoid the violation of the project's safety margin. (Author) [pt

  1. Heat Flux Tests of the ITER FWQMs at KoHLT-1

    International Nuclear Information System (INIS)

    Bae, Young Dug; Kim, Suk Kwon; Shin, Hee Yun; Lee, Dong Won; Hong, Bong Guen

    2009-05-01

    As a party of the ITER, especially as a procurement party of the ITER blanket, we have designed the First Wall Qualification Mockup (FWQM) and fabricated five FWQMs. Two of them have been tested up to 12,690/12,020 cycles at a heat flux higher than 0.625 MW/m 2 at the KoHLT-1 facility established in the Korea Atomic Energy Research Institute (KAERI). Two KO FWQMs successfully passed the normal heat flux tests, and there was no indication of defect in the Be-to-CuCrZr joints

  2. Sensitivity analysis for maximum heat removal from debris in the lower head

    International Nuclear Information System (INIS)

    Kim, Yong Hoon; Suh, Kune Y.

    2000-01-01

    Sensitivity analyses were performed to determine the maximum heat removal capability from the debris and the reactor pressure vessel (RPV) wall through the gap that may be formed during a core melt relocation accident. Cases studied included four different nuclear power plant (TMI-2,KORI-2,YGN 3and4 and KNGR) per the thermal opower output. Results of the analysis show that the heat removal through gap cooling relative to flooding is efficacious as much as about 40% of the core material accumulated in the lower plenum in case of the TMI-2 reactor. In excess of 40%, however, the gap cooling alone was found not to be enough for heat removal from the core debris. There being uncertaainties aoboout the assumptions made in the present study,the analyses yield consistent results. If different cooling effects are considered, heat removal may be greatly enhanced. The LAVA experiements were performed at the Korea Atomic Energy Research Institute (KAERI) using al 2 O 3 /Fe thermite melt relocating down to the scaled vessel of a reactor lower head filled with preheated water. Test results indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices. If the cooling capacity of the intra-debris pores and crevices is comparable to debris-to-vessel heat removal capability, heat removal from the debris will be greatly augmented than heat removal by the gap cooling alone. The three nuclear reactor (KORI-2, YGN 3and4 and KNGR) calculation results for heat removal through the debris-to-vessel gap size of about 1mm were compared with the TMI-2 reactor calculation results for the case of gap cooling alone. (author)

  3. Counterintuitive Constraints on Chaos Formation Set by Heat Flux through Europa's Ocean

    Science.gov (United States)

    Goodman, J. C.

    2013-12-01

    Models for the formation of disruptive chaos features on the icy surface of Europa fall into two broad categories: either chaos is formed when basal heating causes localized melting and thinning of the ice shell, or basal heating drives diapiric convection within the ice shell. We argue that in both of these cases, heating of the ice shell from below does not lead to chaos formation at the location of heating. If chaos is formed when a localized oceanic heat source, such as a hydrothermal plume, "melts through" the ice crust, we must consider what happens to the melted liquid. If Europa's ocean is salty, the melt will form a buoyant pool inside the melted cavity, leading to a stable interface between cold fresh meltwater and warm salty seawater. This stable interface acts like an ablative heat shield, protecting the ice from further damage. Some heat can be transferred across the stable layer by double diffusion, but this transfer is very inefficient. We calculate that local ocean heating cannot be balanced by local flux through the stable layer: instead, the warm ocean water must spread laterally until it is delivering heat to the ice base on a regional or global scale (a heating zone hundreds or thousands of km across, for conservative parameters.) If chaos is formed by diapiric solid-state convection within the ice shell, many investigators have assumed that diapirism and chaos should be most prevalent where the basal heat flux is strongest. We argue that this is not the case. In Rayleigh-Benard convection, increasing the heat flux will make convection more vigorous --- if and only if the convecting layer thickness does not change. We argue that increased basal heat flux will thin the ice shell, reducing its Rayleigh number and making convection less likely, not more. This insight allows us to reverse the logic of recent discussions of the relationship between ocean circulation and chaos (for instance, Soderlund et al, 2013 LPSC). We argue that global oceanic

  4. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    International Nuclear Information System (INIS)

    Smirnov, A; Alekseev, G; Korablev, A; Esau, I

    2010-01-01

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  5. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Alekseev, G [SI ' Arctic and Antarctic Research Institute' , St. Petersburg (Russian Federation); Korablev, A; Esau, I, E-mail: avsmir@aari.nw.r [Nansen Environmental and Remote Sensing Centre, Bergen (Norway)

    2010-08-15

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  6. [Characteristics of CO2 flux before and in the heating period at urban complex underlying surface area].

    Science.gov (United States)

    Jia, Qing-yu; Zhou, Guang-sheng; Wang, Yu; Liu, Xiao-mei

    2010-04-01

    Urban areas were significant contributors to global carbon dioxide emissions. The eddy covariance (EC) was used to measure carbon dioxide (CO2) concentration and flux data at urban area in Shenyang. This research analyzed the characteristics of atmospheric CO2 concentration and flux in October 2008 to November 2008 period before and in the heating period. The results showed that the daily variation of CO2 concentration was two-peak curve. The first peak time appeared as same as sunrise time, while the second peak time impacted by vehicles and heating. The result of CO2 flux showed that urban atmospheric CO2 was net emissions, vegetation photosynthesis absorbed CO2 of traffic, the CO2 flux peak appeared at 17:15-18:15 in the heating period, CO2 emission increased 29.37 g x (m2 x d)(-1) in the heating period than that before the heating period; there was corresponding relationship between CO2 flux and the time when temperature peak and sensible heating flux (Hc) turn positive. The results also indicated that atmospheric CO2 concentration and its flux were affected seriously by both wind direction and carbon sources.

  7. Qualification of high heat flux components: application to target elements of W7-X divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Durocher, A; Grosman, A; Schlosser, J; Boscary, J; Escourbiac, F; Cismondi, F

    2007-01-01

    The development of actively cooled plasma-facing components (PFC) represents one of fusion's most challenging engineering efforts. In this frame, a high-quality bonding between the refractory armour and the heat sink is essential to ensure the heat removal capability and the thermal performances of PFC. Experience gained during manufacturing of Tore Supra actively cooled PFC led to the establishment of a qualification methodology and provided a large experience of acceptance criteria using an active infrared thermography (systeme d'acquisition de traitement infra-rouge, SATIR). This paper presents the application of this qualification process to the W7-X pre-series components, with the objective of assessing and defining workable acceptance criteria that enable reliable predictions of performance at the nominal heat flux requirements in W7-X. Finally, to check the reliability of the non-destructive examination (NDE) method by transient infrared thermography, the newly defined acceptance criteria were applied to W7-X pre-series target elements (batch no. 3). The SATIR results, benchmarked with HHF tests performed on the GLADIS ion beam facility were discussed to assess the ability to detect critical defects at the interface between tiles and heat sink

  8. Passive heat removal system with injector-condenser

    Energy Technology Data Exchange (ETDEWEB)

    Soplenkov, K I [All-Russian Inst. of Nuclear Power Plant Operation, Electrogorsk Research and Engineering Centre of Nuclear Power Safety (Russian Federation)

    1996-12-01

    The system described in this paper is a passive system for decay heat removal from WWERs. It operates off the secondary side of the steam generators (SG). Steam is taken from the SG to operate a passive injector pump which causes secondary fluid to be pumped through a heat exchanger. Variants pass either water or steam from the SG through the heat exchanger. There is a passive initiation scheme. The programme for experimental and theoretical validation of the system is described. (author). 8 figs.

  9. Pool boiling with high heat flux enabled by a porous artery structure

    Science.gov (United States)

    Bai, Lizhan; Zhang, Lianpei; Lin, Guiping; Peterson, G. P.

    2016-06-01

    A porous artery structure utilizing the concept of "phase separation and modulation" is proposed to enhance the critical heat flux of pool boiling. A series of experiments were conducted on a range of test articles in which multiple rectangular arteries were machined directly into the top surface of a 10.0 mm diameter copper rod. The arteries were then covered by a 2.0 mm thickness microporous copper plate through silver brazing. The pool wall was fabricated from transparent Pyrex glass to allow a visualization study, and water was used as the working fluid. Experimental results confirmed that the porous artery structure provided individual flow paths for the liquid supply and vapor venting, and avoided the detrimental effects of the liquid/vapor counter flow. As a result, a maximum heat flux of 610 W/cm2 over a heating area of 0.78 cm2 was achieved with no indication of dryout, prior to reaching the heater design temperature limit. Following the experimental tests, the mechanisms responsible for the boiling critical heat flux and performance enhancement of the porous artery structure were analyzed.

  10. Control Mechanisms of the Electron Heat Flux in the Solar Wind: Observations in Comparison to Numerical Simulations

    Science.gov (United States)

    Stverak, S.; Hellinger, P.; Landi, S.; Travnicek, P. M.; Maksimovic, M.

    2017-12-01

    Recent understanding of the heat transport and dissipation in the expanding solar wind propose number of complex control mechanisms down to the electron kinetic scales. We investigate the evolution of electron heat flux properties and constraints along the expansion using in situ observations from Helios spacecraft in comparison to numerical kinetic simulations. In particular we focus on the roles of Coulomb collisions and wave-particle interactions in shaping the electron velocity distribution functions and thus controlling the heat transported by the electron heat flux. We show the general evolution of the electron heat flux to be driven namely by the Coulomb collisions. Locally we demonstrate the wave-particle interactions related to the kinetic plasma instabilities to be providing effective constraints in case of extreme heat flux levels.

  11. The Effect of the Heat Flux on the Self-Ignition of Oriented Strand Board

    Science.gov (United States)

    Hirle, Siegfried; Balog, Karol

    2017-06-01

    This article deals with the initiation phase of flaming and smouldering burning of oriented strand board. The influence of heat flux on thermal degradation of OSB boards, time to ignition, heat release rate and mass loss rate using thermal analysis and vertical electrical radiation panel methods were studied. Significant information on the influence of the heat flux density and the thickness of the material on time to ignition was obtained.

  12. Steady-state heat and particle removal with the actively cooled Phase III outboard pump limiter in Tore Supra

    International Nuclear Information System (INIS)

    Nygren, R.; Koski, J.; Lutz, T.; McGrath; Miller, J.; Watkins, J.; Guilhem, D.; Chappuis, P.; Cordier, J.; Loarer, T.

    1995-01-01

    Tore Supra's Phase III outboard pump limiter (OPL) is a modular actively-cooled mid-plane limiter, designed for heat and particle removal during long pulse operation. During its initial operation in 1993, the OPL successfully removed about 1 MW of power during ohmicly heated shots of up to 10 s duration and reached (steady state) thermal equilibrium. The particle pumping of the Phase III OPL was found to be about 50% greater than the Phase II OPL which had a radial distance between the last closed flux surface and the entrance of the pumping throat of 3.5 cm compared with only 2.5 cm for the Phase III OPL. This paper gives examples of power distribution over the limiter from IR measurements of surface temperature and from extensively calorimetry (34 thermocouples and 10 flow meters) and compares the distributions with values predicted by a 3D model (HF3D) with a detailed magnetic configuration (e.g., includes field ripple). ((orig.))

  13. Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico

    OpenAIRE

    ZAVALA-HIDALGO, J.; PARÉS-SIERRA, A.; OCHOA, J.

    2002-01-01

    Heat fluxes between the atmosphere and the sea surface in the Gulf of Mexico are computed using the COADS climatology, bulk formulae, radiation estimations from satellite, and a numerical model. 9 W m-2 is the estimated mean surface heat flux into the ocean, this is higher than previous studies due to different bulk formulae and data sources. The annual cycle has an amplitude of 168 W m-2. The contribution of each term in the heat equation is computed, analyzed and compared to previous studie...

  14. Electron heat flux dropouts in the solar wind: Evidence for interplanetary magnetic field reconnection?

    International Nuclear Information System (INIS)

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.; Bame, S.J.; Luhmann, J.G.; Smith, E.J.

    1989-01-01

    Electron heat flux dropout events have been observed in the solar wind using the ISEE 3 plasma electron data set. These events manifest themselves as dropouts of the solar wind halo electrons which are normally found streaming outward along the local magnetic field. These dropouts leave nearly isotropic distributions of solar wind halo electrons, and consequently, the heat flux in these events is reduced to near the observational noise level. We have examined ISEE 3 data from shortly after launch (August 16, 1978) through the end of 1978 and identified 25 such events ranging in duration from 20 min to over 11 hours. Comparison with the ISEE 3 magnetometer data indicates that these intervals nearly always occur in conjunction with large rotations of the interplanetary magnetic field. Statistical analyses of the plasma and magnetic field data for the 25 dropout intervals indicate that heat flux dropouts generally occur in association with high plasma densities low plasma velocities, low ion and electron temperatures, and low magnetic field magnitudes. A second set of 25 intervals chosen specifically to lie at large field rotations, but at times at which not heat flux dropouts were observed, do not show these characteristic plalsma variations. This suggests that the dropout intervals comprise a unique set of events. Since the hot halo electrons normally found streaming outward from the Sun along the interplanetary magnetic field (the solar wind electron heat flux) are a result of direct magnetic connection to the hot solar corona, heat flux dropout intervals may indicate that the spacecraft is sampling plasma regimes which are magnetically disconnected from the Sun and instead are connected to the outer heliosphere at both ends

  15. An experimental study on the flow instabilities and critical heat flux under natural circulation

    International Nuclear Information System (INIS)

    Kim, Yun Il

    1993-02-01

    This study has been carried out to investigate the hydrodynamic stabilities of natural circulation and to analyze Critical Heat Flux (CHF) characteristics for the natural and forced circulation. A low pressure experimental loop was constructed, and experiments under various conditions have been performed. In the experiments of the natural circulation, flow oscillations and the average mass flux have been observed. Several parameters such as heat flux, the inlet temperature of test section, friction valve opening and riser length have been varied in order to investigate their effects on the flow stability of the natural circulation system. The results show that the flow instability has strongly dependent on geometric conditions and operating parameters, the inlet temperature and the heat flux of test section. It was found that unstable region for the heat flux and the inlet temperature exists between the single-phase stable region of low heat and low inlet temperature and the two-phase stable region of very high heat flux and high inlet temperature. The CHF data from the natural and forced circulation experiments have been compared each other to identify the effects of the flow instabilities on the CHF for the natural circulation mode. The test conditions were low flow less than 70 kg/m 2 s of water in vertical round tube with diameter of 0.008m at near atmospheric pressure. In this study, no difference in CHF values is observed between natural and fored circulation. Since low flow usually has the oscillation characteristic of relatively low amplitude and high frequency, the effect of the flow instabilities on the CHF seems to be negligible

  16. The role of electron heat flux in guide-field magnetic reconnection

    International Nuclear Information System (INIS)

    Hesse, Michael; Kuznetsova, Masha; Birn, Joachim

    2004-01-01

    A combination of analytical theory and particle-in-cell simulations are employed in order to investigate the electron dynamics near and at the site of guide field magnetic reconnection. A detailed analysis of the contributions to the reconnection electric field shows that both bulk inertia and pressure-based quasiviscous processes are important for the electrons. Analytic scaling demonstrates that conventional approximations for the electron pressure tensor behavior in the dissipation region fail, and that heat flux contributions need to be accounted for. Based on the evolution equation of the heat flux three tensor, which is derived in this paper, an approximate form of the relevant heat flux contributions to the pressure tensor is developed, which reproduces the numerical modeling result reasonably well. Based on this approximation, it is possible to develop a scaling of the electron current layer in the central dissipation region. It is shown that the pressure tensor contributions become important at the scale length defined by the electron Larmor radius in the guide magnetic field

  17. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  18. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

    Science.gov (United States)

    Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

    2018-04-01

    Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

  19. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  20. Prototyping phase of the high heat flux scraper element of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Greuner, H. [Max Planck Institute for Plasma Physics, Garching (Germany); Ehrke, G. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Böswirth, B.; Wang, Z. [Max Planck Institute for Plasma Physics, Garching (Germany); Clark, E. [University of Tennessee, Knoxville (United States); Lumsdaine, A. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Tretter, J. [Max Planck Institute for Plasma Physics, Garching (Germany); McGinnis, D.; Lore, J. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Ekici, K. [University of Tennessee, Knoxville (United States)

    2016-11-01

    Highlights: • Aim of scraper element: reduction of heat loads on high heat flux divertor ends. • Design: actively water-cooled for 20 MW/m{sup 2} local heat loads. • Technology: CFC NB31 monoblocks bonded by HIP to CuCrZr cooling tube. • Successful high heat flux testing up to 20 MW/m{sup 2}. - Abstract: The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equipped with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m{sup 2}. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. The prototypes are presently under fabrication.

  1. Decision Document for Heat Removal from High-Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein

  2. Application study of the heat pipe to the passive decay heat removal system of the modular HTR

    International Nuclear Information System (INIS)

    Ohashi, K.; Okamoto, F.; Hayakawa, H.; Hayashi, T.

    2001-01-01

    To investigate the applicability of the heat pipe to the decay hat removal (DHR) system of the modular HTRs, preliminary study of the Heat Pipe DHR System was performed. The results show that the Heat Pipe DHR System is applicable to the modular HTRs and its heat removal capability is sufficient. Especially by applying the variable conductance heat pipe, the possibility of a fully passive DHR system with lower heat loss during normal operation is suggested. The experiments to obtain the fundamental characteristics data of the variable conductance heat pipe were carried out. The experimental results show very clear features of self-control characteristics. The experimental results and the experimental analysis results are also shown. (author)

  3. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  4. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Corletti, M.M.; Schulz, T.L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures

  5. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  6. Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions

    International Nuclear Information System (INIS)

    Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih; Yang, Yu-Ching

    2012-01-01

    Highlights: ► Time-dependent base heat flux of a functionally graded fin is inversely estimated. ► An inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied. ► The distributions of temperature in the fin are determined as well. ► The influence of measurement error and measurement location upon the precision of the estimated results is also investigated. - Abstract: In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to estimate the unknown time-dependent base heat flux of a functionally graded fin from the knowledge of temperature measurements taken within the fin. Subsequently, the distributions of temperature in the fin can be determined as well. It is assumed that no prior information is available on the functional form of the unknown base heat flux; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors and measurement location upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent base heat flux and temperature distributions can be obtained for the test case considered in this study.

  7. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  8. The study of heat flux for disruption on experimental advanced superconducting tokamak

    International Nuclear Information System (INIS)

    Yang, Zhendong; Fang, Jianan; Luo, Jiarong; Cui, Zhixue; Gong, Xianzu; Gan, Kaifu; Zhao, Hailin; Zhang, Bin; Chen, Meiwen

    2016-01-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dR_s_e_p = −2 cm, while it changes to upper single null (dR_s_e_p = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m"2.

  9. The Effect of the Heat Flux on the Self-Ignition of Oriented Strand Board

    Directory of Open Access Journals (Sweden)

    Hirle Siegfried

    2017-06-01

    Full Text Available This article deals with the initiation phase of flaming and smouldering burning of oriented strand board. The influence of heat flux on thermal degradation of OSB boards, time to ignition, heat release rate and mass loss rate using thermal analysis and vertical electrical radiation panel methods were studied. Significant information on the influence of the heat flux density and the thickness of the material on time to ignition was obtained.

  10. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  11. Soil Heat Flux Measurements in an Open Forest

    NARCIS (Netherlands)

    Meulen, M.W.J. van der; Klaassen, W.

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  12. Safety studies on heat transport and afterheat removal for GCR accident conditions

    International Nuclear Information System (INIS)

    Hishida, Makoto

    1996-01-01

    The IAEA coordinated an international research program on 'Heat Transport and Afterheat Removal for GCRs under Accident Conditions (CRP-3)'. America, China, France, Germany, Japan, Netherlands and Russia participate the program. Final goal of the program is to show clearly to the world one of the most important salient features of the HTGR, that is the HTGR reactor can be cooled down by passive measures without causing any damage to the nuclear reactor system even in accidental conditions, and to make clear the boundaries (or restrictions) for the passive cooling regime. The first 5 year term of the coordinate program started in 1993 and established a goal to improve common knowledge for decay heat removal and to improve our tools, like computer codes and analytical models for the prediction of the performance of decay heat removal system. We are now performing benchmark problems for these purposes. The present efforts are concentrated on the benchmark for the passive heat removal performance outside the reactor vessel, partly because we have two different type of the HTGR in the world, the pebble bed type and the block type reactor. They have quite different heat dissipation behavior inside the reactor vessel. However, they have quite similar residual heat removal process outside the reactor vessel. For the first step of the international cooperation, we selected the common problem. After finishing the present benchmark we are planning to proceed to tackle the inside heat removal problem. (J.P.N.)

  13. The Heat Flux Analysis in an Annulus Narrows Gap With Initial Temperature Variations Using HeaTiNG-01 Test Section

    International Nuclear Information System (INIS)

    Mulya Juarsa; Efrizon Umar; Andhang Widi Harto

    2009-01-01

    An experiment to understand the complexity of boiling phenomena on a narrow gap, which has occurs in severe accident at TMI-2 NPP is necessary to be done in aimed to increase the understanding of accident management. The goal of research is to obtain a heat flux and critical heat flux (CHF) value during boiling heat transfer process in a narrow gap annulus. The method of research is experimental using HeaTiNG-01 test section. The experiment has been done with heating-up heated rod until a certain initial temperature, for this experiment, three initial temperature variations was decided at 650°C, 750°C dan 850°C. Then, a cooling process in heated rod by saturated water was recorded based on temperature data changes. Temperature data was used to calculate a value of heat flux and wall superheat temperature, until the results could be defined in boiling curve. The result of this research shows that, although the initial temperature of heated rod was different, the value of CHF is almost similar with CHF average 253.7 kW/m 2 with the changes of only 4.7%. The event of boiling in a narrow gap is not included pool boiling category based on the comparison of film boiling area of the experiment to Bromley correlations. (author)

  14. Pengaruh Rasio Step pada Sudden Enlargement Channel terhadap Heat Flux Kondensasi di Porous Media

    Directory of Open Access Journals (Sweden)

    Djoko Hari Praswanto

    2017-08-01

    Full Text Available One of the most significant parameter in air conditioning problems is air humidity. A porous media can be used as a heat exchanger component in order to increase the heat transfer performance which is significantly depends on the heat flux values inside of them. To determine the heat flux value, a following test section was modeled in this research. A vapor passed through a channel whereas a particular porous media made of active carbon acted as its heat exchanger media. However, the sudden enlargement at the inlet of channel could affect the homogeneity of temperature distributions and also caused some several turbulencies. The research method is vapor flowed over the porous media for 60 minute with temperature of 300oC.The vapor velocity is varied from 1 m/s to 3 m/s and the step ratio also varied between 0 until 1.66. From the experiment shows the bigger step ratio and vapor velocity results the bigger heat flux and air humidity after passed through the low porous media. Heat transfer was occured in porous media including convection heat transfer with the value of Gr/Re2 smaller than 1.

  15. Residual heat removal pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1990-01-01

    Residual Heat Removal (RHR) pumps installed in pressurized water reactor power plants are used to provide the removal of decay heat from the reactor and to provide low head safety injection in the event of loss of coolant in the reactor coolant system. These pumps are subjected to rather severe temperature and pressure transients, therefore, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. RHR pumps have traditionally been a significant maintenance item for many utilities. The close-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. The casing separation requires the loosening of numerous highly torqued studs. Once the casing is separated, the impeller is dropped from the motor shaft to allow removal of the mechanical seal and casing cover from the motor shaft. Galling of the impeller to the motor shaft is not uncommon. The RHR pump internals are radioactive and the separation of the pump casing to perform routine maintenance exposes the maintenance personnel to high radiation levels. The handling of the impeller also exposes the maintenance personnel to high radiation levels. This paper introduces a design modification developed to convert the close-coupled RHR pumps to a coupled configuration

  16. Divertor Heat Flux Reduction and Detachment in the National Spherical Torus eXperiment.

    Science.gov (United States)

    Soukhanovskii, Vsevolod

    2007-11-01

    Steady-state handling of the heat flux is a critical divertor issue for both the International Thermonuclear Experimental Reactor and spherical torus (ST) devices. Because of an inherently compact divertor, it was thought that ST-based devices might not be able to fully utilize radiative and dissipative divertor techniques based on induced power and momentum loss. However, initial experiments conducted in the National Spherical Torus Experiment in an open geometry horizontal carbon plate divertor using 0.8 MA 2-6 MW NBI-heated lower single null H-mode plasmas at the lower end of elongations κ=1.8-2.4 and triangularities δ=0.45-0.75 demonstrated that high divertor peak heat fluxes, up to 6-10 MW/ m^2, could be reduced by 50-75% using a high-recycling radiative divertor regime with D2 injection. Furthermore, similar reduction was obtained with a partially detached divertor (PDD) at high D2 injection rates, however, it was accompanied by an X-point MARFE that quickly led to confinement degradation. Another approach takes advantage of the ST relation between strong shaping and high performance, and utilizes the poloidal magnetic flux expansion in the divertor region. Up to 60 % reduction in divertor peak heat flux was achieved at similar levels of scrape-off layer power by varying plasma shaping and thereby increasing the outer strike point (OSP) poloidal flux expansion from 4-6 to 18-22. In recent experiments conducted in highly-shaped 1.0-1.2 MA 6 MW NBI heated H-mode plasmas with divertor D2 injection at rates up to 10^22 s-1, a PDD regime with OSP peak heat flux 0.5-1.5 MW/m^2 was obtained without noticeable confinement degradation. Calculations based on a two point scrape-off layer model with parameterized power and momentum losses show that the short parallel connection length at the OSP sets the upper limit on the radiative exhaust channel, and both the impurity radiation and large momentum sink achievable only at high divertor neutral pressures are required

  17. Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

    Directory of Open Access Journals (Sweden)

    Zonghao Yang

    2017-12-01

    Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

  18. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Nicolette, V.F.; Wix, S.D.

    1992-01-01

    For final qualification of shipping containers for transport of hazardous materials, thermal testing in accordance with regulations such as 10CFR71 must be completed. Such tests typically consist of 30 minute exposures with the container fully engulfed in flames from a large, open pool of JP4 jet engine fuel. Despite careful engineering analyses of the container, testing often reveals design problems that must be solved by modification and expensive retesting of the container. One source of this problem is the wide variation in surface heat flux to the container that occurs in pool fires. Average heat fluxes of 50 to 60 kW/m 2 are typical and close the values implied by the radiation model in 10CFR71, but peak fluxes up to 150 kW/m 2 are routinely observed in fires. Heat fluxes in pool fires have been shown to be a function of surface temperature of the container, height above the pool, surface orientation, wind, and other variables. If local variations in the surface heat flux to the container could be better predicted, design analyses would become more accurate, and fewer problems will be uncovered during testing. The objective of the calorimeter design described in this paper is to measure accurately pool fire heat fluxes under controlled conditions, and to provide data for calibration of improved analytical models of local flame-surface interactions

  19. Study of mechanism of burnout in a high heat-flux boiling system with an impinging jet

    International Nuclear Information System (INIS)

    Katto, Y.; Monde, M.

    1974-01-01

    Nucleate boiling at very high heat fluxes was created on a heated surface covered with a flowing film of saturated water at atmospheric pressure being maintained by a small circular jet of water held at the center of the heated surface. It was found that increasing the heat flux led to a limiting state of flow where the splashing of droplets from the heated surface was no longer increased being kept constant until burnout appeared; and that there was a close relation between the burnout heat flux and the jet velocity. A flow model, which can explain the characteristics of this boiling system, is proposed. It is suggested that the burnout may be connected with the separation of a liquid flow from the heated surface accompanied with the effusion of vapor. (U.S.)

  20. Critical heat flux predictions for the Sandia Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Rao, D.V.; El-Genk, M.S.

    1994-08-01

    This study provides best estimate predictions of the Critical Heat Flux (CHF) and the Critical Heat Flux Ratio (CHFR) to support the proposed upgrade of the Annual Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) from its present value of 2 MWt to 4 MWt. These predictions are based on the University of New Mexico (UNM) - CHF correlation, originally developed for uniformly heated vertical annuli. The UNM-CHF correlation is applicable to low-flow and low-pressure conditions, which are typical of those in the ACRR. The three hypotheses that examined the effect of the nonuniform axial heat flux distribution in the ACRR core are (1) the local conditions hypotheses, (2) the total power hypothesis, and (3) the global conditions hypothesis. These hypotheses, in conjunction with the UNM-CHF correlation, are used to estimate the CHF and CHFR in the ACRR. Because the total power hypothesis predictions of power per rod at CHF are approximately 15%-20% lower than those corresponding to saturation exit conditions, it can be concluded that the total power hypothesis considerably underestimates the CHF for nonuniformly heated geometries. This conclusion is in agreement with previous experimental results. The global conditions hypothesis, which is more conservative and more accurate of the other two, provides the most reliable predictions of CHF/CHFR for the ACRR. The global conditions hypothesis predictions of CHFR varied between 2.1 and 3.9, with the higher value corresponding to the lower water inlet temperature of 20 degrees C

  1. Studies in boiling heat transfer in two phase flow through tube arrays: nucleate boiling heat transfer coefficient and maximum heat flux as a function of velocity and quality of Freon-113

    International Nuclear Information System (INIS)

    Rahmani, R.

    1983-01-01

    The nucleate boiling heat-transfer coefficient and the maximum heat flux were studied experimentally as functions of velocity, quality and heater diameter for single-phase flow, and two-phase flow of Freon-113 (trichlorotrifluorethane). Results show: (1) peak heat flux: over 300 measured peak heat flux data from two 0.875-in. and four 0.625-in.-diameter heaters indicated that: (a) for pool boiling, single-phase and two-phase forced convection boiling the only parameter (among hysteresis, rate of power increase, aging, presence and proximity of unheated rods) that has a statistically significant effect on the peak heat flux is the velocity. (b) In the velocity range (0 0 position or the point of impact of the incident fluid) and the top (180 0 position) of the test element, respectively

  2. Cyclic variation of heat flux on spark plug; Tenka plug bu no netsuryusoku hendo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Sasaki, T.; Urata, Y. [Honda Motor Co. Ltd., Tokyo (Japan); Kagawa, J.; Matsutani, W. [NGK Spark Plug Co. Ltd., Nagoya (Japan)

    1998-02-25

    This paper examines the relationship between the magnitude of the heat flux to the spark plug ground electrode, averaged over an 80` crank angle (CA) of early compression stroke, and the initial burning rate, defined as the CA at which 5% of mass is burned. The heat flux was measured by a thin-film thermocouple with the hot junction on the surface of ground electrode. The results demonstrate that faster initial burning rate correlated well with increasing heat flux from the spark plug to the mixture. The difference in the magnitude and direction of the heat flux is associated with the amount of residual gas concentration and thus the results show the effect of residual gas concentration. The cycle-averaged heat flux from the hot junction is 0.367 MW/m{sup 2}, corresponding to a total heat flow of 20 W from the total surface area of ground electrode. This value is about an order of magnitude larger than that previously reported in the literature for locations away from the spark plug, e. g. at the cylinder wall. 11 refs., 9 figs., 1 tab.

  3. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  4. Cooling high heat flux micro-electronic systems using refrigerants in high aspect ratio multi-microchannel evaporators

    International Nuclear Information System (INIS)

    Costa-Patry, E.

    2011-11-01

    Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for the reuse of the extracted heat. For this type of application, multi-microchannel evaporators are thought to be well adapted. However, such devices have not been tested for a wide range of operating conditions, such that their thermal response to the high non-uniform power map typically generated by microelectronics has not been studied. This research project aims at clarifying these gray areas by investigating the behavior of the two-phase flow of different refrigerants in silicon and copper multi-microchannel evaporators under uniform, non-uniform and transient heat fluxes operating conditions. The test elements use as a heat source a pseudo-chip able to mimic the behavior of a CPU. It is formed by 35 independent sub-heaters, each having its own temperature sensor, such that 35 temperature and 35 heat flux measurements can be made simultaneously. Careful measurements of each pressure drop component (inlet, microchannels and outlet) found in the micro-evaporators showed the importance of the inlet and outlet restriction pressure losses. The overall pressure drop levels found in the copper test section were low enough to possibly be driven by a thermosyphon system. The heat transfer coefficients measured for uniform heat flux conditions were very high and typically followed a V-shape curve. The first branch was associated to the slug flow regime and the second to the annular flow regime. By tracking the minimum level of heat transfer, a transition criteria between the regimes was established, which included the effect of heat flux on the transition. Then for each branch, a different prediction method was used to form the first flow pattern-based prediction method for two-phase heat transfer in microchannels. A

  5. Installation for the study of heat transfer with high flux density

    International Nuclear Information System (INIS)

    Robin, M.; Schwab, B.

    1957-01-01

    As a result of their very low vapor pressure, metals with a low fusion point (sodium, sodium-potassium alloys, etc.) can be used at high temperature, as heating fluids, in installations whose internal pressure is close to atmospheric pressure. Owing to the very high convection coefficients which can be reached with these fluids and to the large temperature differences utilizable, it is possible to produce through the exchange surfaces considerable heat flux densities, of the order of those which exist through the canning of fuel elements in nuclear reactors. The installation described allowed a flux density of more than 200 W/cm 2 to be obtained, the heating fluid being a Na-K alloy (containing 56 per cent by weight of potassium) brought to a temperature around 550 deg. C. (author) [fr

  6. Analytical solution to the problem of heat transfer in an MHD flow inside a channel with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    Zniber, K.; Oubarra, A.; Lahjomri, J.

    2005-01-01

    An MHD laminar flow through a two dimensional channel subjected to a uniform magnetic field and heated at the walls of the conduit over the whole length with a sinusoidal heat flux of vanishing mean value or not, is studied analytically. General expressions of the temperature distribution and of the local and mean Nusselt numbers are obtained by using the technique of linear operators in the case of negligible Joule and viscous dissipation and by taking into account the axial conduction effect. The principal results show that an increase of the local Nusselt number with Hartmann number is observed, and, far from the inlet section, the average heat transfer between the fluid and the walls shows a significant improvement at all values of Hartmann number used when the frequency of the prescribed sinusoidal wall heat flux is increasing in the case of vanishing mean value of the heat flux and this is true especially at low Peclet numbers

  7. Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions

    Directory of Open Access Journals (Sweden)

    Mamatha S. Upadhay

    2017-01-01

    Full Text Available Heat and mass flux conditions on magnetohydrodynamic unsteady Eyring-Powell dusty nanofluid over a sheet is addressed. The combined effect of Brownian motion and thermophoresis in nanofluid modeling are retained. The Cattaneo-Christov heat flux model is imposed. A set of similarity variables are utilized to form ordinary differential system from the prevailing partial differential equations. The problem of ordinary differential system (ODS is analyzed numerically through Runge-Kutta based shooting method. Graphical results of pertinent parameters on the velocity, temperature and nanoparticle concentration are studied. Skin friction coefficient, local Nusselt and Sherwood number are also addressed with help of graphs and also validated the present solutions with already existing solutions in the form of table. It is found that the thermal relaxation parameter improves the heat transfer rate and minimizes the mass transfer rate. The heat transfer rate is higher in prescribed heat flux (PHF case when compared with prescribed wall temperature (PWT case.

  8. Numerical Simulation of the Moving Induction Heating Process with Magnetic Flux Concentrator

    Directory of Open Access Journals (Sweden)

    Feng Li

    2013-01-01

    Full Text Available The induction heating with ferromagnetic metal powder bonded magnetic flux concentrator (MPB-MFC demonstrates more advantages in surface heating treatments of metal. However, the moving heating application is mostly applied in the industrial production. Therefore, the analytical understanding of the mechanism, efficiency, and controllability of the moving induction heating process becomes necessary for process design and optimization. This paper studies the mechanism of the moving induction heating with magnetic flux concentrator. The MPB-MFC assisted moving induction heating for Inconel 718 alloy is studied by establishing the finite element simulation model. The temperature field distribution is analyzed, and the factors influencing the temperature are studied. The conclusion demonstrates that the velocity of the workpiece should be controlled properly and the heat transfer coefficient (HTC has little impact on the temperature development, compared with other input parameters. In addition, the validity of the static numerical model is verified by comparing the finite element simulation with experimental results on AISI 1045 steel. The numerical model established in this work can provide comprehensive understanding for the process control in production.

  9. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  10. High heat flux tests of mock-ups for ITER divertor application

    International Nuclear Information System (INIS)

    Giniatulin, R.; Gervash, A.; Komarov, V.L.; Makhankov, A.; Mazul, I.; Litunovsky, N.; Yablokov, N.

    1998-01-01

    One of the most difficult tasks in fusion reactor development is the designing, fabrication and high heat flux testing of actively cooled plasma facing components (PFCs). At present, for the ITER divertor project it is necessary to design and test components by using mock-ups which reflect the real design and fabrication technology. The cause of failure of the PFCs is likely to be through thermo-cycling of the surface with heat loads in the range 1-15 MW m -2 . Beryllium, tungsten and graphite are considered as the most suitable armour materials for the ITER divertor application. This work presents the results of the tests carried out with divertor mock-ups clad with beryllium and tungsten armour materials. The tests were carried out in an electron beam facility. The results of high heat flux screening tests and thermo-cycling tests in the heat load range 1-9 MW m -2 are presented along with the results of metallographic analysis carried out after the tests. (orig.)

  11. Measurement improvements of heat flux probes for internal combustion engine; Nainen kikan ni okeru netsuryusokukei no kaihatsu to kento

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, H; Tasaka, H [Miyazaki University, Miyazaki (Japan)

    1997-10-01

    In heat flux measurement in engines, material properties of a heat flux probe and numerical prediction of those influence have been discussed rather than practical measurement accuracy. This study featured the process for the quantitative examination of heat flux probes. Although the process required direct comparison among all the probes and additional measurements in a constant volume bomb, precision of heat flux measurement was greatly improved so that the essential characteristics of heat transfer in engines can be detected. 9 refs., 8 figs., 1 tab.

  12. A new method for simultaneous measurement of convective and radiative heat flux in car underhood applications

    International Nuclear Information System (INIS)

    Khaled, M; Garnier, B; Peerhossaini, H; Harambat, F

    2010-01-01

    A new experimental technique is presented that allows simultaneous measurement of convective and radiative heat flux in the underhood. The goal is to devise an easily implemented and accurate experimental method for application in the vehicle underhood compartment. The new method is based on a technique for heat-flux measurement developed by the authors (Heat flow (flux) sensors for measurement of convection, conduction and radiation heat flow 27036-2, © Rhopoint Components Ltd, Hurst Green, Oxted, RH8 9AX, UK) that uses several thermocouples in the thickness of a thermal resistive layer (foil heat-flux sensor). The method proposed here uses a pair of these thermocouples with different radiative properties. Measurements validating this novel technique are carried out on a flat plate with a prescribed constant temperature in both natural- and forced-convection flow regimes. The test flat plate is instrumented by this new technique, and also with a different technique that is intrusive but very accurate, used as reference here (Bardon J P and Jarny Y 1994 Procédé et dispositif de mesure transitoire de température et flux surfacique Brevet n°94.011996, 22 February). Discrepancies between the measurements by the two techniques are less than 10% for both convective and radiative heat flux. Error identification and sensitivity analysis of the new method are also presented

  13. Prediction of turbulent heat transfer with surface blowing using a non-linear algebraic heat flux model

    International Nuclear Information System (INIS)

    Bataille, F.; Younis, B.A.; Bellettre, J.; Lallemand, A.

    2003-01-01

    The paper reports on the prediction of the effects of blowing on the evolution of the thermal and velocity fields in a flat-plate turbulent boundary layer developing over a porous surface. Closure of the time-averaged equations governing the transport of momentum and thermal energy is achieved using a complete Reynolds-stress transport model for the turbulent stresses and a non-linear, algebraic and explicit model for the turbulent heat fluxes. The latter model accounts explicitly for the dependence of the turbulent heat fluxes on the gradients of mean velocity. Results are reported for the case of a heated boundary layer which is first developed into equilibrium over a smooth impervious wall before encountering a porous section through which cooler fluid is continuously injected. Comparisons are made with LDA measurements for an injection rate of 1%. The reduction of the wall shear stress with increase in injection rate is obtained in the calculations, and the computed rates of heat transfer between the hot flow and the wall are found to agree well with the published data

  14. Progress of High Heat Flux Component Manufacture and Heat Load Experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Lian, Y.; Xu, Z.; Chen, J.; Chen, L.; Wang, Q.; Duan, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengu (China); Luo, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yan, Q. [University of Science and Technology Beijing, Beijing (China)

    2012-09-15

    Full text: High heat flux components for first wall and divertor are the key subassembly of the present fusion experiment apparatus and fusion reactors in the future. It is requested the metallurgical bonding among the plasma facing materials (PFMs), heat sink and support materials. As to PFMs, ITER grade vacuum hot pressed beryllium CN-G01 was developed in China and has been accepted as the reference material of ITER first wall. Additionally pure tungsten and tungsten alloys, as well as chemical vapor deposition (CVD) W coating are being developed for the aims of ITER divertor application and the demand of domestic fusion devices, and significant progress has been achieved. For plasma facing components (PFCs), high heat flux components used for divertor chamber are being studied according to the development program of the fusion experiment reactor of China. Two reference joining techniques of W/Cu mockups for ITER divertor chamber are being developed, one is mono-block structure by pure copper casting of tungsten surface following by hot iso-static press (HIP), and another is flat structure by brazing. The critical acceptance criteria of high heat flux components are their high heat load performance. A 60 kW Electron-beam Material testing Scenario (EMS-60) has been constructed at Southwestern Institute of Physics (SWIP),which adopts an electron beam welding gun with maximum energy of 150 keV and 150 x 150 mm{sup 2} scanning area by maximum frame rate of 30 kHz. Furthermore, an Engineering Mockup testing Scenario (EMS-400) facility with 400 kW electron-beam melting gun is under construction and will be available by the end of this year. After that, China will have the comprehensive capability of high heat load evaluation from PFMs and small-scale mockups to engineering full scale PFCs. A brazed W/CuCrZr mockup with 25 x 25 x 40 mm{sup 3} in dimension was tested at EMS-60. The heating and cooling time are 10 seconds and 15 seconds, respectively. The experiment

  15. Assessment of a non-uniform heat flux correction model to predicting CHF in PWR rod bundles

    International Nuclear Information System (INIS)

    Dae-Hyun, Hwang; Sung-Quun, Zee

    2001-01-01

    The full text follows. The prediction of CHF (critical heat flux) has been, in most cases, based on the empirical correlation. For PWR fuel assemblies the local parameter correlation requires the local thermal-hydraulic conditions usually calculated by a subchannel analysis code. The cross-sectional averaged fluid conditions of the subchannel, however, are not sufficient for determining CHF, especially for the cases of non-uniform axial heat flux distributions. Many investigators have studied the effect of the upstream heat flux on the CHF. In terms of the upstream memory effect, two different approaches have been considered as the limiting cases. The 'local conditions' hypothesis assumes that there is a unique relationship between the CHF and the local thermal-hydraulic conditions, and consequently there is no memory effect. In the 'overall power' hypothesis, on the other hand, it is assumed that the total power which can be fed into the tube with nonuniform heating will be the same as that for a uniformly heated tube of the same heated length with the same inlet conditions. Thus the CHF is totally influenced by the upstream heat flux distribution. In view of some experimental investigations such as the DeBortoli's test, it revealed that the two approaches are inadequate in general. It means that the local critical heat flux may be affected to some extent by the heat flux distribution upstream of the CHF location. Some correction-factor models have been suggested to take into account the upstream memory effect. Typically, Tong devised a correction factor on the basis of the heat balance of the superheated liquid layer that is spread underneath a highly viscous bubbly layer along the heated surface. His physical model suggested that the fluid enthalpy obtained from an energy balance of the superheated liquid layer is a representative quantity for the onset of DNB (departure nucleate boiling). A theoretically based correction factor model has been proposed by the

  16. Shutdown risk analysis for a BWR plant (residual heat removal systems)

    International Nuclear Information System (INIS)

    Rebollo Garcia, C.; Merino Teillet, A.; Cerezo, L.

    1994-01-01

    This report analyses the different risk situations which may arise during refuelling outage at Cofrentes NPP. The most critical situations are determined in terms of the small amount of coolant available and the lowest number of heat removal and water make-up systems available. The available times before the boiling point of the coolant is reached and the subsequent moment when the fuel elements are left uncovered in the event of the failure of the normal heat removal functions are determined. The analysis identifies the alternative systems which can be used besides those required by the technical specification and their capacity for residual heat removal and coolant make-up functions. (Author)

  17. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  18. Study of the heat flux generated by accelerated electrons on the components near the plasma

    International Nuclear Information System (INIS)

    Laugier, J.

    2003-01-01

    Experimental data have shown that a heat flux appears on components situated near the wave guide of the lower hybrid antenna of Tore-Supra. This heat flux is due to the energy release during collisions that occur between the component surface and the electrons accelerated by the high frequency field generated by the antenna. Simulations show that the electrons may reach an energy of 2-3 keV and that the heat flux generated in the shield may reach 10 MW/m 2 . In this work a correlation has been established between the local heat flux due to electron impact and the mean electrical field near the antenna: Φ (W/m 2 ) = 4.10 -4 x E -6 (10 5 V/m). It is also shown that the ratio of electrons that reach the shield is roughly not dependent on the value of the mean electrical field. In the hypothesis of a Gaussian distribution of electron initial velocities this ratio is 10%. (A.C.)

  19. Anthropogenic heat fluxes over Moscow agglomeration and other Russian and world cities

    Science.gov (United States)

    Belova, Iya; Ginzburg, Alexander

    2010-05-01

    Urbanization, particularly with respect to its sustainability, remains to be a great challenge in all regions of the world. Urbanization has an influence on soils, hydrology, and climate, these changes have effect on global climate, pollution, increase of anthropogenic greenhouse gases in the earth's atmosphere and human health. Thus anthropogenic heat flux is an important factor for estimation of development of global climate. The simple formula for anthropogenic heat fluxes (AHF) was proposed in the EGU General Assembly 2008 presentation [1] AHF = k × PD × EC, were PD is urban population density and EC is total energy consumption per capita. It was estimated that two of the world megacities - Seoul and Moscow - have the highest AHF values - 83 and 56 W/m2 correspondently. In presented paper it was studied the reasons of such high anthropogenic heat fluxes within Moscow region as well as AHF over the major Russian cities. It was shown that main reason of this circumstance is the administrative divisions in Moscow region. Moscow is ringed by Moscow circle motor road. Accordingly the city has sharply defined boundaries and densely populated residential suburbs are cut off and don't included in Moscow city administrative area. It was constructed the special graph to illuminate why Moscow city has such a high anthropogenic heat factor and how much Moscow agglomeration AHF could be if consider not only Moscow city itself but also the nearest suburb towns. Using the data from World Bank [2] and Russian governmental statistic agency [3] anthropogenic heat fluxes for Russian cities with population more than 500 000 were estimated. Energy consumption data for different Russian regions were calculated by special routine using in the Web-atlas [4]. This research is supported by RAS Fundamental Research Project 'Influence of anthropogenic heat fluxes and aerosol pollution on heat balance and climate of urbanized areas'. Other results of this project is presented in paper [5

  20. The micrometeorological investigation of heat flux and moisture ...

    African Journals Online (AJOL)

    The diurnal and seasonal variations of heat flux and the moisture content in the soil at a site for the Nigeria Mesoscale Experiment (NIMEX) in the University of Ibadan, Nigeria (7.380 N and 3.930 E), had been investigated. The study also investigated effects of the atmospheric phenomena on magnitudes of the surface layer ...

  1. Seasonal variability of heat flux divergence in the coastal waters of Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; Sadhuram, Y.

    Heat flux divergence (Qv) in the coastal waters of Visakhapatnam, Andhra, Pradesh, India during different seasons, was estimated for the period February 1980-January 1981. It is found that the water column (0-60 m) gains heat during winter...

  2. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  3. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    A physical model for analyzing the radiative and convective heat transfer in a fog cooled, naturally ventilated greenhouse was developed for estimating the overall heat transmission coefficient based on the conduction, convection and thermal radiation heat transfer coefficients and for predicting the soil heat flux. The contribution of the water vapor of the inside air to the emission and absorption of thermal radiation was determined. Measurements of the outside and inside greenhouse environments to be used in the analysis were conducted around solar noon (12:19-13:00) on a hot sunny day to provide the maximum solar radiation transmission into the greenhouse. The net solar radiation flux measured at the greenhouse floor showed a reasonable agreement with the predicted value. The net fluxes were estimated around noon. The average net radiation (solar and thermal) at the soil surface was 220.0 W m -2 , the average soil heat flux was 155.0 W m -2 and the average contribution of the water vapor of the inside air to the thermal radiation was 22.0 W m -2 . The average overall heat transmission coefficient was 4.0 W m -2 C -1 and was in the range between 3.0 W m -2 C -1 and 6.0 W m -2 C -1 under the different hot summer conditions between the inside and outside of the naturally ventilated, fog cooled greenhouse

  4. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  5. A theoretical critical heat flux model for low-pressure, low-mass-flux, and low-steam quality conditions

    International Nuclear Information System (INIS)

    Weihsiao Ho; Kuanchywan Tu; Baushei Pei; Chinjang Chang

    1993-01-01

    The critical heat flux (CHF) is the maximum heat flux just before a boiling crisis; its importance as a measurement of nuclear reactor power capability design as well as in the safety of reactors has been recognized. With emphasis on CHF behavior under subcooled and low-quality (i.e., 2 ·s), an improved model that uses the sublayer dry out theory has been developed. Based on experimental observations of CHF, the model assumes that CHF under such conditions is of the departure from nucleate boiling type. Based on the postulation that CHF is triggered by Helmholtz instability in the sublayer steam-liquid system, the model was developed by a simple energy balance of liquid sublayer evaporation as the vapor blanket tends to disturb the balance between the buoyancy force and the drag force exerted upon it. The model is compared with the well-known Biasi et al. correlation as well as the Atomic Energy of Canada Limited lookup table against 102 uniformly heated round tube CHF data and 34 nonuniformly heated round tube CHF data. The comparison shows that the model provides better accuracy and a reasonable agreement between the predicted values and experimental CHF data

  6. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  7. Local rectification of heat flux

    Science.gov (United States)

    Pons, M.; Cui, Y. Y.; Ruschhaupt, A.; Simón, M. A.; Muga, J. G.

    2017-09-01

    We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the “impurity”. The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.

  8. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels

    KAUST Repository

    Mansoor, Mohammad M.

    2012-02-01

    A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.

  9. Results from evaporation tests to support the MWTF heat removal system design

    International Nuclear Information System (INIS)

    Crea, B.A.

    1994-01-01

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system

  10. Circular heat and momentum flux radiated by magneto-optical nanoparticles

    Science.gov (United States)

    Ott, A.; Ben-Abdallah, P.; Biehs, S.-A.

    2018-05-01

    In the present article we investigate the heat and momentum fluxes radiated by a hot magneto-optical nanoparticle in its surroundings under the action of an external magnetic field. We show that the flux lines circulate in a confined region at a nanometric distance from the particle around the axis of the magnetic field in a vortexlike configuration. Moreover we prove that the spatial orientation of these vortices (clockwise or counterclockwise) is associated with the contribution of optical resonances with topological charges m =+1 or m =-1 to the thermal emission. This work paves the way for a geometric description of heat and momentum transport in lattices of magneto-optical particles. Moreover it could have important applications in the field of energy storage as well as in thermal management at nanoscale.

  11. Analysis of the dual phase lag bio-heat transfer equation with constant and time-dependent heat flux conditions on skin surface

    Directory of Open Access Journals (Sweden)

    Ziaei Poor Hamed

    2016-01-01

    Full Text Available This article focuses on temperature response of skin tissue due to time-dependent surface heat fluxes. Analytical solution is constructed for DPL bio-heat transfer equation with constant, periodic and pulse train heat flux conditions on skin surface. Separation of variables and Duhamel’s theorem for a skin tissue as a finite domain are employed. The transient temperature responses for constant and time-dependent boundary conditions are obtained and discussed. The results show that there is major discrepancy between the predicted temperature of parabolic (Pennes bio-heat transfer, hyperbolic (thermal wave and DPL bio-heat transfer models when high heat flux accidents on the skin surface with a short duration or propagation speed of thermal wave is finite. The results illustrate that the DPL model reduces to the hyperbolic model when τT approaches zero and the classic Fourier model when both thermal relaxations approach zero. However for τq = τT the DPL model anticipates different temperature distribution with that predicted by the Pennes model. Such discrepancy is due to the blood perfusion term in energy equation. It is in contrast to results from the literature for pure conduction material, where the DPL model approaches the Fourier heat conduction model when τq = τT . The burn injury is also investigated.

  12. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    Directory of Open Access Journals (Sweden)

    Ponomarev Konstantin

    2016-01-01

    Full Text Available This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass. A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  13. Maximum allowable heat flux for a submerged horizontal tube bundle

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1995-01-01

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or open-quotes criticalclose quotes) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration

  14. Correlation analysis of heat flux and fire behaviour and hazards of polycrystalline silicon photovoltaic panels

    Science.gov (United States)

    Ju, Xiaoyu; Zhou, Xiaodong; Peng, Fei; Wu, Zhibo; Lai, Dimeng; Hu, Yue; Yang, Lizhong

    2017-05-01

    This work aims to gain a better understanding of fire behaviour and hazards of PV panels under different radiation heat fluxes. The cone calorimeter tests were applied to simulate the situations when the front and back surfaces are exposed to heat flux in a fire, respectively. Through comparison of ignition time, mass loss rate and heat release rate, it is found that the back-up condition is more hazardous than face-up condition. Meanwhile, three key parameters: flashover propensity, total heat release and FED, were introduced to quantitatively illustrate fire hazards of a PV panel.

  15. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. An analysis of pavement heat flux to optimize the water efficiency of a pavement-watering method

    International Nuclear Information System (INIS)

    Hendel, Martin; Colombert, Morgane; Diab, Youssef; Royon, Laurent

    2015-01-01

    Pavement-watering as a technique of cooling dense urban areas and reducing the urban heat island effect has been studied since the 1990's. The method is currently considered as a potential tool for and climate change adaptation against increasing heat wave intensity and frequency. However, although water consumption necessary to implement this technique is an important aspect for decision makers, optimization of possible watering methods has only rarely been conducted. An analysis of pavement heat flux at a depth of 5 cm and solar irradiance measurements is proposed to attempt to optimize the watering period, cycle frequency and water consumption rate of a pavement-watering method applied in Paris over the summer of 2013. While fine-tuning of the frequency can be conducted on the basis of pavement heat flux observations, the watering rate requires a heat transfer analysis based on a relation established between pavement heat flux and solar irradiance during pavement insolation. From this, it was found that watering conducted during pavement insolation could be optimized to 30-min cycles and water consumption could be reduced by more than 80% while reducing the cooling effect by less than 13%. - Highlights: • The thermal effects of pavement-watering were investigated in Paris, France. • Pavement-watering was found to significantly affect pavement heat flux 5 cm deep. • When insolated, a linear relation was found between heat flux and solar radiation. • Pavement-watering did not alter its slope, but introduced a negative intercept. • Subsequent improvements of the watering period, frequency and rate are proposed

  17. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    Science.gov (United States)

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P plantations under various management practices.

  18. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    Science.gov (United States)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  19. Multi-sensor remote sensing parameterization of heat fluxes over heterogeneous land surfaces

    NARCIS (Netherlands)

    Faivre, R.D.

    2014-01-01

    The parameterization of heat transfer by remote sensing, and based on SEBS scheme for turbulent heat fluxes retrieval, already proved to be very convenient for estimating evapotranspiration (ET) over homogeneous land surfaces. However, the use of such a method over heterogeneous landscapes (e.g.

  20. Effect of melter feed foaming on heat flux to the cold cap

    Czech Academy of Sciences Publication Activity Database

    Lee, S.; Hrma, P.; Pokorný, R.; Kloužek, Jaroslav; VanderVeer, B.J.; Dixon, D.R.; Luksic, S.A.; Rodriguez, C.P.; Chun, J.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 496, DEC 1 (2017), s. 54-65 ISSN 0022-3115 Institutional support: RVO:67985891 Keywords : cold cap * foam layer * heat flux * heat conductivity * evolved gas Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.048, year: 2016

  1. Critical heat flux in subcooled and low quality boiling

    International Nuclear Information System (INIS)

    Maroti, L.

    1976-06-01

    A semi-empirical relationship for critical heat flux prediction in a light water cooled power reactor core is developed. The method of developing this relationship is the extension of the analysis of pool boiling crisis for forced convective boiling. In the calculations the energy conservation equation is used together with additional condition for the crisis. Assuming that in the vicinity of the crisis the heat is transported only by the latent heat of the vapour this condition for the crisis can be characterized by the maximum departure velocity of the vapour. Because only flow boiling crisis associating with bubbling at the heating surface is considered the model could be applied only for low quality boiling crisis. The calculated results are compared to the available experimental ones. (Sz.N.Z.)

  2. Heat transfer in pool boiling liquid neon, deuterium and hydrogen, and critical heat flux in forced convection of liquid neon

    International Nuclear Information System (INIS)

    Astruc, J.M.

    1967-12-01

    In the first part, free-convection and nucleate pool boiling heat transfer (up to burn-out heat flux) between a platinum wire of 0.15 mm in diameter in neon, deuterium and hydrogen has been studied at atmospheric pressure. These measurements were continued in liquid neon up to 23 bars (Pc ≅ 26.8 b). Film boiling heat transfer coefficients have been measured in pool boiling liquid neon at atmospheric pressure with three heating wires (diameters 0.2, 0.5, 2 mm). All the results have been compared with existing correlations. The second part is devoted to measurements of the critical heat flux limiting heat transfer with small temperature differences between the wall and the liquid neon flowing inside a tube (diameters 3 x 3.5 mm) heated by joule effect on 30 cm of length. Influences of flow stability, nature of electrical current, pressure, mass flow rate and subcooling are shown. In conclusion, the similarity of the heat transfer characteristics in pool boiling as well as in forced convection of liquid neon and hydrogen is emphasized. (author) [fr

  3. Extension of the heat flux method to subatmospheric pressures

    NARCIS (Netherlands)

    Bosschaart, K.J.; Goey, de L.P.H.

    2004-01-01

    The heat flux method for measuring laminar burning velocities has been extended to subatmospheric pressures, down to 80mbar. The new setup is described and adaptations necessary for the new conditions are analyzed. This includes a new burner plate to compensate for the decrease of sensitivity of the

  4. Energy balance of droplets impinging onto a wall heated above the Leidenfrost temperature

    International Nuclear Information System (INIS)

    Dunand, P.; Castanet, G.; Gradeck, M.; Maillet, D.; Lemoine, F.

    2013-01-01

    Highlights: • Measurement techniques are combined to characterize the heat lost due to liquid vaporization. • The wall heat flux is estimated by infrared thermography associated with inverse heat conduction. • The liquid heating is characterized by the two-color Laser-Induced Fluorescence thermometry. • Results reveal how the heat fluxes vary with the droplet sizes and the Weber number. -- Abstract: This work is an experimental study aiming at characterizing the heat transfers induced by the impingement of water droplets (diameter 80–180 μm) on a thin nickel plate heated by electromagnetic induction. The temperature of the rear face of the nickel sample is measured by means of an infrared camera and the heat removed from the wall due to the presence of the droplets is estimated using a semi-analytical inverse heat conduction model. In parallel, the temperature of the droplets is measured using the two-color Laser-Induced Fluorescence thermometry (2cLIF) which has been extended to imagery for the purpose of these experiments. The measurements of the variation in the droplet temperature occurring during an impact allow determining the sensible heat removed by the liquid. Measurements are performed at wall conditions well above the Leidenfrost temperature. Different values of the Weber numbers corresponding to the bouncing and splashing regimes are tested. Comparisons between the heat flux removed from the wall and the sensible heat gained by the liquid allows estimating the heat flux related to liquid evaporation. Results reveal that the respective level of the droplet sensible heat and the heat lost due to liquid vaporization can vary significantly with the droplet sizes and the Weber number

  5. High heat flux testing of ITER ICH&CD antenna beryllium faraday screen bars mock-ups

    International Nuclear Information System (INIS)

    Courtois, X.; Meunier, L.; Kuznetsov, V.; Beaumont, B.; Lamalle, P.; Conchon, D.; Languille, P.

    2016-01-01

    Highlights: • ITER ICH&CD antenna beryllium faraday screen bars mock-ups were manufactured. • The mock-ups are submitted to high heat loads to test their heat exhaust capabilities. • The mock-ups withstand without damage the design limit load. • Lifetime is gradually reduced when the heat load is augmented beyond the design limit. • Thermal and mechanical behavior are reproducible, and coherent with the calculation. - Abstract: The Faraday Screen (FS) is the plasma facing component of ITER ion cyclotron heating antennas shielding. The requirement for the high heat exhaust, and the limitation of the temperatures to minimize strain and thus offer sufficient resistance to fatigue, imply the need for high conductivity materials and a high cooling flow rate. The FS bars are constructed by a hipping process involving beryllium tiles, a pure copper layer, a copper chrome zirconium alloy for the cooling channel and a stainless steel backing strip. Two FS bars small scale mock-ups were manufactured and tested under high heat flux. They endured 15,000 heating cycles without degradation under nominal heat flux, and revealed growing flaws when the heat flux was progressively augmented beyond. In this case, the ultrasonic test confirms a strong delamination of the Be tiles.

  6. Passive decay heat removal from the core region

    International Nuclear Information System (INIS)

    Hichen, E.F.; Jaegers, H.

    2002-01-01

    The decay heat in commercial Light Water Reactors is commonly removed by active and redundant safety systems supported by emergency power. For advanced power plant designs passive safety systems using a natural circulation mode are proposed: several designs are discussed. New experimental data gained with the NOKO and PANDA facilities as well as operational data from the Dodewaard Nuclear Power Plant are presented and compared with new calculations by different codes. In summary, the effectiveness of these passive decay heat removal systems have been demonstrated: original geometries and materials and for the NOKO facility and the Dodewaard Reactor typical thermal-hydraulic inlet and boundary conditions have been used. With several codes a good agreement between calculations and experimental data was achieved. (author)

  7. Occurrence of critical heat flux during blowdown with flow reversal

    International Nuclear Information System (INIS)

    Leung, J.C.M.

    1976-04-01

    A small-scale experiment using Freon-11 at 130 0 F and 65 psia in a well-instrumented transparent annular test section was used to study the occurrence of critical heat flux (CHF) during blowdown with flow reversal. The inner stainless steel tube of the annulus was uniformly heated over its 2 ft length. Inlet and exit void fractions were measured by a capacitance technique. Flow regime transition was observed with high speed photography. A 1-hr contact time between Freon-11 and nitrogen at 130 0 F and 60 psig was found to greatly affect the steady-state subcooled boiling initial conditions. Delay in bubble growth was observed in adiabatic blowdown runs. This was caused by the thermodynamic nonequilibrium conditions required for the unstable bubble growth. For the diabatic runs, equilibrium was more closely approached in the test section during the early phase of blowdown. Critical heat flux did not occur immediately during the flow decay in an approximately 60 msec reversal period. The first or early CHF which occurred at about 400 msec was independent of the blowdown volume and did not propagate upward. An annular flow pattern appeared at the onset of this CHF which occurred only at the lower 8 in. of the heated zone

  8. Recent trends (2003-2013) of land surface heat fluxes on the southern side of the central Himalayas, Nepal

    Science.gov (United States)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2015-12-01

    Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.

  9. Parallel transport of long mean-free-path plasma along open magnetic field lines: Parallel heat flux

    International Nuclear Information System (INIS)

    Guo Zehua; Tang Xianzhu

    2012-01-01

    In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel heat flux has two components with one associated with the parallel thermal energy and the other the perpendicular thermal energy. Due to the large deviation of the distribution function from local Maxwellian in an open field line plasma with low collisionality, the conventional perturbative calculation of the parallel heat flux closure in its local or non-local form is no longer applicable. Here, a non-perturbative calculation is presented for a collisionless plasma in a two-dimensional flux expander bounded by absorbing walls. Specifically, closures of previously unfamiliar form are obtained for ions and electrons, which relate two distinct components of the species parallel heat flux to the lower order fluid moments such as density, parallel flow, parallel and perpendicular temperatures, and the field quantities such as the magnetic field strength and the electrostatic potential. The plasma source and boundary condition at the absorbing wall enter explicitly in the closure calculation. Although the closure calculation does not take into account wave-particle interactions, the results based on passing orbits from steady-state collisionless drift-kinetic equation show remarkable agreement with fully kinetic-Maxwell simulations. As an example of the physical implications of the theory, the parallel heat flux closures are found to predict a surprising observation in the kinetic-Maxwell simulation of the 2D magnetic flux expander problem, where the parallel heat flux of the parallel thermal energy flows from low to high parallel temperature region.

  10. Inverse estimation of heat flux and temperature on nozzle throat-insert inner contour

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tsung-Chien [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-Hsi, Tao-Yuan 33509 (China); Liu, Chiun-Chien [Chung Shan Institute of Science and Technology, Lung-Tan, Tao-Yuan 32526 (China)

    2008-07-01

    During the missile flight, the jet flow with high temperature comes from the heat flux of propellant burning. An enormous heat flux from the nozzle throat-insert inner contour conducted into the nozzle shell will degrade the material strength of nozzle shell and reduce the nozzle thrust efficiency. In this paper, an on-line inverse method based on the input estimation method combined with the finite-element scheme is proposed to inversely estimate the unknown heat flux on the nozzle throat-insert inner contour and the inner wall temperature by applying the temperature measurements of the nozzle throat-insert. The finite-element scheme can easily define the irregularly shaped boundary. The superior capability of the proposed method is demonstrated in two major time-varying estimation cases. The computational results show that the proposed method has good estimation performance and highly facilitates the practical implementation. An effective analytical method can be offered to increase the operation reliability and thermal-resistance layer design in the solid rocket motor. (author)

  11. Simplified model for determining local heat flux boundary conditions for slagging wall

    Energy Technology Data Exchange (ETDEWEB)

    Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre

    2009-07-15

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  12. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  13. Divertor Heat Flux Reduction by Resonant Magnetic Perturbations in the LHD-Type Helical DEMO Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, N.; Sagara, A.; Goto, T.; Masuzaki, S.; Miyazawa, J., E-mail: yanagi@lhd.nifs.ac.jp [National Institute for Fusion Science, Toki (Japan)

    2012-09-15

    Full text: The conceptual design studies of the LHD-type helical fusion DEMO reactor, FFHR-d1, are progressing steadfastly. The LHD-type heliotron magnetic configuration equipped with the built- in helical divertors has a potential to realize low divertor heat flux in spatial average. However, the toroidal asymmetry may give more than a couple of times higher peak heat flux at some locations, as has been experimentally observed in LHD and confirmed by magnetic field-line tracing. By providing radiation dispersion accompanied with a plasma detachment, the heat flux may decrease significantly though the compatibility with a good core plasma confinement is an important issue to be explored. Whereas the engineering difficulties for developing materials to be used under the neutron environment require even further decrease of the heat flux (even though the heliotron is a unique configuration that divertor plates be largely shielded from the direct irradiation of neutrons by breeder blankets). In this respect, we proposed, in the last IAEA FEC, a new strike point sweeping scheme using a set of auxiliary helical coils, termed helical divertor (HD) coils. The HD coils carrying a few percent of the current amplitude of the main helical coils sweep the divertor strike points without altering the core plasma. Though this scheme is effective in dispersing the heat flux in the poloidal direction, the toroidal asymmetry still remains. The AC operation may also give unforeseen engineering difficulties. We here propose that the peak heat flux be mitigated using RMP fields in steady-state. The magnetic field-lines are numerically traced in the vacuum configuration and their footprints coming to the divertor regions are counted. Their fraction plotted as a function of the toroidal angle indicates that the peak heat flux be mitigated to {approx} 20 MW per square meters at 3 GW fusion power generation without having radiation dispersion when an RMP field is applied. We note that the

  14. AEA studies on passive decay heat removal in advanced reactors

    International Nuclear Information System (INIS)

    Lillington, J.N.

    1994-01-01

    The main objectives of the UK study were: to identify, describe and compare different types of systems proposed in current designs; to identify key scenarios in which passive decay heat removal systems play an important preventative or mitigative role; to assess the adequacy of the relevant experimental database; to assess the applicability and suitability of current generation models/codes for predicting passive decay heat removal; to assess the potential effectiveness of different systems in respect of certain key licensing questions

  15. Determination of regional heat fluxes from the growth of the mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E. [Risoe National Lab., Roskilde (Denmark); Batchvarova, E. [National Inst. of Meteorology and Hydrology, Sofia (Bulgaria)

    1997-10-01

    The distribution of surface sensible heat flux is a critical factor in producing and modifying the mesoscale atmospheric flows, turbulence and evaporation. Parameterizations that assume homogeneous land characteristics are inappropriate to represent the spatial variability often found in nature. One possibility to overcome this problem is to increase the resolution of the model grid which demands unrealistic computing resources and data for model initialization. Area averaged fluxes can be obtained from aircraft measurements. It is essential that the flights are performed at a height where the individual surface features are not felt. A large number of flights and appropriate pattern to meet the task are needed in order to achieve a fair statistics. The mixed layer grows in response to the regional turbulent fluxes including the aggregation and small scale processes. The region of influence in upwind direction is typically 20 times the height of the mixed layer for convective and 100 times the height of the mixed layer for atmospheric near neutral conditions. In this study we determine the regional integrated sensible heat flux from information on the evolution of the mixed layer over the area. The required information to use the method can be derived from wind speed and temperature profiles obtained by radio-soundings when performed frequently enough to provide a reasonably detailed structure of the development of the mixed-layer. The method is applied to estimate the regional heat flux over the NOPEX experimental area for three days during the campaign in 1994. (au)

  16. Development and testing of CFC-copper high heat flux elements

    International Nuclear Information System (INIS)

    Mitteau, R.; Chappuis, P.; Deschamps, P.; Schlosser, J.; Viallet, H.; Vieider, G.

    1994-01-01

    In the frame of high heat flux development for plasma facing components, CEA has designed, fabricated and tested over twenty specimens, with some of them for the NET divertor application. Several Carbon Fibre Composites (CFC) and copper grades have been used with flat tile or macro bloc configuration. All the mock-ups were tested in the electron beam facility EB200, for steady-state flux and fatigue up to 1000 cycles. The best four are presented. (author) 3 refs.; 11 figs

  17. Heat removal in gas-cooled fuel rod clusters

    International Nuclear Information System (INIS)

    Rehme, K.

    1975-01-01

    For a thermo- and fluid-dynamic analysis of fuel rod cluster subchannels for gas-cooled breeder reactors, the following values must be verified: a) friction coefficient as flow parameter; b) Stanton number as heat transfer parameter; c) influence of spacers on friction coefficient and Stanton number; d) heat and mass exchange between subchannels with different temperatures. These parameters are established by combining results of single experiments and of integral experiments. Mention is made of further studies to be performed in order to determine the heat removal from gas-cooled fast breeder fuel elements. (HR) [de

  18. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005

    Directory of Open Access Journals (Sweden)

    Hongxiong Xu

    2015-01-01

    Full Text Available Three to four tropical cyclones (TCs by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC version of the Hurricane WRF (HWRF model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the right position. Sensitive experiments indicated that Taiwan’s surface heat fluxes have significant influence on the super Typhoon Haitang. Compared to sensible heat (SH fluxes, latent heat (LH is the dominant factor affecting the intensity and rainfall, but they showed opposite effects on intensity and rainfall. LH (SH flux of Taiwan Island intensified (weakened Typhoon Haitang’s intensity and structure by transferring more energy from (to surface. However, only LH played a major role in the looped path before the landfall of the Typhoon Haitang.

  19. Post-accident fuel relocation and heat removal in the LMFBR

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Tsai, S.S.; Gasser, R.D.

    1976-08-01

    Assessment of the dynamics of post-accident fuel relocation and heat removal is an important aspect of the evaluation of the consequences of a hypothetical accident in an LMFBR. Such an assessment is of particular importance in the evaluation of the post-accident radiological doses around the reactor site. In the present evaluation particular attention is given to the design features of the Clinch River Breeder Reactor Plant (CRBR). Fuel relocation and heat removal, assuming certain conditions have resulted in core disruption, are discussed. The discussion of events and phenomena involved in the relocation processes is centered around the resulting patterns of heat source distribution. The factors influencing fuel relocation and distribution in the inlet and outlet plena of the reactor vessel are discussed. The current technology of in-vessel heat removal is applied to the design of the CRBR reactor. Both fuel debris cooling limits and overall coolant flow in the reactor under natural convection conditions are explored. Some of the uncertainties in ex-vessel fuel behavior are addressed. In particular, the effect of melting the cavity bed on the rate of growth of a molten fuel pool is investigated

  20. Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity

    Science.gov (United States)

    Hayat, Tasawar; Javed, Mehwish; Imtiaz, Maria; Alsaedi, Ahmed

    2018-03-01

    This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equation is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A system of equations governing the model is obtained by applying boundary layer approximation. Resulting nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept leads to the convergent solutions development. Graphical analysis for velocities and temperature is made to examine the influence of different involved parameters. Thermal relaxation time parameter signifies that temperature for Fourier's heat law is more than Cattaneo-Christov heat flux. A constitutional analysis is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature distribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustrious temperature distribution.

  1. New Westinghouse correlation WRB-1 for predicting critical heat flux in rod bundles with mixing vane grids

    International Nuclear Information System (INIS)

    Motley, F.E.; Hill, K.W.; Cadek, F.F.; Shefcheck, J.

    1976-07-01

    A new critical heat flux (CHF) correlation, based on local fluid conditions, has been developed from Westinghouse rod bundle data. This correlation applies to both 0.422 inch and 0.374 inch rod O.D. geometries. It accounts for typical cell and thimble cell effects, uniform and non-uniform heat flux profiles, variations in rod heated length and in grid spacing. The correlation predicts CHF for 1147 data points with a sample mean and standard deviation of measured-to-predicted heat flux ratio of 1.0043 and 0.0873, respectively. It was concluded that to meet the reactor design criterion the minimum DNBR should be 1.17

  2. Critical heat fluxes and liquid distribution in annular channels in the dispersion-annular flow

    International Nuclear Information System (INIS)

    Boltenko, Eh.A.; Pomet'ko, R.S.

    1984-01-01

    On the basis of using the dependence of intensity of total mass transfer between the flux nucleus and wall film obtained for tubes with uniform heat release and taking into account the peculiarities of mass transfer between the flux nucleus and wall film in annular channels the technique for calculating the liquid distribution and critical capacity of annular channels with internal, external and bilateral heating at uniform and non-uniform heat release over the length is proposed. The calculation of annular channels critical capacity according to the suggested technique is performed. A satisfactory agreement of calculation results with the experimental data is attained

  3. Removal of contaminated concrete surfaces by microwave heating: Phase 1 results

    International Nuclear Information System (INIS)

    White, T.L.; Grubb, R.G.; Pugh, L.P.; Foster, D. Jr.; Box, W.D.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) is developing a microwave heating process to remove radiologically contaminated surface layers from concrete. The microwave energy is directed at the concrete surface and heats the concrete and free water present in the concrete matrix. Continued heating produces steam-pressure-induced mechanical stresses that cause the concrete surface to burst. The concrete particles from this steam explosion are small enough to be removed by a vacuum system, yet less than 1% of the debris is small enough to pose an airborne contamination hazard. The first phase of this program has demonstrated reliable removal of noncontaminated concrete surfaces at frequencies of 2.45 GHz and 10.6 GHz. Continuous concrete removal rates of 1.07 cm 3 /s with 5.2 kW of 2.45.-GHz power and 2.11 cm 3 /s with 3.6 kW of 10.6-GHz power have been demonstrated. Figures-of-merit for microwave removal of concrete have been calculated to be 0.21 cm 3 /s/kW at 2.45 GHz and 0.59 cm 3 /s/kW at 10.6 GHz. The amount of concrete removed in a single pass can be controlled by choosing the frequency and power of the microwave system

  4. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Nicolette, V.F.; Wix, S.D.

    1992-01-01

    For final qualification of shipping containers for transport of hazardous materials, thermal testing in accordance with regulations such as 10CFR71 must be completed. Such tests typically consist of 30 minute exposures with the container fully engulfed in flames from a large, open pool of JP4 jet engine fuel. Despite careful engineering analyses of the container, testing often reveals design problems that must be solved by modification and expensive retesting of the container. One source of this problem is the wide variation in surface heat flux to the container that occurs in pool fires. Average beat fluxes of 50 to 60 kW/m 2 are typical and close the values implied by the radiation model in 10CFR71, but peak fluxes up to 150 kW/m 2 are routinely observed in fires (Keltner, et al,1990). Heat fluxes in pool fires have been shown to be a function of surface temperature of the container, height above the pool, surface orientation, wind, and other variables. If local variations in the surface heat flux to the container can be better predicted, design analyses will become more accurate, and fewer problems will be uncovered during testing. The objective of the calorimeter design described in this paper is to measure accurately pool fire heat fluxes under controlled conditions, and to provide data for calibration of improved analytical models of local flame-surface interactions

  5. The relationship between the local temperature and the local heat flux within a one-dimensional semi-infinite domain of heat wave propagation

    Directory of Open Access Journals (Sweden)

    Kulish Vladimir V.

    2003-01-01

    Full Text Available The relationship between the local temperature and the local heat flux has been established for the homogeneous hyperbolic heat equation. This relationship has been written in the form of a convolution integral involving the modified Bessel functions. The scale analysis of the hyperbolic energy equation has been performed and the dimensionless criterion for the mode of energy transport, similar to the Reynolds criterion for the flow regimes, has been proposed. Finally, the integral equation, relating the local temperature and the local heat flux, has been solved numerically for those processes of surface heating whose time scale is of the order of picoseconds.

  6. Boundary layer structure over areas of heterogeneous heat fluxes

    International Nuclear Information System (INIS)

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns

  7. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S., E-mail: sajidshah313@yahoo.com; Hussain, S.; Sagheer, M. [Department of Mathematics, Capital University of Science and Technology, Islamabad (Pakistan)

    2016-08-15

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity and temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.

  8. Heated submicron particle fluxes using an optical particle counter in urban environment

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2013-03-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles <0.6 μm Dp to be 2.4 ± 1.4 mg veh-1 km-1 based on either CO2 fluxes or traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  9. Tests for removal of decay heat by natural convection

    International Nuclear Information System (INIS)

    Kashiwagi, E.; Wataru, M.; Gomi, Y.; Hattori, Y.; Ozaki, S.

    1993-01-01

    Interim storage technology for spent fuel by dry storage casks have been investigated. The casks are vertically placed in a storage building. The decay heat is removed from the outer cask surface by natural convection of air entering from the building wall to the roof. The air flow pattern in the storage building was governed by the natural driving pressure difference and circulating flow. The purpose of this study is to understand the mechanism of the removal of decay heat from casks by natural convection. The simulated flow conditions in the building were assumed as a natural and forced combined convection and were investigated by the turbulent quantities near wall. (author)

  10. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  11. Experimental study and technique for calculation of critical heat fluxes in helium boiling in tubes

    International Nuclear Information System (INIS)

    Arkhipov, V.V.; Kvasnyuk, S.V.; Deev, V.I.; Andreev, V.K.

    1979-01-01

    Studied is the effect of regime parameters on critical heat loads in helium boiling in a vertical tube in the range of mass rates of 80 2 xc) and pressures of 100<=p<=200 kPa for the vapor content range corresponding to the heat exchange crisis of the first kind. The method for calculating critical heat fluxes describing experimental data with the error less than +-15% is proposed. The critical heat loads in helium boiling in tubes reduce with the growth of pressure and vapor content in the regime parameter ranges under investigation. Both positive and negative effects of the mass rate on the critical heat flux are observed. The calculation method proposed satisfactorily describes the experimental data

  12. Multiple pollutant removal using the condensing heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jankura, B. J. [McDermott Technology Inc., Alliance, OH (United States); Kudlac, G. A. [McDermott Technology Inc., Alliance, OH (United States); Bailey, R. T. [McDermott Technology Inc., Alliance, OH (United States)

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy's Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute's Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the

  13. Analysis of a convection loop for GFR post-LOCA decay heat removal

    International Nuclear Information System (INIS)

    Williams, W.C.; Hejzlar, P.; Saha, P.

    2004-01-01

    A computer code (LOCA-COLA) has been developed at MIT for steady state analysis of convective heat transfer loops. In this work, it is used to investigate an external convection loop for decay heat removal of a post-LOCA gas-cooled fast reactor (GFR). The major finding is that natural circulation cooling of the GFR is feasible under certain circumstances. Both helium and CO 2 cooled system components are found to operate in the mixed convection regime, the effects of which are noticeable as heat transfer enhancement or degradation. It is found that CO 2 outdoes helium under identical natural circulation conditions. Decay heat removal is found to have a quadratic dependence on pressure in the laminar flow regime and linear dependence in the turbulent flow regime. Other parametric studies have been performed as well. In conclusion, convection cooling loops are a credible means for GFR decay heat removal and LOCA-COLA is an effective tool for steady state analysis of cooling loops. (authors)

  14. A formal approach for the prediction of the critical heat flux in subcooled water

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, C. [Polytechnic of Milan (Italy)

    1995-09-01

    The critical heat flux (CHF) in subcooled water at high mass fluxes are not yet satisfactory correlated. For this scope a formal approach is here followed, which is based on an extension of the parameters and the correlation used for the dryout prediction for medium high quality mixtures. The obtained correlation, in spite of its simplicity and its explicit form, yields satisfactory predictions, also when applied to more conventional CHF data at low-medium mass fluxes and high pressures. Further improvements are possible, if a more complete data bank will be available. The main and general open item is the definition of a criterion, depending only on independent parameters, such as mass flux, pressure, inlet subcooling and geometry, to predict whether the heat transfer crisis will result as a DNB or a dryout phenomenon.

  15. A formal approach for the prediction of the critical heat flux in subcooled water

    International Nuclear Information System (INIS)

    Lombardi, C.

    1995-01-01

    The critical heat flux (CHF) in subcooled water at high mass fluxes are not yet satisfactory correlated. For this scope a formal approach is here followed, which is based on an extension of the parameters and the correlation used for the dryout prediction for medium high quality mixtures. The obtained correlation, in spite of its simplicity and its explicit form, yields satisfactory predictions, also when applied to more conventional CHF data at low-medium mass fluxes and high pressures. Further improvements are possible, if a more complete data bank will be available. The main and general open item is the definition of a criterion, depending only on independent parameters, such as mass flux, pressure, inlet subcooling and geometry, to predict whether the heat transfer crisis will result as a DNB or a dryout phenomenon

  16. Design of Hemispherical Downward-Facing Vessel for Critical Heat Flux Experiment

    International Nuclear Information System (INIS)

    Hwang, J. S.; Suh, K. Y.

    2009-01-01

    The in-vessel retention (IVR) is one of major severe accident management strategies adopted by some operating nuclear power plants during a severe accident. The recent Shin-Gori Units 3 and 4 of the Advanced Power Reactor 1400 MWe (APR1400) have adopted the external reactor vessel cooling (ERVC) by reactor cavity flooding as major severe accident management strategy. The ERVC in the APR1400 design resorts to active flooding system using thermal insulator. The Corium Attack Stopper Apparatus Spherical Channel (CASA SC) tests are conducted to measure the critical power and critical heat flux (CHF) on a downward hemispherical vessel scaled down from the APR1400 lower head by 1/10 on a linear scale. CASA is designed through scaling and thermal analysis to simulate the APR1400 vessel and thermal insulator. The heated vessel of CASA SC represents the external surface of a hemisphere submerged vessel in water. The heated vessel plays an important role in the ERVC experiment depending on the configuration of oxide pool and metallic layer. Hand calculation and computational analysis are performed to produce high heat flux from the downward facing hemisphere in excess of 1 MW/m 2

  17. Critical heat flux correlation for thin rectangular channels

    International Nuclear Information System (INIS)

    Tanaka, Futoshi; Mishima, Kaichiro; Hibiki, Takashi

    2007-01-01

    The effect of heated length on Critical heat flux (CHF) in thin rectangular channels was studied based on CHF data obtained under atmospheric pressure. CHF in small channels has been widely studied in the past decades but most of the studies are related to CHF in round tubes. Although basic mechanisms of burnout in thin rectangular channels are similar to tubes, applicability of CHF correlations for tubes to rectangular channels are questionable since CHF in rectangular channels are affected by the existence of non-heated walls and the non-circular geometry of channel circumference. Several studies of CHF in thin rectangular channels have been reported in relation to thermal hydraulic design of research reactors and neutron source targets and CHF correlations have been proposed, but the studies mostly focus on CHFs under geometrical conditions of the application of interest. In his study, existing CHF data obtained in thin rectangular channels were collected and the effect of heated length on CHF was examined. Existing CHF correlations were verified with positive quality flow CHF data but none of the correlations successfully reproduced the CHF for a wide range of heated length. A new CHF correlation for qualify region applicable to a wide range of heated length was developed based on the collected data. (author)

  18. Experimental investigation of pool boiling heat transfer and critical heat flux on a downward facing surface

    International Nuclear Information System (INIS)

    Gocmanac, M.; Luxat, J.C.

    2012-01-01

    A separate effects experimental study of heat transfer and Critical Heat Flux (CHF) on a downward facing plate in subcooled water pool boiling is described. Two geometries of downwards facing surfaces are studied. The first is termed the 'confined' study in which bubble motion is restricted to the heated surface. The second is termed the 'unconfined' study where individual bubbles are free to move along the heated surface and vent in any direction. The method used in the confined study is novel and involves the placement of a lip surrounding the heated surface. The CHF as a function of angle of inclination of the surface is presented and is in good agreement with other experimental data from somewhat different test geometries. (author)

  19. Electric control of the heat flux through electrophononic effects

    Science.gov (United States)

    Seijas-Bellido, Juan Antonio; Aramberri, Hugo; Íñiguez, Jorge; Rurali, Riccardo

    2018-05-01

    We demonstrate a fully electric control of the heat flux, which can be continuously modulated by an externally applied electric field in PbTiO3, a prototypical ferroelectric perovskite, revealing the mechanisms by which experimentally accessible fields can be used to tune the thermal conductivity by as much as 50% at room temperature.

  20. Direct evaluation of transient surface temperatures and heat fluxes

    International Nuclear Information System (INIS)

    Axford, R.A.

    1975-08-01

    Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations

  1. Experience gained from high heat flux actively cooled PFCs in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C.

    2005-01-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) is one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW/m 2 of nominal convected heat flux. Technical information is drawn from the whole development up to the industrialisation and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non-destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about half of the injected gas during long discharges

  2. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-01-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω e τ e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω e τ e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics

  3. Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target

    International Nuclear Information System (INIS)

    Youchison, D.L.; Marshall, T.D.; McDonald, J.M.; Lutz, T.J.; Watson, R.D.; Driemeyer, D.E.; Kubik, D.L.; Slattery, K.T.; Hellwig, T.H.

    1997-09-01

    Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles

  4. Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, D.L.; Marshall, T.D.; McDonald, J.M.; Lutz, T.J.; Watson, R.D. [Sandia National Labs., Albuquerque, NM (United States); Driemeyer, D.E. Kubik, D.L.; Slattery, K.T.; Hellwig, T.H. [McDonnell Douglas Aerospace, St. Louis, MO (United States)

    1997-09-01

    Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles.

  5. Development of a new decay heat removal system for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sim, Yoon Sub; Park, Rae Young; Kim, Seyun

    2007-01-01

    The heat removal capacity of a RCCS is one of the major parameters limiting the capacity of a HTGR based on a passive safety system. To improve the plant economy of a HTGR, the decay heat removal capacity needs to be improved. For this, a new analysis system of an algebraic method for the performance of various RCCS designs was set up and the heat transfer characteristics and performance of the designs were analyzed. Based on the analysis results, a new passive decay heat removal system with a substantially improved performance, LFDRS was developed. With the new system, one can have an expectation that the heat removal capacity of a HTGR could be doubled

  6. Study of heat flux deposition in the Tore Supra Tokamak; Etude des depots de chaleur dans le tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, S.

    2009-02-15

    Accurate measurements of heat loads on internal tokamak components is essential for protection of the device during steady state operation. The optimisation of experimental scenarios also requires an in depth understanding of the physical mechanisms governing the heat flux deposition on the walls. The objective of this study is a detailed characterisation of the heat flux to plasma facing components (PFC) of the Tore Supra tokamak. The power deposited onto Tore Supra PFCs is calculated using an inverse method, which is applied to both the temperature maps measured by infrared thermography and to the enthalpy signals from calorimetry. The derived experimental heat flux maps calculated on the toroidal pumped limiter (TPL) are then compared with theoretical heat flux density distributions from a standard SOL-model. They are two experimental observations that are not consistent with the model: significant heat flux outside the theoretical wetted area, and heat load peaking close to the tangency point between the TPL and the last closed field surface (LCFS). An experimental analysis for several discharges with variable security factors q is made. In the area consistent with the theoretical predictions, this parametric study shows a clear dependence between the heat flux length lambda{sub q} (estimated in the SOL (scrape-off layer) from the IR measurements) and the magnetic configuration. We observe that the spreading of heat fluxes on the component is compensated by a reduction of the power decay length lambda{sub q} in the SOL when q decreases. On the other hand, in the area where the derived experimental heat loads are not consistent with the theoretical predictions, we observe that the spreading of heat fluxes outside the theoretical boundary increases when q decreases, and is thus not counterbalanced. (author)

  7. The Effect of Inclination Angle on Critical Heat Flux in a Locally Heated Liquid Film Moving Under the Action of Gas Flow in a Mini-Channel

    Directory of Open Access Journals (Sweden)

    Tkachenko Egor M.

    2016-01-01

    Full Text Available Intensively evaporating liquid films moving under the action of the cocurrent gas flow in a microchannel are promising for the use in modern cooling systems of semiconductor devices with high local heat release. This work has studied the dependence of the critical heat flux on the inclination angle of the channel. It has been found that the inclination angle in the plane parallel to the flow has no significant effect on the critical heat flux. Whereas the inclination angle in the plane perpendicular to the flow, on the contrary, significantly changes the value of the critical heat flux. However, for a given flow rate of fluid there is a threshold gas velocity at which the critical heat flux does not differ from the case of zero inclination of the channel. Thus, it can be concluded that the cooling system based on shear-driven liquid films can be potentially used when direction of the gravity changes.

  8. Existence of a time-dependent heat flux-related ponderomotive effect

    International Nuclear Information System (INIS)

    Schamel, H.; Sack, C.

    1980-01-01

    The existence of a new ponderomotive effect associated with high-frequency waves is pointed out. It originates when time-dependency, mean velocities, or divergent heat fluxes are involved and it supplements the two effects known previously, namely, the ponderomotive force and fake heating. Two proofs are presented; the first is obtained by establishing the momentum equations generalized by including radiation effects and the second by solving the quasi-linear-type diffusion equation explicitly. For a time-dependent wave packet the solution exhibits a new contribution in terms of an integral over previous states. Owing to this term, the plasma has a memory which leads to a breaking of the time symmetry of the plasma response. The range, influenced by the localized wave packet, expands during the course of time due to streamers emanating from the wave active region. Perturbations, among which is the heat flux, are carried to remote positions and, consequently, the region accessible to wave heating is increased. The density dip appears to be less pronounced at the center, and its generation and decay are delayed. The analysis includes a self-consistent action of high-frequency waves as well as the case of traveling wave packets. In order to establish the existence of this new effect, the analytical results are compared with recent microwave experiments. The possibility of generating fast particles by this new ponderomotive effect is emphasized

  9. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    Science.gov (United States)

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  10. Summary report of RAMONA investigations into passive decay heat removal

    International Nuclear Information System (INIS)

    Hoffmann, H.; Marten, K.; Weinberg, D.; Frey, H.H.; Rust, K.; Ieda, Y.; Kamide, H.; Ohshima, H.; Ohira, H.

    1995-07-01

    An important safety feature of an advanced sodium-cooled reactor (e.g. European Fast Reactor, EFR) is the passive decay heat removal. This passive concept is based on several direct reactor cooling systems operating independently from each other. Each of the systems consists of a sodium/sodium decay heat exchanger immersed in the primary vessel and connected via an intermediate sodium loop to a heat sink formed by a sodium/air heat exchanger installed in a stack with air inlet and outlet dampers. The decay heat is removed by natural convection on the sodium side and natural draft on the air side. To demonstrate the coolability of the pool-type primary system by buoyancy-driven natural circulation, tests were performed under steady-state and transient conditions in facilities of different scale and detail. All these investigations serve to understand the physical processes and to verify computer codes used to transfer the results to reactor conditions. RAMONA is the three-dimensional 1:20-scaled apparatus equipped with all active components. Water is used as simulant fluid for sodium. The maximum core power is 75 kW. The facility is equipped with about 250 thermocouples to register fluid temperatures. Velocities and mass flows are measured by Laser Doppler Anemometers and magneto-inductive flowmeters. Flow paths are visualized by tracers. The conclusion of the investigations is that the decay heat can be removed from the primary system by means of natural convection. Always flow paths develop, which ensure an effective cooling of all regions. This is even proved for extreme conditions, e.g. in case of delays of the decay heat exchanger startup, failures of several DHR chains, and a drop of the fluid level below the inlet windows of the IHXs and decay heat exchangers. (orig.) [de

  11. The Heat Flux through the Ice Shell on Europa, Constraints from Measurements in Terrestrial Conditions

    Science.gov (United States)

    Hruba, J.; Kletetschka, G.

    2017-12-01

    Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick

  12. Numerical analysis of cavitating flow characteristics in impeller of residual heat removal pump

    NARCIS (Netherlands)

    Hong, Feng; Yuan, Jianping; Zhou, Banglun

    2016-01-01

    In order to investigate internal cavitating flow characteristics of the impeller in residual heat removal pumps, the three-dimensional cavitating flow in a residual heat removal model pump is numerically calculated by using the homogeneous mixture cavitation model based on the Rayleigh-Plesset

  13. Adaptation of a Freon-12 critical heat flux correlation to correlate water data from uniformly heated vertical tubes. Part I: Based on critical heat flux data for water at pressures of 3 to 14 MPa

    International Nuclear Information System (INIS)

    Green, W.J.

    1981-12-01

    Comparisons have been made between experimental critical heat flux (CHF) data for upflow of water in uniformly heated vertical tubes and values calculated from an empirical CHF correlation developed from Freon-12 data. When this correlation is re-evaluated to account for vapour Prandtl number effects, very good agreement is obtained between experimental data and calculated values over a wide range of coolant conditions. Comparison of values calculated from the revised correlation with 2063 sets of CHF data obtained from experiments with water in vertical, uniformly heated tubes shows a mean ratio of the calculated to experimental CHF of 0.82 and an r.m.s. error of 5.8 per cent for the following coolant conditions: (1) local pressure of 3.4 to 12 MPa; (2) mass flux greater than approx. 300 kg s -1 m -2 , and (3) thermal equilibrium value of exit quality greater than 0.1

  14. Characteristics of low-frequency oscillation intensity of airsea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient ( Δ q), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), Δ q and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and U . 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′ (Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′ (Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).

  15. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    Science.gov (United States)

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  16. Radiant and convective heat transfer for flow of a transparent gas in a short tube with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1982-01-01

    The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%

  17. Direct numerical simulation of turbulent pipe flow with nonuniform surface heat flux

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    1998-01-01

    Turbulent transport computations of a scalar quantity for fully-developed turbulent pipe flow were carried out by means of a direct numerical simulation (DNS) procedure. In this paper, three wall-heating boundary conditions were considered as follows: Case-1) a uniform heat-flux condition along the wall, Case-2) a nonuniform wall-heating condition, that is, a cosine heat-flux distribution along the wall and Case-3) a nonuniform wall-heating condition with a constant temperature over a half of the pipe wall. The number of computational grids used in this paper is 256 x 128 x 128. Prandtl number of the working fluid is 0.71. The Nusselt number in case of Case-1 is in good agreement with the empirical correlation. In case of Case-3, the distributions of the turbulent quantity and the Nusselt number seem to be reasonable. However, as for Case-2, the distributions of the turbulent quantity and the Nusselt number seem to be unrealistic. Two numerical treatments of thermal boundary condition on the wall were applied and their results were discussed from the viewpoint of the turbulent transport feature. (author)

  18. Critical heat flux analysis and R and D for the design of the ITER divertor

    International Nuclear Information System (INIS)

    Raffray, A.R.; Chiocchio, S.; Merola, M.; Tivey, R.; Vieider, G.; Schlosser, J.; Driemeyer, D.; Escourbiac, F.; Grigoriev, S.; Youchison, D.

    1999-01-01

    The vertical target and dump target of the ITER divertor have to be designed for high heat fluxes (up to 20 MW/m 2 over ∼10 s). Accommodation of such high heat fluxes gives rise to several issues, including the critical heat flux (CHF) margin which is a key requirement influencing the choice of cooling channel geometry and coolant conditions. An R and D programme was evolved to address the overall CHF issue and to help focus the design. It involved participation of the four ITER home teams and has been very successful in substantially expanding the CHF data base for one-sided heating and in providing more accurate experimental measurements of pressure drop (and derived correlations) for these geometries. This paper describes the major R and D results and the design analysis performed in converging on a choice of reference configuration and parameters which resulted in a CHF margin of ∼1.4 or more for all divertor components. (orig.)

  19. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  20. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.