WorldWideScience

Sample records for heat exposure consisted

  1. Firewood boiler operators and heat exposure

    Directory of Open Access Journals (Sweden)

    Vilson Bernardo Stollmeier

    2017-12-01

    Full Text Available This article presents an analysis of heat exposure work in boiler industry wood from a company in the industrial sector, focusing on the analysis of the environmental burden of the activity. Therefore, the methodological procedures consisted of document analysis, interviews, filming, evaluation problems of the effects of the hot environment and its prevention. The results show that the fuel to the boiler operators are exposed to heat and need guidance on their daily activities with prevention of diseases affected by excessive heat. Are also suggested training in technical and health to improve working conditions and the operator's health.

  2. Heat exposure on farmers in northeast Ghana

    Science.gov (United States)

    Frimpong, Kwasi; Van Etten E J, Eddie; Oosthuzien, Jacques; Fannam Nunfam, Victor

    2017-03-01

    Environmental health hazards faced by farmers, such as exposure to extreme heat stress, are a growing concern due to global climate change, particularly in tropical developing countries. In such environments, farmers are considered to be a population at risk of environmental heat exposure. The situation is exacerbated due to their farming methods that involve the use of primitive equipment and hard manual labour conducted in full sunshine under hot and humid conditions. However, there is inadequate information about the extent of heat exposure to such farmers, both at the household and farm levels. This paper presents results from a study assessing environmental heat exposure on rural smallholder farmers in Bawku East, Northern Ghana. From January to December 2013, Lascar USB temperature and humidity sensors and a calibrated Questemp heat stress monitor were deployed to farms and homes of rural farmers at Pusiga in Bawku East to capture farmers' exposure to heat stress in both their living and working environments as they executed regular farming routines. The Lascar sensors have the capability to frequently, accurately and securely measure temperature and humidity over long periods. The Questemp heat stress monitor was placed in the same vicinity and showed strong correlations to Lascar sensors in terms of derived values of wet-bulb globe temperature (WBGT). The WBGT in the working environment of farmers peaked at 33.0 to 38.1 °C during the middle of the day in the rainy season from March to October and dropped to 14.0-23.7 °C in the early morning during this season. A maximum hourly WBGT of 28.9-37.5 °C (March-October) was recorded in the living environment of farmers, demonstrating little relief from heat exposure during the day. With these levels of heat stress, exposed farmers conducting physically demanding outdoor work risk suffering serious health consequences. The sustainability of manual farming practices is also under threat by such high levels of

  3. Health impacts of workplace heat exposure: an epidemiological review.

    Science.gov (United States)

    Xiang, Jianjun; Bi, Peng; Pisaniello, Dino; Hansen, Alana

    2014-01-01

    With predicted increasing frequency and intensity of extremely hot weather due to changing climate, workplace heat exposure is presenting an increasing challenge to occupational health and safety. This article aims to review the characteristics of workplace heat exposure in selected relatively high risk occupations, to summarize findings from published studies, and ultimately to provide suggestions for workplace heat exposure reduction, adaptations, and further research directions. All published epidemiological studies in the field of health impacts of workplace heat exposure for the period of January 1997 to April 2012 were reviewed. Finally, 55 original articles were identified. Manual workers who are exposed to extreme heat or work in hot environments may be at risk of heat stress, especially those in low-middle income countries in tropical regions. At risk workers include farmers, construction workers, fire-fighters, miners, soldiers, and manufacturing workers working around process-generated heat. The potential impacts of workplace heat exposure are to some extent underestimated due to the underreporting of heat illnesses. More studies are needed to quantify the extent to which high-risk manual workers are physiologically and psychologically affected by or behaviourally adapt to workplace heat exposure exacerbated by climate change.

  4. Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality

    International Nuclear Information System (INIS)

    Rey, Gregoire; Fouillet, Anne; Bessemoulin, Pierre; Frayssinet, Philippe; Dufour, Anne; Jougla, Eric; Hemon, Denis

    2009-01-01

    Heat waves may become a serious threat to the health and safety of people who currently live in temperate climates. It was therefore of interest to investigate whether more deprived populations are more vulnerable to heat waves. In order to address the question on a fine geographical scale, the spatial heterogeneity of the excess mortality in France associated with the European heat wave of August 2003 was analysed. A deprivation index and a heat exposure index were used jointly to describe the heterogeneity on the Canton scale (3,706 spatial units). During the heat wave period, the heat exposure index explained 68% of the extra-Poisson spatial variability of the heat wave mortality ratios. The heat exposure index was greater in the most urbanized areas. For the three upper quintiles of heat exposure in the densely populated Paris area, excess mortality rates were twofold higher in the most deprived Cantons (about 20 excess deaths/100,000 people/day) than in the least deprived Cantons (about 10 excess deaths/100,000 people/day). No such interaction was observed for the rest of France, which was less exposed to heat and less heterogeneous in terms of deprivation. Although a marked increase in mortality was associated with heat wave exposure for all degrees of deprivation, deprivation appears to be a vulnerability factor with respect to heat-wave-associated mortality.

  5. Consistency among integral measurements of aggregate decay heat power

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H.; Sagisaka, M.; Oyamatsu, K.; Kukita, Y. [Nagoya Univ. (Japan)

    1998-03-01

    Persisting discrepancies between summation calculations and integral measurements force us to assume large uncertainties in the recommended decay heat power. In this paper, we develop a hybrid method to calculate the decay heat power of a fissioning system from those of different fissioning systems. Then, this method is applied to examine consistency among measured decay heat powers of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U and {sup 239}Pu at YAYOI. The consistency among the measured values are found to be satisfied for the {beta} component and fairly well for the {gamma} component, except for cooling times longer than 4000 s. (author)

  6. Climate change and health: Indoor heat exposure in vulnerable populations

    International Nuclear Information System (INIS)

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Timothy Dvonch, J.; O'Neill, Marie S.

    2012-01-01

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  7. Ability to Discriminate Between Sustainable and Unsustainable Heat Stress Exposures-Part 1: WBGT Exposure Limits.

    Science.gov (United States)

    Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E

    2017-07-01

    Heat stress exposure limits based on wet-bulb globe temperature (WBGT) were designed to limit exposures to those that could be sustained for an 8-h day using limited data from Lind in the 1960s. In general, Sustainable exposures are heat stress levels at which thermal equilibrium can be achieved, and Unsustainable exposures occur when there is a steady increase in core temperature. This paper addresses the ability of the ACGIH® Threshold Limit Value (TLV®) to differentiate between Sustainable and Unsustainable heat exposures, to propose alternative occupational exposure limits, and ask whether an adjustment for body surface area improves the exposure decision. Two progressive heat stress studies provided data on 176 trials with 352 pairs of Sustainable and Unsustainable exposures over a range of relative humidities and metabolic rates using 29 participants wearing woven cotton clothing. To assess the discrimination ability of the TLV, the exposure metric was the difference between the observed WBGT and the TLV adjusted for metabolic rate. Conditional logistic regression models and receiver operating characteristic curves (ROC) along with ROC's area under the curve (AUC) were used. Four alternative models for an occupational exposure limit were also developed and compared to the TLV. For the TLV, the odds ratio (OR) for Unsustainable was 2.5 per 1°C-WBGT [confidence interval (CI) 2.12-2.88]. The AUC for the TLV was 0.85 (CI 0.81-0.89). For the alternative models, the ORs were also about 2.5/°C-WBGT, with AUCs between 0.84 and 0.88, which were significantly different from the TLV's AUC but have little practical difference. This study (1) confirmed that the TLV is appropriate for heat stress screening; (2) demonstrated the TLV's discrimination accuracy with an ROC AUC of 0.85; and (3) established the OR of 2.5/°C-WBGT for unsustainable exposures. The TLV has high sensitivity, but its specificity is very low, which is protective. There were no important

  8. Landscapes of thermal inequity: disproportionate exposure to urban heat in the three largest US cities

    Science.gov (United States)

    Mitchell, Bruce C.; Chakraborty, Jayajit

    2015-11-01

    Heat waves are the most significant cause of mortality in the US compared to other natural hazards. Prior studies have found increased heat exposure for individuals of lower socioeconomic status in several US cities, but few comparative analyses of the social distribution of urban heat have been conducted. To address this gap, our paper examines and compares the environmental justice consequences of urban heat risk in the three largest US cities: New York City, Los Angeles, and Chicago. Risk to urban heat is estimated on the basis of three characteristics of the urban thermal landscape: land surface temperature, vegetation abundance, and structural density of the built urban environment. These variables are combined to develop an urban heat risk index, which is then statistically compared with social vulnerability indicators representing socioeconomic status, age, disability, race/ethnicity, and linguistic isolation. The results indicate a consistent and significant statistical association between lower socioeconomic and minority status and greater urban heat risk, in all three cities. Our findings support a growing body of environmental justice literature that indicates the presence of a landscape of thermal inequity in US cities and underscores the need to conduct comparative analyses of social inequities in exposure to urban heat.

  9. Heat exposure in cities: combining the dynamics of temperature and population

    Science.gov (United States)

    Hu, L.; Wilhelmi, O.; Uejio, C. K.

    2017-12-01

    Assessment of human exposure to extreme heat requires the distributions of temperature and population. However, both variables are dynamic, thus presenting many challenges in capturing temperature and population patterns spatially and over time in an urban context. This study aims to improve the understanding of spatiotemporal patterns of urban population exposure to heat, taking Chicago, USA as an example. We estimate the hourly, geographically variable, population distribution considering commute of workers and students in a regular weekday and analyze the diurnal air temperature patterns during different meteorological conditions from satellite observations. The results show a relatively larger temperature increase in less urbanized areas during extreme heat events (EHEs), resulting in a spatially homogeneous temperature distribution over Chicago Metropolitan area. A lake cooling effect is weaker during EHEs. Population dynamics due to daily commute determine higher population density in more urbanized areas during daytime. The city-wide analysis reveals that the exposure is more sensitive to the nighttime temperature increases, and EHEs enhance this sensitivity. The high exposure hotspots are identified at the northwest Chicago, Cicero and Oak Park areas, where the influence from Lake Michigan is weakened, while the spatial extent of high outdoor exposure areas varies diurnally. This study's findings have potential to better inform general heat mitigation strategies during hot summer months and facilitate emergency response during EHEs. Availability of remotely-sensed temperature observations as well as the workers and students commute-adjusted population data allows for the adoption of this study's methodology in other major metropolitan areas. A better understanding of space-time patterns of urban population's exposure to heat will further enable local decision makers to mitigate extreme heat health risks and develop more targeted heat preparedness and

  10. Physiological effects after exposure to heat : A brief literature review

    NARCIS (Netherlands)

    Bogerd, C.P.; Daanen, H.A.M.

    2011-01-01

    Many employees are exposed to heat stress during their work. Although the direct effects of heat are well reported, the long term physiological effects occurring after heat exposure are hardly described. The present manuscript addresses these issues in the form of a brief literature review. Repeated

  11. Inflammatory cytokines and plasma redox status responses in hypertensive subjects after heat exposure

    Directory of Open Access Journals (Sweden)

    S.F. Fonseca

    2016-03-01

    Full Text Available Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H and 8 normotensive (N subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively. They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity. Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS levels and ferric reducing ability of plasma (FRAP. Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05, although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1 and lower TBARS (P<0.01 and FRAP (P<0.05 levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors, present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.

  12. Modelling Dietary Exposure to Chemical Components in Heat-Processed Meats

    DEFF Research Database (Denmark)

    Georgiadis, Stylianos; Jakobsen, Lea Sletting; Nielsen, Bo Friis

    Several chemical compounds that potentially increase the risk of developing cancer in humans are formed during heat processing of meat. Estimating the overall health impact of these compounds in the population requires accurate estimation of the exposure to the chemicals, as well as the probabili.......g. the Poisson-Lognormal approach, are promising tools to address this obstacle. The exposure estimates can then be applied to dose-response models to quantify the cancer risk.......Several chemical compounds that potentially increase the risk of developing cancer in humans are formed during heat processing of meat. Estimating the overall health impact of these compounds in the population requires accurate estimation of the exposure to the chemicals, as well as the probability...... that different levels of exposure result in disease. The overall goal of this study was to evaluate the impact of variability of exposure patterns and uncertainty of exposure data in burden of disease estimates. We focus on the first phase of burden of disease modelling, i.e. the estimation of exposure...

  13. Stress Responses to Heat Exposure in Three Species of Australian Desert Birds.

    Science.gov (United States)

    Xie, Shangzhe; Romero, L Michael; Htut, Zaw Win; McWhorter, Todd J

    Birds need to respond to weather changes quickly and appropriately for their own well-being and survival. The inability to respond appropriately to heat waves can be fatal to individual birds and can translate into large-scale mortality events. We investigated corticosterone (CORT) and heterophil∶lymphocyte (H∶L) ratio responses of budgerigars (Melopsittacus undulatus), zebra finches (Taeniopygia guttata), and diamond doves (Geopelia cuneata) to heat exposures. The birds were exposed to a temperature similar to what they experience during a typical summer day (35°C) and a higher temperature (45°C) similar to that experienced during a heat wave. There were no significant increases between the CORT concentrations before and after heat exposure in zebra finches and budgerigars at 35° and 45°C, but there was a significant increase in CORT concentrations in diamond doves after exposure to 45°C. The H∶L ratios increased significantly after heat exposure in budgerigars at 35° and 45°C and in diamond doves at 35°C. No significant correlation was found between the changes in CORT and H∶L ratios. The data suggest that there are species differences in birds' stress responses to heat exposure that may reflect their ability to detect and adapt to high temperatures. There appear to be differences between the two types of stress measurements, which may reflect differences in the timescales of these responses.

  14. Modeling Exposure to Heat Stress with a Simple Urban Model

    Directory of Open Access Journals (Sweden)

    Peter Hoffmann

    2018-01-01

    Full Text Available As a first step in modeling health-related urban well-being (UrbWellth, a mathematical model is constructed that dynamically simulates heat stress exposure of commuters in an idealized city. This is done by coupling the Simple Urban Radiation Model (SURM, which computes the mean radiant temperature ( T m r t , with a newly developed multi-class multi-mode traffic model. Simulation results with parameters chosen for the city of Hamburg for a hot summer day show that commuters are potentially most exposed to heat stress in the early afternoon when T m r t has its maximum. Varying the morphology with respect to street width and building height shows that a more compact city configuration reduces T m r t and therefore the exposure to heat stress. The impact resulting from changes in the city structure on traffic is simulated to determine the time spent outside during the commute. While the time in traffic jams increases for compact cities, the total commuting time decreases due to shorter distances between home and work place. Concerning adaptation measures, it is shown that increases in the albedo of the urban surfaces lead to an increase in daytime heat stress. Dramatic increases in heat stress exposure are found when both, wall and street albedo, are increased.

  15. Induction of heat-shock proteins and phagocytic function of chicken macrophage following in vitro heat exposure

    International Nuclear Information System (INIS)

    Miller, L.; Qureshi, M.A.

    1992-01-01

    The protein profiles and phagocytic ability of Sephadex-elicited chicken peritoneal macrophages were examined following heat-shock exposure. Macrophage cultures were exposed to various temperatures, time exposures and recovery periods. Densitometric analysis of SDS-PAGE autoradiographs revealed that heat-induced macrophages synthesized three major (23, 70 and 90 kD) heat-shock proteins (HSPs). The optimal temperature and time for induction of these HSPs was 45-46 degrees C for 1 h, with a variable recovery period for each HSP. Macrophages exposed to 45 degrees C for 30 and 60 min were significantly depressed in phagocytosis of uncoated sheep erythrocytes (SE) under 45 degrees C incubation conditions. However, phagocytosis of antibody-coated SE was not affected when compared to 41 degrees C control cultures. Macrophages allowed to recover at 41 degrees C following heat-shock exhibited no alterations in their phagocytic ability for either antibody-coated or uncoated SE. This study suggests that heat shock induces three major HSPs in chicken peritoneal macrophages in addition to maintaining their Fc-mediated phagocytic function while significantly depressing their nonspecific phagocytosis

  16. Passive Heat Exposure Alters Perception and Executive Function

    Directory of Open Access Journals (Sweden)

    Rachel A. Malcolm

    2018-05-01

    Full Text Available Findings regarding the influence of passive heat exposure on cognitive function remain equivocal due to a number of methodological issues including variation in the domains of cognition examined. In a randomized crossover design, forty-one male participants completed a battery of cognitive function tests [Visual Search, Stroop, Corsi Blocks and Rapid Visual Information Processing (RVIP tests] prior to and following 1 h of passive rest in either hot (39.6 ± 0.4°C, 50.8 ± 2.3% Rh or moderate (21.2 ± 1.8°C, 41.9 ± 11.4% Rh conditions. Subjective feelings of heat exposure, arousal and feeling were assessed alongside physiological measures including core temperature, skin temperature and heart rate, at baseline and throughout the protocol. Response times were slower in the hot trial on the simple (main effect of trial, P < 0.001 and complex (main effect of trial, P < 0.001 levels of the Stroop test (Hot: 872 ± 198 ms; Moderate: 834 ± 177 ms and the simple level of the visual search test (Hot: 354 ± 54 ms; Moderate: 331 ± 47 ms (main effect of trial, P < 0.001. Participants demonstrated superior accuracy on the simple level of the Visual Search test in the hot trial (Hot: 98.5 ± 3.1%; Moderate: 97.4 ± 3.6% (main effect of trial, P = 0.035. Participants also demonstrated an improvement in accuracy on the complex level of the visual search test following 1 h passive heat exposure (Pre: 96.8 ± 5.9%; Post: 98.1 ± 3.1%, whilst a decrement was seen across the trial in the moderate condition (Pre: 97.7 ± 3.5; Post: 97.0 ± 5.1% (time*trial interaction, P = 0.029. No differences in performance were observed on the RVIP or Corsi Blocks tests (all P > 0.05. Subjective feelings of thermal sensation and felt arousal were higher, feeling was lower in the hot trial, whilst skin temperature, core temperature and heart rate were higher (main effects of trial, all P < 0.001. The findings of the present study suggest that response times for perception

  17. A Case-Crossover Study of Heat Exposure and Injury Risk in Outdoor Agricultural Workers.

    Science.gov (United States)

    Spector, June T; Bonauto, David K; Sheppard, Lianne; Busch-Isaksen, Tania; Calkins, Miriam; Adams, Darrin; Lieblich, Max; Fenske, Richard A

    2016-01-01

    Recent research suggests that heat exposure may increase the risk of traumatic injuries. Published heat-related epidemiological studies have relied upon exposure data from individual weather stations. To evaluate the association between heat exposure and traumatic injuries in outdoor agricultural workers exposed to ambient heat and internal heat generated by physical activity using modeled ambient exposure data. A case-crossover study using time-stratified referent selection among 12,213 outdoor agricultural workers with new Washington State Fund workers' compensation traumatic injury claims between 2000 and 2012 was conducted. Maximum daily Humidex exposures, derived from modeled meteorological data, were assigned to latitudes and longitudes of injury locations on injury and referent dates. Conditional logistic regression was used to estimate odds ratios of injury for a priori daily maximum Humidex categories. The mean of within-stratum (injury day and corresponding referent days) standard deviations of daily maximum Humidex was 4.8. The traumatic injury odds ratio was 1.14 (95% confidence interval 1.06, 1.22), 1.15 (95% confidence interval 1.06, 1.25), and 1.10 (95% confidence interval 1.01, 1.20) for daily maximum Humidex of 25-29, 30-33, and ≥34, respectively, compared to < 25, adjusted for self-reported duration of employment. Stronger associations were observed during cherry harvest duties in the June and July time period, compared to all duties over the entire study period. Agricultural workers laboring in warm conditions are at risk for heat-related traumatic injuries. Combined heat-related illness and injury prevention efforts should be considered in high-risk populations exposed to warm ambient conditions in the setting of physical exertion.

  18. A Case-Crossover Study of Heat Exposure and Injury Risk in Outdoor Agricultural Workers.

    Directory of Open Access Journals (Sweden)

    June T Spector

    Full Text Available Recent research suggests that heat exposure may increase the risk of traumatic injuries. Published heat-related epidemiological studies have relied upon exposure data from individual weather stations.To evaluate the association between heat exposure and traumatic injuries in outdoor agricultural workers exposed to ambient heat and internal heat generated by physical activity using modeled ambient exposure data.A case-crossover study using time-stratified referent selection among 12,213 outdoor agricultural workers with new Washington State Fund workers' compensation traumatic injury claims between 2000 and 2012 was conducted. Maximum daily Humidex exposures, derived from modeled meteorological data, were assigned to latitudes and longitudes of injury locations on injury and referent dates. Conditional logistic regression was used to estimate odds ratios of injury for a priori daily maximum Humidex categories.The mean of within-stratum (injury day and corresponding referent days standard deviations of daily maximum Humidex was 4.8. The traumatic injury odds ratio was 1.14 (95% confidence interval 1.06, 1.22, 1.15 (95% confidence interval 1.06, 1.25, and 1.10 (95% confidence interval 1.01, 1.20 for daily maximum Humidex of 25-29, 30-33, and ≥34, respectively, compared to < 25, adjusted for self-reported duration of employment. Stronger associations were observed during cherry harvest duties in the June and July time period, compared to all duties over the entire study period.Agricultural workers laboring in warm conditions are at risk for heat-related traumatic injuries. Combined heat-related illness and injury prevention efforts should be considered in high-risk populations exposed to warm ambient conditions in the setting of physical exertion.

  19. Improved heat transfer modeling of the eye for electromagnetic wave exposures.

    Science.gov (United States)

    Hirata, Akimasa

    2007-05-01

    This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.

  20. Ability to Discriminate Between Sustainable and Unsustainable Heat Stress Exposures-Part 2: Physiological Indicators.

    Science.gov (United States)

    Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E

    2017-07-01

    There are times when it is not practical to assess heat stress using environmental metrics and metabolic rate, and heat strain may provide an alternative approach. Heat strain indicators have been used for decades as tools for monitoring physiological responses to work in hot environments. Common indicators of heat strain are body core temperature (assessed here as rectal temperature Tre), heart rate (HR), and average skin temperature (Tsk). Data collected from progressive heat stress trials were used to (1) demonstrate if physiological heat strain indicators (PHSIs) at the upper limit of Sustainable heat stress were below generally accepted limits; (2) suggest values for PHSIs that demonstrate a Sustainable level of heat stress; (3) suggest alternative PHSIs; and (4) determine if metabolic rate was an effect modifier. Two previous progressive heat stress studies included 176 trials with 352 pairs of Sustainable and Unsustainable exposures over a range of relative humidities and metabolic rates using 29 participants. To assess the discrimination ability of PHSIs, conditional logistic regression and stepwise logistic regression were used to find the best combinations of predictors of Unsustainable exposures. The accuracy of the models was assessed using receiver operating characteristic curves. Current recommendations for physiological heat strain limits were associated with probabilities of Unsustainable greater than 0.5. Screening limits for Sustainable heat stress were Tre of 37.5°C, HR of 105 bpm, and Tsk of 35.8°C. Tsk alone resulted in an area under the curve of 0.85 and the combination of Tsk and HR (area under the curve = 0.88) performed the best. The adjustment for metabolic rate was statistically significant for physiological strain index or ∆Tre-sk as main predictors, but its effect modification was negligible and could be ignored. Based on the receiver operating characteristic curve, PHSIs (Tre, HR, and Tsk) can accurately predict Unsustainable heat

  1. Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon

    Directory of Open Access Journals (Sweden)

    Jackson Voelkel

    2018-03-01

    Full Text Available Extreme urban heat is a powerful environmental stressor which poses a significant threat to human health and well-being. Exacerbated by the urban heat island phenomenon, heat events are expected to become more intense and frequent as climate change progresses, though we have limited understanding of the impact of such events on vulnerable populations at a neighborhood or census block group level. Focusing on the City of Portland, Oregon, this study aimed to determine which socio-demographic populations experience disproportionate exposure to extreme heat, as well as the level of access to refuge in the form of public cooling centers or residential central air conditioning. During a 2014 heat wave, temperature data were recorded using a vehicle-traverse collection method, then extrapolated to determine average temperature at the census block group level. Socio-demographic factors including income, race, education, age, and English speaking ability were tested using statistical assessments to identify significant relationships with heat exposure and access to refuge from extreme heat. Results indicate that groups with limited adaptive capacity, including those in poverty and non-white populations, are at higher risk for heat exposure, suggesting an emerging concern of environmental justice as it relates to climate change. The paper concludes by emphasizing the importance of cultural sensitivity and inclusion, in combination with effectively distributing cooling centers in areas where the greatest burden befalls vulnerable populations.

  2. Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon.

    Science.gov (United States)

    Voelkel, Jackson; Hellman, Dana; Sakuma, Ryu; Shandas, Vivek

    2018-03-30

    Extreme urban heat is a powerful environmental stressor which poses a significant threat to human health and well-being. Exacerbated by the urban heat island phenomenon, heat events are expected to become more intense and frequent as climate change progresses, though we have limited understanding of the impact of such events on vulnerable populations at a neighborhood or census block group level. Focusing on the City of Portland, Oregon, this study aimed to determine which socio-demographic populations experience disproportionate exposure to extreme heat, as well as the level of access to refuge in the form of public cooling centers or residential central air conditioning. During a 2014 heat wave, temperature data were recorded using a vehicle-traverse collection method, then extrapolated to determine average temperature at the census block group level. Socio-demographic factors including income, race, education, age, and English speaking ability were tested using statistical assessments to identify significant relationships with heat exposure and access to refuge from extreme heat. Results indicate that groups with limited adaptive capacity, including those in poverty and non-white populations, are at higher risk for heat exposure, suggesting an emerging concern of environmental justice as it relates to climate change. The paper concludes by emphasizing the importance of cultural sensitivity and inclusion, in combination with effectively distributing cooling centers in areas where the greatest burden befalls vulnerable populations.

  3. Workers’ perceptions of climate change related extreme heat exposure in South Australia: a cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Jianjun Xiang

    2016-07-01

    Full Text Available Abstract Background Occupational exposure to extreme heat without sufficient protection may not only increase the risk of heat-related illnesses and injuries but also compromise economic productivity. With predictions of more frequent and intense bouts of hot weather, workplace heat exposure is presenting a growing challenge to workers’ health and safety. This study aims to investigate workers’ perceptions and behavioural responses towards extreme heat exposure in a warming climate. Methods A cross-sectional questionnaire survey was conducted in 2012 in South Australia among selected outdoor industries. Workers’ heat risk perceptions were measured in the following five aspects: concerns about heat exposure, attitudes towards more training, policy and guideline support, the adjustment of work habits, and degree of satisfaction of current preventive measures. Bivariate and multivariate logistic regression analyses were used to identify factors significantly associated with workers’ heat perceptions. Results A total of 749 respondents participated in this survey, with a response rate of 50.9 %. A little more than half (51.2 % of respondents were moderately or very much concerned about workplace heat exposure. Factors associated with workers’ heat concerns included age, undertaking very physically demanding work, and the use of personal protective equipment, heat illness history, and injury experience during hot weather. Less than half (43.4 % of the respondents had received heat-related training. Workers aged 25–54 years and those with previous heat-related illness/injury history showed more supportive attitudes towards heat-related training. The provision of cool drinking water was the most common heat prevention measure. A little more than half (51.4 % of respondents were satisfied with the current heat prevention measures. About two-thirds (63.8 % of respondents agreed that there should be more heat-related regulations and

  4. Perceptions of Workplace Heat Exposure and Controls among Occupational Hygienists and Relevant Specialists in Australia.

    Directory of Open Access Journals (Sweden)

    Jianjun Xiang

    Full Text Available With warmer weather projections, workplace heat exposure is presenting a growing challenge to workers' health and safety. Occupational hygienists are the specialist group conducting measurements and providing advice on heat stress management to industry. In order to provide insights into hygienists perceptions on workplace heat exposure, current and future preparedness for extreme heat, and barriers to possible heat adaptation strategies, a self-administered questionnaire survey was conducted during a national conference of the Australian Institute of Occupational Hygienists. Nearly 90% of the 180 respondents were at least moderately concerned about extreme heat and 19% were dissatisfied with current heat stress prevention measures. Barriers recognized by the participants were lack of awareness (68%, insufficient training (56%, unsatisfactory management commitment (52%, and low compliance with prevention policies (40%. The findings suggest a need to refine occupational heat management and prevention strategies.

  5. Nasopharyngeal carcinoma in Malaysian Chinese: occupational exposures to particles, formaldehyde and heat.

    Science.gov (United States)

    Armstrong, R W; Imrey, P B; Lye, M S; Armstrong, M J; Yu, M C; Sani, S

    2000-12-01

    During 1990-1992, 282 Chinese residents of Selangor and the Federal Territory, Malaysia with histologically confirmed nasopharyngeal carcinoma (NPC) were interviewed about occupational history, diet, alcohol consumption, and tobacco use, as were an equal number of Malaysian Chinese population controls, pair-matched to cases by age and sex. Exposures to 20 kinds of workplace substances, solar and industrial heat, and cigarette smoke, were analysed by univariate and multivariate methods. Nasopharyngeal carcinoma was associated with occupational exposures to construction, metal and wood dusts; motor fuel and oil; paints and varnishes; certain other chemicals; industrial heat; solar heat from outdoor occupations; certain smokes; cigarette smoking; and childhood exposure to parental smoking. After adjustment for risk from diet and cigarette smoke, only wood dust (OR = 2.36; 95% CI : 1.33- 4.19), and industrial heat (OR = 2.21; 95% CI : 1.12-4.33) remained clearly associated. Wood dust remained statistically significant after further adjustment for social class. No significant crude or adjusted association was found between NPC and formaldehyde (adjusted OR = 0.71; 95% CI : 0.34-1.43). This study supports previous findings that some occupational inhalants are risk factors for NPC. The statistical effect of wood dust remained substantial after adjustment for diet, cigarette smoke, and social class. Intense industrial heat emerged as a previously unreported risk factor, statistically significant even after adjustment for diet and cigarette smoke. No association was found between NPC and formaldehyde.

  6. Are exposure index values consistent in clinical practice? A multi-manufacturer investigation

    International Nuclear Information System (INIS)

    Butler, M. L.; Rainford, L.; Last, J.; Brennan, P. C.

    2010-01-01

    The advent of digital radiography poses the risk of unnoticed increases in patient dose. Manufacturers have responded to this by offering an exposure index (EI) value to the clinician. Whilst the EI value is a measure of the air kerma at the detector surface, it has been recommended by international agencies as a method of monitoring radiation dose to the patient. Recent studies by the group have shown that EI values are being used in clinical practice to monitor radiation dose and assess image quality. This study aims to compare the clinical consistency of the EI value in computed radiography (CR) and direct digital radiography (DR) systems. An anthropomorphic phantom was used to simulate four common radiographic examinations: skull, pelvis, chest and hand. These examinations were chosen as they provide contrasting exposure parameters, image detail and radiation dose measurements. Four manufacturers were used for comparison: Agfa Gaevert CR, Carestream CR, Philips Digital Diagnost DR and Siemens DR. For each examination, the phantom was placed in the optimal position and exposure parameters were chosen in accordance with European guidelines and clinical practice. Multiple exposures were taken and the EI recorded. All exposure parameters and clinical conditions remained constant throughout. For both DR systems, the EI values remained consistent throughout. No significant change was noted in any examination. In both CR systems, there were noteworthy fluctuations in the EI values for all examinations. The largest for the Agfa system was a variation of 1.88-2.21 for the skull examination. This represents to the clinician a doubling of detector dose, despite all exposure parameters remaining constant. In the Kodak system, the largest fluctuation was seen for the chest examination where the EI ranged from 2560 to 2660, representing approximately an increase of 30% in radiation dose, despite consistent parameters. The fluctuations seen with the CR systems are most likely

  7. Heat Exposure and Maternal Health in the Face of Climate Change

    Directory of Open Access Journals (Sweden)

    Leeann Kuehn

    2017-07-01

    Full Text Available Climate change will increasingly affect the health of vulnerable populations, including maternal and fetal health. This systematic review aims to identify recent literature that investigates increasing heat and extreme temperatures on pregnancy outcomes globally. We identify common research findings in order to create a comprehensive understanding of how immediate effects will be sustained in the next generation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guide, we systematically reviewed articles from PubMed and Cochrane Reviews. We included articles that identify climate change-related exposures and adverse health effects for pregnant women. There is evidence that temperature extremes adversely impact birth outcomes, including, but not limited to: changes in length of gestation, birth weight, stillbirth, and neonatal stress in unusually hot temperature exposures. The studies included in this review indicate that not only is there a need for further research on the ways that climate change, and heat in particular, may affect maternal health and neonatal outcomes, but that uniform standards for assessing the effects of heat on maternal fetal health also need to be established.

  8. The consistency of combat exposure reporting and course of PTSD in Vietnam War veterans.

    Science.gov (United States)

    Koenen, K C; Stellman, S D; Dohrenwend, B P; Sommer, J F; Stellman, J M

    2007-02-01

    Self-reports of traumatic events are often used in clinical and epidemiologic studies. Nevertheless, research suggests combat exposure reports may be biased by posttraumatic stress disorder (PTSD) symptom severity, leading to an inflated dose-response relation between combat exposure and PTSD. The authors examined the consistency in combat exposure reports and their relation to PTSD symptoms in Vietnam Veteran American Legionnaires who responded to two mailed surveys (1984, 1998; N = 1,462). Combat exposure reports were highly reliable (test-retest correlation = 0.87). However, changes in exposure reporting were related to changes in PTSD symptoms, specifically reexperiencing symptoms. The effect size of the dose-response relation attributable to changes in reporting was smaller for continuous than categorical measures. Findings are discussed in relation to recent controversies over veterans' combat exposure reports.

  9. The effect of acute heat exposure on rat pituitary corticotroph activation: the role of vasopressin.

    Directory of Open Access Journals (Sweden)

    Sinisa Djurasevic

    2011-04-01

    Full Text Available The increased ambient temperature affects the function of hypothalamic-pituitary-adrenal (HPA axis. Since the correlation among vasopressin (VP, adrenocorticotropic hormone (ACTH and corticosterone (CORT responses to various stressors have been long recognized, the aim of this study was to reveal the aforementioned hormones production and morphology of the pituitary gland after exposure to acute heat. Rats were exposed to high ambient temperature (38 °C for 20 or 60 minutes. The circulating hormones were determined by an ELISA test or chemiluminescence's method. The results obtained show the elevation in ACTH and CORT secretion depending on the duration of heat exposure. The VP concentration increased only after prolonged exposure to heat (60 min. The pituitary morphology was examined by routine and fluorescent immunohistochemistry as well as electron microscopy. Observed changes in the anterior and posterior pituitary well corresponded to circulating hormones, regarding the volume density of ACTH-immunopositive cells, percentage of ACTH immunopositive area v. total area and number of VP-immunopositive containing varicose fibers per total area. Acute heat exposure also induced changes in shapes of ACTH-immunopositive cells. Cells appeared stellate with numerous slender cytoplasmic processes and degranulated, which is the most obvious after 20 min. In addition, immunopositivity of endothelial and anterior pituitary cells for VP suggests its influence on ACTH secretion.

  10. Increased hospital admissions associated with extreme-heat exposure in King County, Washington, 1990-2010.

    Science.gov (United States)

    Isaksen, Tania Busch; Yost, Michael G; Hom, Elizabeth K; Ren, You; Lyons, Hilary; Fenske, Richard A

    2015-01-01

    Increased morbidity and mortality have been associated with extreme heat events, particularly in temperate climates. Few epidemiologic studies have considered the impact of extreme heat events on hospitalization rates in the Pacific Northwest region. This study quantifies the historic (May to September 1990-2010) heat-morbidity relationship in the most populous Pacific Northwest County, King County, Washington. A relative risk (RR) analysis was used to explore the association between heat and all non-traumatic hospitalizations on 99th percentile heat days, whereas a time series analysis using a piecewise linear model approximation was used to estimate the effect of heat intensity on hospitalizations, adjusted for temporal trends and day of the week. A non-statistically significant 2% [95% CI: 1.02 (0.98, 1.05)] increase in hospitalization risk, on a heat day vs. a non-heat day, was noted for all-ages and all non-traumatic causes. When considering the effect of heat intensity on admissions, we found a statistically significant 1.59% (95% CI: 0.9%, 2.29%) increase in admissions per degree increase in humidex above 37.4°C. Admissions stratified by cause and age produced statistically significant results with both relative risk and time series analyses for nephritis and nephrotic syndromes, acute renal failure, and natural heat exposure hospitalizations. This study demonstrates that heat, expressed as humidex, is associated with increased hospital admissions. When stratified by age and cause of admission, the non-elderly age groups (<85 years) experience significant risk for nephritis and nephrotic syndromes, acute renal failure, natural heat exposure, chronic obstructive pulmonary disease, and asthma hospitalizations.

  11. Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: implications for a climate change future.

    Science.gov (United States)

    Sahu, Subhashis; Sett, Moumita; Kjellstrom, Tord

    2013-01-01

    Excessive workplace heat exposures create well-known risks of heat stroke, and it limits the workers' capacity to sustain physical activity. There is very limited evidence available on how these effects reduce work productivity, while the quantitative relationship between heat and work productivity is an essential basis for climate change impact assessments. We measured hourly heat exposure in rice fields in West Bengal and recorded perceived health problems via interviews of 124 rice harvesters. In a sub-group (n = 48) heart rate was recorded every minute in a standard work situation. Work productivity was recorded as hourly rice bundle collection output. The hourly heat levels (WBGT = Wet Bulb Globe Temperature) were 26-32°C (at air temperatures of 30-38°C), exceeding international standards. Most workers reported exhaustion and pain during work on hot days. Heart rate recovered quickly at low heat, but more slowly at high heat, indicating cardiovascular strain. The hourly number of rice bundles collected was significantly reduced at WBGT>26°C (approximately 5% per°C of increased WBGT). We conclude that high heat exposure in agriculture caused heat strain and reduced work productivity. This reduction will be exacerbated by climate change and may undermine the local economy.

  12. The effect of UV exposure and heat treatment on crystallization behavior of photosensitive glasses

    Science.gov (United States)

    Kıbrıslı, Orhan; Ersundu, Ali Erçin

    2018-05-01

    In this study, photosensitive glasses in the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, silver, tin, antimony) and halogenides (NaF and KBr) were synthesized through a conventional melt-quenching technique. The crystallization mechanism was investigated for solely heat-treated and UV-exposed + heat-treated samples using differential thermal analysis (DTA), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques to understand the effect of UV exposure on crystallization behavior of photosensitive glasses. Accordingly, non-isothermal DTA measurements were performed at different heating rates to determine crystallization peak, T p, and onset, T c, temperatures. For solely heat-treated samples, the kinetic parameters such as the Avrami constant, n, and morphology index, m, were calculated as 1 from the Ozawa method indicating surface crystallization and the value of crystallization activation energy was calculated as 944 kJ/mol using modified Kissinger method. On the contrary, bulk crystallization was found to be predominant for UV exposed + heat-treated samples revealing that UV exposure is the primary cause of bulk crystallization in photosensitive glasses.

  13. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Alexander, E-mail: A.Huber@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Arakcheev, Aleksey; Burdakov, Aleksander [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Shoshin, Andrey [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Terra, Alexis; Unterberg, Bernhard [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany)

    2015-10-15

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ{sub target} = 2.5–4.0 × 10{sup 21} m{sup −2} s{sup −1}, ion energy on surface E{sub ion} = 60 eV, T{sub e} ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m{sup 2}, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m{sup 2}. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  14. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    International Nuclear Information System (INIS)

    Huber, Alexander; Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel; Arakcheev, Aleksey; Burdakov, Aleksander; Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd; Shoshin, Andrey; Terra, Alexis; Unterberg, Bernhard

    2015-01-01

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ_t_a_r_g_e_t = 2.5–4.0 × 10"2"1 m"−"2 s"−"1, ion energy on surface E_i_o_n = 60 eV, T_e ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m"2, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m"2. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  15. Exposure calculations for the FRG isotopic heat source project environmental assessment

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1997-01-01

    The report documents the maximum exposure for transfer of the Federal Republic of Germany (FRG) Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC). These results are to be reported in the Environmental Assessment DOE-EA- 1 21 1

  16. Feeling conflicted and seeking information: when ambivalence enhances and diminishes selective exposure to attitude-consistent information.

    Science.gov (United States)

    Sawicki, Vanessa; Wegener, Duane T; Clark, Jason K; Fabrigar, Leandre R; Smith, Steven M; Durso, Geoffrey R O

    2013-06-01

    To date, little research has examined the impact of attitudinal ambivalence on attitude-congruent selective exposure. Past research would suggest that strong/univalent rather than weak/ambivalent attitudes should be more predictive of proattitudinal information seeking. Although ambivalent attitude structure might weaken the attitude's effect on seeking proattitudinal information, we believe that conflicted attitudes might also motivate attitude-congruent selective exposure because proattitudinal information should be effective in reducing ambivalence. Two studies provide evidence that the effects of ambivalence on information choices depend on amount of issue knowledge. That is, ambivalence motivates attitude-consistent exposure when issue knowledge is relatively low because less familiar information is perceived to be effective at reducing ambivalence. Conversely, when knowledge is relatively high, more unambivalent (univalent) attitudes predicted attitude-consistent information seeking.

  17. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment

    DEFF Research Database (Denmark)

    Dinh, Khuong Van; Janssens, Lizanne; Stoks, Robby

    2016-01-01

    Extreme temperatures and exposure to agricultural pesticides are becoming more frequent and intense under global change. Their combination may be especially problematic when animals suffer food limitation. We exposed Coenagrion puella damselfly larvae to a simulated heat wave combined with food...... limitation and subsequently to a widespread agricultural pesticide (chlorpyrifos) in an indoor laboratory experiment designed to obtain mechanistic insights in the direct effects of these stressors in isolation and when combined. The heat wave reduced immune function (activity of phenoloxidase, PO...... variables. While the immediate effects of the heat wave were subtle, our results indicate the importance of delayed effects in shaping the total fitness impact of a heat wave when followed by pesticide exposure. Firstly, the combination of delayed negative effects of the heat wave and starvation...

  18. Heat treatment on keruing and light red meranti: The effect of heat exposure at different levels of temperature on bending strength properties

    Science.gov (United States)

    Noh, Nur Ilya Farhana Md; Ahmad, Zakiah

    2017-11-01

    Heat treatment on timbers is a process of applying heat to modify and equip the timbers with new improvised characteristics. It is environmental friendly compared to the common practice of treating timber by chemical preservatives. Malaysian hardwood timbers namely Keruing and Light Red Meranti which are in green condition were heat treated at temperature 150°C, 170°C, 190°C and 210°C, in a specially designed electronic furnace within one hour duration. The objectives were to determine the effect of heat treatment on bending strength properties of heat treated timbers in terms of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) and to examine the significance changes at each temperature level. Untreated samples for each species were used as a control sample. The results indicated that the bending strength properties for both species of timbers were affected by the heat exposure. Both MOE and MOR values for heat treated Keruing were increased when subjected to the temperature levels at 150°C, 170°C and 190°C except at 210°C. Heat treated Light Red Meranti shows the same pattern of increment on its MOE and MOR values after exposure to heat at three temperature levels applied and the values dropped at 210°C. However, for both of species, even though there were decrement occurred at 210°C, the value is still higher compared to the control sample. The increments of MOE and MOR values are an indicator that heat treatment had successfully improvised the bending strength properties of these two species of hardwood timber.

  19. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    Science.gov (United States)

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The effect of acute heat exposure on rat pituitary corticotroph activation: the role of vasopressin.

    Directory of Open Access Journals (Sweden)

    Nebojsa Jasnic

    2010-04-01

    Full Text Available The increased ambient temperature affects the function of hypothalamic-pituitary-adrenal (HPA axis. Since thecorrelation among vasopressin (VP, adrenocorticotropic hormone (ACTH and corticosterone (CORT responses to variousstressors have been long recognized, the aim of this study was to reveal the aforementioned hormones production andmorphology of the pituitary gland after exposure to acute heat. Rats were exposed to high ambient temperature (38°C for20 or 60 minutes. The circulating hormones were determined by an ELISA test or chemiluminescence's method. The resultsobtained show the elevation in ACTH and CORT secretion depending on the duration of heat exposure. The VP concentrationincreased only after prolonged exposure to heat (60 min. The pituitary morphology was examined by routine and fluorescentimmunohistochemistry as well as electron microscopy. Observed changes in the anterior and posterior pituitarywell corresponded to circulating hormones, regarding the volume density of ACTH-immunopositive cells, percentage ofACTH immunopositive area v. total area and number of VP-immunopositive containing varicose fibers per total area. Acuteheat exposure also induced changes in shapes of ACTH-immunopositive cells. Cells appeared stellate with numerous slendercytoplasmic processes and degranulated, which is the most obvious after 20 min. In addition, immunopositivity ofendothelial and anterior pituitary cells for VP suggests its influence on ACTH secretion.

  1. Performance Analysis of Thermoelectric Modules Consisting of Square Truncated Pyramid Elements Under Constant Heat Flux

    Science.gov (United States)

    Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.

    2018-06-01

    System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.

  2. Thermal protection from a finite period of heat exposureHeat survival of flight data recorders

    International Nuclear Information System (INIS)

    Rana, Ruhul Amin; Li, Ri

    2015-01-01

    This work relates to developing thermal protection for a finite period of exposure to a high temperature environment. This type of transient heat transfer problem starts with a heating period, which is then followed by a cooling period once the high temperature environment disappears. The study is particularly relevant to the thermal protection of flight data recorders from high temperature flame. In this work, transient heat conduction through a three-concentric-layer configuration is numerically studied, which includes a metal housing, a thermal insulation, and a phase change material. The thermal performance is evaluated using the center temperature changing with time. It is found that the center temperature reaches a peak during cooling period rather than heating period. Time taken to reach the peak and the peak value depend on the sizes and properties of the layers. The properties include latent heat of fusion, melting temperature, heat capacities, and thermal conductivities. Parametric study is conducted to analyze and distinguish the influence of these parameters. The study provides general guidance for determining sizes and selecting materials for the thermal design of flight data recorders. Additionally, the study is also useful for other similar applications, for which thermal management and protection over a period of time is needed. In this paper, analysis starts with a baseline configuration composed of specific materials and sizes. Finite changes are applied to sizes, properties of the materials, and the results are compared to understand the roles of the varied parameters in affecting the thermal protection performance. - Highlights: • We study the thermal design of flight data recorders for heat survival. • Consecutive heating and cooling of 3-layer configuration is investigated. • Influences of sizes and material properties on thermal protection are explored

  3. An experimental study of the effects of combined exposure to microwave and heat on gene expression and sperm parameters in mice

    Directory of Open Access Journals (Sweden)

    Faezeh A Gohari

    2017-01-01

    Full Text Available Objectives: Separate exposure to microwaves (MWs or heat had effects on expression levels of Bax and Bcl-2 and sperm parameters in studied group. Aims: The objectives of this research were to determine the effects of separate and combined exposure to 900-MHz MW (as representative of cell phone radiation and heat on gene expression and spermogram of male mice. Settings and Design: This experimental animal study was conducted in the school of public health. Materials and Methods: The study was done on 12 male mice randomly divided into four groups (21–23 g: control, test group 1 with separate exposure to 900-MHz MW, test group 2 with separate exposure to hot and sultry climate, and test group 3 with simultaneous whole body exposures to 900-MHz MW and hot and sultry climate. In all studied groups, gene expression and sperm parameters were measured. Results: Tissue samples in all test groups showed integrity of the seminiferous tubule followed by all types of germ line cells. Significant increases in the number of dead sperms in mice with separate exposure to heat were observed in comparison with the other studied groups (P < 0.05. The ratio of Bax expression was elevated to 0.015 ± 0.006 in mice after combined exposures to 900-MHz MW and heat. Conclusion: Separate and combined exposure to 900-MHz MW and heat may induce adverse effects on sperm parameters and gene expression of studied male mice.

  4. A proposed framework for consistent regulation of public exposures to radionuclides and other carcinogens

    International Nuclear Information System (INIS)

    Kocher, D.C.; Hoffman, F.O.

    1991-01-01

    This paper discusses a proposed framework for consistent regulation of carcinogenic risks to the public based on establishing de manifestis (i.e., unacceptable) and de minimis (i.e., trivial) lifetime risks from exposure to any carcinogens at levels of about 10 -1 --10 -3 and 10 -4 --10 -6 , respectively, and reduction of risks above de minimis levels as low as reasonably achievable (ALARA). We then discuss certain differences in the way risks from exposure to radionuclides and other carcinogens currently are regulated or assessed which would need to be considered in implementing the proposed regulatory framework for all carcinogens

  5. Landau Damping and Anomalous Skin Effect in Low-pressure Gas Discharges: Self-consistent Treatment of Collisionless Heating

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2004-01-01

    In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This system was applied to the calculation of collisionless heating in capacitively and inductively coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density profile for computing the current density profile and the EEDF is demonstrated. The enhancement of collisionless heating due to the bounce resonance between the electron motion in the potential well and the external radio-frequency electric field is investigated. It is shown that a nonlinear and self-consistent treatment is necessary for the correct description of collisionless heating

  6. Associations between heat exposure, vigilance, and balance performance in summer tree fruit harvesters.

    Science.gov (United States)

    Spector, June T; Krenz, Jennifer; Calkins, Miriam; Ryan, Dawn; Carmona, Jose; Pan, Mengjie; Zemke, Anna; Sampson, Paul D

    2018-02-01

    We sought to evaluate potential mediators of the relationship between heat exposure and traumatic injuries in outdoor agricultural workers. Linear mixed models were used to estimate associations between maximum work-shift Wet Bulb Globe Temperature (WBGT max ) and post-shift vigilance (reaction time) and postural sway (total path length) in a cross-sectional sample of 46 Washington State tree fruit harvesters in August-September 2015. The mean (SD) WBGT max was 27.4 (3.2)°C in August and 21.2 (2.0)°C in September. The mean pre-work-shift participant urine specific gravity indicated minimal dehydration. Twenty-four percent of participants exhibited possible excessive sleepiness. There was no association between WBGT max and post-shift reaction time or total path length. Heat exposure was not associated with impaired vigilance or balance in this study, in which the overall mean (SD) WBGT max was 25.9 (4.2)°C. However, the study identified opportunities to ensure adequate pre-work-shift hydration and to optimize sleep and work-shift timing in order to reduce occupational injury and heat-related illness risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Is ambient heat exposure levels associated with miscarriage or stillbirths in hot regions? A cross-sectional study using survey data from the Ghana Maternal Health Survey 2007

    Science.gov (United States)

    Asamoah, Benedict; Kjellstrom, Tord; Östergren, Per-Olof

    2018-03-01

    It is well established that high ambient heat could cause congenital abnormalities resulting in miscarriage or stillbirth among certain species of mammals. However, this has not been systematically studied in real field settings among humans, despite the potential value of such knowledge for estimating the impact of global warming on the human species. This study sought to test the hypothesis that maternal heat exposure during pregnancy in hot regions is associated with increased prevalence of spontaneous abortions or stillbirths and to develop an analytical strategy to use existing data from maternal health surveys and existing data on historical heat levels at a geographic grid cell level. A subsample of the Ghana Maternal Health Survey 2007 was used in this study. This study sample consisted of 1136 women with pregnancy experiences between 2004 and 2007, out of which 141 women had a pregnancy that terminated in miscarriage or stillbirth. Induced-abortion cases were excluded. The linkage between ambient heat exposure and pregnancy outcome followed the epidemiological time-place-person principle, by linking timing of pregnancy outcome with historical data of local area heat levels for each month, as estimated in an international database. Maternal heat exposure level was estimated using calculated levels of the wet-bulb globe temperature (WBGT), which takes into account temperature, humidity, heat radiation, and air movement over the skin (wind speed). The values we used applied to exposure in the shade or in buildings without cooling (no solar heat radiation) and a standard air movement of 1 m/s. We applied two exposure durations: yearly average and monthly average for second month of pregnancy. In one analysis, we restricted the sample to four regions with time-homogeneous ambient heat. Analysis was made using logistic regression. About 12% of the latest pregnancies ended in either miscarriage (9.6%) or stillbirth (2.8%). The odds ratios indicated 12 to 15

  8. Dryout heat flux and flooding phenomena in debris beds consisting of homogeneous diameter particles

    International Nuclear Information System (INIS)

    Maruyama, Yu; Abe, Yutaka; Yamano, Norihiro; Soda, Kunihisa

    1988-08-01

    Since the TMI-2 accident, which occurred in 1979, necessity of understanding phenomena associated with a severe accident have been recognized and researches have been conducted in many countries. During a severe accident of a light water reactor, a debris bed consisting of the degraded core materials would be formed. Because the debris bed continues to release decay heat, the debris bed would remelt when the coolable geometry is not maintained. Thus the degraded core coolability experiments to investigate the influence of the debris particle diameter and coolant flow conditions on the coolability of the debris bed and the flooding experiments to investigate the dependence of flooding phenomena on the configuration of the debris bed have been conducted in JAERI. From the degraded core coolability experiments, the following conclusions were derived; the coolability of debris beds would be improved by coolant supply into the beds, Lipinski's 1-dimensional model shows good agreement with the measured dryout heat flux for the beds under stagnant and forced flow conditions from the bottom of the beds, and the analytical model used for the case that coolant is fed by natural circulation through the downcomer reproduces the experimental results. And the following conclusions were given from the flooding experiments ; no dependence between bed height and the flooding constant exists for the beds lower than the critical bed height, flooding phenomena of the stratified beds would be dominated by the layer consisting of smaller particles, and the predicted dryout heat flux by the analytical model based on the flooding theory gives underestimation under stagnant condition. (author)

  9. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    Science.gov (United States)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

  10. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.

    Science.gov (United States)

    Silverstein, Rachel N; Cunning, Ross; Baker, Andrew C

    2015-01-01

    Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (stress-induced symbiosis breakdown), but stress-tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress-sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress-tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3-dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post-bleaching resulted from

  11. ESCA and electron diffraction studies of InP surface heated under As molecular beam exposure

    International Nuclear Information System (INIS)

    Sugiura, Hideo; Yamaguchi, Masafumi; Shibukawa, Atsushi

    1983-01-01

    Chemical composition of InP substrate surface heattreated under As molecular beam exposure in an ultrahigh vacuum chamber was studied with ESCA, and surface reconstruction of the substrate was examined by in-situ electron diffraction. The InP substrate heated under the exposure of As molecular beam has mirror surface up to 590 0 C while the surface of InP heated above 400 0 C in vacuum is roughened. The ESCA study shows that thin InAs layer (thickness 0 C under the exposure of As. The electron diffraction study indicates that the InP is cleaned at about 500 0 C in As pressures of 10 -7 - 10 -5 Torr. The InP surface is prevented from thermally decomposing by the coverage of the InAs layer, which may be formed through the following process: 2InPO 4 + As 4 → 2InAs + P 2 O 5 + As 2 O 3 . (author)

  12. Occupational exposure in small and medium scale industry with specific reference to heat and noise

    Directory of Open Access Journals (Sweden)

    Lakhwinder Pal Singh

    2010-01-01

    Full Text Available This study was undertaken to assess heat and noise exposure and occupational safety practices in small and medium scale casting and forging units (SMEs of Northern India. We conducted personal interviews of 350 male workers of these units through a comprehensive questionnaire and collected information on heat and noise exposure, use of protective equipment, sweat loss and water intake, working hour. The ambient wet bulb globe temperature (WBGT index was measured using quest temp 34/36o area heat stress monitor. A-weighted Leq ambient noise was measured using a quest sound level meter "ANSI SI. 43-1997 (R 2002 type-1 model SOUNDPRO SE/DL". We also incorporated OSHA norms for hearing conservation which include - an exchange rate of 5dB(A, criterion level at 90dB(A, criterion time of eight hours, threshold level is equal to 80dB(A, upper limit is equal to 140dB(A and with F/S response rate. Results of the study revealed that occupational heat exposure in melting, casting, forging and punching sections is high compared to ACGIH/NIOSH norms. Ambience noise in various sections like casting / molding, drop forging, cutting presses, punching, grinding and barreling process was found to be more than 90dB(A. About 95% of the workers suffered speech interference where as high noise annoyance was reported by only 20%. Overall, 68% workers were not using any personal protective equipment (PPE. The study concluded that the proportion of SME workers exposed to high level heat stress and noise (60 - 72 hrs/week is high. The workers engaged in forging and grinding sections are more prone to noise induced hearing loss (NIHL at higher frequencies as compared to workers of other sections. It is recommended that there is a strong need to implement the standard of working hours as well as heat stress and noise control measures.

  13. Perceived heat stress and health effects on construction workers.

    Science.gov (United States)

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  14. Estimating population heat exposure and impacts on working people in conjunction with climate change

    Science.gov (United States)

    Kjellstrom, Tord; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Briggs, David

    2018-03-01

    Increased environmental heat levels as a result of climate change present a major challenge to the health, wellbeing and sustainability of human communities in already hot parts of this planet. This challenge has many facets from direct clinical health effects of daily heat exposure to indirect effects related to poor air quality, poor access to safe drinking water, poor access to nutritious and safe food and inadequate protection from disease vectors and environmental toxic chemicals. The increasing environmental heat is a threat to environmental sustainability. In addition, social conditions can be undermined by the negative effects of increased heat on daily work and life activities and on local cultural practices. The methodology we describe can be used to produce quantitative estimates of the impacts of climate change on work activities in countries and local communities. We show in maps the increasing heat exposures in the shade expressed as the occupational heat stress index Wet Bulb Globe Temperature. Some tropical and sub-tropical areas already experience serious heat stress, and the continuing heating will substantially reduce work capacity and labour productivity in widening parts of the world. Southern parts of Europe and the USA will also be affected. Even the lowest target for climate change (average global temperature change = 1.5 °C at representative concentration pathway (RCP2.6) will increase the loss of daylight work hour output due to heat in many tropical areas from less than 2% now up to more than 6% at the end of the century. A global temperature change of 2.7 °C (at RCP6.0) will double this annual heat impact on work in such areas. Calculations of this type of heat impact at country level show that in the USA, the loss of work capacity in moderate level work in the shade will increase from 0.17% now to more than 1.3% at the end of the century based on the 2.7 °C temperature change. The impact is naturally mainly occurring in the southern

  15. Exposure to extreme heat and precipitation events associated with increased risk of hospitalization for asthma in Maryland, U.S.A.

    Science.gov (United States)

    Soneja, Sutyajeet; Jiang, Chengsheng; Fisher, Jared; Upperman, Crystal Romeo; Mitchell, Clifford; Sapkota, Amir

    2016-04-27

    Several studies have investigated the association between asthma exacerbations and exposures to ambient temperature and precipitation. However, limited data exists regarding how extreme events, projected to grow in frequency, intensity, and duration in the future in response to our changing climate, will impact the risk of hospitalization for asthma. The objective of our study was to quantify the association between frequency of extreme heat and precipitation events and increased risk of hospitalization for asthma in Maryland between 2000 and 2012. We used a time-stratified case-crossover design to examine the association between exposure to extreme heat and precipitation events and risk of hospitalization for asthma (ICD-9 code 493, n = 115,923). Occurrence of extreme heat events in Maryland increased the risk of same day hospitalization for asthma (lag 0) by 3 % (Odds Ratio (OR): 1.03, 95 % Confidence Interval (CI): 1.00, 1.07), with a considerably higher risk observed for extreme heat events that occur during summer months (OR: 1.23, 95 % CI: 1.15, 1.33). Likewise, summertime extreme precipitation events increased the risk of hospitalization for asthma by 11 % in Maryland (OR: 1.11, 95 % CI: 1.06, 1.17). Across age groups, increase in risk for asthma hospitalization from exposure to extreme heat event during the summer months was most pronounced among youth and adults, while those related to extreme precipitation event was highest among ≤4 year olds. Exposure to extreme heat and extreme precipitation events, particularly during summertime, is associated with increased risk of hospitalization for asthma in Maryland. Our results suggest that projected increases in frequency of extreme heat and precipitation event will have significant impact on public health.

  16. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    Science.gov (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  17. No effects of acclimation to heat on immune and hormonal responses to passive heating in healthy volunteers

    Science.gov (United States)

    Kanikowska, Dominika; Sato, Maki; Sugenoya, Junichi; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko

    2012-01-01

    Heat acclimation results in whole body-adaptations that increase heat tolerance, and might also result in changed immune responses. We hypothesized that, after heat acclimation, tumor necrosis factor alpha, interleukin 6 and the lymphocyte count would be altered. Heat acclimation was induced in 6 healthy men by 100 min of heat exposure for 9 days. Heat exposure consisted of (1) 10 min of immersion up to chest-level in water at 42°C and (2) 90 min of passive heating by a warm blanket to maintain tympanic temperature at 37.5°C. The climatic chamber was maintained at 40°C and a relative humidity of 50%. Blood samples were analyzed before and after heat acclimation for natural killer (NK) cell activity, counts of lymphocytes B and T, before and after heat acclimation for peripheral blood morphology, interleukin 6, tumor necrosis factor alpha, and cortisol. A Japanese version of the profile of mood states questionnaire was also administered before and after acclimation. The concentrations of white blood cells, lymphocytes B and T, cortisol, interleukin 6, tumor necrosis factor alpha and NK cell activity showed no significant differences between pre- and post-acclimation, but there was a significantly lower platelet count after acclimation and, with the profile of mood states questionnaire, there was a significant rise in anger after acclimation. It is concluded that heat acclimation by passive heating does not induce alterations in immune or endocrine responses.

  18. Consistency in thermophysical properties: enthalpy, heat capacity, thermal conductivity and thermal diffusivity of solid UO2

    International Nuclear Information System (INIS)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    Equations have been derived for the enthalpy, heat capacity, thermal conductivity, and thermal diffusivity of UO 2 . In selection of these equations, we considered the traditional criterion of lowest relative standard deviation between experimental data and the function chosen to fit these data as well as consistency between the thermophysical properties. In the latter case, we considered consistency in (1) thermodynamic relations among properties, (2) the choice of physical phenomena on which to base the theoretical formulation of the equations, and (3) the existence and temperature of phase transitions

  19. The impact of heat waves on children's health: a systematic review

    Science.gov (United States)

    Xu, Zhiwei; Sheffield, Perry E.; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu

    2014-03-01

    Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

  20. Correlation to predict heat transfer of an oscillating loop heat pipe consisting of three interconnected columns

    International Nuclear Information System (INIS)

    Arslan, Goekhan; Ozdemir, Mustafa

    2008-01-01

    In this paper, heat transfer in an oscillating loop heat pipe is investigated experimentally. The oscillation of the liquid columns at the evaporator and condenser sections of the heat pipe are driven by gravitational force and the phase lag between evaporation and condensation because the dimensions of the heat pipe are large enough to neglect the effect of capillary forces. The overall heat transfer coefficient based on the temperature difference between the evaporator and condenser surfaces is introduced by a correlation function of dimensionless numbers such as kinetic Reynolds number, c p ΔT/h fg and the geometric parameters

  1. Consistent phase-change modeling for CO2-based heat mining operation

    DEFF Research Database (Denmark)

    Singh, Ashok Kumar; Veje, Christian

    2017-01-01

    The accuracy of mathematical modeling of phase-change phenomena is limited if a simple, less accurate equation of state completes the governing partial differential equation. However, fluid properties (such as density, dynamic viscosity and compressibility) and saturation state are calculated using...... a highly accurate, complex equation of state. This leads to unstable and inaccurate simulation as the equation of state and governing partial differential equations are mutually inconsistent. In this study, the volume-translated Peng–Robinson equation of state was used with emphasis to model the liquid......–gas phase transition with more accuracy and consistency. Calculation of fluid properties and saturation state were based on the volume translated Peng–Robinson equation of state and results verified. The present model has been applied to a scenario to simulate a CO2-based heat mining process. In this paper...

  2. [Expression of heat shock protein 70 and its mRNA in career exposure to manganese].

    Science.gov (United States)

    Chen, Wenwen; Shao, Hua; Chi, Mingfeng; Zhang, Zhihu; Shan, Yongle; Zou, Wei

    2015-10-01

    To analyze the expression levels of heat shock protein70 (HSPs70) and HSPs70 mRNA in different exposure to manganese, and research the neuroprotective effect on the career exposure to manganese. From 2008 to 2009, with cross-sectional study design, and in a locomotive and rolling stock works, by stratified random sampling method, the exposed sample consisted of 180 welders from different welding shops and 100 unexposed in the last three years, non-welder controls with age-matched workers of similar socioeconomic status from the same industry. The control workers had not been exposed to neurotoxic chemicals. The mRNA expressions of four different metabolic enzyme were detected by SYBR Green I quantitative real-time polymerase chain reaction. The expression levels of the two enzymes mRNA in different exposure to manganese were analyzed. The expressions of HSPs70 were detected by Western blot. The concentration of air manganese was determined by GFAAS. The average concentration of 8 h time (8h-TWA) was used to express the level of individual exposure to manganese, according to the air manganese workplace occupational exposure limit (8h-TWA=0.15 mg/m3), the exposed group is divided into high exposed group (>0.15 mg/m3) and low exposure group (<0.15 mg/m3). The individuals exposed to manganese dose of exposed group ((0.25±0.31) mg/m3) was higher than the control group ((0.06±0.02) mg/m3) (t=6.15, P=0.001); individuals exposed to manganese dose of high exposure group for (0.42±0.34) mg/m3, which was higher than low exposure group (0.09±0.07) mg/m3 (t=9.80, P=0.001). HSPs70 mRNA and protein of exposure group (5.65±0.21, 3.26±0.15) were higher than the reference group (0.41±0.03, 1.32±0.12) (t=18.91, t=8.68, P=0.001). HSP70 mRNA and protein of high exposure group (6.48±0.37, 3.67±0.26) were higher than the low exposure group (5.15±0.23, 3.02±0.19) (t=3.24, t=2.01, P=0.003, P=0.043). The expression of peripheral blood lymphocytes HSPs70 level and HSPs70 m

  3. Double Exposure and the Climate Gap: Changing demographics and extreme heat in Ciudad Juárez, Mexico

    Science.gov (United States)

    Collins, Timothy W.; McDonald, Yolanda J.; Aldouri, Raed; Aboargob, Faraj; Eldeb, Abdelatif; Aguilar, María de Lourdes Romo; Velázquez-Angulo, Juárez Gilberto

    2013-01-01

    Scholars have recognized a climate gap, wherein poor communities face disproportionate impacts of climate change. Others have noted that climate change and economic globalization may mutually affect a region or social group, leading to double exposure. This paper investigates how current and changing patterns of neighborhood demographics are associated with extreme heat in the border city of Juárez, Mexico. Many Juárez neighborhoods are at-risk to triple exposures, in which residents suffer due to the conjoined effects of the global recession, drug war violence, and extreme heat. Due to impacts of the recession on maquiladora employment and the explosion of drug violence (since 2008), over 75% of neighborhoods experienced decreasing population density between 2000 and 2010 and the average neighborhood saw a 40% increase in the proportion of older adults. Neighborhoods with greater drops in population density and increases in the proportion of older residents over the decade are at significantly higher risk to extreme heat, as are neighborhoods with lower population density and lower levels of education. In this context, triple exposures are associated with a climate gap that most endangers lower socioeconomic status and increasingly older aged populations remaining in neighborhoods from which high proportions of residents have departed. PMID:25642135

  4. The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate

    Science.gov (United States)

    Gubernot, Diane M.; Anderson, G. Brooke; Hunting, Katherine L.

    2014-10-01

    In recent years, the United States has experienced record-breaking summer heat. Climate change models forecast increasing US temperatures and more frequent heat wave events in the coming years. Exposure to environmental heat is a significant, but overlooked, workplace hazard that has not been well-characterized or studied. The working population is diverse; job function, age, fitness level, and risk factors to heat-related illnesses vary. Yet few studies have examined or characterized the incidence of occupational heat-related morbidity and mortality. There are no federal regulatory standards to protect workers from environmental heat exposure. With climate change as a driver for adaptation and prevention of heat disorders, crafting policy to characterize and prevent occupational heat stress for both indoor and outdoor workers is increasingly sensible, practical, and imperative.

  5. Frequency of Extreme Heat Event as a Surrogate Exposure Metric for Examining the Human Health Effects of Climate Change.

    Directory of Open Access Journals (Sweden)

    Crystal Romeo Upperman

    Full Text Available Epidemiological investigation of the impact of climate change on human health, particularly chronic diseases, is hindered by the lack of exposure metrics that can be used as a marker of climate change that are compatible with health data. Here, we present a surrogate exposure metric created using a 30-year baseline (1960-1989 that allows users to quantify long-term changes in exposure to frequency of extreme heat events with near unabridged spatial coverage in a scale that is compatible with national/state health outcome data. We evaluate the exposure metric by decade, seasonality, area of the country, and its ability to capture long-term changes in weather (climate, including natural climate modes. Our findings show that this generic exposure metric is potentially useful to monitor trends in the frequency of extreme heat events across varying regions because it captures long-term changes; is sensitive to the natural climate modes (ENSO events; responds well to spatial variability, and; is amenable to spatial/temporal aggregation, making it useful for epidemiological studies.

  6. CONSISTENT INFLAMMATORY RESPONSE FOLLOWING EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS) DURING FALL SEASON IN WISTAR-KYOTO RATS

    Science.gov (United States)

    CONSISTENT INFLAMMATORY RESPONSE FOLLOWING EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPs) DURING FALL SEASON IN WISTAR-KYOTO RATS.UP Kodavanti, MC Schladweiler, AD Ledbetter, LC Walsh, PS Gilmour, MI Gilmour, WP Watkinson, JP Nolan, JH Richards, D Andrews, DL Costa. US EPA...

  7. Emergency department visits of young children and long-term exposure to neighbourhood smoke from household heating - The Growing Up in New Zealand child cohort study.

    Science.gov (United States)

    Lai, Hak Kan; Berry, Sarah D; Verbiest, Marjolein E A; Tricker, Peter J; Atatoa Carr, Polly E; Morton, Susan M B; Grant, Cameron C

    2017-12-01

    In developed countries, exposure to wood or coal smoke occurs predominantly from neighbourhood emissions arising from household heating. The effect of this exposure on child health is not well characterized. Within a birth cohort study in New Zealand we assessed healthcare events associated with exposure to neighbourhood smoke from household heating. Our outcome measure was non-accidental presentations to hospital emergency departments (ED) before age three years. We matched small area-level census information with the geocoded home locations to measure the density of household heating with wood or coal in the neighbourhood and applied a time-weighted average exposure method to account for residential mobility. We then used hierarchical multiple logistic regression to assess the independence of associations of this exposure with ED presentations adjusted for gender, ethnicity, birth weight, breastfeeding, immunizations, number of co-habiting smokers, wood or coal heating at home, bedroom mold, household- and area-level deprivation and rurality. The adjusted odds ratio of having a non-accidental ED visit was 1.07 [95%CI: 1.03-1.12] per wood or coal heating household per hectare. We found a linear dose-response relationship (p-value for trend = 0.024) between the quartiles of exposure (1st as reference) and the same outcome (odds ratio in 2nd to 4th quartiles: 1.14 [0.95-1.37], 1.28 [1.06-1.54], 1.32 [1.09-1.60]). Exposure to neighbourhoods with higher density of wood or coal smoke-producing households is associated with an increased odds of ED visits during early childhood. Policies that reduce smoke pollution from domestic heating by as little as one household per hectare using solid fuel burners could improve child health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of Heat Exposure on the Fatigue Properties of AA7050 Friction Stir Welds

    Science.gov (United States)

    White, B. C.; Rodriguez, R. I.; Cisko, A.; Jordon, J. B.; Allison, P. G.; Rushing, T.; Garcia, L.

    2018-05-01

    This work examines the effect of heat exposure on the subsequent monotonic and fatigue properties of friction stir-welded AA7050. Mechanical characterization tests were conducted on friction stir-welded specimens as-welded (AW) and specimens heated to 315 °C in air for 20 min. Monotonic testing revealed high joint efficiencies of 98% (UTS) in the AW specimens and 60% in the heat-damaged (HD) specimens. Experimental results of strain-controlled fatigue testing revealed shorter fatigue lives for the HD coupons by nearly a factor of four, except for the highest strain amplitude tested. Postmortem fractography analysis found similar crack initiation or propagation behavior between the AW and HD specimens; however, the failure locations for the AW were predominantly in the heat-affected zone, while the HD specimens also failed in the stir zone. Microhardness measurements revealed a relatively uniform strength profile in the HD group, accounting for the variety of failure locations observed. The differences in both monotonic and cyclic properties observed between the AW and HD specimens support the conclusion that the heat damage (315 °C at 20 min) acts as an over-aging and a quasi-annealing treatment.

  9. Mild evaporative cooling applied to the torso provides thermoregulatory benefits during running in the heat.

    Science.gov (United States)

    Filingeri, D; Fournet, D; Hodder, S; Havenith, G

    2015-06-01

    We investigated the effects of mild evaporative cooling applied to the torso, before or during running in the heat. Nine male participants performed three trials: control-no cooling (CTR), pre-exercise cooling (PRE-COOL), and during-exercise cooling (COOL). Trials consisted of 10-min neutral exposure and 50-min heat exposure (30 °C; 44% humidity), during which a 30-min running protocol (70% VO2max ) was performed. An evaporative cooling t-shirt was worn before the heat exposure (PRE-COOL) or 15 min after the exercise was started (COOL). PRE-COOL significantly lowered local skin temperature (Tsk ) (up to -5.3 ± 0.3 °C) (P benefits during exercise in the heat. However, the timing of application was critical in inducing different thermoregulatory responses. These findings provide novel insights on the thermoregulatory role of Tsk during exercise in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Self-consistent Study of Fast Particle Redistribution by Alfven Eigenmodes During Ion Cyclotron Resonance Heating

    International Nuclear Information System (INIS)

    Bergkvist, T.; Hellsten, T.; Johnson, T.

    2006-01-01

    Alfven eigenmodes (AEs) excited by fusion born α particles can degrade the heating efficiency of a burning plasma and throw out αs. To experimentally study the effects of excitation of AEs and the redistribution of the fast ions, ion cyclotron resonance heating (ICRH) is often used. The distribution function of thermonuclear αs in a reactor is expected to be isotropic and constantly renewed through DT reactions. The distribution function of cyclotron heated ions is strongly anisotropic, and the ICRH do not only renew the distribution function but also provide a strong decorrelation mechanism between the fast ions and the AE. Because of the sensitivity of the AE dynamics on the details of the distribution function, the location of the resonance surfaces in phase space and the extent of the overlapping resonant regions for different AEs, a self-consistent treatment of the AE excitation and the ICRH is necessary. Interactions of fast ions with AEs during ICRH has been implemented in the SELFO code. Simulations are in good agreement with the experimentally observer pitch-fork splitting and rapid damping of the AE as ICRH is turned off. The redistribution of fast ions have been studied in the presence of several driven AEs. (author)

  11. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  12. Convective heat exposure from large fires to the final filters of ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1979-01-01

    The Fire Science Group of the Hazards Control Department, Lawrence Livermore Laboratory has been asked to design a probable fire scenario for a fuel-pellet fabrication facility. This model was used to estimate the potential for thermal damage to the final HEPA filters. These filters would not experience direct fire exposure because they are the last component of the ventilation system before the exhaust air pumps. However, they would be exposed to hot air and fire gases that are drawn into the ventilation system. Because fire is one of the few occurrences that can defeat the containment integrity of facilities where radioactive materials are stored and processed, the fire scenarios must be defined to ensure that containment systems are adequate to meet the threat of such events. Fire-growth calculations are based on the measured fuel load of materials within the fabrication enclosure and on semi-empirical fire-spread models. It is assumed that the fire never becomes ventilation controlled. The temperature rise of ceiling gases and heat transfer from ventilation ducting are calculated using accepted empirical relationships, and the analysis shows that even under the most severe exposure conditions, heat transfer from the duct reduces the fire gas temperatures to levels that would not hamper filter function

  13. Thermodynamic properties of xanthone: Heat capacities, phase-transition properties, and thermodynamic-consistency analyses using computational results

    International Nuclear Information System (INIS)

    Chirico, Robert D.; Kazakov, Andrei F.

    2015-01-01

    Highlights: • Heat capacities were measured for the temperature range (5 to 520) K. • The enthalpy of combustion was measured and the enthalpy of formation was derived. • Thermodynamic-consistency analysis resolved inconsistencies in literature enthalpies of sublimation. • An inconsistency in literature enthalpies of combustion was resolved. • Application of computational chemistry in consistency analysis was demonstrated successfully. - Abstract: Heat capacities and phase-transition properties for xanthone (IUPAC name 9H-xanthen-9-one and Chemical Abstracts registry number [90-47-1]) are reported for the temperature range 5 < T/K < 524. Statistical calculations were performed and thermodynamic properties for the ideal gas were derived based on molecular geometry optimization and vibrational frequencies calculated at the B3LYP/6-31+G(d,p) level of theory. These results are combined with sublimation pressures from the literature to allow critical evaluation of inconsistent enthalpies of sublimation for xanthone, also reported in the literature. Literature values for the enthalpy of combustion of xanthone are re-assessed, a revision is recommended for one result, and a new value for the enthalpy of formation of the ideal gas is derived. Comparisons with thermophysical properties reported in the literature are made for all other reported and derived properties, where possible

  14. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  15. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2003-07-01

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  16. Effects of occupational heat exposure on female brick workers in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Moumita Sett

    2014-02-01

    : We conclude that high heat exposure in brickfields during summer caused physiological strain in both categories of female brickfield workers. A coping strategy employed by the brick carriers was to reduce their walking speed and thus lose part of their earnings. The lost productivity for every degree rise in temperature is about 2% in the brickfields. This reduction will be exacerbated by climate change and may undermine the quality of life of female brickfield workers.

  17. Online self-report questionnaire on computer work-related exposure (OSCWE): validity and internal consistency.

    Science.gov (United States)

    Mekhora, Keerin; Jalayondeja, Wattana; Jalayondeja, Chutima; Bhuanantanondh, Petcharatana; Dusadiisariyavong, Asadang; Upiriyasakul, Rujiret; Anuraktam, Khajornyod

    2014-07-01

    To develop an online, self-report questionnaire on computer work-related exposure (OSCWE) and to determine the internal consistency, face and content validity of the questionnaire. The online, self-report questionnaire was developed to determine the risk factors related to musculoskeletal disorders in computer users. It comprised five domains: personal, work-related, work environment, physical health and psychosocial factors. The questionnaire's content was validated by an occupational medical doctor and three physical therapy lecturers involved in ergonomic teaching. Twenty-five lay people examined the feasibility of computer-administered and the user-friendly language. The item correlation in each domain was analyzed by the internal consistency (Cronbach's alpha; alpha). The content of the questionnaire was considered congruent with the testing purposes. Eight hundred and thirty-five computer users at the PTT Exploration and Production Public Company Limited registered to the online self-report questionnaire. The internal consistency of the five domains was: personal (alpha = 0.58), work-related (alpha = 0.348), work environment (alpha = 0.72), physical health (alpha = 0.68) and psychosocial factor (alpha = 0.93). The findings suggested that the OSCWE had acceptable internal consistency for work environment and psychosocial factors. The OSCWE is available to use in population-based survey research among computer office workers.

  18. Electronic contributions to the transport properties and specific heat of solid UO2: an empirical, self-consistent analysis

    International Nuclear Information System (INIS)

    Hyland, G.J.; Ralph, J.

    1982-07-01

    From an empirical, self-consistent analysis of new high temperature data on the thermo-electric Seebeck coefficient and d.c. electrical conductivity, the value of the free energy controlling the equilibrium of the thermally induced reaction, 2U 4+ reversible U 3+ + U 5+ is determined (treating the U 3+ and U 5+ as small polarons) and used to calculate the contribution of the process to the high temperature thermal conductivity and specific heat of UO 2 . It is found that the transport properties can be completely accounted for in this way, but not the anomalous rise in specific heat - the origin of which remains obscure. (U.K.)

  19. Heat exposure and productivity in orchards: Implications for climate change research.

    Science.gov (United States)

    Quiller, Grant; Krenz, Jennifer; Ebi, Kristie; Hess, Jeremy J; Fenske, Richard A; Sampson, Paul D; Pan, Mengjie; Spector, June T

    2017-11-02

    Recent studies suggest that heat exposure degrades work productivity, but such studies have not considered individual- and workplace-level factors. Forty-six tree-fruit harvesters (98% Latino/a) from 6 orchards participated in a cross-sectional study in central/eastern Washington in 2015. The association between maximum measured work-shift wet-bulb globe temperature (WBGT max ) and productivity (total weight of fruit bins collected per time worked) was estimated using linear mixed-effects models, adjusting for relevant confounders. The mean (standard deviation) WBGT max was 27.9°C (3.6°C) in August and 21.2°C (2.0°C) in September. There was a trend of decreasing productivity with increasing WBGT max , but this association was not statistically significant. When individual- and workplace-level factors were included in the model, the association approached the null. Not considering individual, work, and economic factors that affect rest and recovery in projections of the effects of climate change could result in overestimates of reductions in future productivity and underestimate risk of heat illness.

  20. Heat Related Illnesses

    National Research Council Canada - National Science Library

    Carter, R; Cheuvront, S. N; Sawka, M. N

    2006-01-01

    .... The risk of serious heat illness can be markedly reduced by implementing a variety of countermeasures, including becoming acclimated to the heat, managing heat stress exposure, and maintaining hydration...

  1. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure

    International Nuclear Information System (INIS)

    Su, Yun; He, Jiazhen; Li, Jun

    2016-01-01

    Highlights: • A numerical model from heating source to skin tissues through multilayer fabric system is developed. • The numerical model is comprehensively validated with experimental data. • The model is used to investigate the relationship between the transmitted and stored energy and the influencing factors. - Abstract: A finite difference model was introduced to simulate the transmitted and stored energy in firefighters' protective clothing exposed to low-level thermal radiation. The model domain consists of a three-layer fire-resistant fabric system (outer shell, moisture barrier, and thermal liner), the human skin, and the air gap between clothing and the skin. The model accounted for the relationship between the transmitted heat during the exposure and the discharged heat during the cooling-down period. The numerical model predictions were compared with experimental data. Additionally, the parameters that affect the transmitted and stored energy of protective clothing were investigated. The results demonstrate that for the typical multilayer firefighter protective clothing, the transmitted heat during exposure and the discharged heat after exposure totally determine the skin burn under low-level heat exposure, especially for third-degree skin burns. The findings obtained in this study can be used to engineer fabric systems that provide better protection for the stored thermal burn.

  2. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects

    International Nuclear Information System (INIS)

    Raj, Phani K.

    2008-01-01

    A series of field tests exposing mannequins clothed with civilian clothing to a 3 m x 3 m square liquefied natural gas (LNG) pool fire was conducted. Both single layer clothing and double layer clothing were used. The radiant heat flux incident outside the clothing and incident on the skin covered by clothing were measured using wide-angle radiometers, for durations of 100-200 s (per test). The levels of heat flux incident on the clothing were close to 5 kW/m 2 . The magnitude of the radiant heat attenuation factor (AF) across the thickness was determined. AF varies between 2 and higher for cotton and polyester clothing (thickness 0.286-1.347 mm); AF value of 6 was measured for 1.347 mm thickness. Single sheet newspaper held about 5 cm in front of mannequins and exposed to incident flux of 5 kW/m 2 resulted in AF of 5, and AF of 8 with double sheets. AF decreases linearly with increasing heat flux values and linearly increases with thickness. The author exposed himself, in normal civilian clothing (of full sleeve cotton/polyester shirt and jean pants), to radiant heat from a LNG fire. The exposure was for several tens of seconds to heat flux levels ranging from 3.5 kW/m 2 to 5 + kW/m 2 (exposure times from 25 s to 97 s at average heat flux values in the 4 kW/m 2 and 5 kW/m 2 range). Occasionally, he was exposed to (as high as) 7 kW/m 2 for durations of several seconds. He did not suffer any unbearable or even severe pain nor did he experience blisters or burns or any other injury on the unprotected skin of his body. The incident heat fluxes on the author were measured by a hand-held radiometer (with digital display) as well as by strapped on wide-angle radiometers connected to a computer. He could withstand the US regulatory criterion of 5 kW/m 2 (for 30 s) without suffering any damage or burns. Temperature measured on author's skin covered by clothing did not rise above the normal body temperature even after 200 s of exposure to 4 kW/m 2 average heat flux

  3. Integrating multiple stressors across life stages and latitudes: Combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly.

    Science.gov (United States)

    Sniegula, Szymon; Janssens, Lizanne; Stoks, Robby

    2017-05-01

    To understand the effects of pollutants in a changing world we need multistressor studies that combine pollutants with other stressors associated with global change such as heat waves. We tested for the delayed and combined impact of a heat wave during the egg stage and subsequent sublethal exposure to the pesticide esfenvalerate during the larval stage on life history and physiology in the larval and adult stage of the damselfly Lestes sponsa. We studied this in a common garden experiment with replicated central- and high latitude populations to explore potential effects of local thermal adaptation and differences in life history shaping the multistressor responses. Exposure of eggs to the heat wave had no effect on larval traits, yet had delayed costs (lower fat and flight muscle mass) in the adult stage thereby crossing two life history transitions. These delayed costs were only present in central-latitude populations potentially indicating their lower heat tolerance. Exposure of larvae to the pesticide reduced larval growth rate and prolonged development time, and across metamorphosis reduced the adult fat content and the flight muscle mass, yet did not affect the adult heat tolerance. The pesticide-induced delayed emergence was only present in the slower growing central-latitude larvae, possibly reflecting stronger selection to keep development fast in the more time-constrained high-latitude populations. We observed no synergistic interactions between the egg heat wave and the larval pesticide exposure. Instead the pesticide-induced reduction in fat content was only present in animals that were not exposed to the egg heat wave. Our results based on laboratory conditions highlight that multistressor studies should integrate across life stages to fully capture cumulative effects of pollutants with other stressors related to global change. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The consistent differential expression of genetic pathways following exposure of an industrial Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation

    Science.gov (United States)

    Amézquita, Alejandro; Le Marc, Yvan; Bull, Matthew J; Connor, Thomas R; Mahenthiralingam, Eshwar

    2018-01-01

    Abstract Pseudomonas aeruginosa is a common contaminant associated with product recalls in the home and personal care industry. Preservation systems are used to prevent spoilage and protect consumers, but greater knowledge is needed of preservative resistance mechanisms used by P. aeruginosa contaminants. We aimed to identify genetic pathways associated with preservative exposure by using an industrial P. aeruginosa strain and implementing RNA-Seq to understand gene expression changes in response to industry relevant conditions. The consistent differential expression of five genetic pathways during exposure to multiple industrial growth conditions associated with benzisothiazolone (BIT) and phenoxyethanol (POE) preservatives, and a laundry detergent (LD) formulation, was observed. A MexPQ-OpmE Resistance Nodulation Division efflux pump system was commonly upregulated in response to POE, a combination of BIT and POE, and LD together with BIT. In response to all industry conditions, a putative sialic acid transporter and isoprenoid biosynthesis gnyRDBHAL operon demonstrated consistent upregulation. Two operons phnBA and pqsEDCBA involved in Pseudomonas quinolone signaling production and quorum-sensing were also consistently downregulated during exposure to all the industry conditions. The ability to identify consistently differentially expressed genetic pathways in P. aeruginosa can inform the development of future targeted preservation systems that maintain product safety and minimise resistance development. PMID:29548026

  5. Effects of occupational heat exposure on female brick workers in West Bengal, India

    Science.gov (United States)

    Sett, Moumita; Sahu, Subhashis

    2014-01-01

    Background Manual brick-manufacturing units in India engage a large number of female workers on a daily-wage basis for a period of 8 months per year. There are two groups of female workers in the brickfields: the brick molders and the brick carriers. These brickfields are mostly unorganized, and the workers are exposed to extreme conditions such as very high seasonal heat. The present trend of increasing temperatures, as a result of global warming and climate change, will put an additional burden on them. Objective This study aims to evaluate the effect of workplace heat exposure on the well-being, physiological load, and productivity of female brickfield workers in India. Design A questionnaire study (n=120), environmental temperature, and weekly work productivity analyses were evaluated for 8 months in the brickfields. Cardiac strain and walking speed (subset, n=40) were also studied and compared in hotter and colder days amongst the female brickfield workers. Results The subjects experience summer for about 5 months with additional heat stress radiating from the brick kiln. The weekly productivity data show a linear decline in productivity with increased maximum air temperature above 34.9°C. The cardiac parameters (peak heart rate (HRp), net cardiac cost (NCC), relative cardiac cost (RCC), and recovery heart rates) were significantly higher on hotter days (Wet Bulb Globe Temperature (WBGTout) index: 26.9°C to 30.74°C) than on cooler days (WBGTout index: 16.12°C to 19.37°C) for the brick molders; however, this is not the case for the brick carriers. As the brick carriers adapt to hotter days by decreasing their walking speed, their productivity decreases. Conclusion We conclude that high heat exposure in brickfields during summer caused physiological strain in both categories of female brickfield workers. A coping strategy employed by the brick carriers was to reduce their walking speed and thus lose part of their earnings. The lost productivity for every

  6. Effects of occupational heat exposure on female brick workers in West Bengal, India.

    Science.gov (United States)

    Sett, Moumita; Sahu, Subhashis

    2014-01-01

    Manual brick-manufacturing units in India engage a large number of female workers on a daily-wage basis for a period of 8 months per year. There are two groups of female workers in the brickfields: the brick molders and the brick carriers. These brickfields are mostly unorganized, and the workers are exposed to extreme conditions such as very high seasonal heat. The present trend of increasing temperatures, as a result of global warming and climate change, will put an additional burden on them. This study aims to evaluate the effect of workplace heat exposure on the well-being, physiological load, and productivity of female brickfield workers in India. A questionnaire study (n=120), environmental temperature, and weekly work productivity analyses were evaluated for 8 months in the brickfields. Cardiac strain and walking speed (subset, n=40) were also studied and compared in hotter and colder days amongst the female brickfield workers. The subjects experience summer for about 5 months with additional heat stress radiating from the brick kiln. The weekly productivity data show a linear decline in productivity with increased maximum air temperature above 34.9°C. The cardiac parameters (peak heart rate (HRp), net cardiac cost (NCC), relative cardiac cost (RCC), and recovery heart rates) were significantly higher on hotter days (Wet Bulb Globe Temperature (WBGTout) index: 26.9°C to 30.74°C) than on cooler days (WBGTout index: 16.12°C to 19.37°C) for the brick molders; however, this is not the case for the brick carriers. As the brick carriers adapt to hotter days by decreasing their walking speed, their productivity decreases. We conclude that high heat exposure in brickfields during summer caused physiological strain in both categories of female brickfield workers. A coping strategy employed by the brick carriers was to reduce their walking speed and thus lose part of their earnings. The lost productivity for every degree rise in temperature is about 2% in the

  7. Effects of duration of stay in temperate area on thermoregulatory responses to passive heat exposure in tropical south-east Asian males residing in Japan

    Directory of Open Access Journals (Sweden)

    Wijayanto Titis

    2012-09-01

    Full Text Available Abstract Background In this study, we investigated the effects of duration of stay in a temperate area on the thermoregulatory responses to passive heat exposure of residents from tropical areas, particularly to clarify whether they would lose their heat tolerance during passive heat exposure through residence in a temperate country, Japan. Methods We enrolled 12 males (mean ± SE age 25.7 ± 1.3 years from south-east Asian countries who had resided in Japan for a mean of 24.5 ± 5.04 months, and 12 Japanese males (age 24.1 ± 0.9 years. Passive heat exposure was induced through leg immersion in hot water (42°C for 60 minutes under conditions of 28°C air temperature and 50% relative humidity. Results Compared with the Japanese group, the tropical group displayed a higher pre-exposure rectal temperature (P P = 0.03. Additionally, the tropical group showed a tendency towards a lower total sweat rate (P = 0.06 and lower local sweat rate on the forehead (P = 0.07. The tropical group also had a significantly longer sweating onset time on the upper back (P = 0.04 compared with the Japanese groups. The tropical group who stayed in Japan for > 23 months sweated earlier on the forehead and upper back than those who stayed in Japan P P = 0.03 for the forehead and upper back, respectively. There was a positive correlation between duration of stay in Japan and total sweat rate (r = 0.58, P r = −0.73, P = 0.01 and on the upper back (r = −0.66, P = 0.02. Other physiological indices measured in this study did not show any difference between the subjects in the tropical group who had lived in Japan for a shorter time and those who had lived there for a longer time. Conclusions We conclude that the nature of heat acclimatization of the sweating responses to passive heat exposure that are acquired from long-term heat acclimatization is decayed by a stay in a temperate area, as shown

  8. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    De Temmerman, G., E-mail: gregory.detemmerman@iter.org [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Morgan, T.W.; Eden, G.G. van; Kruif, T. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); Wirtz, M. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Microstructure and Properties of Materials (IEK-2), EURATOM Association, 52425 Jülich (Germany); Matejicek, J.; Chraska, T. [Institute of Plasma Physics, Association EURATOM-IPP, CR Prague (Czech Republic); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Wright, G.M. [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-08-15

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (F{sub HF}) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate F{sub HF} = 19 MJ m{sup −2} s{sup −1/2}, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  9. Heat stress disorders and headache: a case of new daily persistent headache secondary to heat stroke

    OpenAIRE

    Di Lorenzo, C; Ambrosini, A; Coppola, G; Pierelli, F

    2009-01-01

    Headache is considered as a common symptom of heat stress disorders (HSD), but no forms of secondary headache from heat exposure are reported in the International Classification of Headache Disorders-2 Edition (ICHD-II). Heat-stroke (HS) is the HSD most severe condition, it may be divided into two forms: classic (due to a long period environmental heat exposure) and exertional (a severe condition caused by strenuous physical exercises in heat environmental conditions). Here we report the case...

  10. Use of electronic tongue for differentiation of tomato taste by cultivar, harvest maturity, and chilling or heating exposure

    Science.gov (United States)

    The objective of this research was to evaluate whether an electronic-tongue (etongue) could differentiate “taste” profiles of tomato fruit between different cultivars, harvest maturities, and postharvest chilling or heating exposure. The four cultivars included: two common commercial cultivars, ‘Tyg...

  11. Summer indoor heat exposure and respiratory and cardiovascular distress calls in New York City, NY, U.S.

    Science.gov (United States)

    Uejio, C K; Tamerius, J D; Vredenburg, J; Asaeda, G; Isaacs, D A; Braun, J; Quinn, A; Freese, J P

    2016-08-01

    Most extreme heat studies relate outdoor weather conditions to human morbidity and mortality. In developed nations, individuals spend ~90% of their time indoors. This pilot study investigated the indoor environments of people receiving emergency medical care in New York City, NY, U.S., from July to August 2013. The first objective was to determine the relative influence of outdoor conditions as well as patient characteristics and neighborhood sociodemographics on indoor temperature and specific humidity (N = 764). The second objective was to determine whether cardiovascular or respiratory cases experience hotter and more humid indoor conditions as compared to controls. Paramedics carried portable sensors into buildings where patients received care to passively monitor indoor temperature and humidity. The case-control study compared 338 respiratory cases, 291 cardiovascular cases, and 471 controls. Intuitively, warmer and sunnier outdoor conditions increased indoor temperatures. Older patients who received emergency care tended to occupy warmer buildings. Indoor-specific humidity levels quickly adjusted to outdoor conditions. Indoor heat and humidity exposure above a 26 °C threshold increased (OR: 1.63, 95% CI: 0.98-2.68, P = 0.056), but not significantly, the proportion of respiratory cases. Indoor heat exposures were similar between cardiovascular cases and controls. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    Science.gov (United States)

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  13. DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation.

    Science.gov (United States)

    Dorts, Jennifer; Falisse, Elodie; Schoofs, Emilie; Flamion, Enora; Kestemont, Patrick; Silvestre, Frédéric

    2016-10-12

    DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (<1 h post fertilization - hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26.5 °C till 96 hpf. Significant increased mortality rates and delayed hatching were observed following exposure to combined high temperature and Cu. Secondly, both stressors, alone or in combination, significantly upregulated the expression of de novo DNA methyltransferase genes (dnmt3) along with no differences in global cytosine methylation level. Finally, Cu exposure significantly increased the expression of metallothionein (mt2) and heat shock protein (hsp70), the latter being also increased following exposure to high temperature. These results highlighted the sensitivity of early embryogenesis and more precisely of the reprogramming period to environmental challenges, in a realistic situation of combined stressors.

  14. Reliability and consistency of a validated sun exposure questionnaire in a population-based Danish sample.

    Science.gov (United States)

    Køster, B; Søndergaard, J; Nielsen, J B; Olsen, A; Bentzen, J

    2018-06-01

    An important feature of questionnaire validation is reliability. To be able to measure a given concept by questionnaire validly, the reliability needs to be high. The objectives of this study were to examine reliability of attitude and knowledge and behavioral consistency of sunburn in a developed questionnaire for monitoring and evaluating population sun-related behavior. Sun related behavior, attitude and knowledge was measured weekly by a questionnaire in the summer of 2013 among 664 Danes. Reliability was tested in a test-retest design. Consistency of behavioral information was tested similarly in a questionnaire adapted to measure behavior throughout the summer. The response rates for questionnaire 1, 2 and 3 were high and the drop out was not dependent on demographic characteristic. There was at least 73% agreement between sunburns in the measurement week and the entire summer, and a possible sunburn underestimation in questionnaires summarizing the entire summer. The participants underestimated their outdoor exposure in the evaluation covering the entire summer as compared to the measurement week. The reliability of scales measuring attitude and knowledge was high for majority of scales, while consistency in protection behavior was low. To our knowledge, this is the first study to report reliability for a completely validated questionnaire on sun-related behavior in a national random population based sample. Further, we show that attitude and knowledge questions confirmed their validity with good reliability, while consistency of protection behavior in general and in a week's measurement was low.

  15. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh

    International Nuclear Information System (INIS)

    Sokka, S D; King, R; Hynynen, K

    2003-01-01

    In this study, we propose a focused ultrasound surgery protocol that induces and then uses gas bubbles at the focus to enhance the ultrasound absorption and ultimately create larger lesions in vivo. MRI and ultrasound visualization and monitoring methods for this heating method are also investigated. Larger lesions created with a carefully monitored single ultrasound exposure could greatly improve the speed of tumour coagulation with focused ultrasound. All experiments were performed under MRI (clinical, 1.5 T) guidance with one of two eight-sector, spherically curved piezoelectric transducers. The transducer, either a 1.1 or 1.7 MHz array, was driven by a multi-channel RF driving system. The transducer was mounted in an MRI-compatible manual positioning system and the rabbit was situated on top of the system. An ultrasound detector ring was fixed with the therapy transducer to monitor gas bubble activity during treatment. Focused ultrasound surgery exposures were delivered to the thighs of seven New Zealand white rabbits. The experimental, gas-bubble-enhanced heating exposures consisted of a high amplitude 300 acoustic watt, half second pulse followed by a 7 W, 14 W or 21 W continuous wave exposure for 19.5 s. The respective control sonications were 20 s exposures of 14 W, 21 W and 28 W. During the exposures, MR thermometry was obtained from the temperature dependency of the proton resonance frequency shift. MR T2-enhanced imaging was used to evaluate the resulting lesions. Specific metrics were used to evaluate the differences between the gas-bubble-enhanced exposures and their respective control sonications: temperatures with respect to time and space, lesion size and shape, and their agreement with thermal dose predictions. The bubble-enhanced exposures showed a faster temperature rise within the first 4 s and higher overall temperatures than the sonications without bubble formation. The spatial temperature maps and the thermal dose maps derived from the MRI

  16. Separate and combined effects of exposure to heat stress and mental fatigue on endurance exercise capacity in the heat.

    Science.gov (United States)

    Otani, Hidenori; Kaya, Mitsuharu; Tamaki, Akira; Watson, Phillip

    2017-01-01

    This study investigated the effects of exposure to pre-exercise heat stress and mental fatigue on endurance exercise capacity in a hot environment. Eight volunteers completed four cycle exercise trials at 80% maximum oxygen uptake until exhaustion in an environmental chamber maintained at 30 °C and 50% relative humidity. The four trials required them to complete a 90 min pre-exercise routine of either a seated rest (CON), a prolonged demanding cognitive task to induce mental fatigue (MF), warm water immersion at 40 °C during the last 30 min to induce increasing core temperature (WI), or a prolonged demanding cognitive task and warm water immersion at 40 °C during the last 30 min (MF + WI). Core temperature when starting exercise was higher following warm water immersion (~38 °C; WI and MF + WI) than with no water immersion (~36.8 °C; CON and MF, P fatigue when commencing exercise was higher following cognitive task (MF and MF + WI) than with no cognitive task (CON and WI; P stress or mental fatigue, and this response is synergistically increased during combined exposure to them.

  17. Reliability and consistency of a validated sun exposure questionnaire in a population-based Danish sample

    Directory of Open Access Journals (Sweden)

    B. Køster

    2018-06-01

    Full Text Available An important feature of questionnaire validation is reliability. To be able to measure a given concept by questionnaire validly, the reliability needs to be high.The objectives of this study were to examine reliability of attitude and knowledge and behavioral consistency of sunburn in a developed questionnaire for monitoring and evaluating population sun-related behavior.Sun related behavior, attitude and knowledge was measured weekly by a questionnaire in the summer of 2013 among 664 Danes. Reliability was tested in a test-retest design. Consistency of behavioral information was tested similarly in a questionnaire adapted to measure behavior throughout the summer.The response rates for questionnaire 1, 2 and 3 were high and the drop out was not dependent on demographic characteristic. There was at least 73% agreement between sunburns in the measurement week and the entire summer, and a possible sunburn underestimation in questionnaires summarizing the entire summer. The participants underestimated their outdoor exposure in the evaluation covering the entire summer as compared to the measurement week. The reliability of scales measuring attitude and knowledge was high for majority of scales, while consistency in protection behavior was low.To our knowledge, this is the first study to report reliability for a completely validated questionnaire on sun-related behavior in a national random population based sample. Further, we show that attitude and knowledge questions confirmed their validity with good reliability, while consistency of protection behavior in general and in a week's measurement was low. Keywords: Questionnaire, Validation, Reliability, Skin cancer, Prevention, Ultraviolet radiation

  18. Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu(2+) and malachite green.

    Science.gov (United States)

    Zhang, Zhanhui; Zhang, Qizhong

    2012-04-15

    Heat shock protein 70 (HSP70) acts mostly as a molecular chaperone and plays a key role in the process of protecting cells by facilitating the folding of nascent peptides and the cellular stress response. The cDNA of the oyster Crassostrea hongkongensis hsp70 (designated chhsp70) was cloned with the techniques of homological cloning and rapid amplification of cDNA ends (RACE). The full-length chhsp70 cDNA was 2251bp, consisting of a 130bp 5'-UTR, 216bp 3'-UTR with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1905bp, which encoded a polypeptide of 634 amino acids. Three classical HSP signature motifs were detected in ChHSP70, i.e., DLGTT-S-V, IFDLGGGTFDVSIL and VVLVGGSTRIPKIQK. BLAST analysis revealed that the ChHSP70 shared high identity with other bivalve HSP70. The phylogenetic analysis indicated that the ChHSP70 was a member of the HSP70 family. The chhsp70 mRNA transcripts were quantified by fluorescent real time RT-PCR under both unstressed and stressed conditions, i. e., heat shock and exposure to Cu(2+) and malachite green. Basal expression level was similar in mantle, gill, digestive gland, and heart, but higher in muscle than that in the others. A similar trend showed that the chhsp70 mRNA expression significantly increased at 3-6h, then dropped and returned to control level at 24h in the five tissues and organs mentioned above after heat shock. A clearly time-dependent expression pattern of chhsp70 mRNA in digestive gland and gill of the oyster was observed after exposure of Cu(2+) and malachite green. In the two tissues, the chhsp70 mRNA level reached the maximum at 6h after malachite green exposure and on day 4 after Cu(2+) exposure, and then decreased progressively to the control level. The results indicated that ChHSP70 of the oyster is an inducible protein, and plays an important role in response to the Cu(2+) and malachite green polluted stress, so chhsp70 might be used as a potential molecular

  19. Working in Australia's heat: health promotion concerns for health and productivity.

    Science.gov (United States)

    Singh, Sudhvir; Hanna, Elizabeth G; Kjellstrom, Tord

    2015-06-01

    This exploratory study describes the experiences arising from exposure to extreme summer heat, and the related health protection and promotion issues for working people in Australia. Twenty key informants representing different industry types and occupational groups or activities in Australia provided semi-structured interviews concerning: (i) perceptions of workplace heat exposure in the industry they represented, (ii) reported impacts on health and productivity, as well as (iii) actions taken to reduce exposure or effects of environmental heat exposure. All interviewees reported that excessive heat exposure presents a significant challenge for their industry or activity. People working in physically demanding jobs in temperatures>35°C frequently develop symptoms, and working beyond heat tolerance is common. To avoid potentially dangerous health impacts they must either slow down or change their work habits. Such health-preserving actions result in lost work capacity. Approximately one-third of baseline work productivity can be lost in physically demanding jobs when working at 40°C. Employers and workers consider that heat exposure is a 'natural hazard' in Australia that cannot easily be avoided and so must be accommodated or managed. Among participants in this study, the locus of responsibility for coping with heat lay with the individual, rather than the employer. Heat exposure during Australian summers commonly results in adverse health effects and productivity losses, although quantification studies are lacking. Lack of understanding of the hazardous nature of heat exposure exacerbates the serious risk of heat stress, as entrenched attitudinal barriers hamper amelioration or effective management of this increasing occupational health threat. Educational programmes and workplace heat guidelines are required. Without intervention, climate change in hot countries, such as Australia, can be expected to further exacerbate heat-related burden of disease and loss

  20. Thyroid activity in heat adaptation

    International Nuclear Information System (INIS)

    Joshi, B.C.; Varshney, V.P.; Sanwal, P.C.

    1980-01-01

    The effect of acute and chronic (22 day round-the-clock) exposure to microenvironmental heat stress (37 deg C DBT) on thyroid activity was studied in Hariana x Holstein Frisian, Hariana x Brown Swiss and Hariana x Jersey non-cycling F 1 crossbred heifers. Vis-a-vis their no-heat norms, the percentage uptake of tri-iodothyronine- 125 I by resin registered a steep fall (about 45 to 60 percent) on acute heat exposures reaching a minimum value in about 2 hrs. The levels started recouping by the 2nd day, plateuing out on the 5th day onwards at slightly subnormal level with up and down fluctuations throughout the three week duration of exposure to heat. There were no significant differences in the pattern or magnitude of response amongst breeds, though in case of Holstein Frisian and Brown Swiss cross-breds the levels of T 3 tended, at times, to overshoot the no-stress norm. (author)

  1. Response of Urban Systems to Climate Change in Europe: Heat Stress Exposure and the Effect on Human Health

    Science.gov (United States)

    Stevens, Catherine; Thomas, Bart; Grommen, Mart

    2015-04-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a

  2. Construction of computational program of aging in insulating materials for searching reversed sequential test conditions to give damage equivalent to simultaneous exposure of heat and radiation

    International Nuclear Information System (INIS)

    Fuse, Norikazu; Homma, Hiroya; Okamoto, Tatsuki

    2013-01-01

    Two consecutive numerical calculations on degradation of polymeric insulations under thermal and radiation environment are carried out to simulate so-called reversal sequential acceleration test. The aim of the calculation is to search testing conditions which provide material damage equivalent to the case of simultaneous exposure of heat and radiation. At least following four parameters are needed to be considered in the sequential method; dose rate and exposure time in radiation, as well as temperature and aging time in heating. The present paper discusses the handling of these parameters and shows some trial calculation results. (author)

  3. High-resolution simulations of the thermophysiological effects of human exposure to 100 MHz RF energy

    International Nuclear Information System (INIS)

    Nelson, David A; Curran, Allen R; Nyberg, Hans A; Marttila, Eric A; Mason, Patrick A; Ziriax, John M

    2013-01-01

    Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm −2 ) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (T amb = 31 °C, PD = 8 mW cm −2 ). Skin temperature increases attributable to RF exposure were modest, with the exception of a ‘hot spot’ in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature. (paper)

  4. Thermophysiological adaptations to passive mild heat acclimation

    NARCIS (Netherlands)

    Pallubinsky, H; Schellen, L; Kingma, B R M; Dautzenberg, B; van Baak, M A; van Marken Lichtenbelt, W D

    Passive mild heat acclimation (PMHA) reflects realistic temperature challenges encountered in everyday life. Active heat acclimation, combining heat exposure and exercise, influences several important thermophysiological parameters; for example, it decreases core temperature and enhances heat

  5. Sauna exposure immediately prior to short-term heat acclimation accelerates phenotypic adaptation in females.

    Science.gov (United States)

    Mee, Jessica A; Peters, Sophie; Doust, Jonathan H; Maxwell, Neil S

    2018-02-01

    Investigate whether a sauna exposure prior to short-term heat acclimation (HA) accelerates phenotypic adaptation in females. Randomised, repeated measures, cross-over trial. Nine females performed two 5-d HA interventions (controlled hyperthermia T re ≥38.5°C), separated by 7-wk, during the follicular phase of the menstrual cycle confirmed by plasma concentrations of 17-β estradiol and progesterone. Prior to each 90-min HA session participants sat for 20-min in either a temperate environment (20°C, 40% RH; HA temp ) wearing shorts and sports bra or a hot environment (50°C, 30% RH) wearing a sauna suit to replicate sauna conditions (HA sauna ). Participants performed a running heat tolerance test (RHTT) 24-h pre and 24-h post HA. Mean heart rate (HR) (85±4 vs. 68±5 bpm, p≤0.001), sweat rate (0.4±0.2 vs. 0.0±0.0Lh -1 , p≤0.001), and thermal sensation (6±0 vs. 5±1, p=0.050) were higher during the sauna compared to temperate exposure. Resting rectal temperature (T re ) (-0.28±0.16°C), peak T re (-0.42±0.22°C), resting HR (-10±4 bpm), peak HR (-12±7 bpm), T re at sweating onset (-0.29±0.17°C) (p≤0.001), thermal sensation (-0.5±0.5; p=0.002), and perceived exertion (-3±2; p≤0.001) reduced during the RHTT, following HA sauna ; but not HA temp . Plasma volume expansion was greater following HA sauna (HA sauna , 9±7%; HA temp , 1±5%; p=0.013). Sweat rate (p≤0.001) increased and sweat NaCl (p=0.006) reduced during the RHTT following HA sauna and HA temp . This novel strategy initiated HA with an attenuation of thermoregulatory, cardiovascular, and perceptual strain in females due to a measurably greater strain in the sauna compared to temperate exposure when adopted prior to STHA. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1978-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a mininum strength heat is also shown to provide adequate predictions. The viability of using consistent properties (either actual or those of a minimum heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations

  7. Computational estimation of decline in sweating in the elderly from measured body temperatures and sweating for passive heat exposure

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Nomura, Tomoki; Laakso, Ilkka

    2012-01-01

    Several studies reported the difference in heat tolerance between younger and older adults, which may be attributable to the decline in the sweating rate. One of the studies suggested a hypothesis that the dominant factor causing the decline in sweating was the decline in thermal sensitivity due to a weaker signal from the periphery to the regulatory centres. However, no quantitative investigation of the skin temperature threshold for activating the sweating has been conducted in previous studies. In this study, we developed a computational code to simulate the time evolution of the temperature variation and sweating in realistic human models under heat exposure, in part by comparing the computational results with measured data from younger and older adults. Based on our computational results, the difference in the threshold temperatures for activating the thermophysiological response, especially for sweating, is examined between older and younger adults. The threshold for activating sweating in older individuals was found to be about 1.5 °C higher than that in younger individuals. However, our computation did not suggest that it was possible to evaluate the central alteration with ageing by comparing the computation with the measurements for passive heat exposure, since the sweating rate is marginally affected by core temperature elevation at least for the scenarios considered here. The computational technique developed herein is useful for understanding the thermophysiological response of older individuals from measured data. (note)

  8. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1979-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a minimum strength heat is also shown to provide reasonable predictions. The viability of using consistent properties (either actual or those of a minimum strength heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations. 12 refs

  9. Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 °C and 2 °C of warming

    Science.gov (United States)

    Harrington, Luke J.; Otto, Friederike E. L.

    2018-03-01

    Understanding how continuing increases in global mean temperature will exacerbate societal exposure to extreme weather events is a question of profound importance. However, determining population exposure to the impacts of heat extremes at 1.5 °C and 2 °C of global mean warming requires not only (1) a robust understanding of the physical climate system response, but also consideration of (2) projected changes to overall population size, as well as (3) changes to where people will live in the future. This analysis introduces a new framework, adapted from studies of probabilistic event attribution, to disentangle the relative importance of regional climate emergence and changing population dynamics in the exposure to future heat extremes across multiple densely populated regions in Southern Asia and Eastern Africa (SAEA). Our results reveal that, when population is kept at 2015 levels, exposure to heat considered severe in the present decade across SAEA will increase by a factor of 4.1 (2.4-9.6) and 15.8 (5.0-135) under a 1.5°- and 2.0°-warmer world, respectively. Furthermore, projected population changes by the end of the century under an SSP1 and SSP2 scenario can further exacerbate these changes by a factor of 1.2 (1.0-1.3) and 1.5 (1.3-1.7), respectively. However, a large fraction of this additional risk increase is not related to absolute increases in population, but instead attributed to changes in which regions exhibit continued population growth into the future. Further, this added impact of population redistribution will be twice as significant after 2.0 °C of warming, relative to stabilisation at 1.5 °C, due to the non-linearity of increases in heat exposure. Irrespective of the population scenario considered, continued African population expansion will place more people in locations where emergent changes to future heat extremes are exceptionally severe.

  10. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  11. Social media responses to heat waves

    Science.gov (United States)

    Jung, Jihoon; Uejio, Christopher K.

    2017-07-01

    Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.

  12. Influence of heating rate on corrosion behavior of Ni-base heat resistant alloys in simulated VHTR helium environment

    International Nuclear Information System (INIS)

    Kurata, Yuji; Kondo, Tatsuo

    1985-04-01

    The influence of heating rate on corrosion and carbon transfer was studied for Ni-base heat resistant alloys exposed to simulated VHTR(very high temperature reactor) coolant environment. Special attention was focused to relationship between oxidation and carburization at early stage of exposure. Tests were conducted on two heats of Hastelloy XR with different boron(B) content and the developmental alloys, 113MA and KSN. Two kinds of heating rates, i.e. 80 0 C/min and 2 0 C/min, were employed. Corrosion tests were carried out at 900 0 C up to 500 h in JAERI Type B helium, one of the simulated VHTR primary coolant specifications. Under higher heating rate, oxidation resistance of both heats of Hastelloy XR(2.8 ppmB and 40 ppmB) were equivalent and among the best, then KSN and 113MA followed in the order. Under lower heating rate only alloy, i.e. Hastelloy XR with 2.8 ppmB, showed some deteriorated oxidation resistance while all others being unaffected by the heating rate. On the other hand the carbon transfer behavior showed strong dependence on the heating rate. In case of higher heating rate, significant carburization occured at early stage of exposure and thereafter the progress of carburization was slow in all the alloys. On the other hand only slow carburization was the case throughout the exposure in case of lower heating rate. The carburization in VHTR helium environment was interpreted as to be affected by oxide film formation in the early stage of exposure. The carbon pick-up was largest in Hastelloy XR with 40 ppmB and it was followed by Hastelloy XR with 2.8 ppmB. 113MA and KSN were carburized only slightly. The observed difference of carbon pick-up among the alloys tested was interpreted to be attributed mainly to the difference of the carbon activity, the carbide precipitation characteristics among the alloys tested. (author)

  13. Features of heat stress control

    International Nuclear Information System (INIS)

    Bernard, T.E.

    1989-01-01

    Heat stress is caused by hot environments and physical demands of work. It is further complicated by protective clothing requirements commonly found in the nuclear power industry. The resulting physiological strain is reflected in increased sweating, heart rate and body temperature. Uncontrolled exposures to heat stress will lead to decreased personnel performance and increased risk of accidents and heat disorders. The article describes major heat disorders, a method of heat stress evaluation, and some basic interventions to reduce the stress and strain of working in the heat

  14. Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet

    Science.gov (United States)

    Cui, Jianxun; Adams, John G. M.; Zhu, Yong

    2018-05-01

    Bending pre-designed flat sheets into three-dimensional (3D) structures is attracting much interest, as it provides a simple approach to make 3D devices. Here we report controlled bending and folding of a bilayer structure consisting of a heat shrinkable polymer sheet and a thin stiff film (not thermally responsive). Upon heating, the prestrained polymer sheet shrinks, leading to bending or folding of the bilayer. We studied the effect of relative dimensions of the two layers on the bending behavior and demonstrated the transition from longitudinal bending to transverse bending of the bilayer strip. Transverse bending was utilized to fold origami structures, including several flat letters, a crane, and a corrugated metal sheet via Miura-ori folding. We developed a method to further control the bending orientation based on bio-inspired anisotropic bending stiffness. By bending the metal foil in different orientations, several structures were obtained, including cylindrical surfaces and left-handed/right-handed helical structures.

  15. Ergonomics and Beyond: Understanding How Chemical and Heat Exposures and Physical Exertions at Work Affect Functional Ability, Injury, and Long-Term Health.

    Science.gov (United States)

    Ross, Jennifer A; Shipp, Eva M; Trueblood, Amber B; Bhattacharya, Amit

    2016-08-01

    To honor Tom Waters's work on emerging occupational health issues, we review the literature on physical along with chemical exposures and their impact on functional outcomes. Many occupations present the opportunity for exposure to multiple hazardous exposures, including both physical and chemical factors. However, little is known about how these different factors affect functional ability and injury. The goal of this review is to examine the relationships between these exposures, impairment of the neuromuscular and musculoskeletal systems, functional outcomes, and health problems with a focus on acute injury. Literature was identified using online databases, including PubMed, Ovid Medline, and Google Scholar. References from included articles were searched for additional relevant articles. This review documented the limited existing literature that discussed cognitive impairment and functional disorders via neurotoxicity for physical exposures (heat and repetitive loading) and chemical exposures (pesticides, volatile organic compounds [VOCs], and heavy metals). This review supports that workers are exposed to physical and chemical exposures that are associated with negative health effects, including functional impairment and injury. Innovation in exposure assessment with respect to quantifying the joint exposure to these different exposures is especially needed for developing risk assessment models and, ultimately, preventive measures. Along with physical exposures, chemical exposures need to be considered, alone and in combination, in assessing functional ability and occupationally related injuries. © 2016, Human Factors and Ergonomics Society.

  16. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    Science.gov (United States)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  17. Occupational exposures during routine activities in coal-fueled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bird, M.J.; MacIntosh, D.L.; Williams, P.L. [University of Georgia, Athens, GA (United States). Dept. of Environmental Health Science

    2004-06-15

    Limited information is available on occupational exposures during routine, nonoutage work activities in coal-fueled power plants. This study evaluated occupational exposures to the principal contaminants in the facilities, including respirable dust (coal dust), arsenic, noise, asbestos, and heat stress. The data were collected over a 3-month period, during the summer of 2001. Each of the 5 facilities was divided into 5 similar exposure groups based on previous exposure assessments and job tasks performed. Of the nearly 400 air samples collected, only 1 exceeded the allowable occupational exposure value. For the noise samples, 55 (about 18%) were equal to or greater than the Occupational Safety and Health Administration (OSHA) 8-hour hearing conservation program level of 85 dBA, and 12 (about 4%) were equal to or greater than the OSHA 8-hour permissible exposure level of 90 dBA. Heat stress monitoring at the facilities indicates that 26% of the 1-hour TWAs were exceeded for one or all of the recommended heat stress limits. The data also concluded that some work sites were above the heat stress ceiling values recommended by the National Institute for Occupational Safety and Health (NIOSH). Four of the 20 employees personally monitored exceeded the recommended limits for heart rate or body core temperature. This suggests there is a potential for heat strain if signs and symptoms are ignored. Recommendations are made to better control the heat stress exposure.

  18. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.

    Science.gov (United States)

    Rosa, Mónica; Tiago, João M; Singh, Satish K; Geraldes, Vítor; Rodrigues, Miguel A

    2016-10-01

    The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.

  19. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    International Nuclear Information System (INIS)

    Homa, Joanna; Olchawa, Ewa; Stuerzenbaum, Stephen R.; John Morgan, A.; Plytycz, Barbara

    2005-01-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes

  20. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Joanna [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Olchawa, Ewa [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Stuerzenbaum, Stephen R. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); John Morgan, A. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); Plytycz, Barbara [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland)]. E-mail: plyt@zuk.iz.uj.edu.pl

    2005-05-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes.

  1. Nanoindentation study of the combined effects of crystallography, heat treatment and exposure to high-flux deuterium plasma in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zayachuk, Y., E-mail: yevhen.zayachuk@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Armstrong, D.E.J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Bystrov, K. [FOM Institute DIFFER- Dutch Institute for Fundamental Energy Research, Trilateral Euregio Cluster, De Zaale 20, 3612 AJ Eindhoven (Netherlands); Van Boxel, S. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Morgan, T. [FOM Institute DIFFER- Dutch Institute for Fundamental Energy Research, Trilateral Euregio Cluster, De Zaale 20, 3612 AJ Eindhoven (Netherlands); Roberts, S.G. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2017-04-01

    tungsten samples were heat-treated to achieve partial recrystallization and exposed to high ion flux deuterium plasma at different temperatures and fluences. Continuous stiffness nanoindentation measurements of near-surface hardness were performed in the grains of specific annealing states and of specific crystallographic orientation, determined by electron backscatter diffraction (EBSD); indentation pile-up was investigated using surface profilometry. Bulk hardness of unexposed tungsten does not strongly depend on grain orientation, but depends on the annealing state of the grain, with values between ∼4.3 GPa for recrystallized grains and ∼5.5 for non-recrystallized ones. Grains with <111> surface normal orientation feature the least pile-up, while grains with <001> orientation the most; pile-up also depends on the annealing state, being generally lower in recrystallized grains. Plasma exposure leads to the increase of hardness, most significantly near the surface. The width of plasma-affected zone increases with the increase of exposure temperature and fluence, as well in recrystallized grains, correlating with the increase of diffusion depth. Plasma exposure does not lead to the emergence of orientation-dependence of hardness. Both indentation pile-up and near-surface indentation pop-ins are generally suppressed by plasma exposure.

  2. Self-consistent viscous heating of rapidly compressed turbulence

    Science.gov (United States)

    Campos, Alejandro; Morgan, Brandon

    2017-11-01

    Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanina, A.V. [Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Taylor, C. [Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Johnson C. Smith University, 100 Beatties Ford Rd., Charlotte, NC 28216 (United States); Sokolova, I.M. [Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)], E-mail: isokolov@uncc.edu

    2009-02-19

    Stress proteins such as heat shock proteins (HSPs) and metallothioneins (MTs) play a key role in cellular protection against environmental stress. Marine ectotherms such as eastern oysters Crassostrea virginica are commonly exposed to multiple stressors including temperature and pollution by metals such as cadmium (Cd) in estuaries and coastal zones; however, the combined effects of these stressors on their cellular protection mechanisms are poorly understood. We acclimated C. virginica from populations adapted to different thermal regimes (Washington, North Carolina and Texas) at a common temperature of 12 deg. C, and analyzed their expression of MTs and HSPs (cytosolic HSP69, HSC72-77, HSP90 and mitochondrial HSP60) in response to the combined acute temperature stress and long-term Cd exposure. Overall, HSP and MT induction patterns were similar in oysters from the three studied geographically distant populations. HSP69 and MTs were significantly up-regulated by Cd and temperature stress implying their important role in cellular stress protection. In contrast, HSC72-77, HSP60 and HSP90 were not consistently induced by either acute heat or Cd exposure. The induction temperature for MTs was higher than for HSP69 (>28 deg. C vs. 20 deg. C, respectively), and MTs were more strongly induced by Cd than by temperature stress (to up to 38-94-fold compared by 3.5-7.5-fold, respectively) consistent with their predominant role in metal detoxification. Notably, heat stress did not result in an additional increase in metallothionein expression in Cd-exposed oysters suggesting a capacity limitation during the combined exposure to Cd and temperature stress. Levels of HSP69 and in some cases, HSC72-77 and HSP90 were lower in Cd-exposed oysters as compared to their control counterparts during heat stress indicating that simultaneous exposure to these two stressors may have partially suppressed the cytoprotective upregulation of molecular chaperones. These limitations of stress

  4. Comparison of heat-testing methodology.

    Science.gov (United States)

    Bierma, Mark M; McClanahan, Scott; Baisden, Michael K; Bowles, Walter R

    2012-08-01

    Patients with irreversible pulpitis occasionally present with a chief complaint of sensitivity to heat. To appropriately diagnose the offending tooth, a variety of techniques have been developed to reproduce this chief complaint. Such techniques cause temperature increases that are potentially damaging to the pulp. Newer electronic instruments control the temperature of a heat-testing tip that is placed directly against a tooth. The aim of this study was to determine which method produced the most consistent and safe temperature increase within the pulp. This consistency facilitates the clinician's ability to differentiate between a normal pulp and irreversible pulpitis. Four operators applied the following methods to each of 4 extracted maxillary premolars (for a total of 16 trials per method): heated gutta-percha, heated ball burnisher, hot water, and a System B unit or Elements unit with a heat-testing tip. Each test was performed for 60 seconds, and the temperatures were recorded via a thermocouple in the pulp chamber. Analysis of the data was performed by using the intraclass correlation coefficient. The least consistent warming was found with hot water. The heat-testing tip also demonstrated greater consistency between operators compared with the other methods. Hot water and the heated ball burnisher caused temperature increases high enough to damage pulp tissue. The Elements unit with a heat-testing tip provides the most consistent warming of the dental pulp. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Heat acclimation responses of an ultra-endurance running group preparing for hot desert-based competition.

    Science.gov (United States)

    Costa, Ricardo J S; Crockford, Michael J; Moore, Jonathan P; Walsh, Neil P

    2014-01-01

    Heat acclimation induces adaptations that improve exercise tolerance in hot conditions. Here we report novel findings into the effects of ultra-marathon specific exercise load in increasing hot ambient conditions on indices of heat acclimation. Six male ultra-endurance runners completed a standard pre-acclimation protocol at 20°C ambient temperature (T amb), followed by a heat acclimation protocol consisting of six 2 h running exercise-heat exposures (EH) at 60% VO2max on a motorised treadmill in an environmental chamber. Three EH were performed at 30°C T amb, followed by another three EH at 35°C T amb. EH were separated by 48 h within T amb and 72 h between T amb. Nude body mass (NBM), blood and urine samples were collected pre-exercise; while NBM and urine were collected post-exercise. Rectal temperature (T re), heart rate (HR), thermal comfort rating (TCR) and rating of perceived exertion were measured pre-exercise and monitored every 5 min during exercise. Water was provided ad libitum during exercise. Data were analysed using a repeated measures and one-way analysis of variance (ANOVA), with post hoc Tukey's HSD. Significance was accepted as Pheat acclimation in all ultra-endurance runners. Further, heat acclimation responses occurred with increasing EH to 35°C T amb. Preventing exertional heat illnesses and optimising performance outcomes in ultra-endurance runners may occur with exposure to at least 2 h of exercise-heat stress on at least two occasions in the days leading up to multi-stage ultra-marathon competition in the heat.

  6. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and absorption heat pump

    DEFF Research Database (Denmark)

    Cachorro, Irene Albacete; Daraban, Iulia Maria; Lainé, Guillaume

    2013-01-01

    . The heat pump is a heat driven system and is running with the heat recovered by a heat exchanger from the exhausted gases from SOFC. The working fluid pair is NH3-H2O and is driven in two evaporators which are working at two different pressures. Thus, the heat pump will operate at tree pressure level...... with natural gas. The natural gas is first converted to a mixture of H2 and CO which feed the anode after a preheating step. The cathode is supplied with preheated air and gives, as output, electrical energy. The anode output is the exhaust gas which represents the thermal energy reservoir for heating...

  7. Consistency between Sweat Rate and Wet Bulb Globe Temperature for the Assessment of Heat Stress of People Working Outdoor in Arid and Semi-arid Regions

    Directory of Open Access Journals (Sweden)

    Hamidreza Heidari

    2018-01-01

    Full Text Available Background: Heat stress is common among workers in arid and semi-arid areas. In order to take every preventive measure to protect exposed workers against heat-related disorders, it is crucial to choose an appropriate index that accurately relates environmental parameters to physiological responses. Objective: To investigate the consistency between 2 heat stress and strain indices, ie, sweat rate and wet bulb globe temperature (WBGT, for the assessment of heat stress of people working outdoor in arid and semi-arid regions in Iran. Methods: During spring and summer, 136 randomly selected outdoor workers were enrolled in this study. Using a defined protocol, the sweat rate of these workers was measured 3 times a day. Simultaneously, the environmental parameters including WBGT index were recorded for each working station. Results: The level of agreement between sweat rate and WBGT was poor (κ<0.2. Based on sweat rate, no case exceeding the reference value was observed during the study. WBGT overestimated the heat stress in outdoor workers compared to sweat rate. Conclusion: It seems that the sweat rate standards may need some modifications related to real condition of work in arid and semi-arid regions in Iran. Moreover, it seems that judging workers solely based on monitoring their sweat rate in such regions, can probably result in underestimation of heat stress.

  8. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    International Nuclear Information System (INIS)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G A.; Lydell, B.; Doctor, Steven R.

    2005-01-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp- database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  9. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  10. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  11. heat-induced biological changes as heat tolerance indices related to growth performance in buffaloes

    International Nuclear Information System (INIS)

    Kaldes, M.Z.N.

    2004-01-01

    the main objective of this study was to predict new heat tolerance indices related to hot summer growth performance, depending on heat - induced changes in some physiological and biochemical parameters of young water buffalo calves. the present study was carried out on 8 egyptian male buffalo calves of 6 months old and 106.8 kg mean body weight (B W), and on the same animals of 12 months old and 179.5 kg mean B W. the animals were maintained in a climatic chamber of the egyptian atomic energy authority. the animals were maintained in metabolic cages inside a climatic chamber for 3 weeks under mild climate (20-24 c and 50-60% Rh, equivalent to 62-72 THI) for 6 hours daily as adjustment period,followed by 5 and 7 days in the 6- and 12-month old calves, respectively at the same climatic conditions as a control period.this was followed by 6 hours of acute heat exposure period (33-43 c and 40-60% Rh, equivalent to 85-93 Thi), then by chronic heat exposure period of the same climatic conditions for 5 and 7 days in the 6- and 12- month old calves, respectively.Rectal temperature (RT) and respiration rate (RR) were estimated daily, whereas BW was estimated at the beginning and the end of each exposure period

  12. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  13. Comparison of the heat shock response induced by conventional heating and two methods of delivery of pulsed radiofrequency energy

    International Nuclear Information System (INIS)

    Laurence, J.A.; University of Sydney, NSW; McKenzie, D.R.; Veas, L.; French, P.W.

    2002-01-01

    Full text: In 2001, we published a (hypothetical) mechanism by which radiofrequency (RF) radiation from mobile phones could induce cancer, via the chronic induction of the heat shock response (HSR). This hypothesis provides the focus for our research. Other groups have reported induction of the HSR by RF at apparently non thermal levels. The aim of this study was to determine whether the HSR induced by RF is (a) truly non thermal and (b) quantitatively or qualitatively different from that induced by conventional heating of cells. A rat mast cell line, RBL-2H3, was chosen as the target RBL-2H3 cells were exposed in an air incubator at 41.1 deg C for 45 minutes and 75 minutes, and then returned to a 37 deg C incubator. Sham exposures were performed in the same air incubator at 37 deg C. Cells were exposed for 1 hour in the two pulsed RF exposure systems. The first was a converted 750W microwave oven that emits a short burst of 2.45GHz pulses at the start of each contiguous six minute period. This exposes cells to an average specific energy absorption rate (SAR) of 20W/kg. The second system was a TEM cell, which simulates. GSM pulses - the earner frequency is 0.9GHz pulse modulated at 217Hz. The SAR was approx 0.1W/kg. Both of these exposure systems are housed in incubators maintained at 37 deg C. Sham exposures were performed in the two systems with the same conditions but with no RF radiation present. Cell samples for the conventional heating and microwave exposures were taken 0, 2. 5, 5 and 20 hours after exposure, and expression of heat shock proteins hsp 110, 90, 70, 60 and 56 were determined by Western Blotting and compared between exposures

  14. The Thermoregulatory Consequences of Heat Stroke: Are Cytokines Involved

    Science.gov (United States)

    2006-01-01

    71 6. Ambient temperature effects on heat stroke outcome ... exposure , the effectiveness of this treatment following administration directly into the hy- pothalamus was not tested (Lin et al., 1994). In addition, it is...versus that of heat exposure on experimental outcome (i.e., mortality). However, ethical concerns regarding the use of mortality as a study endpoint

  15. Method and equipment to utilize solar heat. [paraffin used as heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Poellein, H

    1976-09-16

    In this process, solar radiation is converted into heat by means of absorbers. The heat transferred to a liquid is led in forced circulation, first into a heat storage device and then into a water heater. The cooled-down liquid is rercirculated. The storage material used here is paraffin. A measuring and control device is provided to switch from periods with solar radiation to periods where only stored energy is consumed. This device consists of a photocell measuring the incoming sunlight and a temperarure sensor. The control system is put into operation by a combination of the two measured values. The heat accumulator consists of several elements connected in parallel. A control device makes sure that only one accumulator element at a time is part of the circuit. The absorbers, as usual, consists of the absorber plate proper and a cover plate.

  16. Dry heat and radiation combination effects on Aspergillus flavus Link. infecting cocoa beans

    International Nuclear Information System (INIS)

    Amoako-Atta, B.; Meier, H.; Odamtten, G.T.

    1981-01-01

    The paper deals with the effect of heat and radiation combination treatments on the control of microbial spoilage of cocoa beans caused by toxigenic Aspergillus flavus Link. The heat and radiation sources were from dry air oven heat and 60 Co gammacell 220 irradiator, respectively. The radiation doses used were either 0, 50, 100, 150 or 200 krad, with combined heat temperatures of 30, 60 or 90 0 C. At each temperature level three different exposure time intervals of either 15 min, 30 min or 60 min respectively, were used. Two reversible sequential heat/radiation combination effects were evaluated. The first sequence involved cocoa beans inoculated with A. flavus spores exposed first to dry heat at pre-determined temperature heat exposure time, followed by radiation treatment, then retention of samples in a constant humidity environmental chamber set at 80% for daily observation up to forty days post-treatment. The second sequence involved exposure of the inoculated beans first to radiation, then to heat before retention under fixed RH for observation. From their results, the authors arrive at four conclusions: first, that there is a critical radiation/heat combination range (200, 150 and 100 krad/90 0 C for 15 min) that significantly decontaminates (less than 5% mouldiness) A. flavus infected cocoa beans even under high relative humidity (80% RH) environment; second, that a temperature level of 90 0 C combined with 200, 150 or 100 krad maximizes such effect but the heat exposure time is a major factor; third, that low heat temperature ranges of 30 or 60 0 C, combined with low radiation dosages of 150 krad or below, enhance the rate of A. flavus spoilage effects of cocoa beans; and, lastly, that the sequence of exposure of the inoculated cocoa beans to heat/radiation combination influenced the spore germination; exposure to heat before radiation would sensitize the spores (200 krad/90 0 C) but results in an increased radioresistance. (author)

  17. Heat index in migrant farmworker housing: implications for rest and recovery from work-related heat stress.

    Science.gov (United States)

    Quandt, Sara A; Wiggins, Melinda F; Chen, Haiying; Bischoff, Werner E; Arcury, Thomas A

    2013-08-01

    Although the health risk to farmworkers of working in hot conditions is recognized, potential for excessive heat exposure in housing affecting rest and recovery has been ignored. We assessed heat index in common and sleeping rooms in 170 North Carolina farmworker camps across a summer and examined associations with time of summer and air conditioning use. We recorded dangerous heat indexes in most rooms, regardless of time or air conditioning. Policies to reduce heat indexes in farmworker housing should be developed.

  18. Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees.

    Science.gov (United States)

    Dadvand, Payam; Ostro, Bart; Figueras, Francesc; Foraster, Maria; Basagaña, Xavier; Valentín, Antònia; Martinez, David; Beelen, Rob; Cirach, Marta; Hoek, Gerard; Jerrett, Michael; Brunekreef, Bert; Nieuwenhuijsen, Mark J

    2014-07-01

    Maternal residential proximity to roads has been associated with adverse pregnancy outcomes. However, there is no study investigating mediators or buffering effects of road-adjacent trees on this association. We investigated the association between mothers' residential proximity to major roads and term low birth weight (LBW), while exploring possible mediating roles of air pollution (PM(2.5), PM(2.5-10), PM(10), PM(2.5) absorbance, nitrogen dioxide, and nitrogen oxides), heat, and noise and buffering effect of road-adjacent trees on this association. This cohort study was based on 6438 singleton term births in Barcelona, Spain (2001-2005). Road proximity was measured as both continuous distance to and living within 200 m from a major road. We assessed individual exposures to air pollution, noise, and heat using, respectively, temporally adjusted land-use regression models, annual averages of 24-hour noise levels across 50 m and 250 m, and average of satellite-derived land-surface temperature in a 50-m buffer around each residential address. We used vegetation continuous fields to abstract tree coverage in a 200-m buffer around major roads. Living within 200 m of major roads was associated with a 46% increase in term LBW risk; an interquartile range increase in heat exposure with an 18% increase; and third-trimester exposure to PM(2.5), PM(2.5-10), and PM10 with 24%, 25%, and 26% increases, respectively. Air pollution and heat exposures together explained about one-third of the association between residential proximity to major roads and term LBW. Our observations on the buffering of this association by road-adjacent trees were not consistent between our 2 measures of proximity to major roads. An increased risk of term LBW associated with proximity to major roads was partly mediated by air pollution and heat exposures.

  19. Evaluating combined effect of noise and heat on blood pressure changes among males in climatic chamber.

    Science.gov (United States)

    Dehghan, Habibollah; Bastami, Mohamad Taghi; Mahaki, Behzad

    2017-01-01

    Exposure to noise and heat causes individuals to experience some changes in the function of cardiovascular system in workplaces. This study aimed to find the combined effect of heat and noise on systolic and diastolic types of blood pressure in experimentally controlled conditions. This quasi-experimental study was performed with 12 male students in a climatic chamber in 2014. Blood pressure including systolic and diastolic was measured in the following conditions: 15 min after rest in exposure to heat (40°C, relative humidity [RH]: 30%), exposure to noise with 75, 85, and 95 dB rates in thermal comfort condition (22.1 ± 0.9 wet-bulb globe temperature), and combined exposure to heat (40°C, RH: 30%) and noise with 75, 85, and 95 dB. Friedman test was used to analyze the data. The mean change of systolic blood pressure was different significantly before and after exposure to heat and noise levels including 75, 85, and 95 dB ( P = 0.015, P = 0.001, P > 0.001, P = 0.027, respectively). Although systolic and diastolic blood pressures changed drastically, it was not significantly different in simultaneous exposure to heat and noise. Both systolic and diastolic blood pressures decreased in exposure to heat, while exposure to different levels of noise elevates systolic and diastolic blood pressures. However, when exposed to a combination of heat and noise, subtle changes of blood pressure were traced, which can be characterized as average, considering heat-only and noise-only tension situations.

  20. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  1. A self-consistent derivation of ion drag and Joule heating for atmospheric dynamics in the thermosphere

    Directory of Open Access Journals (Sweden)

    X. Zhu

    2005-11-01

    Full Text Available The thermosphere is subject to additional electric and magnetic forces, not important in the middle and lower atmosphere, due to its partially ionized atmosphere. The effects of charged particles on the neutral atmospheric dynamics are often parameterized by ion drag in the momentum equations and Joule heating in the energy equation. Presented in this paper are a set of more accurate parameterizations for the ion drag and Joule heating for the neutral atmosphere that are functions of the difference between bulk ion velocity and neutral wind. The parameterized expressions also depend on the magnetic field, the Pedersen and Hall conductivities, and the ratio of the ion cyclotron frequency to the ion-neutral collision frequency. The formal relationship between the electromagnetic energy, atmospheric kinetic energy, and Joule heating is illustrated through the conversion terms between these three types of energy. It is shown that there will always be an accompanying conversion of kinetic energy into Joule heating when electromagnetic energy is generated through the dynamo mechanism of the atmospheric neutral wind. Likewise, electromagnetic energy cannot be fully converted into kinetic energy without producing Joule heating in the thermosphere.

  2. Testing the time-scale dependence of delayed interactions: A heat wave during the egg stage shapes how a pesticide interacts with a successive heat wave in the larval stage.

    Science.gov (United States)

    Janssens, Lizanne; Tüzün, Nedim; Stoks, Robby

    2017-11-01

    Under global change organisms are exposed to multiple, potentially interacting stressors. Especially interactions between successive stressors are poorly understood and recently suggested to depend on their timing of exposure. We particularly need studies assessing the impact of exposure to relevant stressors at various life stages and how these interact. We investigated the single and combined impacts of a heat wave (mild [25 °C] and extreme [30 °C]) during the egg stage, followed by successive exposure to esfenvalerate (ESF) and a heat wave during the larval stage in damselflies. Each stressor caused mortality. The egg heat wave and larval ESF exposure had delayed effects on survival, growth and lipid peroxidation (MDA). This resulted in deviations from the prediction that stressors separated by a long time interval would not interact: the egg heat wave modulated the interaction between the stressors in the larval stage. Firstly, ESF caused delayed mortality only in larvae that had been exposed to the extreme egg heat wave and this strongly depended upon the larval heat wave treatment. Secondly, ESF only increased MDA in larvae not exposed to the egg heat wave. We found little support for the prediction that when there is limited time between stressors, synergistic interactions should occur. The intermediate ESF concentration only caused delayed mortality when combined with the larval heat wave, and the lowest ESF concentrations only increased oxidative damage when followed by the mild larval heat wave. Survival selection mitigated the interaction patterns between successive stressors that are individually lethal, and therefore should be included in a predictive framework for the time-scale dependence of the outcome of multistressor studies with pollutants. The egg heat wave shaping the interaction pattern between successive pesticide exposure and a larval heat wave highlights the connectivity between the concepts of 'heat-induced pesticide sensitivity' and

  3. Development of heat transfer calculation program for finned-tune heat exchanger of multi-burner boiler

    International Nuclear Information System (INIS)

    Jang, Sae Byul; Kim, Jong Jin; Ahn, Joon

    2009-01-01

    We develop a heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a Heat Recovery Steam Generator (HRSG). This heat recovery system has 8 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 1 MPa and tested steam pressure is 0.7 MPa. In order to test these heat exchanger modules, we make a 0.5 t/h flue tube boiler (LNG, 40 Nm 3 /h). We tested the heat exchanger module with changing the position of each heat exchanger module. We measured the inlet and outlet temperature of each heat exchanger module and calculated the heat exchange rate. Based on test results, we develop a heat transfer calculation program to predict flue gas. Calculation results show that temperature and temperature difference between measured and calculated flue gas exit temperature is less than 20 .deg. C when flue gas inlet temperature is 620 .deg. C.

  4. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  5. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning

    Science.gov (United States)

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature ( P 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left ( P = 0.05) and right ( P thermally comfortable.

  6. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    International Nuclear Information System (INIS)

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  7. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population.

    Science.gov (United States)

    Stabile, L; Buonanno, G; Avino, P; Frattolillo, A; Guerriero, E

    2018-04-01

    Homes represent a critical microenvironment in terms of air quality due to the proximity to main particle sources and the lack of proper ventilation systems. Biomass-fed heating systems are still extensively used worldwide, then likely emitting a significant amount of particles in indoor environments. Nonetheless, research on biomass emissions are limited to their effects on outdoor air quality then not properly investigating the emission in indoor environments. To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds in dwellings where three different heating systems were used: open fireplaces, closed fireplaces and pellet stoves. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured during the biomass combustion activities, moreover, PM 10 samples were collected and chemically analyzed to obtain mass fractions of carcinogenic compounds attached onto particles. Airborne particle doses received by people exposed in such environments were evaluated as well as their excess lung cancer risk. Most probable surface area extra-doses received by people exposed to open fireplaces on hourly basis (56 mm 2  h -1 ) resulted one order of magnitude larger than those experienced for exposure to closed fireplaces and pellet stoves. Lifetime extra risk of Italian people exposed to the heating systems under investigation were larger than the acceptable lifetime risk (10 -5 ): in particular, the risk due to the open fireplace (8.8 × 10 -3 ) was non-negligible when compared to the overall lung cancer risk of typical Italian population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  9. Energetic and Exergy Efficiency of a Heat Storage Unit for Building Heating

    International Nuclear Information System (INIS)

    Hazami, Mejdi; Kooli, Sami; Lazaar, Meriem; Farhat, Abdelhamid; Belghith, Ali

    2009-01-01

    This paper deals with a numerical and experimental investigation of a daily solar storage system conceived and built in Laboratoire de Maitrise des Technologies de l Energie (LMTE, Borj Cedria). This system consists mainly of the storage unit connected to a solar collector unit. The storage unit consists of a wooden case with dimension of 5 m 3 (5 m x 1m x 1m) filed with fin sand. Inside the wooden case was buried a network of a polypropylene capillary heat exchanger with an aperture area equal to 5 m 2 . The heat collection unit consisted of 5 m 2 of south-facing solar collector mounted at a 37 degree tilt angle. In order to evaluate the system efficiency during the charging period (during the day) and discharging period (during the night) an energy and exergy analyses were applied. Outdoor experiments were also carried out under varied environmental conditions for several consecutive days. Results showed that during the charging period, the average daily rates of thermal energy and exergy stored in the heat storage unit were 400 and 2.6 W, respectively. It was found that the net energy and exergy efficiencies in the charging period were 32 pour cent and 22 pour cent, respectively. During the discharging period, the average daily rates of the thermal energy and exergy recovered from the heat storage unit were 2 kW and 2.5 kW, respectively. The recovered heat from the heat storage unit was used for the air-heating of a tested room (4 m x 3 m x 3 m). The results showed that 30 pour cent of the total heating requirement of the tested room was obtained from the heat storage system during the whole night in cold seasons

  10. [Heat stroke and burns resulting from use of sauna

    DEFF Research Database (Denmark)

    Runitz, K.; Jensen, T.H.

    2009-01-01

    We describe a case of severe heat stroke resulting from exposure to extreme heat in a sauna for an unknown period of time. The patient sustained 20% 2nd degree burns. On arrival at the emergency department, the patient's temperature was 40.5 degrees C. At the critical care unit, the patient devel...... developed severe multi-organ failure and critical polyneuropathy. Severe heat stroke is a rare diagnosis in Denmark. The treatment is symptomatic and the prognosis is grave, especially in combination with severe burns Udgivelsesdato: 2009/1/26......We describe a case of severe heat stroke resulting from exposure to extreme heat in a sauna for an unknown period of time. The patient sustained 20% 2nd degree burns. On arrival at the emergency department, the patient's temperature was 40.5 degrees C. At the critical care unit, the patient...

  11. Human Physiological Responses to Acute and Chronic Cold Exposure

    Science.gov (United States)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  12. Thermoregulatory Responses of Febrile Monkeys During Microwave Exposure

    National Research Council Canada - National Science Library

    Adair, E

    1997-01-01

    .... In a controlled ambient temperature of 26 degrees C, autonomic mechanisms of heat production and heat loss were measured in febrile squirrel monkeys during 30-min exposures to 450 or 2450 MHz CW MW...

  13. Physiological responses of horses to a treadmill simulated speed and endurance test in high heat and humidity before and after humid heat acclimation.

    Science.gov (United States)

    Marlin, D J; Scott, C M; Schroter, R C; Harris, R C; Harris, P A; Roberts, C A; Mills, P C

    1999-01-01

    To investigate whether horses were able to acclimate to conditions of high temperature and humidity, 5 horses of different breeds were trained for 80 min on 15 consecutive days on a treadmill at 30 degrees C and 80%RH. Training consisted of a combination of long duration low-intensity exercise, medium duration medium intensity exercise and short duration high intensity exercise. Between training sessions the horses were maintained at 11+/-3 degrees C and 74+/-2%RH. Before (PRE-ACC) and after acclimation (POST-ACC) the horses undertook a simulated Competition Exercise Test (CET), designed to represent the Speed and Endurance Test of a 3-day event, at 30 degrees C/80%RH. Maximal oxygen uptake (VO2PEAK) was not changed following acclimation (PRE-ACC 141+/-8 ml/min/kg bwt vs. POST-ACC 145+/-9 ml/min/kg bwt [STPD], P>0.05). Following acclimation, 4 of the 5 horses were able to complete a significantly greater amount of Phase D in the CET (PRE-ACC 6.3+/-0.3 min vs. POST-ACC 7.3+/-0.3 min, P<0.05; target time = 8 min). Resting body temperatures (pulmonary artery [TPA], rectal [TREC] and tail-skin [TTSK] temperatures) were all significantly lower following acclimation. During exercise, metabolic heat production (M) and heat dissipation (HD), for the same exercise duration, were both significantly lower following acclimation (P<0.05), although heat storage (HS) was significantly higher (P<0.05). The higher heat storage following acclimation was associated with a lower TTSK for a given TPA and a decreased total fluid loss (% bodyweight, P<0.05). Plasma volume was not changed following acclimation. The relationship of sweating rate (SR) to TPA or TTSK on either the neck or the gluteal region was not significantly altered by acclimation, although the onset of sweating occurred at a lower TPA or TTSK following acclimation (P<0.05). The horses in the present study showed a number of physiological adaptations to a period of 15 days of exposure to high heat and humidity consistent

  14. Norwegian households' perception of wood pellet stove compared to air-to-air heat pump and electric heating

    International Nuclear Information System (INIS)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Skjevrak, Geir; Hertwich, Edgar G.

    2010-01-01

    In 2003, the high dependency on electric heating combined with the high electricity price prompted a significant number of Norwegian households to consider alternative heating systems. The government introduced economic support for wood pellet heating and heat pumps. In contrast to the fast growing heat pump market, this financial support has not resulted in a widespread adoption of wood pellet heating. This paper studies factors that influence the choice of heating system based on Norwegian households' perceptions. Electric heating, heat pump and wood pellet heating were compared, with a special focus on wood pellet heating. This study was conducted as a questionnaire survey on two independent samples. The first sample consisted of 188 randomly chosen Norwegian households, mainly using electric heating; the second sample consisted of 461 households using wood pellet heating. Our results show that socio-demographic factors, communication among households, the perceived importance of heating system attributes, and the applied decision strategy all influence the Norwegian homeowners. The significance of these factors differs between the two samples and the preferred type of anticipated future heating system. Strategies for possible interventions and policy initiatives are discussed.

  15. A Spatial Framework to Map Heat Health Risks at Multiple Scales.

    Science.gov (United States)

    Ho, Hung Chak; Knudby, Anders; Huang, Wei

    2015-12-18

    In the last few decades extreme heat events have led to substantial excess mortality, most dramatically in Central Europe in 2003, in Russia in 2010, and even in typically cool locations such as Vancouver, Canada, in 2009. Heat-related morbidity and mortality is expected to increase over the coming centuries as the result of climate-driven global increases in the severity and frequency of extreme heat events. Spatial information on heat exposure and population vulnerability may be combined to map the areas of highest risk and focus mitigation efforts there. However, a mismatch in spatial resolution between heat exposure and vulnerability data can cause spatial scale issues such as the Modifiable Areal Unit Problem (MAUP). We used a raster-based model to integrate heat exposure and vulnerability data in a multi-criteria decision analysis, and compared it to the traditional vector-based model. We then used the Getis-Ord G(i) index to generate spatially smoothed heat risk hotspot maps from fine to coarse spatial scales. The raster-based model allowed production of maps at spatial resolution, more description of local-scale heat risk variability, and identification of heat-risk areas not identified with the vector-based approach. Spatial smoothing with the Getis-Ord G(i) index produced heat risk hotspots from local to regional spatial scale. The approach is a framework for reducing spatial scale issues in future heat risk mapping, and for identifying heat risk hotspots at spatial scales ranging from the block-level to the municipality level.

  16. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  17. Sensitivities Affecting Heat and Urban Heat Island Effect on Local Scale Projected to Neighborhood Scale in Baltimore, Maryland

    Science.gov (United States)

    Sze, C.; Zaitchik, B. F.; Scott, A.

    2015-12-01

    Urban regions are often impacted more by heat than adjacent rural areas, which is a phenomenon known as the urban heat island (UHI) effect. Urban areas are also highly heterogeneous and notoriously difficult to monitor using standard meteorological protocols—the hottest microclimates within a city often occur in locations that lack open, representative installation sites that are an adequate distance from buildings and direct heat sources. To investigate the challenges of monitoring urban heat, this study examines the sensitivity of temperature and humidity sensors currently used in a Baltimore UHI monitoring network to differences in sun exposure, material on which the data collecting instrument is attached, and land cover class of the vicinity. Sensitivity to sun exposure and attachment site can be interpreted as sources of uncertainty for urban heat monitoring, while sensitivity to land cover may reflect a true source of local temperature and humidity variability. In this study, we present results from a test deployment designed to assess the sensitivity of heat measurements to each of these three factors. We then apply these results to interpret measurements taken across the entire Baltimore UHI monitoring network. These results can then be used to improve heat measurements and more accurately represent and quantify the UHI effect on a broader scale, such as in neighborhoods or urban centers.

  18. Workplace heat stress, health and productivity ? an increasing challenge for low and middle-income countries during climate change

    OpenAIRE

    Kjellstrom, Tord; Holmer, Ingvar; Lemke, Bruno

    2009-01-01

    Background: Global climate change is already increasing the average temperature and direct heat exposure in many places around the world. Objectives: To assess the potential impact on occupational health and work capacity for people exposed at work to increasing heat due to climate change. Design: A brief review of basic thermal physiology mechanisms, occupational heat exposure guidelines and heat exposure changes in selected cities. Results: In countries with very hot seasons, workers are al...

  19. A Study on the Consistency of Discretization Equation in Unsteady Heat Transfer Calculations

    Directory of Open Access Journals (Sweden)

    Wenhua Zhang

    2013-01-01

    Full Text Available The previous studies on the consistency of discretization equation mainly focused on the finite difference method, but the issue of consistency still remains with several problems far from totally solved in the actual numerical computation. For instance, the consistency problem is involved in the numerical case where the boundary variables are solved explicitly while the variables away from the boundary are solved implicitly. And when the coefficient of discretization equation of nonlinear numerical case is the function of variables, calculating the coefficient explicitly and the variables implicitly might also give rise to consistency problem. Thus the present paper mainly researches the consistency problems involved in the explicit treatment of the second and third boundary conditions and that of thermal conductivity which is the function of temperature. The numerical results indicate that the consistency problem should be paid more attention and not be neglected in the practical computation.

  20. Drought priming effects on alleviating later damages of heat and drought stress in different wheat cultivars

    DEFF Research Database (Denmark)

    Mendanha, Thayna; Hyldgaard, Benita; Ottosen, Carl-Otto

    The ongoing change is climate; in particular the increase of drought and heat waves episodes are a major challenge in the prospect of food safety. Under many field conditions, plants are usually exposed to mild intermittent stress episodes rather than a terminal stress event. Previous, but limited...... studies suggest that plants subjected to early stress (primed) can be more resistant to future stress exposure than those not stressed during seedling stage. In our experiment we aimed to test if repeated mild drought stresses could improve heat and drought tolerance during anthesis heat and drought...... stresses in wheat cultivars. Two wheat cultivars, Gladius and Paragon, were grown in a fully controlled gravimetric platform and subjected to either no stress (control) or two (P) drought cycles during seedling stage, at three and five complete developed leaves. Each cycle consisted of withholding water...

  1. Effectiveness of a heat exchanger in a heat pump clothes dryer

    Science.gov (United States)

    Nasution, A. H.; Sembiring, P. G.; Ambarita, H.

    2018-02-01

    This paper deals with study on a heat pump clothes dryer coupled with a heat exchanger. The objective is to explore the effects of the heat exchanger on the performance of the heat pump dryer. The heat pump dryer consists of a vapor compression cycle and integrated with a drying room with volume 1 m3. The power of compressor is 800 Watt and the refrigerant of the cycle is R22. The heat exchanger is a flat plate type with dimensions of 400 mm × 400 mm × 400 mm. The results show the present of the heat exchanger increase the performance of the heat pump dryer. In the present experiment the COP, TP and SMER increase 15.11%, 4.81% and 58.62%, respectively. This is because the heat exchanger provides a better drying condition in the drying room with higher temperature and lower relative humidity in comparison with heat pump dryer without heat exchanger. The effectiveness of the heat exchanger is also high, it is above 50%. It is suggested to install a heat exchanger in a heat pump dryer.

  2. Ten days of repeated local forearm heating does not affect cutaneous vascular function.

    Science.gov (United States)

    Francisco, Michael A; Brunt, Vienna E; Jensen, Krista Nicole; Lorenzo, Santiago; Minson, Christopher T

    2017-08-01

    The aim of the present study was to determine whether 10 days of repeated local heating could induce peripheral adaptations in the cutaneous vasculature and to investigate potential mechanisms of adaptation. We also assessed maximal forearm blood flow to determine whether repeated local heating affects maximal dilator capacity. Before and after 10 days of heat training consisting of 1-h exposures of the forearm to 42°C water or 32°C water (control) in the contralateral arm (randomized and counterbalanced), we assessed hyperemia to rapid local heating of the skin ( n = 14 recreationally active young subjects). In addition, sequential doses of acetylcholine (ACh, 1 and 10 mM) were infused in a subset of subjects ( n = 7) via microdialysis to study potential nonthermal microvascular adaptations following 10 days of repeated forearm heat training. Skin blood flow was assessed using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC) was calculated as laser-Doppler red blood cell flux divided by mean arterial pressure. Maximal cutaneous vasodilation was achieved by heating the arm in a water-spray device for 45 min and assessed using venous occlusion plethysmography. Forearm vascular conductance (FVC) was calculated as forearm blood flow divided by mean arterial pressure. Repeated forearm heating did not increase plateau percent maximal CVC (CVC max ) responses to local heating (89 ± 3 vs. 89 ± 2% CVC max , P = 0.19), 1 mM ACh (43 ± 9 vs. 53 ± 7% CVC max , P = 0.76), or 10 mM ACh (61 ± 9 vs. 85 ± 7% CVC max , P = 0.37, by 2-way repeated-measures ANOVA). There was a main effect of time at 10 mM ACh ( P = 0.03). Maximal FVC remained unchanged (0.12 ± 0.02 vs. 0.14 ± 0.02 FVC, P = 0.30). No differences were observed in the control arm. Ten days of repeated forearm heating in recreationally active young adults did not improve the microvascular responsiveness to ACh or local heating. NEW & NOTEWORTHY We show for the first time that 10 days of repeated

  3. Heat Tolerance Induction of the Indian Meal Moth (Lepidoptera: Pyralidae) Is Accompanied by Upregulation of Heat Shock Proteins and Polyols.

    Science.gov (United States)

    Kim, Minhyun; Lee, Seunghee; Chun, Yong Shik; Na, Jahyun; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2017-08-01

    The Indian meal moth, Plodia interpunctella, causes massive damage to stored grains and processed foods. Heat treatment has been widely used to control insect pests infesting stored grains. However, heat treatment may result in unsatisfactory control owing to heat tolerance of target insects. This study quantified the heat tolerance and analyzed its induction in P. interpunctella. Susceptibility of P. interpunctella to different high temperatures was assessed in all developmental stages. Heat treatment at 44 °C for 1 h caused significant mortalities to all developmental stages, with late-instar larvae exhibiting the highest tolerance. However, the survivorship to heat treatment was significantly increased by pre-exposure to 37 °C for 30 min. The induction of heat tolerance was accompanied by upregulation of two heat shock proteins of Hsc70 and Hsp90. Trehalose and glycerol concentrations in the hemolymph also increased after pre-exposure to 37 °C for 30 min. RNA interference (RNAi) by specific double-stranded RNAs effectively suppressed the inducible expressions of both Hsc70 and Hsp90 in response to 37 °C for 30 min. Either RNAi of Hsc70 or Hsp90 significantly impaired the heat tolerance induction of P. interpunctella. These results suggest that the induction of heat tolerance in P. interpunctella involves the upregulation of these heat shock proteins and hemolymph polyol levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Occupational Heat Stress and Kidney Health: From Farms to Factories.

    Science.gov (United States)

    Nerbass, Fabiana B; Pecoits-Filho, Roberto; Clark, William F; Sontrop, Jessica M; McIntyre, Christopher W; Moist, Louise

    2017-11-01

    Millions of workers around the world are exposed to high temperatures, intense physical activity, and lax labor practices that do not allow for sufficient rehydration breaks. The extent and consequences of heat exposure in different occupational settings, countries, and cultural contexts is not well studied. We conducted an in-depth review to examine the known effects of occupational heat stress on the kidney. We also examined methods of heat-stress assessment, strategies for prevention and mitigation, and the economic consequences of occupational heat stress. Our descriptive review summarizes emerging evidence that extreme occupational heat stress combined with chronic dehydration may contribute to the development of CKD and ultimately kidney failure. Rising global temperatures, coupled with decreasing access to clean drinking water, may exacerbate the effects of heat exposure in both outdoor and indoor workers who are exposed to chronic heat stress and recurrent dehydration. These changes create an urgent need for health researchers and industry to identify work practices that contribute to heat-stress nephropathy, and to test targeted, robust prevention and mitigation strategies. Preventing occupational heat stress presents a great challenge for a concerted multidisciplinary effort from employers, health authorities, engineers, researchers, and governments.

  5. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?

    Science.gov (United States)

    Zheng, Jincheng; Cheng, Xiongbin; Hoffmann, Ary A; Zhang, Bo; Ma, Chun-Sen

    2017-10-01

    Thermal stress at one life stage can affect fitness at a later stage in ectotherms with complex life cycles. Most relevant studies have focused on extreme stress levels, but here we also show substantial fitness effects in a moth when pupae are exposed to a relatively mild and sublethal heat stress. We consider the impact of a 35°C heat stress of 2h in three geographically separate populations of the oriental fruit moth (OFM, Grapholita molesta) from northern, middle and southern China. Heat stress negatively affected fecundity but increased adult heat resistance and adult longevity. Fitness effects were mostly consistent across populations but there were also some population differences. In the Shenyang population from northern China, there was a hormetic effect of heat on female longevity not evident in the other populations. Adults from all populations had higher LT 50 s due to heat stress after pupal exposure to the sublethal stress. These results highlight that the pupal stage is a particularly sensitive window for development and they have implications for seasonal adaptation in uncertain environments as well as changes in pest dynamics under climate warming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Integrating local urban climate modelling and mobile sensor data for personal exposure assessments in the context of urban heat island effect

    Science.gov (United States)

    Ueberham, Maximilian; Hertel, Daniel; Schlink, Uwe

    2017-04-01

    Deeper knowledge about urban climate conditions is getting more important in the context of climate change, urban population growth, urban compaction and continued surface sealing. Especially the urban heat island effect (UHI) is one of the most significant human induced alterations of Earth's surface climate. According to this the appearance frequency of heat waves in cities will increase with deep impacts on personal thermal comfort, human health and local residential quality of citizens. UHI can be very heterogenic within a city and research needs to focus more on the neighborhood scale perspective to get further insights about the heat burden of individuals. However, up to now, few is known about local thermal environmental variances and personal exposure loads. To monitor these processes and the impact on individuals, improved monitoring approaches are crucial, complementing data recorded at conventional fixed stations. Therefore we emphasize the importance of micro-meteorological modelling and mobile measurements to shed new light on the nexus of urban human-climate interactions. Contributing to this research we jointly present the approaches of our two PhD-projects. Firstly we illustrate on the basis of an example site, how local thermal conditions in an urban district can be simulated and predicted by a micro-meteorological model. Secondly we highlight the potentials of personal exposure measurements based on an evaluation of mobile micro-sensing devices (MSDs) and analyze and explain differences between model predictions and mobile records. For the examination of local thermal conditions we calculated ENVI-met simulations within the "Bayerischer Bahnhof" quarter in Leipzig (Saxony, Germany; 51°20', 12°22'). To accomplish the maximum temperature contrasts within the diverse built-up structures we chose a hot summer day (25 Aug 2016) under autochthonous weather conditions. From these simulations we analyzed a UHI effect between the model core (urban area

  7. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    Science.gov (United States)

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  8. The effects of smoking and nicotine ingestion on exercise heat tolerance.

    Science.gov (United States)

    Druyan, Amit; Atias, Danit; Ketko, Itay; Cohen-Sivan, Yoav; Heled, Yuval

    2017-03-01

    Smoking has a thermogenic effect and is associated with low physical performance. Nevertheless, a direct, quantitative effect of acute smoking on exercise heat tolerance has not been reported. Sixteen healthy young male volunteers, eight cigarette smokers, and eight non-smokers participated in the study. All subjects performed a maximal oxygen consumption test (VO2max) and a standardized heat tolerance test (HTT) after at least 12 h without smoking under the following conditions: no nicotine exposure, 10 min after nicotine exposure (2 mg nicotine lozenge), and 10 min after smoking two cigarettes (0.8 mg nicotine in each cigarette, smokers only). There was no significant effect of nicotine exposure on physiological performance and heat tolerance in the non-smokers group. In the smokers group, cigarette smoking, but not nicotine ingestion, resulted with higher heart rate (by 9±9 bpm) at the end of the HTT (psmoking and nicotine ingestion increased smokers' rectal temperature at the end of the HTT (by 0.24±0.16°C and 0.21±0.26°C, respectively, psmoking in the smokers group compared with no exposure (2.13±2.57 and 2.48±2.76, respectively, psmoking and nicotine ingestion increase the physiological strain during a HTT in smokers. Acute smoking may, therefore, increase heat intolerance and the risk to heat injuries.

  9. Destabilization and recovery of a yeast prion after mild heat shock.

    Science.gov (United States)

    Newnam, Gary P; Birchmore, Jennifer L; Chernoff, Yury O

    2011-05-06

    Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Increased mortality associated with extreme-heat exposure in King County, Washington, 1980-2010

    Science.gov (United States)

    Isaksen, Tania Busch; Fenske, Richard A.; Hom, Elizabeth K.; Ren, You; Lyons, Hilary; Yost, Michael G.

    2016-01-01

    Extreme heat has been associated with increased mortality, particularly in temperate climates. Few epidemiologic studies have considered the Pacific Northwest region in their analyses. This study quantified the historical (May to September, 1980-2010) heat-mortality relationship in the most populous Pacific Northwest County, King County, Washington. A relative risk (RR) analysis was used to explore the relationship between heat and all-cause mortality on 99th percentile heat days, while a time series analysis, using a piece-wise linear model fit, was used to estimate the effect of heat intensity on mortality, adjusted for temporal trends. For all ages, all causes, we found a 10 % (1.10 (95 % confidence interval (CI), 1.06, 1.14)) increase in the risk of death on a heat day versus non-heat day. When considering the intensity effect of heat on all-cause mortality, we found a 1.69 % (95 % CI, 0.69, 2.70) increase in the risk of death per unit of humidex above 36.0 °C. Mortality stratified by cause and age produced statistically significant results using both types of analyses for: all-cause, non-traumatic, circulatory, cardiovascular, cerebrovascular, and diabetes causes of death. All-cause mortality was statistically significantly modified by the type of synoptic weather type. These results demonstrate that heat, expressed as humidex, is associated with increased mortality on heat days, and that risk increases with heat's intensity. While age was the only individual-level characteristic found to modify mortality risks, statistically significant increases in diabetes-related mortality for the 45-64 age group suggests that underlying health status may contribute to these risks.

  11. Study of fuel cell powerplant with heat recovery

    Science.gov (United States)

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  12. Conjugated heat transfer of natural convection in pool with internal heat sources and convection in the tube

    International Nuclear Information System (INIS)

    Li Longjian; Liu Hongtao; Cui Wenzhi

    2007-01-01

    The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)

  13. Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change.

    Science.gov (United States)

    Kjellstrom, Tord; Holmer, Ingvar; Lemke, Bruno

    2009-11-11

    Global climate change is already increasing the average temperature and direct heat exposure in many places around the world. To assess the potential impact on occupational health and work capacity for people exposed at work to increasing heat due to climate change. A brief review of basic thermal physiology mechanisms, occupational heat exposure guidelines and heat exposure changes in selected cities. In countries with very hot seasons, workers are already affected by working environments hotter than that with which human physiological mechanisms can cope. To protect workers from excessive heat, a number of heat exposure indices have been developed. One that is commonly used in occupational health is the Wet Bulb Globe Temperature (WBGT). We use WBGT to illustrate assessing the proportion of a working hour during which a worker can sustain work and the proportion of that same working hour that (s)he needs to rest to cool the body down and maintain core body temperature below 38 degrees C. Using this proportion a 'work capacity' estimate was calculated for selected heat exposure levels and work intensity levels. The work capacity rapidly reduces as the WBGT exceeds 26-30 degrees C and this can be used to estimate the impact of increasing heat exposure as a result of climate change in tropical countries. One result of climate change is a reduced work capacity in heat-exposed jobs and greater difficulty in achieving economic and social development in the countries affected by this somewhat neglected impact of climate change.

  14. Fatal Exertional Heat Stroke and American Football Players: The Need for Regional Heat-Safety Guidelines.

    Science.gov (United States)

    Grundstein, Andrew J; Hosokawa, Yuri; Casa, Douglas J

    2018-01-01

      Weather-based activity modification in athletics is an important way to minimize heat illnesses. However, many commonly used heat-safety guidelines include a uniform set of heat-stress thresholds that do not account for geographic differences in acclimatization.   To determine if heat-related fatalities among American football players occurred on days with unusually stressful weather conditions based on the local climate and to assess the need for regional heat-safety guidelines.   Cross-sectional study.   Data from incidents of fatal exertional heat stroke (EHS) in American football players were obtained from the National Center for Catastrophic Sport Injury Research and the Korey Stringer Institute.   Sixty-one American football players at all levels of competition with fatal EHSs from 1980 to 2014.   We used the wet bulb globe temperature (WBGT) and a z-score WBGT standardized to local climate conditions from 1991 to 2010 to assess the absolute and relative magnitudes of heat stress, respectively.   We observed a poleward decrease in exposure WBGTs during fatal EHSs. In milder climates, 80% of cases occurred at above-average WBGTs, and 50% occurred at WBGTs greater than 1 standard deviation from the long-term mean; however, in hotter climates, half of the cases occurred at near average or below average WBGTs.   The combination of lower exposure WBGTs and frequent extreme climatic values in milder climates during fatal EHSs indicates the need for regional activity-modification guidelines with lower, climatically appropriate weather-based thresholds. Established activity-modification guidelines, such as those from the American College of Sports Medicine, work well in the hotter climates, such as the southern United States, where hot and humid weather conditions are common.

  15. A study on the heat transfer characteristics of a self-oscillating heat pipe

    International Nuclear Information System (INIS)

    Yoon, Seok Hun; Oh, Cheol; Choi, Jae Hyuk

    2002-01-01

    In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe

  16. Effect of heat stress on contractility of tissue-engineered artificial skeletal muscle.

    Science.gov (United States)

    Takagi, Shunya; Nakamura, Tomohiro; Fujisato, Toshia

    2018-01-23

    The effects of heat stress on tissue like skeletal muscle have been widely studied. However, the mechanism responsible for the effect of heat stress is still unclear. A useful experimental tissue model is necessary because muscle function in cell culture may differ from native muscle and measuring its contractility is difficult. We previously reported three-dimensional tissue-engineered artificial skeletal muscle (TEM) that can be easily set in a measurement apparatus for quantitative evaluation of contractility. We have now applied TEM to the investigation of heat stress. We analyzed contractility immediately after thermal exposure at 39 °C for 24 or 48 h to evaluate the acute effects and after thermal exposure followed by normal culture to evaluate the aftereffects. Peak twitch contractile force and time-to-peak twitch were used as contractile parameters. Heat stress increased the TCF in the early stage (1 week) after normal culture; the TCF decreased temporarily in the middle to late stages (2-3 weeks). These results suggest that heat stress may affect both myoblast fusion and myotube differentiation in the early stage of TEM culture, but not myotube maturation in the late stage. The TCF increase rate with thermal exposure was significantly higher than that without thermal exposure. Although detailed analysis at the molecular level is necessary for further investigation, our artificial skeletal muscle may be a promising tool for heat stress investigation.

  17. Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, S.; Latala, H. [Krakow Univ. of Agriculture, Krakow (Poland). Inst. of Agricultural Engineering and Computer Science

    2010-07-01

    This paper reported on a study that tested the efficiency of compressor heat pumps cooperating with various types of lower heat sources such as horizontal ground heat exchangers, vertical exchangers and sources operating in the bivalent system. The system for receiving energy consisted of a traditional heating system and liquid-air exchangers. The study identified a strong relationship between the heating efficiency of the analysed systems and temperature inside the structure. The study showed that the bivalent system was fully capable of meeting a heat requirement of about 1 MJ -2.

  18. Pulse mitigation and heat transfer enhancement techniques. Volume 3: Liquid sodium heat transfer facility and transient response of sodium heat pipe to pulse forward and reverse heat load

    Science.gov (United States)

    Chow, L. C.; Hahn, O. J.; Nguyen, H. X.

    1992-08-01

    This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.

  19. Heat illness and death among workers - United States, 2012-2013.

    Science.gov (United States)

    Arbury, Sheila; Jacklitsch, Brenda; Farquah, Opeyemi; Hodgson, Michael; Lamson, Glenn; Martin, Heather; Profitt, Audrey

    2014-08-08

    Exposure to heat and hot environments puts workers at risk for heat stress, which can result in heat illnesses and death. This report describes findings from a review of 2012‒2013 Occupational Safety and Health Administration (OSHA) federal enforcement cases (i.e., inspections) resulting in citations under paragraph 5(a)(1), the "general duty clause" of the Occupational Safety and Health Act of 1970. That clause requires that each employer "furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees". Because OSHA has not issued a heat standard, it must use 5(a)(1) citations in cases of heat illness or death to enforce employers' obligations to provide a safe and healthy workplace. During the 2-year period reviewed, 20 cases of heat illness or death were cited for federal enforcement under paragraph 5(a)(1) among 18 private employers and two federal agencies. In 13 cases, a worker died from heat exposure, and in seven cases, two or more employees experienced symptoms of heat illness. Most of the affected employees worked outdoors, and all performed heavy or moderate work, as defined by the American Conference of Governmental Industrial Hygienists. Nine of the deaths occurred in the first 3 days of working on the job, four of them occurring on the worker's first day. Heat illness prevention programs at these workplaces were found to be incomplete or absent, and no provision was made for the acclimatization of new workers. Acclimatization is the result of beneficial physiologic adaptations (e.g., increased sweating efficiency and stabilization of circulation) that occur after gradually increased exposure to heat or a hot environment. Whenever a potential exists for workers to be exposed to heat or hot environments, employers should implement heat illness prevention programs (including acclimatization requirements) at their

  20. Medical screening and evaluation for heat stress

    International Nuclear Information System (INIS)

    Kenney, L.W.

    1985-01-01

    Wide interindividual variation exists with respect to heat tolerance, making it difficult to predict individual responses. However, several general physical and physiological characteristics are associated with excessive strain and early exhaustion during work in the heat. Included among these correlates of heat intolerance are a medical history of heat illness, acclimation state, age, body composition and size, aerobic fitness level, hypertension, and drug and alcohol use. The approach of choice for medical evaluation for heat exposure is a two-stage evaluation. First, the examining physician should be encouraged to screen out those workers whose characteristics increase their risk of heat intolerance. Secondly, a short exercise test is proposed which accurately predicts relative heat tolerance across a working population. This test is recommended as an adjunct screening test at the examining physician's disgression

  1. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Science.gov (United States)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  2. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Periago, P.M.; Schaik, van W.; Abee, T.; Wouters, J.A.

    2002-01-01

    To monitor the ability of the food-borne opportunistic pathogen Bacillus cereus to survive during minimal processing of food products, we determined its heat-adaptive response. During pre-exposure to 42°C, B. cereus ATCC 14579 adapts to heat exposure at the lethal temperature of 50°C (maximum

  3. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    Science.gov (United States)

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (Pshock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (Pstress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  4. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity......The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes...

  5. Workplace heat stress, health and productivity – an increasing challenge for low and middle-income countries during climate change

    Science.gov (United States)

    Kjellstrom, Tord; Holmer, Ingvar; Lemke, Bruno

    2009-01-01

    Background Global climate change is already increasing the average temperature and direct heat exposure in many places around the world. Objectives To assess the potential impact on occupational health and work capacity for people exposed at work to increasing heat due to climate change. Design A brief review of basic thermal physiology mechanisms, occupational heat exposure guidelines and heat exposure changes in selected cities. Results In countries with very hot seasons, workers are already affected by working environments hotter than that with which human physiological mechanisms can cope. To protect workers from excessive heat, a number of heat exposure indices have been developed. One that is commonly used in occupational health is the Wet Bulb Globe Temperature (WBGT). We use WBGT to illustrate assessing the proportion of a working hour during which a worker can sustain work and the proportion of that same working hour that (s)he needs to rest to cool the body down and maintain core body temperature below 38°C. Using this proportion a ‘work capacity’ estimate was calculated for selected heat exposure levels and work intensity levels. The work capacity rapidly reduces as the WBGT exceeds 26–30°C and this can be used to estimate the impact of increasing heat exposure as a result of climate change in tropical countries. Conclusions One result of climate change is a reduced work capacity in heat-exposed jobs and greater difficulty in achieving economic and social development in the countries affected by this somewhat neglected impact of climate change. PMID:20052422

  6. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila

    DEFF Research Database (Denmark)

    Malmendal, Anders; Overgaard, Johannes; Bundy, Jacob G.

    2006-01-01

    Frequent exposure of terrestrial insects to temperature variation has led to the evolution of protective biochemical and physiological mechanisms, such as the heat shock response, which markedly increases the tolerance to heat stress. Insight into such mechanisms has, so far, mainly relied...... on selective studies of specific compounds or characteristics or studies at the genomic or proteomic levels. In the present study, we have used untargeted NMR metabolomic profiling to examine the biological response to heat stress in Drosophila melanogaster. The metabolite profile was analyzed during recovery...... after exposure to different thermal stress treatments and compared with untreated controls. Both moderate and severe heat stress gave clear effects on the metabolite profiles. The profiles clearly demonstrated that hardening by moderate heat stress led to a faster reestablishment of metabolite...

  7. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure

    International Nuclear Information System (INIS)

    Leon, Lisa R.

    2008-01-01

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that are elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition

  8. Experimental investigation on EV battery cooling and heating by heat pipes

    International Nuclear Information System (INIS)

    Wang, Q.; Jiang, B.; Xue, Q.F.; Sun, H.L.; Li, B.; Zou, H.M.; Yan, Y.Y.

    2015-01-01

    Enhancing battery safety and thermal behaviour are critical for electric vehicles (EVs) because they affect the durability, energy storage, lifecycle, and efficiency of the battery. Prior studies of using air, liquid or phase change materials (PCM) to manage the battery thermal environment have been investigated over the last few years, but only a few take heat pipes into account. This paper aims to provide a full experimental characterisation of heat pipe battery cooling and heating covering a range of battery ‘off-normal’ conditions. Two representative battery cells and a substitute heat source ranging from 2.5 to 40 W/cell have been constructed. Results show that the proposed method is able to keep the battery surface temperature below 40 °C if the battery generates less than 10 W/cell, and helps reduce the battery temperature down to 70 °C under uncommon thermal abuse conditions (e.g. 20–40 W/cell). Additionally, the feasibility of using sintered copper-water heat pipes under sub-zero temperatures has been assessed experimentally by exposing the test rig to −15 °C/−20 °C for more than 14 h. Data indicates that the heat pipe was able to function immediately after long hours of cold exposure and that sub-zero temperature conditions had little impact on heat pipe performance. We therefore conclude that the proposed method of battery cooling and heating via heat pipes is a viable solution for EVs

  9. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  10. Exposure to low infective doses of HCV induces cellular immune responses without consistently detectable viremia or seroconversion in chimpanzees

    International Nuclear Information System (INIS)

    Shata, Mohamed Tarek; Tricoche, Nancy; Perkus, Marion; Tom, Darley; Brotman, Betsy; McCormack, Patricia; Pfahler, Wolfram; Lee, Dong-Hun; Tobler, Leslie H.; Busch, Michael; Prince, Alfred M.

    2003-01-01

    In hepatitis C virus (HCV) infection, there is accumulating data suggesting the presence of cellular immune responses to HCV in exposed but seemingly uninfected populations. Some studies have suggested cross-reactive antigens rather than prior HCV exposure as the main reason for the immune responses. In this study we address this question by analyzing the immune response of chimpanzees that have been sequentially exposed to increasing doses of HCV virions. The level of viremia, as well as the immune responses to HCV at different times after virus inoculation, were examined. Our data indicate that HCV infective doses as low as 1-10 RNA (+) virions induce detectable cellular immune responses in chimpanzees without consistently detectable viremia or persistent seroconversion. However, increasing the infective doses of HCV to 100 RNA (+) virions overcame the low-inoculum-induced immune response and produced high-level viremia followed by seroconversion

  11. Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States.

    Science.gov (United States)

    Hass, Alisa L; Ellis, Kelsey N; Reyes Mason, Lisa; Hathaway, Jon M; Howe, David A

    2016-01-11

    Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center) in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts.

  12. Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States

    Directory of Open Access Journals (Sweden)

    Alisa L. Hass

    2016-01-01

    Full Text Available Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts.

  13. Avoided heat-related mortality through climate adaptation strategies in three US cities.

    Science.gov (United States)

    Stone, Brian; Vargo, Jason; Liu, Peng; Habeeb, Dana; DeLucia, Anthony; Trail, Marcus; Hu, Yongtao; Russell, Armistead

    2014-01-01

    Heat-related mortality in US cities is expected to more than double by the mid-to-late 21st century. Rising heat exposure in cities is projected to result from: 1) climate forcings from changing global atmospheric composition; and 2) local land surface characteristics responsible for the urban heat island effect. The extent to which heat management strategies designed to lessen the urban heat island effect could offset future heat-related mortality remains unexplored in the literature. Using coupled global and regional climate models with a human health effects model, we estimate changes in the number of heat-related deaths in 2050 resulting from modifications to vegetative cover and surface albedo across three climatically and demographically diverse US metropolitan areas: Atlanta, Georgia, Philadelphia, Pennsylvania, and Phoenix, Arizona. Employing separate health impact functions for average warm season and heat wave conditions in 2050, we find combinations of vegetation and albedo enhancement to offset projected increases in heat-related mortality by 40 to 99% across the three metropolitan regions. These results demonstrate the potential for extensive land surface changes in cities to provide adaptive benefits to urban populations at risk for rising heat exposure with climate change.

  14. Avoided heat-related mortality through climate adaptation strategies in three US cities.

    Directory of Open Access Journals (Sweden)

    Brian Stone

    Full Text Available Heat-related mortality in US cities is expected to more than double by the mid-to-late 21st century. Rising heat exposure in cities is projected to result from: 1 climate forcings from changing global atmospheric composition; and 2 local land surface characteristics responsible for the urban heat island effect. The extent to which heat management strategies designed to lessen the urban heat island effect could offset future heat-related mortality remains unexplored in the literature. Using coupled global and regional climate models with a human health effects model, we estimate changes in the number of heat-related deaths in 2050 resulting from modifications to vegetative cover and surface albedo across three climatically and demographically diverse US metropolitan areas: Atlanta, Georgia, Philadelphia, Pennsylvania, and Phoenix, Arizona. Employing separate health impact functions for average warm season and heat wave conditions in 2050, we find combinations of vegetation and albedo enhancement to offset projected increases in heat-related mortality by 40 to 99% across the three metropolitan regions. These results demonstrate the potential for extensive land surface changes in cities to provide adaptive benefits to urban populations at risk for rising heat exposure with climate change.

  15. Heat stress and inadequate sanitary facilities at workplaces - an occupational health concern for women?

    Science.gov (United States)

    Venugopal, Vidhya; Rekha, Shanmugam; Manikandan, Krishnamoorthy; Latha, Perumal Kamalakkannan; Vennila, Viswanathan; Ganesan, Nalini; Kumaravel, Perumal; Chinnadurai, Stephen Jeremiah

    2016-01-01

    Health concerns unique to women are growing with the large number of women venturing into different trades that expose them to hot working environments and inadequate sanitation facilities, common in many Indian workplaces. The study was carried out to investigate the health implications of exposures to hot work environments and inadequate sanitation facilities at their workplaces for women workers. A cross-sectional study was conducted with 312 women workers in three occupational sectors in 2014-2015. Quantitative data on heat exposures and physiological heat strain indicators such as core body temperature (CBT), sweat rate (SwR), and urine specific gravity (USG) were collected. A structured questionnaire captured workers perceptions about health impacts of heat stress and inadequate sanitary facilities at the workplace. Workplace heat exposures exceeded the threshold limit value for safe manual work for 71% women (Avg. wet bulb globe temperature=30°C±2.3°C) during the study period. Eighty-seven percent of the 200 women who had inadequate/no toilets at their workplaces reported experiencing genitourinary problems periodically. Above normal CBT, SwR, and USG in about 10% women workers indicated heat strain and moderate dehydration that corroborated well with their perceptions. Observed significant associations between high-heat exposures and SwR (t=-2.3879, p=0.0192), inadequate toilet facilities and self-reported adverse heat-related health symptoms (χ (2)=4.03, p=0.0444), and prevalence of genitourinary issues (χ (2)=42.92, p=0.0005×10(-7)) reemphasize that heat is a risk and lack of sanitation facilities is a major health concern for women workers. The preliminary evidence suggests that health of women workers is at risk due to occupational heat exposures and inadequate sanitation facilities at many Indian workplaces. Intervention through strong labor policies with gender sensitivity is the need of the hour to empower women, avert further health risks, and

  16. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-10-01

    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T∞~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T∞~800 K at ~4° N and the auroral temperatures simultaneously. Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  17. Heat defense control in an experimental heat disorder

    Science.gov (United States)

    Romanovsky, A. A.; Blatteis, C. M.

    Both whole-body heat exposure and intraperitoneal heating (IPH) result in a body temperature (Tb) fall that occurs once heating is abated (''hyperthermia- induced hypothermia''). This phenomenon involves a decrease in the threshold Tb (Tb-thresh) for activation of metabolic heat production (cold defense). Whether the Tb-thresh for ear skin vasodilation (heat defense) also changes during hyperthermia-induced hypothermia remains unknown. In experiment 1, we applied IPH to guinea pigs by perfusing water through a preimplanted intraperitoneal thermode and delivered the total heat load of either approximately 1.5 kJ (''short'' IPH; perfusion duration: 14 min) or approximately 3.0 kJ (''long'' IPH; 40 min). Short IPH caused skin vasodilation and a 1.1°C rise in Tb; no hypothermia occurred when IPH ceased. Long IPH caused vasodilation and hyperthermia of a comparable magnitude (1.4°C) that were followed by a Tb fall to 1.9°C below the preheating value. In experiment 2, the Tb-thresh for skin vasodilation was measured twice: at the beginning of long IPH and at the nadir of the post-IPH hypothermia. The two Tb-thresh values were 39.0 (SEM 0.1)°C and 39.2 (SEM 0.2)°C respectively. In the controls, the Tb-thresh was measured at the beginning and after short IPH; both control values were 39.0 (SEM 0.2)°C. We conclude that the hyperthermia- induced hypothermia, although previously shown to be coupled with a decrease in the Tb-thresh for cold defense, occurs without any substantial change in the Tb-thresh for heat defense. We speculate that postheating thermoregulatory disorders are associated with threshold dissociation, thus representing the poikilothermic (wide dead-band) type of Tb control.

  18. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology

    Directory of Open Access Journals (Sweden)

    Nguyen-Hieu Tung

    2012-09-01

    Full Text Available Abstract Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p  Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

  19. The Consistency of Isotopologues of Ambient Atmospheric Nitric Acid in Passively Collected Samples

    Science.gov (United States)

    Bell, M. D.; Sickman, J. O.; Bytnerowicz, A.; Padgett, P.; Allen, E. B.

    2012-12-01

    Anthropogenic sources of nitrogen oxides have previously been shown to have distinctive isotopic signatures of oxygen and nitrogen. Nylon filters are currently used in passive sampling arrays to measure ambient atmospheric nitric acid concentrations and estimate deposition rates. This experiment measured the ability of nylon filters to consistently collect isotopologues of atmospheric nitric acid in the same ratios as they are present in the atmosphere. Samplers were deployed in continuous stirred tank reactors (CSTR) and at field sites across a nitrogen deposition gradient in Southern California. Filters were exposed over a four week period with individual filters being subjected to 1-4 week exposure times. Extracted nitric acid were measured for δ18O and δ15N ratios and compared for consistency based on length of exposure and amount of HNO3 collected. Filters within the CSTRs collected HNO3 at a consistent rate in both high and low concentration chambers. After two weeks of exposure, the mean δ18O values were within 0.5‰ of the δ18O of the source HNO3 solution. The mean of all weekly exposures were within 0.5‰ of the δ15N of the source solution, but after three weeks, the mean δ15N of adsorbed HNO3 was within 0.2‰. As the length of the exposure increased, the variability of measured delta values decreased for both elements. The field samplers collected HNO3 consistent with previously measured values along a deposition gradient. The mean δ18O at high deposition sites was 52.2‰ compared to 35.7‰ at the low deposition sites. Mean δ15N values were similar at all sites across the deposition gradient. Due to precipitation events occurring during the exposure period, the δ15N and δ18O of nitric acid were highly variable at all field sites. At single sites, changes in δ15N and δ18O were negatively correlated, consistent with two-sourcing mixing dynamics, but the slope of the regressions differed between high and low deposition sites. Anthropogenic

  20. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2016-05-15

    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. © 2016. Published by The Company of Biologists Ltd.

  1. Heat exchanger with dirt separator for the use of the heat energy of waste water

    Energy Technology Data Exchange (ETDEWEB)

    1975-11-13

    Well-known heat exchanger systems consist of separate heat exchangers and dirt separators. In the case here in question both devices form a unit. A finned tube heat exchanger is positioned in the center of the dirt separator and is given extra protection through deflection sheets. A safety overflow is supplied so that no residue can appear in the waste water line when decanting.

  2. Passive solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Wiberg, K

    1981-11-10

    The present work treats the possibilities for heating according to the passive solar heating method. Problems of 'spatial organization in an energy-saving society' are distinguished from among other social problems. The final delimination of the actual problems under investigation consists of the use of passive solar heating and especially the 'consequences of such solar heating exploitation upon the form and structures' of planning and construction. In the concluding chapter an applied example shows how this method can be used in designing an urban area and what are its limitations. The results indicate the possibilities and difficulties in attempting to transfer this ideal and general method into models and directives for form and structure from which examples of the actual possibilities in practical planning can be given.

  3. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  4. HEAT-INDUCED CHANGES IN ALDOSTERONE LEVEL AND MINERAL BALANCE IN EGYPTIAN BUFFALO CALVES

    International Nuclear Information System (INIS)

    NESSIM, M.Z.; KAMAL, T.H.

    2010-01-01

    Eight male buffalo calves (13 months old) were used in the present study. The animals were maintained in metabolic cages inside a climatic chamber for 2 weeks under mild climate at 21 0 C and 73% RH for 6 hours daily as an adjustment period followed by 7 days at the same climatic conditions as a control period then followed by a heat exposure period for 7 days at 35-42 0 C and 40-50 % RH for 6 hours daily. The animals were fed individually on concentrates and wheat straw. Plasma aldosterone was estimated on the first day after 6 hours of each mild and hot exposure periods. Sodium, potassium, calcium, phosphorus and magnesium balances were estimated on the last three days of control and heat exposure periods. Rectal temperature and respiration rate were recorded daily during both periods. The rectal temperature was raised (P 0 C by the end of 6 hours heat exposure period. The respiration rate was increased (P<0.01) at the end of 6 hours of heat exposure from 25 to 110.81 breaths/minute. Aldosterone was increased (P<0.05) from 5.79 to 37.11 pg/ml whereas sodium, potassium, calcium, phosphorus and magnesium were decreased (P<0.01) by 19.16 %, 40.70%, 46.05 %, 35.69 % and 48.99%, respectively.

  5. Evaluation of occupation hot exposure in industrial workplaces in a subtropical country

    Directory of Open Access Journals (Sweden)

    Ming-Chi Wei

    2017-06-01

    Full Text Available Objectives: The objective of this study has been to evaluate the occupational heat exposure of 12 workers at 5 plants in a subtropical country. Material and Methods: The heat stresses and strain on workers in 5 plants were assessed by the International Organization for Standardization (ISO 7243 index (wet bulb globe temperature – WBGT and the ISO 7933 index (maximum allowable exposure time – Dlim. Results: Results indicated that 42% of the subjects (5 workers surpassed the WBGT limits. According to the Dlim, 42% of the subjects could not continue working in the hot environments. The relationships between the various heat stress indices and the WBGT index were also correlated. However, further studies from different heat environments and more subjects should be performed. Conclusions: The sensitive dependence of skin temperature on meteorological and physiological indices for each subject was clearly observed. Obviously, the heart rate response to metabolic rate was much greater than that caused by environmental heat alone. The exponential relationship between workers’ duration-limited exposure time, predicted by various estimated criteria, and WBGT were also found. Int J Occup Med Environ Health 2017;30(3:379–395

  6. Heat stress and inadequate sanitary facilities at workplaces – an occupational health concern for women?

    Science.gov (United States)

    Venugopal, Vidhya; Rekha, Shanmugam; Manikandan, Krishnamoorthy; Latha, Perumal Kamalakkannan; Vennila, Viswanathan; Ganesan, Nalini; Kumaravel, Perumal; Chinnadurai, Stephen Jeremiah

    2016-01-01

    Background Health concerns unique to women are growing with the large number of women venturing into different trades that expose them to hot working environments and inadequate sanitation facilities, common in many Indian workplaces. Objective The study was carried out to investigate the health implications of exposures to hot work environments and inadequate sanitation facilities at their workplaces for women workers. Design A cross-sectional study was conducted with 312 women workers in three occupational sectors in 2014–2015. Quantitative data on heat exposures and physiological heat strain indicators such as core body temperature (CBT), sweat rate (SwR), and urine specific gravity (USG) were collected. A structured questionnaire captured workers perceptions about health impacts of heat stress and inadequate sanitary facilities at the workplace. Results Workplace heat exposures exceeded the threshold limit value for safe manual work for 71% women (Avg. wet bulb globe temperature=30°C±2.3°C) during the study period. Eighty-seven percent of the 200 women who had inadequate/no toilets at their workplaces reported experiencing genitourinary problems periodically. Above normal CBT, SwR, and USG in about 10% women workers indicated heat strain and moderate dehydration that corroborated well with their perceptions. Observed significant associations between high-heat exposures and SwR (t=−2.3879, p=0.0192), inadequate toilet facilities and self-reported adverse heat-related health symptoms (χ2=4.03, p=0.0444), and prevalence of genitourinary issues (χ2=42.92, p=0.0005×10−7) reemphasize that heat is a risk and lack of sanitation facilities is a major health concern for women workers. Conclusions The preliminary evidence suggests that health of women workers is at risk due to occupational heat exposures and inadequate sanitation facilities at many Indian workplaces. Intervention through strong labor policies with gender sensitivity is the need of the hour to

  7. Heat stress and inadequate sanitary facilities at workplaces – an occupational health concern for women?

    Directory of Open Access Journals (Sweden)

    Vidhya Venugopal

    2016-09-01

    Full Text Available Background: Health concerns unique to women are growing with the large number of women venturing into different trades that expose them to hot working environments and inadequate sanitation facilities, common in many Indian workplaces. Objective: The study was carried out to investigate the health implications of exposures to hot work environments and inadequate sanitation facilities at their workplaces for women workers. Design: A cross-sectional study was conducted with 312 women workers in three occupational sectors in 2014–2015. Quantitative data on heat exposures and physiological heat strain indicators such as core body temperature (CBT, sweat rate (SwR, and urine specific gravity (USG were collected. A structured questionnaire captured workers perceptions about health impacts of heat stress and inadequate sanitary facilities at the workplace. Results: Workplace heat exposures exceeded the threshold limit value for safe manual work for 71% women (Avg. wet bulb globe temperature=30°C±2.3°C during the study period. Eighty-seven percent of the 200 women who had inadequate/no toilets at their workplaces reported experiencing genitourinary problems periodically. Above normal CBT, SwR, and USG in about 10% women workers indicated heat strain and moderate dehydration that corroborated well with their perceptions. Observed significant associations between high-heat exposures and SwR (t=−2.3879, p=0.0192, inadequate toilet facilities and self-reported adverse heat-related health symptoms (χ2=4.03, p=0.0444, and prevalence of genitourinary issues (χ2=42.92, p=0.0005×10−7 reemphasize that heat is a risk and lack of sanitation facilities is a major health concern for women workers. Conclusions: The preliminary evidence suggests that health of women workers is at risk due to occupational heat exposures and inadequate sanitation facilities at many Indian workplaces. Intervention through strong labor policies with gender sensitivity is the

  8. Case studies on heat stress related perceptions in different industrial sectors in southern India.

    Science.gov (United States)

    Balakrishnan, Kalpana; Ramalingam, Ayyappan; Dasu, Venkatesan; Stephen, Jeremiah Chinnadurai; Sivaperumal, Mohan Raj; Kumarasamy, Deepan; Mukhopadhyay, Krishnendu; Ghosh, Santu; Sambandam, Sankar

    2010-11-29

    Linkages between thermal loads and its physiological consequences have been widely studied in non-tropical developed country settings. In many developing countries like India, despite the widespread recognition of the problem, limited attempts have been made to estimate health impacts related to occupational heat stress and fewer yet to link heat stress with potential productivity losses. This is reflected in the ubiquity of workplaces with limited or no controls to reduce exposures. As a prelude to understanding the feasibility of alternative interventions in different industrial sectors, we present case studies from 10 different industrial units in Tamil Nadu, Chennai, which describe perceptions of occupational heat stress among the workers and supervisors/management.Units were selected from among those who had previously requested an assessment of workplace heat stress exposure at select locations as part of routine industrial hygiene services provided by the investigators. Since the earlier measurements were performed in response to a management request, all units were revisited to generate a simple job and process profile using checklists in order to understand the overall heat exposure situation in the concerned unit. This was followed by a simple questionnaire administration to a small subsample of employees to evaluate the perceptions of workers and supervisors/management. Finally, we retrieved available quantitative data from previous measurements of heat stress at these units to correlate prevalence of exposures with respective perceptions.Results indicate that the existing level of controls may not be sufficient for managing work-related heat stress in any of the sectors studied, with wide variations in perceived risks. There was a noticeable disconnect between worker's perceptions and their ability to secure workplace improvements related to heat stress from the management. Wider availability of engineering and administrative controls in the industries

  9. Case studies on heat stress related perceptions in different industrial sectors in southern India

    Directory of Open Access Journals (Sweden)

    Kalpana Balakrishnan

    2010-11-01

    Full Text Available Linkages between thermal loads and its physiological consequences have been widely studied in non-tropical developed country settings. In many developing countries like India, despite the widespread recognition of the problem, limited attempts have been made to estimate health impacts related to occupational heat stress and fewer yet to link heat stress with potential productivity losses. This is reflected in the ubiquity of workplaces with limited or no controls to reduce exposures. As a prelude to understanding the feasibility of alternative interventions in different industrial sectors, we present case studies from 10 different industrial units in Tamil Nadu, Chennai, which describe perceptions of occupational heat stress among the workers and supervisors/management.Units were selected from among those who had previously requested an assessment of workplace heat stress exposure at select locations as part of routine industrial hygiene services provided by the investigators. Since the earlier measurements were performed in response to a management request, all units were revisited to generate a simple job and process profile using checklists in order to understand the overall heat exposure situation in the concerned unit. This was followed by a simple questionnaire administration to a small subsample of employees to evaluate the perceptions of workers and supervisors/management. Finally, we retrieved available quantitative data from previous measurements of heat stress at these units to correlate prevalence of exposures with respective perceptions.Results indicate that the existing level of controls may not be sufficient for managing work-related heat stress in any of the sectors studied, with wide variations in perceived risks. There was a noticeable disconnect between worker's perceptions and their ability to secure workplace improvements related to heat stress from the management. Wider availability of engineering and administrative

  10. Occupational exposures during routine activities in coal-fueled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mona J. Bird; David L. MacIntosh; Phillip L. Williams [University of Georgia, Athens, GA (United States). Dept. of Environmental Health Science

    2004-06-15

    Limited information is available on occupational exposures during routine, nonoutage work activities in coal-fueled power plants. This study evaluated occupational exposures to the principal contaminants in the facilities, including respirable dust (coal dust), arsenic, noise, asbestos, and heat stress. The data were collected over a 3-month period, during the summer of 2001, in 5 representative power plants of a large southeastern power-generating company. From 4 of the 5 facilities, 392 air samples and 302 noise samples were collected with approximately 50 respirable coal dust, 32 arsenic, 15 asbestos, and 70 noise samples from each of the 4 plants. One of the previously surveyed facilities was also evaluated for heat stress, and 1 additional coal-fueled power plant was surveyed for a total of 20 personal heat stress samples. Of the nearly 400 air samples collected, only 1 exceeded the allowable occupational exposure value. For the noise samples, 55 were equal to or greater than the Occupational Safety and Health Administration (OSHA) 8-hour hearing conservation program level of 85 dBA, and 12 were equal to or greater than the OSHA 8-hour permissible exposure level of 90 dBA. The data concluded that some work sites were above the heat stress ceiling values recommended by the National Institute for Occupational Safety and Health (NIOSH). Four of the 20 employees personally monitored exceeded the recommended limits for heart rate or body core temperature.

  11. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. 21 CFR 870.4240 - Cardiopulmonary bypass heat exchanger.

    Science.gov (United States)

    2010-04-01

    ... bypass heat exchanger. (a) Identification. A cardiopulmonary bypass heat exchanger is a device, consisting of a heat exchange system used in extracorporeal circulation to warm or cool the blood or... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heat exchanger. 870.4240...

  13. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-01-01

    Efficient techniques for rapid tritium removal will be necessary for ITER to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 ms is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  14. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  15. The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Basara

    2010-01-01

    Full Text Available During late July and early August 2008, an intense heat wave occurred in Oklahoma City. To quantify the impact of the urban heat island (UHI in Oklahoma City on observed and apparent temperature conditions during the heat wave event, this study used observations from 46 locations in and around Oklahoma City. The methodology utilized composite values of atmospheric conditions for three primary categories defined by population and general land use: rural, suburban, and urban. The results of the analyses demonstrated that a consistent UHI existed during the study period whereby the composite temperature values within the urban core were approximately 0.5∘C warmer during the day than the rural areas and over 2∘C warmer at night. Further, when the warmer temperatures were combined with ambient humidity conditions, the composite values consistently revealed even warmer heat-related variables within the urban environment as compared with the rural zone.

  16. Beetle Exoskeleton May Facilitate Body Heat Acting Differentially across the Electromagnetic Spectrum.

    Science.gov (United States)

    Carrascal, Luis M; Ruiz, Yolanda Jiménez; Lobo, Jorge M

    Exoskeletons of beetles and their associated morphological characteristics can serve many different functions, including thermoregulation. We study the thermal role of the exoskeleton in 13 Geotrupidae dung beetle species using heating experiments under controlled conditions. The main purpose was to measure the influence of heating sources (solar radiance vs. infrared), animal position (dorsal exposure vs. ventral exposure), species identity, and phylogenetic relationships on internal asymptotic temperatures and heating rates. The thermal response was significantly influenced by phylogenetic relatedness, although it was not affected by the apterous condition. The asymptotic internal temperature of specimens was not affected by the thoracic volume but was significantly higher under simulated sunlight conditions than under infrared radiation and when exposed dorsally as opposed to ventrally. There was thus a significant interaction between heating source and body position. Heating rate was negatively and significantly influenced by thoracic volume, and, although insignificantly slower under simulated sunlight, it was significantly affected by body position, being faster under dorsal exposure. The results constitute the first evidence supporting the hypothesis that the beetle exoskeleton acts differentially across the electromagnetic spectrum determining internal body temperatures. This interesting finding suggests the existence of a kind of passive physiology imposed by the exoskeleton and body size, where interspecific relationships play a minor role.

  17. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  18. Using geothermal water for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2006-01-01

    Full Text Available On construction with dimensions 15 x 5 x 2 m, conditions of temperature transmission and vegetables growth are examined. We have been cultivating pepper, cucumber, small cucumber, tomato, and lattice. Over ground heating has been used, consisting of one bent pipe with radius of 10 mm, in the shape of hairpin along the both sides of the construction. Underground heating consists of six pipes with radius of 20 mm on the depth of 350-400 mm. There have been measured the temperature inside construction, the temperature outside construction, the waterflow, and water temperature flowing into and out of the construction. The approximate heating flow factor K is determined by both the equation: heating balance equation and basic equation for temperature transmition. Vegetable growth has been watching during the period of time from March to November 2005.

  19. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    Science.gov (United States)

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p steel industries.

  20. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  1. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    International Nuclear Information System (INIS)

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K.

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis

  2. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds among recently pregnant rural Guatemalan women cooking and heating with solid fuels.

    Science.gov (United States)

    Weinstein, John R; Asteria-Peñaloza, Renée; Diaz-Artiga, Anaité; Davila, Gilberto; Hammond, S Katharine; Ryde, Ian T; Meyer, Joel N; Benowitz, Neal; Thompson, Lisa M

    2017-06-01

    Household air pollution is a major contributor to death and disability worldwide. Over 95% of rural Guatemalan households use woodstoves for cooking or heating. Woodsmoke contains carcinogenic or fetotoxic polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Increased PAHs and VOCs have been shown to increase levels of oxidative stress. We examined PAH and VOC exposures among recently pregnant rural Guatemalan women exposed to woodsmoke and compared exposures to levels seen occupationally or among smokers. Urine was collected from 23 women who were 3 months post-partum three times over 72h: morning (fasting), after lunch, and following dinner or use of wood-fired traditional sauna baths (samples=68). Creatinine-adjusted urinary concentrations of metabolites of four PAHs and eight VOCs were analyzed by liquid chromatography-mass spectrometry. Creatinine-adjusted urinary biomarkers of oxidative stress, 8-isoprostane and 8-OHdG, were analyzed using enzyme-linked immunosorbent assays (ELISA). Long-term (pregnancy through 3 months prenatal) exposure to particulate matter and airborne PAHs were measured. Women using wood-fueled chimney stoves are exposed to high levels of particulate matter (median 48h PM 2.5 105.7μg/m 3 ; inter-quartile range (IQR): 77.6-130.4). Urinary PAH and VOC metabolites were significantly associated with woodsmoke exposures: 2-naphthol (median (IQR) in ng/mg creatinine: 295.9 (74.4-430.9) after sauna versus 23.9 (17.1-49.5) fasting; and acrolein: 571.7 (429.3-1040.7) after sauna versus 268.0 (178.3-398.6) fasting. Urinary PAH (total PAH: ρ=0.89, p0.85) or PAH and VOC biomarkers (ρ=-0.20 to 0.38, p>0.07). Urinary metabolite concentrations were significantly greater than those of heavy smokers (mean cigarettes/day=18) across all PAHs. In 15 (65%) women, maximum 1-hydroxypyrene concentrations exceeded the occupational exposure limit of coke-oven workers. The high concentrations of urinary PAH and VOC metabolites among

  3. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  4. Influence of acute erythrocythemia on temperature regulation during exercise-heat stress

    International Nuclear Information System (INIS)

    Sawka, M.N.; Gonzalez, R.R.; Dennis, R.C.; Young, A.J.; Muza, S.R.; Martin, J.W.; Francesconi, R.P.; Pandolf, K.B.; Valeri, C.R.

    1986-01-01

    We studied the effects of acute erythrocythemia on temperature regulation responses during exercise in the heat. In a double blind study, 6 subjects (Ss) received a 700-ml solution of autologous red blood cells at a 60% Hct, and 3 Ss (control) received a 700-ml saline solution. All Ss attempted a Heat Stress Test (HST) two weeks prior to and 48-h post-transfusion during summer months. After 30 min of rest in a 20 0 C antechamber, the HST consisted of a 120-min exposure (two repeats of 15-min rest and 45-min treadmill walk) in a 35 0 C, 45% rh environment while euhydrated. Maximal oxygen uptake (VO 2 max) and red cell volume (RCV, 51 Cr) were measured approximately 24 h before each HST. For experimental Ss, an increase in RCV (11%, P 2 max (11%, P < 0.05) was found following transfusion, whereas, differences were not observed in the control Ss. During the HSTs for experimental Ss, metabolic rate as well as steady state rectal and esophageal temperatures were similar, but heat storage tended (P = 0.13) to be lower post-transfusion. Steady state local arm (R + C) was reduced (P < 0.05) with no change in total body sweating rate or local arm evaporative heat loss post-transfusion. For control Ss, thermoregulatory responses were generally not altered post-transfusion. Erythrocythemia may improve steady state sensible heat exchange by allowing a greater volume of blood to be directed to the cutaneous vasculature

  5. Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp Expression of Cells Derived from Human Eye

    Directory of Open Access Journals (Sweden)

    Shin Koyama

    2016-08-01

    Full Text Available Human corneal epithelial (HCE-T and human lens epithelial (SRA01/04 cells derived from the human eye were exposed to 60 gigahertz (GHz millimeter-wavelength radiation for 24 h. There was no statistically significant increase in the micronucleus (MN frequency in cells exposed to 60 GHz millimeter-wavelength radiation at 1 mW/cm2 compared with sham-exposed controls and incubator controls. The MN frequency of cells treated with bleomycin for 1 h provided positive controls. The comet assay, used to detect DNA strand breaks, and heat shock protein (Hsp expression also showed no statistically significant effects of exposure. These results indicate that exposure to millimeter-wavelength radiation has no effect on genotoxicity in human eye cells.

  6. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...... was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies...

  7. Consistent pattern of local adaptation during an experimental heat wave in a pipefish-trematode host-parasite system.

    Directory of Open Access Journals (Sweden)

    Susanne H Landis

    Full Text Available Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle as a host and its digenean trematode parasite (Cryptocotyle lingua. In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming.

  8. Self-consistent modelling of ICRH

    International Nuclear Information System (INIS)

    Hellsten, T.; Hedin, J.; Johnson, T.; Laxaaback, M.; Tennfors, E.

    2001-01-01

    The performance of ICRH is often sensitive to the shape of the high energy part of the distribution functions of the resonating species. This requires self-consistent calculations of the distribution functions and the wave-field. In addition to the wave-particle interactions and Coulomb collisions the effects of the finite orbit width and the RF-induced spatial transport are found to be important. The inward drift dominates in general even for a symmetric toroidal wave spectrum in the centre of the plasma. An inward drift does not necessarily produce a more peaked heating profile. On the contrary, for low concentrations of hydrogen minority in deuterium plasmas it can even give rise to broader profiles. (author)

  9. Enhancement of parathion toxicity to quail by heat and cold exposure

    Science.gov (United States)

    Rattner, B.A.; Becker, J.M.; Nakatsugawa, T.

    1987-01-01

    Effects of ambient temperature on the acute oral toxicity of parathion were investigated in Japanese quail (Coturnix japonica) maintained at thermoneutral temperature (26.degree. C) or exposed to elevated (37.degree. C) or reduced (4.degree. C) temperatures commonly encountered by free-ranging wild birds. Based upon estimates of the median lethal dosage, there was up to a two-fold enhancement of parathion toxicity in birds chronically exposed to heat or cold. Twenty-four hours after administration of a low dosage (4 mg/kg body wt, po), there was markedly greater cholinesterase inhibition in surviving heat-exposed quail compared with those reared at 26.degree. C (e.g., brain acetylcholinesterase depression of 42% versus 12%). There were no differences in hepatic activities of parathion oxidase, paraoxonase, or paraoxon deethylase which could account for greater toxicity to chronically heat-exposed birds. In contrast, 4 mg parathion/kg wt elicited less plasma cholinesterase inhibition in cold-exposed quail compared to thermoneutral controls (e.g., birds is substantially influenced by environmental temperature.

  10. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis.

    Science.gov (United States)

    Xu, Shu-Jun; Liu, Chun-Jiang; Jiang, Ping-An; Cai, Wei-Min; Wang, Yan

    2009-03-15

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 degrees C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 degrees C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs.

  11. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis

    International Nuclear Information System (INIS)

    Xu Shujun; Liu Chunjiang; Jiang Pingan; Cai Weimin; Wang Yan

    2009-01-01

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 deg. C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 deg. C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs

  12. Climate conditions, workplace heat and occupational health in South-East Asia in the context of climate change.

    Science.gov (United States)

    Kjellstrom, Tord; Lemke, Bruno; Otto, Matthias

    2017-09-01

    Occupational health is particularly affected by high heat exposures in workplaces, which will be an increasing problem as climate change progresses. People working in jobs of moderate or heavy work intensity in hot environments are at particular risk, owing to exposure to high environmental heat and internal heat production. This heat needs to be released to protect health, and such release is difficult or impossible at high temperatures and high air humidity. A range of clinical health effects can occur, and the heat-related physical exhaustion leads to a reduction of work capacity and labour productivity, which may cause substantial economic losses. Current trends in countries of the World Health Organization South-East Asia Region are towards higher ambient heat levels during large parts of each year, and modelling indicates continuing trends, which will particularly affect low-income individuals and communities. Prevention activities need to address the climate policies of each country, and to apply currently available heat-reducing technologies in workplaces whenever possible. Work activities can be adjusted to reduce exposure to daily heat peaks or seasonal heat concerns. Application of basic occupational health principles, such as supply of drinking water, enforcement of rest periods and training of workers and supervisors, is essential.

  13. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports.

    Science.gov (United States)

    Périard, J D; Racinais, S; Sawka, M N

    2015-06-01

    Exercise heat acclimation induces physiological adaptations that improve thermoregulation, attenuate physiological strain, reduce the risk of serious heat illness, and improve aerobic performance in warm-hot environments and potentially in temperate environments. The adaptations include improved sweating, improved skin blood flow, lowered body temperatures, reduced cardiovascular strain, improved fluid balance, altered metabolism, and enhanced cellular protection. The magnitudes of adaptations are determined by the intensity, duration, frequency, and number of heat exposures, as well as the environmental conditions (i.e., dry or humid heat). Evidence is emerging that controlled hyperthermia regimens where a target core temperature is maintained, enable more rapid and complete adaptations relative to the traditional constant work rate exercise heat acclimation regimens. Furthermore, inducing heat acclimation outdoors in a natural field setting may provide more specific adaptations based on direct exposure to the exact environmental and exercise conditions to be encountered during competition. This review initially examines the physiological adaptations associated with heat acclimation induction regimens, and subsequently emphasizes their application to competitive athletes and sports. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. In vitro assessment of tissue heating near metallic medical implants by exposure to pulsed radio frequency diathermy

    Energy Technology Data Exchange (ETDEWEB)

    Ruggera, P S; Witters, D M; Maltzahn, G von; Bassen, H I [Center for Devices and Radiological Health, Food and Drug Administration, HFZ-133, 9200 Corporate Blvd., Rockville, MD 20850 (United States)

    2003-09-07

    A patient with bilateral implanted neurostimulators suffered significant brain tissue damage, and subsequently died, following diathermy treatment to hasten recovery from teeth extraction. Subsequent MRI examinations showed acute deterioration of the tissue near the deep brain stimulator (DBS) lead's electrodes which was attributed to excessive tissue heating induced by the diathermy treatment. Though not published in the open literature, a second incident was reported for a patient with implanted neurostimulators for the treatment of Parkinson's disease. During a diathermy treatment for severe kyphosis, the patient had a sudden change in mental status and neurological deficits. The diathermy was implicated in causing damage to the patient's brain tissue. To investigate if diathermy induced excessive heating was possible with other types of implantable lead systems, or metallic implants in general, we conducted a series of in vitro laboratory tests. We obtained a diathermy unit and also assembled a controllable laboratory exposure system. Specific absorption rate (SAR) measurements were performed using fibre optic thermometry in proximity to the implants to determine the rate of temperature rise using typical diathermy treatment power levels. Comparisons were made of the SAR measurements for a spinal cord stimulator (SCS) lead, a pacemaker lead and three types of bone prosthesis (screws, rods and a plate). Findings indicate that temperature changes of 2.54 and 4.88 deg. C s{sup -1} with corresponding SAR values of 9129 and 17 563 W kg{sup -1} near the SCS and pacemaker electrodes are significantly higher than those found in the proximity of the other metallic implants which ranged from 0.04 to 0.69 deg C s{sup -1} (129 to 2471 W kg{sup -1}). Since the DBS leads that were implanted in the reported human incidents have one-half the electrode surface area of the tested SCS lead, these results imply that tissue heating at rates at least equal to or up to

  15. In vitro assessment of tissue heating near metallic medical implants by exposure to pulsed radio frequency diathermy

    International Nuclear Information System (INIS)

    Ruggera, P S; Witters, D M; Maltzahn, G von; Bassen, H I

    2003-01-01

    A patient with bilateral implanted neurostimulators suffered significant brain tissue damage, and subsequently died, following diathermy treatment to hasten recovery from teeth extraction. Subsequent MRI examinations showed acute deterioration of the tissue near the deep brain stimulator (DBS) lead's electrodes which was attributed to excessive tissue heating induced by the diathermy treatment. Though not published in the open literature, a second incident was reported for a patient with implanted neurostimulators for the treatment of Parkinson's disease. During a diathermy treatment for severe kyphosis, the patient had a sudden change in mental status and neurological deficits. The diathermy was implicated in causing damage to the patient's brain tissue. To investigate if diathermy induced excessive heating was possible with other types of implantable lead systems, or metallic implants in general, we conducted a series of in vitro laboratory tests. We obtained a diathermy unit and also assembled a controllable laboratory exposure system. Specific absorption rate (SAR) measurements were performed using fibre optic thermometry in proximity to the implants to determine the rate of temperature rise using typical diathermy treatment power levels. Comparisons were made of the SAR measurements for a spinal cord stimulator (SCS) lead, a pacemaker lead and three types of bone prosthesis (screws, rods and a plate). Findings indicate that temperature changes of 2.54 and 4.88 deg. C s -1 with corresponding SAR values of 9129 and 17 563 W kg -1 near the SCS and pacemaker electrodes are significantly higher than those found in the proximity of the other metallic implants which ranged from 0.04 to 0.69 deg C s -1 (129 to 2471 W kg -1 ). Since the DBS leads that were implanted in the reported human incidents have one-half the electrode surface area of the tested SCS lead, these results imply that tissue heating at rates at least equal to or up to twice as much as those reported

  16. Indirectly heated biomass gasification using a latent-heat ballast-part 3: refinement of the heat transfer model

    International Nuclear Information System (INIS)

    Cummer, Keith; Brown, Robert C.

    2005-01-01

    An indirectly heated gasifier is under development at Iowa State University. This gasifier integrates a latent-heat ballast with a fluidized-bed reactor. The latent heat ballast is an array of stainless-steel tubes filled with lithium fluoride, which is a high-temperature phase-change material (PCM). Previous studies have presented experimental results from the gasifier and described a mathematical model of the pyrolysis phase of the cyclic gasification process. This model considers both heat transfer and chemical reactions that occur during pyrolysis, but discrepancies between model predictions and experimental data have demonstrated the need to refine the model. In particular, cooling curves for the ballasting system are not well predicted during phase change of the lithium fluoride. A reformulated model, known as the Receding Interface (RI) model, postulates the existence of a receding liquid phase within the ballast tubes as they cool, which progressively decreases the rate of heat transfer from the tubes. The RI model predicts behavior that is more consistent with experimental results during the phase-change process, while retaining accuracy before and after the process of phase change

  17. High power plasma heating experiments on the Proto-MPEX facility

    Science.gov (United States)

    Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.

    2017-10-01

    Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  18. The descriptive epidemiology of sports/leisure-related heat illness hospitalisations in New South Wales, Australia.

    Science.gov (United States)

    Finch, Caroline F; Boufous, Soufiane

    2008-01-01

    Sport-related heat illness has not been commonly studied from an epidemiological perspective. This study presents the descriptive epidemiology of sports/leisure-related heat illness hospitalisations in New South Wales, Australia. All in-patient separations from all acute hospitals in NSW during 2001-2004, with an International Classification of Diseases external cause of injury code indicating "exposure to excessive natural heat (X30)" or any ICD-10 diagnosis code in the range: "effects of heat and light (T67.0-T67.9)", were analysed. The sport/leisure relatedness of cases was defined by ICD-10-AM activity codes indicating involvement in sport/leisure activities. Cases of exposure to heat while engaged in sport/leisure were described by gender, year, age, principal diagnosis, type of activity/sport and length of stay. There were 109 hospital separations for exposure to heat while engaging in sport/leisure activity, with the majority occurring during the hottest months. The number of male cases significantly increased over the 4-year period and 45+ -year olds had the largest number of cases. Heat exhaustion was the leading cause of hospital separation (40% of cases). Marathon running, cricket and golf were the activities most commonly associated with heat-related hospitalisation. Ongoing development and refinement of expert position statements regarding heat illnesses need to draw on both epidemiological and physiological evidence to ensure their relevance to all levels of risk from the real world sport training and competition contexts.

  19. Prevalence of high frequency hearing loss consistent with noise exposure among people working with sound systems and general population in Brazil: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Trevisani Virgínia FM

    2008-05-01

    Full Text Available Abstract Background Music is ever present in our daily lives, establishing a link between humans and the arts through the senses and pleasure. Sound technicians are the link between musicians and audiences or consumers. Recently, general concern has arisen regarding occurrences of hearing loss induced by noise from excessively amplified sound-producing activities within leisure and professional environments. Sound technicians' activities expose them to the risk of hearing loss, and consequently put at risk their quality of life, the quality of the musical product and consumers' hearing. The aim of this study was to measure the prevalence of high frequency hearing loss consistent with noise exposure among sound technicians in Brazil and compare this with a control group without occupational noise exposure. Methods This was a cross-sectional study comparing 177 participants in two groups: 82 sound technicians and 95 controls (non-sound technicians. A questionnaire on music listening habits and associated complaints was applied, and data were gathered regarding the professionals' numbers of working hours per day and both groups' hearing complaint and presence of tinnitus. The participants' ear canals were visually inspected using an otoscope. Hearing assessments were performed (tonal and speech audiometry using a portable digital AD 229 E audiometer funded by FAPESP. Results There was no statistically significant difference between the sound technicians and controls regarding age and gender. Thus, the study sample was homogenous and would be unlikely to lead to bias in the results. A statistically significant difference in hearing loss was observed between the groups: 50% among the sound technicians and 10.5% among the controls. The difference could be addressed to high sound levels. Conclusion The sound technicians presented a higher prevalence of high frequency hearing loss consistent with noise exposure than did the general population, although

  20. The urban heat island and its impact on heat waves and human health in Shanghai.

    Science.gov (United States)

    Tan, Jianguo; Zheng, Youfei; Tang, Xu; Guo, Changyi; Li, Liping; Song, Guixiang; Zhen, Xinrong; Yuan, Dong; Kalkstein, Adam J; Li, Furong

    2010-01-01

    With global warming forecast to continue into the foreseeable future, heat waves are very likely to increase in both frequency and intensity. In urban regions, these future heat waves will be exacerbated by the urban heat island effect, and will have the potential to negatively influence the health and welfare of urban residents. In order to investigate the health effects of the urban heat island (UHI) in Shanghai, China, 30 years of meteorological records (1975-2004) were examined for 11 first- and second-order weather stations in and around Shanghai. Additionally, automatic weather observation data recorded in recent years as well as daily all-cause summer mortality counts in 11 urban, suburban, and exurban regions (1998-2004) in Shanghai have been used. The results show that different sites (city center or surroundings) have experienced different degrees of warming as a result of increasing urbanization. In turn, this has resulted in a more extensive urban heat island effect, causing additional hot days and heat waves in urban regions compared to rural locales. An examination of summer mortality rates in and around Shanghai yields heightened heat-related mortality in urban regions, and we conclude that the UHI is directly responsible, acting to worsen the adverse health effects from exposure to extreme thermal conditions.

  1. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  2. Transfer shuttle for vitrified residue canisters control of risks associated with external exposure and heat release

    Energy Technology Data Exchange (ETDEWEB)

    BIndel, L.; Gamess, A.; Lejeune, E.; Cellier, P.; Maillard, A. [SGN Reseau Eurisys, 78 - Saint Quentin (France)

    1998-07-01

    In the La Hague COGEMA's plant area, nuclear residue isolated by reprocessing are transported by means of specific transfer shuttles between the different processing and/or conditioning facilities and the storage ones. These shuttles are designed by reference to the applicable dose equivalent rate (DER) limits for transport on the site and the thermal behavior limitations of certain mechanical components which guarantee the containment of the transported waste. This paper describes and example of a study conducted on a transfer shuttle for vitrified residue canisters. Concerning the control of risks associated with external exposure and with heat releases, these were handled by the 'Shielding-Criticality-Dispersion' and 'process Modelling and Simulation' Sections of the Technical Division of SGN. The dose profiles around the shuttle, as a function of the shielding heterogeneities and possible radiation leakage, as well as the thermal fields within the shuttle, were calculated using 3D models. These design studies ultimately helped to select and validate the optimal solutions. (authors)

  3. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  4. Impact of short-term heat stress on physiological responses and expression profile of HSPs in Barbari goats

    Science.gov (United States)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Nagar, Vimla; Yadav, Vijay Pratap; Dangi, Saroj K.; Shankar, Om; Chouhan, Vikrant Singh; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2014-12-01

    Six, nonpregnant, Barbari goats aged 4-5 years were selected for the study. For the first 6 days, the animals were kept in psychrometric chamber at thermoneutral temperature for 6 h each day to make them acclimated to climatic chamber. On the 7th day, the animals were exposed to 41 °C temperature for 3 h and then to 45 °C for the next 3 h. Cardinal physiological responses were measured, and blood samples (3 ml) were collected at 1-h interval during the heat exposure period and then once after 6 h of the heat exposure. The rectal temperature (RT) and respiratory rate (RR) increased significantly ( P < 0.05) during the heat exposure compared to pre- and postexposure. The relative messenger RNA (mRNA) expression of heat shock protein (HSP)60, HSP70, and HSP90 increased significantly ( P < 0.05) within 1 h after exposure to heat stress at 41 and 45 °C and decreased significantly ( P < 0.05) in next 2 h but remain significantly ( P < 0.05) elevated from preexposure. HSP105/110 relative mRNA expression level remained unchanged during the first 4 h, and thereafter, it increased significantly ( P < 0.05) and reached the peak at 6 h. Relative protein expression pattern of HSPs during exposure to heat stress showed similar trend as observed for the relative mRNA expression. Given the response sensitivity and intensity of HSP genes to environmental stresses, HSP70 was found to be the most sensitive to temperature fluctuation, and it could be used as an important molecular biomarker to heat stress in animals.

  5. FEMALE FARMWORKERS’ PERCEPTIONS OF HEAT-RELATED ILLNESS AND PREGNANCY HEALTH

    OpenAIRE

    Flocks, Joan; Mac, Valerie Vi Thien; Runkle, Jennifer; Tovar-Aguilar, Jose Antonio; Economos, Jeannie; McCauley, Linda A.

    2013-01-01

    While agricultural workers have elevated risks of heat-related illnesses (HRI), pregnant farmworkers exposed to extreme heat face additional health risk, including poor pregnancy health and birth outcomes. Qualitative data from five focus groups with 35 female Hispanic and Haitian nursery and fernery workers provide details about the women’s perceptions of HRI and pregnancy. Participants believe that heat exposure can adversely affect general, pregnancy, and fetal health, yet feel they lack c...

  6. Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): Comparison with lead and cadmium exposures

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Christoph [Zoologisches Institut I-Oekologie, Universitaet Karlsruhe, Geb. 07.01, Kornblumenstrasse 13, D-76131 Karlsruhe (Germany); Zimmermann, Sonja [Zoologisches Institut I-Oekologie, Universitaet Karlsruhe, Geb. 07.01, Kornblumenstrasse 13, D-76131 Karlsruhe (Germany); Sures, Bernd [Zoologisches Institut I-Oekologie, Universitaet Karlsruhe, Geb. 07.01, Kornblumenstrasse 13, D-76131 Karlsruhe (Germany)]. E-mail: dc11@rz.uni-karlsruhe.de

    2005-10-05

    An increasing number of papers concentrate on the availability and uptake of platinum group elements (PGE) by different organisms. These metals are discharged into the environment from different anthropogenic sources, such as automobile catalytic converters, hospitals and other medical institutions. As the effects of these precious metals on organisms remain unclear, the induction of heat shock proteins (hsp70) in zebra mussels (Dreissena polymorpha) following exposure to soluble salts of platinum, palladium and rhodium was compared with the hsp70 induction in mussels following exposure to cadmium and lead. Mussels were sampled weekly during a period of 10 weeks and analyzed for their metal concentration and their hsp70 level. Highest metal uptake was found for Cd, followed by Pt, Pb and Pd. Rh demonstrated the lowest uptake rate. A clear time-dependent increase of hsp70 levels occurred in all exposed mussels. Concentrations of hsp70 started to rise between days 18 and 25, except for the Pt-exposed group, where the initial increase was between days 25 and 32. All groups reached maximal hsp70 concentrations at day 39. Subsequently, hsp70 levels decreased to initial levels for the remaining exposure period. Threshold metal levels for the hsp70 induction varied among the metals and increased in the order: Rh < Pd {<=} Pb < Pt < Cd. Highest hsp70 values were found for mussels exposed to Pd, with a 25-fold higher level than in the controls, followed by Pt- and Rh-exposed mussels, which showed a 19-fold increase. The hsp70 levels of the mussels exposed to Cd and Pb were much lower, showing 6- and 12-fold higher values than the control, respectively. The clear induction of hsp70 due to exposure to Pt, Pd and Rh gives evidence for strong cellular effects of these metals, especially, when compared with lead and cadmium. Among the metals tested, Pd seems to have the highest potential as inducer for hsp70 production due to its low threshold level in combination with the

  7. Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): Comparison with lead and cadmium exposures

    International Nuclear Information System (INIS)

    Singer, Christoph; Zimmermann, Sonja; Sures, Bernd

    2005-01-01

    An increasing number of papers concentrate on the availability and uptake of platinum group elements (PGE) by different organisms. These metals are discharged into the environment from different anthropogenic sources, such as automobile catalytic converters, hospitals and other medical institutions. As the effects of these precious metals on organisms remain unclear, the induction of heat shock proteins (hsp70) in zebra mussels (Dreissena polymorpha) following exposure to soluble salts of platinum, palladium and rhodium was compared with the hsp70 induction in mussels following exposure to cadmium and lead. Mussels were sampled weekly during a period of 10 weeks and analyzed for their metal concentration and their hsp70 level. Highest metal uptake was found for Cd, followed by Pt, Pb and Pd. Rh demonstrated the lowest uptake rate. A clear time-dependent increase of hsp70 levels occurred in all exposed mussels. Concentrations of hsp70 started to rise between days 18 and 25, except for the Pt-exposed group, where the initial increase was between days 25 and 32. All groups reached maximal hsp70 concentrations at day 39. Subsequently, hsp70 levels decreased to initial levels for the remaining exposure period. Threshold metal levels for the hsp70 induction varied among the metals and increased in the order: Rh < Pd ≤ Pb < Pt < Cd. Highest hsp70 values were found for mussels exposed to Pd, with a 25-fold higher level than in the controls, followed by Pt- and Rh-exposed mussels, which showed a 19-fold increase. The hsp70 levels of the mussels exposed to Cd and Pb were much lower, showing 6- and 12-fold higher values than the control, respectively. The clear induction of hsp70 due to exposure to Pt, Pd and Rh gives evidence for strong cellular effects of these metals, especially, when compared with lead and cadmium. Among the metals tested, Pd seems to have the highest potential as inducer for hsp70 production due to its low threshold level in combination with the

  8. Effects of radiation and high heat flux on the performance of first-wall components. Final report

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1985-10-01

    The performance of high-heat-flux components in present and future fusion devices is strongly affected by materials properties and their changes with radiation exposure and helium content. In addition, plasma disruptions and thermal fatigue are major life-limiting aspects. A multidisciplinary approach is therefore required in the performance analysis, and the following results have been accomplished. An equation of state for helium has been derived and applied to helium bubble formation by various growth processes. Models for various radiation effects have been developed and perfected to analyze radiation-induced swelling and embrittlement for high-heat flux materials. Computer codes have been developed to predict melting, evaporation, and melt-layer stability during plasma disruptions. A structural analysis code was perfected to evaluate the stress distribution and crack propagation in a high-heat-flux component or first wall. This code was applied to a duplex structure consisting of a beryllium coating on a copper substrate. It was also used to compare the lifetimes of a first wall in a tokamak reactor made of ferritic or austenitic steel

  9. Heat stress has a substantial economic impact on the Australian workforce

    NARCIS (Netherlands)

    Zander, K.; Botzen, W.J.W.; Kjellstrom, T.; Oppermann, E.; Garnett, S.T.

    2015-01-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot

  10. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  11. Stress response in rat brain after different durations of noise exposure.

    Science.gov (United States)

    Samson, James; Sheeladevi, Rathinasamy; Ravindran, Rajan; Senthilvelan, Manohar

    2007-01-01

    The alteration in the levels of plasma corticosterone, brain norepinephrine (NE), and expression of brain heat shock proteins (Hsp70) after different durations of noise exposure (acute, 1 day; sub-acute, 15 days; chronic, 30 days) has been studied to analyze their role in combating time-dependent stress effects of noise. Broadband white noise (100dB) exposure to male Wistar albino rats significantly increased the levels of plasma corticosterone and NE in all three durations of noise exposure. The sustained increase observed in their levels in the chronic group suggests that animals are not getting adapted to noise even after 30 days of exposure. The important role of Hsp70 in combating noise induced stress is evident from the significant increase in its expression after chronic exposure, while there was a reciprocal decrease in the NE and corticosterone when compared with their levels after acute and sub-acute noise exposure. This clearly indicates that the time-dependent stress response to noise exposure is a complex mechanism involving highly interconnected systems such as hypothalamo-pituitary-adrenal (HPA) axis, heat shock proteins and may have serious implications in vital organs, particularly in the brain when there is a prolonged noise exposure.

  12. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Although cyanobacterial β-N-methylamino-l-alanine (BMAA has been implicated in the development of Alzheimer’s Disease (AD, Parkinson’s Disease (PD and Amyotrophic Lateral Sclerosis (ALS, no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.

  13. Marginal and internal fit of heat pressed versus CAD/CAM fabricated all-ceramic onlays after exposure to thermo-mechanical fatigue

    Science.gov (United States)

    Guess, Petra C.; Vagopoulou, Thaleia; Zhang, Yu; Wolkewitz, Martin; Strub, Joerg R.

    2015-01-01

    Objectives The aim of the study was to evaluate the marginal and internal fit of heat-pressed and CAD/CAM fabricated all-ceramic onlays before and after luting as well as after thermo-mechanical fatigue. Materials and Methods Seventy-two caries-free, extracted human mandibular molars were randomly divided into three groups (n=24/group). All teeth received an onlay preparation with a mesio-occlusal-distal inlay cavity and an occlusal reduction of all cusps. Teeth were restored with heat-pressed IPS-e.max-Press* (IP, *Ivoclar-Vivadent) and Vita-PM9 (VP, Vita-Zahnfabrik) as well as CAD/CAM fabricated IPS-e.max-CAD* (IC, Cerec 3D/InLab/Sirona) all-ceramic materials. After cementation with a dual-polymerizing resin cement (VariolinkII*), all restorations were subjected to mouth-motion fatigue (98N, 1.2 million cycles; 5°C/55°C). Marginal fit discrepancies were examined on epoxy replicas before and after luting as well as after fatigue at 200x magnification. Internal fit was evaluated by multiple sectioning technique. For the statistical analysis, a linear model was fitted with accounting for repeated measurements. Results Adhesive cementation of onlays resulted in significantly increased marginal gap values in all groups, whereas thermo-mechanical fatigue had no effect. Marginal gap values of all test groups were equal after fatigue exposure. Internal discrepancies of CAD/CAM fabricated restorations were significantly higher than both press manufactured onlays. Conclusions Mean marginal gap values of the investigated onlays before and after luting as well as after fatigue were within the clinically acceptable range. Marginal fit was not affected by the investigated heat-press versus CAD/CAM fabrication technique. Press fabrication resulted in a superior internal fit of onlays as compared to the CAD/CAM technique. Clinical Relevance Clinical requirements of 100 μm for marginal fit were fulfilled by the heat-press as well as by the CAD/CAM fabricated all-ceramic onlays

  14. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Nicolette, V.F.; Wix, S.D.

    1992-01-01

    For final qualification of shipping containers for transport of hazardous materials, thermal testing in accordance with regulations such as 10CFR71 must be completed. Such tests typically consist of 30 minute exposures with the container fully engulfed in flames from a large, open pool of JP4 jet engine fuel. Despite careful engineering analyses of the container, testing often reveals design problems that must be solved by modification and expensive retesting of the container. One source of this problem is the wide variation in surface heat flux to the container that occurs in pool fires. Average heat fluxes of 50 to 60 kW/m 2 are typical and close the values implied by the radiation model in 10CFR71, but peak fluxes up to 150 kW/m 2 are routinely observed in fires. Heat fluxes in pool fires have been shown to be a function of surface temperature of the container, height above the pool, surface orientation, wind, and other variables. If local variations in the surface heat flux to the container could be better predicted, design analyses would become more accurate, and fewer problems will be uncovered during testing. The objective of the calorimeter design described in this paper is to measure accurately pool fire heat fluxes under controlled conditions, and to provide data for calibration of improved analytical models of local flame-surface interactions

  15. Drivers of self-reported heat stress in the Australian labour force.

    Science.gov (United States)

    Zander, Kerstin K; Moss, Simon A; Garnett, Stephen T

    2017-01-01

    Heat stress causes reductions in well-being and health. As average annual temperatures increase, heat stress is expected to affect more people. While most research on heat stress has explored how exposure to heat affects functioning of the human organism, stress from heat can be manifest long before clinical symptoms are evident, with profound effects on behavior. Here we add to the little research conducted on these subclinical effects of environmental heat using results from an Australian-wide cross-sectional study of nearly 2000 respondents on their self-reported level of heat stress. Slightly less than half (47%) of the respondents perceived themselves as at least sometimes, often or very often stressed by heat during the previous 12 months. Health status and smoking behavior had the expected impact on self-reported perceived heat stress. There were also regional differences with people living in South Australia, Victoria and New South Wales most likely to have reported to have felt heat stressed. People generally worried about climate change, who had been influenced by recent heat waves and who thought there was a relationship between climate change and health were also more likely to have been heat stressed. Surprisingly average maximum temperatures did not significantly explain heat stress but stress was greater among people who perceived the day of the survey as hotter than usual. Currently heat stress indices are largely based on monitoring the environment and physical limitations to people coping with heat. Our results suggest that psychological perceptions of heat need to be considered when predicting how people will be affected by heat under climate change and when developing heat relief and climate change adaptation plans, at work, at home or in public spaces. We further conclude that the perception of temperature and heat stress complements measures that assess heat exposure and heat strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Two-component air heating system. Final report. Zweikomponenten-Luftheizungs-System. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W; Thiel, D

    1986-01-01

    The two-component heating system consists of a combination of air-based floor heating and direct air heating, with ventilation and extraction and heat recovery. The direct airflow consists exclusively of heated outside air, the amount corresponding to the building's external air intake requirement. The control system comprises a two-step sequential control of the air throughput of the direct air heating system and of the air distribution for the floor heating airflow. A special heating switch makes it possible to switch off the direct air heating system separately, and to select rapid warm-up. The way in which the new heating system works has been tested in a pilot set-up and proven by comprehensive measurements. In addition, a simulation model was produced which gave substantial confirmation of the measurements. (orig.) With 9 refs., 37 tabs., 63 figs.

  17. Personal inhalation exposure to polycyclic aromatic hydrocarbons in urban and rural residents in a typical northern city in China.

    Science.gov (United States)

    Duan, X; Wang, B; Zhao, X; Shen, G; Xia, Z; Huang, N; Jiang, Q; Lu, B; Xu, D; Fang, J; Tao, S

    2014-10-01

    Personal inhalation exposure samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) for 126 selected volunteers during heating and non-heating seasons in a typical northern Chinese city, Taiyuan. Measured personal PAH exposure levels for the urban residents in the heating and non-heating seasons were 690 (540-1051) and 404 (266-544) ng/m(3) , respectively, while, for the rural residents, they were 770 (504-1071) and 312 (201-412) ng/m(3) , respectively. Thus, rural residents are exposed to lower PAH contamination in comparison with the urban residents in the non-heating seasons. In the heating season, personal PAH inhalation exposure levels were comparable between the urban and rural residents, in part owing to the large rate of residential solid fuel consumption in the rural area for household cooking and heating. The estimated incremental lifetime cancer risks (ILCR) due to PAH exposure in Taiyuan were 3.36 × 10(-5) and 2.39 × 10(-5) for the rural and urban residents, respectively, significantly higher than the literature-reported national average level, suggesting an urgent need of PAH pollution control to protect human health. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Effects of caffeine and menthol on cognition and mood during simulated firefighting in the heat.

    Science.gov (United States)

    Zhang, Yang; Balilionis, Gytis; Casaru, Catalina; Geary, Colleen; Schumacker, Randall E; Neggers, Yasmin H; Curtner-Smith, Matthew D; Richardson, Mark T; Bishop, Phillip A; Green, James M

    2014-05-01

    This study examined the separate effects of caffeine and menthol on cognition and mood during simulated firefighting in the heat. Participants (N = 10) performed three trials in a counterbalanced order, either with 400 mg caffeine, menthol lozenges, or placebo. The simulated firefighting consisted of 2 bouts of 20-min treadmill exercise and one bout of 20-min stepping exercise in the heat with two brief 15-min rest periods between each exercise phase. Exercise induced significant dehydration (>3%) and elevated rectal temperature (>38.9 °C), for all three conditions. Neither caffeine nor menthol reduced perceived exertion compared to placebo (p > 0.05). Mood ratings (i.e., alertness, hedonic tone, tension) significantly deteriorated over time (p memory, and retrieval memory did not alter with treatments or repeated evaluations. Reaction accuracy from a math test remained unchanged throughout the experimental period; reaction time from the math test was significantly faster after exposure to the heat (p < 0.05). It is concluded that, exhaustive exercise in the heat severely impacted mood, but minimally impacted cognition. These treatments failed to show ergogenic benefits in a simulated firefighting paradigm in a hot environment. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Eddy current testing of heat exchangers tubes

    International Nuclear Information System (INIS)

    Gouez, J.F.; Rieusset, A.; Groix, F.

    An automatic system for Eddy Current testing of heat exchangers tubes of warships was developed. The advantages are an exposure of the controller limited at the time required to put in place the system and a reduced time of control [fr

  20. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  1. Radon-daughter exposures in energy-efficient buildings

    International Nuclear Information System (INIS)

    Nero, A.V.; Berk, J.V.; Boegel, M.L.; Hollowell, C.D.; Ingersoll, J.G.; Nazaroff, W.W.

    1981-10-01

    A radon concentration of 1 pCi/1 (37 Bq/m 3 ) appears to lie in the range that is typical for air inside US residential buildings. Moreover, some US residences have concentrations higher than 1 pCi/1, sometimes by an order of magnitude, implying significant individual risk to occupants. For typical radon daughter equilibrium ratios, this concentration corresponds to a radon daughter exposure rate of 0.2 working level months (WLM) per year. This exposure rate may account for a significant lung cancer incidence if data on lung cancers per unit exposure in miners are applicable to such low exposures. Reductions in air exchange rates may rise the typical exposure rate and even increase it to unacceptable levels in some cases. Measures that reduce energy use by reducing natural infiltration or mechanical ventilation in new or retrofit buildings are therefore undergoing severe scrutiny. Lawrence Berkeley Laboratory has performed measurements in buildings specifically designed to use energy efficiently or utilize solar heating. In many of these buildings radon concentrations appear to arise primarily from soil underlying the buildings. Measures to control higher levels, e.g., by mechanical ventilation with heat recuperation, appear to be economical. However, to evaluate energy-saving programs adequately requires a much more comprehensive characterization of radon sources (for example, by geographical area) and a much fuller understanding of the dynamics of radon and its daughters indoors than now exist

  2. Dynamic changes in parameters of redox balance after mild heat stress in aged laying hens (Gallus gallus domesticus).

    Science.gov (United States)

    Lin, H; De Vos, D; Decuypere, E; Buyse, J

    2008-01-01

    In order to evaluate the metabolic responses of laying hens induced by high temperature at later laying stage, nine 60-wk-old laying hens (Gallus gallus domesticus) were employed in the present study. The hens were exposed to 32 degrees C for 21 d and blood samples were obtained before and at 1, 7, 14 and 21 d of heat exposure. The reactive oxygen species (ROS) formed in blood during heat exposure were estimated by the ex vivo spin-trapping method. Body temperature and plasma concentrations of glucose, urate, creatine kinase (CK), triiodothyronine (T(3)), thyroxine (T(4)), corticosterone (CORT), thiobarbituric acid reacting substances (TBARS), ferric/reducing antioxidant power (FRAP) and superoxide dismutase (SOD) activity were measured. Plasma levels of glucose, CK and CORT were not significantly influenced by heat exposure at any time point. The circulating concentrations of T(3) were decreased while plasma T(4) levels changed in the opposite way. The formation of ROS was significantly augmented by heat exposure in laying hens though the body temperature was not significantly altered. The enhanced enzymatic and non-enzymatic antioxidant systems acted in concert to alleviate the heat stress evoked oxidative damage.

  3. Microwave heat treatment as a substitute for conventional treatment of palm oil fruits

    International Nuclear Information System (INIS)

    Mujahid H Al-Fayadh; Nor Azura Masabbir Ali

    1996-01-01

    Microwave energy has become a sound method of heat treatment because of its high penetration power, cleanliness and possible economic significance. In this research, microwave heat was used as a substitute for conventional blanching method of palm oil fruits. Microwave treatment at 2450 MHz and 800 watts gave very close color and frn,frying characteristics to oil of blanched fruits after one minute exposure time. However, five minutes of microwave heat gave severe husk oil discoloration after 49 hours of deep frying, compared to all oils extracted from fruits treated by either low, microwave exposure time or conventional steam treatment. Kernel oil, after five minutes of microwave treatment, was less discolored than both steam or microwave-treated fruits for one minute. More carotenes and discoloration compounds may be contributed to discoloration during microwave treatments. Oil chemical constants of both husk and kernel oils treated by microwave heat were close to those treated by conventional heat. Further research is needed to investigate detailed oil characteristics and evaluate the feasibility study for using microwave energy, as a substitute for conventional heat in palm oil industry

  4. Thermotolerance and responses to short duration heat stress in tropical and temperate species

    Science.gov (United States)

    Marias, D.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Temperature and heat waves are predicted to increase throughout the 21st century in both tropical and temperate regions. Tropical species are vulnerable to heat stress because of the higher radiation load and the narrower distribution of temperatures typically experienced compared to extratropical species. Germinant seedlings are also vulnerable to heat stress because they inhabit the boundary layer close to the soil surface where intense heating occurs. We quantified the effect of leaf age and heat stress duration (45 min, 90 min) on leaf thermotolerance and whole plant physiological responses to heat stress in Coffea arabica (COAR) saplings. We also evaluated leaf thermotolerance and whole plant responses to heat stress of seedlings in two populations each of Pinus ponderosa (PIPO) and Pseudotsuga menziesii (PSME) from contrasting climates. Thermotolerance of detached leaves/needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. After exposure of whole plants to a simulated heat wave in a growth chamber, we monitored FV/FM, photosynthesis (A), stomatal conductance (gs), non-structural carbohydrates (NSCs), and carbon isotope ratios (δ13C). In COAR, thermotolerance and rate of recovery increased with leaf age. Following heat treatment, reductions in A and gs led to reduced intrinsic water use efficiency (iWUE) and increased leaf temperatures. NSC results suggested that starch was converted to sugars for recovery from heat stress and phloem transport was inhibited. Plants failed to flower in both heat stress duration treatments. In PIPO and PSME, heat treatment induced significant reductions in FV/FM and A. NSC results suggested that starch was converted to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites had greater δ13C values than those from wetter sites, consistent with higher iWUE of populations from drier climates. Thermotolerance and heat stress responses appeared to be

  5. Radiation control report on intermediate heat exchanger replacement and related works

    International Nuclear Information System (INIS)

    Kanou, Y.; Yamanaka, T.; Sasajima, T.; Hoshiba, H.; Emori, S.; Shindou, K.

    2002-03-01

    The 13th periodical inspection of the experimental fast reactor JOYO is being made from Jun. 2000 to Jan. 2003. While this inspection, from the end of Oct. 2000 to Nov. 2001, the MK-III modification work on heat transport system was made in lower region of the reactor containment vessel in the reactor facility (under floor area). In the MK-III modification work, the works important to radiation control were the replacement of intermediate heat exchangers (IHXs) and fixtures, and the picking out of the surveillance material from primary heat transport piping carried out in the maintenance building. Because the working areas of these works were executed in small space around the complicated primary heat transport piping, workability was bad and dose rate from the corrosion products (CP) in piping or fixtures was high. In such condition, radiation control was performed mainly concerned about external exposure. The planted total external exposure of the IHX replacement and related works was 7135 man-mSv (target of total dose control: less than 5708 man-mSv, 80% of the plan), derived from special radiation work plants for segmental works, concerned about work procedure, number of workers, period of work, dose rate of working area and surface dose rate of equipments. The special radiation control organization was established for such long and large-scale work. The spatial organization held detailed discussion about radiation control of this work with the execution section and contractors appropriately, performance careful external/internal exposure control and surface contamination control and made efforts to reduce te external exposure thoroughly. As a result of these action, the total external exposure was 2386 man·mSv (≅33% of the plan, ≅42% of the target) and the maximum individual exposure were 24.7 mSv for staffs and 21.7mSv for contractors. The dose rate, surface contamination and air contamination while the works were kept under the control level with the

  6. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    Science.gov (United States)

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (T c ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (P a ) of 2.57 kPa followed by incremental steps in P a of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (P crit ) at which an upward inflection in T c occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The T c , mean skin temperature (T sk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDF mean ), mean local sweat rate (forearm and thigh; LSR mean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDF mean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL

  7. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    Science.gov (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  8. Work-related heat stress concerns in automotive industries: a case study from Chennai, India.

    Science.gov (United States)

    Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana

    2009-11-11

    Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. The study re-emphasises the need for recognising heat stress as an important occupational health risk in both formal

  9. Lead exposure in US worksites: A literature review and development of an occupational lead exposure database from the published literature

    Science.gov (United States)

    Koh, Dong-Hee; Locke, Sarah J.; Chen, Yu-Cheng; Purdue, Mark P.; Friesen, Melissa C.

    2016-01-01

    Background Retrospective exposure assessment of occupational lead exposure in population-based studies requires historical exposure information from many occupations and industries. Methods We reviewed published US exposure monitoring studies to identify lead exposure measurement data. We developed an occupational lead exposure database from the 175 identified papers containing 1,111 sets of lead concentration summary statistics (21% area air, 47% personal air, 32% blood). We also extracted ancillary exposure-related information, including job, industry, task/location, year collected, sampling strategy, control measures in place, and sampling and analytical methods. Results Measurements were published between 1940 and 2010 and represented 27 2-digit standardized industry classification codes. The majority of the measurements were related to lead-based paint work, joining or cutting metal using heat, primary and secondary metal manufacturing, and lead acid battery manufacturing. Conclusions This database can be used in future statistical analyses to characterize differences in lead exposure across time, jobs, and industries. PMID:25968240

  10. Effects of glutamine pretreatment on learning and memory in heat-exposed rats

    Institute of Scientific and Technical Information of China (English)

    Shenghao Zhao; Lei Wang; Qin Wang; Siyi Wang; Chundi Deng; Xianfei Xie; Youe Yan; Hui Wang

    2008-01-01

    BACKGROUND: Glutamine (Gln) pretreatment can protect neural cells from injuries due to heat, ischemia, hypoxia, endotoxemia, and inflammatory factors.OBJECTIVE: To observe the effects of Gln pretreatment on learning and memory, survival time, and rectal temperature in heat-exposed rats.DESIGN, TIME AND SETTING: The present randomized grouping, neurobehavioral experiment was performed at the Laboratory of Department of Pharmacology, Basic School of Medicine, Wuhan University between March and September 2007.MATERIALS: Twenty-four healthy, Wistar rats were included in this study. SPX-160B biochemistry incubator (Shanghai Experimental Equipment Co., Ltd., China), probe electronic thermometer (11000 type, Maikepai Science and Technology Co., Ltd., China), Y-type maze box used in conjunction with MG-2 maze stimulator (Zhangjiagang Biomedical Instrument Factory, China), L-Gin (Batch No. 061218, 5 g/bottle, prepared into 10% aqueous solution, Amresco Company, USA) were used.METHODS: Twenty-four rats were randomly and evenly divided into 3 groups: heat-exposed, Gln low-lose, and Gln high-dose. Following learning and memory testing with the Y-maze, rats in the heat-exposed group were subjected to heat injury (40.5-41.5℃) in a biochemistry incubator. Rectal temperature was measured every 5 minutes. Thirty-five minutes after heat exposure, rats were removed and placed in the Y-type maze to test learning and memory again. Subsequently, the rats were returned to the same environment of thermal stimulation until they died. Rat survival time was recorded. Subsequent to learning and memory testing, rats in the Gln low-dose and high-dose groups received an i.p. injection of Gln (0.4 g/kg and 0.8 g/kg, respectively), and were exposed to heat injury. The remaining experimental procedures remained the same as for the heat-exposed group.MAIN OUTCOME MEASURES: Rat learning and memory, rectal temperature, and survival time in heat exposure environment.RESULTS: (1) In the Y

  11. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    Science.gov (United States)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  12. Clostridium thermocellum Transcriptomic Profiles after Exposure to Furfural or Heat Stress

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Charlotte M [ORNL; Yang, Shihui [ORNL; Rodriguez, Jr., Miguel [ORNL; Ma, Qin [University of Georgia, Athens, GA; Johnson, Courtney M [ORNL; Dice, Lezlee T [ORNL; Xu, Ying [University of Georgia, Athens, GA; Brown, Steven D [ORNL

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP)biocatalyst for cellulosic ethanol production. It is capable of both cellulose solubilization and its fermentation to produce lignocellulosic ethanol. Intolerance to stresses routinely encountered during industrial fermentations may hinder the commercial development of this organism. A previous C. thermocellum ethanol stress study showed that largest transcriptomic response was in genes and proteins related to nitrogen uptake and metabolism. Results In this study, C. thermocellum was grown to mid-exponential phase and treated with furfural or heat to a final concentration of 3 g.L-1 or 68 C respectively to investigate general and specific physiological and regulatory stress responses. Samples were taken at 10, 30, 60 and 120 min post-shock, and from untreated control fermentations, for transcriptomic analyses and fermentation product determinations and compared to a published dataset from an ethanol stress study. Urea uptake genes were induced following furfural stress, but not to the same extent as ethanol stress and transcription from these genes was largely unaffected by heat stress. The largest transcriptomic response to furfural stress was genes for sulfate transporter subunits and enzymes in the sulfate assimilatory pathway, although these genes were also affected late in the heat and ethanol stress responses. Lactate production was higher in furfural treated culture, although the lactate dehydrogenase gene was not differentially expressed under this condition. Other redox related genes such as a copy of the rex gene, a bifunctional acetaldehyde-CoA/alcohol dehydrogenase and adjacent genes did show lower expression after furfural stress compared to the control, heat and ethanol fermentation profiles. Heat stress induced expression from chaperone related genes and overlap was observed with the responses to the other stresses. This study suggests the

  13. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    Science.gov (United States)

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  14. Influence of temporal resolution and processing of exposure data on modeling of chloride ingress and reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Flint, Madeleine; Michel, Alexander; Billington, Sarah L.

    2014-01-01

    a numerical heat and mass transport model that includes full coupling of heat, moisture and ion transport. Heat, moisture, and chloride concentration distributions were passed to a simplified reinforcement corrosion initiation and propagation model. The numerical study indicates that processing and temporal...... resolution of the exposure data has a considerable impact on long-term hygrothermal distribution, chloride ingress, and reinforcement section loss results. Use of time-averaged exposure data in the heat and mass transport model reduces the rate of chloride ingress in concrete and affects prediction...

  15. A mathematical model of heat flow in a thermopile for measuring muscle heat production: implications for design and signal analysis.

    Science.gov (United States)

    Barclay, C J

    2015-09-01

    Contracting muscles produce heat which largely arises from the biochemical reactions that provide the energy for contraction. Measurements of muscle heat production have made, and continue to make, important contributions to our understanding of the bases of contraction. Most measurements of muscle heat production are made using a thermopile, consisting of a series of thermocouples arranged so that alternate thermocouples are in thermal contact with the muscle and with an isothermal reference. In this study, a mathematical model was constructed of a muscle lying on a thermopile consisting of antimony-bismuth thermocouples sandwiched between polymer sheets. The validity of the model was demonstrated by its ability to accurately predict thermopile outputs in response to applying heat to the thermopile surface, to generating heat in the thermocouples using the Peltier effect and to adding heat capacity on the thermopile surface. The model was then used to show how practical changes to thermopile construction could minimise response time and thermopile heat capacity and allow measurement of very low rates of heat production. The impulse response of a muscle-thermopile system was generated using the model and used to illustrate how a measured signal can be deconvolved with the impulse response to correct for lag introduced by the thermopile.

  16. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  17. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  18. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress.

    Science.gov (United States)

    de Andrade Ferrazza, Rodrigo; Mogollón Garcia, Henry David; Vallejo Aristizábal, Viviana Helena; de Souza Nogueira, Camilla; Veríssimo, Cecília José; Sartori, José Roberto; Sartori, Roberto; Pinheiro Ferreira, João Carlos

    2017-05-01

    Heat stress (HS) adversely influences productivity and welfare of dairy cattle. We hypothesized that the thermoregulatory mechanisms vary depending on the exposure time to HS, with a cumulative effect on the adaptive responses and thermal strain of the cow. To identify the effect of HS on adaptive thermoregulatory mechanisms and predictors of caloric balance, Holstein cows were housed in climate chambers and randomly distributed into thermoneutral (TN; n=12) or HS (n=12) treatments for 16 days. Vaginal temperature (VT), rectal temperature (Tre), respiratory rate (RR), heart rate (HR), and dry matter intake (DMI) were measured. The temperature and humidity under TN were 25.9±0.2°C and 73.0±0.8%, respectively, and under HS were 36.3±0.3°C and 60.9±0.9%, respectively. The RR of the HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm, pcows from the third day (8.27±0.33kgd -1 in the HS vs. 14.03±0.29kgd -1 in the TN, pheat exchange. The difference in the responses to acute and chronic exposure to HS suggests an adaptive response. Thus, intense thermal stress strongly influence thermoregulatory mechanisms and the acclimation process depend critically on heat exposure time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Propagation of resist heating mask error to wafer level

    Science.gov (United States)

    Babin, S. V.; Karklin, Linard

    2006-10-01

    As technology is approaching 45 nm and below the IC industry is experiencing a severe product yield hit due to rapidly shrinking process windows and unavoidable manufacturing process variations. Current EDA tools are unable by their nature to deliver optimized and process-centered designs that call for 'post design' localized layout optimization DFM tools. To evaluate the impact of different manufacturing process variations on final product it is important to trace and evaluate all errors through design to manufacturing flow. Photo mask is one of the critical parts of this flow, and special attention should be paid to photo mask manufacturing process and especially to mask tight CD control. Electron beam lithography (EBL) is a major technique which is used for fabrication of high-end photo masks. During the writing process, resist heating is one of the sources for mask CD variations. Electron energy is released in the mask body mainly as heat, leading to significant temperature fluctuations in local areas. The temperature fluctuations cause changes in resist sensitivity, which in turn leads to CD variations. These CD variations depend on mask writing speed, order of exposure, pattern density and its distribution. Recent measurements revealed up to 45 nm CD variation on the mask when using ZEP resist. The resist heating problem with CAR resists is significantly smaller compared to other types of resists. This is partially due to higher resist sensitivity and the lower exposure dose required. However, there is no data yet showing CD errors on the wafer induced by CAR resist heating on the mask. This effect can be amplified by high MEEF values and should be carefully evaluated at 45nm and below technology nodes where tight CD control is required. In this paper, we simulated CD variation on the mask due to resist heating; then a mask pattern with the heating error was transferred onto the wafer. So, a CD error on the wafer was evaluated subject to only one term of the

  20. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    Science.gov (United States)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-01

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  1. Minewater heat recovery project. Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-01

    This report consists of three sections: (1) Design, experimental testing and performance analysis of the 20-ft long DBHE (Downhole Bundle Heat Exchanger); (2) Modified design of mine water heat exchanger; and (3) Performance tests on mine water heat exchanger. Appendices summarize design calculations, discuss the scope of the work tasks, and present a diary of the progress throughout the research and development project.

  2. Heat-conserving postures hinder escape: a thermoregulation–predation trade-off in wintering birds

    OpenAIRE

    Jennie M. Carr; Steven L. Lima

    2012-01-01

    Wintering birds may conserve body heat by adopting postures with minimal leg exposure or significant ptiloerection. However, maximally heat-conserving postures may hinder a bird's ability to escape attack, leading to a trade-off between predation risk and thermoregulation. Such a trade-off implies that birds should use the most heat-conserving postures only at very cold temperatures. Feeding in a relatively low-risk environment should also facilitate the use of such heat-conserving postures. ...

  3. Pesticide exposures and chronic kidney disease of unknown etiology: an epidemiologic review.

    Science.gov (United States)

    Valcke, Mathieu; Levasseur, Marie-Eve; Soares da Silva, Agnes; Wesseling, Catharina

    2017-05-23

    The main causes of chronic kidney disease (CKD) globally are diabetes and hypertension but epidemics of chronic kidney disease of unknown etiology (CKDu) occur in Central America, Sri Lanka, India and beyond. Althoug also being observed in women, CKDu concentrates among men in agricultural sectors. Therefore, suspicions fell initially on pesticide exposure, but currently chronic heat stress and dehydration are considered key etiologic factors. Responding to persistent community and scientific concerns about the role of pesticides, we performed a systematic review of epidemiologic studies that addressed associations between any indicator of pesticide exposure and any outcome measure of CKD. Of the 21 analytical studies we identified, seven were categorized as with low, ten with medium and four with relatively high explanation value. Thirteen (62%) studies reported one or more positive associations, but four had a low explanation value and three presented equivocal results. The main limitations of both positive and negative studies were unspecific and unquantified exposure measurement ('pesticides'), the cross-sectional nature of most studies, confounding and selection bias. The four studies with stronger designs and better exposure assessment (from Sri Lanka, India and USA) all showed exposure-responses or clear associations, but for different pesticides in each study, and three of these studies were conducted in areas without CKDu epidemics. No study investigated interactions between pesticides and other concommittant exposures in agricultural occupations, in particular heat stress and dehydration. In conclusion, existing studies provide scarce evidence for an association between pesticides and regional CKDu epidemics but, given the poor pesticide exposure assessment in the majority, a role of nephrotoxic agrochemicals cannot be conclusively discarded. Future research should procure assessment of lifetime exposures to relevant specific pesticides and enough power

  4. Heat recovery apparatus

    International Nuclear Information System (INIS)

    McFarland, I.

    1987-01-01

    Heat transfer is a living science and technical advances are constantly being made. However, in many cases, progress is limited by the equipment that is available on the market, rather than by knowledge of the heat transfer process. A case in point is the design of economizers: in such equipment a small quantity of water (with a relatively good heat transfer coefficient) is heated by a large quantity of low-pressure gas (with an inherently low heat transfer coefficient). As a first step in design finned tubing is used to lessen the discrepancy in coefficients. From this point, it becomes apparent that the equipment consists of a small number of tubes (to maintain good velocity on the water side) of considerable length (to provide sufficient area). In the process industries the base pressure, though low, may be in the region of 0.5 bar, and there is no convenient flue in which to place the heat recovery coil. It is therefore contained in a flat-sided enclosure, which is ill-fitted to pressure containment and is therefore reinforced with a plethora of structural sections. Such inelegant construction is quite common in North America; in Europe, cylindrical containments of vast size have been supplied for the same purposes. The real shortcoming is a successful marriage of different disciplines to produce reliable and efficient heat transfer equipment suitably contained

  5. Investigating the combined effects of heat and lighting on students reaction time in laboratory condition

    Directory of Open Access Journals (Sweden)

    Zohre Mohebian

    2016-12-01

    Full Text Available Introduction: In many workplaces there is exposure to heat and light simultaneously. This study investigated the combined effect of heat and lighting on some cognitive performance, i.e. reaction time. Methodology: the present semi-experimental study was conducted 2015 on 33 healthy students (16 girls and 17 boys with a mean age of 22.1 in the thermal stress chamber. The reaction time parameter by the reaction time measurement device, after exposure to different heat surfaces (dry temperatures 22 °C and 37 °C and lighting surfaces (200, 500 and 1500 lux. Data were analyzed using ANOVA test in SPSS-20. Results: The results showed that the average simple, diagnostic, two-color selective, two-sound selective reaction times and reaction time error increased after combined exposure to heat and lighting and showed a significant difference (P<0.05. The maximum score of reaction time belong to temperature of 37 c° and lighting of 1500 lux, the minimum score of reaction time belong to temperature of 22 °c and lighting of 1500 lux.

  6. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  7. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  8. Experiments on the Heat Transfer and Natural Circulation Characteristics of the Passive Residual Heat Removal System for the Advanced Integral Type Reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki; Lee, Un-Chul

    2004-01-01

    Experiments on the heat transfer characteristics and natural circulation performance of the passive residual heat removal system (PRHRS) for the SMART-P have been performed using the high temperature/high pressure thermal-hydraulic test facility (VISTA). The VISTA facility consists of the primary loop, the secondary loop, the PRHRS loop, and auxiliary systems to simulate the SMART-P, a pilot plant of the SMART. The primary loop is composed of the steam generator (SG) primary side, a simulated core, a main coolant pump, and loop piping, and the PRHRS loop consists of the SG secondary side, a PRHRS heat exchanger, and loop piping. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are intensively investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable the natural circulation of the coolant. The results also show that the core decay heat can be sufficiently removed from the primary loop with the operation of the PRHRS. (authors)

  9. The Heat Shock Protein 26 Gene is Required for Ethanol Tolerance in Drosophila

    Directory of Open Access Journals (Sweden)

    Awoyemi A. Awofala

    2011-01-01

    Full Text Available Stress plays an important role in drug- and addiction-related behaviours. However, the mechanisms underlying these behavioural responses are still poorly understood. In the light of recent reports that show consistent regulation of many genes encoding stress proteins including heat shock proteins following ethanol exposure in Drosophila , it was hypothesised that transition to alcohol dependence may involve the dysregulation of the circuits that mediate behavioural responses to stressors. Thus, behavioural genetic methodologies were used to investigate the role of the Drosophila hsp26 gene, a small heat shock protein coding gene which is induced in response to various stresses, in the development of rapid tolerance to ethanol sedation. Rapid tolerance was quantified as the percentage difference in the mean sedation times between the second and first ethanol exposure. Two independently isolated P-element mutations near the hsp26 gene eliminated the capacity for tolerance. In addition, RNAi-mediated functional knockdown of hsp26 expression in the glial cells and the whole nervous system also caused a defect in tolerance development. The rapid tolerance phenotype of the hsp26 mutants was rescued by the expression of the wild-type hsp26 gene in the nervous system. None of these manipulations of the hsp26 gene caused changes in the rate of ethanol absorption. Hsp26 genes are evolutionary conserved, thus the role of hsp26 in ethanol tolerance may present a new direction for research into alcohol dependency.

  10. Heat generation in lithium/thionyl chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, H.F.

    1980-01-01

    The flow of heat from lithium/thionyl chloride batteries has been measured in two conduction calorimeters. Several types of cells have been studied, both at rest and during low- and high-rate discharge. In contrast with other reports in the literature, no conditions were found under which the discharge of lithium/thionyl chloride batteries was endothermic. Results at low currents, which are described in terms of the thermodynamic formalism developed previously, are consistent with measurements of the temperature dependence of the open-circuit potential. Cells discharged at higher currents produced more heat flux than predicted by the simple thermodynamic treatment. The current and time variation of the additional heat is consistent with a current-dependent corrosion of the lithium electrode. 14 refs.

  11. Impact of desiccation and heat exposure stress on Salmonella tolerance to acidic conditions.

    Science.gov (United States)

    Richardson, Kurt E; Cox, Nelson A; Cosby, Douglas E; Berrang, Mark E

    2018-02-01

    In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.

  12. Exposure Monitoring and Risk Assessment of Biphenyl in the Workplace

    OpenAIRE

    Kim, Hyeon-Yeong; Shin, Sae-Mi; Ham, Miran; Lim, Cheol-Hong; Byeon, Sang-Hoon

    2015-01-01

    This study was performed to assess exposure to and the risk caused by biphenyl in the workplace. Biphenyl is widely used as a heat transfer medium and as an emulsifier and polish in industry. Vapor or high levels of dust inhalation and dermal exposure to biphenyl can cause eye inflammation, irritation of respiratory organs, and permanent lesions in the liver and nervous system. In this study, the workplace environment concentrations were assessed as central tendency exposure and reasonable ma...

  13. Variational principles in terms of entransy for heat transfer

    International Nuclear Information System (INIS)

    Xu, Mingtian

    2012-01-01

    A variational principle for heat conduction is formulated which results in the steady state heat conduction equation established from the Fourier law. Furthermore based on the thermodynamics in terms of entransy a more general functional is defined for incompressible fluids. We show that extremizing this functional gives rise to the state described by the Navier-Stokes-Fourier equations with vanishing substantive derivatives of the temperature and velocity field. In this sense one may conclude that this variational principle is consistent with the Navier-Stokes-Fourier equations. Therefore the variational principle developed in the present work demonstrates a great advantage over the minimum entropy production principle. -- Highlights: ► A variational principle for heat transfer of incompressible fluid is established in terms of entransy. ► For pure heat conduction the variational principle leads to the classical steady state heat conduction equation. ► For heat convection the variational principle is consistent with the Navier-Stokes-Fourier equations.

  14. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Tan, Lippong; Date, Abhijit; Singh, Baljit; Akbarzadeh, Aliakbar

    2015-01-01

    Highlights: • A new passive power cogeneration system using industrial waste heat was introduced. • Heat pipes and thermoelectrics were used for recovering waste heat and electricity. • Theoretical model predicted the 2 kW test rig could recover 1.345 kW thermal power. • 10.39 W electrical power was produced equivalent to 0.77% conversion efficiency. - Abstract: This research explores a new method of recovering waste heat and electricity using a combination of heat pipes and thermoelectric generators (HP-TEG). The HP-TEG system consists of Bismuth Telluride (Bi 2 Te 3 ) based thermoelectric generators (TEGs), which are sandwiched between two finned heat pipes to achieve a temperature gradient across the TEG for thermoelectricity generation. A theoretical model was developed to predict the waste heat recovery and electricity conversion performances of the HP-TEG system under different parametric conditions. The modelling results show that the HP-TEG system has the capability of recovering 1.345 kW of waste heat and generating 10.39 W of electrical power using 8 installed TEGs. An experimental test bench for the HP-TEG system is under development and will be discussed in this paper

  15. Structural Consistency, Consistency, and Sequential Rationality.

    OpenAIRE

    Kreps, David M; Ramey, Garey

    1987-01-01

    Sequential equilibria comprise consistent beliefs and a sequentially ra tional strategy profile. Consistent beliefs are limits of Bayes ratio nal beliefs for sequences of strategies that approach the equilibrium strategy. Beliefs are structurally consistent if they are rationaliz ed by some single conjecture concerning opponents' strategies. Consis tent beliefs are not necessarily structurally consistent, notwithstan ding a claim by Kreps and Robert Wilson (1982). Moreover, the spirit of stru...

  16. Saturated flow boiling heat transfer in water-heated vertical annulus

    International Nuclear Information System (INIS)

    Sun Licheng; Yan Changqi; Sun Zhonning

    2005-01-01

    This paper describes the saturated flow boiling heat transfer characteristics of water at 1 atm and low velocities in water-heated vertical annuli with equivalent diameters of 10 mm and 6 mm. Test section is consisted of two concentric circular tubes outer of which is made of quartz, so the whole test courses can be visualized. There are three main flow patterns of bubble flow, churn flow and churn-annular flow in the annuli, most important of which is churn flow. Flooding is the mechanism of churn flow and churn can enhance the heat transport between steam and water; Among the three factors of mass flux, inlet subcooling and annulus width, the last one has great effect on heat transport, moderately decreasing the annulus width can enhance the heat transfer; Combined annular flow model with theory of flooding and turbulent Prandtl Number, the numerical value of heat flux is given, the shape of test boiling curve and that of calculated by model is very alike, but there is large discrepancy between test data and calculated results, the most possible reason is that some parameters given by fluid flooding model are based on experimental data of common circular tubes, but not of annuli. Doing more research on flooding in annulus, particularly narrow annulus, is necessary for calculating the saturated boiling in annulus. (authors)

  17. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  18. Competition in the household heat product markets in Finland

    International Nuclear Information System (INIS)

    Linden, Mikael; Peltola-Ojala, Paeivi

    2005-01-01

    In the article the market of household heat products is defined independently. The market consists mainly of electricity, district heating, light fuel oil, and wood. Geographically household heat product markets are limited to the area which is covered by the local district heating network. We test indirectly whether this market definition is valid, i.e. do different household heat products act as substitutes to each other. However, the substitution may quite often be limited since the local district heat supplier is the only supplier on the area and also electricity companies have high market shares in the area they are located. The amount of competitors even in these enlarged markets is low. Also the local district heating network gives a technological potential to non-competitive product specific pricing. Thus, a relevant case exists where the district heating company can determine the price of its product without constraints from other firms and heat products. We test empirically whether the local prices of district heating are affected by the local heat product market shares of district heating companies. We use panel data which consists of 75 district heating companies in years 1996 - 2002. The data includes market share, joint production, district heating tariffs, production scale, and raw material input cost variables. The results obtained from different estimations indicate clearly that competitive case is not the prevailing one in the Finnish district heating pricing. The market shares of district heating companies had a positive effect on the district heating prices. The result also does not support the hypothesis that different household heat products belong to same heat product markets. (Author)

  19. Cumulative effects of heat exposure and storage conditions of Oxytocin-in-Uniject in rural Ghana: implications for scale up.

    Science.gov (United States)

    Mullany, Luke C; Newton, Sam; Afari-Asiedu, Samuel; Adiibokah, Edward; Agyemang, Charlotte T; Cofie, Patience; Brooke, Steve; Owusu-Agyei, Seth; Stanton, Cynthia K

    2014-08-01

    Postpartum hemorrhage can be reduced substantially in home deliveries attended by community-based workers by using Oxytocin-in-Uniject (OIU) devices affixed with temperature-time indicators. We characterized the distribution of time to discard of these devices when stored under normal field conditions in Ghana. Two drug storage simulation studies were conducted in rural Ghana in 2011 and 2012. Devices were transported under refrigeration from manufacture (Argentina) to storage at the study site. Twenty-three field workers each stored at home (unrefrigerated) 25 OIU devices and monitored them daily to record: (1) time to transition from usable to unusable, and (2) continuous digital ambient temperature to determine heat exposure over the simulation period. Time to discard was estimated and compared with mean kinetic temperature exposure of the devices during the shipment and storage phases and with characteristics of the storage locations using Weibull regression models. We used the time to discard distributions in a Monte Carlo simulation to estimate wastage rates in a hypothetical program setting. Time for shipment and transfer to long-term refrigerated storage and mean kinetic temperature during the shipment phase was 8.6 days/10.3°C and 13.4 days/12.1°C, for the first and second simulation studies, respectively. Median (range) time to discard when stored under field conditions (unrefrigerated) was 43 (6 to 59) days and 33 (14 to 50) days, respectively. Mean time to discard was 10.0 days shorter in the second simulation, during which mean kinetic temperature exposure was 3.9°C higher. Simulating a monthly distribution system and assuming typical usage, predicted wastage of product was less than 10%. The time to discard of devices was highly sensitive to small changes in temperature exposure. Under field conditions typical in rural Ghana, OIU packages will have a half-life of approximately 30 to 40 days based on the temperature monitor used during the study

  20. Development of retrospective quantitative and qualitative job-exposure matrices for exposures at a beryllium processing facility.

    Science.gov (United States)

    Couch, James R; Petersen, Martin; Rice, Carol; Schubauer-Berigan, Mary K

    2011-05-01

    To construct a job-exposure matrix (JEM) for an Ohio beryllium processing facility between 1953 and 2006 and to evaluate temporal changes in airborne beryllium exposures. Quantitative area- and breathing-zone-based exposure measurements of airborne beryllium were made between 1953 and 2006 and used by plant personnel to estimate daily weighted average (DWA) exposure concentrations for sampled departments and operations. These DWA measurements were used to create a JEM with 18 exposure metrics, which was linked to the plant cohort consisting of 18,568 unique job, department and year combinations. The exposure metrics ranged from quantitative metrics (annual arithmetic/geometric average DWA exposures, maximum DWA and peak exposures) to descriptive qualitative metrics (chemical beryllium species and physical form) to qualitative assignment of exposure to other risk factors (yes/no). Twelve collapsed job titles with long-term consistent industrial hygiene samples were evaluated using regression analysis for time trends in DWA estimates. Annual arithmetic mean DWA estimates (overall plant-wide exposures including administration, non-production, and production estimates) for the data by decade ranged from a high of 1.39 μg/m(3) in the 1950s to a low of 0.33 μg/m(3) in the 2000s. Of the 12 jobs evaluated for temporal trend, the average arithmetic DWA mean was 2.46 μg/m(3) and the average geometric mean DWA was 1.53 μg/m(3). After the DWA calculations were log-transformed, 11 of the 12 had a statistically significant (p < 0.05) decrease in reported exposure over time. The constructed JEM successfully differentiated beryllium exposures across jobs and over time. This is the only quantitative JEM containing exposure estimates (average and peak) for the entire plant history.

  1. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-10-01

    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T~800 K at ~4° N and the auroral temperatures simultaneously.

    Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  2. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    Science.gov (United States)

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  3. Heating with ice. Efficient heating source for heat pumps. Primary source storage. Alternative to soil sensors and soil collectors; Heizen mit Eis. Effiziente Waermequelle fuer Waermepumpen. Primaerquellenspeicher, Alternative zu Erdsonden und Erdkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Tippelt, Egbert [Viessmann, Allendorf (Germany)

    2011-12-15

    For several years heat pumps have taken up a fixed place in the mix of annually installed thermal generators. Thus, in the year 2010 every tenth newly installed heater was a heat pump. A new concept for the development and utilization of natural heat now makes this technology even more attractive. From this perspective, the author of the contribution under consideration reports on a SolarEis storage. This SolarEis storage consists of a cylindrical concrete tank with two heat exchangers consiting of plastic pipes. The SolarEis storage uses outdoor air, solar radiation and soil as heat sources for brine / water heat pumps simultaneously.

  4. Heat transfer in a compact tubular heat exchanger with application to the engine struts of the national aerospace plane

    International Nuclear Information System (INIS)

    Olsen, D.A.

    1991-01-01

    The authors constructed an apparatus to measure heat transfer coefficients in compact heat exchangers which are candidate cooling jackets for the engine struts of the National Aerospace Plane. This paper reports measurements on a tube specimen heat exchanger. The heat exchanger consisted of 20 nickel tubes (2 mm OD, 1 mm ID, 15.2 cm heated length), brazed to a 3 mm thick nickel plate. The tubes lay parallel to one another, 3.8 mm on-center separation. The heat exchanger was heated on one side in a radiative furnace at heat fluxes of 3.4 to 54 W/cm 2 over a normal area of 7.8 cm by 15.2 cm. The coolant fluid was helium gas at Reynolds numbers of 3000 to 35 000 and 3.50 MPa pressure. For high heat flux and low

  5. Structural analysis of osseous rests exposed to heating

    International Nuclear Information System (INIS)

    Medina, C.; Tiesler, V.; Quintana, P.; Oliva, A.I.

    2005-01-01

    Heat exposed human remains present physical and chemical changes that, when analysed, may provide important indications about the type of heating they were exposed. This information, jointly with that of the archaeological context, allows us to know about the cultural practices of the past from a methodological perspective that actually, has not been explored sufficiently. The present investigation applies a series of structural parameters of bone in the evaluation of skeletal sample from the archaeological site of Calakmul, which exhibits signs of thermal exposure. Results on the Pre hispanic specimens are compared to those obtained from an experimental series of animal bone, which was submitted to different types of heat with the objective to contribute with new data on the forms of heating and their role in ancient Maya society. (Author)

  6. Design of a cavity heat pipe receiver experiment

    Science.gov (United States)

    Schneider, Michael G.; Brege, Mark H.; Greenlee, William J.

    1992-01-01

    A cavity heat pipe experiment has been designed to test the critical issues involved with incorporating thermal energy storage canisters into a heat pipe. The experiment is a replication of the operation of a heat receiver for a Brayton solar dynamic power cycle. The heat receiver is composed of a cylindrical receptor surface and an annular heat pipe with thermal energy storage canisters and gaseous working fluid heat exchanger tubes surrounding it. Hardware for the cavity heat pipe experiment will consist of a sector of the heat pipe, complete with gas tube and thermal energy storage canisters. Thermal cycling tests will be performed on the heat pipe sector to simulate the normal energy charge/discharge cycle of the receiver in a spacecraft application.

  7. Effect of nanofluids on thermal performance of heat pipes

    OpenAIRE

    Ferizaj, Drilon; Kassem, Mohamad

    2014-01-01

    A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bache...

  8. Ultra-low-energy wide electron exposure unit

    International Nuclear Information System (INIS)

    Yonago, Akinobu; Oono, Yukihiko; Tokunaga, Kazutoshi; Kishimoto, Junichi; Wakamoto, Ikuo

    2001-01-01

    Heat and ultraviolet ray processes are used in surface dryness of paint, surface treatment of construction materials and surface sterilization of food containers. A process using a low-energy wide-area electron beam (EB) has been developed that features high speed and low drive cost. EB processing is not widespread in general industry, however, due to high equipment cost and difficult maintenance. We developed an ultra-low-energy wide-area electron beam exposure unit, the Mitsubishi Wide Electron Exposure Unit (MIWEL) to solve these problems. (author)

  9. A consistent and unified picture for critical phenomena of f(R) AdS black holes

    International Nuclear Information System (INIS)

    Mo, Jie-Xiong; Li, Gu-Qiang; Wu, Yu-Cheng

    2016-01-01

    A consistent and unified picture for critical phenomena of charged AdS black holes in f ( R ) gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of C Q . The two solutions merge into one when the condition Q c =√(−1/3 R 0 ) is satisfied. The curve of specific heat for Q < Q c has two divergent points and can be divided into three regions. Both the large radius region and the small radius region are thermodynamically stable with positive specific heat while the medium radius region is unstable with negative specific heat. However, when Q > Q c , the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the T − r + curve and T − S curve f ( R ) AdS black holes are investigated and they exhibit Van der Vaals like behavior as the P − v curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases Q =0.2 Q c , 0.4 Q c , 0.6 Q c , 0.8 Q c . The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds for T − S curve of f ( R ) black holes. Thirdly, we establish geometrothermodynamics for f ( R ) AdS black hole to examine the phase structure. It is shown that the Legendre invariant scalar curvature R would diverge exactly where the specific heat diverges. To summarize, the above three perspectives are consistent with each other, thus providing a unified picture which deepens the understanding of critical phenomena of f ( R ) AdS black holes.

  10. CELLS OVEREXPRESSING HSP27 SHOW ACCELERATED RECOVERY FROM HEAT-INDUCED NUCLEAR-PROTEIN AGGREGATION

    NARCIS (Netherlands)

    KAMPINGA, HH; BRUNSTING, JF; STEGE, GJJ; KONINGS, AWT; LANDRY, J

    1994-01-01

    Protein denaturation/aggregation upon cell exposure to heat shock is a likely cause of cell death. in the nucleus, protein aggregation has often been correlated to inhibition of nuclear located processes and heat-induced cell killing. in Chinese hamster 023 cells made thermotolerant by a prior

  11. Combined heat and power considered as a virtual steam cycle heat pump

    International Nuclear Information System (INIS)

    Lowe, Robert

    2011-01-01

    The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers. - Highlights: → Large-scale CHP systems are thermodynamically equivalent to virtual steam cycle heat pumps. → COPs of such virtual heat pumps are necessarily better than the Carnot limit for real heat pumps. → COPs can approach 9 for plant matched to district heating systems with flow temperatures of 90 deg. C. → CHP combined with CCGT and CCS can reduce the carbon intensity of delivered heat ∼30-fold.

  12. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux

    International Nuclear Information System (INIS)

    Kuang, Y.W.; Wang, Wen; Zhuan, Rui; Yi, C.C.

    2015-01-01

    Highlights: • A boiling flow model in a separate type heat pipe with 65 mm diameter tube. • Nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux. • The two-phase heat transfer coefficient is less sensitive to the total mass flux. - Abstract: The separate type heat pipe heat exchanger is considered to be a potential selection for developing passive cooling spent fuel pool – for the passive pressurized water reactor. This paper simulates the boiling flow behavior in the evaporator of separate type heat pipe, consisting of a bundle of tubes of inner diameter 65 mm. It displays two-phase characteristic in the evaporation section of the heat pipe working in low heat flux. In this study, the two-phase flow model in the evaporation section of the separate type heat pipe is presented. The volume of fluid (VOF) model is used to consider the interaction between the ammonia gas and liquid. The flow patterns and flow behaviors are studied and the agitated bubbly flow, churn bubbly flow are obtained, the slug bubble is likely to break into churn slug or churn froth flow. In addition, study on the heat transfer coefficients indicates that the nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux, with the heat transfer coefficient being less sensitive to the total mass flux

  13. Reef calcifiers are adapted to episodic heat stress but vulnerable to sustained warming.

    Science.gov (United States)

    Stuhr, Marleen; Reymond, Claire E; Rieder, Vera; Hallock, Pamela; Rahnenführer, Jörg; Westphal, Hildegard; Kucera, Michal

    2017-01-01

    Shallow marine ecosystems naturally experience fluctuating physicochemical conditions across spatial and temporal scales. Widespread coral-bleaching events, induced by prolonged heat stress, highlight the importance of how the duration and frequency of thermal stress influence the adaptive physiology of photosymbiotic calcifiers. Large benthic foraminifera harboring algal endosymbionts are major tropical carbonate producers and bioindicators of ecosystem health. Like corals, they are sensitive to thermal stress and bleach at temperatures temporarily occurring in their natural habitat and projected to happen more frequently. However, their thermal tolerance has been studied so far only by chronic exposure, so how they respond under more realistic episodic heat-event scenarios remains unknown. Here, we determined the physiological responses of Amphistegina gibbosa, an abundant western Atlantic foraminifera, to four different treatments--control, single, episodic, and chronic exposure to the same thermal stress (32°C)--in controlled laboratory cultures. Exposure to chronic thermal stress reduced motility and growth, while antioxidant capacity was elevated, and photosymbiont variables (coloration, oxygen-production rates, chlorophyll a concentration) indicated extensive bleaching. In contrast, single- and episodic-stress treatments were associated with higher motility and growth, while photosymbiont variables remained stable. The effects of single and episodic heat events were similar, except for the presumable occurrence of reproduction, which seemed to be suppressed by both episodic and chronic stress. The otherwise different responses between treatments with thermal fluctuations and chronic stress indicate adaptation to thermal peaks, but not to chronic exposure expected to ensue when baseline temperatures are elevated by climate change. This firstly implies that marine habitats with a history of fluctuating thermal stress potentially support resilient

  14. Exposure is not enough: suppressing stimuli from awareness can abolish the mere exposure effect.

    Directory of Open Access Journals (Sweden)

    Daniel de Zilva

    Full Text Available Passive exposure to neutral stimuli increases subsequent liking of those stimuli--the mere exposure effect. Because of the broad implications for understanding and controlling human preferences, the role of conscious awareness in mere exposure has received much attention. Previous studies have claimed that the mere exposure effect can occur without conscious awareness of the stimuli. In two experiments, we applied a technique new to the mere exposure literature, called continuous flash suppression, to expose stimuli for a controlled duration with and without awareness. To ensure the reliability of the awareness manipulation, awareness was monitored on a trial-by-trial basis. Our results show that under these conditions the mere exposure effect does not occur without conscious awareness. In contrast, only when participants were aware of the stimuli did exposure increase liking and recognition. Together these data are consistent with the idea that the mere exposure effect requires conscious awareness and has important implications for theories of memory and affect.

  15. Exposure is not enough: suppressing stimuli from awareness can abolish the mere exposure effect.

    Science.gov (United States)

    de Zilva, Daniel; Vu, Luke; Newell, Ben R; Pearson, Joel

    2013-01-01

    Passive exposure to neutral stimuli increases subsequent liking of those stimuli--the mere exposure effect. Because of the broad implications for understanding and controlling human preferences, the role of conscious awareness in mere exposure has received much attention. Previous studies have claimed that the mere exposure effect can occur without conscious awareness of the stimuli. In two experiments, we applied a technique new to the mere exposure literature, called continuous flash suppression, to expose stimuli for a controlled duration with and without awareness. To ensure the reliability of the awareness manipulation, awareness was monitored on a trial-by-trial basis. Our results show that under these conditions the mere exposure effect does not occur without conscious awareness. In contrast, only when participants were aware of the stimuli did exposure increase liking and recognition. Together these data are consistent with the idea that the mere exposure effect requires conscious awareness and has important implications for theories of memory and affect.

  16. Rapid shift in thermal resistance between generations through maternal heat exposure

    NARCIS (Netherlands)

    Zizzari, Z.V.; Ellers, J.

    2014-01-01

    Given the current rapid climate change, understanding the mechanisms underlying heat tolerance and its plasticity is an important goal of global change biology. Soil fauna communities are especially vulnerable because of their limited dispersal ability. It is generally recognized that

  17. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  18. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  19. Heating entrepreneur activity in 2003

    International Nuclear Information System (INIS)

    Nikkola, A.; Solmio, H.

    2004-01-01

    According to TTS Institute information, at the end of 2003 there were heating entrepreneurs responsible for fuel management and heat production in at least 212 heating plants in Finland. The number of operative plants increased by 36 from the previous year. At the end of 2003, the total boiler capacity for solid fuel in the plants managed by the heating entrepreneurs exceeded 100 megawatts. The average boiler capacity of the plants was 0.5 megawatts. Heating entrepreneur-ship was most common in west Finland, where 40 percent of the plants are located. There were some 94 heating plants managed by cooperatives or limited companies. Single entrepre neurs or entrepreneur networks consisting of several entrepreneurs were responsible for heat production in 117 plants. Heating entrepreneurs used approximately 290,000 loose cubic metres of forest chips, which is about seven percent of the volume used for heating and power plant energy production in 2003. In addition, the heating entrepreneurs used a total of 40,000 loose cubic metres of other wood fuel and an estimated 20,000 loose cubic metres of sod and milled peat. Municipalities are still the most important customer group for heating entrepreneurs. However, thenumber of private customers is growing. Industrial company, other private company or properly was the main customer already for every fourth plant established during 2003. (orig.)

  20. The "Stube" and its Heating

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2014-01-01

    This paper discusses the concept of smoke-free heated living rooms between the Alps and the Norh Sea with a special focus on the tile stove. In the circum-Alpine zone, a new heating system was invented between the 8th and 11th century. It consisted of a clay cupola oven with inserted ceramic vess...... in the area between the Upper German speaking region and Southern Scandinavia until the 16th century...

  1. Plasma treatment of heat-resistant materials

    International Nuclear Information System (INIS)

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  2. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions

  3. Thermal response test data of five quadratic cross section precast pile heat exchangers

    Directory of Open Access Journals (Sweden)

    Maria Alberdi-Pagola

    2018-06-01

    Full Text Available This data article comprises records from five Thermal Response Tests (TRT of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled “Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests” (Alberdi-Pagola et al., 2018 [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  4. LITERATURE REVIEW: HEAT TRANSFER THROUGH TWO-PHASE INSULATION SYSTEMS CONSISTING OF POWDERS IN A CONTINUOUS GAS PHASE

    Science.gov (United States)

    The report, a review of the literature on heat flow through powders, was motivated by the use of fine powder systems to produce high thermal resistivities (thermal resistance per unit thickness). he term "superinsulations" has been used to describe this type of material, which ha...

  5. Radiation exposure of uranium mill workers

    International Nuclear Information System (INIS)

    Jha, Giridhar; Saha, S.C.

    1982-01-01

    The uranium mill workers at Jaduguda were covered by a regular film badge service from 1969 onwards. Since the log normal plot is useful in interpreting occupational exposure, a statistical analysis of the radiation exposure data was attempted. Exposure data for each year has been plotted as cumulative percentage and worker's population with exposure levels in different class intervals. The plot for each of the year under investigation shows an occupational exposure distribution more or less consistent with the log normal distribution function. The analysis shows that more than 98% of radiation workers received less than 200 mrem (2 mSv). (author)

  6. Study of heat flux deposition in the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Carpentier, S.

    2009-02-01

    Accurate measurements of heat loads on internal tokamak components is essential for protection of the device during steady state operation. The optimisation of experimental scenarios also requires an in depth understanding of the physical mechanisms governing the heat flux deposition on the walls. The objective of this study is a detailed characterisation of the heat flux to plasma facing components (PFC) of the Tore Supra tokamak. The power deposited onto Tore Supra PFCs is calculated using an inverse method, which is applied to both the temperature maps measured by infrared thermography and to the enthalpy signals from calorimetry. The derived experimental heat flux maps calculated on the toroidal pumped limiter (TPL) are then compared with theoretical heat flux density distributions from a standard SOL-model. They are two experimental observations that are not consistent with the model: significant heat flux outside the theoretical wetted area, and heat load peaking close to the tangency point between the TPL and the last closed field surface (LCFS). An experimental analysis for several discharges with variable security factors q is made. In the area consistent with the theoretical predictions, this parametric study shows a clear dependence between the heat flux length λ q (estimated in the SOL (scrape-off layer) from the IR measurements) and the magnetic configuration. We observe that the spreading of heat fluxes on the component is compensated by a reduction of the power decay length λ q in the SOL when q decreases. On the other hand, in the area where the derived experimental heat loads are not consistent with the theoretical predictions, we observe that the spreading of heat fluxes outside the theoretical boundary increases when q decreases, and is thus not counterbalanced. (author)

  7. Subcooled boiling heat transfer on a finned surface

    International Nuclear Information System (INIS)

    Kowalski, J.E.; Tran, V.T.; Mills, P.J.

    1992-01-01

    Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)

  8. Decreased survival of prostate cancer cells in vitro by combined treatment of heat and an antioxidant inhibitor diethyldithiocarbamate (DDC).

    Science.gov (United States)

    Moriyama-Gonda, Nobuko; Igawa, Mikio; Shiina, Hiroaki; Urakami, Shinji; Terashima, Masaharu

    2003-11-01

    The aim of this study was to examine a modulation of thermotolerance by treatment with combination of heat and the antioxidant inhibitor diethyldithiocarbamate (DDC) of the PC-3 prostate cancer cells. To determine thermotolerance, cells were heated once or twice. Two 1 h exposures at 43 degrees C, with a recovery period in between, revealed better survival/recovery of cells after the second exposure than after the first (fig. 1A + 1B). Additional experiments were performed, heating cells twice (fig. 1B + 1C). First, cells were heated at 43 degrees C for 1 h and, after various recovery times (intervals) at 37 degree C, subsequently reheated at 44 degrees C for 1 h. To ensure effective cell killing, efficiency of the combined treatments of 1 mM DDC and heating at 43 or 44 degrees C for 1 h was estimated by measuring cell survival, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity and heat shock protein 70 (hsp 70) expression. To obtain a more effective method for subsequent heat exposure, cells were heated twice after a 24 h interval in the presence or absence of 1 mM DDC. ROS generation and SOD activity immediately increased correlating with duration of heating, but their levels gently decreased with time after discontinuation of heating. On the other hand, hsp 70 levels slowly increased, also correlating with duration of heating but continued to increase with time after discontinuation of heating for a certain period. DDC administration coupled with heating at 43 or 44 degrees C significantly decreased cell survival compared to heating alone (p DDC as compared to heat alone at 43 and 44 degrees C (p DDC could have potential benefits in the treatment of prostate cancer.

  9. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.R.

    1980-01-01

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  10. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    Science.gov (United States)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas

  11. Spatially explicit assessment of heat health risk by using multi-sensor remote sensing images and socioeconomic data in Yangtze River Delta, China.

    Science.gov (United States)

    Chen, Qian; Ding, Mingjun; Yang, Xuchao; Hu, Kejia; Qi, Jiaguo

    2018-05-25

    The increase in the frequency and intensity of extreme heat events, which are potentially associated with climate change in the near future, highlights the importance of heat health risk assessment, a significant reference for heat-related death reduction and intervention. However, a spatiotemporal mismatch exists between gridded heat hazard and human exposure in risk assessment, which hinders the identification of high-risk areas at finer scales. A human settlement index integrated by nighttime light images, enhanced vegetation index, and digital elevation model data was utilized to assess the human exposure at high spatial resolution. Heat hazard and vulnerability index were generated by land surface temperature and demographic and socioeconomic census data, respectively. Spatially explicit assessment of heat health risk and its driving factors was conducted in the Yangtze River Delta (YRD), east China at 250 m pixel level. High-risk areas were mainly distributed in the urbanized areas of YRD, which were mostly driven by high human exposure and heat hazard index. In some less-urbanized cities and suburban and rural areas of mega-cities, the heat health risks are in second priority. The risks in some less-developed areas were high despite the low human exposure index because of high heat hazard and vulnerability index. This study illustrated a methodology for identifying high-risk areas by combining freely available multi-source data. Highly urbanized areas were considered hotspots of high heat health risks, which were largely driven by the increasing urban heat island effects and population density in urban areas. Repercussions of overheating were weakened due to the low social vulnerability in some central areas benefitting from the low proportion of sensitive population or the high level of socioeconomic development. By contrast, high social vulnerability intensifies heat health risks in some less-urbanized cities and suburban areas of mega-cities.

  12. Increased occupational coal dust toxicity in blood of central heating system workers.

    Science.gov (United States)

    Tuluce, Yasin; Ozkol, Halil; Koyuncu, Ismail; Ine, Hatice

    2011-02-01

    Coal dust causes lung diseases in occupational exposure. Reactive oxygen species have been implicated in the pathogenesis of its toxicity. In this study, serum enzymes, lipid profile and other biochemical values with oxidant/antioxidant status in whole blood and serum of central heating system workers (CHSW; the persons responsible for heating the apartment with coal) were determined to reflect the cell injury. Blood samples were obtained from CHSW (n = 25) and healthy individuals (n = 25). All values were measured in whole blood and serum. ANOVA was used for the estimation of statistical data. In the group of CHSW, creatinine, ferritin, alanin aminotransferase, aspartate aminotransferase, creatine phosphokinase, gamma glutamyl transferase, lactate dehydrogenase and glutathione reductase activities as well as triglyceride, very low density lipoprotein, protein carbonyl and malondialdehide were significantly higher, while transferrin, high density lipoprotein and catalase (CAT) activities were lower than the group of healthy individuals. This result is consistent with hypothesis that respirable coal dust generates lipid and protein oxidation and induces leakage of serum enzymes by cell damage. It also leads to imbalance in antioxidant defense system, lipid profile and other biochemical parameters.

  13. The Health Impacts of Energy Policy Pathways in Ulaanbaatar, Mongolia: A Total Exposure Assessment

    Science.gov (United States)

    Hill, L. A.; Damdinsuren, Y.; Olkhanud, P. B.; Smith, K. R.; Turner, J. R.; Edwards, R.; Odsuren, M.; Ochir, C.

    2015-12-01

    Ulaanbaatar is home to nearly half of Mongolia's 2.8 million residents. The city's rapid growth, frigid winters, valley topography, and reliance on coal-fired stoves have led to some of the worst winter pollution levels in the world. To better understand this issue, we modeled integrated PM2.5exposures and related health impacts for various city-wide heating policies through 2024. This assessment is one of the first to employ a total exposure approach and results of the 2014 Comparative Risk Assessments of the Global Burden of Disease Project (CRA/GBD) in a policy-relevant energy study. Emissions related to heating, traffic, and power generation were considered under Business as Usual, Moderate Improvement, and Max Improvement scenarios. Calibrated outdoor models were combined with indoor models, local infiltration and time activity estimates, and demographic projections to estimate PM2.5exposures in 2014 and 2024. Indoor exposures were assigned by heating type, home type, and smoking status; outdoor exposures were assigned through geocoding. Population average annual exposures were calculated and applied to local disease rates and integrated exposure-response curves (2014 CRA/GBD) to arrive at annual projections of premature deaths and DALYs. We estimate 2014 annual average exposures at 68 μg/m3, dictated almost exclusively by indoor winter exposures. Under current trends, annual exposures increase 10% to 75 μg/m3 in 2024. This is in stark contrast to the moderate and max improvement scenarios, which lead to 2024 annual exposures that are 31%, and 68% lower, respectively. Under the Moderate scenario, 2024 per capita annual DALY and death burdens drop 26% and 22%, respectively, from 2014 levels. Under the Max scenario, 2024 per capita annual DALY and death burdens drop 71% and 66%, respectively, from 2014. SHS becomes a major contributor as emissions from other sectors decrease. Reductions are dominated by cardiovascular and lower respiratory diseases in children.

  14. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  15. An Analytical Solution for Transient Heat Conduction in a Composite Slab with Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2018-01-01

    Full Text Available An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.

  16. Simple, economical heat-shock devices for zebrafish housing racks.

    Science.gov (United States)

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  17. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  18. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Lee, Y C; Bright, Victor M; Sharar, Darin J; Jankowski, Nicholas R; Morgan, Brian C

    2012-01-01

    This paper presents the fabrication and application of a micro-scale hybrid wicking structure in a flat polymer-based heat pipe heat spreader, which improves the heat transfer performance under high adverse acceleration. The hybrid wicking structure which enhances evaporation and condensation heat transfer under adverse acceleration consists of 100 µm high, 200 µm wide square electroplated copper micro-pillars with 31 µm wide grooves for liquid flow and a woven copper mesh with 51 µm diameter wires and 76 µm spacing. The interior vapor chamber of the heat pipe heat spreader was 30×30×1.0 mm 3 . The casing of the heat spreader is a 100 µm thick liquid crystal polymer which contains a two-dimensional array of copper-filled vias to reduce the overall thermal resistance. The device performance was assessed under 0–10 g acceleration with 20, 30 and 40 W power input on an evaporator area of 8×8 mm 2 . The effective thermal conductivity of the device was determined to range from 1653 W (m K) −1 at 0 g to 541 W (m K) −1 at 10 g using finite element analysis in conjunction with a copper reference sample. In all cases, the effective thermal conductivity remained higher than that of the copper reference sample. This work illustrates the possibility of fabricating flexible, polymer-based heat pipe heat spreaders compatible with standardized printed circuit board technologies that are capable of efficiently extracting heat at relatively high dynamic acceleration levels. (paper)

  19. The effects of exposure to multiple occupational health stressors on distortion product otoacoustic emissions

    CSIR Research Space (South Africa)

    Edwards, A

    2012-04-01

    Full Text Available -induced hearing loss (NIHL). Furthermore, exposure to heat is believed to influence the biochemical properties of cochlear outer hair cells (OHCs) and heat stress structurally modifies the OHCs, making them stiffer through an increase in F-actin5. This experiment...

  20. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  1. Transient Analysis of a Magnetic Heat Pump

    Science.gov (United States)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  2. The interrealtionship between locally applied heat, ageing and skin blood flow on heat transfer into and from the skin.

    Science.gov (United States)

    Petrofsky, Jerrold; Alshahmmari, Faris; Yim, Jong Eun; Hamdan, Adel; Lee, Haneul; Neupane, Sushma; Shetye, Gauri; Moniz, Harold; Chen, Wei-Ti; Cho, Sungkwan; Pathak, Kunal; Malthane, Swapnil; Shenoy, Samruddha; Somanaboina, Karunakar; Alshaharani, Mastour; Nevgi, Bhakti; Dave, Bhargav; Desai, Rajavi

    2011-07-01

    In response to a thermal stress, skin blood flow (BF) increases to protect the skin from damage. When a very warm, noxious, heat source (44 °C) is applied to the skin, the BF increases disproportionately faster than the heat stress that was applied, creating a safety mechanism for protecting the skin. In the present investigation, the rate of rise of BF in response to applied heat at temperatures between 32 °C and 40 °C was examined as well as the thermal transfer to and from the skin with and without BF in younger and older subjects to see how the skin responds to a non-noxious heat source. Twenty male and female subjects (10 - 20-35 years, 10 - 40-70 years) were examined. The arms of the subjects were passively heated for 6 min with and without vascular occlusion by a thermode at temperatures of 32, 36, 38 or 40 °C. When occlusion was not used during the 6 min exposure to heat, there was an exponential rise in skin temperature and BF in both groups of subjects over the 6-min period. However, the older subjects achieved similar skin temperatures but with the expenditure of fewer calories from the thermode than was seen for the younger subjects (p<0.05). BF was significantly less in the older group than the younger group at rest and after exposure to each of the three warmest thermode temperatures (p<0.05). As was seen for noxious temperatures, after a delay, the rate of rise of BF at the three warmest thermode temperatures was faster than the rise in skin temperature in the younger group but less in the older group of subjects. Thus, a consequence of ageing is reduced excess BF in response to thermal stress increasing susceptibility to thermal damage. This must be considered in modelling of BF. Copyright © 2011 Informa UK, Ltd.

  3. Radiation and Heat Stress Impact on Plasma Levels of Thyroid Hormones, Lipid Fractions, Glucose and Liver Glycogen in rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.

    2003-01-01

    Since Egypt is classified as a hot country, the present work has been directed to study the combined effect of heat stress and gamma radiation exposure on blood thyroid hormonal levels and some other parameters. Four groups of rats were served as: control, whole-body gamma irradiated (6Gy), exposed to ambient heat stress (38 C-40 C) and a group exposed to heat stress and irradiation. Four time intervals 1, 3, 5 and 7 days were determined for heat stress or exposure to heat followed by irradiation. Blood samples and liver specimens were taken at the end of each time interval in the third group and after one hour of irradiation in the second and fourth groups. To detect the radiation effects after the different periods of heat stress, plasma levels of thyroid hormones (T3 and T4), lipid fractions (triglycerides, total cholesterol, HDL- and LDL-cholesterol), glucose and liver glycogen content were determined. The results revealed that exposure to heat and ionizing radiation leads to a decrease in the levels of thyroid hormones, which was mostly pronounced in the T3 levels. Plasma glucose levels showed significant elevations in both, the heat-stressed group and the heat-treated then irradiated group. While, liver glycogen content exhibited similar elevations only during the 1st, 3 rd and 5 th days of heating followed by irradiation treatment as compared to the heat stressed group. Yet, it showed significant declines in comparison with both control and irradiated groups. Enormous increments in all determined plasma lipid fractions were induced by heat stress and / or gamma radiation

  4. Estimation of respiratory heat flows in prediction of heat strain among Taiwanese steel workers.

    Science.gov (United States)

    Chen, Wang-Yi; Juang, Yow-Jer; Hsieh, Jung-Yu; Tsai, Perng-Jy; Chen, Chen-Peng

    2017-01-01

    International Organization for Standardization 7933 standard provides evaluation of required sweat rate (RSR) and predicted heat strain (PHS). This study examined and validated the approximations in these models estimating respiratory heat flows (RHFs) via convection (C res ) and evaporation (E res ) for application to Taiwanese foundry workers. The influence of change in RHF approximation to the validity of heat strain prediction in these models was also evaluated. The metabolic energy consumption and physiological quantities of these workers performing at different workloads under elevated wet-bulb globe temperature (30.3 ± 2.5 °C) were measured on-site and used in the calculation of RHFs and indices of heat strain. As the results show, the RSR model overestimated the C res for Taiwanese workers by approximately 3 % and underestimated the E res by 8 %. The C res approximation in the PHS model closely predicted the convective RHF, while the E res approximation over-predicted by 11 %. Linear regressions provided better fit in C res approximation (R 2  = 0.96) than in E res approximation (R 2  ≤ 0.85) in both models. The predicted C res deviated increasingly from the observed value when the WBGT reached 35 °C. The deviations of RHFs observed for the workers from those predicted using the RSR or PHS models did not significantly alter the heat loss via the skin, as the RHFs were in general of a level less than 5 % of the metabolic heat consumption. Validation of these approximations considering thermo-physiological responses of local workers is necessary for application in scenarios of significant heat exposure.

  5. Respiratory Effects of Indoor Heat and the Interaction with Air Pollution in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    McCormack, Meredith C; Belli, Andrew J; Waugh, Darryn; Matsui, Elizabeth C; Peng, Roger D; Williams, D'Ann L; Paulin, Laura; Saha, Anik; Aloe, Charles M; Diette, Gregory B; Breysse, Patrick N; Hansel, Nadia N

    2016-12-01

    There is limited evidence of the effect of exposure to heat on chronic obstructive pulmonary disease (COPD) morbidity, and the interactive effect between indoor heat and air pollution has not been established. To determine the effect of indoor and outdoor heat exposure on COPD morbidity and to determine whether air pollution concentrations modify the effect of temperature. Sixty-nine participants with COPD were enrolled in a longitudinal cohort study, and data from the 601 participant days that occurred during the warm weather season were included in the analysis. Participants completed home environmental monitoring with measurement of temperature, relative humidity, and indoor air pollutants and simultaneous daily assessment of respiratory health with questionnaires and portable spirometry. Participants had moderate to severe COPD and spent the majority of their time indoors. Increases in maximal indoor temperature were associated with worsening of daily Breathlessness, Cough, and Sputum Scale scores and increases in rescue inhaler use. The effect was detected on the same day and lags of 1 and 2 days. The detrimental effect of temperature on these outcomes increased with higher concentrations of indoor fine particulate matter and nitrogen dioxide (P pollution concentrations. For patients with COPD who spend the majority of their time indoors, indoor heat exposure during the warmer months represents a modifiable environmental exposure that may contribute to respiratory morbidity. In the context of climate change, adaptive strategies that include optimization of indoor environmental conditions are needed to protect this high-risk group from the adverse health effects of heat.

  6. Natural gas and local heat supply. Erdgas und Nahwaerme

    Energy Technology Data Exchange (ETDEWEB)

    Berge, W. (Gasversorgungsgesellschaft Filstal mbH (Germany, F.R.) Stadtwerke Goeppingen (Germany, F.R.))

    Local heat supply consists of a thermal power station of a dual-purpose plant, a heat destribution system and the heating systems of the users. A combination of gas heat-pumps, cogeneration plant and gas turbine operated as basic load aggregates is a precondition for the flexible application of energy-saving though investment-intensive technologies. Several existing plants are described in order to explain the structure and functioning of various types of plants. (BWI).

  7. Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.S., E-mail: yuzaisong@tpri.com.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China); Zhang, J.X. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Yuan, Y.; Zhou, R.C.; Zhang, H.J.; Wang, H.Z. [Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China)

    2015-05-14

    Inconel 718 was subjected to various heat treatments, i.e., solution heat treatment, standard ageing treatment and standard ageing plus 700 °C thermal exposure. The mechanical properties of the alloys were determined using tensile tests and Charpy pendulum impact tests at 650 °C and room temperature, respectively. The highest yield strength of 988 MPa was attained in the standard aged specimen, whereas a maximum impact toughness of 217 J cm{sup −2} was attained in the solution-treated specimen. After thermal exposure, the mechanical properties of the specimens degrade. Both the yield strength and impact toughness decreased monotonically with increasing thermal exposure time. Subjected to a 10000-h long-term thermal exposure, the yield strength dramatically decreased to 475 MPa (almost 50% of the maximum strength), and the impact toughness reduced to only 18 J cm{sup −2}. The microstructures of the specimens were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Coarsening of γ′ and γ″ and the transformation of γ″ to δ-Ni{sub 3}Nb was observed after thermal exposure. However, a complete transformation from metastable γ″ to δ-Ni{sub 3}Nb was never accomplished, even after the 10000-h long-term thermal exposure. Based on the obtained experimental results, the effects of the microstructural evolution on the mechanical properties are discussed.

  8. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    Science.gov (United States)

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  9. Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law

    Science.gov (United States)

    Želi, Velibor; Zorica, Dušan

    2018-02-01

    Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.

  10. Female farmworkers' perceptions of heat-related illness and pregnancy health.

    Science.gov (United States)

    Flocks, Joan; Vi Thien Mac, Valerie; Runkle, Jennifer; Tovar-Aguilar, Jose Antonio; Economos, Jeannie; McCauley, Linda A

    2013-01-01

    Although agricultural workers have elevated risks of heat-related illnesses (HRI), pregnant farmworkers exposed to extreme heat face additional health risk, including poor pregnancy health and birth outcomes. Qualitative data from five focus groups with 35 female Hispanic and Haitian nursery and fernery workers provide details about the women's perceptions of HRI and pregnancy. Participants believe that heat exposure can adversely affect general, pregnancy, and fetal health, yet feel they lack control over workplace conditions and that they lack training about these specific risks. These data are being used to develop culturally appropriate educational materials emphasizing health promoting and protective behaviors during pregnancy.

  11. Urban and Transport Planning Related Exposures and Mortality: A Health Impact Assessment for Cities.

    Science.gov (United States)

    Mueller, Natalie; Rojas-Rueda, David; Basagaña, Xavier; Cirach, Marta; Cole-Hunter, Tom; Dadvand, Payam; Donaire-Gonzalez, David; Foraster, Maria; Gascon, Mireia; Martinez, David; Tonne, Cathryn; Triguero-Mas, Margarita; Valentín, Antònia; Nieuwenhuijsen, Mark

    2017-01-01

    By 2050, nearly 70% of the global population is projected to live in urban areas. Because the environments we inhabit affect our health, urban and transport designs that promote healthy living are needed. We estimated the number of premature deaths preventable under compliance with international exposure recommendations for physical activity (PA), air pollution, noise, heat, and access to green spaces. We developed and applied the Urban and TranspOrt Planning Health Impact Assessment (UTOPHIA) tool to Barcelona, Spain. Exposure estimates and mortality data were available for 1,357,361 residents. We compared recommended with current exposure levels. We quantified the associations between exposures and mortality and calculated population attributable fractions to estimate the number of premature deaths preventable. We also modeled life-expectancy and economic impacts. We estimated that annually, nearly 20% of mortality could be prevented if international recommendations for performance of PA; exposure to air pollution, noise, and heat; and access to green space were followed. Estimations showed that the greatest portion of preventable deaths was attributable to increases in PA, followed by reductions of exposure to air pollution, traffic noise, and heat. Access to green spaces had smaller effects on mortality. Compliance was estimated to increase the average life expectancy by 360 (95% CI: 219, 493) days and result in economic savings of 9.3 (95% CI: 4.9, 13.2) billion EUR/year. PA factors and environmental exposures can be modified by changes in urban and transport planning. We emphasize the need for a) the reduction of motorized traffic through the promotion of active and public transport and b) the provision of green infrastructure, both of which are suggested to provide opportunities for PA and for mitigation of air pollution, noise, and heat. Citation: Mueller N, Rojas-Rueda D, Basagaña X, Cirach M, Cole-Hunter T, Dadvand P, Donaire-Gonzalez D, Foraster M

  12. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  13. Inactivation of T4-phages by heat and γ-irradiation treatment in respect to sludge hygienization

    International Nuclear Information System (INIS)

    Farniok, C.; Turanitz, K.; Stehlik, G.; Meyrath, J.

    1977-04-01

    The effects of γ-irradiation, heat treatment and combined heat/irradiation treatments on T 4 -bacteriophages were studied and evaluated in surviving fractions. To ascertain the extent of inactivation, the formation of plaque was studied in the host organism Escherichia coli K 12 D 10. A 90-minute heat treatment of the bacteriolysat at 55 0 C did not inactivate the bacteriophages, whereas the number of plaque-forming bacteriophages was decreased by 50% at 60 0 C. At 65 0 C a linear correlation of heating period and the logarithm of relative number of phages was observed. After 30 minutes exposure to 70 0 C only few bacteriophages were traced in the plaque test. By inactivation of T 4 -phages after exposure to γ-irradiation a linear correlation of irradiation dose and the logarithm of the relative number of surviving bacteriophages was found. The combined method of heat and irradiation treatments resulted in a synergistic effect. (author)

  14. Corrosion of Inconel-625, Hastelloy-X280 and Incoloy-800 in 550 - 750°C superheated steam. Influence of alloy heat treatment, surface treatment, steam temperature and steam velocity. Part I: Results up to 6000 hours exposure time. RCN Report

    International Nuclear Information System (INIS)

    Tilborg, P.J. van; Linde, A. van der

    1969-10-01

    Sheet samples of Inconel-625, Hastelloy-X280 and Incoloy-800 were tested, in the solution annealed and in the solution annealed + 20% cold worked + 800°C tempered condition, in steam with a velocity of 5 m/sec. at 550, 650 and 750°C and in steam with a volocity of 15 and 85 m/sec. at 550°C. At 550°C and 750°C the samples were tested in the heat treated, annealed or tempered and the heat treated + electropolished condition. At 650°C moreover as heat treated + ground and pickled samples were tested. Post-corrosion sample investigations involved measurement of the adherent oxide thickness, the total amount of corroded metal, the metal loss to system, and the metallographic and microprobe investigation of the adherent oxide film and adjacent diffusion disturbed alloy layer. The results obtained up to 6000 hours exposure time showed that the surface treatment has a decisive influence on the corrosion behaviour of all three alloys tested. The differences in the corrosion data for the two heat treatment conditions are small. The influence of the steam velocity, as tested at 550°C, on the initial corrosion rate was surprisingly high, while the long-term linear corrosion rates are only slightly influenced by the gas velocity. In general the linear corrosion rates were low, 1-5 mg/dm 2 month, and not consistently affected by the test-temperature. The metal loss to system values were 2 <15 mg/dm 2 in the low velocity steam at all three test temperatures and <30 mg/dm 2 in the high velocity steam at 550°C. The metallographic and microprobe examinations revealed no remarkable results, as compared with the results of analogous tests reported in literature. (author)

  15. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  16. Susceptibility of Plodia interpunctella (Lepidoptera: Pyralidae) developmental stages to high temperatures used during structural heat treatments.

    Science.gov (United States)

    Mahroof, R; Subramanyam, B

    2006-12-01

    Heating the ambient air of a whole, or a portion of a food-processing facility to 50 to 60 degrees C and maintaining these elevated temperatures for 24 to 36 h, is an old technology, referred to as heat treatment. There is renewed interest in adopting heat treatments around the world as a viable insect control alternative to fumigation with methyl bromide. There is limited published information on responses of the Indian meal moth, Plodia interpunctella (Hübner), exposed to elevated temperatures typically used during heat treatments. Time-mortality relationships were determined for eggs, fifth-instars (wandering-phase larvae), pupae, and adults of P. interpunctella exposed to five constant temperatures between 44 and 52 degrees C. Mortality of each stage increased with increasing temperature and exposure time. In general, fifth-instars were the most heat-tolerant stage at all temperatures tested. Exposure for a minimum of 34 min at 50 degrees C was required to kill 99% of the fifth-instars. It is proposed that heat treatments aimed at controlling fifth-instars should be able to control all other stages of P. interpunctella.

  17. Analyses of pebble-bed reactors for the generation of heat for heating purposes

    International Nuclear Information System (INIS)

    Muehlensiep, J.; Fricke, U.; Inhester, K.H.; Kugeler, K.; Phlippen, P.W.; Schmidtlein, P.; Swatoch, R.; Wagner, U.

    1986-10-01

    Marginal conditions are described for the use of a nuclear power reactor for long-distance heat supply in densely populated areas. For the design of the high-temperature heat generating reactor, plant components and possible arrangements are analyzed with consideration to safety and costs. System sizes are reasonably chosen on the basis of analyzed parameters, the paramount design goal being to adequately retain the fission products in the coated particles of the fuel elements, in anticipation of probable accidents. With the help of the data record obtained, a system is designed with a cuboid-shaped core as its characteristic feature; the advantage of the core consists in the fact that it quickly discharges the after-heat outwards even in case of a hypothetical accident. Due to the core shape, it is possible to install heat-exchanging components near the core, and to place the safety rods where they can be very effective in reflector borings. (orig./HP) [de

  18. Theory of many-body radiative heat transfer without the constraint of reciprocity

    Science.gov (United States)

    Zhu, Linxiao; Guo, Yu; Fan, Shanhui

    2018-03-01

    Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.

  19. The kinetics of removal of heat-induced excess nuclear protein

    International Nuclear Information System (INIS)

    Roti, J.L.R.; Uygur, N.; Higashikubo, R.

    1984-01-01

    To investigate the role of protein content, temperature and heating time in the removal of heat-induced excess protein associated with the isolated nucleus, the kinetics of protein removal was monitored for 6 to 8 hours following exposure to 7 hyperthermic protocols. Four of these (47 0 C-7.5 min., 46 0 C-15 min., 45 0 C-30 min., and 44 0 C-60 min.) resulted in a nuclear protein content approximately twice that of nuclei from unheated cells (2.05 +- .14) following heat exposure. Three protocols (45 0 C-15 min., 44 0 C-30 min. and 43 0 C-60 min.) resulted in a nuclear protein content approximately 1.6 times normal (1.63 +- .12). If nuclear protein content were the only determinant in the recovery rate, then the same half time for nuclear protein removal would be expected within each group of protocols. Rate constants for nuclear protein removal were obtained by regression analysis. The half-time for nuclear protein removal increased with decreasing temperature and increasing heating time for the same nuclear protein content. This result suggests that the heating time and temperature are more of a determinant in the removal kinetics than protein content alone. Extended kinetics of recovery (to 36 hours) showed incomplete recovery and a secondary increase in protein associated with the isolated nucleus. These results were due to cell-cycle rearrangement (G/sub 2/ block) and unbalanced growth

  20. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  1. Heating experiments of JT-60

    International Nuclear Information System (INIS)

    1987-01-01

    In JT-60, after the finish of the first stage Joule experiment, the heating facilities were installed, and the heating experiment was started in August, 1986. As to neutral beam injection, the beam injection experiment at the maximum rating 20 MW carried out, and also as to RF, the injection experiment up to 1.4 MW was carried out in both ion cyclotron and low band hybrid waves. The results worthy of special mention in the heating experiment were the success in the current drive up to 1.7 MA at maximum using low band hybrid waves and the improvement of plasma confinement characteristics obtained by the compound heating of NBI and RF. In this paper, the main results of these heating experiments and their significance are explained. The JT-60 is the testing facilities for attaining the critical plasma condition by additionally heating the plasma which is generated by Joule electric discharge with NBI and RF heatings. The experimental operation cycle of the JT-60 consists of the unit cycle of two weeks, and the number of days in operation is nine days. The temperature of heated plasma rose to 70 million deg C in the 20 MW NBI heating. Hereafter, the improvement of confinement time by increasing the stored energy of plasma is attempted. (Kako, I.)

  2. Heat pipes to reduce engine exhaust emissions

    Science.gov (United States)

    Schultz, D. F. (Inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  3. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  4. Thermal crosstalk in heated microcantilever arrays

    International Nuclear Information System (INIS)

    Kim, Hoe Joon; Dai, Zhenting; King, William P

    2013-01-01

    We report on a detailed characterization and analysis of thermal crosstalk in a heated microcantilever array. The fabricated heated cantilever array consists of five identical independently controlled heated cantilevers. The temperature of each cantilever can be controlled over a large temperature range, up to 900 °C, by means of an integrated solid-state resistive heater. We analyze thermal crosstalk in steady and transient operating conditions when the heated cantilever array is either in contact with a substrate or freely suspended in air. The thermal conductance between neighboring cantilevers is as high as 0.61 µW °C −1 , resulting in non-negligible temperature increases in neighboring cantilevers, depending upon the operating conditions. By understanding and accounting for thermal crosstalk, it is possible to improve temperature control and temperature measurements with heated microcantilever arrays. (paper)

  5. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  6. Influence of Mo/MoSe{sub 2} microstructure on the damp heat stability of the Cu(In,Ga)Se{sub 2} back contact molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Theelen, Mirjam, E-mail: mirjam.theelen@tno.nl [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands); Harel, Sylvie [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Verschuren, Melvin [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Tomassini, Mathieu [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Hovestad, Arjan [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Berkum, Jurgen van [Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Vroon, Zeger [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Zeman, Miro [Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands)

    2016-08-01

    The degradation behavior of Mo/MoSe{sub 2} layers have been investigated using damp heat exposure. The two studied molybdenum based films with different densities and microstructures were obtained by lifting off Cu(In,Ga)Se{sub 2} layers from a bilayer molybdenum stack on soda lime glass. Hereby, a glass/Mo/MoSe{sub 2} was obtained, which resembles the back contact as present in Cu(In,Ga)Se{sub 2} solar cells. The samples were degraded for 150 h under standard damp heat conditions and analyzed before, during and after degradation. It was observed that the degradation resulted in the formation of needles and molybdenum oxide layers near the glass/Mo and the Mo/Cu(In,Ga)Se{sub 2} interfaces. X-ray Photoelectron Spectroscopy measurements have shown that the sodium was also present at the surface of the degraded material and it is proposed that the degraded material consists mostly of MoO{sub 3} with intercalated Na{sup +}. This element has likely migrated from the soda lime glass. This intercalation process could have led to the formation of Na{sub x}MoO{sub 3} ‘molybdenum bronze’ following this redox reaction: xNa{sup +} + MoO{sub 3} + xe{sup −} ↔ Na{sub x}MoO{sub 3} It is proposed that the formed oxide layer contains Na{sub x}MoO{sub 3} with different Na{sup +} contents and different grades of conductivity. This intercalation process can also explain the high mobility of Na{sup +} via the grain boundaries in molybdenum. It was also observed that the molybdenum film with a top layer deposited at a high pressure is more susceptible for damp heat degradation. - Highlights: • SLG/high pressure Mo/low pressure Mo/MoSe{sub 2} stacks were exposed to damp heat. • Molybdenum deposited at low pressure retained the best reflectivity and conductivity. • Damp heat exposure leads to a Na{sub x}MoO{sub 3}/Mo multilayer structure. • The Na{sub x}MoO{sub 3} probably consists of Na{sup +} intercalated in a (reduced) MoO{sub 3} matrix. • Intercalation can explain the

  7. Temperature and blood flow distribution in the human leg during passive heat stress.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  8. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  9. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    Science.gov (United States)

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  10. Pentachlorophenol (PCP) bioaccumulation and effect on heat production on salmon eggs at different stages of development

    Energy Technology Data Exchange (ETDEWEB)

    Maeenpaeae, Kimmo A.; Penttinen, Olli-Pekka; Kukkonen, Jussi V.K

    2004-05-28

    In this study, pentachlorophenol (PCP) bioaccumulation and its effect on heat dissipation was studied in eggs of the lake salmon (Salmo salar m. sebago). In bioaccumulation studies, the eggs were exposed to low concentrations (0.051-0.056 {mu}mol/l, 13.583-14.915) of waterborne [{sup 14}C]-labeled PCP at two developmental stages: (1) 3 weeks after fertilization, and (2) just before hatching. The effect of PCP on egg heat dissipation was measured by a microcalorimeter after exposing the eggs to gradual concentrations (0-0.992 {mu}mol/l) of PCP for 48 h. After both the bioaccumulation and heat dissipation experiments, the eggs were dissected and the concentrations of PCP in tissue were determined separately for eggshell, yolk and embryo. The bioaccumulation studies showed that PCP accumulates more in the eggs at the late developmental stage. Bioconcentration factors (BCF) for different tissues were 3-42 times higher for the eggs at the late developmental stage compared with the eggs that were incubated only for 3 weeks. In early developmental stage, the eggshell adsorbs a large portion of the chemical. In late developmental stage, the actual embryo accumulated both proportionately and totally more than other dissected tissues in the beginning of the exposure, but eventually the yolk accumulated highest total amount of the chemical. A probable reason for the higher PCP body burden in the late developmental stage is that the respiration rate and metabolic activity of the embryo increases as it grows. The salmon eggs responded to an exposure to PCP with an elevated rate of heat dissipation. The threshold concentration above which the embryo heat dissipation was amplified was 29.64 {mu}mol/kg embryo wet weight (ww) or 0.28 {mu}mol/l. The highest embryo heat production was measured at the exposure concentration of 0.992 {mu}mol/l. At higher exposure concentrations the heat dissipation decreased. The basic findings of the study are that PCP accumulates in growing embryonic

  11. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    Science.gov (United States)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  12. Heat- and radiation-resistant scintillator for electron microscopes

    International Nuclear Information System (INIS)

    Kosov, A.V.; Petrov, S.A.; Puzyr', A.P.; Chetvergov, N.A.

    1987-01-01

    The use of a scintillator consisting of a single crystal of bismuth orthogermanate, which has high heat and radiation resistance, in REM-100, REM-200, and REM-100U electron microscopes is described. A study of the heat and radiation stabilities of single crystals of bismuth orthogermanate (Bi 4 Ge 3 O 12 ) has shown that they withstood multiple electron-beam heating redness (T ∼ 800 0 C) without changes in their properties

  13. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  14. Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India.

    Science.gov (United States)

    Krishnamurthy, Manikandan; Ramalingam, Paramesh; Perumal, Kumaravel; Kamalakannan, Latha Perumal; Chinnadurai, Jeremiah; Shanmugam, Rekha; Srinivasan, Krishnan; Venugopal, Vidhya

    2017-03-01

    Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers' productivity. A cross-sectional study undertaken in a steel industry in a city nicknamed "Steel City" in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. Some 90% WBGT measurements were higher than recommended threshold limit values (27.2-41.7°C) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven (67.6°C globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures (χ 2  = 26.1258, degrees of freedom = 1, p  industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.

  15. Does enhanced heat resistance of irradiated insects represent greater ability to adapt

    International Nuclear Information System (INIS)

    Ducoff, H.S.; MacDuff, R.A.

    1985-01-01

    Previous work from this lab demonstrated that irradiated flour beetles (Tribolium) develop resistance to oxygen with similar kinetics: greater sensitivity for about 1 week, increasing resistance over the next week, and resistance persisting for 3-6 months. This is in contrast to the rapid development of heat resistance in yeast exposed to UV or ionizing radiation and to rapid induction of heat-stress proteins in E. coli exposed to UV or nalidixic acid. The authors' early work did not distinguish between intrinsic heat resistance and enhanced ability to adapt. They tried to resolve this problem by comparing response of irradiated and of control beetles to challenge at 45 0 C with or without brief exposure to 41 0 C just prior to challenge. Mean lethal exposure time at 45 0 C was increased to about the same extent in both populations after 15 min at 41 0 C, suggesting that irradiation increases insectors' intrinsic resistance to stress rather than their ability to adapt

  16. A Modified Entropy Generation Number for Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    This paper demonstrates the difference between the entropy generation number method proposed by Bejian and the method of entropy generation per unit amount of heat transferred in analyzing the ther-modynamic performance of heat exchangers,points out the reason for leading to the above difference.A modified entropy generation number for evaluating the irreversibility of heat exchangers is proposed which is in consistent with the entropy generation per unit amount of heat transferred in entropy generation analysis.The entropy generated by friction is also investigated.Results show that when the entropy generated by friction in heat exchangers in taken into account,there is a minimum total entropy generation number while the NTU and the ratio of heat capacity rates vary.The existence of this minimum is the prerequisite of heat exchanger optimization.

  17. A cross-sectional, randomized cluster sample survey of household vulnerability to extreme heat among slum dwellers in ahmedabad, india.

    Science.gov (United States)

    Tran, Kathy V; Azhar, Gulrez S; Nair, Rajesh; Knowlton, Kim; Jaiswal, Anjali; Sheffield, Perry; Mavalankar, Dileep; Hess, Jeremy

    2013-06-18

    Extreme heat is a significant public health concern in India; extreme heat hazards are projected to increase in frequency and severity with climate change. Few of the factors driving population heat vulnerability are documented, though poverty is a presumed risk factor. To facilitate public health preparedness, an assessment of factors affecting vulnerability among slum dwellers was conducted in summer 2011 in Ahmedabad, Gujarat, India. Indicators of heat exposure, susceptibility to heat illness, and adaptive capacity, all of which feed into heat vulnerability, was assessed through a cross-sectional household survey using randomized multistage cluster sampling. Associations between heat-related morbidity and vulnerability factors were identified using multivariate logistic regression with generalized estimating equations to account for clustering effects. Age, preexisting medical conditions, work location, and access to health information and resources were associated with self-reported heat illness. Several of these variables were unique to this study. As sociodemographics, occupational heat exposure, and access to resources were shown to increase vulnerability, future interventions (e.g., health education) might target specific populations among Ahmedabad urban slum dwellers to reduce vulnerability to extreme heat. Surveillance and evaluations of future interventions may also be worthwhile.

  18. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Nicolette, V.F.; Wix, S.D.

    1992-01-01

    For final qualification of shipping containers for transport of hazardous materials, thermal testing in accordance with regulations such as 10CFR71 must be completed. Such tests typically consist of 30 minute exposures with the container fully engulfed in flames from a large, open pool of JP4 jet engine fuel. Despite careful engineering analyses of the container, testing often reveals design problems that must be solved by modification and expensive retesting of the container. One source of this problem is the wide variation in surface heat flux to the container that occurs in pool fires. Average beat fluxes of 50 to 60 kW/m 2 are typical and close the values implied by the radiation model in 10CFR71, but peak fluxes up to 150 kW/m 2 are routinely observed in fires (Keltner, et al,1990). Heat fluxes in pool fires have been shown to be a function of surface temperature of the container, height above the pool, surface orientation, wind, and other variables. If local variations in the surface heat flux to the container can be better predicted, design analyses will become more accurate, and fewer problems will be uncovered during testing. The objective of the calorimeter design described in this paper is to measure accurately pool fire heat fluxes under controlled conditions, and to provide data for calibration of improved analytical models of local flame-surface interactions

  19. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  20. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  1. Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell

    International Nuclear Information System (INIS)

    Huang, Bi; Jian, Qifei; Luo, Lizhong; Zhao, Jing

    2017-01-01

    Highlights: • A novel heat recovery device was designed and tested. • Aiming at avoiding liquid slugging in cold areas. • Recovery of the waste energy of compressor housing. • Refrigerant is heated with the energy recovered before it is sucked into the compressor. • Requires no extra power while the recovery system is operating. - Abstract: A novel heat recovery device designed to recover the heat that is released from the outer surface of heat pump compressors, and to enhance the performance of heat pumps in cold areas was made and tested in this study. The novel heat recovery device consists of three fundamental units: a heat absorption unit, a heat emission unit and heat pipes. An amount of work focused on recovering the heat of compressors through oil system, but few studies concentrated on the housing. The main advantage of the heat recovery device is no need for extra energy consumption for its only driving force is the temperature difference between the compressor shell and the working fluid inside the suction line. The experimental results were obtained from a series of tests with a R410A air-source heat pump. Effects of the device are analyzed with respect of the suction temperature, temperature distribution among the housing, input power and exergy destruction. Moreover, the impact on the heating capacity is also discussed. Further, direction for improvement is also given based on the analysis.

  2. Determining convective heat transfer coefficient using phoenics software package

    Energy Technology Data Exchange (ETDEWEB)

    Kostikov, A; Matsevity, Y [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    1998-12-31

    The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.

  3. Determining convective heat transfer coefficient using phoenics software package

    Energy Technology Data Exchange (ETDEWEB)

    Kostikov, A.; Matsevity, Y. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    1997-12-31

    The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.

  4. Some results of heating of a thick-walled cylinder fragment

    International Nuclear Information System (INIS)

    Zholdak, G.I.; Solov'ev, A.P.

    1977-01-01

    The effect of heat cycles on a reinforced concrete structure has been experimentally investigated. A reinforced concrete ring structure, reinforced on two sides, has been subjected to heat treatment by a complex heating cycle within a temperature range of from 20 to 300 deg C. The heating rate being 20 deg/hour and the total number of the cooling-heating cycles - 300. The cracking behaviour has been studied by ultrasonic inspection. In theoretical treatment, the principal relationships of the theory of elasticity have been used with account for the variations in the physico-mechanical properties of concrete and the development of nonelastic strains. The results have demonstrated both the applicability of the underlying theoretical calculations and the very feasibility of using reinforced concrete under cyclic heating conditions. The effect of cracks in the structure can be easily taken into account as it is remembered that the crack depth is 500 to 700 times greater than their mean exposure on the tensile surface of concrete

  5. Exploring the Utility of Model-based Meteorology Data for Heat-Related Health Research and Surveillance

    Science.gov (United States)

    Vaidyanathan, A.; Yip, F.

    2017-12-01

    Context: Studies that have explored the impacts of environmental exposure on human health have mostly relied on data from weather stations, which can be limited in geographic scope. For this assessment, we: (1) evaluated the performance of the meteorological data from the North American Land Data Assimilation System Phase 2 (NLDAS) model with measurements from weather stations for public health and specifically for CDC's Environmental Public Health Tracking Program, and (2) conducted a health assessment to explore the relationship between heat exposure and mortality, and examined region-specific differences in heat-mortality (H-M) relationships when using model-based estimates in place of measurements from weather stations.Methods: Meteorological data from the NLDAS Phase 2 model was evaluated against measurements from weather stations. A time-series analysis was conducted, using both station- and model-based data, to generate H-M relationships for counties in the U.S. The county-specific risk information was pooled to characterize regional relationships for both station- and model-based data, which were then compared to identify degrees of overlap and discrepancies between results generated using the two data sources. Results: NLDAS-based heat metrics were in agreement with those generated using weather station data. In general, the H-M relationship tended to be non-linear and varied by region, particularly the heat index value at which the health risks become positively significant. However, there was a high degree of overlap between region-specific H-M relationships generated from weather stations and the NLDAS model.Interpretation: Heat metrics from NLDAS model are available for all counties in the coterminous U.S. from 1979-2015. These data can facilitate health research and surveillance activities exploring health impacts associated with long-term heat exposures at finer geographic scales.Conclusion: High spatiotemporal coverage of environmental health data

  6. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Science.gov (United States)

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  7. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Directory of Open Access Journals (Sweden)

    C A Downs

    Full Text Available Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex, usually by expulsion or xenophagy (symbiophagy of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2 s(-1 PAR at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  8. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  9. HYPOXIC EFFECT ON GROWTH OF PALEOMENETES VULGARIS LARVAE AND OTHER SPECIES: USING CONSTANT EXPOSURE DATA TO PREDICT CYCLIC EXPOSURE RESPONSE

    Science.gov (United States)

    First stage larval marsh grass shrimp, Palaemonetes vulgaris, were exposed to patterns of diurnal, semidiurnal, and constant hypoxia to evaluate effects on growth and to determine if there was a consistent relationship between exposures. A comparison of growth with cyclic exposur...

  10. FEMALE FARMWORKERS’ PERCEPTIONS OF HEAT-RELATED ILLNESS AND PREGNANCY HEALTH

    Science.gov (United States)

    Flocks, Joan; Mac, Valerie Vi Thien; Runkle, Jennifer; Tovar-Aguilar, Jose Antonio; Economos, Jeannie; McCauley, Linda A.

    2017-01-01

    While agricultural workers have elevated risks of heat-related illnesses (HRI), pregnant farmworkers exposed to extreme heat face additional health risk, including poor pregnancy health and birth outcomes. Qualitative data from five focus groups with 35 female Hispanic and Haitian nursery and fernery workers provide details about the women’s perceptions of HRI and pregnancy. Participants believe that heat exposure can adversely affect general, pregnancy, and fetal health, yet feel they lack control over workplace conditions and that they lack training about these specific risks. These data are being used to develop culturally appropriate educational materials emphasizing health promoting and protective behaviors during pregnancy. PMID:24125050

  11. Heat effects on drug delivery across human skin

    Science.gov (United States)

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  12. An experimental set-up to test heat-moisture exchangers

    NARCIS (Netherlands)

    Unal, N.; Pompe, J. C.; Holland, W. P.; Gültuna, I.; Huygen, P. E.; Jabaaij, K.; Ince, C.; Saygin, B.; Bruining, H. A.

    1995-01-01

    The purpose of this study was to build an experimental set-up to assess continuously the humidification, heating and resistance properties of heat-moisture exchangers (HMEs) under clinical conditions. The experimental set-up consists of a patient model, measurement systems and a ventilator. Surgical

  13. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    International Nuclear Information System (INIS)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares

    2017-01-01

    Beryl, Be_3Al_2(SiO_3)_6, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm"-"1 may be related to the position of Na"+ ion in the crystal lattice of beryl. (author)

  14. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Directory of Open Access Journals (Sweden)

    Danielle Gomides Alkmim

    Full Text Available Abstract Beryl, Be3Al2(SiO36, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm-1 may be related to the position of Na+ ion in the crystal lattice of beryl.

  15. Pathophysiology of Heat-Related Illnesses

    Science.gov (United States)

    2012-01-01

    Figure 10-4). deHydrATion And elecTrolyTe imBAlAnce Water requirements during heat exposure are primarily deter- mined by a person’s sweat losses. Water...the effect of cyclooxygenase inhibition, J Clin Invest 81:1162, 1988. 241. Opal SM, Fisher CJ Jr, Dhainaut JF, et al: Confirmatory interleukin-1...inhibition, J Clin Invest 81:1162, 1988. 241. Opal SM, Fisher CJ Jr, Dhainaut JF, et al: Confirmatory interleukin-1 receptor antagonist trial in severe

  16. Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms

    Directory of Open Access Journals (Sweden)

    Michal eHorowitz

    2015-07-01

    Full Text Available Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA develops via altered molecular programs such as cross-tolerance (Heat Acclimation -Neuroprotection Cross-Tolerance -HANCT. The mechanisms underlying cross-tolerance depend on enhanced on-demand protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI. The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed.

  17. Shell-and-tube heat exchanger selection aid

    International Nuclear Information System (INIS)

    Lupton, L.R.; Basso, R.A.J.

    1989-11-01

    A prototype has been developed to investigate the feasibility of using expert systems to aid junior process system designers with the selection of components for shell-and-tube heat exchangers. The selection criteria for heat exchanger design were based on process, environmental and administrative constraints. The system was developed using EXSYS and consists of approximately 140 rules. This paper describes the development process and the lessons learned

  18. Single phase-change analysis of two different PCMs filled in a heat transfer module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hyung Kuk [Hyundai Heavy Industries Co., Ulsan (Korea, Republic of)

    2014-07-15

    Phase change material(PCM) is tried to secondary heat source in solar heat pump system. A numerical study of the phase change dominant heat transfer is done with a heat transfer module, which consists of a water path(BRINE), heat transfer plates(HTP), and PCM layers of high-temperature one(HPCM, 78-79 .deg. C) and low-temperature one(LPCM, 28-29 .deg. C). There are five arrangements consisting of BRINE, HTP, HPCM, and LPCM layers in the heat transfer module. The time and heat transfer rate for PCM melting/solidification are compared between arrangements. And the numerical time without convection is compared to the experimental one for melting/solidification. From the numerical analysis, the time for melting/solidification is different to 10 hours, depending on the arrangement.

  19. Renewable heating: Perspectives and the impact of policy instruments

    International Nuclear Information System (INIS)

    Kranzl, Lukas; Hummel, Marcus; Müller, Andreas; Steinbach, Jan

    2013-01-01

    In the light of the EU directive for renewable energy (2009/28/EC) this paper deals with the question how various policy instruments could impact the development of renewable heating technologies. The paper applies the simulation model Invert/EE-Lab for the building related heat demand in selected European countries (Austria, Lithuania and United Kingdom). The resulting scenarios up to 2030 are compared to RES-Heat targets from literature, stakeholder consultation processes and the targets in the national renewable energy action plans submitted by EU Member States in 2010. The results demonstrate that use obligations for renewable heating can be effective in achieving RES-Heat market growth. However, in order to attain a balanced technology mix and more ambitious targets, policy packages are required combining use obligations with economic incentives and accompanying measures. Technology specific conclusions are derived. Moreover, conclusions indicate that the action plans are not always consistent with policy measures in place or under discussion. - Highlights: • Modeling of RES-Heat policies in the building sector. • Application of the model Invert/EE-Lab for the cases of AT, LT, UK. • RES-Heat use obligations are effective but should be integrated in policy packages. • The design of use obligations has substantial impact on the RES-H technology mix. • National renewable energy action plans are not always consistent with policies

  20. Manually operated elastomer heat pump

    Science.gov (United States)

    Hutchinson, W. D.

    1970-01-01

    Device consisting of a rotating mechanism, a frame with multiple wide bands of rubber, and a fluid bath, demonstrates the feasibility of a human operated device capable of cooling or producing heat. This invention utilizes the basic thermodynamic properties of natural rubber.

  1. Re-evaluating occupational heat stress in a changing climate.

    Science.gov (United States)

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  3. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Gugliucci, Nicole E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2014-06-20

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK{sup 2}). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK){sup 2} for k = 0.27 h Mpc{sup –1} at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  4. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    International Nuclear Information System (INIS)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E.; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2014-01-01

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK 2 ). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK) 2 for k = 0.27 h Mpc –1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  5. Self-consistent analysis of radial electric field and fast ion losses in CHS Torsatron/Heliotron

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Itoh, S.

    1992-09-01

    A self-consistent analysis is developed to determine the radial electric field and loss cone boundary in Torsatron/Heliotron plasmas under the influence of non-classical ion losses such as the loss cone loss ans charge exchange loss of fast ions with neutrals. Analysis is applied to the NBI heated plasmas in the Compact Helical System (CHS) device. Comparison is made between theoretical results and experimental observations. The increased ion particle losses caused by the orbit loss and charge exchange loss with neutrals make the radial electric field more negative than the value of purely neoclassical calculation. The partition of the injection energy among the shine through, direct orbit loss, change exchange loss and bulk heating is evaluated by using the self-consistent electric field profile. On-going experiments in the CHS device are briefly introduced. (author)

  6. Heat loss from an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  7. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate

    International Nuclear Information System (INIS)

    Nakatsu, Yusuke; Kotake, Yaichiro; Takishita, Tomoko; Ohta, Shigeru

    2009-01-01

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca 2+ permeability, we investigated whether Ca 2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca 2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  8. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate.

    Science.gov (United States)

    Nakatsu, Yusuke; Kotake, Yaichiro; Takishita, Tomoko; Ohta, Shigeru

    2009-10-15

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca2+ permeability, we investigated whether Ca2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  9. What Can We Learn about Workplace Heat Stress Management from a Safety Regulator Complaints Database?

    Science.gov (United States)

    Hansen, Alana; Pisaniello, Dino; Varghese, Blesson; Rowett, Shelley; Hanson-Easey, Scott; Bi, Peng; Nitschke, Monika

    2018-03-06

    Heat exposure can be a health hazard for many Australian workers in both outdoor and indoor situations. With many heat-related incidents left unreported, it is often difficult to determine the underlying causal factors. This study aims to provide insights into perceptions of potentially unsafe or uncomfortably hot working conditions that can affect occupational health and safety using information provided by the public and workers to the safety regulator in South Australia (SafeWork SA). Details of complaints regarding heat exposure to the regulator's "Help Centre" were assembled in a dataset and the textual data analysed thematically. The findings showed that the majority of calls relate to indoor work environments such as kitchens, factories, and warehouses. The main themes identified were work environment, health effects, and organisational issues. Impacts of hot working conditions ranged from discomfort to serious heat-related illnesses. Poor management practices and inflexibility of supervisors featured strongly amongst callers' concerns. With temperatures predicted to increase and energy prices escalating, this timely study, using naturalistic data, highlights accounts of hot working conditions that can compromise workers' health and safety and the need for suitable measures to prevent heat stress. These could include risk assessments to assess the likelihood of heat stress in workplaces where excessively hot conditions prevail.

  10. What Can We Learn about Workplace Heat Stress Management from a Safety Regulator Complaints Database?

    Directory of Open Access Journals (Sweden)

    Alana Hansen

    2018-03-01

    Full Text Available Heat exposure can be a health hazard for many Australian workers in both outdoor and indoor situations. With many heat-related incidents left unreported, it is often difficult to determine the underlying causal factors. This study aims to provide insights into perceptions of potentially unsafe or uncomfortably hot working conditions that can affect occupational health and safety using information provided by the public and workers to the safety regulator in South Australia (SafeWork SA. Details of complaints regarding heat exposure to the regulator’s “Help Centre” were assembled in a dataset and the textual data analysed thematically. The findings showed that the majority of calls relate to indoor work environments such as kitchens, factories, and warehouses. The main themes identified were work environment, health effects, and organisational issues. Impacts of hot working conditions ranged from discomfort to serious heat-related illnesses. Poor management practices and inflexibility of supervisors featured strongly amongst callers’ concerns. With temperatures predicted to increase and energy prices escalating, this timely study, using naturalistic data, highlights accounts of hot working conditions that can compromise workers’ health and safety and the need for suitable measures to prevent heat stress. These could include risk assessments to assess the likelihood of heat stress in workplaces where excessively hot conditions prevail.

  11. Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle

    Science.gov (United States)

    Bharati, Jaya; Dangi, S. S.; Bag, S.; Maurya, V. P.; Singh, G.; Kumar, P.; Sarkar, M.

    2017-08-01

    Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15-day acclimation at thermoneutral zone (TNZ) in psychrometric chamber, animals were exposed at 42 °C for 6 h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (days 1, 5, and 12), after heat stress exposure (day 1, immediate heat stress acclimation (IHSA); days 2 to 10, short-term heat stress acclimation (STHSA); days 15 to 23, long-term heat stress acclimation (LTHSA); days 7 and 12, recovery period), and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. The messenger RNA (mRNA) and protein expression in PBMCs were determined by qPCR and western blot, respectively. Samples at TNZ were taken as control. The mRNA expression of HSP90, iNOS, and eNOS was significantly upregulated ( P heat stress exposure in Tharparkar cattle.

  12. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  13. Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements

    Science.gov (United States)

    Goel, Anju; Kumar, Prashant

    2015-04-01

    Quantification of disproportionate contribution made by signalised traffic intersections (TIs) to overall daily commuting exposure is important but barely known. We carried out mobile measurements in a car for size-resolved particle number concentrations (PNCs) in the 5-560 nm range under five different ventilation settings on a 6 km long busy round route with 10 TIs. These ventilation settings were windows fully open and both outdoor air intake from fan and heating off (Set1), windows closed, fan 25% on and heating 50% on (Set2), windows closed, fan 100% on and heating off (Set3), windows closed, fan off and heating 100% on (Set4), and windows closed, fan and heating off (Set5). Measurements were taken sequentially inside and outside the car cabin at 10 Hz sampling rate using a solenoid switching system in conjunction with a fast response differential mobility spectrometer (DMS50). The objectives were to: (i) identify traffic conditions under which TIs becomes hot-spots of PNCs, (ii) assess the effect of ventilation settings in free-flow and delay conditions (waiting time at a TI when traffic signal is red) on in-cabin PNCs with respect to on-road PNCs at TIs, (iii) deriving the relationship between the PNCs and change in driving speed during delay time at the TIs, and (iv) quantify the contribution of exposure at TIs with respect to overall commuting exposure. Congested TIs were found to become hot-spots when vehicle accelerate from idling conditions. In-cabin peak PNCs followed similar temporal trend as for on-road peak PNCs. Reduction in in-cabin PNC with respect to outside PNC was highest (70%) during free-flow traffic conditions when both fan drawing outdoor air into the cabin and heating was switched off. Such a reduction in in-cabin PNCs at TIs was highest (88%) with respect to outside PNC during delay conditions when fan was drawing outside air at 25% on and heating was 50% on settings. PNCs and change in driving speed showed an exponential

  14. Time-of-day effects of exposure to solar radiation on thermoregulation during outdoor exercise in the heat.

    Science.gov (United States)

    Otani, Hidenori; Goto, Takayuki; Goto, Heita; Shirato, Minayuki

    2017-01-01

    High solar radiation has been recognised as a contributing factor to exertional heat-related illness in individuals exercising outdoors in the heat. Although solar radiation intensity has been known to have similar time-of-day variation as body temperature, the relationship between fluctuations in solar radiation associated with diurnal change in the angle of sunlight and thermoregulatory responses in individuals exercising outdoors in a hot environment remains largely unknown. The present study therefore investigated the time-of-day effects of variations in solar radiation associated with changing solar elevation angle on thermoregulatory responses during moderate-intensity outdoor exercise in the heat of summer. Eight healthy, high school baseball players, heat-acclimatised male volunteers completed a 3-h outdoor baseball trainings under the clear sky in the heat. The trainings were commenced at 0900 h in AM trial and at 1600 h in PM trial each on a separate day. Solar radiation and solar elevation angle during exercise continued to increase in AM (672-1107 W/m 2 and 44-69°) and decrease in PM (717-0 W/m 2 and 34-0°) and were higher on AM than on PM (both P  0.05). Tympanic temperature measured by an infrared tympanic thermometer and mean skin temperature were higher in AM than PM at 120 and 180 min (P  0.05). The current study demonstrates a greater thermoregulatory strain in the morning than in the afternoon resulting from a higher body temperature and heart rate in relation to an increase in environmental heat stress with rising solar radiation and solar elevation angle during moderate-intensity outdoor exercise in the heat. This response is associated with a lesser net heat loss at the skin and a greater body heat gain from the sun in the morning compared with the afternoon.

  15. Mere Exposure and Racial Prejudice: Exposure to Other-Race Faces Increases Liking for Strangers of That Race.

    Science.gov (United States)

    Zebrowitz, Leslie A; White, Benjamin; Wieneke, Kristin

    2008-01-01

    White participants were exposed to other-race or own-race faces to test the generalized mere exposure hypothesis in the domain of face perception, namely that exposure to a set of faces yields increased liking for similar faces that have never been seen. In Experiment 1, rapid supraliminal exposures to Asian faces increased White participants' subsequent liking for a different set of Asian faces. In Experiment 2, subliminal exposures to Black faces increased White participants' subsequent liking for a different set of Black faces. The findings are consistent with prominent explanations for mere exposure effects as well as with the familiar face overgeneralization hypothesis that prejudice derives in part from negative reactions to faces that deviate from the familiar own-race prototype.

  16. GAM-HEAT -- a computer code to compute heat transfer in complex enclosures

    International Nuclear Information System (INIS)

    Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.

    1991-02-01

    The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended

  17. Epidemic gasoline exposures following Hurricane Sandy.

    Science.gov (United States)

    Kim, Hong K; Takematsu, Mai; Biary, Rana; Williams, Nicholas; Hoffman, Robert S; Smith, Silas W

    2013-12-01

    Major adverse climatic events (MACEs) in heavily-populated areas can inflict severe damage to infrastructure, disrupting essential municipal and commercial services. Compromised health care delivery systems and limited utilities such as electricity, heating, potable water, sanitation, and housing, place populations in disaster areas at risk of toxic exposures. Hurricane Sandy made landfall on October 29, 2012 and caused severe infrastructure damage in heavily-populated areas. The prolonged electrical outage and damage to oil refineries caused a gasoline shortage and rationing unseen in the USA since the 1970s. This study explored gasoline exposures and clinical outcomes in the aftermath of Hurricane Sandy. Prospectively collected, regional poison control center (PCC) data regarding gasoline exposure cases from October 29, 2012 (hurricane landfall) through November 28, 2012 were reviewed and compared to the previous four years. The trends of gasoline exposures, exposure type, severity of clinical outcome, and hospital referral rates were assessed. Two-hundred and eighty-three gasoline exposures were identified, representing an 18 to 283-fold increase over the previous four years. The leading exposure route was siphoning (53.4%). Men comprised 83.0% of exposures; 91.9% were older than 20 years of age. Of 273 home-based calls, 88.7% were managed on site. Asymptomatic exposures occurred in 61.5% of the cases. However, minor and moderate toxic effects occurred in 12.4% and 3.5% of cases, respectively. Gastrointestinal (24.4%) and pulmonary (8.4%) symptoms predominated. No major outcomes or deaths were reported. Hurricane Sandy significantly increased gasoline exposures. While the majority of exposures were managed at home with minimum clinical toxicity, some patients experienced more severe symptoms. Disaster plans should incorporate public health messaging and regional PCCs for public health promotion and toxicological surveillance.

  18. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    Science.gov (United States)

    Fujii, Naoto; Meade, Robert D; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah; Kenny, Glen P

    2015-05-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. Copyright © 2015 the American Physiological Society.

  19. Modification of the heat response and thermotolerance by cycloheximide, hydroxyurea, and lucanthone in CHO cells

    International Nuclear Information System (INIS)

    Henle, K.J.; Leeper, D.B.

    1982-01-01

    Exposure of Chinese hamster ovary cells to cycloheximide for 2 hr immediately prior to 45 0 C hyperthemia increased cell survival by a factor of 1.8. The increase in cell survival was independent of the heating time for heat treatments longer than 10 min at 45 0 C and was similar with cycloheximide concentrations of 1 and 10 μg/ml. Thermotolerance was induced by an initial treatment of 10 min at 45 0 C (conditioning), developed during a 7-hr incubation period at 37 0 C, and was defined by the hyperthermia dose response with a second 45 0 C heat treatment. When cycloheximide (1μg/ml) was added to the medium after heat conditioning and removed prior to the second heat treatment, the degree of thermotolerance was 50% less than that in medium controls. A 3-hr exposure to 10 μg/ml cycloheximide at 37 0 C by itself did not result in the progressive development of thermotolerance which occurs after a conditioning heat treatment. In contrast to the effects of cycloheximide, hydroxyurea (1 mM) and lucanthone (5 μg/ml) showed little effect on the heat sensitivity and the development of thermotolerance after heat conditioning. Although the results can be interpreted that the development of thermotolerance requires the synthesis of new proteins, but not that of DNA and RNA, alternate interpretations are possible based on known cycloheximide effects aside from its primary inhibition of protein synthesis

  20. Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis.

    Science.gov (United States)

    Liao, H J; Qian, Q; Liu, X D

    2014-06-01

    Temperature is a key environmental factor in determining the population size of Cnaphalocrocis medinalis in summer. High temperatures inhibit survival, development and fecundity of this insect. However, biological responses of female and male adults to heat shock, and physiological mechanism of high temperature suppressing population development are still ambiguous. We experimentally tested the impact of heat shock (5 h day-1) on biological traits, spermatogenesis and sperm transfer of adults of C. medinalis. The result showed that heat exposure to 39 and 40 °C for 5 h reduced longevity and copulation frequency of adults, and hatchability of eggs. Immediate survival rate of males was lower than that of females after 3 days of exposure to 41 °C. The oviposition period, copulation frequency, fecundity of adults and hatchability of eggs were significantly lower when male adults were exposed to 40 or 41 °C for 3 days. Heat shock decreased frequency and success rate of mating when males were exposed, and it also resulted in postponement of mating behaviour and prolongation of mating duration as both the female and male adults were exposed. Heat shock did not affect spermatogenesis, but significantly inhibited sperms maturation. Moreover, males could not ejaculate sperm into females during copulation when these male moths received heat shock. Heat shock remarkably suppressed mating behaviour and sperm transfer, which led to a dramatic decline of rice leaf folder populations.

  1. Nucleate boiling heat transfer on horizontal tubes in bundles

    International Nuclear Information System (INIS)

    Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.

    1986-01-01

    In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate

  2. Preliminary investigation of the effects of exposure to multiple health stressors using the physiological strain index

    CSIR Research Space (South Africa)

    Edwards, A

    2010-01-01

    Full Text Available stressors and various combinations of stressors. The results indicated that noise exposure caused a statistically significant increase in PSI scores. None of the results for exposure to heat alone, physical work alone or the two in combination showed a...

  3. A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap

    Directory of Open Access Journals (Sweden)

    Musiał Tomasz

    2017-01-01

    Full Text Available In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.

  4. Longitudinal Trajectory of Exposure to Psychological Interpersonal Violence.

    Science.gov (United States)

    Poehacker, Stefanie; Phillips, David; Riggs, Jessica; Lauterbach, Dean

    2017-05-01

    Psychological intimate partner violence (P-IPV) refers to verbal abuse from one partner to another and abuse of power or control from one partner to another. To date, no studies have examined the longitudinal course of P-IPV exposure among mothers or the effect that witnessing P-IPV can have on their children. Using latent class growth analysis, the current study identified five trajectory groups with the following intercept and growth characteristics: low stable, low-increasing, moderate-decreasing, high-decreasing, and consistently elevated. Membership in the four groups characterized by higher P-IPV exposure was predicted by maternal race and exposure to physical abuse. The children of mothers in the low-increasing and consistently elevated groups had elevated scores on the Internalizing and Externalizing scales of the Childhood Behavior Checklist. These findings remained after controlling for child sex, race, cumulative trauma exposure, and maternal depression.

  5. Defining product intake fraction to quantify and compare exposure to consumer products

    DEFF Research Database (Denmark)

    Jolliet, Oliver; Ernstoff, Alexi; Csiszar, Susan A.

    2015-01-01

    There is a growing consciousness that exposure studies need to better cover near-field exposure associated with products use. To consistently and quantitatively compare human exposure to chemicals in consumer products, we introduce the concept of product intake fraction, as the fraction...... of a chemical within a product that is eventually taken in by the human population. This metric enables consistent comparison of exposures during consumer product use for different product-chemical combinations, exposure duration, exposure routes and pathways and for other life cycle stages. We present example...... modalities within life cycle assessment and risk assessment contexts. The product intake fraction helps to provide a clear interface between the life cycle inventory and impact assessment phases, to identify best suited sentinel products and to calculate overall exposure to chemicals in consumer products...

  6. Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts.

    Science.gov (United States)

    Kjellstrom, Tord; Briggs, David; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Hyatt, Olivia

    2016-01-01

    Ambient heat exposure is a well-known health hazard, which reduces human performance and work capacity at heat levels already common in tropical and subtropical areas. Various health problems have been reported. Increasing heat exposure during the hottest seasons of each year is a key feature of global climate change. Heat exhaustion and reduced human performance are often overlooked in climate change health impact analysis. Later this century, many among the four billion people who live in hot areas worldwide will experience significantly reduced work capacity owing to climate change. In some areas, 30-40% of annual daylight hours will become too hot for work to be carried out. The social and economic impacts will be considerable, with global gross domestic product (GDP) losses greater than 20% by 2100. The analysis to date is piecemeal. More analysis of climate change-related occupational health impact assessments is greatly needed.

  7. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  8. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  9. Heat insulating structure for use in transporting and handling gas of high temperature and pressure

    International Nuclear Information System (INIS)

    Mathusima, T.; Sato, T.; Uenishi, A.

    1980-01-01

    A heat insulating structure is described that has a heat-resistant tube disposed in a tubular cylindrical body and defining a passage for a high temperature gas, a heat insulating material disposed between the tube and the tubular cylindrical body and adapted to prevent the heat possessed by the gas from being transmitted to the tubular cylindrical body, and a spring adapted to bias the heat insulating material toward the inner surface of the tubular cylindrical body, so as to prevent the formation of a bypass passage for the gas including the gap between the tubular cylindrical body and the heat insulating material. The heat insulating material consists of a plurality of fibrous heat insulating materials mainly consisting of bulky fibrous materials and a plurality of shaped fibrous heat insulating materials. These fibrous heat insulating materials and the shaped fibrous heat insulating materials are arranged alternatingly and independently in the axial direction. In each of the bulky fibrous heat insulating material, disposed is a spring for biasing the shaped fibrous heat insulating material in the axial direction

  10. Heat and nuclear radiation as risk factors for male infertility: results of a French case-control study

    International Nuclear Information System (INIS)

    Thonneau, P.F.; Rachou, E.; Ducot, B.; Multigner, L.; Velez de la Calle, J.P.; Le Martelot, M.T.

    1998-01-01

    Very few studies have investigated the possible effects of environmental radiation and heat exposure on male reproductive function. We conducted a case control study to evaluate the various infertility risk factors in the military population of the french town of Brest to investigate an apparently high incidence of infertility in couples in which the man may have been exposed to occupational nuclear radiation. These findings suggest that in addition to well known medical factors, 'potential' exposure to heat or nuclear radiation could also be risk factors for infertility. (N.C.)

  11. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  12. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  13. Development of a new heat tolerance index for selecting productive goats for the tropics

    International Nuclear Information System (INIS)

    Kamal, T.H.; Mostafa, S.I.; Habib, A.A.; Elmasry, A.M.; Abdelsamee, A.M.; Abolnaga, A.I.; Kassab, F.A.; Abdelhamid, A.M.

    1988-01-01

    A heat tolerance index previously developed in cattle was verified in two breeds of goats to identify young heat tolerant animals capable of maintaining liveweight and milk yield on exposure to high environmental temperatures. Twelve Baladi and Bedouin goats were divided into two equal groups and offered either river or salt water (1.8% Mediterranean sea salt). The animals were maintained in climatic chambers at 18 deg. C and 70% RH for an initial four day period followed by another four days at 38 deg. C and 50% RH for seven hours per day. On the second day of each period, each animal was injected intravenously with tritiated water and total body water (TBW) determined. The percentage increase in TBW induced by the high temperature treatment was subtracted from 100 and the TBW heat tolerance index (HTI) was calculated. TBW-HTI correlated significantly with the percentage increase in live body weight (LBW) in goats over a three month exposure to heat stress and with the percentage decrease in daily milk yield over a seven day heat exposure period. TBW-HTI averages of Baladi and Bedouin goats drinking river water were 81 and 88 respectively while those drinking salt water were 86 and 92 respectively. The equations for the predicted percentage increase in liveweight (Y) in a hot environment for Baladi and Bedouin goats were Y = -38.56 + 0.728X and Y = -45.27 + 0.622X respectively, where X is the TBW-HTI index; the predicted percentage decrease in milk yield in a hot environment Y for all goats was Y = 142.28-1.339X. (author). 9 refs, 1 fig., 5 tabs

  14. Heat Exchange in “Human body - Thermal protection - Environment” System

    Science.gov (United States)

    Khromova, I. V.

    2017-11-01

    This article is devoted to the issues of simulation and calculation of thermal processes in the system called “Human body - Thermal protection - Environment” under low temperature conditions. It considers internal heat sources and convective heat transfer between calculated elements. Overall this is important for the Heat Transfer Theory. The article introduces complex heat transfer calculation method and local thermophysical parameters calculation method in the system called «Human body - Thermal protection - Environment», considering passive and active thermal protections, thermophysical and geometric properties of calculated elements in a wide range of environmental parameters (water, air). It also includes research on the influence that thermal resistance of modern materials, used in special protective clothes development, has on heat transfer in the system “Human body - Thermal protection - Environment”. Analysis of the obtained results allows adding of the computer research data to experiments and optimizing of individual life-support system elements, which are intended to protect human body from exposure to external factors.

  15. Heat-related illness in Washington State agriculture and forestry sectors.

    Science.gov (United States)

    Spector, June T; Krenz, Jennifer; Rauser, Edmund; Bonauto, David K

    2014-08-01

    We sought to describe heat-related illness (HRI) in agriculture and forestry workers in Washington State. Demographic and clinical Washington State Fund workers' compensation agriculture and forestry HRI claims data (1995-2009) and Washington Agriculture Heat Rule citations (2009-2012) were accessed and described. Maximum daily temperature (Tmax) and Heat Index (HImax) were estimated by claim date and location using AgWeatherNet's weather station network. There were 84 Washington State Fund agriculture and forestry HRI claims and 60 Heat Rule citations during the study period. HRI claims and citations were most common in crop production and support subsectors. The mean Tmax (HImax) was 95°F (99°F) for outdoor HRI claims. Potential HRI risk factors and HRI-related injuries were documented for some claims. Agriculture and forestry HRI cases are characterized by potential work-related, environmental, and personal risk factors. Further work is needed to elucidate the relationship between heat exposure and occupational injuries. © 2014 Wiley Periodicals, Inc.

  16. Temporal trends in human vulnerability to excessive heat

    Science.gov (United States)

    Sheridan, Scott C.; Allen, Michael J.

    2018-04-01

    Over recent decades, studies have examined various morbidity and mortality outcomes associated with heat exposure. This review explores the collective knowledge of the temporal trends of heat on human health, with regard to the hypothesis that humans are less vulnerable to heat events presently than in the past. Using Web of Science and Scopus, the authors identified all peer-reviewed articles that contained keywords on human impact (e.g. mortality, morbidity) and meteorological component (e.g. heat, heatwave). After sorting, a total of 71 articles, both case studies and epidemiological studies, contained explicit assessments of temporal trends in human vulnerability, and thus were used in this review. Most of the studies utilized mortality data, focused on the developed world, and showed a general decrease in heat sensitivity. Factors such as the implementation of a heat warning system, increased awareness, and improved quality of life were cited as contributing factors that led to the decreased impact of heat. Despite the overall recent decreases in heat vulnerability, spatial variability was shown, and differences with respect to health outcomes were also discussed. Several papers noted increases in heat’s impact on human health, particularly when unprecedented conditions occurred. Further, many populations, from outdoor workers to rural residents, in addition to the populations in much of the developing world, have been significantly underrepresented in research to date, and temporal changes in their vulnerability should be assessed in future studies. Moreover, continued monitoring and improvement of heat intervention is needed; with projected changes in the frequency, duration, and intensity of heat events combined with shifts in demographics, heat will remain a major public health issue moving forward.

  17. Two-story residence with solar heating--Newman, Georgia

    Science.gov (United States)

    1981-01-01

    Report evaluates performance of warm-air collector system for 11 month period and provides operation and maintenance information. System consists of 14 warm air collectors, rock-storage bin, air handler, heat exchangers, hot-water preheat tank, associated controls, plumbing, and air ducting. Average building temperature was maintained at 72 F (22 C); solar equipment provided 47 percent of space-heating requirement.

  18. Heat pump assisted drying of agricultural produce-an overview.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, Abhijit

    2012-04-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser), and a compressor, which are connected by using copper tubes. In this paper we also provided a review discussion on different type of heat pump assisted drying system ready for remarkable and commercial use in different type of food industries. Here we also have given some major advantage and disadvantage of heat pump assisted drying.

  19. Exposure of healthy subjects with emissions from a gas metal arc welding process: part 1--exposure technique and external exposure.

    Science.gov (United States)

    Brand, P; Havlicek, P; Steiners, M; Holzinger, K; Reisgen, U; Kraus, T; Gube, M

    2013-01-01

    Studies concerning welding fume-related adverse health effects in welders are hampered by the heterogeneity of workplace situations, resulting in complex and non-standardized exposure conditions. In order to carry out welding fume exposure studies under controlled and standardized conditions, the Aachen Workplace Simulation Laboratory was developed. This laboratory consists of an emission room, in which welding fume is produced, and an exposure room in which human subjects are exposed to these fumes. Both rooms are connected by a ventilation system which allows the welding fume concentration to be regulated. Particle mass concentration was measured with a TEOM microbalance and the particle number-size distribution using a Grimm SMPS device. In a study, which is the subject of this paper, it has been shown that welding fume concentration can easily be regulated between 1 and about 3 mg m(-3). The chosen concentration can be kept constant for more than 8 h. However, transport of the particles from the emission room into the exposure room leads to a change in particle size distribution, which is probably due to coagulation of the fraction of smallest particles. The Aachen Workplace Simulation Laboratory is suitable for controlled exposure studies with human subjects.

  20. Heat stress causes substantial labour productivity loss in Australia

    Science.gov (United States)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  1. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    Science.gov (United States)

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m 2 solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Heat transfer monitoring in solids by means of finite element analysis software

    International Nuclear Information System (INIS)

    Hernandez W, J.; Suarez, V.; Guarachi, J.; Calderon, A.; Juarez, A. G.; Rojas T, J. B.; Marin, E.

    2012-10-01

    We study the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this, we used hot wire photothermal technique in order to obtain the temperature distribution as a function of radial distance and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained with appropriate boundary conditions, by means of finite element technique. The comparison of the experimental and simulated results shows a good agree, which demonstrate the utility of this methodology in the investigation of the thermal response of substances, in the radial configuration. (Author)

  3. Investigation of characteristics of passive heat removal system based on the assembled heat transfer tube

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang Cheng; Yan, Changqi; Meng, Zhao Ming; Chen, Kailun; Song, Shao Chuang; Yang, Zong Hao; Yu, Jie [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2016-12-15

    To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450 .deg. C to 700 .deg. C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  4. Investigation of Characteristics of Passive Heat Removal System Based on the Assembled Heat Transfer Tube

    Directory of Open Access Journals (Sweden)

    Xiangcheng Wu

    2016-12-01

    Full Text Available To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450°C to 700°C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  5. Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Hayati, Mohsen [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Computational Intelligence Research Center, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Rezaei, Abbas; Seifi, Majid [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran)

    2009-12-15

    In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis. (author)

  6. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    Science.gov (United States)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  7. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  8. Nuclear steam turbines for power production in combination with heating

    International Nuclear Information System (INIS)

    Frilund, B.; Knudsen, K.

    1977-01-01

    The general operating conditions for nuclear steam turbines in district heating system are briefly outlined. The turbine plant can consist of essentially the same types of machines as in conventional district heating systems. Some possible arrangements of back-pressure turbines, back-pressure turbines with condensing tails, or condensing turbines with heat extraction are considered for nuclear power and heat stations. Principles of control for hot water temperature and electrical output are described. Optimization of the plant, considering parallel variations during the year between heat load, cooling water temperature, and required outgoing temperature is discussed. (U.K.)

  9. Advanced concepts and solutions for geothermal heating applied in Oradea, Romania

    Science.gov (United States)

    Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.

    2017-01-01

    Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-inject