WorldWideScience

Sample records for heat damage assessment

  1. Thermal analysis on parchments I: DSC and TGA combined approach for heat damage assessment

    DEFF Research Database (Denmark)

    Fessas, D.; Signorelli, M.; Schiraldi, A.;

    2006-01-01

    Ancient, new and artificially aged parchments were investigated with both differential scanning calorimetry (DSC) and thermogravimetry (TGA). Criteria to define a quantitative ranking of the damage experienced by the bulk collagen of historical parchments were assessed. A damage-related correlati...

  2. Thermal analysis on parchments I: DSC and TGA combined approach for heat damage assessment

    DEFF Research Database (Denmark)

    Fessas, D.; Signorelli, M.; Schiraldi, A.

    2006-01-01

    Ancient, new and artificially aged parchments were investigated with both differential scanning calorimetry (DSC) and thermogravimetry (TGA). Criteria to define a quantitative ranking of the damage experienced by the bulk collagen of historical parchments were assessed. A damage-related correlati...

  3. Damage Tolerance Assessment Branch

    Science.gov (United States)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  4. Assessing Tropical Cyclone Damage

    Science.gov (United States)

    Done, J.; Czajkowski, J.

    2012-12-01

    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  5. Technology assessment heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, R.; Purper, G. (Battelle-Institut e.V., Frankfurt am Main (Germany, F.R.))

    Technology assessment for an increased application of heat pumps is carried out in four areas: Effects in the economics area, i.e. effects on the economic goals which are defined in the Stability Law, on the goals of the power supply policy which result from the energy programme and its projections, and on the economic structure as a whole. The whole range of social problems concerning the use of heat pumps, i.e. the questions which social groups are affected, how they react, and what consequences are they expected to have on energy conservation as an object of social policy. Consequences in the governmental and administrative sectors, i.e. effects on legislation, administration and government budgets. Effects on the ecological systems; of prime interest in this context are the utilisation of environmental energy, changes in the heat balance, and emmission of pollutants.

  6. The effects of water on heat-styling damage.

    Science.gov (United States)

    Christian, Paul; Winsey, Nigel; Whatmough, Marie; Cornwell, Paul A

    2011-01-01

    Heated styling appliances, such as straightening irons, have grown in popularity in recent years, as have hair products such as heat-protection sprays. In this study we investigate whether the water in a heat-protection spray can affect the level of damage caused by heat styling. Tryptophan damage from heat styling was measured using fluorescence spectroscopy, and structural damage was investigated using light microscopy and single-fiber tensile testing. Hair samples were heat treated with straightening irons, following treatment with either a water-based, "wet," heat-protection spray or an ethanol-based, "dry," spray. Results showed that, as expected, tryptophan damage was reduced by repeated applications of both the "wet" and "dry" heat-protection sprays. However, no differences were seen between the "wet" versus the "dry" product. Light microscopy studies showed greater structural damage to hair treated with water and the "wet" spray. Tensile tests confirmed that there was greater damage to hair treated with the "wet" spray. Decreases in Young's modulus were greater in the presence of the "wet" spray. The results of this study suggest that the type of damage caused by heat treatments is different in wet versus dry hair. In dry hair, thermal treatments cause chemical damage and some structural damage. However, in wet hair, thermal treatments cause the same chemical damage, but considerably more structural damage, which causes significant changes in the physical properties of the hair. It is likely that the rapid evaporation of water from the hair is the main causal factor. Our experiments suggest that the effectiveness of commercial heat-protection sprays can be improved by the removal of water and by the use of volatile ingredients, such as ethanol, as base solvents.

  7. Heat induced damage detection in composite materials by terahertz radiation

    Science.gov (United States)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  8. Heat Induced Damage Detection by Terahertz (THz) Radiation

    Science.gov (United States)

    Rahani, Ehsan Kabiri; Kundu, Tribikram; Wu, Ziran; Xin, Hao

    2011-06-01

    Terahertz (THz) and sub-terahertz imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. THz radiation is being used for inspecting ceramic foam tiles used in TPS (Thermal Protection System), thick polymer composites and polymer tiles that are not good conductors of ultrasonic waves. Capability of THz electromagnetic waves in detecting heat induced damage in porous materials is investigated in this paper. Porous pumice stone blocks are subjected to long time heat exposures to produce heat induced damage in the block. The dielectric properties extracted from THz TDS (Time Domain Spectroscopy) measurements are compared for different levels of heat exposure. Experimental results show noticeable and consistent change in dielectric properties with increasing levels of heat exposure, well before its melting point.

  9. Industrial heat pump assessment study

    Science.gov (United States)

    Chappell, R. N.; Priebe, S. J.; Wilfert, G. L.

    1989-03-01

    This report summarizes preliminary studies that assess the potential of industrial heat pumps for reduction of process heating requirements in industries receiving power from the Bonneville Power Administration (BPA). This project was initiated at the request of BPA to determine the potential of industrial heat pumps in BPA's service area. Working from known heat pump principles and from a list of BPA's industrial customers, the authors estimated the fuel savings potential for six industries. Findings indicate that the pulp and paper industry would yield the greatest fuel savings and increased electrical consumption. Assessments presented in this report represent a cooperative effort between The Idaho National Engineering Laboratory (INEL), and Battelle-Northwest Laboratories.

  10. Review article "Assessment of economic flood damage"

    Directory of Open Access Journals (Sweden)

    B. Merz

    2010-08-01

    Full Text Available Damage assessments of natural hazards supply crucial information to decision support and policy development in the fields of natural hazard management and adaptation planning to climate change. Specifically, the estimation of economic flood damage is gaining greater importance as flood risk management is becoming the dominant approach of flood control policies throughout Europe. This paper reviews the state-of-the-art and identifies research directions of economic flood damage assessment. Despite the fact that considerable research effort has been spent and progress has been made on damage data collection, data analysis and model development in recent years, there still seems to be a mismatch between the relevance of damage assessments and the quality of the available models and datasets. Often, simple approaches are used, mainly due to limitations in available data and knowledge on damage mechanisms. The results of damage assessments depend on many assumptions, e.g. the selection of spatial and temporal boundaries, and there are many pitfalls in economic evaluation, e.g. the choice between replacement costs or depreciated values. Much larger efforts are required for empirical and synthetic data collection and for providing consistent, reliable data to scientists and practitioners. A major shortcoming of damage modelling is that model validation is scarcely performed. Uncertainty analyses and thorough scrutiny of model inputs and assumptions should be mandatory for each damage model development and application, respectively. In our view, flood risk assessments are often not well balanced. Much more attention is given to the hazard assessment part, whereas damage assessment is treated as some kind of appendix within the risk analysis. Advances in flood damage assessment could trigger subsequent methodological improvements in other natural hazard areas with comparable time-space properties.

  11. Review article "Assessment of economic flood damage"

    Science.gov (United States)

    Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A.

    2010-08-01

    Damage assessments of natural hazards supply crucial information to decision support and policy development in the fields of natural hazard management and adaptation planning to climate change. Specifically, the estimation of economic flood damage is gaining greater importance as flood risk management is becoming the dominant approach of flood control policies throughout Europe. This paper reviews the state-of-the-art and identifies research directions of economic flood damage assessment. Despite the fact that considerable research effort has been spent and progress has been made on damage data collection, data analysis and model development in recent years, there still seems to be a mismatch between the relevance of damage assessments and the quality of the available models and datasets. Often, simple approaches are used, mainly due to limitations in available data and knowledge on damage mechanisms. The results of damage assessments depend on many assumptions, e.g. the selection of spatial and temporal boundaries, and there are many pitfalls in economic evaluation, e.g. the choice between replacement costs or depreciated values. Much larger efforts are required for empirical and synthetic data collection and for providing consistent, reliable data to scientists and practitioners. A major shortcoming of damage modelling is that model validation is scarcely performed. Uncertainty analyses and thorough scrutiny of model inputs and assumptions should be mandatory for each damage model development and application, respectively. In our view, flood risk assessments are often not well balanced. Much more attention is given to the hazard assessment part, whereas damage assessment is treated as some kind of appendix within the risk analysis. Advances in flood damage assessment could trigger subsequent methodological improvements in other natural hazard areas with comparable time-space properties.

  12. Assessment of skin damages in dairy cows

    NARCIS (Netherlands)

    Smolders, E.A.A.

    2009-01-01

    Skin damages were assessed at 48 conventional and organic farms with mainly cubicle houses. Scores from 1 – 9 were given depending on type and size of the damaged skin at 9 locations of the cow: outer hock, inner hock, knee and body all left and right hand side and the neck. Only the highest score p

  13. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  14. Measurement of damage in systemic vasculitis: a comparison of the Vasculitis Damage Index with the Combined Damage Assessment Index

    DEFF Research Database (Denmark)

    Suppiah, Ravi; Flossman, Oliver; Mukhtyar, Chetan;

    2011-01-01

    To compare the Vasculitis Damage Index (VDI) with the Combined Damage Assessment Index (CDA) as measures of damage from vasculitis.......To compare the Vasculitis Damage Index (VDI) with the Combined Damage Assessment Index (CDA) as measures of damage from vasculitis....

  15. ASSESSMENT OF IMPACT DAMAGE TO APPLE FRUITS

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... Department of Agricultural and Bio-Environmental Engineering, Auchi ... An impact damage assessment of fresh apple fruits was carried out to ascertain the effects of ... mestic and inter-state transportation Berardinelli et.

  16. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  17. CFD Script for Rapid TPS Damage Assessment

    Science.gov (United States)

    McCloud, Peter

    2013-01-01

    This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.

  18. Muscle-damaging exercise increases heat strain during subsequent exercise heat stress.

    Science.gov (United States)

    Fortes, Matthew Benjamin; Di Felice, Umberto; Dolci, Alberto; Junglee, Naushad A; Crockford, Michael J; West, Liam; Hillier-Smith, Ryan; Macdonald, Jamie Hugo; Walsh, Neil Peter

    2013-10-01

    It remains unclear whether exercise-induced muscle damage (EIMD) increases heat strain during subsequent exercise heat stress, which in turn may increase the risk of exertional heat illness. We examined heat strain during exercise heat stress 30 min after EIMD to coincide with increases in circulating pyrogens (e.g., interleukin-6 [IL-6]) and 24 h after EIMD to coincide with the delayed muscle inflammatory response when a higher rate of metabolic energy expenditure (M˙) and thus decreased economy might also increase heat strain. Thirteen non-heat-acclimated males (mean ± SD, age = 20 ± 2 yr) performed exercise heat stress tests (running for 40 min at 65% V˙O2max in 33°C, 50% humidity) 30 min (HS1) and 24 h (HS2) after treatment, involving running for 60 min at 65% V˙O2max on either -10% gradient (EIMD) or +1% gradient (CON) in a crossover design. Rectal (Tre) and skin (Tsk) temperature, local sweating rate, and M˙ were measured throughout HS tests. Compared with CON, EIMD evoked higher circulating IL-6 pre-HS1 (P correlated with the pre-HS1 circulating IL-6 concentration (r = 0.67). Heat strain was increased during endurance exercise in the heat conducted 30 min after and, to a much lesser extent, 24 h after muscle-damaging exercise. These data indicate that EIMD is a likely risk factor for exertional heat illness particularly during exercise heat stress when behavioral thermoregulation cues are ignored.

  19. Damage identity in fatigue assessment of structures

    Directory of Open Access Journals (Sweden)

    S.V. Petinov

    2016-04-01

    Full Text Available The modified strain criterion-based method for fatigue assessment of structures is discussed. The damage is estimated based on the specified parameters of the criterion and the damage summation procedure by employing the finite-element method. With a reasonably fine mesh of the finiteelement model of the ‘critical location’ structure, the condition of the identity of damage in the material of the test specimen and the structure is provided and, respectively, the effect of uncertainty on the fatigue life assessment of the structure is reduced. The implementation of this version of the method is using the example of the fatigue life evaluation of a ship hull and superstructure detail at expansion joint. For comparison, the fatigue life of the detail is estimated using the standard S-N approach. The results are in approximate agreement; however, reducing the computational uncertainties with the help of the deformation criterion shows more physically reasonable fatigue properties of the detail.

  20. Status of Research on Online Fuel Damage Detection and Core Damage Assessment System

    Institute of Scientific and Technical Information of China (English)

    XU; Xi-an; JI; Song-tao; GAO; Yong-guang; SHI; Xiao-lei

    2012-01-01

    <正>The technique research on the online fuel element damage detection and reactor core damage assessment is one project in the research program of the technical research for reactor key equipment maintenance and detection. The main research objective is to develop an online fuel damage detection system (FDDS), a core damage assessment system (CDAS) and make the integration of the two systems.

  1. "Fair" Mathematics in Assessing Delictual Damages

    OpenAIRE

    L Steynberg

    2011-01-01

    In assessing delictual damages the plaintiff is burdened with the duty to prove loss with a preponderance of probability, including uncertain future loss. In quantifying such a claim an actuary is often used to make actuarial calculations based on proven facts and realistic assumptions regarding the future. The role of the actuary is to guide the court in the calculations to be made. Relying on its wide judicial discretion the court will have the final say regarding the correctness of the ass...

  2. Visualization and Damage Assessment for Flooded Area

    Institute of Scientific and Technical Information of China (English)

    SU Guozhong; YAN Li; LIU Nan; LIU Renyi

    2004-01-01

    A practical method for visualizing flood area and evaluating damage is presented, which consists of two technical approaches: self-programming and adapting commercial GIS platforms. The low-cost and easy-to-use GIS-Based model developed by self-programming can meet current requirements of most local authorities, especially in developing countries. In this model, two cases, non-source flood and source flood, are distinguished and the Seed-spread algorithm suitable for source-flood is discussed; The flood damage is assessed by overlaying the flood area range with thematic maps and other related social and economic data. and all thematic maps are converted to raster format before overlay analysis. Two measures are taken to improve the operation efficiency of speed seed-spread algorithm. The accuracy of the model mainly depends on the resolution and precision of the DEM data, and the accuracy of registering all raster layers and the quality of attribute data.

  3. Flood damage curves for consistent global risk assessments

    Science.gov (United States)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra

  4. "Fair" Mathematics in Assessing Delictual Damages

    Directory of Open Access Journals (Sweden)

    L Steynberg

    2011-05-01

    Full Text Available In assessing delictual damages the plaintiff is burdened with the duty to prove loss with a preponderance of probability, including uncertain future loss. In quantifying such a claim an actuary is often used to make actuarial calculations based on proven facts and realistic assumptions regarding the future. The role of the actuary is to guide the court in the calculations to be made. Relying on its wide judicial discretion the court will have the final say regarding the correctness of the assumptions on which these calculations are based. The court should give detailed reasons if any assumptions or parts of the calculations made by the actuary are rejected. It should preferably refrain from making its own calculations if an actuary is involved and should rather instruct the actuary to do recalculations if necessary. It does, however, fall within the wide discretion of the court to make a general contingency adjustment after the basic calculations have been accepted. In assessing delictual damages it is the duty of the court to ensure that both objective and subjective factors are considered in such a manner that the assessment may be regarded as an application of "fair" mathematics.

  5. [Environmental damages assessment: establishment of system framework in China].

    Science.gov (United States)

    Zhang, Hong-Zhen; Wang, Jin-Nan; Niu, Kun-Yu; Dong, Jing-Qi; Cao, Dong; Zhang, Tian-Zhu; Luo, Yong-Ming

    2014-10-01

    Health injury, properties compensation and ecological and environmental destruction caused by environmental pollutions have become the focuses of the government, the public and the society at present in China. The experiences of developed countries have revealed that the environmental damage assessment system must be established through development of environmental damage assessment legislations, technologies and funding guarantee system suitable for the nation's conditions based on the specific environmental situation and main issues. China has some experience in marine ecological environment, fishery resources damage assessment, forest resources damage assessment and remediation management of contaminated sites; however, the managing function of environmental damage assessment is assigned to different governmental departments. There are also shortcomings such as few cases of environmental public compensation, insufficient environmental privacy determination and compensation, etc. Based on the methods of materials and information collections, questionnaires, visiting environmental court and government sectors, interviews to assessment organizations and professionals, launching practical assessments to related cases and participating in environmental public lawsuits, the situation of environmental pollution damages in China was analyzed, the related legislation and management mechanism were reviewed, the corresponding assessment organizations regarding environmental damages were sort out, and the funding sources of environmental damage assessment were explored. Aiming at the main issues in Chinese environmental damage management, a standard and unified system for environmental damage assessment based on current managing and technological systems is important to improve the practical work in determination, assessment and compensation of environmental pollution damage in China, and to further explore the feasible environmental damage quantitative management.

  6. Manifold learning-based subspace distance for machinery damage assessment

    Science.gov (United States)

    Sun, Chuang; Zhang, Zhousuo; He, Zhengjia; Shen, Zhongjie; Chen, Binqiang

    2016-03-01

    Damage assessment is very meaningful to keep safety and reliability of machinery components, and vibration analysis is an effective way to carry out the damage assessment. In this paper, a damage index is designed by performing manifold distance analysis on vibration signal. To calculate the index, vibration signal is collected firstly, and feature extraction is carried out to obtain statistical features that can capture signal characteristics comprehensively. Then, manifold learning algorithm is utilized to decompose feature matrix to be a subspace, that is, manifold subspace. The manifold learning algorithm seeks to keep local relationship of the feature matrix, which is more meaningful for damage assessment. Finally, Grassmann distance between manifold subspaces is defined as a damage index. The Grassmann distance reflecting manifold structure is a suitable metric to measure distance between subspaces in the manifold. The defined damage index is applied to damage assessment of a rotor and the bearing, and the result validates its effectiveness for damage assessment of machinery component.

  7. 44 CFR 206.33 - Preliminary damage assessment.

    Science.gov (United States)

    2010-10-01

    ... requesting this support. (b) Damage assessment teams. Damage assessment teams will be composed of at least... possible. Other State and Federal agencies, and voluntary relief organizations may also be asked to... official will brief team members on damage criteria, the kind of information to be collected for...

  8. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  9. Orohanditest: A new method for orofacial damage assessment

    Directory of Open Access Journals (Sweden)

    Inês Morais Caldas

    2013-01-01

    Conclusion: Orohanditest provides a reliable, precise, and complete orofacial damage description and quantification. Therefore, this method can be useful as an auxiliary tool in the orofacial damage assessment process.

  10. Evaluation of Flood Routing Techniques for Incremental Damage Assessment

    OpenAIRE

    Jayyousi, Enan Fakhri

    1994-01-01

    Incremental damage assessment is a tool used to assess the justification for expensive modifications of inadequate dams. The input data to incremental damage assessment are the output from the breach analysis and flood routing. For this reason, flood routing should be conducted carefully. Distorted results from the flood routing technique or unstable modeling of the problem will distort the results of an incremental damage assessment, because an error in the estimated incremental stage will c...

  11. Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage.

    Science.gov (United States)

    Hsu, Chuan-Chih; Chen, Sheng-Hsien; Lin, Cheng-Hsien; Yung, Ming-Chi

    2014-10-01

    Intolerance to heat exposure is believed to be associated with hypothalamo-pituitary-adrenocortical (HPA) axis impairment [reflected by decreases in blood concentrations of both adrenocorticotrophic-hormone (ACTH) and corticosterone]. The purpose of this study was to determine the effect of human recombinant factor VIIa (rfVIIa) on heat intolerance, HPA axis impairment, and hypothalamic inflammation, ischemic and oxidative damage, and apoptosis in mice under heat stress. Immediately after heat stress (41.2 °C for 1 h), mice were treated with vehicle (1 mL/kg of body weight) or rfVIIa (65-270 µg/kg of body weight) and then returned to room temperature (26 °C). Mice still alive on day 4 of heat exposure were considered survivors. Cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), oxidative damage markers (e.g., nitric oxide metabolite, hydroxyl radials), and pro-inflammatory cytokines (e.g., interleukin-6, interleukin-1β, tumor necrosis factor-α) in hypothalamus were determined. In addition, blood concentrations of both ACTH and corticosterone were measured. Hypothalamic cell damage was assessed by determing the neuronal damage scores, whereas the hypothalamic cell apoptosis was determined by assessing the numbers of cells stained with terminal deoxynucleotidyl transferase-mediated αUTP nick-end labeling, caspase-3-positive cells, and platelet endothelial cell adhesion molecula-1-positive cells in hypothalamus. Compared with vehicle-treated heated mice, rfVIIa-treated heated mice had significantly higher fractional survival (8/10 vs 1/10), lesser thermoregulatory deficit (34.1 vs 24.8 °C), lesser extents of ischemic, oxidative, and inflammatory markers in hypothalamus, lesser neuronal damage scores and apoptosis in hypothalamus, and lesser HPA axis impairment. Human recombinant factor VIIa appears to exert a protective effect against heatstroke by attenuating hypothalamic cell apoptosis (due to ischemic, inflammatory, and oxidative damage

  12. Assessment of damage in 'green' composites

    Science.gov (United States)

    Malinowski, Paweł H.; Ostachowicz, Wiesław M.; Touchard, Fabienne; Boustie, Michel; Chocinski-Arnault, Laurence; Pascual Gonzalez, Pedro; Berthe, Laurent; de Vasconcellos, Davi; Sorrentino, Luigi

    2017-04-01

    The behaviour of eco-composites, when subjected to laser or mechanical impact loadings, is not well known yet. A research was proposed looking at the behaviour of `green' and synthetic composites under impact loading. The study was focused on composites reinforced with short, medium and long fibres. Short fibre composites were made of spruce fibres and ABS. The fibres were used both as received and after a thermal treatment. Another set of samples was made of 60 mm-long flax fibres. Two types of thermoplastic polymers were used as matrices: polypropylene and polylactide. Also a woven eco-composite was investigated. It was made of plain woven hemp fabric impregnated with epoxy resin. A fully synthetic woven composite, used as reference laminate for comparison with `green' composites, was prepared by using a plain weave woven glass fabric impregnated with epoxy resin. Mechanical impacts were performed by means of a falling dart impact testing machine. The specimens were tested at different impact energy levels (from 1J to 5J) by keeping constant the mass of the impactor and varying the drop height. Laser impact tests were performed by means of a high power laser shock facility. All the samples were tested at six different laser shock intensities, keeping constant the shock diameter and the pulse duration. Six assessment techniques were employed in order to analyse and compare impact damages: eye observation, back face relief, terahertz spectroscopy, laser vibrometry, X-ray micro-tomography and microscopic observations. Different damage detection thresholds for each material and technique were obtained.

  13. Earthquake Damage Assessment for RC Structures Based on Fuzzy Sets

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2013-01-01

    Full Text Available A global damage index based on multiple linear force-deformation curves in pushover analysis is presented to evaluate the integrated damage of reinforced concrete structure. The modified coefficient is provided considering the cyclic load and hysteresis energy. The number of inelastic cycles and the coefficient of hysteresis energy concentration are also introduced as damage indices. Hence, multiple damage indices about displacement and energy for performance-based design are considered. The relation of multiple damage indices or factors and the fuzzy damage set is presented by comprehensive fuzzy evaluation; hence, a performance-based multiple fuzzy seismic damage-assessment method for reinforced concrete frame structures is established. The method can be accomplished based on pushover analysis, code spectrum, and capacity spectrum method. The fuzzy seismic damage-assessment method is verified through nonlinear analysis four different structures and the corresponding results and assessment conclusions are accurate.

  14. The mechanism of heat-induced damage of endothelial cells and its effect on vital organs

    Directory of Open Access Journals (Sweden)

    Lei SU

    2017-06-01

    Full Text Available As an important organ of the human body, vascular endothelial cells (VECs play a vital role in heat stress-induced tissue damage. Its integrity not only serves as a barrier for maintaining vascular permeability but also has major impact on cellular structure and function during acute phase response to heat stress. In heat stroke, a series of acute and complicated pathophysiological changes, including microcirculation change, damage VECs and thereby induce or aggravate multiple organ dysfunction syndrome (MODS. Meanwhile, studies have shown that, during heat stroke, VECs are the major responding cells and one of the most common cells that experience morphological and functional changes. Therefore, VECs damage might be an important mechanism involved in heat stroke. This article reviews the mechanism of heat-induced damage of VECs and its effect on vital organs. DOI: 10.11855/j.issn.0577-7402.2017.04.01

  15. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Directory of Open Access Journals (Sweden)

    Fu-Wei Liu

    Full Text Available Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  16. Industrial process heat market assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  17. Detection of Localized Heat Damage in a Polymer Matrix Composite by Thermo-Elastic Method (Preprint)

    Science.gov (United States)

    2007-02-01

    AFRL-ML-WP-TP-2007-437 DETECTION OF LOCALIZED HEAT DAMAGE IN A POLYMER MATRIX COMPOSITE BY THERMO-ELASTIC METHOD (PREPRINT) John Welter...GRANT NUMBER 4. TITLE AND SUBTITLE DETECTION OF LOCALIZED HEAT DAMAGE IN A POLYMER MATRIX COMPOSITE BY THERMO-ELASTIC METHOD (PREPRINT) 5c...Include Area Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 1 DETECTION OF LOCALIZED HEAT DAMAGE IN A POLYMER MATRIX COMPOSITE BY

  18. Mechanical damage assessment by means of thermo-electrical lock-in thermography

    Science.gov (United States)

    Kordatos, E. Z.; Exarchos, D. A.; Matikas, T. E.

    2016-04-01

    The present work deals with the nondestructive assessment of the metallic materials' mechanical damage. An innovative Nondestructive Evaluation (NDE) methodology based on two thermographic approaches was developed in order the state of fatigue damage to be assessed. The first approach allows the detection of heat waves generated by the thermomechanical coupling during the fatigue loading (online method). Specifically, both the thermo-elastic and intrinsic dissipated energy was correlated with the mechanical degradation and the remaining fatigue life. The second approach involves the monitoring of the materials' thermal behavior using a Peltier device for accurate thermal excitation (offline method). The correlation of the thermal behavior and the state of damage was achieved by the determination of the material's thermal response. The combination of these two approaches enables the rapid and accurate assessment of the cumulative damage.

  19. Orohanditest: A new method for orofacial damage assessment

    Science.gov (United States)

    Caldas, Inês Morais; Magalhães, Teresa; Matos, Eduarda; Afonso, Américo

    2013-01-01

    Background: Currently, orofacial sequelae are recognized as very influential on the quality-of-life for a victim of orofacial damage. Therefore, correct forensic assessment for indenisation purposes is mandatory. However, orofacial damage is frequently reduced to organic components, which results in a forensic assessment process, which are inadequate. This study aims to improve the orofacial damage assessment through the development of an auxiliary tool, the orohanditest. Materials and Methods: A preliminary inventory was constructed, using relevant bibliographic elements and retrospective study of forensic examinations reports concerning orofacial trauma. This inventory was then utilized in the assessment of 265 orofacial trauma victims for validation. Validity was studied by analyzing the internal construct validity (exploring factorial validity and assessing internal consistency) and the external construct validity (assessing convergent validity and discriminant validity). The level of significance was defined as P < 0.05. Results: The final inventory (orohanditest) was comprised of the three components of body (8 items), functions (10 items) and situations (24 items), which were found to be statistically reliable and valid for assessment. The final score (orofacial damage coefficient) reflects the orofacial damage severity. Conclusion: Orohanditest provides a reliable, precise, and complete orofacial damage description and quantification. Therefore, this method can be useful as an auxiliary tool in the orofacial damage assessment process. PMID:24379863

  20. Feral burro populations: Distribution and damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, B.L.

    1997-12-01

    This report was prepared to document (1) regional use of the National Training Center (NTC), Fort Irwin, CA, by burros, (2)influence of available water sources for burro use, (3) burro-related damage at several NTC sensitive habitat areas, and (4) management recommendations. All work described in this report was conducted in 1996 and 1997. Roadside transects were conducted and mapped using Geographical Positioning Systems/Geographical Information Systems (GPS/GIS) to indirectly measure relative abundance of feral burros (scat per mile) and to examine the spatial relationship of burro use to permanent or semi-permanent water sources that exist on the NTC. The authors also surveyed several permanent springs for burro-related damage and mapped the impact areas using GPS/GIS to quantify the extent of damage and to provide guidance on size and extent of burro exclosures in those areas. Photographs of the spring sites were also archived and permanent photo points were established for long-term monitoring of feral burro damage areas. In addition, aquatic invertebrate data collected during another spring site study were summarized and discussed in relation to burro-related impacts on the NTC`s sensitive habitats. Several water-quality parameters were also obtained from each spring, including temperature, dissolved oxygen, pH, and total dissolved solids.

  1. Markers of muscle damage and performance recovery following exercise in the heat

    DEFF Research Database (Denmark)

    Nybo, Lars; Girard, Olivier; Mohr, Magni

    2013-01-01

    PURPOSE: To determine whether competitive intermittent exercise in the heat affects recovery, aggravates markers of muscle fiber damage, and delay the recovery of performance and muscle glycogen stores. METHODS: Plasma creatine kinase, serum myoglobin, muscle glycogen and performance parameters (...

  2. Orohanditest: A new method for orofacial damage assessment.

    Science.gov (United States)

    Caldas, Inês Morais; Magalhães, Teresa; Matos, Eduarda; Afonso, Américo

    2013-11-01

    Currently, orofacial sequelae are recognized as very influential on the quality-of-life for a victim of orofacial damage. Therefore, correct forensic assessment for indenisation purposes is mandatory. However, orofacial damage is frequently reduced to organic components, which results in a forensic assessment process, which are inadequate. This study aims to improve the orofacial damage assessment through the development of an auxiliary tool, the orohanditest. A preliminary inventory was constructed, using relevant bibliographic elements and retrospective study of forensic examinations reports concerning orofacial trauma. This inventory was then utilized in the assessment of 265 orofacial trauma victims for validation. Validity was studied by analyzing the internal construct validity (exploring factorial validity and assessing internal consistency) and the external construct validity (assessing convergent validity and discriminant validity). The level of significance was defined as P orofacial damage coefficient) reflects the orofacial damage severity. Orohanditest provides a reliable, precise, and complete orofacial damage description and quantification. Therefore, this method can be useful as an auxiliary tool in the orofacial damage assessment process.

  3. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  4. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    J. Tang

    2013-06-01

    Full Text Available Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6 was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS. In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  5. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    J. Tang

    Full Text Available Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6 was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS. In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  6. Installation Capacity Assessment of Damaged Deepwater Pipelines

    Directory of Open Access Journals (Sweden)

    Ramasamy R.

    2014-07-01

    Full Text Available The worldwide exploration and development of subsea and deepwater reservoirs has laid down some new and old engineering challenges to the offshore pipeline industry. This requires large D/t pipelines to be installed at water depths in the vicinity of up to 2700m. The deepwater collapse and buckle propagation event is almost unavoidable as the pipe wall thickness cannot be always determined from the codes and standards due to the limit state criteria. These codes also do not consider any fabrication imperfections and sustained damages emanating from transportation and handling. The objective of this paper is to present the Finite Element Analysis (FEA of dented pipes with D/t ratio more than 45, which is outside the applicability of current design codes, and to investigate the effects on installation capacity of these various damage sizes in terms of collapse and buckle propagation.

  7. Comparative study of approaches to assess damage in thermally fatigued Cusbnd Crsbnd Zr alloy

    Science.gov (United States)

    Chatterjee, Arya; Mitra, R.; Chakraborty, A. K.; Rotti, C.; Ray, K. K.

    2016-06-01

    For the first time the nature of response of thermal fatigue damage (TFD) in Cusbnd Crsbnd Zr alloys, considered for the High Heat Flux components of Tokamak and its subsystems in International Thermonuclear Experimental Reactor application has been studied. Temperature cycling between 290 °C and 30 °C, similar to the service condition, has been carried out on two differently aged Cusbnd Crsbnd Zr alloys. The TFD has been assessed by damage mechanics approach using damage parameters, and by surface characteristics. The damage parameters increase exponentially during initial fatigue cycles and saturates, whilst surface characteristics shows continuous increase with increase in thermal fatigue cycles. Damages are different in the aged alloys depending upon the aging conditions.

  8. Assessing and Managing Natural Resource Damages: Continuing Challenges and Opportunities

    Science.gov (United States)

    Barnthouse, Lawrence W.; Stahl, Ralph G.

    2017-05-01

    In a 2002 paper, we discussed the technical challenges associated with quantifying natural resource injuries, service losses and damages, and suggested some actions that might help to overcome them. An important suggestion was to consider using some of the approaches in ecological risk assessment to help evaluate potential natural resource injuries, and ultimately in some cases to help translate those injuries into natural resource service loss. This was based on the observation that ecological risk assessment and natural resource damage assessments use much of the same types of data, but at that time the experience base with ecological risk assessment was greater than for natural resource damage assessments. We also discussed some of the issues in applying the then current Department of Interior natural resource damage assessments regulations. Since our 2002 publication the scientific literature, relevant regulations, the global context and more have changed. In the current paper we focus on the technical and regulatory changes in natural resource damage assessments practice since 2002, and use recent reports and publications to illustrate those changes and identify new directions in natural resource damage assessments.

  9. Comparison of Vibration-Based Damage Assessment Techniques

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1995-01-01

    Three different vibration-based damage assessment techniques have been compared. One of the techniques uses the ratios between changes in experimentally and theoretically estimated natural frequencies, respectively, to locate a damage. The second technique relies on updating of a finite element m...

  10. A Comparative Study of Three Vibration Based Damage Assessment Techniques

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    Three different vibration based damage assessment techniques have been compared. One of the techniques uses the ratios between changes in experimentally and theoretically estimated natural frequencies, respectively, to locate a damage. The second technique relies on updating of an FEM based...

  11. Post-hurricane forest damage assessment using satellite remote sensing

    Science.gov (United States)

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  12. Relationship Between Heart Damages and HSPs mRNA in Persistent Heat Stressed Broilers

    Institute of Scientific and Technical Information of China (English)

    SUN Pei-ming; LIU Yu-tian; ZHAO Yong-gang; BAO En-dong; WANG Zhi-liang

    2007-01-01

    The relationship between myocardial cell damages and HSPs mRNA transcription in heat stressed broilers was studied using a spectrophotometer, the histopathological technique, and fluorescence quantitative reverse transcription PCR (FQ RT-PCR). The results showed that the activities of creatine kinase (CK) and glutamic-pyruvic transaninase (GPT) were induction during the persistent heat stress. The major lesions of the myocardial fibers were granular degeneration and necrosis. The transcription of constitutive or cognate heat shock protein 70 (HSC70) mRNA was changeable. The transcription of heat shock protein 70 (HSP70) mRNA was increased obviously in the course of persistent heat stress. The results showed that the change of HSC70 mRNA transcription was contrary to the activity of CK, and the level of HSC70 mRNA transcription must be used as a symbol of the myocardial cell damages in the course of persistent heat stress.

  13. Damage Tolerance Assessment of Friction Pull Plug Welds

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  14. 76 FR 61089 - Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal...

    Science.gov (United States)

    2011-10-03

    ... National Oceanic and Atmospheric Administration Indirect Cost Rates for the Damage Assessment, Remediation... Administration (NOAA), Commerce. ACTION: Notice of Indirect Cost Rates for the Damage Assessment, Remediation... Administration's (NOAA's) Damage Assessment, Remediation, and Restoration Program (DARRP) is announcing...

  15. 15 CFR 990.20 - Relationship to the CERCLA natural resource damage assessment regulations.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.20 Relationship to the CERCLA natural resource damage assessment regulations. (a) General. Regulations for assessing natural resource damages resulting from hazardous substance releases under the...

  16. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon

    2008-11-15

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008.

  17. Beam Interaction with Thin Materials: Heat Deposition, Cooling Phenomena and Damage Limits

    CERN Document Server

    Sapinski, M

    2012-01-01

    Thin targets, inserted into particle beams can serve various purposes, starting from beam emittance measurements like in wire scanner or scintillating screens up to beam content modifications like in case of stripper foils. The mechanisms of energy deposition in a thin target for various beam types are discussed, together with properties of particles produced in this kind of interaction. The cooldown processes, from heat transfer up to cooling by sublimation, and their efficiencies are presented. Finally, damage conditions are discussed and conclusions about typical damage limits are drawn. The experiments performed with the wire scanners at CERN accelerators and a mathematical model of heating and cooling of a wire are presented.

  18. Damage distribution and remnant life assessment of a super-heater outlet header used for long time

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki, Okamura [Science Univ. of Tokyo (Japan); Ryuichi, Ohotani [Kyoto Univ. (Japan); Kazuya, Fujii [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Masashi, Nakashiro; Fumio, Takemasa; Hideo, Umaki; Tomiyasu, Masumura [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-11-01

    This paper presents the results of investigation on evaluating damage distribution to base metals and welded joints in the thickness direction and evaluate damage on ligaments. Thick wall tested sample was the superheater outlet header component long term serviced in high pressure and temperature condition in thermal power plant. The simulate unused steel of component material was made from sample by suitable heat treatment, and the extent of damage was assessed based on a comparison of nondestructive and destructive test results between simulate unused and aged samples. Damage evaluation was also made by FEM structural stress analysis. (orig./MM)

  19. Identification of CdnL, a Putative Transcriptional Regulator Involved in Repair and Outgrowth of Heat-Damaged Bacillus cereus Spores.

    Directory of Open Access Journals (Sweden)

    Alicja K Warda

    Full Text Available Spores are widely present in the environment and are common contaminants in the food chain, creating a challenge for food industry. Nowadays, heat treatments conventionally applied in food processing may become milder to comply with consumer desire for products with higher sensory and nutritional values. Consequently subpopulations of spores may emerge that are sublethally damaged rather than inactivated. Such spores may germinate, repair damage, and eventually grow out leading to uncontrolled spoilage and safety issues. To gain insight into both the behaviour of damaged Bacillus cereus spores, and the process of damage repair, we assessed the germination and outgrowth performance using OD595 measurements and microscopy combined with genome-wide transcription analysis of untreated and heat-treated spores. The first two methods showed delayed germination and outgrowth of heat-damaged B. cereus ATCC14579 spores. A subset of genes uniquely expressed in heat-treated spores was identified with putative roles in the outgrowth of damaged spores, including cdnL (BC4714 encoding the putative transcriptional regulator CdnL. Next, a B. cereus ATCC14579 cdnL (BC4714 deletion mutant was constructed and assessment of outgrowth from heat-treated spores under food relevant conditions showed increased damage compared to wild type spores. The approach used in this study allows for identification of candidate genes involved in spore damage repair. Further identification of cellular parameters and characterisation of the molecular processes contributing to spore damage repair may provide leads for better control of spore outgrowth in foods.

  20. Assessment of Structural Damage Condition Based on Fuzzy Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    WU Zi-yan; ZHANG Yu

    2008-01-01

    This paper presents a new method of damage condition assessment that allows accommodating other types of uncertainties due to ambiguity, vagueness, and fuzziness that are statistically non-describable. In this method, healthy observations are used to construct a fuzzy set representing sound performance characteristics. Additionally, the bounds on the similarities among the structural damage states are prescribed by using the state similarity matrix. Thus, an optimal group fuzzy sets representing damage states such as little, moderate, and severe damage can be inferred as an inverse problem from healthy observations only. The optimal group of damage fuzzy sets is used to classify a set of observations at any unknown state of damage using the principles of fuzzy pattern recognition based on an approximate principle. This method can be embedded into the system of Structural Health Monitoring (SHM) to give advice about structural maintenance and life prediction. Finally, a case study, which comes from Reference [9] for damage pattern recognition is presented and discussed. The compared result illustrates our method is more effective and general, so it is very practical in engineering.

  1. Development of the damage assessment methodology for ceiling elements

    Science.gov (United States)

    Nitta, Yoshihiro; Iwasaki, Atsumi; Nishitani, Akira; Wakatabe, Morimasa; Inai, Shinsuke; Ohdomari, Iwao; Tsutsumi, Hiroki

    2012-04-01

    This paper presents the basic concept of a damage assessment methodology for ceiling elements with the aid of smart sensor board and inspection robot. In this proposed system, the distributed smart sensor boards firstly detect the fact of damage occurrence. Next, the robot inspects the damage location and captures the photographic image of damage condition. The smart sensor board for the proposed system mainly consists of microcontroller, strain gage and LAN module. The inspection robot integrated into the proposed system has a wireless camera and wireless LAN device for receiving signal to manipulate itself. At first, the effectiveness of the smart sensor board and inspection robot is tested by experiments of a full-scale suspended ceiling utilizing shaking table facilities. The model ceiling is subjected to several levels of excitations and thus various levels of damages are caused. Next, this robot inspection scheme is applied to the ceiling of a real structure damaged by the 2011 off the pacific coast of Tohoku Earthquake. The obtained results indicate that the proposed system can detect the location and condition of the damage.

  2. Crowdsourcing earthquake damage assessment using remote sensing imagery

    Directory of Open Access Journals (Sweden)

    Stuart Gill

    2011-06-01

    Full Text Available This paper describes the evolution of recent work on using crowdsourced analysis of remote sensing imagery, particularly high-resolution aerial imagery, to provide rapid, reliable assessments of damage caused by earthquakes and potentially other disasters. The initial effort examined online imagery taken after the 2008 Wenchuan, China, earthquake. A more recent response to the 2010 Haiti earthquake led to the formation of an international consortium: the Global Earth Observation Catastrophe Assessment Network (GEO-CAN. The success of GEO-CAN in contributing to the official damage assessments made by the Government of Haiti, the United Nations, and the World Bank led to further development of a web-based interface. A current initiative in Christchurch, New Zealand, is underway where remote sensing experts are analyzing satellite imagery, geotechnical engineers are marking liquefaction areas, and structural engineers are identifying building damage. The current site includes online training to improve the accuracy of the assessments and make it possible for even novice users to contribute to the crowdsourced solution. The paper discusses lessons learned from these initiatives and presents a way forward for using crowdsourced remote sensing as a tool for rapid assessment of damage caused by natural disasters around the world.

  3. Potentialities of infrared thermography to assess damage in bonding between concrete and GFRP

    Directory of Open Access Journals (Sweden)

    M. M. CALDEIRA

    Full Text Available This paper demonstrates the application of the active infrared thermography to detect damage in bonding between concrete and glass fiber reinforced polymer (GFRP. Specimens of concrete and mortar with GFRP externally bonded were prepared and at their interfaces were inserted polystyrene discs to simulate damages. The samples were divided into two groups. In group 1, one sample was correctly bonded by a GFRP plate to the concrete, but in the other three were inserted polystyrene discs which had different diameters to simulate damages in bonding. In group 2, all of the samples contained identical polystyrene discs at their interfaces, but the total thickness of each specimen was different, because the objective was to evaluate the ability of the camera to capture the simulated damage in depth. The experimental procedure was divided into two stages. In the first stage, four types of heating were used to heat samples of group 1: incandescent lamp, kiln, blended lamp and fan heater. Thus, it was possible to detect the damage and to observe its format and length. It was noticed that the infrared images are different depending on the heat source incident on the specimen. Therefore, group 2 was tested only for the more efficient heating (incandescent lamp. In the second stage, the infrared equipment was tested. Some of the parameters that must be inserted in the camera were varied in order to understand their influence on image formation. The results show the effectiveness of infrared thermography to assess adherence in GFRP/concrete interface. In the present work, the best results were obtained when the image is captured towards GFRP/concrete and using incandescent lamp. It was observed that the image and measured temperature suffer significant distortion when a false value was inserted for the parameter emissivity.

  4. Assessment of drought damages and their uncertainties in Europe

    Science.gov (United States)

    Naumann, Gustavo; Spinoni, Jonathan; Vogt, Jürgen V.; Barbosa, Paulo

    2015-12-01

    Drought is a natural hazard triggered by a lack of precipitation that can last for several months or years. Droughts can affect a wide range of socio-economic sectors while the related direct and indirect impacts are often difficult to quantify. In this context, drought damage refers to the total or partial destruction of physical assets in the affected area. The main constraint in constructing a robust relationship between the severity of drought events and related damages is the lack of sufficient quantitative impact data. In this paper we propose the use of power-law damage functions to assess the relationship between drought severity and related damages in two economic sectors, namely cereal crop production and hydropower generation, across 21 European countries. The different shapes of the resulting damage functions can be explained by the specific drought vulnerability or adaptive capacity of each sector and country. Due to the scarcity of impact data linked to extreme climate events a bootstrap resampling was performed to assess the potential uncertainties associated with the sample size. This approach helps communicating potential drought impacts and related uncertainties to end users and policy makers in support to the development of drought management plans and long-term adaptation measures.

  5. Comparative flood damage model assessment: towards a European approach

    Directory of Open Access Journals (Sweden)

    B. Jongman

    2012-12-01

    Full Text Available There is a wide variety of flood damage models in use internationally, differing substantially in their approaches and economic estimates. Since these models are being used more and more as a basis for investment and planning decisions on an increasingly large scale, there is a need to reduce the uncertainties involved and develop a harmonised European approach, in particular with respect to the EU Flood Risks Directive. In this paper we present a qualitative and quantitative assessment of seven flood damage models, using two case studies of past flood events in Germany and the United Kingdom. The qualitative analysis shows that modelling approaches vary strongly, and that current methodologies for estimating infrastructural damage are not as well developed as methodologies for the estimation of damage to buildings. The quantitative results show that the model outcomes are very sensitive to uncertainty in both vulnerability (i.e. depth–damage functions and exposure (i.e. asset values, whereby the first has a larger effect than the latter. We conclude that care needs to be taken when using aggregated land use data for flood risk assessment, and that it is essential to adjust asset values to the regional economic situation and property characteristics. We call for the development of a flexible but consistent European framework that applies best practice from existing models while providing room for including necessary regional adjustments.

  6. Countermeasures for heat damage in rice grain quality under climate change

    Directory of Open Access Journals (Sweden)

    Satoshi Morita

    2016-01-01

    Full Text Available Climate change has been an increasingly significant factor behind fluctuations in the yield and quality of rice (Oryza sativa L., particularly regarding chalky (white-back, basal-white, and milky-white grain, immature thin grain, and cracked grain. The development and use of heat-tolerant varieties is an effective way to reduce each type of grain damage based on the existence of each varietal difference. Cultivation methods that increase the available assimilate supply per grain, such as deep-flood irrigation, are effective for diminishing the occurrence of milky-white grains under high temperature and low solar radiation conditions. The application of sufficient nitrogen during the reproductive stage is important to reduce the occurrence of most heat damage with the exception of milky-white grain. In regard to developing measures for heat-induced poor palatability of cooked rice, a sensory parameter, the hardness/adhesion ratio may be useful as an indicator of palatability within a relatively wide air–temperature range during ripening. Methods for heat damage to rice can be classified as either avoidance or tolerance measures. The timing of the measures is further divided into preventive and prompt types. The use of heat-tolerant varieties and late transplanting are preventive measures, whereas the application of sufficient nitrogen as a top dressing and irrigation techniques during the reproductive stage are prompt types which may function to lower the canopy temperature by enhancing evapotranspiration. Trials combining the different types of techniques will contribute towards obtaining more efficient and steady countermeasures against heat damage under conditions of climate change.

  7. Dexamethasone Improves Heat Stroke-Induced Multiorgan Dysfunction and Damage in Rats

    Directory of Open Access Journals (Sweden)

    Chia-Chyuan Liu

    2014-11-01

    Full Text Available Dexamethasone (DXM is known as an immunosuppressive drug used for inflammation control. In the present study, we attempted to examine whether DXM administration could attenuate the hypercoagulable state and the overproduction of pro-inflammatory cytokines, improve arterial hypotension, cerebral ischemia and damage, and vital organ failure in a rat model of heat stroke. The results indicated that all the rats suffering from heat stroke showed high serum levels of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β, accompanied with increased prothrombin time, activated partial thromboplastin time and D-D dimer, and decreased protein C. During the induction period of heat stroke, plasma levels of blood urea nitrogen (BUN, creatinine, glutamic oxaloacetic transaminase (SGOT, glutamic pyruvic transaminase (SGPT, and alkaline phosphatase (ALP, were consistently increased. High striatal levels of glycerol, glutamate, and lactate/pyruvate were simultaneously detected. On the contrary, the mean arterial pressure, plasma levels of interleukin-10 (IL-10, and local cerebral blood flow at the striatum were all decreased. Importantly, intravenous administration of DXM substantially ameliorated the circulatory dysfunction, systematic inflammation, hypercoagulable state, cerebral ischemia and damage during the induction period of heat stroke. These findings demonstrated that DXM may be an alternative therapy that can ameliorate heat stroke victims by attenuating activated coagulation, systemic inflammation, and vital organ ischemia/injury during heat stroke.

  8. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress.

    Science.gov (United States)

    Azad, M A K; Kikusato, M; Maekawa, T; Shirakawa, H; Toyomizu, M

    2010-03-01

    Emerging evidence has shown that acute heat exposure affects metabolic characteristics and causes oxidative damage to skeletal muscle in birds. Little is known, however, about such phenomena under chronic heat stress conditions. To address this, we designed the present study to determine the influence of cyclic (32 to 24 to 32 degrees C: 32 degrees C for 8 h/d, 32-24-32HS ), and constant (32 and 34 degrees C, 32HS and 34HS, respectively) heat exposure on the metabolic and peroxide status in skeletal muscle of 4-wk-old male broiler chickens. Heat stress, particularly in the 32HS and 34HS groups, depressed feed intake and growth, while cyclic high temperature gave rise to a less severe stress response in performance terms. Malondialdehyde (MDA) levels in skeletal muscle were enhanced (Pstress model. The 3HADH (3-hydroxyacyl CoA dehydrogenase related to fatty acid oxidation) and CS (citrate synthase) enzyme activities were lowered (Pchickens. On exposure to chronic heat stress, GPx activity remained relatively constant, though a temperature-dependent elevation in Cu/Zn-SOD activity was observed, implying that anti-oxidation ability was disturbed by the chronic stress condition. From these results it can be concluded that chronic heat stress did not induce oxidative damage to a major extent. This may probably be due to a decrease in metabolic oxidation capacity or due to a self-propagating scavenging system, though the system was not fully activated.

  9. Umbilical Cord Blood-Derived Stem Cells Improve Heat Tolerance and Hypothalamic Damage in Heat Stressed Mice

    Directory of Open Access Journals (Sweden)

    Ling-Shu Tseng

    2014-01-01

    Full Text Available Heatstroke is characterized by excessive hyperthermia associated with systemic inflammatory responses, which leads to multiple organ failure, in which brain disorders predominate. This definition can be almost fulfilled by a mouse model of heatstroke used in the present study. Unanesthetized mice were exposed to whole body heating (41.2°C for 1 hour and then returned to room temperature (26°C for recovery. Immediately after termination of whole body heating, heated mice displayed excessive hyperthermia (body core temperature ~42.5°C. Four hours after termination of heat stress, heated mice displayed (i systemic inflammation; (ii ischemic, hypoxic, and oxidative damage to the hypothalamus; (iii hypothalamo-pituitary-adrenocortical axis impairment (reflected by plasma levels of both adrenocorticotrophic-hormone and corticosterone; (iv decreased fractional survival; and (v thermoregulatory deficits (e.g., they became hypothermia when they were exposed to room temperature. These heatstroke reactions can be significantly attenuated by human umbilical cord blood-derived CD34+ cells therapy. Our data suggest that human umbilical cord blood-derived stem cells therapy may improve outcomes of heatstroke in mice by reducing systemic inflammation as well as hypothalamo-pituitary-adrenocortical axis impairment.

  10. Integrating Urban Heat Assessment in Urban Plans

    Directory of Open Access Journals (Sweden)

    Leyre Echevarría Icaza

    2016-03-01

    Full Text Available The world is increasingly concerned with sustainability issues. Climate change is not the least of these concerns. The complexity of these issues is such that data and information management form an important means of making the right decisions. Nowadays, however, the sheer quantity of data is overwhelming; large quantities of data demand means of representation that are comprehensible and effective. The above dilemma poses questions as to how one incorporates unknown climatologic parameters, such as urban heat, in future urban planning processes, and how one ensures the proposals are specific enough to actually adapt cities to climate change and flexible enough to ensure the proposed measures are combinable and compatible with other urban planning priorities. Conventional urban planning processes and mapping strategies are not adapted to this new environmental, technological and social context. In order come up with more appropriate urban planning strategies, in its first section this paper analyzes the role of the urban planner, reviews the wide variety of parameters that are starting to be integrated into the urban planners practice, and considers the parameters (mainly land surface temperature, albedo, vegetation, and imperviousness and tools needed for the assessment of the UHI (satellite imagery and GIS. The second part of the study analyzes the potential of four catalyzing mapping categories to integrate urban heat into spatial planning processes: drift, layering, game-board, and rhizome.

  11. 43 CFR 11.38 - Assessment Plan-preliminary estimate of damages.

    Science.gov (United States)

    2010-10-01

    ... damages. 11.38 Section 11.38 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Assessment Plan Phase § 11.38 Assessment Plan—preliminary estimate of damages... resources, if the authorized official intends to include compensable value in the damage claim....

  12. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  13. Damage Assessment for Buried Structures Against Internal Blast Load

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; HUANG Xin; LI Jianchun

    2008-01-01

    The soil-structure interaction(SSI)decoupling is applied to simplify buried structure against internal blast lpad as spring effect.Shear failure.bending failure and Combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element.The critical equations for shear and bending failure are derived respectively.Pressure impulse diagrams are accordingly developed to assess damage of the buried structures against internal blast lpad.Cornparison is done to show influences of soil-structure interaction and shear to-bending strength ratio of a structural element.A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.

  14. Damage Assessment of Composite Structures Using Digital Image Correlation

    Science.gov (United States)

    Caminero, M. A.; Lopez-Pedrosa, M.; Pinna, C.; Soutis, C.

    2014-02-01

    The steady increase of Carbon-Fiber Reinforced Polymer (CFRP) Structures in modern aircraft will reach a new dimension with the entry into service of the Boeing 787 and Airbus 350. Replacement of damaged parts will not be a preferable solution due to the high level of integration and the large size of the components involved. Consequently the need to develop repair techniques and processes for composite components is readily apparent. Bonded patch repair technologies provide an alternative to mechanically fastened repairs with significantly higher performance, especially for relatively thin skins. Carefully designed adhesively bonded patches can lead to cost effective and highly efficient repairs in comparison with conventional riveted patch repairs that cut fibers and introduce highly strained regions. In this work, the assessment of the damage process taking place in notched (open-hole) specimens under uniaxial tensile loading was studied. Two-dimensional (2D) and three-dimensional (3D) Digital Image Correlation (DIC) techniques were employed to obtain full-field surface strain measurements in carbon-fiber/epoxy T700/M21 composite plates with different stacking sequences in the presence of an open circular hole. Penetrant enhanced X-ray radiographs were taken to identify damage location and extent after loading around the hole. DIC strain fields were compared to finite element predictions. In addition, DIC techniques were used to characterise damage and performance of adhesively bonded patch repairs in composite panels under tensile loading. This part of work relates to strength/stiffness restoration of damaged composite aircraft that becomes more important as composites are used more extensively in the construction of modern jet airliners. The behaviour of bonded patches under loading was monitored using DIC full-field strain measurements. Location and extent of damage identified by X-ray radiography correlates well with DIC strain results giving confidence to

  15. Breeding efforts to mitigate damage by heat stress to spikelet sterility and grain quality

    Directory of Open Access Journals (Sweden)

    Tsutomu Ishimaru

    2016-01-01

    Full Text Available Global warming is predicted to aggravate the risk of unstable crop production. It is of great concern that damage to rice spikelet sterility and grain quality will increase, resulting in yield and economic losses. To secure the global food supply and farmers’ income, the development of rice cultivars with heat resilience is a pressing concern. Regarding spikelet sterility, rice cultivars with heat tolerance at different growth stages have been identified in recent years. The early-morning flowering (EMF trait is effective in heat escape because it shifts the time of day of flowering to earlier in the morning when it is cooler. Although varietal differences are very small, there are some genetic resources for EMF in wild rice accessions. Regarding heat-induced grain chalkiness, heat-tolerant japonica cultivars for mitigating white-back type of chalky grains (WBCG were found. Quantitative trait loci for heat tolerance at flowering, EMF, and for WBCG in grain quality have been mapped on the rice chromosomes. Further genetic efforts have been successfully connected to the development of near-isogenic lines for each trait with tagged molecular markers. These breeding materials are quite unique and useful in facilitating marker-assisted breeding toward the development of heat-resilient rice in terms of spikelet sterility and grain quality.

  16. Rapid assessment of disaster damage using social media activity.

    Science.gov (United States)

    Kryvasheyeu, Yury; Chen, Haohui; Obradovich, Nick; Moro, Esteban; Van Hentenryck, Pascal; Fowler, James; Cebrian, Manuel

    2016-03-01

    Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and an increasing intensity of natural disasters resulting from climate change. During such events, citizens turn to social media platforms for disaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. In addition, the spatiotemporal distribution of disaster-related messages helps with the real-time monitoring and assessment of the disaster itself. We present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of the United States and find a strong relationship between proximity to Sandy's path and hurricane-related social media activity. We show that real and perceived threats, together with physical disaster effects, are directly observable through the intensity and composition of Twitter's message stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. We verify our findings for a wide range of disasters and suggest that massive online social networks can be used for rapid assessment of damage caused by a large-scale disaster.

  17. Methods for assessment of keel bone damage in poultry.

    Science.gov (United States)

    Casey-Trott, T; Heerkens, J L T; Petrik, M; Regmi, P; Schrader, L; Toscano, M J; Widowski, T

    2015-10-01

    Keel bone damage (KBD) is a critical issue facing the laying hen industry today as a result of the likely pain leading to compromised welfare and the potential for reduced productivity. Recent reports suggest that damage, while highly variable and likely dependent on a host of factors, extends to all systems (including battery cages, furnished cages, and non-cage systems), genetic lines, and management styles. Despite the extent of the problem, the research community remains uncertain as to the causes and influencing factors of KBD. Although progress has been made investigating these factors, the overall effort is hindered by several issues related to the assessment of KBD, including quality and variation in the methods used between research groups. These issues prevent effective comparison of studies, as well as difficulties in identifying the presence of damage leading to poor accuracy and reliability. The current manuscript seeks to resolve these issues by offering precise definitions for types of KBD, reviewing methods for assessment, and providing recommendations that can improve the accuracy and reliability of those assessments. © 2015 Poultry Science Association Inc.

  18. Damage-consistent hazard assessment - the revival of intensities

    Science.gov (United States)

    Klügel, Jens-Uwe

    2016-04-01

    Proposed key-note speech (Introduction of session). Current civil engineering standards for residential buildings in many countries are based on (frequently probabilistic) seismic hazard assessments using ground motion parameters like peak ground accelerations or pseudo displacements as hazard parameters. This approach has its roots in the still wide spread force-based design of structures using simplified methods like linear response spectra in combination with equivalent static forces procedures for the design of structures. In the engineering practice this has led to practical problems because it's not economic to design structures against the maximum forces of earthquakes. Furthermore, a completely linear-elastic response of structures is seldom required. Different types of reduction factors (performance-dependent response factors) considering for example overstrength, structural redundancy and structural ductility have been developed in different countries for compensating the use of simplified and conservative design methods. This has the practical consequence that the methods used in engineering as well as the output results of hazard assessment studies are poorly related to the physics of damaging. Reliable predictions for the response of structures under earthquake loading using such simplified design methods are not feasible. In dependence of the type of structures damage may be controlled by hazard parameters that are different from ground motion accelerations. Furthermore, a realistic risk assessment has to be based on reliable predictions of damage. This is crucial for effective decision-making. This opens the space for a return to the use of intensities as the key output parameter of seismic hazard assessment. Site intensities (e.g. EMS-98) are very well correlated to the damage of structures. They can easily be converted into the required set of engineering parameters or even directly into earthquake time-histories suitable for structural analysis

  19. Localized CO2 laser treatment and post-heating process to reduce the growth coefficient of fused silica surface damage

    Institute of Scientific and Technical Information of China (English)

    Shizhen Xu; Xiaotao Zu; Xiaodong Yuan

    2011-01-01

    The lifetime of optical components in high-fluence ultraviolet (UV) laser applications is typically limited by laser-initiated damage and its subsequent growth. Using 10.6-μm CO2 laser pulses, we successfully mitigate 355-nm laser induced damage sites on fused silica surface with dimensions less than 200 μm.The damage threshold increases and the damage growth mitigates. However, the growth coefficients of new damage on the CO2 laser processed area are higher than those of the original sample. The damage grows with crack propagation for residual stress after CO2 laser irradiation. Furthermore, post-heating is beneficial to the release of residual stress and slows down the damage growth.%@@ The lifetime of optical components in high-fluence ultraviolet (UV) laser applications is typically limited by laser-initiated damage and its subsequent growth.Using 10.6-μm CO2 laser pulses, we successfully mitigate 355-nm laser induced damage sites on fused silica surface with dimensions less than 200 μm.The damage threshold increases and the damage growth mitigates.However, the growth coefficients of new damage on the CO2 laser processed area are higher than those of the original sample.The damage grows with crack propagation for residual stress after CO2 laser irradiation.Furthermore, post-heating is beneficial to the release of residual stress and slows down the damage growth.

  20. Assessment of heating rate and non-uniform heating in domestic microwave ovens.

    Science.gov (United States)

    Pitchai, Krishnamoorthy; Birla, Sohan L; Jones, David; Subbiah, Jeyamkondan

    2012-01-01

    Due to the inherent nature of standing wave patterns of microwaves inside a domestic microwave oven cavity and varying dielectric properties of different food components, microwave heating produces non-uniform distribution of energy inside the food. Non-uniform heating is a major food safety concern in not-ready-to-eat (NRTE) microwaveable foods. In this study, we present a method for assessing heating rate and non-uniform heating in domestic microwave ovens. In this study a custom designed container was used to assess heating rate and non-uniform heating of a range of microwave ovens using a hedgehog of 30 T-type thermocouples. The mean and standard deviation of heating rate along the radial distance and sector of the container were measured and analyzed. The effect of the location of rings and sectors was analyzed using ANOVA to identify the best location for placing food on the turntable. The study suggested that the best location to place food in a microwave oven is not at the center but near the edge of the turntable assuming uniform heating is desired. The effect of rated power and cavity size on heating rate and non-uniform heating was also studied for a range of microwave ovens. As the rated power and cavity size increases, heating rate increases while non-uniform heating decreases. Sectors in the container also influenced heating rate (p heating rate. In general, sectors close to the magnetron tend to heat slightly faster than sectors away from the magnetron. However, the variation in heating rate among sectors was only 2 degrees C/min and considered not practically important. Overall heating performance such as mean heating rate and non-uniform heating did not significantly vary between the two replications that were performed 4 h apart. However, microwave ovens were inconsistent in producing the same heating patterns between the two replications that were performed 4 h apart.

  1. Heat stress assessment among workers in a Nicaraguan sugarcane farm

    OpenAIRE

    Cortez, Orlando Delgado

    2009-01-01

    Background: Heat illness is a major cause of preventable morbidity worldwide. Workers exposed to intense heat can become unable to activate compensation mechanisms, putting their health at risk. Heat stress also has a direct impact on production by causing poor task performance and it increases the possibility of workrelated morbidity and injuries. During the sugarcane harvest period, workers are exposed to excessive sunlight and heat from approximately 6 am to 3 pm. A first assessment of hea...

  2. Assessing laser-tissue damage with bioluminescent imaging

    Science.gov (United States)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Josh T.; Davidson, Jeffrey M.; Jansen, Eric D.

    2006-07-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (λ=10.6 µm, 0.679 to 2.262 W/cm2, cw, unfocused Gaussian beam, ωL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 W/cm2 activated the hsp70 response, and a higher irradiance of 2.262 W/cm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin and

  3. Assessing laser-tissue damage with bioluminescent imaging.

    Science.gov (United States)

    Wilmink, Gerald J; Opalenik, Susan R; Beckham, Joshua T; Davidson, Jeffrey M; Jansen, E Duco

    2006-01-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (lambda=10.6 microm, 0.679 to 2.262 Wcm2, cw, unfocused Gaussian beam, omegaL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 Wcm2 activated the hsp70 response, and a higher irradiance of 2.262 Wcm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin

  4. 76 FR 65182 - Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal...

    Science.gov (United States)

    2011-10-20

    ... National Oceanic and Atmospheric Administration Indirect Cost Rates for the Damage Assessment, Remediation... Administration (NOAA), Commerce. ACTION: Notice. SUMMARY: The National Oceanic and Atmospheric Administration's (NOAA's) Damage Assessment, Remediation, and Restoration Program (DARRP) is announcing new indirect...

  5. Damage Assessment of a Steel Lattice Mast under Natural Excitation

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    In this paper the possibility of detecting and locating damages in a 20 m high steel lattice mast subjected to natural excitation has been investigated. For the damaged mast seven different damage states were considered. In these damage states a damage was assumed in one of the lower diagonals...

  6. Assessment of damages in the district heating pipe cartel

    DEFF Research Database (Denmark)

    Møllgaard, Peter

    2006-01-01

    The pre-insulated pipe cartel was established 1990 in Denmark, was extended to Italy and Germany during 1991 and re-organised in 1994 to cover the entire common market. Cartel members engaged in market sharing, price setting, bid rigging, coordinated predation and delaying of innovation. The Euro...

  7. Damage assessment of nuclear containment against aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Mohd Ashraf, E-mail: iqbal_ashraf@rediffmail.com; Sadique, Md. Rehan, E-mail: rehan.sadique@gmail.com; Bhargava, Pradeep, E-mail: bhpdpfce@iitr.ac.in; Bhandari, N.M., E-mail: nmbcefce@iitr.ac.in

    2014-10-15

    Highlights: • Damage assessment of nuclear containment is studied against aircraft crash. • Four impact locations have been identified at the outer containment shell. • The mid of the total height has been found to be most vulnerable location. • The crown of dome has been found to be the strongest location. • Phantom F4 caused more localized and severe damage compared to other aircrafts. - Abstract: The behavior of nuclear containment structure has been studied against aircraft crash with an emphasis on the influence of strike location. The impact locations identified on the BWR Mark III type nuclear containment structure are mid-height, junction of dome and cylinder, crown of dome and arc of dome. The containment at each of the above locations has been impacted normally by Phantom F-4, Boeing 707-320 and Airbus A320 aircrafts. The loading of the aircraft has been assigned through the corresponding reaction-time response curve. ABAQUS/Explicit finite element code has been used to carry out the three-dimensional numerical simulations. The concrete damaged plasticity model was used to simulate the behavior of concrete while the behavior of steel reinforcement was incorporated using the Johnson–Cook elasto-viscoplastic material model. The mid-height of containment has been found to experience most severe deformation against each aircraft. Phantom F4 has been found to be most disastrous at each location. The results have been compared with those of the available studies with respect to the containment deformation.

  8. Emergency Response Damage Assessment using Satellite Remote Sensing Data

    Science.gov (United States)

    Clandillon, Stephen; Yésou, Hervé; Schneiderhan, Tobias; de Boissezon, Hélène; de Fraipont, Paul

    2013-04-01

    During disasters rescue and relief organisations need quick access to reliable and accurate information to be better equipped to do their job. It is increasingly felt that satellites offer a unique near real time (NRT) tool to aid disaster management. A short introduction to the International Charter 'Space and Major Disasters', in operation since 2000 promoting worldwide cooperation among member space agencies, will be given as it is the foundation on which satellite-based, emergency response, damage assessment has been built. Other complementary mechanisms will also be discussed. The user access, triggering mechanism, an essential component for this user-driven service, will be highlighted with its 24/7 single access point. Then, a clear distinction will be made between data provision and geo-information delivery mechanisms to underline the user need for geo-information that is easily integrated into their working environments. Briefly, the path to assured emergency response product quality will be presented beginning with user requirements, expressed early-on, for emergency response value-adding services. Initiatives were then established, supported by national and European institutions, to develop the sector, with SERTIT and DLR being key players, providing support to decision makers in headquarters and relief teams in the field. To consistently meet the high quality levels demanded by users, rapid mapping has been transformed via workflow and quality control standardisation to improve both speed and quality. As such, SERTIT located in Alsace, France, and DLR/ZKI from Bavaria, Germany, join their knowledge in this presentation to report about recent standards as both have ISO certified their rapid mapping services based on experienced, well-trained, 24/7 on-call teams and established systems providing the first crisis analysis product in 6 hours after satellite data reception. The three main product types provided are then outlined: up-to-date pre

  9. A Study of an Intelligent Battlefield Damage Assessment System Based on a Multi-agent System

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-kai; DAI Wan-jun; TANG Yan-feng; WANG Jia-ning

    2008-01-01

    Battlefield damage assessment is the key to Battlefield Damage Assessment and Repair (BDAR).We present an Intelligent Battlefield Damage Assessment System (IBDAS) based on multi-agent system technology. We first establish the system framework, and then study the interior structure and workflow of a problem allocation agent. The result shows that, there are many advantages to resolve the problem of battlefield damage assessment by applying multi-agent system technology, and it will bring significant military benefit.

  10. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression

    National Research Council Canada - National Science Library

    Di Wu; Jiao Xu; Erbao Song; Shu Tang; Xiaohui Zhang; N. Kemper; J. Hartung; Endong Bao

    2015-01-01

    We investigated whether acetyl salicylic acid (ASA) protects chicken myocardial cells from heat stress-mediated damage in vivo and whether the induction of Hsp27 expression is connected with this function...

  11. Numerical Analysis of Doublet Wells for Cold Energy Storage on Heat Damage Treatment in Deep Mines

    Institute of Scientific and Technical Information of China (English)

    HE Man-chao; ZHANG Yi; GUO Dong-ming; QIAN Zeng-zhen

    2006-01-01

    Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Machine Systems (HEMSs), to store cold energy is a key to solve the heat damage problems in deep mines. Based on the geological conditions, thermodynamic and hydraulic parameters of Jiahe Mine, the isotherms in the period of cold energy storage and refrigeration and the volumes of cold water within different temperature ranges of the cold energy storage well were numerically analyzed. The results show that 1) with the same pumped and injected water volumes, the lower the temperature of injected water is, the larger the volume of cold water in the cold energy storage well is. With the larger volume, the effect of cold energy storage is better. 2) the larger the volumes of pumped and reinjected water are, the larger the volume of cold water from the cold energy storage well is. With the larger volume, the effect of refrigeration is better. And 3) without disturbance, the volume and temperature of cold water in the cold energy storage well can keep unchanged or have only a little change for a long time. Therefore the technology of doublet wells for cold energy storage is feasible and the cold energy storage aquifers can meet the requirement of the technology.

  12. In vitro evaluation of aspirin-induced HspB1 against heat stress damage in chicken myocardial cells

    OpenAIRE

    Wu, Di; Zhang, Miao; Xu, Jiao; Song, Erbao; Lv, Yinjun; Tang, Shu; ZHANG, XIAOHUI; Kemper, N.; Hartung, J.; Bao, Endong

    2016-01-01

    To understand the potential association of heat stress resistance with HspB1 induction by aspirin (ASA) in chicken myocardial cells, variations of HspB1 expression and heat stressed-induced damage of myocardial cells after ASA administration were studied in primary cultured myocardial cells. Cytopathological lesions as well as damage-related enzymes, such as creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), indicated the considerable protective ability of ASA pre-treatment against a...

  13. Diagnosis of splenosis: The advantages of splenic scintiscanning with TC 99m heat-damaged red blood cells. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Bidet, A.C.; Bidet, R.; Mas, J.; Dreyfus-Schmidt, G.; Combe, J.; Milleret, P.

    1986-10-01

    We present one case of peritoneal splenosis, which was not confirmed by the splenic scintiscan with /sup 99m/Tc-sulphur colloid, but whose diagnosis, carried out during a second scintiscan with /sup 99m/Tc-heat-damaged RBC, was confirmed by laparotomy and histology. This case confirms that, for the diagnosis of splenosis, heat-damaged RBC scintigraphy must be used rather than either sulphur colloid scintigraphy or computed-tomography.

  14. Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets

    Science.gov (United States)

    Liu, Jing; Gao, Xiaolong; Zhang, Jianxun

    2016-11-01

    The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.

  15. Static Heat Loads in the LHC Arc Cryostats: Final Assessment

    CERN Document Server

    Parma, V

    2010-01-01

    This note presents the final assessment of the static heat loads in the LHC arc cryostats, using different experimental methods during the first commissioning period in 2007. This assessment further develops and completes previous estimates made during the commissioning of sector 7_8 [1]. The estimate of the helium inventory, a prerequisite for the heat load calculation, is also presented. Heat loads to the cold mass are evaluated from the internal energy balance during natural as well as powered warm-ups of the helium baths in different subsector. The helium inventory is calculated from the internal energy balance during powered warm-ups and matched with previous assessments. Furthermore, heat loads to the thermal shield are estimated from the non-isothermal cooling of the supercritical helium in line E. The comparison of measured heat loads with previous estimates and with budgeted values is then presented, while their correlation with some important parameters like insulation vacuum pressure and some heat ...

  16. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    Energy Technology Data Exchange (ETDEWEB)

    You, Jeong-Ha, E-mail: you@ipp.mpg.de

    2014-04-15

    Highlights: • The surface heat flux load of 3.5 MW/m{sup 2} produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m{sup 2}) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different

  17. Initiation and propagation of damage in actively cooled CFC armoured high heat flux components in fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France); Escourbiac, F. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2009-06-15

    Plasma facing components (PFCs) in magnetic confinement controlled fusion machines are armoured with carbon fibre composite (CFC) bonded to a copper alloy heat sink. The manufacturing process induces high level of residual stresses due to the thermal expansion mismatch between CFC and copper and PFCs have to withstand strong stress ranges during operation. To study the initiation and propagation of damage in the CFC part, the ONERA damage model is used to describe the behaviour of the N11 material. The finite element simulations show that the damage is located near the interface and develops during the manufacturing of the PFCs as a consequence of the high amplitude of shear stresses. Under high heat flux, stresses decrease and the damage does not evolve. Further studies will take into account the damageable behaviour of the composite/copper interface, which will lead to geometrical optimisations and better knowledge of the link between damage and conductivity.

  18. Hair Shaft Damage from Heat and Drying Time of Hair Dryer

    Science.gov (United States)

    Lee, Yoonhee; Kim, Youn-Duk; Hyun, Hye-Jin; Pi, Long-quan; Jin, Xinghai

    2011-01-01

    Background Hair dryers are commonly used and can cause hair damage such as roughness, dryness and loss of hair color. It is important to understand the best way to dry hair without causing damage. Objective The study assessed changes in the ultra-structure, morphology, moisture content, and color of hair after repeated shampooing and drying with a hair dryer at a range of temperatures. Methods A standardized drying time was used to completely dry each hair tress, and each tress was treated a total of 30 times. Air flow was set on the hair dryer. The tresses were divided into the following five test groups: (a) no treatment, (b) drying without using a hair dryer (room temperature, 20℃), (c) drying with a hair dryer for 60 seconds at a distance of 15 cm (47℃), (d) drying with a hair dryer for 30 seconds at a distance of 10 cm (61℃), (e) drying with a hair dryer for 15 seconds at a distance of 5 cm (95℃). Scanning and transmission electron microscopy (TEM) and lipid TEM were performed. Water content was analyzed by a halogen moisture analyzer and hair color was measured with a spectrophotometer. Results Hair surfaces tended to become more damaged as the temperature increased. No cortex damage was ever noted, suggesting that the surface of hair might play a role as a barrier to prevent cortex damage. Cell membrane complex was damaged only in the naturally dried group without hair dryer. Moisture content decreased in all treated groups compared to the untreated control group. However, the differences in moisture content among the groups were not statistically significant. Drying under the ambient and 95℃ conditions appeared to change hair color, especially into lightness, after just 10 treatments. Conclusion Although using a hair dryer causes more surface damage than natural drying, using a hair dryer at a distance of 15 cm with continuous motion causes less damage than drying hair naturally. PMID:22148012

  19. Damage prediction of carbon fibre composite armoured actively cooled plasma-facing components under cycling heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G; Schlosser, J; Courtois, X; Escourbiac, F; Missirlian, M [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Herb, V; Martin, E; Camus, G [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Pessac (France); Braccini, M [SIMaP, CNRS UMR 5266, Grenoble (France)], E-mail: gaelle.chevet@cea.fr

    2009-12-15

    In order to predict the lifetime of carbon fibre composite (CFC) armoured plasma-facing components in magnetic fusion devices, it is necessary to analyse the damage mechanisms and to model the damage propagation under cycling heat loads. At Tore Supra studies have been launched to better understand the damage process of the armoured flat tile elements of the actively cooled toroidal pump limiter, leading to the characterization of the damageable mechanical behaviour of the used N11 CFC material and of the CFC/Cu bond. Up until now the calculations have shown damage developing in the CFC (within the zone submitted to high shear stress) and in the bond (from the free edge of the CFC/Cu interface). Damage is due to manufacturing shear stresses and does not evolve under heat due to stress relaxation. For the ITER divertor, NB31 material has been characterized and the characterization of NB41 is in progress. Finite element calculations show again the development of CFC damage in the high shear stress zones after manufacturing. Stresses also decrease under heat flux so the damage does not evolve. The characterization of the CFC/Cu bond is more complex due to the monoblock geometry, which leads to more scattered stresses. These calculations allow the fabrication difficulties to be better understood and will help to analyse future high heat flux tests on various mock-ups.

  20. Noninvasive diagnosis of intrathoracic splenosis using technetium-99m heat-damaged red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, R.G.; Leonidas, J.; Shende, A.; Lanzkowski, P.

    1987-10-01

    Intrathoracic splenosis results from the implantation of splenic tissue in the thoracic cavity following simultaneous rupture of the spleen and diaphragm. These implants may form mass lesions that lead to an extensive, costly, and invasive series of investigations, usually resulting in unnecessary surgery. The key to diagnosis is a high index of suspicion provoked by the history of a traumatic event, possibly in the distant past. This report emphasizes that because of its ability to demonstrate the functional nature of tissue, a definitive diagnosis can be made using heat-damaged Tc-99m RBCs without the need for surgical intervention.

  1. Online performance assessment of heat exchanger using artificial neural networks

    Directory of Open Access Journals (Sweden)

    C. Ahilan, S. Kumanan, N. Sivakumaran

    2011-09-01

    Full Text Available Heat exchanger is a device in which heat is transferred from one medium to another across a solid surface. The performance of heat exchanger deteriorates with time due to fouling on the heat transfer surface. It is necessary to assess periodically the heat exchanger performance, in order to maintain at high efficiency level. Industries follow adopted practices to monitor but it is limited to some degree. Online monitoring has an advantage to understand and improve the heat exchanger performance. In this paper, online performance monitoring system for shell and tube heat exchanger is developed using artificial neural networks (ANNs. Experiments are conducted based on full factorial design of experiments to develop a model using the parameters such as temperatures and flow rates. ANN model for overall heat transfer coefficient of a design/ clean heat exchanger system is developed using a feed forward back propagation neural network and trained. The developed model is validated and tested by comparing the results with the experimental results. This model is used to assess the performance of heat exchanger with the real/fouled system. The performance degradation is expressed using fouling factor (FF, which is derived from the overall heat transfer coefficient of design system and real system. It supports the system to improve the performance by asset utilization, energy efficient and cost reduction interms of production loss.

  2. A new method to assess damage to RCMRFs from period elongation and Park-Ang damage index using IDA

    Science.gov (United States)

    Aghagholizadeh, Mehrdad; Massumi, Ali

    2016-09-01

    Despite a significant progress in loading and design codes of seismic resistant structures and technology improvements in building structures, the field of civil engineering is still facing critical challenges. An example of those challenges is the assessment of the state of damage that has been imposed to a structure after earthquakes of different intensities. To determine the operability of a structure and its resistance to probable future earthquakes, quick assessment of damages and determining the operability of a structure after an earthquake are crucial. Present methods to calculate damage to structures are time consuming and do not accurately provide the rate of damage. Damage estimation is important task in the fields of structural health monitoring and decision-making. This study examines the relationship between period elongation and the Park-Ang damage index. A dynamic non-linear analysis is employed with IDARC program to calculate the amount of damage and period of the current state. This new method is shown to be a quick and accurate technique for damage assessment. It is easy to calculate the period of an existing structure and changes in the period which reflects changes in the stiffness matrix.

  3. Damage Stability Assessment of an HSC after Grounding

    DEFF Research Database (Denmark)

    Ravn, Erik Sonne; Simonsen, Bo Cerup; Baatrup, Jan;

    2000-01-01

    Currently a substantial effort is done within the International Maritime Organisation (IMO) on revision of the High Speed Craft (HSC) Code. A main issue is the extent of bottom damage and raking damage due to grounding on hard rocks and the corresponding requirements to the damage stability...... of the vessel. It has been found that high-speed craft can experience a damage length up to 100% of the ship length. It has, however, also been argued that the damage stability requirements should reflect the size and probability of the damage with a reduction of the demand for the largest damages.......In the present paper a detailed grounding and damage stability analysis is carried out for two specific HSC, a mono-hull (86 m) and a catamaran (69 m). First various grounding scenarios are considered with different values of the forward speed and ground geometry. The results indicate that 100% bottom damage...

  4. Health impact and damage cost assessment of pesticides in Europe.

    Science.gov (United States)

    Fantke, Peter; Friedrich, Rainer; Jolliet, Olivier

    2012-11-15

    Health impacts from pesticide use are of continuous concern in the European population, requiring a constant evaluation of European pesticide policy. However, health impacts have never been quantified accounting for specific crops contributing differently to overall human exposure as well as accounting for individual substances showing distinct environmental behavior and toxicity. We quantify health impacts and related damage costs from exposure to 133 pesticides applied in 24 European countries in 2003 adding up to almost 50% of the total pesticide mass applied in that year. Only 13 substances applied to 3 crop classes (grapes/vines, fruit trees, vegetables) contribute to 90% of the overall health impacts of about 2000 disability-adjusted life years in Europe per year corresponding to annual damage costs of 78 million Euro. Considering uncertainties along the full impact pathway mainly attributable to non-cancer dose-response relationships and residues in treated crops, we obtain an average burden of lifetime lost per person of 2.6 hours (95% confidence interval between 22 seconds and 45.3 days) or costs per person over lifetime of 12 Euro (95% confidence interval between 0.03 Euro and 5142 Euro), respectively. 33 of the 133 assessed substances accounting for 20% of health impacts in 2003 are now banned from the European market according to current legislation. The main limitation in assessing human health impacts from pesticides is related to the lack of systematic application data for all used substances. Since health impacts can be substantially influenced by the choice of pesticides, the need for more information about substance application becomes evident. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Chronic hypertension aggravates heat stress-induced brain damage: possible neuroprotection by cerebrolysin.

    Science.gov (United States)

    Muresanu, Dafin Fior; Zimmermann-Meinzingen, Sibilla; Sharma, Hari Shanker

    2010-01-01

    Whole body hyperthermia (WBH) aggravates brain edema formation and cell damage in chronic hypertensive rats compared with normotensive animals. In this investigation, we examined the influence of cerebrolysin on WBH-induced edema formation and brain pathology in hypertensive and normotensive rats. Rats subjected to 4 h WBH at 38 degrees C in a biological oxygen demand (BOD) incubator showed breakdown of the blood-brain barrier (BBB), reduced cerebral blood flow (CBF), edema formation and cell injuries in several parts of the brain. These effects were further aggravated in chronic hypertensive rats (two-kidney one clip model (2K1C), for 4 weeks) subjected to WBH. Pretreatment with cerebrolysin (5 mL/kg, 24 h and 30 min before heat stress) markedly attenuated the BBB dysfunction and brain pathology in normal animals. However, in hypertensive animals, a high dose of cerebrolysin (10 mL/kg, 24 h and 30 min before heat stress) was needed to attenuate WBH-induced BBB dysfunction and brain pathology. These observations indicate that heat stress could affect differently in normal and hypertensive conditions. Furthermore, our results suggest that patients suffering from various chronic cardiovascular diseases may respond differently to hyperthermia and to neuroprotective drugs, e.g., cerebrolysin not reported earlier.

  6. Social Media as Seismic Networks for the Earthquake Damage Assessment

    Science.gov (United States)

    Meletti, C.; Cresci, S.; La Polla, M. N.; Marchetti, A.; Tesconi, M.

    2014-12-01

    The growing popularity of online platforms, based on user-generated content, is gradually creating a digital world that mirrors the physical world. In the paradigm of crowdsensing, the crowd becomes a distributed network of sensors that allows us to understand real life events at a quasi-real-time rate. The SoS-Social Sensing project [http://socialsensing.it/] exploits the opportunistic crowdsensing, involving users in the sensing process in a minimal way, for social media emergency management purposes in order to obtain a very fast, but still reliable, detection of emergency dimension to face. First of all we designed and implemented a decision support system for the detection and the damage assessment of earthquakes. Our system exploits the messages shared in real-time on Twitter. In the detection phase, data mining and natural language processing techniques are firstly adopted to select meaningful and comprehensive sets of tweets. Then we applied a burst detection algorithm in order to promptly identify outbreaking seismic events. Using georeferenced tweets and reported locality names, a rough epicentral determination is also possible. The results, compared to Italian INGV official reports, show that the system is able to detect, within seconds, events of a magnitude in the region of 3.5 with a precision of 75% and a recall of 81,82%. We then focused our attention on damage assessment phase. We investigated the possibility to exploit social media data to estimate earthquake intensity. We designed a set of predictive linear models and evaluated their ability to map the intensity of worldwide earthquakes. The models build on a dataset of almost 5 million tweets exploited to compute our earthquake features, and more than 7,000 globally distributed earthquakes data, acquired in a semi-automatic way from USGS, serving as ground truth. We extracted 45 distinct features falling into four categories: profile, tweet, time and linguistic. We run diagnostic tests and

  7. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  8. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G. A.; Lydell, B.; Doctor, Steven R.

    2005-07-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp® database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  9. Propofol alleviate oxidative stress and mitochondrial damage in endothelial cells after heat stress

    Directory of Open Access Journals (Sweden)

    Li LI

    2017-08-01

    Full Text Available Objective To explore the protective effect of propofol on endothelial cells during heat stress and its protective effect to mitochondra. Methods Heat stress model of human umbilical vein endothelial cell was established when cells were incubated at 43℃ for 2h, then further incubted at 37℃, 5%CO2 for 6h. The experimental group was subdivided into six groups, including 37℃ group, 37℃ plus intralipid group (negative control group, 37℃ plus propofol group, 43℃ plus propofol group, 43℃ plus intralipid group, H2O2 plus propofol group (positive control group; Pretreated with 50μmol/L propofol, 0.2ml intralipid or 25μmol/L H2O2 before heat stress at 43℃, while the cells in the control group were incubated at 37℃. Cell viability was tested by CCK-8. ROS, mitochondrial membrane potential and the changes in mitochondrial permeability transition pore were determined by flow cytometry. The level of ATP was detected by fluorescein-luciferase. The changes of caspase-9 and caspase-3 were analyzed by Caspase Activity Assay Kit. Results HUVESs cell viability and damage of mitochondra were significantly decreased after heat stress. Compared with 43℃ heat stress group, pretreatment with propofol induced the recovery of cell viability and the ROS levels were significantly decreased in HUVEC cells (P<0.05. Meanwhile, the number of cells representing the decrease of mitochondrial membrane potential (the proportion of JC-1 monomer was significantly decreased (P<0.05 by propofol. The average fluorescence intensity of calcein which representing the MPTP changes and intracellular ATP content was significantly increased (P<0.05. In addition, the activation of mitochondrial apoptotic pathway mediated by caspase-9/3 was also inhibited. Conclusions Propofol have anti-oxidative, anti-apoptosis and mitochondria protective effect against endothelial cell injury during heat stress. DOI: 10.11855/j.issn.0577-7402.2017.06.04

  10. Geophysical models of heat and fluid flow in damageable poro-elastic continua

    Science.gov (United States)

    Roubíček, Tomáš

    2017-03-01

    A rather general model for fluid and heat transport in poro-elastic continua undergoing possibly also plastic-like deformation and damage is developed with the goal to cover various specific models of rock rheology used in geophysics of Earth's crust. Nonconvex free energy at small elastic strains, gradient theories (in particular the concept of second-grade nonsimple continua), and Biot poro-elastic model are employed, together with possible large displacement due to large plastic-like strains evolving during long time periods. Also the additive splitting is justified in stratified situations which are of interest in modelling of lithospheric crust faults. Thermodynamically based formulation includes entropy balance (in particular the Clausius-Duhem inequality) and an explicit global energy balance. It is further outlined that the energy balance can be used to ensure, under suitable data qualification, existence of a weak solution and stability and convergence of suitable approximation schemes at least in some particular situations.

  11. Geophysical models of heat and fluid flow in damageable poro-elastic continua

    Science.gov (United States)

    Roubíček, Tomáš

    2017-01-01

    A rather general model for fluid and heat transport in poro-elastic continua undergoing possibly also plastic-like deformation and damage is developed with the goal to cover various specific models of rock rheology used in geophysics of Earth's crust. Nonconvex free energy at small elastic strains, gradient theories (in particular the concept of second-grade nonsimple continua), and Biot poro-elastic model are employed, together with possible large displacement due to large plastic-like strains evolving during long time periods. Also the additive splitting is justified in stratified situations which are of interest in modelling of lithospheric crust faults. Thermodynamically based formulation includes entropy balance (in particular the Clausius-Duhem inequality) and an explicit global energy balance. It is further outlined that the energy balance can be used to ensure, under suitable data qualification, existence of a weak solution and stability and convergence of suitable approximation schemes at least in some particular situations.

  12. Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island

    Directory of Open Access Journals (Sweden)

    Weihua Dong

    2014-10-01

    Full Text Available This research is motivated by the increasing threat of urban heat waves that are likely worsened by pervasive global warming and urbanization. Different regions of the city including urban, borderland and rural area will experience different levels of heat health risk. In this paper, we propose an improved approach to quantitatively assess Beijing’s heat health risk based on three factors from hazard, vulnerability and especially environment which is considered as an independent factor because different land use/cover types have different influence on ambient air temperatures under the Urban Heat Island effect. The results show that the heat health risk of Beijing demonstrates a spatial-temporal pattern with higher risk in the urban area, lower risk in the borderland between urban and rural area, and lowest risk in the rural area, and the total risk fluctuated dramatically during 2008–2011. To be more specific, the heat health risk was clearly higher in 2009 and 2010 than in 2008 and 2011. Further analysis with the urban area at sub-district level signifies that the impervious surface (urban area such as buildings, roads, et al. ratio is of high correlation with the heat health risk. The validation results show that the proposed method improved the accuracy of heat health risk assessment. We recommend that policy makers should develop efficient urban planning to accomplish Beijing’s sustainable development.

  13. Damage assessment of laminated composite beam structures using damage locating vector (DLV) method

    Institute of Scientific and Technical Information of China (English)

    T. VO-DUY[1,3; N. NGUYEN-MINH[1,3; H. DANG-TRUNG[1,3; A. TRAN-VIET[2,3; T. NGUYEN-THOI[1,3

    2015-01-01

    In this paper, the damage locating vector employed to locate multiple damage sites in laminated (DLV) method using normalized cumulative energy (nce) is composite beam structures. Numerical simulations of two laminated composite beams are employed to investigate several damage scenarios in which the degradation of elements is modeled by the reduction in the longitudinal Young's modulus and transverse Young's modulus of beam layers. The results show that the DLV method gives good performance for this kind of structure.

  14. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  15. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Science.gov (United States)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  16. Genotoxicity of refinery waste assessed by some DNA damage tests.

    Science.gov (United States)

    Gupta, Amit Kumar; Ahmad, Irshad; Ahmad, Masood

    2015-04-01

    Refinery waste effluent is well known to contain polycyclic aromatic hydrocarbons, phenols and heavy metals as potentially genotoxic substances. The aim of the present study was to assess the genotoxic potential of Mathura refinery wastewater (MRWW) by various in vitro tests including the single cell gel electrophoresis, plasmid nicking assay and S1 nuclease assay. Treatment of human lymphocytes to different MRWW concentrations (0.15×, 0.3×, 0.5× and 0.78×) caused the formation of comets of which the mean tail lengths increased proportionately and differed significantly from those of unexposed controls. The toxic effect of MRWW on DNA was also studied by plasmid nicking assay and S1 nuclease assay. Strand breaks formation in the MRWW treated pBR322 plasmid confirmed its genotoxic effect. Moreover, a dose dependent increase in cleavage of calf thymus DNA in S1 nuclease assay was also suggestive of the DNA damaging potential of MRWW. A higher level of ROS generation in the test water sample was recorded which might be contributing to its genotoxicity. Interaction between the constituents of MRWW and calf thymus DNA was also ascertained by UV-visible spectroscopy.

  17. Assessment of seismic damage of multistory structures using fragility curves

    Directory of Open Access Journals (Sweden)

    Yasser E. Ibrahim

    2016-01-01

    Full Text Available Performance-based design, PBD, is gaining popularity and its concept hasbeen applied in many international seismic building codes. In this research, five real structures designed according to the Egyptian Building Code, which does not consider PBD, are considered and modeled in a three dimensional way using the software SeismoStruct in order to assess their performance under expected earthquakes. The structures are 2-story, 4- story, 6-story, 8-story and 10-story reinforced concrete framed structures. The structural system of these structures is of the moment-resisting frame type, with and without shear walls. The structures weredesigned under dead, live and seismic forces of “Zone 3” with a design acceleration of 0.15g.The models were analyzed using incremental dynamic analysis, IDA, considering 12 real records of historical earthquakes. IDA curves were developed for all analyzed models, considering four damage states. Fragility curves were subsequently developed to provide an overview of the expected seismic performance of a typical low or mid-rise multistory reinforced concrete framed structure in Egypt as designed in accordance with thecurrent Egyptian Building Code.

  18. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    Science.gov (United States)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao

    2017-02-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  19. [Effect of aggregate state, tonicity, and level of nutrients in media on recovery of Escherichia coli bacteria from heat damage].

    Science.gov (United States)

    Morozov, I I

    1996-01-01

    The influence of aggregate condition, nutrient composition and tonicity of incubation medium on recovery from damages induced by heat at 52 degrees C Escherichia coli B/r and Escherichia coli BS-1 cells was studied. The cells were shown to be recovered from heat damages only in liquid and isotonic medium. The observed increase in a number of viable organisms was not greatly depended on source of energy, plastic material and macroelements of incubation medium. The recovered cells showed increase of osmotic tolerance to hyper- and hypotonic shock similar to intact cells. No increase in survivors was observed when heated cells were incubated on solid and/or anisotonic medium. The additional cell killing and high osmosensitivity may be seen in this case. The role of the system of osmotic homeostasis, including membrane state, in the modification of cell viability and osmoresistance of heated bacterial cells was discussed on the base of the data obtained.

  20. Assessment of Real Heat Transfer Coefficients through Shell and Tube and Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Dan CONSTANTINESCU

    2011-07-01

    Full Text Available The purpose of this paper is to present a procedure used in the assessment of the real heat transfer characteristic of shell and tube and plate heat exchangers. The theoretical fundamentals of the procedure are introduced as well as the measured data collection and processing. The theoretical analysis is focused on the adoption of criterial equations which, subjected to certain verification criteria presented in the paper, provide the most credible value of the convection heat transfer coefficients inside the circular and flat tubes. In the end two case studies are presented, one concerning a shell and tube heat exchanger operational at INCERC Thermal Substation and the other concerning a plate heat exchanger tested on the Laboratory Stand of the Department of Building Services and Efficient Use of Energy in Buildings of INCERC Bucharest.

  1. Damage assessment of the equine sperm membranes by fluorimetric technique

    Directory of Open Access Journals (Sweden)

    Eneiva Carla Carvalho Celeghini

    2010-12-01

    Full Text Available To validate a practical technique of simultaneous evaluation of the plasma, acrosomal and mitochondrial membranes in equine spermatozoa three fluorescent probes (PI, FITC-PSA and MITO were associated. Four ejaculates from three stallions (n=12 were diluted in TALP medium and split into 2 aliquots, 1 aliquot was flash frozen in liquid nitrogen to induce damage in cellular membranes. Three treatments were prepared with the following fixed ratios of fresh semen: flash frozen semen: 100:0 (T100, 50:50 (T50, and 0:100 (T0. A 150-µL aliquot of diluted semen of each treatment was added of 2 µL of PI, 2 µL of MITO and 80 µL of FITC-PSA; incubated at 38.5ºC/8 min, and sperm cells were evaluated by epifluorescent microscopy. Based in regression analysis, this could be an efficient and practical technique to assess damage in equine spermatozoa, as it was able to determine the sperm percentage more representative of the potential to fertilize the oocyte.Para validar uma técnica prática de avaliação simultânea das membranas plasmática, acrossomal e mitocondrial em espermatozóides eqüinos três sondas fluorescentes (PI, FITC-PSA e MITO foram associadas. Quatro ejaculados de três garanhões (n=12 foram diluídos em meio TALP e divididos em duas alíquotas, uma alíquota foi submetida a flash frozen em nitrogênio líquido para induzir danos nas membranas celulares. Três tratamentos foram preparados com as seguintes proporções de sêmen fresco: sêmen flash frozen: 100:0 (T100, 50:50 (T50, e 0:100 (T0. Uma amostra de 150 µL de sêmen diluído de cada tratamento foi adicionada de 2 µL de PI, 2 µL de MITO e 80 µL de FITC-PSA; incubadas à 38,5ºC/8 min, e as células espermáticas foram avaliadas por microscopia de epifluorescência. Baseados na análise de regressão esta é uma técnica eficiente e prática para determinar danos em espermatozóides eqüinos, capaz de determinar a porcentagem de espermatozóides mais representativa do

  2. Structural integrity assessment by using finite element analysis based on damage mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang Sik; Kim, Nak Hyun; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of)

    2009-07-01

    This paper introduces structural integrity assessment by using Finite Element analysis based on damage mechanics. Several FE damage methods as like GTN model have been proposed up to the present. These damage models have their own advantages and disadvantages. It is important to select the proper damage model for the integrity assessment of the structure in interest. In this paper, selected several damage models are apply to simulate fracture behaviours of structures with various geometries, and the FE results are compared with the experimental results. These models are implemented to general purpose FE program, ABAQUS, via user-defined subroutines.

  3. Assessing the heat tolerance of 17 beef cattle genotypes

    Science.gov (United States)

    Gaughan, J. B.; Mader, T. L.; Holt, S. M.; Sullivan, M. L.; Hahn, G. L.

    2010-11-01

    Cattle production plays a significant role in terms of world food production. Nearly 82% of the world's 1.2 billion cattle can be found in developing countries. An increasing demand for meat in developing countries has seen an increase in intensification of animal industries, and a move to cross-bred animals. Heat tolerance is considered to be one of the most important adaptive aspects for cattle, and the lack of thermally-tolerant breeds is a major constraint on cattle production in many countries. There is a need to not only identify heat tolerant breeds, but also heat tolerant animals within a non-tolerant breed. Identification of heat tolerant animals is not easy under field conditions. In this study, panting score (0 to 4.5 scale where 0 = no stress and 4.5 = extreme stress) and the heat load index (HLI) [HLIBG 25°C = 8.62 + 0.38 × rh + 1.55 × BG - 0.5 × WS + e(2.4 - WS), where BG = black globe temperature (oC), rh = relative humidity (decimal form), WS = wind speed (m/s) and e is the base of the natural logarithm] were used to assess the heat tolerance of 17 genotypes (12,757 steers) within 13 Australian feedlots over three summers. The cattle were assessed under natural climatic conditions in which HLI ranged from thermonuetral (HLI 96; black globe temperature = 40.2°C, relative humidity = 64%, wind speed = 1.58 m/s). When HLI > 96 a greater number ( P cattle had a panting score ≥ 2 compared to Brahman cattle, and Brahman-cross cattle. The heat tolerance of the assessed breeds was verified using panting scores and the HLI. Heat tolerance of cattle can be assessed under field conditions by using panting score and HLI.

  4. Down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

    Science.gov (United States)

    Chen, Kun-Lin; Fu, Yuan-Yuan; Shi, Min-Yan; Li, Hui-Xia

    2016-09-01

    Heat stress can weaken the immune system and even increase livestock's susceptibility to disease. MicroRNA (miR) is short non-coding RNA that functions in post-transcriptional regulation of gene expression and some phenotypes. Our recent study found that miR-181a is highly expressed in the serum of heat-stressed Holstein cows, but the potential function of miR-181a is still not clarified. In this study, peripheral blood mononuclear cells (PBMCs), isolated from Holstein cows' peripheral blood, were used to investigate the effects of miR-181a inhibitor on heat stress damage. Our results showed that significant apoptosis and oxidative damage were induced by heat stress in PBMCs. However, with apoptosis, the levels of reactive oxygen species (ROS) and content of malondialdehyde (MDA) were reduced, while the content of glutathione (GSH) and the activity of superoxide dismutase (SOD) were increased even under heat stress conditions after transfecting miR-181a inhibitors to PBMCs. Meanwhile, mRNA expression of bax and caspase-3 was significantly decreased, but mRNA expression of bcl-2 was increased in transfected PBMCs. In conclusion, our results demonstrated that down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

  5. Application of Numerical Simulation and Vibration Measurements for Seismic Damage Assessment of Railway Structures

    Science.gov (United States)

    Uehan, Fumiaki; Meguro, Kimiro

    In this study, the authors discuss methods to assess the future/actual damage to RC structures by using numerical simulations and vibration measurements. First, the applicability of the Applied Element Method (AEM) is examined as an assessment tool for the seismic performance of RC structures with/without retrofit. Cyclic loading tests and seismic response of RC structures are simulated. Next, a method to improve the accuracy of vibration diagnoses of earthquake damaged RC structures is discussed by using damage assessment criteria calculated with the AEM. The AEM could simulate the damage behavior of RC columns, jacketed RC columns and an actual railway viaduct. The change of natural frequencies due to damage to RC columns and an actual railway viaduct with steel jacket were also correctly estimated. Seismic performance check of structures and development of assessment criteria for damage inspection can be effectively done by the AEM.

  6. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  7. In vitro evaluation of aspirin-induced HspB1 against heat stress damage in chicken myocardial cells.

    Science.gov (United States)

    Wu, Di; Zhang, Miao; Xu, Jiao; Song, Erbao; Lv, Yinjun; Tang, Shu; Zhang, Xiaohui; Kemper, N; Hartung, J; Bao, Endong

    2016-05-01

    To understand the potential association of heat stress resistance with HspB1 induction by aspirin (ASA) in chicken myocardial cells, variations of HspB1 expression and heat stressed-induced damage of myocardial cells after ASA administration were studied in primary cultured myocardial cells. Cytopathological lesions as well as damage-related enzymes, such as creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), indicated the considerable protective ability of ASA pre-treatment against acute heat stress. Immunostaining assays showed that heat stress caused HspB1 to relocate into the nucleus, while ASA did not. ELISA analysis, revealed that HspB1 expression induced by ASA averaged 45.62-fold higher than that of the control. These results indicated that the acute heat-stressed injuries were accompanied by comparatively lower HspB1 expression caused by heat stress in vitro. ASA pre-treatment induced a level of HspB1 presumed to be sufficient to protect myocardial cells from acute heat stress in the extracorporal model, although more detailed mechanisms will require further investigation.

  8. A Robust and Automated Hyperspectral Damage Assessment System Under Varying Illumination Conditions and Viewing Geometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Some target signatures of interest in drought monitoring, flooding assessment, fire damage assessment, coastal changes, urban changes, etc. may need to be tracked...

  9. Life cycle assessment of base-load heat sources for district heating system options

    Energy Technology Data Exchange (ETDEWEB)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these

  10. 76 FR 63628 - Preliminary Damage Assessment for Individual Assistance Operations Manual (9327.2-PR)

    Science.gov (United States)

    2011-10-13

    ... [Docket ID FEMA-2011-0022] Preliminary Damage Assessment for Individual Assistance Operations Manual (9327... Preliminary Damage Assessment for Individual Assistance Operations Manual (9327.2-PR). DATES: Comments must be... . Follow the instructions for submitting comments. Please note that this proposed manual is not...

  11. Real-Time Structural Damage Assessment Using Artificial Neural Networks and Antiresonant Frequencies

    Directory of Open Access Journals (Sweden)

    V. Meruane

    2014-01-01

    Full Text Available The main problem in damage assessment is the determination of how to ascertain the presence, location, and severity of structural damage given the structure's dynamic characteristics. The most successful applications of vibration-based damage assessment are model updating methods based on global optimization algorithms. However, these algorithms run quite slowly, and the damage assessment process is achieved via a costly and time-consuming inverse process, which presents an obstacle for real-time health monitoring applications. Artificial neural networks (ANN have recently been introduced as an alternative to model updating methods. Once a neural network has been properly trained, it can potentially detect, locate, and quantify structural damage in a short period of time and can therefore be applied for real-time damage assessment. The primary contribution of this research is the development of a real-time damage assessment algorithm using ANN and antiresonant frequencies. Antiresonant frequencies can be identified more easily and more accurately than mode shapes, and they provide the same information. This research addresses the setup of the neural network parameters and provides guidelines for the selection of these parameters in similar damage assessment problems. Two experimental cases validate this approach: an 8-DOF mass-spring system and a beam with multiple damage scenarios.

  12. Assessment of the potential for catheter heating during MR imaging

    Science.gov (United States)

    Baek, Bryant; Saloner, David; Acevedo-Bolton, Gabriel; Higashida, Randall; Comstock, John; Martin, Alastair

    2008-03-01

    There is an increasing interest in using MR imaging as a means of guiding endovascular procedures due to MR's unparalleled soft tissue characterization capabilities and its ability to assess functional parameters such as blood flow and tissue perfusion. In order to evaluate the potential safety risk of catheter heating, we performed in vitro testing where we measured heat deposition in sample non-ferrous 5F catheters ranging in length from 80cm - 110cm within a gel phantom. To identify the conditions for maximum heat deposition adjacent to catheters, we measured (1) the effect of variable immersed lengths, (2) the effect of variable SAR, and (3) whether heating varied along the catheter shaft. Net temperature rise per scan and initial rate of temperature rise were determined for all configurations. The temperature recordings clearly and consistently demonstrated the correlations between MR scanning under the three variable conditions and heat deposition. Our overall maximum heating condition, which combined the maximum heating conditions of all three variables, was modest (<2°C/min), but well above the temperature response of the gel well away from the catheter. Reduced SAR acquisitions effectively limited these temperature rises, and RF exposure levels of 0.2W/kg produced little detectible temperature change over the 2 minute MR acquisitions studied here. A combination of SAR limits and imaging duty cycle restrictions appear to be sufficient to permit MR imaging in catheterized patients without concern for thermal injury.

  13. Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein.

    Science.gov (United States)

    An, Bang; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2012-08-01

    In this article, we investigated the effect of exogenous calcium on improving viability of Debaryomyces hansenii and Pichia membranaefaciens under heat stress, and evaluated the role of calcium in reducing oxidant damage of proteins in the yeast cells. The results indicated that high concentration of exogenous calcium in culture medium was beneficial for enhancing the tolerance of the biocontrol yeasts to heat stress. The possible mechanism of calcium improving the viability of yeasts was attributed to enhancement of antioxidant enzyme activities, decrease in ROS accumulation and reduction of oxidative damage of intracellular protein in yeast cells under heat stress. D. hansenii is more sensitive to calcium as compared to P. membranaefaciens. Our results suggest that application of exogenous calcium combined with biocontrol yeasts is a practical approach for the control of postharvest disease in fruit.

  14. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Directory of Open Access Journals (Sweden)

    S. W. Myint

    2008-07-01

    Full Text Available Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services and hazards (e.g., downed power lines, gas lines, etc., the need for rapid mobilization (particularly for remote locations, and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale. Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  15. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S. W.; Yuan, M.; Cerveny, R. S.; Giri, C.

    2008-07-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  16. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  17. [A Method Research on Environmental Damage Assessment of a Truck Rollover Pollution Incident].

    Science.gov (United States)

    Cai, Feng; Zhao, Shi-ho; Chen, Gang-cai; Xian, Si-shu; Yang, Qing-ling; Zhou, Xian-jie; Yu, Hai

    2015-05-01

    With high occurrence of sudden water pollution incident, China faces an increasingly severe situation of water environment. In order to deter the acts of environmental pollution, ensure the damaged resources of environment can be restored and compensated, it is very critical to quantify the economic losses caused by the sudden water pollution incident. This paper took truck rollover pollution incidents in Chongqing for an example, established a set of evaluation method for quantifying the environmental damage, and then assessed the environmental damage by the method from four aspects, including the property damage, ecological environment and resources damages, the costs of administrative affairs in emergency disposal, and the costs of investigation and evaluation.

  18. Investigation of damages induced by ITER-relevant heat loads during massive gas injections on Beryllium

    Directory of Open Access Journals (Sweden)

    B. Spilker

    2016-12-01

    Full Text Available Massive gas injections (MGIs will be used in ITER to mitigate the strong damaging effect of full performance plasma disruptions on the plasma facing components. The MGI method transforms the stored plasma energy to radiation that is spread across the vacuum vessel with poloidal and toroidal asymmetries. This work investigated the impact of MGI like heat loading on the first wall armor material beryllium. ITER-relevant power densities of 90-260MWm−2in combination with pulse durations of 5-10ms were exerted onto the S-65 grade beryllium specimens in the electron beam facility JUDITH 1. All tested loading conditions led to noticeable surface morphology changes and in the expected worst case scenario, a crater with thermally induced cracks with a depth of up to ∼340µm formed in the loaded area. The level of destruction in the loaded area was strongly dependent on the pulse number but also on the formation of beryllium oxide. The cyclic melting of beryllium could lead to an armor thinning mechanism under the presence of melt motion driving forces such as surface tension, magnetic forces, and plasma pressure.

  19. Nondestructive Damage Assessment of Composite Structures Based on Wavelet Analysis of Modal Curvatures: State-of-the-Art Review and Description of Wavelet-Based Damage Assessment Benchmark

    Directory of Open Access Journals (Sweden)

    Andrzej Katunin

    2015-01-01

    Full Text Available The application of composite structures as elements of machines and vehicles working under various operational conditions causes degradation and occurrence of damage. Considering that composites are often used for responsible elements, for example, parts of aircrafts and other vehicles, it is extremely important to maintain them properly and detect, localize, and identify the damage occurring during their operation in possible early stage of its development. From a great variety of nondestructive testing methods developed to date, the vibration-based methods seem to be ones of the least expensive and simultaneously effective with appropriate processing of measurement data. Over the last decades a great popularity of vibration-based structural testing has been gained by wavelet analysis due to its high sensitivity to a damage. This paper presents an overview of results of numerous researchers working in the area of vibration-based damage assessment supported by the wavelet analysis and the detailed description of the Wavelet-based Structural Damage Assessment (WavStructDamAs Benchmark, which summarizes the author’s 5-year research in this area. The benchmark covers example problems of damage identification in various composite structures with various damage types using numerous wavelet transforms and supporting tools. The benchmark is openly available and allows performing the analysis on the example problems as well as on its own problems using available analysis tools.

  20. Bayesian probabilistic modeling for damage assessment in a bolted frame

    Science.gov (United States)

    Haynes, Colin; Todd, Michael

    2012-04-01

    This paper presents the development of a Bayesian framework for optimizing the design of a structural health monitoring (SHM) system. Statistical damage detection techniques are applied to a geometrically-complex, three-story structure with bolted joints. A sparse network of PZT sensor-actuators is bonded to the structure, using ultrasonic guided waves in both pulse-echo and pitch-catch modes to inspect the structure. Receiver operating characteristics are used to quantify the performance of multiple features (or detectors). The detection rate of the system is compared across different types and levels of damage. A Bayesian cost model is implemented to determine the best performing network.

  1. Studying the effects of the heat stress on the various layers of human skin using damage function

    Science.gov (United States)

    Aijaz, Mir; Khanday, M. A.

    2016-03-01

    This paper develops a model to identify the effects of thermal stress on temperature distribution and damage in human dermal regions. The design and selection of the model takes into account many factors effecting the temperature distribution of skin, e.g., thermal conductance, perfusion, metabolic heat generation and thermal protective capabilities of the skin. The transient temperature distribution within the region is simulated using a two-dimensional finite element model of the Pennes’ bioheat equation. The relationship between temperature and time is integrated to view the damage caused to human skin by using Henriques’ model Henriques, F. C., Arch. Pathol. 43 (1947) 489-502]. The Henriques’ damage model is found to be more desirable for use in predicting the threshold of thermal damage. This work can be helpful in both emergency medicines as well as to plastic surgeon in deciding upon a course of action for the treatment of different burn injuries.

  2. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens.

    Science.gov (United States)

    Santos, Regiane R; Awati, Ajay; Roubos-van den Hil, Petra J; Tersteeg-Zijderveld, Monique H G; Koolmees, Peter A; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the current research was to present a methodological approach allowing reproducible morphometric and morphological (Chiu/Park scale) analyses of the alterations in the intestines of broilers exposed to heat stress. Ross broilers were exposed over four consecutive days to a high-temperature regime in controlled climate rooms, with a day temperature of 39°C (±1°C) and a night temperature of 25°C (±1°C), respectively. A control group was kept at an ambient temperature of 25°C (±1°C) during the entire experimental period. At the end of the exposure period, the birds were sacrificed and specimens were taken of the duodenum, jejunum and ileum for histology. Blood was collected for oxidative stress analysis. Histo-morphological and morphometric analyses of the intestines indicated that the duodenum and jejunum showed more damage than the ileum. The major alterations in the control intestines were limited to the villus tips, while heat stress led to villus denudation and crypt damage. When compared with morphologically normal villi, heat-stress-associated alterations were also observed in villus height (decreased), villus breadth at base (increased) and epithelial cell area (decreased). Birds exposed to heat stress presented with an increase in glutathione peroxidase activity and a decreased antioxidant capacity. It can be concluded that the chosen model allows a reproducible quantification of heat stress effects, which is suitable for the evaluation of dietary intervention strategies to combat heat stress conditions.

  3. Precision and accuracy of pest and pathogen damage assessment in young eucalypt plantations.

    Science.gov (United States)

    Smith, A H; Pinkard, E A; Stone, C; Battaglia, M; Mohammed, C L

    2005-12-01

    Fungal pathogens, browsing mammals, birds, insects, nutrient deficiencies, drought, frost and waterlogging are all damaging agents to plantation species. The subsequent loss in leaf tissue or reduced photosynthetic potential can reduce growth and potentially lead to tree death. The Crown Damage Index (CDI) was developed in Australia to quantify damage in young eucalypt plantations. The accuracy and precision of assessing damage at a tree level were determined to ensure the reliability, objectivity and repeatability of the CDI method. Nine assessors, with varying levels of experience, estimated damage on three plots of fifty trees each, to obtain an understanding of the subjectivity of assessing damage caused by insects (e.g. Chrysophtharta spp.) and fungal pathogens (e.g. Mycosphaerella spp.) on Eucalyptus globulus. Damage levels were measured by destructive sampling to enable direct comparisons between estimates and damage levels to be made. The most experienced assessors provided the most repeatable estimates and were generally the most accurate. The incidence of foliar necrosis was the least subjective measure while defoliation was the most subjective and the least accurate of the indices measured. All assessors, regardless of experience, were able to predict the Crown Damage Index (a combined index of all damage classes) to within 12% of measured damage levels.

  4. Numerical assessment of concrete damage: Procedures and pitfalls

    NARCIS (Netherlands)

    Stroeven, P.; Huan, H.

    2011-01-01

    The paper focuses on the quality of predicting the damage characteristics of the loaded engineering structure by subjecting section images of cores supposedly drawn from the concrete of the structure to quantitative image analysis by sweeping test lines. Automation of this data acquisition stage is

  5. Assessment of enamel damage after removal of ceramic brackets.

    Science.gov (United States)

    Kitahara-Céia, Flávia Mitiko Fernandes; Mucha, José Nelson; Marques dos Santos, Paulo Acioly

    2008-10-01

    Since the introduction of ceramic brackets, research has been performed to evaluate enamel damage caused during their removal. One problem in comparing treated and control groups is the absence of assurance that the surfaces were undamaged before the brackets were bonded and debonded, or that superficial treatment applied to the enamel could hinder damage detection. The aim of this in-vitro study was to evaluate enamel injuries during debonding of 3 types of ceramic brackets. Forty-five premolars, extracted for orthodontic purposes, were divided into 3 groups of 15. The enamel surfaces were photographed with a magnifying loupe (60 times) in an optical stereomicroscope (Stemi 2000-C, Zeiss, Oberkochen, Germany) with a digital camera. A different type of backet was bonded and debonded in each group: mechanical retention, mechanical retention with a polymer base, and chemical retention. After debonding, the surfaces were again photographed. The photographs were evaluated for quality of enamel surface according to a predetermined scale. The results were tested by method error and the chi-square test. The damage evaluation comparing the same surface before bonding and after debonding showed no significant statistical difference between the mechanical retention group and the polymer base retention group. There was a significant statistical difference (P ceramic bracket group. The difference between the enamel surfaces before bonding and after debonding brackets with chemical retention was statistically significant; bonding and debonding these brackets resulted in enamel damage.

  6. Assessing Airpower’s Effects: Capabilities and Limitations of Real-Time Battle Damage Assessment

    Science.gov (United States)

    2002-06-01

    Ibid. 16 Ibid. 40 situation is likely to persist.17 Additionally, UAV costs are becoming a concern, and the Air Force has asked Northrop Grumman to... Northrop Grumman to Cut Cost of Global Hawk UAVs,” Aerospace Daily, 25 April 2002. 19 Real-Time Battle Damage Assessment, DARPA Special Projects Office...Week & Space Technology 151, no. 5 (2 August 1999): 59; Ronald D. Frye , “Real-Time Imagery over Voice Radios,” Global Defence Review, n.p., on-line

  7. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance

    Science.gov (United States)

    Stringer, Sandra C.; Barker, Gary C.; Peck, Michael W.

    2016-01-01

    ABSTRACT Heat treatment is an important controlling factor that, in combination with other hurdles (e.g., pH, aw), is used to reduce numbers and prevent the growth of and associated neurotoxin formation by nonproteolytic C. botulinum in chilled foods. It is generally agreed that a heating process that reduces the spore concentration by a factor of 106 is an acceptable barrier in relation to this hazard. The purposes of the present study were to review the available data relating to heat resistance properties of nonproteolytic C. botulinum spores and to obtain an appropriate representation of parameter values suitable for use in quantitative microbial risk assessment. In total, 753 D values and 436 z values were extracted from the literature and reveal significant differences in spore heat resistance properties, particularly those corresponding to recovery in the presence or absence of lysozyme. A total of 503 D and 338 z values collected for heating temperatures at or below 83°C were used to obtain a probability distribution representing variability in spore heat resistance for strains recovered in media that did not contain lysozyme. IMPORTANCE In total, 753 D values and 436 z values extracted from literature sources reveal significant differences in spore heat resistance properties. On the basis of collected data, two z values have been identified, z = 7°C and z = 9°C, for spores recovered without and with lysozyme, respectively. The findings support the use of heat treatment at 90°C for 10 min to reduce the spore concentration by a factor of 106, providing that lysozyme is not present during recovery. This study indicates that greater heat treatment is required for food products containing lysozyme, and this might require consideration of alternative recommendation/guidance. In addition, the data set has been used to test hypotheses regarding the dependence of spore heat resistance on the toxin type and strain, on the heating technique used, and on the

  8. Drought impact functions as intermediate step towards drought damage assessment

    Science.gov (United States)

    Bachmair, Sophie; Svensson, Cecilia; Prosdocimi, Ilaria; Hannaford, Jamie; Helm Smith, Kelly; Svoboda, Mark; Stahl, Kerstin

    2016-04-01

    While damage or vulnerability functions for floods and seismic hazards have gained considerable attention, there is comparably little knowledge on drought damage or loss. On the one hand this is due to the complexity of the drought hazard affecting different domains of the hydrological cycle and different sectors of human activity. Hence, a single hazard indicator is likely not able to fully capture this multifaceted hazard. On the other hand, drought impacts are often non-structural and hard to quantify or monetize. Examples are impaired navigability of streams, restrictions on domestic water use, reduced hydropower production, reduced tree growth, and irreversible deterioration/loss of wetlands. Apart from reduced crop yield, data about drought damage or loss with adequate spatial and temporal resolution is scarce, making the development of drought damage functions difficult. As an intermediate step towards drought damage functions we exploit text-based reports on drought impacts from the European Drought Impact report Inventory and the US Drought Impact Reporter to derive surrogate information for drought damage or loss. First, text-based information on drought impacts is converted into timeseries of absence versus presence of impacts, or number of impact occurrences. Second, meaningful hydro-meteorological indicators characterizing drought intensity are identified. Third, different statistical models are tested as link functions relating drought hazard indicators with drought impacts: 1) logistic regression for drought impacts coded as binary response variable; and 2) mixture/hurdle models (zero-inflated/zero-altered negative binomial regression) and an ensemble regression tree approach for modeling the number of drought impact occurrences. Testing the predictability of (number of) drought impact occurrences based on cross-validation revealed a good agreement between observed and modeled (number of) impacts for regions at the scale of federal states or

  9. Assessment of Residual Strength Based on Estimated Temperature of Post-Heated RC Columns

    Directory of Open Access Journals (Sweden)

    Muhammad Yaqub

    2013-01-01

    Full Text Available The experience shows that fire-damaged concrete structures both technically and economically can be reinstated after fire due to high fire resistance and high residual strength. The residual strength of fire-damaged concrete structural member depends on the peak temperature reached during fire, fire duration and the distribution of temperature within the structural member. The assessment of the residual strength of post-heated concrete structural members in a professional way is a prime factor to take a decision about the reinstatement or demolition of fire-damaged structure. This paper provides an easy and efficient approach to predict the residual strength of reinforced concrete columns based on the estimated temperature which may have occurred within the concrete cross-section during a fire. A finite element model was developed to evaluate the distribution of temperature within the cross-section of the reinforced concrete columns. Twelve reinforced concrete square columns were heated experimentally up to 500°C at 150°C/hour. A comparison of the experimental temperature values of the tested columns was made with the model results. A good agreement was found between the experimental and the finite model results. Based on the temperature distribution obtained from the finite element model, the residual strength of concrete and reinforcement could be evaluated by using the relationships for concrete, steel and temperature proposed by various researchers.

  10. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  11. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression.

    Science.gov (United States)

    Wu, Di; Xu, Jiao; Song, Erbao; Tang, Shu; Zhang, Xiaohui; Kemper, N; Hartung, J; Bao, Endong

    2015-07-01

    We investigated whether acetyl salicylic acid (ASA) protects chicken myocardial cells from heat stress-mediated damage in vivo and whether the induction of Hsp27 expression is connected with this function. Pathological changes, damage-related enzyme levels, and Hsp27 expression were studied in chickens following heat stress (40 ± 1 °C for 0, 1, 2, 3, 5, 7, 10, 15, or 24 h, respectively) with or without ASA administration (1 mg/kg BW, 2 h prior). Appearance of pathological lesions such as degenerations and karyopyknosis as well as the myocardial damage-related enzyme activation indicated that heat stress causes considerable injury to the myocardial cells in vivo. Myocardial cell injury was most serious in chickens exposed to heat stress without prior ASA administration; meanwhile, ASA pretreatment acted protective function against high temperature-induced injury. Hsp27 expression was induced under all experimental conditions but was one-fold higher in the ASA-pretreated animals (0.3138 ± 0.0340 ng/mL) than in untreated animals (0.1437 ± 0.0476 ng/mL) 1 h after heat stress exposure, and such an increase was sustained over the length of the experiment. Our findings indicate that pretreatment with ASA protects chicken myocardial cells from acute heat stress in vivo with almost no obvious side effects, and this protection may involve an enhancement of Hsp27 expression. However, the detailed mechanisms underlying this effect require further investigation.

  12. Environmental assessment of domestic wood heating; Bilan environnemental du chauffage domestique au bois

    Energy Technology Data Exchange (ETDEWEB)

    Labouze, E.; Le Guerin, Y. [BIO Intelligence Service, 94 - Ivry sur Seine (France)

    2009-03-15

    In France, more than 6 million families are concerned with the domestic use of wood energy. The wood energy plan of ADEME aims at encouraging the development of wood energy in three sectors: domestic, collective/tertiary, industrial. In that context, ADEME commissioned BIO Intelligence Service a life cycle assessment of collective and industrial heating in order to give objective environmental information and to analyse the strength and weakness of wood heating. Three scenarios were defined according to the origin of wood: firewood, granules and sawmill chips. The study also proposes a comparison to other heating systems: gas, fuel oil and electricity. The life cycle analysis applied to domestic heating consists in quantifying the environmental impacts of the whole linked steps: extraction of fuel, distribution, final use... Every system under study has been divided according to three main stages: - Extraction of raw materials; - Transport of fuels until the place of storage or distribution; - Use (combustion or upstream production of energy in the case of electricity). The environmental impacts are estimated with the following indicators: - Non renewable primary energy balance sheet; - Global warming potential; - Air acidification potential; - Eutrophication potential; - Emissions of toxic metals in air and in soils. The results show that wood heating have the best energy and global warming balance sheets. For air acidification, the combustion stage is pre-dominant regardless of the energy resource. This is mainly due to nitrogen and sulphur oxides airborne emissions. For wood heating, preparation requires fuel consumption which also contributes significantly to nitrogen oxides emissions. The comparison with conventional energy shows that the wood scenarios are well positioned in relation to fuel and electricity for this indicator. Gas appears to be the best heating option for this indicator. The contribution eutrophication is also due to nitrogen oxides airborne

  13. A multisensor approach for the 2016 Amatrice earthquake damage assessment

    Directory of Open Access Journals (Sweden)

    Vito Romaniello

    2016-11-01

    Full Text Available This work proposes methodologies aimed at evaluating the damage occurred in the Amatrice town by using optical and Synthetic Aperture Radar (SAR change features obtained from satellite images. The objective is to achieve a damage map employing the satellite change features in a classifier algorithm, namely the Features Stepwise Thresholding (FST method. The main novelties of the proposed analysis concern the estimation of derived features at object scale and the exploitation of the unsupervised FST algorithm. A segmentation of the study area into several buildings blocks has been done by considering a set of polygons, over the Amatrice town, extracted from the open source Open Street Map (OSM geo-database. The available satellite dataset is composed of several optical and SAR images, collected before and after the seismic event. Regarding the optical data, we selected the Normalised Difference Index (NDI, and two quantities coming from the Information Theory, namely the Kullback-Libler Divergence (KLD and the Mutual Information (MI. In addition, for the SAR data we picked out the Intensity Correlation Difference (ICD and the KLD parameter. The exploitation of these features in the FST algorithm permits to obtain a plausible damage map that is able to indicate the most affected areas.

  14. Multi-variate flood damage assessment: a tree-based data-mining approach

    Science.gov (United States)

    Merz, B.; Kreibich, H.; Lall, U.

    2013-01-01

    The usual approach for flood damage assessment consists of stage-damage functions which relate the relative or absolute damage for a certain class of objects to the inundation depth. Other characteristics of the flooding situation and of the flooded object are rarely taken into account, although flood damage is influenced by a variety of factors. We apply a group of data-mining techniques, known as tree-structured models, to flood damage assessment. A very comprehensive data set of more than 1000 records of direct building damage of private households in Germany is used. Each record contains details about a large variety of potential damage-influencing characteristics, such as hydrological and hydraulic aspects of the flooding situation, early warning and emergency measures undertaken, state of precaution of the household, building characteristics and socio-economic status of the household. Regression trees and bagging decision trees are used to select the more important damage-influencing variables and to derive multi-variate flood damage models. It is shown that these models outperform existing models, and that tree-structured models are a promising alternative to traditional damage models.

  15. Assessment of crop damage and hail risk based on radar hail signature information

    Science.gov (United States)

    Tani, Satyanarayana; Paulitsch, Helmut; Teschl, Reinhard; Süsser-Rechberger, Barbara

    2016-04-01

    Hail storm damage is a major concern to the farmers in the province of Styria, Austria. Each year severe hail storms are causing damages to crops, resulting in losses of millions of euros. High spatiotemporal resolution data are essential to properly assess crop damage information for the insurance sector and also for the better risk assessment. Radar data offer high spatial and temporal resolutions, resulting in very promising option for crop damage assessment and hail risk analysis. This study focuses on the combined analysis of hail signature information from radar and ground measurements for crop hail damage assessment. The days with the high crop hail damage claims were selected for the investigation. Total 16 hail days were assigned to examine the relation between radar-derived products and damages produced by hail in Styria during 2015. 3D single polarization C-band weather radar data and radiosonde freezing level data were used to derive hail kinetic energy flux as well as flux integrated over the whole event. Hail events from ESWD (European Severe Weather Database) and crop damage reports from the Austrian Hail Insurance System were allotted for validation. The spatial distribution maps of total hail kinetic energy were developed to capture the swath and intensity of the hail storms to identify potential hail damage areas. The results show that in most cases radar-based hail signature information well corresponds to the areas where hail events and damage footprints were reported. The radar-based hail signature information is a useful detection option for the assessment of crop damage and hail risk.

  16. Rapid assessment of wildfire damage using Forest Inventory data: A case in Georgia

    Science.gov (United States)

    Richard A. Harper; John W. Coulsten; Jeffery A. Turner

    2009-01-01

    The rapid assessment of damage caused by natural disasters is essential for planning the appropriate amount of disaster relief funds and public communication. Annual Forest Inventory and Analysis (FIA) data provided initial estimates of damage to timberland in a timely manner to State leaders during the 2007 Georgia Bay Complex Wildfire in southeast Georgia. FIA plots...

  17. High-resolution radar damage assessment after the earthquake in Haiti on 12 january 2010

    NARCIS (Netherlands)

    Dekker, R.J.

    2011-01-01

    After a disaster such as an earthquake or tsunami it is important to know quickly the dimensions of the damage to human relief work and crisis management. To study the utility of high-resolution radar damage-assessment for this purpose, pre- and post-seismic TerraSAR-X and Cosmo-SkyMed data of the e

  18. High-resolution radar damage assessment after the earthquake in Haiti on 12 january 2010

    NARCIS (Netherlands)

    Dekker, R.J.

    2011-01-01

    After a disaster such as an earthquake or tsunami it is important to know quickly the dimensions of the damage to human relief work and crisis management. To study the utility of high-resolution radar damage-assessment for this purpose, pre- and post-seismic TerraSAR-X and Cosmo-SkyMed data of the e

  19. Damage Assessment in Composite Structures Based on Acousto-Ultrasonics - Evaluation of Performance

    NARCIS (Netherlands)

    Moix Bonet, M.; Wierach, P.; Loendersloot, R.; Bach, M.; Woelcken, P.C.; Papadopoulos, M.

    2015-01-01

    This work focuses on the damage detection and assessment of barely visible impact damages that occur after impacting a composite stiffened structure through the acousto-ultrasonics technique. Delaminations and debondings have been introduced in two stiffened panels and afterwards interrogated with a

  20. Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving...

  1. A Support Analysis Framework for mass movement damage assessment: applications to case studies in Calabria (Italy

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2009-03-01

    Full Text Available The analysis of data describing damage caused by mass movements in Calabria (Italy allowed the organisation of the Support Analysis Framework (SAF, a spreadsheet that converts damage descriptions into numerical indices expressing direct, indirect, and intangible damage.

    The SAF assesses damage indices of past mass movements and the potential outcomes of dormant phenomena re-activations. It is based on the effects on damaged elements and is independent of both physical and geometric phenomenon characteristics.

    SAF sections that assess direct damage encompass several lines, each describing an element characterised by a value fixed on a relative arbitrary scale. The levels of loss are classified as: L4: complete; L3: high; L2: medium; or L1: low. For a generic line l, the SAF multiplies the value of a damaged element by its level of loss, obtaining dl, the contribution of the line to the damage.

    Indirect damage is appraised by two sections accounting for: (a actions aiming to overcome emergency situations and (b actions aiming to restore pre-movement conditions. The level of loss depends on the number of people involved (a or the cost of actions (b.

    For intangible damage, the level of loss depends on the number of people involved.

    We examined three phenomena, assessing damage using the SAF and SAFL, customised versions of SAF based on the elements actually present in the analysed municipalities that consider the values of elements in the community framework. We show that in less populated, inland, and affluent municipalities, the impact of mass movements is greater than in coastal areas.

    The SAF can be useful to sort groups of phenomena according to their probable future damage, supplying results significant either for insurance companies or for local authorities involved in both disaster management and planning of defensive measures.

  2. Damage assessment of Haiti earthquake emergency using high resolution remote sensing imagery

    Science.gov (United States)

    Wang, Long; Dou, Aixia; Wang, Xiaoqing; Dong, Yanfang; Ding, Xiang; Li, Zhi; Yuan, Xiaoxiang; Qiu, Yurong

    2010-09-01

    This paper introduces the procedure of emergency remote sensing assessment for Haiti earthquake happened on Jan 12 2010. The procedure is divided into 4 steps: data preparation, data processing, information extraction and damage assessment, and contains three key targets which are damage information extraction, quantitative assessment and estimation of casualties and economic losses. In the first stage, the damage information of the buildings is the basis, and the other information, including building type, damage grade, built-over area, would be extracted by visual interpretation and automatically statistic with human-computer interaction from the high resolution disaster imageries. Then the remote sensing damage index and equivalent ground damage index of building could be counted in the second stage. According to this result, the specialists sketch a more exact intensity distribution in different regions of the metropolis. At last, the number of casualties is estimated by an empirical model adapting to worldwide earthquake as the detailed construction damage has been known. To assess the economic losses, we use a macro economic-based model which only needs population, per capita GDP and statistical macro-economic fragility related to seismic intensity. In this case, it is the first time to implement the methods of remote sensing assessment in foreign serious earthquake emergency, which is proven of being applicable outside China.

  3. Assessment of the heat carrier movement in the primary coolant circuit by its own momentum

    Energy Technology Data Exchange (ETDEWEB)

    Kadalev, Stoyan, E-mail: kadalev@inrne.bas.bg

    2014-10-15

    Highlights: • We model the heat carrier flow alteration after the circulation pump(s) stop. • The general mathematical model used is described in details. • The model is adapted and applied to a particular example research reactor. • Assessment is presented in detail, step by step with references. • The information provided is enough to apply calculations to another facility. - Abstract: In the presented paper is considered the approach to an assessment of the heat carrier flow alteration in the primary water–water reactor coolant circuit after the circulation pump(s) stop. This topic is highly relevant trough advanced and increased nuclear safety requirements because such a process is observed in case of black-out accident or damaged pump(s). The general mathematical model used is described; enabling preparation of this evaluation adapted and applied to a particular example facility namely a pool type research reactor. The factors influencing to the heat carrier movement by its own momentum are examined. The evaluation measures and includes the factors influencing the heat carrier flow rate from the moment the pump(s) stops down to a negligible value. Assessment is presented in detail, step by step and where needed with references to specific data and/or formulae from reference books to allow repetition of the calculations and/or apply to another facility. The calculations are presented utilizing all necessary data according to the design and technological documentation. No account is given to the pressure of the natural circulation caused by the residual heat generation in the fuel after the reactor scram system extinction of the fission reaction.

  4. Coordinating ecological risk assessment with natural resource damage assessment: A panel discussion.

    Science.gov (United States)

    Sanders, Brenda; Ammann, Mike; Hoff, Rebecca; Huston, Mark; Jenkins, Kenneth; Palagyi, Tony; Pelto, Karen; Rettig, Todd; Wagner, Anne

    2016-10-01

    Contaminated sites in the United States undergo remediation and restoration through regulatory programs that lead the 2 processes through independent but often parallel pathways with different objectives. The objective of remediation is to reduce risk to human health and the environment, whereas that of restoration is to restore injured resources and compensate the public for lost use of the services that natural resources provide. More complex sites, such as those associated with large river systems and urban waterways, have resulted in increasingly larger-scale ecological risk assessments (ERAs) and natural resource damage assessments (NRDAs) that take many years and involve diverse practitioners including scientists, economists, and engineers. Substantial levels of effort are now frequently required, creating a need for more efficient and cost-effective approaches to data collection, analyses, and assessments. Because there are commonalities in the data needs between ERAs and NRDAs, coordination of the design and implementation of site-specific studies that meet the needs of both programs could result in increased efficiency and lower costs. The Association for Environmental Health and Sciences Foundation convened a panel of environmental practitioners from industry, consulting, and regulatory bodies to examine the benefits and challenges associated with coordinating ERA and NRDA activities in the context of a broad range of regulatory programs. This brief communication presents the opinions and conclusions of the panelists on these issues and reports 2 case studies for which coordinated ERA and NRDA activities produced a positive outcome. Integr Environ Assess Manag 2016;12:616-621. © 2015 SETAC.

  5. Multi-Physics Computational Modeling Tool for Materials Damage Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is to provide a multi-physics modeling tool for materials damage assessment for application to future aircraft design. The software...

  6. Pornography actresses: an assessment of the damaged goods hypothesis.

    Science.gov (United States)

    Griffith, James D; Mitchell, Sharon; Hart, Christian L; Adams, Lea T; Gu, Lucy L

    2013-01-01

    The damaged goods hypothesis posits that female performers in the adult entertainment industry have higher rates of childhood sexual abuse (CSA), psychological problems, and drug use compared to the typical woman. The present study compared the self-reports of 177 porn actresses to a sample of women matched on age, ethnicity, and marital status. Comparisons were conducted on sexual behaviors and attitudes, self-esteem, quality of life, and drug use. Porn actresses were more likely to identify as bisexual, first had sex at an earlier age, had more sexual partners, were more concerned about contracting a sexually transmitted disease (STD), and enjoyed sex more than the matched sample, although there were no differences in incidence of CSA. In terms of psychological characteristics, porn actresses had higher levels of self-esteem, positive feelings, social support, sexual satisfaction, and spirituality compared to the matched group. Last, female performers were more likely to have ever used 10 different types of drugs compared to the comparison group. A discriminant function analysis was able to correctly classify 83% of the participants concerning whether they were a porn actress or member of the matched sample. These findings did not provide support for the damaged goods hypothesis.

  7. A wavelet-based structural damage assessment approach with progressively downloaded sensor data

    Science.gov (United States)

    Li, Jian; Zhang, Yunfeng; Zhu, Songye

    2008-02-01

    This paper presents a wavelet-based on-line damage assessment approach based on the use of progressively transmitted multi-resolution sensor data. In extreme events like strong earthquakes, real-time retrieval of structural monitoring data and on-line damage assessment of civil infrastructures are crucial for emergency relief and disaster assistance efforts such as resource allocation and evacuation route arrangement. Due to the limited communication bandwidth available to data transmission during and immediately after major earthquakes, innovative methods for integrated sensor data transmission and on-line damage assessment are highly desired. The proposed approach utilizes a lifting scheme wavelet transform to generate multi-resolution sensor data, which are transmitted progressively in increasing resolution. Multi-resolution sensor data enable interactive on-line condition assessment of structural damages. To validate this concept, a hysteresis-based damage assessment method, proposed by Iwan for extreme-event use, is selected in this study. A sensitivity study on the hysteresis-based damage assessment method under varying data resolution levels was conducted using simulation data from a six-story steel braced frame building subjected to earthquake ground motion. The results of this study show that the proposed approach is capable of reducing the raw sensor data size by a significant amount while having a minor effect on the accuracy of hysteresis-based damage assessment. The proposed approach provides a valuable decision support tool for engineers and emergency response personnel who want to access the data in real time and perform on-line damage assessment in an efficient manner.

  8. Damage assessment framework for landslide disaster based on very high-resolution images

    Science.gov (United States)

    Sun, Bo; Xu, Qihua; He, Jun; Liu, Zhen; Wang, Ying; Ge, Fengxiang

    2016-04-01

    It is well known that rapid building damage assessment is necessary for postdisaster emergency relief and recovery. Based on an analysis of very high-resolution remote-sensing images, we propose an automatic building damage assessment framework for rainfall- or earthquake-induced landslide disasters. The framework consists of two parts that implement landslide detection and the damage classification of buildings, respectively. In this framework, an approach based on modified object-based sparse representation classification and morphological processing is used for automatic landslide detection. Moreover, we propose a building damage classification model, which is a classification strategy designed for affected buildings based on the spectral characteristics of the landslide disaster and the morphological characteristics of building damage. The effectiveness of the proposed framework was verified by applying it to remote-sensing images from Wenchuan County, China, in 2008, in the aftermath of an earthquake. It can be useful for decision makers, disaster management agencies, and scientific research organizations.

  9. Preliminary quantitative assessment of earthquake casualties and damages

    DEFF Research Database (Denmark)

    Badal, J.; Vázquez-Prada, M.; González, Á.

    2005-01-01

    of casualties within areas of different intensity is computed using an application developed in a geographic information system (GIS) environment, taking advantage of the possibilities of such a system for the treatment of space-distributed data. The casualty rate, defined as the number of killed people divided...... the local social wealth as a function of the gross domestic product of the country. This last step is performed on the basis of the relationship of the macroseismic intensity to the earthquake economic loss in percentage of the wealth. Such an approach to the human casualty and damage levels is carried out...... for sites near important cities located in a seismically active zone of Spain, thus contributing to an easier taking of decisions in emergency preparedness planning, contemporary earthquake engineering and seismic risk prevention....

  10. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  11. Flood damage assessment – Literature review and recommended procedure

    DEFF Research Database (Denmark)

    Olesen, Lea; Löwe, Roland; Arnbjerg-Nielsen, Karsten

    The assessment of flood risk is an essential tool in evaluating the potential consequences of a flood. The analysis of the risk can be applied as part of the flood plain management, but can also be used in a cost-benefit analysis, when comparing different adaption strategies. This analysis...... is therefore important when assessing flood disaster mitigation options and economical optimizations of possible measures. A common definition is that the flood risk is found with the use of a flood hazard assessment and a flood vulnerability assessment (Apel, Merz and Thieken, 2008). The flood hazard...... is the quantification of amount, extent, and location of flooding expected to occur with a given return period. This means that the spatial distribution of the calculated inundation depth as a function of the return period can be used to describe the flood hazard. The vulnerability is the susceptibility of the area...

  12. Effective coordination and cooperation between ecological risk assessments and natural resource damage assessments: a new synthesis.

    Science.gov (United States)

    Gouguet, Ronald G; Charters, David W; Champagne, Larry F; Davis, Mark; Desvouges, William; Durda, Judi L; Hyatt, William H; Jacobson, Rachel; Kapustka, Larry; Longoria, Rose M

    2009-10-01

    Although ecological risk assessments (ERAs) and natural resource damage assessments (NRDAs) are performed under different statutory and regulatory authorities, primarily the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as currently practiced, the activities typically overlap. ERAs performed as part of the response process (typically by the US Environmental Protection Agency [USEPA]) should be closely coordinated with the natural resource trustees' (trustees') NRDAs. Trustees should actively participate in the early stages of the remedial investigation (RI) and work with USEPA, including the potentially responsible parties (PRPs), when appropriate, to coordinate NRDA data needs with those of the RI. Close coordination can present opportunities to avoid inefficiencies, such as unnecessary resampling or duplicate data gathering, and provide the opportunity to fulfill both process requirements with a few well-designed investigations. Early identification of opportunities for practical combined assessment can save money and time as the restoration process proceeds and facilitate a cooperative resolution of the entire site's CERCLA liability. The Society of Environmental Toxicology and Chemistry (SETAC) convened an invited workshop (August 2008) to address coordination between ERA and NRDA efforts. This paper presents the findings and conclusions of the Framework Work Group, which considered technical issues common to each process, while mindful of the current legal and policy landscape, and developed recommendations for future practice.

  13. An endpoint damage oriented model for life cycle environmental impact assessment of buildings in China

    Institute of Scientific and Technical Information of China (English)

    GU LiJing; LIN BoRong; GU DaoJin; ZHU YingXin

    2008-01-01

    The midpoint impact assessment methodology and several weighting methods that are currently used by most building Life cycle assessment (LCA) researchers in China, still have some shortcomings. In order to make the evaluation results have better temporal and spatial applicability, the endpoint impact assessment methodology was adopted in this paper. Based on the endpoint damage oriented concept, four endpoints of resource exhaustion, energy exhaustion, human health damage and ecosystem damage were selected according to the situation of China and the specialties of the building industry. Subsequently the formula for calculating each endpoint, the background value for normalization and the weighting factors were defined. Following that, an endpoint damage oriented model to evaluate the life cycle environmental impact of buildings in China was established. This model can produce an integrated indicator for environmental impact, and consequently provides references for directing the sustainable building design.

  14. Assessment of the effect of housing on feather damage in laying hens using IR thermography.

    Science.gov (United States)

    Pichová, K; Bilčík, B; Košt'ál, L'

    2017-04-01

    Plumage damage represents one of the animal-based measures of laying hens welfare. Damage occurs predominantly due to age, environment and damaging pecking. IR thermography, due to its non-invasiveness, objectivity and repeatability is a promising alternative to feather damage scoring systems such as the system included in the Welfare Quality ® assessment protocol for poultry. The aim of this study was to apply IR thermography for the assessment of feather damage in laying hens kept in two housing systems and to compare the results with feather scoring. At the start of the experiment, 16-week-old laying hens (n=30) were divided into two treatments such as deep litter pen and enriched cage. During 4 months, feather damage was assessed regularly in 2-week intervals. One more single assessment was done nine and a half months after the start of the experiment. The feather damage on four body regions was assessed by scoring and IR thermography: head and neck, back and rump, belly, and underneck and breast. Two variables obtained by IR thermography were used: the difference between the body surface temperature and ambient temperature (ΔTB) and the proportion of featherless areas, which were defined as areas with a temperature >33.5°C. Data were analyzed using a GLM model. The effects of housing, time, region and their interactions on feather damage, measured by the feather scoring and by both IR thermography measures, were all significant (P<0.001). The ΔTB in all assessed regions correlated positively with the feather score. Feather scoring revealed higher damage in enriched cages compared with deep litter pens starting from week 6 of the experiment on the belly and back and rump regions, whereas ΔTB from week 6 in the belly and from week 8 on the back and rump region. The proportion of featherless areas in the belly region differed significantly between the housings from week 8 of the experiment and on the back and rump region from week 12. The IR thermography

  15. Development of a photographic scale for consistency and guidance in dermatologic assessment of forearm sun damage.

    Science.gov (United States)

    McKenzie, Naja E; Saboda, Kathylynn; Duckett, Laura D; Goldman, Rayna; Hu, Chengcheng; Curiel-Lewandrowski, Clara N

    2011-01-01

    To develop a photographic sun damage assessment scale for forearm skin and test its feasibility and utility for consistent classification of sun damage. For a blinded comparison, 96 standardized 8 × 10 digital photographs of participants' forearms were taken. Photographs were graded by an expert dermatologist using an existing 9-category dermatologic assessment scoring scale until all categories contained photographs representative of each of 4 clinical signs. Triplicate photographs were provided in identical image sets to 5 community dermatologists for blinded rating using the dermatologic assessment scoring scale. Academic skin cancer prevention clinic with high-level experience in assessment of sun-damaged skin. Volunteer sample including participants from screenings, chemoprevention, and/or biomarker studies. Reproducibility and agreement of grading among dermatologists by Spearman correlation coefficient to assess the correlation of scores given for the same photograph, κ statistics for ordinal data, and variability of scoring among dermatologists, using analysis of variance models with evaluating physician and photographs as main effects and interaction effect variables to account for the difference in scoring among dermatologists. Correlations (73% to >90%) between dermatologists were all statistically significant (P < .001). Scores showed good to substantial agreement but were significantly different (P < .001) for each of 4 clinical signs and the difference varied significantly (P < .001) among photographs. With good to substantial agreement, we found the development of a photographic forearm sun damage assessment scale highly feasible. In view of significantly different rating scores, a photographic reference for assessment of sun damage is also necessary.

  16. Mobile augmented reality in support of building damage and safety assessment

    Science.gov (United States)

    Kim, W.; Kerle, N.; Gerke, M.

    2016-02-01

    Rapid and accurate assessment of the state of buildings in the aftermath of a disaster event is critical for an effective and timely response. For rapid damage assessment of buildings, the utility of remote sensing (RS) technology has been widely researched, with focus on a range of platforms and sensors. However, RS-based approaches still have limitations to assess structural integrity and the specific damage status of individual buildings. Structural integrity refers to the ability of a building to hold the entire structure. Consequently, ground-based assessment conducted by structural engineers and first responders is still required. This paper demonstrates the concept of mobile augmented reality (mAR) to improve performance of building damage and safety assessment in situ. Mobile AR provides a means to superimpose various types of reference or pre-disaster information (virtual data) on actual post-disaster building data (real buildings). To adopt mobile AR, this study defines a conceptual framework based on the level of complexity (LOC). The framework consists of four LOCs, and for each of these, the data types, required processing steps, AR implementation and use for damage assessment are described. Based on this conceptualization we demonstrate prototypes of mAR for both indoor and outdoor purposes. Finally, we conduct a user evaluation of the prototypes to validate the mAR approach for building damage and safety assessment.

  17. Solar/gas Rankine/Rankine-cycle heat pump assessment

    Science.gov (United States)

    Khalifa, H. E.; Melikian, G.

    1982-07-01

    This report contains an assessment of the technical and economic feasibility of Rankine-cycle solar-augmented gas-fired heat pumps (SAGFHP) for multi-family residential and light-commercial applications. The SAGFHP design considered in this report is based on the successful UTRC turbocompressor system which has been tested both in the laboratory and in a solar cooling installation in Phoenix. AZ. An hour-by-hour modeling of present-design SAGFHP performance in multi-family and office buildings in New York, Wisconsin, Nebraska and Oregon indicated that, even without solar augmentation, primary energy savings of up 17% and 31% could be achieved relative to advanced furnace plus electric air conditioning systems and electric heat pumps, respectively.

  18. Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities

    NARCIS (Netherlands)

    Hut, HMJ; Kampinga, HH; Sibon, OCM

    2005-01-01

    The effect of heat shock on centrosomes has been mainly studied in interphase cells. Centrosomes play a key role in proper segregation of DNA during mitosis. However, the direct effect and consequences of heat shock on mitotic cells and a possible cellular defense system against proteotoxic stress d

  19. Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities

    NARCIS (Netherlands)

    Hut, HMJ; Kampinga, HH; Sibon, OCM

    The effect of heat shock on centrosomes has been mainly studied in interphase cells. Centrosomes play a key role in proper segregation of DNA during mitosis. However, the direct effect and consequences of heat shock on mitotic cells and a possible cellular defense system against proteotoxic stress

  20. Damage Assessment of Two-Way Bending RC Slabs Subjected to Blast Loadings

    Directory of Open Access Journals (Sweden)

    Haokai Jia

    2014-01-01

    Full Text Available Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion.

  1. Damage Assessment of Two-Way Bending RC Slabs Subjected to Blast Loadings

    Science.gov (United States)

    Jia, Haokai; Wu, Guiying

    2014-01-01

    Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC) slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion. PMID:25121134

  2. HAITI EARTHQUAKE DAMAGE ASSESSMENT: REVIEW OF THE REMOTE SENSING ROLE

    Directory of Open Access Journals (Sweden)

    P. Boccardo

    2012-08-01

    In a few days several map products based on the aforementioned analysis were delivered to end users: a review of the different types and purposes of this products will be provided and discussed. An assessment of the thematic accuracy of remotely sensed based products will be carried out on the basis of a review of the several available studies focused on this issue, including the main outcomes of a validation based on a comparison with in-situ data performed by the authors.

  3. Assessment of seismic damage of multistory structures using fragility curves

    OpenAIRE

    Ibrahim, Yasser E; Osman Shallan

    2016-01-01

    Performance-based design, PBD, is gaining popularity and its concept hasbeen applied in many international seismic building codes. In this research, five real structures designed according to the Egyptian Building Code, which does not consider PBD, are considered and modeled in a three dimensional way using the software SeismoStruct in order to assess their performance under expected earthquakes. The structures are 2-story, 4- story, 6-story, 8-story and 10-story reinforced concre...

  4. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

    DEFF Research Database (Denmark)

    Johansson, Clara; Møller, Peter; Forchhammer, Lykke;

    2010-01-01

    The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due...... assay end points to number of lesions/10(6) bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA...... to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet...

  5. Quality assessment of palm products upon prolonged heat treatment.

    Science.gov (United States)

    Tarmizi, Azmil Haizam Ahmad; Lin, Siew Wai

    2008-01-01

    Extending the frying-life of oils is of commercial and economic importance. Due to this fact, assessment on the thermal stability of frying oils could provide considerable savings to the food processors. In this study, the physico-chemical properties of five palm products mainly palm oil, single-fractionated palm olein, double-fractionated palm olein, red palm olein and palm-based shortening during 80 hours of heating at 180 degrees C were investigated. Heating properties of these products were then compared with that of high oleic sunflower oil, which was used as reference oil. The indices applied in evaluating the quality changes of oils were free fatty acid, smoke point, p-anisidine value, tocols, polar and polymer compounds. Three palm products i.e. palm oil, single-fractionated palm olein and double-fractionated palm olein were identified to be the most stable in terms of lower formation of free fatty acid, polar and polymer compounds as well as preserving higher smoke point and tocols content compared to the other three oils. The low intensity of hydrolytic and oxidative changes due to prolonged heating, suggests that these palm products are inherently suitable for frying purposes.

  6. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations.

    Science.gov (United States)

    Dearfield, Kerry L; Gollapudi, B Bhaskar; Bemis, Jeffrey C; Benz, R Daniel; Douglas, George R; Elespuru, Rosalie K; Johnson, George E; Kirkland, David J; LeBaron, Matthew J; Li, Albert P; Marchetti, Francesco; Pottenger, Lynn H; Rorije, Emiel; Tanir, Jennifer Y; Thybaud, Veronique; van Benthem, Jan; Yauk, Carole L; Zeiger, Errol; Luijten, Mirjam

    2016-09-21

    For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic

  7. The damage assessment methodology in cooperation with smart sensors and inspection robots

    Science.gov (United States)

    Nitta, Yoshihiro; Ishida, Masami; Onai, Toshio; Watakabe, Morimasa; Nishitani, Akira; Matsui, Chisa

    2014-03-01

    This paper proposes a damage assessment methodology for the non-structural elements, especially the ceiling, in cooperation with the smart sensors and the inspection blimp robot with the Wi-Fi camera. The developed smart sensors use the infrared LEDs in sending the measured data to the inspection blimp robot. The inspection blimp robot integrated in the proposed system has a Wi-Fi camera and an infrared remote control receiver for receiving the data from the smart sensor. In the proposed methodology, the distributed smart sensors firstly detect the damage occurrence. Next, the inspection blimp robots can gather the data from the smart sensors, which transmit the measured data by using an infrared remote control receiver and LED signals. The inspection blimp robot also can inspect the damage location and captures the photographic image of the damage condition. The inspection blimp robot will be able to estimate the damage condition without any process of engineers' on-site-inspection involved. To demonstrate the effectiveness of the inspection blimp robot, the blimp robot is utilized to estimate the aging ceiling of a real structure. For demonstrating the feasibility or possibility of the proposed damage assessment methodology in cooperation with the smart sensors and the inspection blimp robot, the conceptual laboratory experiment is conducted. The proposed methodology will provide valuable information for the repair and maintenance decision making of a damaged structure.

  8. Assessment of Forest Damage in Croatia using Landsat-8 OLI Images

    Directory of Open Access Journals (Sweden)

    Anita Simic Milas

    2015-05-01

    Full Text Available Background and Purpose: Rapid assessments of forest damage caused by natural disasters such as ice-break, wind, flooding, hurricane, or forest fires are necessary for mitigation and forest management. Forest damage directly impacts carbon uptake and biogeochemical cycles, and thus, has an impact on climate change. It intensifies erosion and flooding, and influences socio-economic well-being of population. Quantification of forest cover change represents a challenge for the scientific community as damaged areas are often in the mountainous and remote regions. Forested area in the western Croatia was considerably damaged by ice-breaking and flooding in 2014. Satellite remote sensing technology has opened up new possibilities for detecting and quantifying forest damage. Several remote sensing tools are available for rapid assessment of forest damage. These include aerial photographic interpretation, and airborne and satellite imagery. This study evaluates the capability of Landsat-8 optical data and a vegetation index for mapping forest damage in Croatia that occurred during the winter of 2014. Materials and Methods: The change detection analysis in this study was based on the Normalized Difference Vegetation Index (NDVI difference approach, where pre- and post- event Landsat-8 images were employed in the ENVI image change workflow. The validation was done by comparing the satellite-generated change detection map with the ground truth data based on field observations and spatial data of forest management units and plans. Results: The overall damage assessment from this study suggests that the total damaged area covers 45,265.32 ha of forest. It is 19.20% less than estimated by Vuletić et al. [3] who found that 56,021.86 ha of forest were affected. Most damage was observed in the mixed, broadleaf and coniferous forest. The change errors of commission and omission were calculated to be 35.73% and 31.60%, respectively. Conclusions: Landsat-8 optical

  9. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage per...

  10. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage...

  11. Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens.

    Science.gov (United States)

    Sohn, S H; Subramani, V K; Moon, Y S; Jang, I S

    2012-04-01

    In this longitudinal study with Single Comb White Leghorn chickens, we investigated the effects of stress conditions in birds that were subjected to a high stocking density with feed restrictions on the quantity of telomeric DNA, the rate of DNA damage, and the expression levels of heat shock proteins (HSP) and hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes. The telomere length and telomere-shortening rates were analyzed by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes. The DNA damage rate of lymphocytes was quantified by the comet assay. The expression levels of HSP70, HSP90, and HMGCR genes were measured by quantitative real-time PCR in lymphocytes. The telomere-shortening rate of the lymphocytes was significantly higher in the stress group than in the control. The DNA damage also increased in birds raised under stress conditions, as compared with the control group. The stress conditions had a significant effect on the expressions of HMGCR and HSP90α in lymphocytes but had no significance on HSP70 and HSP90β in blood. We conclude that the telomere length, especially the telomere-shortening rates, the quantification of total DNA damage, and the expression levels of the HMGCR and HSP90α genes can be used as sensitive physiological stress markers in chickens.

  12. A paradigm study for assessment of phenylalanine’s damage under arc-discharge irradiation

    Science.gov (United States)

    Ke, Zhigang; Huang, Qing; Su, Xi; Jiang, Jiang; Wang, Xiangqin; Yu, Zengliang

    2010-05-01

    Energetic ions induce important biological effects and the research into radiolysis of amino acids can help to clarify radiolysis of proteins. For this purpose, arc-discharge induced radiolysis of the benzyl-containing aromatic amino acid phenylalanine in aqueous solution was studied and the damage was assessed quantitatively. The energetic ions were produced by arc-discharge in nitrogen and argon atmosphere. The arc-discharge induced chemical reactions of the biomolecule in aqueous solution were detected and analyzed by means of UV-Vis absorption, fluorescence, Fourier transformation infrared (FTIR) spectroscopy and high performance liquid chromatography (HPLC). Based on the multiple spectroscopic approach, the damage can be evaluated in a more reliable and convenient way. The fluorescence analysis in this case appears to be a more direct indicator for the assessment of damage, where it reveals that the damage increases with the irradiation time exponentially. On the contrary, the 'plateau region' or 'saddle-shape' apparently shown both in our rough absorption analysis and ninhydrin reaction test, similar to the previously reported feature of the dose effect for low-energy-ion induced damage, may be just a consequence with varied reactions and processes involved at different stages. This work thus demonstrated that application of appropriate combination of spectroscopic tools can effectively dissect the diversity of the radiolysis reaction system and assess the biomolecular damage properly.

  13. Thermal damage study on diamond tools at varying laser heating time and temperature by Raman spectroscopy and SEM

    CSIR Research Space (South Africa)

    Masina, BN

    2011-07-01

    Full Text Available damage study on diamond tools at varying laser heating time and temperature by Raman spectroscopy and SEM BN Masina1, BW Mwakikunga2, M Elayaperumal2, A Forbes1, and R Bodkin3 1CSIR National Laser Centre, PO BOX 395, Pretoria 0001, South Africa 2CSIR... Slide 11 Optical images at the surface of the PCD layer Initial 15 min 968 K 25 min 979 K 5 min 895 K Dark phase is cobalt or tungsten Grey phase is diamond Slide 12 Raman shift at the surface of the PCD layer 600 800 1000 1200 1400 1600 1800 2000 0 2000...

  14. Extending the Nanbu Collision Algorithm to Non-Spitzerian Systems and Application to Laser Heating and Damage

    CERN Document Server

    Russell, Alex M

    2016-01-01

    We have generalized the Nanbu collision algorithm to accommodate arbitrary collision rates, enabling accurate kinetic modeling of short range particle interactions in non-Spitzerian systems. With this extension, we explore the effect of different collision models on the simulation of how ultra-intense lasers first begin to heat a target. The effect of collisions on plasma evolution is crucial for treating particle slowing, energy transport, and thermalization. The widely used Nanbu collision algorithm provides a fast and computationally efficient method to include the effects of collisions between charged particles in kinetic simulations without requiring that the particles already be in local thermal equilibrium. However, it is "hardwired" to use Spitzer collision rates appropriate for hot, relatively dilute plasmas. This restriction prevents the Nanbu collision algorithm from accurately describing the initial heating of a cold target, a key problem for the study of laser damage or the generation of the warm...

  15. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    Science.gov (United States)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  16. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    Science.gov (United States)

    Gyekanyesi, John (Technical Monitor); Liaw, Benjamin; Villars, Esther; Delmont, Frantz

    2003-01-01

    The main objective of this NASA Faculty Awards for Research (FAR) project is to conduct ultrasonic assessment of impact-induced damage and microcracking in fiber-metal laminated (FML) composites at various temperatures. It is believed that the proposed study of impact damage assessment on FML composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Impact-induced damage mechanisms in GLARE and ARALL fiber-metal laminates subject to instrumented drop-weight impacts at various temperatures were studied. GLARE and ARALL are hybrid composites made of alternating layers of aluminum and glass- (for GLARE) and aramid- (for ARALL) fiber reinforced epoxy. Damage in pure aluminum panels impacted by foreign objects was mainly characterized by large plastic deformation surrounding a deep penetration dent. On the other hand, plastic deformation in fiber-metal laminates was often not as severe although the penetration dent was still produced. The more stiff fiber-reinforced epoxy layers provided better bending rigidity; thus, enhancing impact damage tolerance. Severe cracking, however, occurred due to the use of these more brittle fiber-reinforced epoxy layers. Fracture patterns, e.g., crack length and delamination size, were greatly affected by the lay-up configuration rather than by the number of layers, which implies that thickness effect was not significant for the panels tested in this study. Immersion ultrasound techniques were then used to assess damages generated by instrumented drop-weight impacts onto these fiber-metal laminate panels as well as 2024-T3 aluminum/cast acrylic sandwich plates adhered by epoxy. Depending on several parameters, such as impact velocity, mass, temperature, laminate configuration, sandwich construction, etc., various types of impact damage were observed, including plastic deformation, radiating

  17. Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment

    Science.gov (United States)

    Rebbapragada, Umaa; Oommen, Thomas

    2011-01-01

    On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.

  18. Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter

    Science.gov (United States)

    Mdhluli, J. E.; Mellado, B.; Sideras-Haddad, E.

    2017-01-01

    Following the comparative study of proton induced radiation damage on various plastic scintillator samples from the ATLAS-CERN detector, a study on neutron irradiation and damage assessment on the same type of samples will be conducted. The samples will be irradiated with different dose rates of neutrons produced in favourable nuclear reactions using a radiofrequency linear particle accelerator as well as from the SAFARI nuclear reactor at NECSA. The MCNP 5 code will be utilized in simulating the neutron transport for determining the dose rate. Light transmission and light yield tests will be performed in order to assess the radiation damage on the scintillators. In addition, Raman spectroscopy and Electron Paramagnetic Resonance (EPR) analysis will be used to characterize the samples after irradiation. The project aims to extent these studies to include radiation assessment damage of any component that processes the scintillating light and deteriorates the quantum efficiency of the Tilecal detector, namely, photomultiplier tubes, wavelength shifting optical fibres and the readout electronics. They will also be exposed to neutron irradiation and the damage assessed in the same manner.

  19. BUILDING DAMAGE ASSESSMENT AFTER EARTHQUAKE USING POST-EVENT LiDAR DATA

    Directory of Open Access Journals (Sweden)

    H. Rastiveis

    2015-12-01

    Full Text Available After an earthquake, damage assessment plays an important role in leading rescue team to help people and decrease the number of mortality. Damage map is a map that demonstrates collapsed buildings with their degree of damage. With this map, finding destructive buildings can be quickly possible. In this paper, we propose an algorithm for automatic damage map generation after an earthquake using post-event LiDAR Data and pre-event vector map. The framework of the proposed approach has four main steps. To find the location of all buildings on LiDAR data, in the first step, LiDAR data and vector map are registered by using a few number of ground control points. Then, building layer, selected from vector map, are mapped on the LiDAR data and all pixels which belong to the buildings are extracted. After that, through a powerful classifier all the extracted pixels are classified into three classes of “debris”, “intact building” and “unclassified”. Since textural information make better difference between “debris” and “intact building” classes, different textural features are applied during the classification. After that, damage degree for each candidate building is estimated based on the relation between the numbers of pixels labelled as “debris” class to the whole building area. Calculating the damage degree for each candidate building, finally, building damage map is generated. To evaluate the ability proposed method in generating damage map, a data set from Port-au-Prince, Haiti’s capital after the 2010 Haiti earthquake was used. In this case, after calculating of all buildings in the test area using the proposed method, the results were compared to the damage degree which estimated through visual interpretation of post-event satellite image. Obtained results were proved the reliability of the proposed method in damage map generation using LiDAR data.

  20. Building Damage Assessment after Earthquake Using Post-Event LiDAR Data

    Science.gov (United States)

    Rastiveis, H.; Eslamizade, F.; Hosseini-Zirdoo, E.

    2015-12-01

    After an earthquake, damage assessment plays an important role in leading rescue team to help people and decrease the number of mortality. Damage map is a map that demonstrates collapsed buildings with their degree of damage. With this map, finding destructive buildings can be quickly possible. In this paper, we propose an algorithm for automatic damage map generation after an earthquake using post-event LiDAR Data and pre-event vector map. The framework of the proposed approach has four main steps. To find the location of all buildings on LiDAR data, in the first step, LiDAR data and vector map are registered by using a few number of ground control points. Then, building layer, selected from vector map, are mapped on the LiDAR data and all pixels which belong to the buildings are extracted. After that, through a powerful classifier all the extracted pixels are classified into three classes of "debris", "intact building" and "unclassified". Since textural information make better difference between "debris" and "intact building" classes, different textural features are applied during the classification. After that, damage degree for each candidate building is estimated based on the relation between the numbers of pixels labelled as "debris" class to the whole building area. Calculating the damage degree for each candidate building, finally, building damage map is generated. To evaluate the ability proposed method in generating damage map, a data set from Port-au-Prince, Haiti's capital after the 2010 Haiti earthquake was used. In this case, after calculating of all buildings in the test area using the proposed method, the results were compared to the damage degree which estimated through visual interpretation of post-event satellite image. Obtained results were proved the reliability of the proposed method in damage map generation using LiDAR data.

  1. Flooded area cartography and damage assessment from the combined use of Landsat TM and ANNs

    Science.gov (United States)

    Alouene, Yosra; Petropoulos, George P.

    2013-04-01

    Use of Earth Observation (EO) data has generally shown a very promising potential in performing rapidly and cost-effectively mapping as well as damage assessment in different types of natural hazards, including floods. The recent technological progress in remote sensing has resulted to the development of a vast number of image processing techniques applied to different types of EO data in performing flooded area mapping and damage assessment. When optical EO data is used for this purpose supervised image classification is regarded as one of the most widely exploited approaches employed for this purpose. In the present study we evaluated the use of different classifiers based on Artificial Neural Network (ANNs) in obtaining flooded area cartography and performing a damage assessment when those combined with optical multispectral data from Landsat TM. In this context, the inclusion of different spectral layers derived from the processing of the original TM bands for improving the estimation of the flooded area was explored. A flooding event occurred in 2010 in Evros river - located north of Greece - was used as a case study. Accuracy of ANN-derived flooded area estimates was based on the error matrix statistics but also statistical comparisons performed against corresponding estimates obtained from the Greek local authorities. Damage assessment was performed on the basis of land use/cover information derived from CORINE2000. Results generally evidenced the capability of the ANNs in obtaining cartography of the flooded area and in performing a flooding damage assessment when combined with the TM imagery. The inclusion of the additional spectral information showed variable results in terms of improving the accuracy of the flooded area extraction. From all scenarios examined, most accurate results in terms of flooded area mapping were obtained when the original TM spectral bands were combined with the Tasseled Cap additional bands. Keywords: flooded area mapping

  2. Development of creep damage assessment system for aged thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, Isamu [IshikawaJima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Umaki, Hideo [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Nishida, Hidetalca [The Chugoku Electric Power Co., Inc., Hiroshima (Japan); Yamaguchi, Hiroshi [The Chugoku Electric Power Co., Inc., Hiroshima (Japan)

    1998-12-31

    IHI has developed the Creep Damage Assessment System to identify voids by processing an image observed by a small laser microscope with an advanced image processing technique jointly with Chugoku Electric Power Co., Inc. The result can be obtained immediately on the spot. Application tests of the system at the Unit No.3 boiler of the Kudamatsu Power Station showed good operability, adaptability to the environment, and accuracy. The new system can easily indicate damage conditions in parts during the periodical inspection, allowing rapid maintenance. Time reduction required for assessment and increased reliability of equipment can be also achieved. (orig.)

  3. Assessment of swift-ion damage by RBS/C: Determination of the amorphization threshold

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, A. [Instituto de Microelectronica de Madrid, CNM-CSIC, Newton 8, E-28760 Tres Cantos (Spain); Olivares, J. [Instituto de Optica, CSIC, Serrano 121, E-28006 Madrid (Spain); Centro de Microanalisis de Materiales (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Crespillo, M.L. [Centro de Microanalisis de Materiales (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Garcia, G. [Laboratory of Synchrotron Light, CELLS, E-08193 Bellaterra (Spain); Bianconi, M. [CNR-IMM-Sezione di Bologna, Via P. Gobetti 101, I-40129 Bologna (Italy); Agullo-Lopez, F. [Centro de Microanalisis de Materiales (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Departamento de Fisica de Materiales, UAM, Cantoblanco, E-28049 Madrid (Spain)

    2009-05-01

    A theoretical strategy is developed to quantitatively assess the ion-beam damage as measured by Rutherford-backscattering spectrometry under channeling conditions (RBS/C) in LiNbO{sub 3} crystals. The approach is based on a recent exciton decay model to calculate the concentration of defects generated by the incoming ions as a function of their stopping power. To describe the channeled RBS yield the model takes into account the amorphous (core) as well as the defective halo contributions to the defect tracks caused by the ion impacts. It is concluded that the halo may significantly influence the assessed damage.

  4. HSP90 gene expression induced by aspirin is associated with damage remission in a chicken myocardial cell culture exposed to heat stress.

    Science.gov (United States)

    Zhang, X; Qian, Z; Zhu, H; Tang, S; Wu, D; Zhang, M; Kemper, N; Hartung, J; Bao, E

    2016-08-01

    To understand the potential protection of heat shock protein 90 (HSP90) induced by aspirin against heat stress damage in chicken myocardial cells, enzyme activities related to stress damage, cytopathological changes, the expression and distribution of HSP90, and HSP90 mRNA levels in the myocardial cells exposed to heat stress (42°C) for different durations with or without aspirin administration (1 mg/ml, 2 h prior) in vitro were investigated. Significant increase of enzyme levels in the supernatant of heat-stressed myocardial cells and cellular lesions characterised by acute degeneration, karyopyknosis and karyorrhexis were observed, compared to non-treated cells. However, the lesions of cells treated with aspirin were milder, characterised by earlier recovery of enzyme levels to the control levels and no obvious heat stress-related cellular necrosis. Stronger positive signals in the cytoplasm and longer retention of HSP90 signal in nuclei were observed in aspirin-treated myocardial cells than those of only heat-stressed cells. HSP90 level in the aspirin-treated myocardial cells was 11.1-fold higher than that in non-treated cells, and remained at a high level at the early stage of heat stress, whereas it was just 4.1-fold higher in only heat-stressed cells and returned rapidly to a low level. Overexpression of HSP90 mRNA in aspirin-treated cells was observed throughout the experiment, whereas HSP90 mRNA decreased significantly only in heat-stressed cells. The early higher HSP90 expression induced by aspirin during heat stress was accompanied by decreased heat stress damage, suggesting that aspirin might play an important role in preventing myocardial cells from heat stress damage in vitro.

  5. Cone and seed pests of Pinus pinea: assessment and characterization of damage.

    Science.gov (United States)

    Bracalini, Matteo; Benedettelli, Stefano; Croci, Francesco; Terreni, Perla; Tiberi, Riziero; Panzavolta, Tiziana

    2013-02-01

    Cone and seed insects have played a key role in the decline of stone pine nut production in Italy. To evaluate the impact caused by native Palearctic and exotic insects, a greater knowledge of pest symptoms is required. During 2008-2009, first and second-year stone pine cones, as well as the seeds produced, were examined in Tuscany (Italy) to assess viability. Insect damage was characterized based on external signs on the cones and seed endosperms, and the impact of recorded insect species on nut production was evaluated. In the current study, cones attacked by anobiid beetles and Dioryctria spp. were observed, as well as asymptomatic dead cones and cones with resin drops and patches, that could not easily be related to a damaging agent. As regards the anobiid beetles, adults of Ernobius parens (Mulsant and Rey) and E. impressithorax Pic emerged from cones in laboratory rearing. A low number of cones damaged by Dioryctria spp. was recorded whereas high percentages of cones showed resin exudates. The presence of resin cannot be definitely related to a damaging agent, although the feeding activity of Leptoglossus occidentalis Heidemann could be one of the reasons. Damage by L. occidentalis was assessed by seed observation. Most of the seeds displayed tissues that had been damaged by this pest.

  6. High speed imaging for assessment of impact damage in natural fibre biocomposites

    Science.gov (United States)

    Ramakrishnan, Karthik Ram; Corn, Stephane; Le Moigne, Nicolas; Ienny, Patrick; Leger, Romain; Slangen, Pierre R.

    2017-06-01

    The use of Digital Image Correlation has been generally limited to the estimation of mechanical properties and fracture behaviour at low to moderate strain rates. High speed cameras dedicated to ballistic testing are often used to measure the initial and residual velocities of the projectile but rarely for damage assessment. The evaluation of impact damage is frequently achieved post-impact using visual inspection, ultrasonic C-scan or other NDI methods. Ultra-high speed cameras and developments in image processing have made possible the measurement of surface deformations and stresses in real time during dynamic cracking. In this paper, a method is presented to correlate the force- displacement data from the sensors to the slow motion tracking of the transient failure cracks using real-time high speed imaging. Natural fibre reinforced composites made of flax fibres and polypropylene matrix was chosen for the study. The creation of macro-cracks during the impact results in the loss of stiffness and a corresponding drop in the force history. However, optical instrumentation shows that the initiation of damage is not always evident and so the assessment of damage requires the use of a local approach. Digital Image Correlation is used to study the strain history of the composite and to identify the initiation and progression of damage. The effect of fly-speckled texture on strain measurement by image correlation is also studied. The developed method can be used for the evaluation of impact damage for different composite materials.

  7. Assessment and evaluation of damage detection method based on modal frequency changes

    Science.gov (United States)

    HoThu, Hien; Mita, Akira

    2013-04-01

    Structural health monitoring (SHM) for evaluating and maintaining structural integrity of a building is a very important research field. This paper proposes the use of squared modal frequencies, to detect damage to individual parts of the structures as well their extent by using a limited number of sensors, as proposed by Mita and Hagiwara1. This damage assessment method evaluated in numerical simulations of a five-story shear structure and in shake-table tests of a five-story steel model. The damage to the structure was simulated by reducing the stiffness of each floor. The study showed that it is possible to identify, localize, and evaluate the magnitude of the real damage in a multi-story structure from shifts in its natural frequencies.

  8. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum.

    Science.gov (United States)

    Alessi, David A; Carr, C Wren; Hackel, Richard P; Negres, Raluca A; Stanion, Kenneth; Fair, James E; Cross, David A; Nissen, James; Luthi, Ronald; Guss, Gabe; Britten, Jerald A; Gourdin, William H; Haefner, Constantin

    2015-06-15

    Precise assessment of the high fluence performance of pulse compressor gratings is necessary to determine the safe operational limits of short-pulse high energy lasers. We have measured the picosecond laser damage behavior of multilayer dielectric (MLD) diffraction gratings used in the compression of chirped pulses on the Advanced Radiographic Capability (ARC) kilojoule petawatt laser system at the Lawrence Livermore National Laboratory (LLNL). We present optical damage density measurements of MLD gratings using the raster scan method in order to estimate operational performance. We also report results of R-on-1 tests performed with varying pulse duration (1-30 ps) in air, and clean vacuum. Measurements were also performed in vacuum with controlled exposure to organic contamination to simulate the grating use environment. Results show sparse defects with lower damage resistance which were not detected by small-area damage test methods.

  9. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  10. Protective Effects of Salidroside on Mitochondrial Functions against Exertional Heat Stroke-Induced Organ Damage in the Rat

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available Exertional heat stroke (EHS results in a constellation of systemic inflammatory responses resulting in multiorgan failure and an extremely high mortality. The present study was designed to evaluate the protective effects of salidroside on EHS by improving mitochondrial functions in the rat model. Liver and heart mitochondria were observed by transmission electron microscopy and mitochondrial membrane potential (ΔΨm was detected by a fluorescent probe. Intramitochondrial free Ca2+ concentration, mitochondrial respiratory control ratio (RCR, reactive oxygen species (ROS levels, superoxide dismutase (SOD, and malondialdehyde (MDA activity were detected by the corresponding kits. RT-PCR was performed to estimate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α and manganese form of SOD (MnSOD mRNA expression. The results demonstrated that salidroside was able to relieve EHS damage by reducing the swelling of mitochondria, ROS levels, and MDA activity, as well as increasing ΔΨm, RCR, free Ca2+ concentration, SOD, PGC-1α, and MnSOD mRNA levels. In conclusion, salidroside has protective effects on mitochondrial functions against exertional heat stroke-induced organ damage in the rat.

  11. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  12. Hurricane damage assessment for residential construction considering the non-stationarity in hurricane intensity and frequency

    Institute of Scientific and Technical Information of China (English)

    WANG Cao; LI Quanwang; PANG Long; ZOU Aming; ZHANG Long

    2016-01-01

    Natural hazards such as hurricanes may cause extensive economic losses and social disruption for civil structures and infrastructures in coastal areas, implying the importance of understanding the construction performance subjected to hurricanes and assessing the hurricane damages properly. The intensity and frequency of hurricanes have been reported to change with time due to the potential impact of climate change. In this paper, a probability-based model of hurricane damage assessment for coastal constructions is proposed taking into account the non-stationarity in hurricane intensity and frequency. The non-homogeneous Poisson process is employed to model the non-stationarity in hurricane occurrence while the non-stationarity in hurricane intensity is reflected by the time-variant statistical parameters (e.g., mean value and/or standard deviation), with which the mean value and variation of the cumulative hurricane damage are evaluated explicitly. The Miami-Dade County, Florida, USA, is chosen to illustrate the hurricane damage assessment method proposed in this paper. The role of non-stationarity in hurricane intensity and occurrence rate due to climate change in hurricane damage is investigated using some representative changing patterns of hurricane parameters.

  13. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores

    NARCIS (Netherlands)

    Warda, A.K.; Besten, den H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N.

    2015-01-01

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments

  14. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores

    NARCIS (Netherlands)

    Warda, A.K.; Besten, den H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N.

    2015-01-01

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments

  15. Tsunami damages assessment: vulnerability functions on buildings based on field and earth observation survey.

    Science.gov (United States)

    Gauraz, A. L.; Valencia, N.; Koscielny, M.; Guillande, R.; Gardi, A.; Leone, F.; Salaun, T.

    2009-04-01

    The assessment of damages caused by tsunami scenarios on coastal buildings requires using vulnerability matrixes or functions to carry out a relation between the magnitude of the phenomena and the damage expected. These functions represent the probability for a building belonging to a class of vulnerability to suffer from a mean damage level. The physical vulnerability of buildings depends on two parameters: the solicitation level applied by the tsunami on buildings and their resistance capacity. According to the authors after post-tsunami observations (Reese et al. 2007; Ruangrassamee et al. 2006; Leone et al. 2006; Peiris 2006), the level of damage is clearly linked to the water elevation of the inundated areas and the type of observed buildings. Very few works propose relations based on velocity or hydrodynamic pressure of the waves. An approach developed for the estimation of the building vulnerability consists in deriving empirical damage functions starting from field observations. As part of the SCHEMA European Project on the vulnerability assessment for tsunami hazards in the Atlantic and Mediterranean area, vulnerability functions have been elaborated for different classes of buildings in order to produce vulnerability maps for exposed areas with emphasis on extraction of building characteristics using remote sensing data. The damage detection has been carried out by field data collected after the 24 December 2006 tsunami event on the southwest area of Banda Aceh (Sumatra, Thailand) completed by photo-interpretation of satellite images to get representative functions with large population of samples. The building classes consist in several categories depending mainly on the type of construction material (timber/bamboo, traditional brick, reinforced concrete …), the type of structure (beam, pillars, etc) and the number of storeys. The level of damage has been also classified in five categories, from D0 (no damage) to D5 (total destruction). Vulnerability

  16. Environmental assessment for radioisotope heat source fuel processing and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  17. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow

    Science.gov (United States)

    Knight, Doyle; Chazot, Olivier; Austin, Joanna; Badr, Mohammad Ali; Candler, Graham; Celik, Bayram; Rosa, Donato de; Donelli, Raffaele; Komives, Jeffrey; Lani, Andrea; Levin, Deborah; Nompelis, Ioannis; Panesi, Marco; Pezzella, Giuseppe; Reimann, Bodo; Tumuklu, Ozgur; Yuceil, Kemal

    2017-04-01

    The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.

  18. A New Procedure for Damage Assessment of Prestressed Concrete Beams Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    K. Sumangala

    2011-01-01

    Full Text Available A damage assessment procedure has been developed using artificial neural network (ANN for prestressed concrete beams. The methodology had been formulated using the results obtained from an experimental study conducted in the laboratory. Prestressed concrete (PSC rectangular beams were cast, and pitting corrosion was introduced in the prestressing wires and was allowed to be snapped using accelerated corrosion process. Both static and dynamic tests were conducted to study the behaviour of perfect and damaged beams. The measured output from both static and dynamic tests was taken as input to train the neural network. Back propagation network was chosen for this purpose, which was written using the programming package MATLAB. The trained network was tested using separate test data obtained from the tests. A damage assessment procedure was developed using the trained network, it was validated using the data available in literature, and the outcome is presented in this paper.

  19. Sperm DNA damage and its clinical relevance in assessing reproductive outcome

    Institute of Scientific and Technical Information of China (English)

    R.K.Sharma; T.Said; A.Agarwal

    2004-01-01

    The routine examination of semen, which assesses sperm concentration, percentage motility and morphology,does not identify subtle defects in sperm chromatin architecture. The focus on the genomic integrity of the male gamete has intensified recently due to the growing concern that genetic diseases may be transmitted via assisted reproductive techniques (ART). Accordingly, the intent of this review is to describe the details of the informationpertaining to mitochondfial/nuclear sperm DNA damage with an emphasis on its clinical significance and its relationship with male infertility. Assessment of sperm DNA damage appears to be a potential tool for evaluating semen samples prior to their use in ART. Testing DNA integrity may help select spermatozoa with intact DNA or with the least amount of DNA damage for use in assisted conception. In turn, this may alleviate the financial, social and emotional problems associated with failed ART attempts.

  20. Involvement of ERK1/2 signalling and growth-related molecules' expression in response to heat stress-induced damage in rat jejunum and IEC-6 cells.

    Science.gov (United States)

    Yu, Jin; Yin, Peng; Yin, Jingdong; Liu, Fenghua; Zhu, Xiaoyu; Cheng, Guiling; Guo, Kaijun; Yin, Yulong; Xu, Jianqin

    2010-01-01

    Our previous studies found small intestine epithelial tissues from several different animals (including rats, pigs and chickens) became significantly damaged following exposure to extreme heat. However, damaged tissue was rapidly repaired or regenerated in the following few days. Growth-related molecules are critical for cellular survival and promote endothelial cell proliferation and migration. The ERK1/2 signalling pathway is reported to regulate the growth and adaptation of endothelial cells to both physiological and pathological stimuli. However, little information is available concerning both growth-related molecules and ERK1/2 in response to heat stress. Herein, we employed both live rats and rat IEC-6 cells to investigate growth-related molecule expression and ERK1/2 activation in heat stress. Heat stress caused significant morphological damage to rat intestinal tissue and IEC-6 cells, reduced cell growth and proliferation, induced apoptosis, altered growth-related molecule mRNA expression and increased ERK1/2 phosphorylation. Addition of U0126 (a selective inhibitor of MEK kinase responsible for ERK phosphorylation) combined with heat stress exacerbated the morphological damage and apoptosis. With the addition of U0126, further up- or down-regulation of Egfr, Ctgf, Tgif, Vegfa, Okl38 and Gdf15 in response to heat stress was observed. In conclusion, extreme heat stress caused obvious damage to rat jejunum and IEC-6 cells. Both growth-related molecule expression and ERK1/2 phosphorylation were involved in response to heat stress. ERK1/2 inhibition exacerbated apoptosis and affected growth factor mRNA expression in heat stress.

  1. Bruxism is unlikely to cause damage to the periodontium: findings from a systematic literature assessment

    NARCIS (Netherlands)

    Manfredini, D.; Ahlberg, J.; Mura, R.; Lobbezoo, F.

    2015-01-01

    Background: This paper systematically reviews the MEDLINE and SCOPUS literature to answer the following question: Is there any evidence that bruxism may cause periodontal damage per se? Methods: Clinical studies on humans, assessing the potential relationship between bruxism and periodontal lesions

  2. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Yang Heui; Shin, Hyun Mok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2001-12-15

    The most part of the nuclear power plants operating currently in Korea are more than 20 years old and obviously we cannot pretend that their original performance is actually maintained. In addition, earthquake occurrences show an increasing trend all over the world, and Korea can no more be considered as a zone safe from earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  3. MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab

    DEFF Research Database (Denmark)

    Peterfy, Charles; Emery, Paul; Tak, Paul P;

    2014-01-01

    OBJECTIVE: To evaluate changes in structural damage and joint inflammation assessed by MRI following rituximab treatment in a Phase 3 study of patients with active rheumatoid arthritis (RA) despite methotrexate (MTX) who were naive to biological therapy. METHODS: Patients were randomised to receive...

  4. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Ho Hyun; Cho, Yang Hui [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-12-15

    Some of nuclear power plants operating currently in Korea have been passed about 20 years after construction. Moreover, in the case of KORI I the service year is over 20 years, so their abilities are different from initial abilities. Also, earthquake outbreak increase, our country is not safe area for earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  5. 78 FR 53425 - Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal...

    Science.gov (United States)

    2013-08-29

    ... policy for these fiscal years. For cases not settled and cost claims not paid prior to the effective date of the fiscal year in question, costs will be recalculated using the revised rates in this policy for... Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal Year 2012...

  6. 75 FR 21592 - Proposed Information Collection; Comment Request; Natural Resource Damage Assessment Restoration...

    Science.gov (United States)

    2010-04-26

    ... the collection of this information is to assist state and federal Natural Resource Trustees in more efficiently carrying out the restoration planning phase of Natural Resource Damage Assessments (NRDA), in... restoration projects. This information will be used by the Natural Resource Trustees to develop...

  7. 78 FR 42755 - Proposed Information Collection; Comment Request; Natural Resource Damage Assessment Restoration...

    Science.gov (United States)

    2013-07-17

    ... collection is to assist state and federal Natural Resource Trustees in more efficiently carrying out the restoration planning phase of Natural Resource Damage Assessments (NRDA), in compliance with the National... information will be used by the Natural Resource Trustees to develop potential restoration alternatives...

  8. Aspects of methodology in assessing inflammation and damage in rheumatoid arthritis and axial spondyloarthritis

    NARCIS (Netherlands)

    Navarro Compan, Maria Victoria

    2015-01-01

    This thesis is two-fold focused on rheumatoid arthritis and axial spondyloarthritis. It covers outstanding aspects of research methodology in the assessment of inflammation and damage in patients with these diseases. The studies pertaining to the first part of the thesis focus on rheumatoid arthrit

  9. Assessment and management of animal damage in Pacific Northwest forests: an annotated bibliography.

    Science.gov (United States)

    D.M. Loucks; H.C. Black; M.L. Roush; S.R. Radosevich

    1990-01-01

    This annotated bibliography of published literature provides a comprehensive source of information on animal damage assessment and management for forest land managers and others in the Pacific Northwest. Citations and abstracts from more than 900 papers are indexed by subject and author. The publication complements and supplements A Silvicultural Approach to...

  10. Damage functions for the vulnerability assessment of masonry buildings subjected to tunneling

    NARCIS (Netherlands)

    Giardina, C.; Hendriks, M.A.N.; Rots, J.G.

    2015-01-01

    This paper describes a new framework for the assessment of potential damage caused by tunneling-induced settlement to surface masonry buildings. Finite element models in two and three dimensions, validated through comparison with experimental results and field observations, are used to investigate

  11. Use of Statistical Information for Damage Assessment of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.

    This paper considers the problem of damage assessment of civil engineering structures using statistical information. The aim of the paper is to review how researchers recently have tried to solve the problem. It is pointed out that the problem consists of not only how to use the statistical...

  12. Implications for platform re-assessment based on in-service damage resulting from accidental loadings

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, J.V.; Stacey, A. [Health and Safety Executive, London (United Kingdom); Frieze, P.A.; Nichols, N.W.

    1996-12-01

    Current offshore design codes enable the capacity of structural components to be determined, but the equations apply only to the undamaged state. The ability to assess the performance of such components containing damage has only recently been developed and is important in the re-assessment of structures. In particular knowledge of the performance of members which are dented or bowed as a result of accidental damage is important in establishing the capacity of structures in-service, when for example using pushover analyses. Much research has been taken on the capacity of dented and bowed members. This paper reviews this data and establishes a database using screening criteria. This data is then compared with theoretical predictions from recently developed draft ISO equations. These show that dents and bows can significantly reduce the performance of members. A survey of offshore damage resulting in repairs has shown that 30% of this damage is the result of accidental events such as ship impact and dropped objects. Most damage found to members was in the form of dents, bows and cracks, with member severance in a few cases. The implications of this information for reassessment and offshore inspections are considered.

  13. Damage Identification and Seismic Vulnerability Assessment of a Historic Masonry Chimney

    Directory of Open Access Journals (Sweden)

    Maria-Giovanna Masciotta

    2017-07-01

    Full Text Available The present paper deals with the dynamic characterisation of a historical masonry chimney aimed at identifying the structural damage and assessing its seismic performance. The structure was severely damaged by a lightning accident and in-depth repair works were executed to re-instate its sound configuration. The case study is fully detailed, including the aspects of survey, inspection, diagnosis, and evolution of the dynamic properties of the system throughout the structural intervention. Considering the explicit dependence of the power spectral densities of measured nodal processes on their frequency content, a spectrum-driven algorithm is used to detect and locate the damage. The paper shows that the eigenparameters obtained from the decomposition of the response power spectrum matrix are sensitive to system’s changes caused by evolutionary damage scenarios, thereby resulting excellent indicators for assessing both the presence and position of structural vulnerabilities. The results are compared with the ones from other modal-based damage identification methods and the strengths/limitations of the tools currently available in literature are extensively discussed. Finally, based on the crack pattern surveyed before the repair works, the weakest links of the chimney are identified and the most meaningful collapse mechanisms are analysed to verify the seismic capacity of the structure. According to the results of the kinematic analysis, the chimney does withstand the maximum site peak ground acceleration.

  14. Effects of thinning on wind damage in Pinus thunbergii plantation ——Based on theoretlcal derlvation of risk—ratios for assessing wind damage

    Institute of Scientific and Technical Information of China (English)

    ZHUJiao-jun; LIFeng-qin; CondaYutaka; TakeshiMatsuzaki; MasashiYamamoto

    2003-01-01

    Based on paper of "Theoretical derivation of risk-ratios for assessing wind damage in coastal forest",wind damage in the pine coasteal forest,which was thinned at four levels in December of 1997,was investigated for four successive growing seasons.Besides wind damage,the wind profiles outside and inside the coastal forest stand and the distributions of optical stratification porosity (OSP) were also observed.Based on these data,risk-ratios of wind damage for both individual trees and stands were estimated according to the methods developed in "Theoretical derivation of risk-ratios for assessing wind damage in a coastal forest".The results showed that risk-ratios of wind damage,which were calculated from the meen height and diameter only and from the combination of wind and stand sructure profiles,accurately predicted wind damage in the plantation.Relationships between different thinning ratios and incidence of wind damage showed that stand stability decreased soon after the thinning.This was due to the immediate effects of thinning on increasing the canopy roughness and wind load,and on decreasing the sheltering effects from surrounding trees.However,thinning strategies could improve the stability by long-term effects on growthand development of trees against extreme wind.Only canopy damage was recorded during the experimental period,no stem damage was found,even though the maximum 10-min wind speed outside the coastal forest attained 30.2m s-1.The results obtained in this study indicate that thinning is the most effective silvicultural strategy available for managing coastal forest despite the increased probability of wind damage soon after thinning.

  15. Plant-Damage Assessment Technique for Evaluating Military Vehicular Impacts to Vegetation in the Mojave Desert

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen; W. K. Ostler

    2001-09-01

    A new plant damage assessment technique was developed by plant ecologists from Bechtel Nevada at the U.S. Department of Energy's National Security Administration Nevada Operations Office and funded by the Strategic Environmental Research and Development Program Project CS-1131 in cooperation with the U.S. Army's National Training Center (NTC) at Fort Irwin, California. The technique establishes linear transects the width of vehicle tracts from evidence of vehicle tracks in the soil (usually during a prior training rotation period of 30 days or since the last rain or wind storm), and measures vegetation within the tracks to determine the area of plant parts being run over, the percent of the impacted parts damaged, and the percent of impacted parts expected to recover. It documents prior-damage classes based on estimated of damage that plants have apparently experienced previously (as assessed from field indicators of damage such as plant shape and height). The technique was used to evaluate different vehicle types (rubber-tire wheels vs. tracks) in six area at the NTC with different soils and training intensity levels. The technique provides tabular data that can be sorted and queried to show a variety of trends related to military vehicular impacts. The technique also appears suitable for assessing other non-military off-road traffic impacts. Findings report: (1) differences in plant sensitivity of different vehicular impacts, (2) plant cover and density by species and training area, (3) the degree to which wheels have less impact than tracks, and (4) the mean percent survival is inversely proportional to the degree of prior damage received by the vegetation (i.e., plants previously impacted have lower survival than plants not previously impacted).

  16. Picture Pile: A citizen-powered tool for rapid post-disaster damage assessments

    Science.gov (United States)

    Danylo, Olha; Sturn, Tobias; Giovando, Cristiano; Moorthy, Inian; Fritz, Steffen; See, Linda; Kapur, Ravi; Girardot, Blake; Ajmar, Andrea; Giulio Tonolo, Fabio; Reinicke, Tobias; Mathieu, Pierre Philippe; Duerauer, Martina

    2017-04-01

    According to the World Bank's global risk analysis, around 34% of the total world's population lives in areas of high mortality risk from two or more natural hazards. Therefore, timely and innovative methods to rapidly assess damage to subsequently aid relief and recovery efforts are critical. In this field of post-disaster damage assessment, several crowdsourcing-based technological tools that engage citizens in carrying out various tasks, including data collection, satellite image analysis and online interactive mapping, have recently been developed. One such tool is Picture Pile, a cross-platform application that is designed as a generic and flexible tool for ingesting satellite imagery for rapid classification. As part of the ESA's Crowd4Sat initiative led by Imperative Space, this study develops a workflow for employing Picture Pile for rapid post-disaster damage assessment. We outline how satellite image interpretation tasks within Picture Pile can be crowdsourced using the example of Hurricane Matthew, which affected large regions of Haiti in September 2016. The application provides simple microtasks, where the user is presented with satellite images and is asked a simple yes/no question. A "before" disaster satellite image is displayed next to an "after" disaster image and the user is asked to assess whether there is any visible, detectable damage. The question is formulated precisely to focus the user's attention on a particular aspect of the damage. The user-interface of Picture Pile is also built for users to rapidly classify the images by swiping to indicate their answer, thereby efficiently completing the microstask. The proposed approach will not only help to increase citizen awareness of natural disasters, but also provide them with a unique opportunity to contribute directly to relief efforts. Furthermore, to gain confidence in the crowdsourced results, quality assurance methods were integrated during the testing phase of the application using image

  17. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating.

    Science.gov (United States)

    Stanford, Michael G; Lewis, Brett B; Iberi, Vighter; Fowlkes, Jason D; Tan, Shida; Livengood, Rick; Rack, Philip D

    2016-04-01

    Focused helium and neon ion (He(+)/Ne(+)) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+)/Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. These results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

  18. Evolution of transiently melt damaged tungsten under ITER-relevant divertor plasma heat loading

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, S., E-mail: s.bardin@differ.nl [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Morgan, T.W. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Glad, X. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-les-Nancy (France); Pitts, R.A. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); De Temmerman, G. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-08-15

    A high-repetition-rate ELM simulation system was used at both the Pilot-PSI and Magnum-PSI linear plasma devices to investigate the nature of W damage under multiple shallow melt events and the subsequent surface evolution under ITER relevant plasma fluence and high ELM number. First, repetitive shallow melting of two W monoblocks separated by a 0.5 mm gap was obtained by combined pulsed/steady-state hydrogen plasma loading at normal incidence in the Pilot-PSI device. Surface modifications including melting, cracking and strong net-reshaping of the surface are obtained. During the second step, the pre-damaged W sample was exposed to a high flux plasma regime in the Magnum-PSI device with a grazing angle of 35°. SEM analysis indicates no measurable change to the surface state after the exposure in Magnum-PSI. An increase in transient-induced temperature rise of 40% is however observed, indicating a degradation of thermal properties over time.

  19. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  20. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation.

    Science.gov (United States)

    Freni, G; La Loggia, G; Notaro, V

    2010-01-01

    Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly

  1. DNA damage in caged Gammarus fossarum amphipods: A tool for freshwater genotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, Emilie [Universite de Lyon, INRA-ENTPE, Laboratoire des Sciences de l' Environnement, rue Maurice Audin, Vaulx en Velin F-69518 (France); Cemagref, Unite de Recherche des Milieux Aquatiques, (UR MALY), 3 bis quai Chauveau, 69336 Lyon, Cedex 9 (France); Devaux, Alain [Universite de Lyon, INRA-ENTPE, Laboratoire des Sciences de l' Environnement, rue Maurice Audin, Vaulx en Velin F-69518 (France); Mons, Raphael [Cemagref, Unite de Recherche des Milieux Aquatiques, (UR MALY), 3 bis quai Chauveau, 69336 Lyon, Cedex 9 (France); Bony, Sylvie [Universite de Lyon, INRA-ENTPE, Laboratoire des Sciences de l' Environnement, rue Maurice Audin, Vaulx en Velin F-69518 (France); Garric, Jeanne [Cemagref, Unite de Recherche des Milieux Aquatiques, (UR MALY), 3 bis quai Chauveau, 69336 Lyon, Cedex 9 (France); Geffard, Alain [EA 2069 URVVC-SE, Laboratoire d' Eco-Toxicologie, UFR Sciences, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Geffard, Olivier, E-mail: olivier.geffard@cemagref.fr [Cemagref, Unite de Recherche des Milieux Aquatiques, (UR MALY), 3 bis quai Chauveau, 69336 Lyon, Cedex 9 (France)

    2011-06-15

    The aim of this study was to propose a tool for freshwater environmental genotoxicity assessment using Gammarus fossarum, a high ecologically relevant species. In a first part, gammarids were caged upstream and downstream wastewater treatment plant effluent output. The sensitivity of genotoxic responses of haemocytes, oocytes and spermatozoa was compared using the Comet assay. Spermatozoa appeared to be the most sensitive, suitable and relevant cell type for genotoxicity risk assessment. In a second part, a watershed-scale study was conducted over 2 years to evaluate the applicability of our caging procedure. The genotoxic impact of a contamination was followed, taking into account seasonal variability. DNA damage in spermatozoa exhibited low basal level and low variability in control upstream sites, providing a reliable discrimination of polluted sites. Finally, DNA damage in caged G. fossarum has been proved to be a sensitive and reproducible tool for freshwater genotoxicity assessment. - Highlights: > Two different contamination contexts: WWTP effluents and polymetallic contamination. > DNA damage in caged Gammarus fossarum is a sensitive tool for freshwater quality assessment. > Spermatozoa is the most relevant cell type for biomonitoring freshwater genotoxicity. > Combining biomarker responses with analytical chemistry provides rich ecotoxicological information. - We propose an approach to assess freshwater genotoxicity in the field based on caged Gammarus fossarum (Crustacea, amphipoda).

  2. Non-contact hematoma damage and healing assessment using reflectance photoplethysmographic imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Clausi, David A.; Wong, Alexander

    2016-03-01

    Impact trauma may cause a hematoma, which is the leakage of venous blood into surrounding tissues. Large hematomas can be dangerous as they may inhibit local blood ow. Hematomas are often diagnosed visually, which may be problematic if the hematoma leaks deeper than the visible penetration depth. Furthermore, vascular wound healing is often monitored at home without the aid of a clinician. We therefore investigated the use of near infrared (NIR) re ectance photoplethysmographic imaging (PPGI) to assess vascular damage resulting from a hematoma, and monitor the healing process. In this case study, the participant experienced internal vascular damage in the form of a hematoma. Using a PPGI system with dual-mode temporally coded illumination for ambient-agnostic data acquisition and mounted optical elements, the tissue was illuminated with a spatially uniform irradiance pattern of 850 nm wavelength light for increased tissue penetration and high oxy-to-deoxyhemoglobin absorption ratio. Initial and follow-up PPGI data collection was performed to assess vascular damage and healing. The tissue PPGI sequences were spectrally analyzed, producing spectral maps of the tissue area. Experimental results show that spatial differences in spectral information can be observed around the damaged area. In particular, the damaged site exhibited lower pulsatility than the surrounding healthy tissue. This pulsatility was largely restored in the follow-up data, suggesting that the tissue had undergone vascular healing. These results indicate that hematomas can be assessed and monitored in a non-contact visual manner, and suggests that PPGI can be used for tissue health assessment, with potential extensions to peripheral vascular disease.

  3. Assessment of two-level heat pump installations’ power efficiency for heat supply systems

    Directory of Open Access Journals (Sweden)

    Аlla Е. Denysova

    2015-06-01

    Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources has essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two-level heat pump installation operating as heat source the Odessa city ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of geothermal heat supply. Calculated are the values of electric energy consumption N by the compressors’ drive, and the heat supply system transformation coefficient µ for a source of geothermal heat from ground waters of Odessa city allowing to estimate efficiency of two-level heat pump installations.

  4. Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-05-01

    Full Text Available Fast crisis response after natural disasters, such as earthquakes and tropical storms, is necessary to support, for instance, rescue, humanitarian, and reconstruction operations in the crisis area. Therefore, rapid damage mapping after a disaster is crucial, i.e., to detect the affected area, including grade and type of damage. Thereby, satellite remote sensing plays a key role due to its fast response, wide field of view, and low cost. With the increasing availability of remote sensing data, numerous methods have been developed for damage assessment. This article gives a comprehensive review of these techniques focusing on multi-temporal SAR procedures for rapid damage assessment: interferometric coherence and intensity correlation. The review is divided into six parts: First, methods based on coherence; second, the ones using intensity correlation; and third, techniques using both methodologies combined to increase the accuracy of the damage assessment are reviewed. Next, studies using additional data (e.g., GIS and optical imagery to support the damage assessment and increase its accuracy are reported. Moreover, selected studies on post-event SAR damage assessment techniques and examples of other applications of the interferometric coherence are presented. Then, the preconditions for a successful worldwide application of multi-temporal SAR methods for damage assessment and the limitations of current SAR satellite missions are reported. Finally, an outlook to the Sentinel-1 SAR mission shows possible solutions of these limitations, enabling a worldwide applicability of the presented damage assessment methods.

  5. Probable causes of damage of heat-exchange tubes of low-pressure-exchanges of PND-3 type and repair methods

    Science.gov (United States)

    Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.

    2017-08-01

    The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.

  6. An Assessment of the Effectiveness of Tree-Based Models for Multi-Variate Flood Damage Assessment in Australia

    Directory of Open Access Journals (Sweden)

    Roozbeh Hasanzadeh Nafari

    2016-07-01

    Full Text Available Flood is a frequent natural hazard that has significant financial consequences for Australia. In Australia, physical losses caused by floods are commonly estimated by stage-damage functions. These methods usually consider only the depth of the water and the type of buildings at risk. However, flood damage is a complicated process, and it is dependent on a variety of factors which are rarely taken into account. This study explores the interaction, importance, and influence of water depth, flow velocity, water contamination, precautionary measures, emergency measures, flood experience, floor area, building value, building quality, and socioeconomic status. The study uses tree-based models (regression trees and bagging decision trees and a dataset collected from 2012 to 2013 flood events in Queensland, which includes information on structural damages, impact parameters, and resistance variables. The tree-based approaches show water depth, floor area, precautionary measures, building value, and building quality to be important damage-influencing parameters. Furthermore, the performance of the tree-based models is validated and contrasted with the outcomes of a multi-parameter loss function (FLFArs from Australia. The tree-based models are shown to be more accurate than the stage-damage function. Consequently, considering more parameters and taking advantage of tree-based models is recommended. The outcome is important for improving established Australian flood loss models and assisting decision-makers and insurance companies dealing with flood risk assessment.

  7. 78 FR 16656 - Draft Damage Assessment and Restoration Plan and Environmental Assessment for Natural Resource...

    Science.gov (United States)

    2013-03-18

    ... Environmental Conservation, Department of Fish and Game, Department of Natural Resources and Department of Law. The Trustees act on behalf of the public under OPA and State law to protect and restore natural... natural resource damages under OPA and State law. Dated: March 5, 2013. Christopher C. Cartwright...

  8. Assessment of thermal sensitivity of CT during heating of liver : an ex vivo study

    NARCIS (Netherlands)

    Pandeya, G. D.; Greuter, M. J. W.; Schmidt, B.; Flohr, T.; Oudkerk, M.

    2012-01-01

    Objectives: The purpose of this study was to assess the thermal sensitivity of CT during heating of ex-vivo animal liver. Methods: Pig liver was indirectly heated from 20 to 90 degrees C by passage of hot air through a plastic tube. The temperature in the heated liver was measured using calibrated t

  9. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    Science.gov (United States)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Currently, impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  10. Beaver lodge distributions and damage assessments in a forested wetland ecosystem in the southern United States

    Science.gov (United States)

    King, S.L.; Keeland, B.D.; Moore, J.L.

    1998-01-01

    Caddo Lake, USA, a Ramsar Wetland of International Importance, is a lacustrine wetland complex consisting of stands of flooded baldcypress intermixed with open water and emergent wetland habitats. Recently, concern has been expressed over a perceived increase in the beaver population and the impact of beaver on the long-term sustainability of the baldcypress ecosystem. We used intensive beaver lodge surveys to determine the distribution and relative abundance of beaver and the amount, type, and distribution of beaver damage to mature trees and seedlings at Caddo Lake. A total of 229 lodges were located with a combination of aerial and boat/ground surveys. Most lodges were located in open water and edge habitats. About 95% of the lodges were occupied by beaver or nutria. Some form of damage was exhibited by one or more trees near 85% of the lodges. Intensive damage assessments around 35 lodges indicated that most damage to trees, baldcypress in particular, was restricted to peeling or stripping of bark which is believed to have minimal effect on tree survival. Surveys of regeneration indicated that baldcypress seedlings were very abundant; however, over 99.9% were less than 30 cm tall. The lack of recruitment into the larger size classes appears to be a result of high stand densities and water management practices. At this time, the young age and density of the baldcypress forests suggest that recruitment is not a major concern and herbivore damage appears to be having a minimal effect on the forest.

  11. Cross spectral energy method for damage assessment of the cable-stayed bridge under operational conditions

    Institute of Scientific and Technical Information of China (English)

    Yang Hezhen; Li Huajun

    2008-01-01

    The new cross spectral energy method (CSEM) is proposed for maintaining cable-stayed bridge safety by the measurable output-only vibration response.Damage assessment of real structures is limited by a series of problems such as unknown ambient excitation forces, errors introduced by system identification,incomplete dynamic measurements, etc.Thus the methodology based on cross spectral energy of each substructure member is derived to meet these challenges.The novel damage index does not require any modal or parameter identification technology.It can be calculated directly from vibration test data.In order to evaluate the efficiency of the presented methodology, a three dimensional (3D) actual cable-stayed bridge model with one or more damaged positions under operational conditions was studied.In order to testify the reliability of damage detection method, the response data was polluted by the random noise.It is proved that the proposed method can successfully localize all damage cases even in noisy data.With the help of examples, the CSEM can potentially be applied as a nondestructive evaluation technique (NDT) for on-line health monitoring of cable-stayed bridges with minimum disruption of its operations.

  12. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Buddhi Bahadur Achhami

    2015-12-01

    Full Text Available Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage percentage by stem borer was up to 18.11%. Length of the feeding tunnel in maize stem was significantly higher in January than July. In case of exit holes made by borer counted more than four holes per plant that were planted in the month of January. All in all, except the tunnel length measurement per plant, we observed similar pattern in other borer damage parameters such as exit whole counts and plant damage percentage within the tested varieties. Stem borer damage was not significantly affect on grain yield.

  13. Damage assessment for wind turbine blades based on a multivariate statistical approach

    Science.gov (United States)

    García, David; Tcherniak, Dmitri; Trendafilova, Irina

    2015-07-01

    This paper presents a vibration based structural health monitoring methodology for damage assessment on wind turbine blades made of composite laminates. Normally, wind turbine blades are manufactured by two half shells made by composite laminates which are glued together. This connection must be carefully controlled due to its high probability to disbond which might result in collapse of the whole structure. The delamination between both parts must be monitored not only for detection but also for localisation and severity determination. This investigation consists in a real time monitoring methodology which is based on singular spectrum analysis (SSA) for damage and delamination detection. SSA is able to decompose the vibratory response in a certain number of components based on their covariance distribution. These components, known as Principal Components (PCs), contain information about of the oscillatory patterns of the vibratory response. The PCs are used to create a new space where the data can be projected for better visualization and interpretation. The method suggested is applied herein for a wind turbine blade where the free-vibration responses were recorded and processed by the methodology. Damage for different scenarios viz different sizes and locations was introduced on the blade. The results demonstrate a clear damage detection and localization for all damage scenarios and for the different sizes.

  14. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On May 12, 2008, a strong earthquake with a magnitude of 8.0 (Ms) struck Wenchuan town, in the eastern Sichuan area of west China. Following the earthquake on May 18, the Southwest Jiaotong University organized a damage survey team and dispatched it to the affected area for the investigation into the damage and collection of information and data. This paper outlines the findings of this investigation on the earthquake disaster to mountain tunnels and geotechnical engineering. The systematic investigation, involving geological conditions, design documents, construction and maintenance records of the tunnels, has been conducted and the degree of damage to investigated tunnels has been assessed according to the width and length of cracks, the stability of the slope above the tunnel, and the condition of the groundwater inrush. The results show that the major damage of the mountain tunnels was mainly concentrated in the tunnel portals due to widespread landslides and rockfalls, and the inner part of investigated tunnels suffered moderate damages mainly due to fault displacements. It is hoped that the information shared herein could enhance the outstanding of seismic behavior of mountain tunnels and improve seismic design and construction procedures.

  15. Damage assessment for seismic response of recycled concrete filled steel tube columns

    Science.gov (United States)

    Huang, Yijie; Xiao, Jianzhuang; Shen, Luming

    2016-09-01

    A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).

  16. Assessing the physical vulnerability of check dams through an empirical damage index

    Directory of Open Access Journals (Sweden)

    Andrea Dell'Agnese

    2013-06-01

    Full Text Available A comprehensive analysis of flood risk in mountain streams has to include an assessment of the vulnerability of the protection systems, in addition to an assessment of the vulnerability of the constructed environment on alluvial fans and floodplains. Structures forming the protection systems are of a dual nature, i.e. they are designed to mitigate natural process-related hazards and, on the other hand, are prone to be damaged during their lifecycle by the same processes they should mitigate. Therefore, their effectiveness declines over time. Hence, the knowledge of how effectively control structures perform is essential for risk management. A procedure was developed to assess the physical vulnerability of check dams based on empirical evidence collected in South Tyrol, Northern Italy. A damage index defined on pre- and postevent comparisons of check dam conditions was evaluated for 362 structures in 18 mountain streams along with the relevant processes and the structural characteristics affecting it. Although the available dataset did not allow conclusive functional relationships between damage index and impact variables to be established, it was possible to assess the average expected residual functionality of check dams according to structure characteristics, and event type and intensity. These results may help plan appropriate check dam maintenance.

  17. Solar technology assessment project. Volume 3: Active space heating and hot water supply with solar energy

    Science.gov (United States)

    Karaki, S.; Loef, G. O. G.

    1981-04-01

    Several types of solar water heaters are described and assessed. These include thermosiphon water heaters and pump circulation water heaters. Auxiliary water heating is briefly discussed, and new and retrofit systems are compared. Liquid-based space heating systems and solar air heaters are described and assessed, auxiliary space heating are discussed, and new and retrofit solar space heating systems are compared. The status of flat plate collectors, evacuated tube collectors, and thermal storage systems is examined. Systems improvements, reliability, durability and maintenance are discussed. The economic assessment of space and water heating systems includes a comparison of new systems costs with conventional fuels, and sales history and projections. The variety of participants in the solar industry and users of solar heat is discussed, and various incentives and barriers to solar heating are examined. Several policy implications are discussed, and specific government actions are recommended.

  18. Effect of heat damage in an autoclave on the reactive lysine contents of soy products and corn distillers dried grains with solubles. Use of the results to check on lysine damage in common qualities of these ingredients.

    Science.gov (United States)

    Fontaine, Johannes; Zimmer, Ulrike; Moughan, Paul J; Rutherfurd, Shane M

    2007-12-26

    The suitability of the homoarginine reaction for determining the reactive lysine in soy products and corn distillers dried grain with solubles (DDGS) was tested. For this purpose, some batches were subjected to deliberate heat damage for up to 30 min in an autoclave with 135 degrees C hot steam, and the samples were analyzed for total lysine and reactive lysine. In addition, 84 samples of common soy and 80 samples of corn DDGS were tested for their content of total and reactive lysine, and the contents were compared with those of the autoclave tests. For soy products conclusive results were obtained. In the case of heat treatment, both total lysine and reactive lysine decrease, but the latter is clearly a more sensitive indicator of lysine damage. Most normal products are quite similar, with toasting-induced damage to reactive lysine of ca. 15% compared to untoasted beans. The cause of the constantly occurring residual lysine after guanidination and the poorer reaction balance in the case of damage were explained. For common DDGS samples, however, less favorable results were obtained. Reactive and total lysine decreased almost in parallel due to heat damage, showing a great gap between them. Results showed indeed that variation of total and reactive lysine in DDGS is high, proving that its production conditions are not yet optimal for a feed ingredient.

  19. Assessing heat treatment of chicken breast cuts by impedance spectroscopy.

    Science.gov (United States)

    Schmidt, Franciny C; Fuentes, Ana; Masot, Rafael; Alcañiz, Miguel; Laurindo, João B; Barat, José M

    2017-03-01

    The aim of this work was to develop a new system based on impedance spectroscopy to assess the heat treatment of previously cooked chicken meat by two experiments; in the first, samples were cooked at different temperatures (from 60 to 90 ℃) until core temperature of the meat reached the water bath temperature. In the second approach, temperature was 80 ℃ and the samples were cooked for different times (from 5 to 55 min). Impedance was measured once samples had cooled. The examined processing parameters were the maximum temperature reached in thermal centre of the samples, weight loss, moisture and the integral of the temperature profile during the cooking-cooling process. The correlation between the processing parameters and impedance was studied by partial least square regressions. The models were able to predict the studied parameters. Our results are essential for developing a new system to control the technological, sensory and safety aspects of cooked meat products on the whole meat processing line.

  20. MRI evaluation of topical heat and static stretching as therapeutic modalities for the treatment of eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Jayaraman, R C; Reid, R W; Foley, J M; Prior, B M; Dudley, G A; Weingand, K W; Meyer, R A

    2004-10-01

    The aim of this study was to monitor the effects of topical heat and/or static stretch treatments on the recovery of muscle damage by eccentric exercise. For this purpose, 32 untrained male subjects performed intense eccentric knee extension exercise, followed by 2 weeks of treatment (heat, stretch, heat plus stretch) or no treatment (control, n=8/group). Isometric strength testing, pain ratings, and multi-echo magnetic resonance imaging of the thigh were performed before and at 2, 3, 4, 8, and 15 days following the exercise. Increased T2 relaxation time, muscle swelling, pain ratings, and strength loss confirmed significant muscle damage during the post-exercise period. Pain ratings and muscle volume recovered to baseline by 15 days, although muscle strength remained lower [77 (4) vs. 95 (3) kg pre-exercise, mean (SE)] and T2 values higher [32.2 (0.8) vs. 28.6 (0.2) ms pre-exercise]. Our results indicate that heat and/or static stretching does not consistently reduce soreness, swelling or muscle damage. The practical implication of our findings is that clinicians should be aware that prescribing heat and/or static stretching following intense eccentric or unaccustomed exercise will not enhance the recovery of damaged muscles.

  1. Assessment of thermal efficiency of heat recovery coke making

    Science.gov (United States)

    Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.

    2017-02-01

    The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.

  2. The assessment of spray drift damage for ten major crops in Belgium.

    Science.gov (United States)

    de Schampheleire, M; Spanoghe, P; Steurbaut, W; Nuyttens, D; Sonck, B

    2005-01-01

    According to the Council Directive 91/414/EC pesticide damage should be assessed by considering the risk for persons arising from occupational, non-dietary exposure and risk to the environment. In this research an assessment for the pesticide damage by droplet spray drift was set up. The percentages of spray drift were estimated with the Ganzelmeier drift curves and the IMAG drift calculator. Knowing the percentages of drift and the applied doses of pesticide formulations in a given crop, the human and environmental exposures (water and bottom) were predicted. Thereupon risk indices were calculated for water organisms, soil organisms and bystanders. A risk index is the ratio of a predicted exposure to a toxicological reference value and gives an indication of the incidence and the severity of the adverse effects likely to occur. Considering the risk index it is possible to define the minimal width of an unsprayed field margin or "buffer zone" to reduce this risk at an acceptable level.

  3. Catse Analysis of Damage Reason of Gas Heat Transfer and Solutions%煤气换热器损坏原因分析及解决方案

    Institute of Scientific and Technical Information of China (English)

    郭红永; 张宁; 王三多; 刘常鹏

    2011-01-01

    针对鞍钢1700 ASP生产线加热炉煤气换热器损坏问题,从煤气换热器本身构造及外部环境进行系统分析,并采用化学检测等方法确定了换热器损坏的直接原因,具体为煤气管道中的水进入换热器内造成温度应力、内部煤气分流不均、空气换热器换热效果不佳等,并提出了改进煤气换热器结构、加大煤气管道排水能力、增加空气换热器换热而积的策略.%Aiming at the gas heat transfer damage problem of heating furnace in Ansteel 1700 ASP production Line, systemic analysis was done from the gas heat transfer itself structure and external environment, and the direct damage reasons were determined by using chemical testing methods, which included the temperature stress caused by the water of gas pipes into the heat transfer, the uneven distributed internal gas, the bad heat transfer effect of the air transfer, and so on. The treatment strategies were promoted such as improving the structure of gas heat transfer, increasing the gas pipes drainage efforts, and increasing the heat transfer area of air heat transfer.

  4. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    OpenAIRE

    2013-01-01

    Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months,...

  5. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    OpenAIRE

    2015-01-01

    Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months,...

  6. Comet assay: a reliable tool for the assessment of DNA damage in different models.

    Science.gov (United States)

    Dhawan, Alok; Bajpayee, Mahima; Parmar, Devendra

    2009-02-01

    New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.

  7. Engineering economic assessment of residential wood heating in NY

    Science.gov (United States)

    We provide insight into the recent resurgence in residential wood heating in New York by: (i) examining the lifetime costs of outdoor wood hydronic heaters (OWHHs) and other whole-house residential wood heat devices,(ii) comparing these lifetime costs with those of competing tech...

  8. Building damage risk assessment on mining terrains in Poland with GIS application

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A.; Hejmanowski, R. [AGH University of Science & Technology, Krakow (Poland)

    2010-02-15

    The aim of the paper was to present an approach to building damage risk assessment on mining induced areas. The presented method was developed in Poland and then adopted in the other European countries. The method shown is based on a comparison between buildings strength and terrain deformation. Prediction principles of the mining terrain deformation and terrain categorization were described in the paper. Moreover a point method for a building strength to mining impact evaluation was discussed. It should be emphasized that the presented method is optimal for densely build-up areas. The authors proposed supporting actually applied method by GIS analyses. As a case study a densely build-up area influenced by an underground mining exploitation of one of the biggest Polish coal mines has been chosen. The application of the presented method supported by GIS on chosen area enables more automated assessment of building damage caused by mining activity. The procedure outlined in this paper may also be satisfactorily applied in the other counties which cope with the problem of building damage risk assessment optimization.

  9. Using ISERV and Commercial Satellite Imagery to Assess and Monitor Recovery Efforts in Urban Damaged Areas

    Science.gov (United States)

    Bell, Jordan R.; Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.

    2014-01-01

    NASA's Short-term Prediction, Research, and Transition (SPoRT) Center uses a wide array of satellites to monitor and assess the impacts of natural disasters, with support from NASA's Applied Sciences Program. One of the newest sensors SPoRT is utilizing in these activities is the International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. ISERV provides a unique view of the areas impacted and will play a big role in monitoring the recovery these areas. High-resolution commercial satellite data is also used to monitor urban areas that have been impacted by natural disasters. SPoRT is developing techniques to measure the extent of these disasters and to monitor recovery. Several of these techniques include semi-automatic feature detection and change as well as developing an experimental damage assessment based upon the visible damage observed by the satellites. Furthermore, throughout these activities SPoRT hopes to provide additional data to the NOAA National Weather Service Damage Assessment Toolkit, which will help to supplement those activities being performed in the field.

  10. Assessment of fatigue damage in solid plates through the ultrasonic Lamb wave approach

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Changes(degradations) in the mechanical properties of solid plates induced by cyclic fatigue loading will influence the features of ultrasonic Lamb wave propagation,such as dispersion and attenuation.This paper has qualitatively analyzed the feasibility of using the amplitude-frequency characteristics and the stress wave factors(SWFs) of ultrasonic Lamb wave propagation to assess fatigue damage in solid plates.Liquid wedge transducers located on the surface of solid plates tested are used to generate and detect the Lamb wave signals.Based on the Ritec-SNAP ultrasonic measurement system,the experimental setup for assessing the degree of fatigue damage in solid plates using ultrasonic Lamb wave approach has been established.For several rolled aluminum sheets subjected to tension-tension cyclic loading,the experimental examinations have been performed for the relationships between the amplitude-frequency characteristics of ultrasonic Lamb wave propagation and the numbers of loading cycles(denoted by N),as well as the correlations between the Lamb wave SWFs and N.The experimental results show that the Lamb wave SWFs decrease monotonously and sensitively with the increment of cycles of fatigue loading.Based on the correlations between the Lamb wave SWFs and N,it is further verified that ultrasonic Lamb wave propagation combined with the Lamb wave SWFs can be used to effectively assess early fatigue damage in solid plates.

  11. The comet assay: assessment of in vitro and in vivo DNA damage.

    Science.gov (United States)

    Bajpayee, Mahima; Kumar, Ashutosh; Dhawan, Alok

    2013-01-01

    Rapid industrialization and pursuance of a better life have led to an increase in the amount of chemicals in the environment, which are deleterious to human health. Pesticides, automobile exhausts, and new chemical entities all add to air pollution and have an adverse effect on all living organisms including humans. Sensitive test systems are thus required for accurate hazard identification and risk assessment. The Comet assay has been used widely as a simple, rapid, and sensitive tool for assessment of DNA damage in single cells from both in vitro and in vivo sources as well as in humans. Already, the in vivo comet assay has gained importance as the preferred test for assessing DNA damage in animals for some international regulatory guidelines. The advantages of the in vivo comet assay are its ability to detect DNA damage in any tissue, despite having non-proliferating cells, and its sensitivity to detect genotoxicity. The recommendations from the international workshops held for the comet assay have resulted in establishment of guidelines. The in vitro comet assay conducted in cultured cells and cell lines can be used for screening large number of compounds and at very low concentrations. The in vitro assay has also been automated to provide a high-throughput screening method for new chemical entities, as well as environmental samples. This chapter details the in vitro comet assay using the 96-well plate and in vivo comet assay in multiple organs of the mouse.

  12. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy.

    Science.gov (United States)

    Huynh, Ruby N; Nehmetallah, George; Raub, Christopher B

    2017-06-01

    Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.

  13. Methodology for the assessment of possible damages in low voltage equipment due to lightning surges

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Nelson M.; Kagan, Nelson [University of Sao Paulo (USP), SP (Brazil)], Emails: matsuonm@usp.br, nelsonk@pea.usp.br; Domingues, Ivo T. [AES Eletropaulo, SP (Brazil); Jesus, Nelson C. de [AES Sul, Porto Alegre, RS (Brazil); Silva, Marcelo H.I. da [Grupo Rede, Sao Paulo, SP (Brazil); Takauti, Edson H. [Bandeirante, Sao Paulo, SP (Brazil)

    2007-07-01

    This paper deals with the development of a methodology to assess the possibility of equipment damages in low voltage customers due to lightning surges. The main objective is to incorporate this methodology in a computation system that supports distribution companies to determine the possible causes of equipment damages claimed by customers and to decide whether the claims are to be reimbursed or not. The proposed methodology determines whether a specific customer could be affected by a lightning strike according to his/her location and to the lightning main parameters, by using data from a lightning detection system and from the specific equipment surge withstand capability. A specific study using ATP (Alternative Transients Program) was carried out to assess the propagation of lightning surges in electric power distribution systems and their impact over low voltage customers. On the other hand, the withstand capability of the main household appliances was determined by a series of tests carried out in the University's power quality laboratory. The paper details the modeling used for simulation, such as network configuration, grounding points, and modelling of insulator flashover, distribution transformer, low voltage loads. It also presents some results regarding the evaluation of over voltages in low voltage customers installations. A practical method is proposed for assessing the possibility of equipment damage and describes how the existing uncertainties were handled. Also, some issues regarding the withstand capability of electric household appliances to lightning surges are discussed and some results of the laboratory tests are presented. (author)

  14. Temperature Assessment of Heating Stage for a Thermoforming Equipment

    Science.gov (United States)

    Mohd Ghazali, F. A.; Ahmad, M. N.; Rahim, M. F. Ab; Jaafar, A. A.

    2016-02-01

    Thermoforming is a well-known manufacturing process in the productions of various plastic household and industrial solutions. The heating of a plastic sheet allows the plastic to soften and within its forming window temperature the sheet can replicate a required shape when pressed against a mould. Hence, the heating process is an important thermoforming stage that determine uniformity of the material distribution. This article proposed an experimental approach to investigate the thermal characteristics of the heating section of a low cost thermoforming equipment designed for teaching and research purposes. The temperatures of air and a model of a stretched heated plastic sheet were measured and analysed. The experimental data indicates that the spatial temperatures distribution was not localised and the temperature history of the infrared heating agrees well with those given by fast response thermocouples. The findings suggest that the spatial uniformity of temperature can be reasonably evaluated by using the proposed method.

  15. Effects of balancing crystalline amino acids in diets containing heat-damaged soybean meal or distillers dried grains with solubles fed to weanling pigs.

    Science.gov (United States)

    Almeida, F N; Htoo, J K; Thomson, J; Stein, H H

    2014-10-01

    Two experiments were conducted to investigate if adjustments in diet formulations either based on total analysed amino acids or standardized ileal digestible (SID) amino acids may be used to eliminate negative effects of including heat-damaged soybean meal (SBM) or heat-damaged corn distillers dried grains with solubles (DDGS) in diets fed to weanling pigs. In Experiment 1, four corn-SBM diets were formulated. Diet 1 contained non-autoclaved SBM (315 g/kg), and this diet was formulated on the basis of analysed amino acid concentrations and using SID values from the AminoDat® 4.0 database. Diet 2 was similar to Diet 1 in terms of ingredient composition, except that the non-autoclaved SBM was replaced by autoclaved SBM at 1 : 1 (weight basis). Diet 3 was formulated using autoclaved SBM and amino acid inclusions in the diet were adjusted on the basis of analysed total amino acid concentrations in the autoclaved SBM and published SID values for non-autoclaved SBM (AminoDat® 4.0). Diet 4 also contained autoclaved SBM, but the formulation of this diet was adjusted on the basis of analysed amino acids in the autoclaved SBM and SID values that were adjusted according to the degree of heat damage in this source of SBM. Pigs (160; initial BW: 10.4 kg) were allotted to the four treatments with eight replicate pens per treatment in a randomized complete block design. Diets were fed to pigs for 21 days. The gain to feed ratio (G : F) was greater (PDiet 1 compared with pigs fed the other diets and pigs fed Diet 4 had greater (PDiet 2. In Experiment 2, 144 pigs (initial BW: 9.9 kg) were allotted to four diets with eight replicate pens per diet. The four diets contained corn, SBM (85 g/kg) and DDGS (220 g/kg), and were formulated using the concepts described for Experiment 1, except that heat-damaged DDGS, but not heat-damaged SBM, was used in the diets. Pigs fed Diet 1 had greater (PDiet 2, but no differences were observed for G : F among pigs fed diets containing autoclaved

  16. Direct heat applications of geothermal energy in The Geysers/Clear Lake region. Volume I. Geotechnical assessment, agribusiness applications, socioeconomic assessment, engineering assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The different uses to which geothermal heat and fluids could be applied as a direct utilization of resource or as heat utilization are explored. The following aspects are covered: geotechnical assessment, agricultural and industrial applications, socioeconomic assessment, and engineering assessment. (MHR)

  17. Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test

    Directory of Open Access Journals (Sweden)

    Ludovico Danza

    2016-01-01

    Full Text Available The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.

  18. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Jian, Dong

    2011-01-01

    The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis......, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant...

  19. Effect of Process Parameters on the Total Heat Damaged Zone (HDZ) during Micro-EDM of Plastic Mold Steel 1.2738

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    In micro electrical discharge machining, three subsurface layersare formed on the workpiece, they are;recast zone, heat affected zone and converted zone, primarily due to heating-quenching cycles. The HDZ inmicro-EDM is characterized by cracks and weakness in the grain boundary and thermal residual.......8099. Therefore,the effect of process parameters governing the discharge energy are analyzed; they are: average current(Ia), peak current (Ip) and pulse ‘on-time’ (Ton). An overall increase in heat-damaged zone thickness by105% is observed with an increase in pulse on time....

  20. Evaluation of Formation Damage and Assessment of Well Productivity of Oredo Field, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Omotara O. Oluwagbenga

    2015-02-01

    Full Text Available Formation damage canincurconsiderable cost for remediation and deferred production. Thorough understanding of the formation damage mechanisms, stringent measures for its control and prevention, and effective and efficient treatments are the keys for optimum production strategies for oil and gas fields. WELL 4X was investigated in this study to properly diagnosed and evaluate productivity in OREDO FIELD and Bottom Hole Pressure survey was used from Bottom Hole Pressure analysis in addition to the information of the well production history and reservoir data available to determine and assess the extent of the formation damage in the well. The WELL 4X was stimulated using Acid Foam Diversion Techniques to enhance reservoir productivity and increase economic operations. The stimulation job done on the well showed a peak increase of production from 850 bbl/day to 3200 b/d before it declined to 2150 bbl/day, and finally maintained an average stabilized rate of 2000 bbl/day. It has to be established that the treatment method on WELL 4X using Acid Foam Diversion Techniques and the Bottom Hole Pressure survey conducted on the WELL 4X in OREDO FIELD is found to be efficient in the determination and evaluation of formation damage.

  1. Assessing the feasibility of high-density subsurface heat extraction in urban areas

    Science.gov (United States)

    Abesser, Corinna; Busby, Jonathan

    2017-04-01

    The subsurface is increasingly utilized as a heat source (sink) for use in heating (and cooling) applications. This is driven by the need to increase the amount of heat generated from renewable sources to meet the EU renewable energy target of 12% by 2020. This study explores the feasibility, performance and long-term sustainability of high density, closed-loop GSHP installations in urban areas. Specifically, it employs a 2D, finite element, heat transport model to assess the impact of high density heat extraction in a residential area in Reading. A block of semi-detached houses is modelled, assuming that separate GSHP systems are installed in every property. The model considers conductive and advective heat transport. Uncertainties are explored through varying thermal properties and groundwater gradients across the site. Different heat demand scenarios are evaluated and the impact on the subsurface temperature distribution and on heat pump efficiency is assessed. The scenarios are selected to represent variations in inter-annual weather pattern, heating pattern and building insulation standards. Results indicate that high density heat extraction for domestic heating can be sustainable over the lifespan expected for GSHP systems (of around 20 years), in particular where heat demand is reduced by home improvement measures. Based on the results, recommendations are being presented for the sustainable deployment of high density GSHP installation in urban areas.

  2. How the choice of flood damage metrics influences urban flood risk assessment

    NARCIS (Netherlands)

    Ten Veldhuis, J.A.E.

    2011-01-01

    This study presents a first attempt to quantify tangible and intangible flood damage according to two different damage metrics: monetary values and number of people affected by flooding. Tangible damage includes material damage to buildings and infrastructure; intangible damage includes damages that

  3. Assessment of solar-assisted gas-fired heat pump systems

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  4. Assessment of solar-assisted gas-fired heat pump systems

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  5. Micronutrients intake associated with DNA damage assessed by in a human biomonitoring study

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-05-01

    Retinol was positively correlated with oxidative DNA damage in controls. The study by van Helden et al. (2009 demonstrated that vitamin A enhances OH radical formation in the Fenton reaction, showing that vitamin A can act as pro-oxidant or antioxidant, depending on the type of radicals involved, and may lead to DNA oxidative damage (Alakhras et al., 2011. Azqueta & Collins (2012 clearly distinguished between effects of vitamin A, pro-vitamin A carotenoids, and non-vitamin A carotenoids; being the latter group almost invariably reported to protect against DNA damage, whether endogenous or induced by exogenous agents, the pro-vitamin A carotenoids show a wider spectrum of effects, sometimes protecting and sometimes enhancing DNA damage. Vitamin E was found to be positively correlated with % DNA in tail. Watters et al. (2007 also found a positive association of vitamin E and oxidative DNA damage in a healthy, non-smoking population of young adults. A possible explanation for this result stems from some evidence that in the presence of copper or in smokers with a fat rich diet, vitamin E can act as a strong pro-oxidant, nevertheless it remains an unexpected result. Results found a positive correlation between iron and % DNA in tail, meaning that higher intake of iron associates with higher DNA damage. Oxidative lesions, and more specifically 8-OHdG, is one of the most prevalent lesions induced by iron containing substances (Prá et al., 2012, however the FPG biomarker was not statistically associated with iron. There is sound evidence that iron deficiency increases genome instability, among other mechanisms, by impairing enzymes involved in antioxidant and nuclei acid metabolism (Prá et al., 2012. Results presented herein found that the amount of calories ingested was negatively correlated with both biomarkers assessed by comet assay. This was somewhat unexpected, as calories restriction reduces metabolic rate and oxidative stress, meaning that lower calories

  6. Space Transportation System (STS)-117 External Tank (ET)-124 Hail Damage Repair Assessment

    Science.gov (United States)

    Wilson, Timmy R.; Gentz, Steven J.; Barth, Timothy S.; Minute, Stephen A.; Flowers, Cody P.; Hamilton, David A.; Null, Cynthia H.; Schafer, Charles F.

    2009-01-01

    Severe thunderstorms with associated hail and high winds struck the STS-117 stack on February 26, 2007. Peak winds were recorded at 62 knots with hail sizes ranging from 0.3 inch to 0.8 inch in diameter. As a result of the storm, the North Carolina Foam Institute (NCFI) type 24-124 Thermal Protection System (TPS) foam on the liquid oxygen (LO2) ogive acreage incurred significant impact damage. The NCFI on the ET intertank and the liquid hydrogen (LH2) acreage sustained hail damage. The Polymer Development Laboratory (PDL)-1034 foam of the LO2 ice frost ramps (IFRs) and the Super-Lightweight Ablator (SLA) of the LO2 cable tray also suffered minor damage. NASA Engineering and Safety Center (NESC) was asked to assess the technical feasibility of repairing the ET TPS, the reasonableness of conducting those repairs with the vehicle in a vertical, integrated configuration at the Kennedy Space Center (KSC) Vehicle Assemble Building (VAB), and to address attendant human factors considerations including worker fatigue and the potential for error. The outcome of the assessment is recorded in this document.

  7. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report

    Science.gov (United States)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S> KramerWhite, Julie A.; KramerWhite, Julie A.; Labbe, Steve G.; Rotter, Hank A.

    2007-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  8. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

  9. Assessment of hand after brain damage with the aim of functional surgery.

    Science.gov (United States)

    Romain, M; Benaim, C; Allieu, Y; Pelissier, J; Chammas, M

    1999-01-01

    The semiology of the hand after brain damage is really rich. Its clinical evaluation remains quite difficult and must be integrated in the neuro-orthopedic and cognitive context. Deficiency, neuropsychological, analytic and functional status, must be assessed before any surgical decision aiming the improvement of prehension. Neuropsychological evaluation precise the hemispheric specialization: right hemisphere lesions conduct to unilateral spatial neglect while left hemispherical lesions determine language troubles and gesture impairment (apraxia). The analytical evaluation describes motor and sensitive function and assesses spasticity and pain. Concerning the functional assessment, the Enjalbert's score seems to be the most adapted to the upper limb. The assessment of hand deficiency and its origin is necessary to orientate the surgical decision and includes the Zancolli classification for the fingers and wrist and the House classification for the thumb. These classification used for cerebral palsy seems to be insufficient for all the different situations occurring after brain damage. A new classification is proposed based on 3 parameters: fingers extension, thumb abduction and supination. Surgical decision should be examined only after an adapted rehabilitation program.

  10. On inclusion of ecosystem services in the assessment of damage from land degradation

    Science.gov (United States)

    Tsvetnov, E. V.; Makarov, O. A.; Yakovlev, A. S.; Bondarenko, E. V.

    2016-12-01

    In the assessment of damage arising from land degradation at the Training and Experimental Soil-Ecological Center of Moscow State University, the cost of unfulfilled and underfulfilled ecosystem surfaces of soils should be taken into account. The following soil services were considered for the territory studied: direct provision with resources, protection, maintenance of ecosystem life and cultural services. A relationship between the concepts of ecosystem services and ecological functions of soils is shown. The concept of function is wider in some respect than the concept associated with it. In the definition of ecosystem service, only the manifestation of the soil function, which can have an economic interpretation, is selected. A simulation of ecosystem services proposed in the ecological and economic evaluation of damage arising from land degradation can be a real mechanism of nature conservation and development of systems of sustainable management at various levels of the administrative structure of the country.

  11. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    Science.gov (United States)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of

  12. Hair breakage index: an alternative tool for damage assessment of human hair.

    Science.gov (United States)

    Mhaskar, Sudhakar; Kalghatgi, Bhargavi; Chavan, Madhavi; Rout, Suryamani; Gode, Vaishali

    2011-01-01

    Improper hair care, mechanical abrasion, sun damage and chemical treatment changes the physical and morphological characteristics of hair. Several methods involving microscopic techniques, protein loss and assessment of tensile properties of the hair are generally used to evaluate the extent of damage caused. These are also used to determine the protective effect of hair care products. In the present investigation, the hair breakage index (HBI) was used as an alternative tool to determine the change in the properties of hair on weathering. HBI is a measure of the diameter of hair in a given cross sectional area of a marked region of hair on the scalp. The hair diameter changes as we progress towards the tip of the hair due to breakage. The ratio of the diameter of hair bundle in the distal region to the diameter of hair bundle in the proximal region from the scalp is used as an indicator of hair breakage. Higher HBI value is an indicator of hair damage.A study was conducted for duration of 16 weeks to assess the effect of weathering due to grooming practices on HBI values. The HBI and break stress for a group of 30 subjects were measured at baseline and at the end of 16 weeks (NU). Since Coconut oil (CNO) is known to have a positive benefit on tensile properties of hair, another matched group of 30 subjects who oiled their hair daily with CNO was used as a positive control (CNO). The HBI and break stress for this group were also measured at the baseline and after 16 weeks. It was observed that the HBI significantly increased in the NU group versus the CNO user group. The break stress also significantly decreased in the NU group suggesting its correlation with the HBI data. This study demonstrates the usefulness of HBI as a simple and effective tool for determining hair damage and its protection by different hair care products.

  13. Combined solar heat and power system with a latent heat storage - system simulations for an economic assessment

    Science.gov (United States)

    Zipf, Verena; Neuhäuser, Anton

    2016-05-01

    Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.

  14. Occupational heat stress assessment and protective strategies in the context of climate change

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2017-04-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  15. Signal-based nonlinear modelling for damage assessment under variable temperature conditions by means of acousto-ultrasonics

    DEFF Research Database (Denmark)

    Torres-Arredondo, M. -A.; Sierra-Perez, Julian; Tibaduiza, D. -A.

    2015-01-01

    Damage assessment can be considered as the main task within the context of structural health monitoring (SHM) systems. This task is not only confined to the detection of damages in its basic algorithms but also in the generation of early warnings to prevent possible catastrophes in the daily use...

  16. It's the Heat AND the Humidity -- Assessment of Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health

    Science.gov (United States)

    Crosson, William L; Al-Hamdan, Mohammad Z.; Economou, Sigrid, A.; Estes, Maurice G.; Estes, Sue M.; Puckett, Mark; Quattrochi, Dale A

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. In a NASA-funded project supporting the National Climate Assessment, we are providing historical and future measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The project s emphasis is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM output, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons, 2040 and 2090, are the focus of future assessments; these are compared to the recent past period of 1981-2000. We are characterizing regional-scale temperature and humidity conditions using GCM output for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM output have been analyzed to develop a heat stress climatology based on statistics of extreme heat indicators. Differences between the two future and past periods have been used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes, combined with hourly historical meteorological data at a spatial scale (12 km) much finer than that of GCMs, enable us to create future climate realizations, from which we compute the daily heat stress measures and related spatially-specific climatological fields. These include the mean annual

  17. PREFACE: 11th International Conference on Damage Assessment of Structures (DAMAS 2015)

    Science.gov (United States)

    Wahab, M. A.

    2015-07-01

    This volume contains the proceedings of the 11th International Conference on Damage Assessment of Structures (DAMAS) 2015. DAMAS has a long history of almost 20 years. The first DAMAS conference took place in 1995 (Pescara, Italy), followed by a biannual meeting in 1997 (Sheffield, UK), 1999 (Dublin, Ireland), 2001 (Cardiff, UK), 2003 (Southampton, UK), 2005 (Gdansk, Poland), 2007 (Torino, Italy), 2009 (Beijing, China), 2011 (Oxford, UK) and 2013 (Dublin, Ireland). The eleventh edition of DAMAS conference series, DAMAS 2015, is hosted by Ghent University, Belgium, and is held at the congress center Het Pand in Ghent city. Ghent is the capital and the largest city of the East Flanders province of the Flemish region of Belgium. Het Pand is the culture and congress center of Ghent University and is a historical monument. The conference is established as a major international forum for research topics relevant to damage assessment of engineering structures and systems including numerical simulations, signal processing of sensor measurements and theoretical techniques as well as experimental case studies. The presentations of DAMAS 2015 are divided into 6 main sessions, namely 1) Structural Health and Condition Monitoring, 2) Damage in Civil Engineering, 3) Damage in Machineries, 4) Damage in Composite Materials, 5) Sensing and Sensors and 6) Signal Processing. The organising committee is grateful to keynote speakers; Professor Guido De Roeck, Head of Structural Mechanics Division, KULeuven, Belgium, for his keynote lecture entitled 'Structural Health Monitoring: highlights and challenges', Professor Weidong Zhu, Department of Mechanical Engineering, University of Maryland, USA, for his keynote lecture entitled 'Vibration-based Structural Damage Detection: Theory and Applications' and Professor Wieslaw Ostachowicz, Head of the Laboratory of Active Materials and Smart Structures, Polish Academy of Sciences, Poland, for his keynote lecture entitled 'Damage Assessment and

  18. Control assessment for heat integrated systems. An industrial case study for ethanol recovery

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Huusom, Jakob Kjøbsted; Sin, Gürkan

    2013-01-01

    . The assessment, both on open loop and closed loop, was carried out based on an industrial case study and compared to a modified case without heat integration. Although the heat integrated system displayed a certain deterioration of controllability, the control system made possible an efficient operation....... The reduction of energy consumption achieved thanks to heat integration was considerably larger than the losses due to poor control of the process, confirming the importance of heat integration in energy intensive processes.......Heat integration is essential for reducing the energy consumption of process industries. However, it may render the dynamic operation more interactive and difficult to control. This paper assesses the implications of heat integration in controllability and performance in energy reduction...

  19. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  20. Composite sandwich construction with syntactic foam core - A practical assessment of post-impact damage and residual strength

    Science.gov (United States)

    Hiel, C.; Dittman, D.; Ishai, O.

    1993-01-01

    An account is given of an inspection method that has been successfully used to assess the postimpact damage and residual strength of syntactic (glass microspheres in epoxy matrix) foam-core sandwich panels with hybrid (carbon and glass fiber-reinforced) composite skins, which inherently possess high damage tolerance. SEM establishes that the crushing of the microspheres is responsible for the absorption of most of the impact energy. Damage tolerance is a function of the localization of damage by that high impact energy absorption.

  1. Experimental assessment of concrete damage due to exposure to high temperature and efficacy of the repair system

    Directory of Open Access Journals (Sweden)

    Guruprasad Y.K.

    2013-09-01

    Full Text Available The present study experimentally evaluates the performance of control (standard cylinder specimen, damaged (mechanical loading after thermal exposure and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.

  2. Fatigue Damage Assessment by Considering Mean Value Effect in Frequency Domain

    Institute of Scientific and Technical Information of China (English)

    丁红岩; 朱奇; 张浦阳

    2015-01-01

    Fatigue damage assessment is carried out considering mean value effect by applying four criteria of failure. Three frequency domain methods, i.e., level crossing counting (LCC), range counting (RC) and a new proposed method, are applied. The core of frequency domain method is the construction of probability density function for the mean stress and stress range of the stress process. The applicability of these frequency domain methods are inspected by comparing with time domain method. Numerical simulations verify the applicability of LCC and the proposed method, while RC gives poor estimations.

  3. MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab

    DEFF Research Database (Denmark)

    Peterfy, Charles; Emery, Paul; Tak, Paul P

    2016-01-01

    Objective. To evaluate changes in structural damage and joint inflammation assessed by MRI following rituximab treatment in a Phase 3 study of patients with active rheumatoid arthritis (RA) despite methotrexate (MTX) who were naive to biological therapy. Methods. Patients were randomised to receive...... two infusions of placebo (n=63), rituximab 500 mg (n=62), or rituximab 1000 mg (n=60) intravenously on days 1 and 15. MRI scans and radiographs of the most inflamed hand and wrist were acquired at baseline, weeks 12 (MRI only), 24 and 52. The primary end point was the change in MRI erosion score from...

  4. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Achhami, Buddhi Bahadur; Santa Bahadur BK; Bhandari, GhanaShyam

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and...

  5. Microtomographic assessment of damage in P91 and E911 steels after long-term creep

    Energy Technology Data Exchange (ETDEWEB)

    Renvesade, Loic; Borbely, Andras [Ecole Nationale Superieure des Mines, Saint-Etienne (France). SMS-EMSE, CNRS/UMR 5307, LGF; Ruoff, Herbert; Maile, Karl [Stuttgart Univ. (Germany). Materialpruefungsanstalt (MPA); Sket, Federico [Madrid Institute for Advanced Studies of Materials (IMDEA Materials Institute), Madrid (Spain)

    2014-07-15

    Two flat hollow cylinders made of martensitic 9 wt.% Cr steels were creep deformed under in-service conditions typical of steam pipes at fossil-fuel fired power plants. Damage in the tubes was assessed through synchrotron X-ray microtomography by evaluating the shape, size and spatial-distribution of voids. The analysis of the size distribution of non-coalesced voids suggested that void growth is controlled by the plasticity constrained diffusional mechanism, a hypothesis verified by micromechanical simulations. A much higher void density was found in steel grade P91 compared to E911. (orig.)

  6. Assessment of damage localization based on spatial filters using numerical crack propagation models

    Energy Technology Data Exchange (ETDEWEB)

    Deraemaeker, Arnaud, E-mail: aderaema@ulb.ac.be [Universite Libre de Bruxelles, Civil Engineering Department (BATir), 50 av. Franklin Roosevelt, CP 194/02, B-1050 Brussels (Belgium)

    2011-07-19

    This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.

  7. Tsunami vulnerability and damage assessment in the coastal area of Rabat and Salé, Morocco

    Directory of Open Access Journals (Sweden)

    A. Atillah

    2011-12-01

    Full Text Available This study, a companion paper to Renou et al. (2011, focuses on the application of a GIS-based method to assess building vulnerability and damage in the event of a tsunami affecting the coastal area of Rabat and Salé, Morocco. This approach, designed within the framework of the European SCHEMA project (www.schemaproject.org is based on the combination of hazard results from numerical modelling of the worst case tsunami scenario (inundation depth based on the historical Lisbon earthquake of 1755 and the Portugal earthquake of 1969, together with vulnerability building types derived from Earth Observation data, field surveys and GIS data. The risk is then evaluated for this highly concentrated population area characterized by the implementation of a vast project of residential and touristic buildings within the flat area of the Bouregreg Valley separating the cities of Rabat and Salé. A GIS tool is used to derive building damage maps by crossing layers of inundation levels and building vulnerability. The inferred damage maps serve as a base for elaborating evacuation plans with appropriate rescue and relief processes and to prepare and consider appropriate measures to prevent the induced tsunami risk.

  8. Incorporation of Socio-Cultural Values in Damage Assessment Valuations of Contaminated Lands in the Niger Delta

    Directory of Open Access Journals (Sweden)

    Victor A. Akujuru

    2014-07-01

    Full Text Available Damages on contaminated land have been mostly assessed for developments subsisting on the land, neglecting the goods and services derived from the land which possess only socio-cultural values. This paper aims to ascertain the importance of socio-cultural values in the total economic value of contaminated land, drawing from the experience of a coastal community oil spillage in the Niger Delta. The paper examines what constitutes a valuable interest on contaminated land and how socio-cultural factors are valued in the damage assessment process. After reviewing the literature and decided cases, a questionnaire survey was conducted and a sample valuation report was analysed. It is concluded that there exists a socio-cultural interest on contaminated land which professional valuers do not reflect in damage assessment claims. It is recommended that any comprehensive damage assessment requires the incorporation of socio-cultural values in the valuations.

  9. Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress.

    Science.gov (United States)

    Azad, M A K; Kikusato, M; Zulkifli, I; Toyomizu, M

    2013-01-01

    1. The present study was designed to achieve a reduction of reactive oxygen species (ROS)-induced oxidative damage to skeletal muscle and to improve the performance of broiler chickens exposed to chronic heat stress. 2. Chickens were given a control diet with normal drinking water, or diets supplemented with cashew nut shell liquid (CNSL) or grape seed extract (GSE), or a control diet with electrolysed reduced water (ERW) for 19 d after hatch. Thereafter, chickens were exposed to a temperature of either 34°C continuously for a period of 5 d, or maintained at 24°C, on the same diets. 3. The control broilers exposed to 34°C showed decreased weight gain and feed consumption and slightly increased ROS production and malondialdehyde (MDA) concentrations in skeletal muscle. The chickens exposed to 34°C and supplemented with ERW showed significantly improved growth performance and lower ROS production and MDA contents in tissues than control broilers exposed to 34°C. Following heat exposure, CNSL chickens performed better with respect to weight gain and feed consumption, but still showed elevated ROS production and skeletal muscle oxidative damage. GSE chickens did not exhibit improved performance or reduced skeletal muscle oxidative damage. 4. In conclusion, this study suggests that ERW could partially inhibit ROS-induced oxidative damage to skeletal muscle and improve growth performance in broiler chickens under medium-term chronic heat treatment.

  10. Assessment of dynamic energy conversion systems for radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  11. Klamath County YMCA geothermal heating project environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Shreve, J.H. (ed.)

    1979-07-10

    The YMCA Geothermal Heating project proposes to obtain approximately 57% of the total facility energy usage through direct application of the Klamath Falls KGRA. This will be accomplished through the design and construction of a retrofit and injection system for the utilization of an existing 110/sup 0/F geothermal energy source at the project site. The existing 2016 foot well will be outfitted with a turbine pump with variable speed drive. The well head will be enclosed by a 10' x 10' building. The geothermal fluid, pumped at a peak rate of 350 gpm will be transported to the YMCA Facility through 5'' diameter schedule 40 black iron pipe fitted with victaulic couplings for expansion. All underground supply pipes will be equipped with magnesium anodes for galvaic protection and will be insulted with 1'' thick calcium silicate insulation, with two layers of 45 number roofing felt applied with asphaltic compound. All supply lines within the building will be insulated with 1'' fiberglass insulation material with a cloth jacket. The fluids will pass through a heating coil and heat exchanger system to provide heat for the 30,000 square foot YMCA facility as well as for the 90,000 gallon swimming pool. The spent geothermal fluids will then be conveyed through a 4'' black iron return pipe to be returned to an acceptable aquifer through the 1500 foot injection well.

  12. Ice crystallization in porous building materials: assessing damage using real-time 3D monitoring

    Science.gov (United States)

    Deprez, Maxim; De Kock, Tim; De Schutter, Geert; Cnudde, Veerle

    2017-04-01

    Frost action is one of the main causes of deterioration of porous building materials in regions at middle to high latitudes. Damage will occur when the internal stresses due to ice formation become larger than the strength of the material. Hence, the sensitivity of the material to frost damage is partly defined by the structure of the solid body. On the other hand, the size, shape and interconnection of pores manages the water distribution in the building material and, therefore, the characteristics of the pore space control potential to form ice crystals (Ruedrich et al., 2011). In order to assess the damage to building materials by ice crystallization, lot of effort was put into identifying the mechanisms behind the stress build up. First of all, volumetric expansion of 9% (Hirschwald, 1908) during the transition of water to ice should be mentioned. Under natural circumstances, however, water saturation degrees within natural rocks or concrete cannot reach a damaging value. Therefore, linear growth pressure (Scherer, 1999), as well as several mechanisms triggered by water redistribution during freezing (Powers and Helmuth, 1953; Everett, 1961) are more likely responsible for damage due to freezing. Nevertheless, these theories are based on indirect observations and models and, thus, direct evidence that reveals the exact damage mechanism under certain conditions is still lacking. To obtain this proof, in-situ information needs to be acquired while a freezing process is performed. X-ray computed tomography has proven to be of great value in material research. Recent advances at the Ghent University Centre for Tomography (UGCT) have already allowed to dynamically 3D image crack growth in natural rock during freeze-thaw cycles (De Kock et al., 2015). A great potential to evaluate the different stress build-up mechanisms can be found in this imaging technique consequently. It is required to cover a range of materials with different petrophysical properties to achieve

  13. Life Cycle Assessment of Miscanthus as a Fuel Alternative in District Heat Production

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Dalgaard, Tommy; Nguyen, T Lan T

    2013-01-01

    ) plant. Alternatively, we have simulated the combustion process of Miscanthus in a boiler, where only heat is produced. For NG similar scenarios are examined. Life Cycle Assessment (LCA) in relation to 1 MJ of heat production with Miscanthus fired in a CHP would lead to a Global Warming Potential (GWP...

  14. The consumptive water footprint of electricity and heat : A global assessment

    NARCIS (Netherlands)

    Mekonnen, Mesfin M.; Gerbens-Leenes, P. W.; Hoekstra, Arjen Y.

    2015-01-01

    Water is essential for electricity and heat production. This study assesses the consumptive water footprint (WF) of electricity and heat generation per world region in the three main stages of the production chain, i.e. fuel supply, construction and operation. We consider electricity from power plan

  15. The consumptive water footprint of electricity and heat: a global assessment

    NARCIS (Netherlands)

    Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y.

    2015-01-01

    Water is essential for electricity and heat production. This study assesses the consumptive water footprint (WF) of electricity and heat generation per world region in the three main stages of the production chain, i.e. fuel supply, construction and operation. We consider electricity from power plan

  16. The consumptive water footprint of electricity and heat: a global assessment

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2015-01-01

    Water is essential for electricity and heat production. This study assesses the consumptive water footprint (WF) of electricity and heat generation per world region in the three main stages of the production chain, i.e. fuel supply, construction and operation. We consider electricity from power

  17. How the choice of flood damage metrics influences urban flood risk assessment

    OpenAIRE

    J. A. E. ten Veldhuis

    2011-01-01

    This study presents a first attempt to quantify tangible and intangible flood damage according to two different damage metrics: monetary values and number of people affected by flooding. Tangible damage includes material damage to buildings and infrastructure; intangible damage includes damages that are difficult to quantify exactly, such as stress and inconvenience. The data used are representative of lowland flooding incidents with return periods up to 10 years. The results show that moneta...

  18. Potentials of Optical Damage Assessment Techniques in Automotive Crash-Concepts composed of FRP-Steel Hybrid Material Systems

    Science.gov (United States)

    Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.

    2017-05-01

    With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.

  19. Assessment of primary, oxidative and excision repaired DNA damage in hospital personnel handling antineoplastic drugs.

    Science.gov (United States)

    Villarini, Milena; Dominici, Luca; Piccinini, Renza; Fatigoni, Cristina; Ambrogi, Maura; Curti, Gianluca; Morucci, Piero; Muzi, Giacomo; Monarca, Silvano; Moretti, Massimo

    2011-05-01

    The International Agency for Research on Cancer has classified several antineoplastic drugs in Group 1 (human carcinogens), among which chlorambucil, cyclophosphamide (CP) and tamoxifen, Group 2A (probable human carcinogens), among which cisplatin, etoposide, N-ethyl- and N-methyl-N-nitrosourea, and Group 2B (possible human carcinogens), among which bleomycins, merphalan and mitomycin C. The widespread use of these mutagenic/carcinogenic drugs in the treatment of cancer has led to anxiety about possible genotoxic hazards to medical personnel handling these drugs. The aim of the present study was to evaluate work environment contamination by antineoplastic drugs in a hospital in Central Italy and to assess the genotoxic risks associated with antineoplastic drug handling. The study group comprised 52 exposed subjects and 52 controls. Environmental contamination was assessed by taking wipe samples from different surfaces in preparation and administration rooms and nonwoven swabs were used as pads for the surrogate evaluation of dermal exposure, 5-fluorouracil and cytarabine were chosen as markers of exposure to antineoplastic drugs in the working environment. The actual exposure to antineoplastic drugs was evaluated by determining the urinary excretion of CP. The extent of primary, oxidative and excision repaired DNA damage was measured in peripheral blood leukocytes with the alkaline comet assay. To evaluate the role, if any, of genetic variants in the extent of genotoxic effects related to antineoplastic drug occupational exposure, the study subjects were genotyped for GSTM1, GSTT1, GSTP1 and TP53 polymorphisms. Primary DNA damage significantly increased in leukocytes of exposed nurses compared to controls. The use of personal protective equipment (i.e. gloves and/mask) was associated with a decrease in the extent of primary DNA damage.

  20. Detection of brain damage: neuropsychological assessment in a Spanish speaking population.

    Science.gov (United States)

    Ostrosky-Solis, F; Quintanar, L; Ardila, A

    1989-12-01

    We developed a neuropsychological battery for assessment of cognitive processes that was standardized in 150 neurologically intact subjects from different socioeducational levels in Mexico City (Ostrosky et al., 1985, 1986). The present study was designed to explore the capacity of this neuropsychological battery to discriminate a brain-injured population from a normal one. Thirty-four patients attending the neurological service of two hospitals institutions in Mexico City were studied. The reasons for going to the hospital included both neurological and neuropsychological symptoms. The group was divided into two subgroups: twenty-four patients who showed brain damage confirmed by brain scans, and ten patients with a normal brain scan. A control group of 19 normal subjects was also studied and paired with the other groups by sex, age and sociocultural level. The results show that the neuropsychological battery was able to recognize 83.3% of the patients with scanographically confirmed brain damage: the total percentage of successful diagnosis was 88.2% and there were no false positives. These results indicate that neuropsychological assessment is a powerful diagnostic procedure that also evaluates the patient's cognitive-behavioral activity and can help to predict the possibilities for rehabilitation and return to work.

  1. Quantitative Assessment of Amino Acid Damage upon keV Ion Beam Irradiation Through FTIR Spectroscopy

    Science.gov (United States)

    Huang, Qing; Ke, Zhigang; Su, Xi; Yuan, Hang; Zhang, Shuqing; Yu, Zengliang

    2010-06-01

    Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize Fourier transformation infrared (FTIR) spectroscopy because it can offer sensitive and non-invasive measurements. In this paper a novel protocol was employed to prepare biomolecular samples in the form of thin and transversely uniform solid films that were suitable for both infrared and low-energy ion beam irradiation experiments. Under the irradiation of N+ and Ar+ ion beams of 25 keV with fluence ranging from 5×1015 ions/cm2 to 2.5×10 ions/cm2, the ion radio-sensitivity of four amino acids, namely, glycine, tyrosine, methionine and phenylalanine, were evaluated and compared. The ion beam irradiation caused biomolecular decomposition accompanied by molecular desorption of volatile species and the damage was dependent on ion type, fluence, energy and types of amino acids. The effectiveness of application of FTIR spectroscopy to the quantitative assessment of biomolecular damage dose effect induced by low-energy ion radiation was thus demonstrated.

  2. Assessment of Alkali-Silica Reaction Damage in Mortars with Nonlinear Ultrasonic Techniques

    Science.gov (United States)

    Chen, J.; Jayapalan, A. R.; Kurtis, K. E.; Kim, J.-Y.; Jacobs, L. J.

    2008-02-01

    In this work, a nonlinear ultrasonic modulation technique is employed to assess the damage state of portland cement mortar samples induced by alkali-silica reaction (ASR). Due to the nonlinear interaction of propagating waves caused by distributed microcracks that are agitated from its equilibrium state, the ultrasonic responses of samples produce sideband frequencies around the frequency of propagating waves. The amplitude of the sidebands depends on the amplitude of the input signals and is particularly sensitive to the state of damage evolved in the sample. Therefore, the development of internal microcracks with increasing duration of exposure to aggressive conditions can be quantitatively related to the variation of external ultrasonic measurements. The ultrasonic results are compared with results from standard ASR expansion measurements (ASTM C 1260), and a proportionally increasing relation was found in the early stages. In addition, aggregates with different alkali-reactivity (i.e., low reactivity or high reactivity) were examined in a similar manner. The results indicate that the nonlinear parameter obtained from ultrasonic tests directly reflects the difference of aggregate reactivity. This clearly indicates that the developed nonlinear ultrasonic method is potentially a good alternative for a more rapid and still reliable assessment of aggregate alkali-reactivity.

  3. Assessment of heat treatment of various types of milk.

    Science.gov (United States)

    Sakkas, Lambros; Moutafi, Alexandra; Moschopoulou, Ekaterini; Moatsou, Golfo

    2014-09-15

    Raw milk (RM), reconstituted condensed milk (CM) and three types of reconstituted milk powders (SMPs) were heated indirectly at 80-140°C for 4 s. Native β-lactoglobulin after 90°C treatment of RM was 1132±167 mg/L but no reliable quantities were estimated at temperatures >100°C, whereas 218±43 mg/L residual α-lactalbumin were found at 130°C. Average lactulose contents from 51 to 1549 mg/L were detected at ⩾100°C; average furosine was 1.9 and 126.5 mg/L in raw and 140°C treated milks respectively. The behaviour of heated CM was similar to that of heated RM except for higher furosine concentration. Reconstituted SMPs contained high quantities of lactulose and furosine, the ratio of which was lower than in similarly treated RM. Among the market milks analysed, the group of high-pasteurised milks was highly variable; i.e. native β-lactoglobulin was 69-2831 mg/L, lactulose 0-824 mg/L and furosine 3.3-68.8 mg/L.

  4. Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities

    Energy Technology Data Exchange (ETDEWEB)

    Karanikas, John Michael; Vinegar, Harold J

    2014-03-04

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

  5. Long term post-flood damage assessments to analyze the strategies of adaptation at individual scale

    Science.gov (United States)

    Brémond, Pauline; Bonte, Bruno; Erdlenbruch, Katrin; Grelot, Frédéric; Richert, Claire

    2015-04-01

    RETINA is a project which studies the opportunity for adaptation in the aftermath of flood events. To handle this research question, we consider adaptation to flood risk at individual and collective scale as well as the influence of the urban planning regulation (Flood risk mapping). For the purpose of this research, collective adaptation means actions that are undertaken at collective scale such as dikes, relocation of collective infrastructures (roads, treatment plant...) and individual adaptation means actions decided at individual level (households, enterprises or farmers) such as relocation, elevation of critical components, new organization.... In this presentation, we focus on individual adaptation and analyse which are the mechanisms that incite or constrain the adaptation to flood risk of individual assets considering their own trajectory. The originality of our approach is to carry out long term post-flood assessments and comprehensive interviews at individual scale. To catch the drivers of adaptation, we sequenced the interview guide in three periods: 1/ the situation before the reference event occurred, 2/ what happened during and just after the flood event, 3/ what happened from the flood event until the moment of the interview. Two case studies have been chosen. The first case study is the Aude department where an exceptional flooding occurred in 1999. The second case study is the Var department where more recent and frequent flood events occurred in 2010, 2011, 2014. On each case study, we plan to conduct about fifty interviews including households and economic activities. In this presentation, we will develop methodological aspects on long term post-flood damage assessments. Carrying out a long term post-flood assessment enabled us to consider adaptation to flood risk among the whole of strategic decisions a household or an enterprise has to take. Moreover, we found out that contrary to what is usually assumed, the fact that the reference event was

  6. The laser driven short-term heating balloon catheter: Relation between the chronic neointimal hyperplasia formation and thermal damage to arterial smooth muscle cells.

    Science.gov (United States)

    Shimazaki, Natsumi; Hayashi, Tomoaki; Kunio, Mie; Igami, Yuka; Arai, Tsunenori; Sakurada, Masami

    2010-01-01

    We proposed a novel laser-driven short-term heating angioplasty to realize restenosis-suppressive angioplasty for peripheral artery disease. In this study, we investigated the chronic intimal hyperplasia formation after the short-term heating dilatation in vivo, as well as the thermal damage calculation on arterial smooth muscle cells (SMCs). The prototype short-term heating balloon catheter with 5.0, 5.5, 6.0 mm φ in balloon diameter and 25 mm in balloon length were employed. The short-term heating dilatation was performed in porcine iliac arteries with dilatation conditions of 75°C (N=4) and 65°C (N=5) as peak balloon temperature, 18 ± 4s as heating duration, 3.5 atm as balloon dilatation pressure. Four weeks after the balloon dilatation, the balloon-dilated artery segments were extracted and were stained with HE and picrosirius red for histological observation. In the case of 75°C as the peak balloon temperature, neointimal hyperplasia formation was significantly reduced. In this case, the SMCs density in the artery media measured from the HE-stained specimen was 20% lower than that in the reference artery. According to the thermal damage calculation, it was estimated that the SMCs lethality in artery media after the short-term heating angioplasty was 20% in the case of 75°C as the peak balloon temperature. We demonstrated that the short-term heating dilatation reduced the number of SMCs in artery media. We think this SMCs reduction might contribute to the suppression of chronic neointimal hyperplasia.

  7. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles.

    Science.gov (United States)

    Xin, Lili; Wang, Jianshu; Zhang, Leshuai W; Che, Bizhong; Dong, Guangzhu; Fan, Guoqiang; Cheng, Kaiming

    2016-08-01

    The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag(+) ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock produced a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4h of recovery, the relative luciferase activity was >98× the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5nm) AgNPs were more potent in luciferase induction than the larger (50 and 75nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag(+) ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs.

  8. Assessment of infrastructure functional damages caused by natural-technological disasters

    Science.gov (United States)

    Massabò, Marco; Trasforini, Eva; Traverso, Stefania; Rudari, Roberto; De Angeli, Silvia; Cecinati, Francesca; Cerruti, Valentina

    2013-04-01

    The assessment of infrastructure damages caused by technological disaster poses several challenges, from gathering needed information on the territorial system to the definition of functionality curves for infrastructures elements (such as, buildings, road school) that are exposed to both natural and technological event. Moreover, areas affected by natural or natech (technological disasters triggered by natural events) disasters have often very large extensions and a rapid survey of them to gather all the needed information is a very difficult task, for many reasons, not least the difficult access to the existing databases and resources. We use multispectral optical imagery with other geographical and unconventional data to identify and characterize exposed elements. Our efforts in the virtual survey and during the investigation steps have different aims: to identify the vulnerability of infrastructures, buildings or activities; to execute calculations of exposition to risk; to estimate physical and functional damages. Subsequently, we apply specific algorithms to estimate values of acting forces and physical and functional damages. The updated picture of target areas in terms of risk-prone people, infrastructures and their connections is very important. It is possible to develop algorithms providing values of systemic functionality for each network element. The methodology is here applied to a natech disaster, arising from the combination of a flood event (specifically, the January 2010 flooding of Drin and Buna rivers, with a worsening in the road safety levels in the Shkoder area) with and the subsequent overturning of a truck transporting hazardous material. The accident causes the loss of containment and the total material release. Once the release has taken place, the evolution will depend on the physical state of the substance spilled (liquid, gas or dust). As a specific case we consider the rupture of a trucks transporting liquid fuels such as gasoline

  9. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    Science.gov (United States)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model

  10. Advances in structural damage assessment using strain measurements and invariant shape descriptors

    Science.gov (United States)

    Patki, Amol Suhas

    to the area surrounding the damage, while damage in orthotropic materials tends to have more global repercussions. This calls for analysis of full-field strain distributions adding to the complexity of post-damage life estimation. This study explores shape descriptors used in the field of medical imagery, military targeting and biometric recognition for obtaining a qualitative and quantitative comparison between full-field strain data recorded from damaged composite panels using sophisticated experimental techniques. These descriptors are capable of decomposing images with 103 to 106 pixels into a feature vector with only a few hundred elements. This ability of shape descriptors to achieve enormous reduction in strain data, while providing unique representation, makes them a practical choice for the purpose of structural damage assessment. Consequently, it is relatively easy to statistically compare the shape descriptors of the full-field strain maps using similarity measures rather than the strain maps themselves. However, the wide range of geometric and design features in engineering components pose difficulties in the application of traditional shape description techniques. Thus a new shape descriptor is developed which is applicable to a wide range of specimen geometries. This work also illustrates how shape description techniques can be applied to full-field finite element model validations and updating.

  11. Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks.

    Science.gov (United States)

    Charrier, Guillaume; Chuine, Isabelle; Bonhomme, Marc; Améglio, Thierry

    2017-02-09

    Frost damages develop when exposure overtakes frost vulnerability. Frost risk assessment therefore needs dynamic simulation of frost hardiness using temperature and photoperiod in interaction with developmental stage. Two models, including or not the effect of photoperiod were calibrated using five years of frost hardiness monitoring (2007-2012), in two locations (low and high elevation) for three walnut genotypes with contrasted phenology and maximum hardiness (Juglans regia cv Franquette, Juglans regia x nigra 'Early' and 'Late'). The Photothermal model predicted more accurate values for all genotypes (Efficiency = 0.879; RMSEP = 2.55 °C) than the Thermal model (Efficiency = 0.801; RMSEP = 3.24 °C). Predicted frost damages were strongly correlated to minimum temperature of the freezing events (ρ = -0.983) rather than actual frost hardiness (ρ = -0.515), or ratio of phenological stage completion (ρ = 0.336). Higher frost risks are consequently predicted during winter, at high elevation, whereas spring is only risky at low elevation in early genotypes exhibiting faster dehardening rate. However, early frost damages, although of lower value, may negatively affect fruit production the subsequent year (R(2)  = 0.381, P = 0.057). These results highlight the interacting pattern between frost exposure and vulnerability at different scales and the necessity of intra-organ studies to understand the time course of frost vulnerability in flower buds along the winter.

  12. Evaluation of cell types for assessment of cytogenetic damage in arsenic exposed population

    Directory of Open Access Journals (Sweden)

    Singh Keshav K

    2008-05-01

    Full Text Available Abstract Background Cytogenetic biomarkers are essential for assessing environmental exposure, and reflect adverse human health effects such as cellular damage. Arsenic is a potential clastogen and aneugen. In general, the majority of the studies on clastogenic effects of arsenic are based on frequency of micronuclei (MN study in peripheral lymphocytes, urothelial and oral epithelial cells. To find out the most suitable cell type, here, we compared cytogenetic damage through MN assay in (a various populations exposed to arsenic through drinking water retrieved from literature review, as also (b arsenic-induced Bowen's patients from our own survey. Results For literature review, we have searched the Pubmed database for English language journal articles using the following keywords: "arsenic", "micronuclei", "drinking water", and "human" in various combinations. We have selected 13 studies consistent with our inclusion criteria that measured micronuclei in either one or more of the above-mentioned three cell types, in human samples. Compared to urothelial and buccal mucosa cells, the median effect sizes measured by the difference between people with exposed and unexposed, lymphocyte based MN counts were found to be stronger. This general pattern pooled from 10 studies was consistent with our own set of three earlier studies. MN counts were also found to be stronger for lymphocytes even in arsenic-induced Bowen's patients (cases compared to control individuals having arsenic-induced non-cancerous skin lesions. Conclusion Overall, it can be concluded that MN in lymphocytes may be superior to other epithelial cells for studying arsenic-induced cytogenetic damage.

  13. Damage tolerance assessment of bonded composite doubler repairs for commercial aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.

    1998-08-01

    The Federal Aviation Administration has sponsored a project at its Airworthiness Assurance NDI Validation Center (AANC) to validate the use of bonded composite doublers on commercial aircraft. A specific application was chosen in order to provide a proof-of-concept driving force behind this test and analysis project. However, the data stemming from this study serves as a comprehensive evaluation of bonded composite doublers for general use. The associated documentation package provides guidance regarding the design, analysis, installation, damage tolerance, and nondestructive inspection of these doublers. This report describes a series of fatigue and strength tests which were conducted to study the damage tolerance of Boron-Epoxy composite doublers. Tension-tension fatigue and ultimate strength tests attempted to grow engineered flaws in coupons with composite doublers bonded to aluminum skin. An array of design parameters, including various flaw scenarios, the effects of surface impact, and other off-design conditions, were studied. The structural tests were used to: (1) assess the potential for interply delaminations and disbonds between the aluminum and the laminate, and (2) determine the load transfer and crack mitigation capabilities of composite doublers in the presence of severe defects. A series of specimens were subjected to ultimate tension tests in order to determine strength values and failure modes. It was demonstrated that even in the presence of extensive damage in the original structure (cracks, material loss) and in spite of non-optimum installations (adhesive disbonds), the composite doubler allowed the structure to survive more than 144,000 cycles of fatigue loading. Installation flaws in the composite laminate did not propagate over 216,000 fatigue cycles. Furthermore, the added impediments of impact--severe enough to deform the parent aluminum skin--and hot-wet exposure did not effect the doubler`s performance. Since the tests were conducting

  14. Preliminary Market Assessment for Cold Climate Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Abdelaziz, Omar [ORNL

    2011-09-01

    Cold climate heat pump (HP) technology is relevant to a substantial portion of the U.S. population, especially with more than one-third of U.S. housing stock concentrated in colder regions of the country and another 31% in the mixed-humid climate region. Specifically, it is estimated that in 2010 almost 1.37 million heating equipment units were shipped to the cold/very cold climate regions and that 1.41 million were shipped to the nation s mixed-humid region. On a national level, the trend in the last decade has indicated that shipments of gas furnaces have grown at a slower rate than HPs. This indicates a potential opportunity for the cold climate HP, a technology that may be initially slow to penetrate its potential market because of the less expensive operating and first costs of gas furnaces. Anticipated implementation of regional standards could also negatively affect gas furnace shipments, especially with the higher initial cost for more efficient gas furnaces. However, as of 2011, the fact that there are more than 500 gas furnace product models that already achieve the expected efficiency standard indicates that satisfying the regional standard will be a challenge but not an obstacle. A look at the heating fuel and equipment currently being used in the housing stock provides an insight into the competing equipment that cold climate HPs hope to replace. The primary target market for the cold climate HP is the 2.6 million U.S. homes using electric furnaces and HPs in the cold/very cold region. It is estimated that 4.75% of these homeowners either replace or buy new heating equipment in a given year. Accordingly, the project team could infer that the cold climate HP primary market is composed of 123,500 replacements of electric furnaces and conventional air-to-air HPs annually. A secondary housing market for the cold climate HP comprises homes in the mixed-humid region of the country that are using electric furnaces. Homes using gas furnaces across both the

  15. Comprehensive assessments of measures mitigating heat island phenomena in urban areas; Heat shinku wo riyoshita daikibo reibo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T.; Yamamoto, S.; Yoshikado, H.; Kondo, H.; Kaneho, N.; Saegusa, N.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan); Inoue, M. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes the assessment method of measures mitigating heat island phenomena in urban areas. The heat island phenomena were classified into meso-scale with 100 km-scale, block-scale with several km-scale, and building-scale with 100 m-scale. Urban thermal environment simulation model was developed in response to each scale. For the development, regional data using aircraft and artificial satellite observations, surface observation and thermal environment observation at Shinjuku new central city of Tokyo, and artificial waste heat actual survey data in the southern Kanto district were utilized. Results of the urban thermal environment simulation were introduced as an application of this model. Temperature distributions of the heat island in the Kanto district were simulated with considering urban conditions near Tokyo and without considering it. Daily changes of wall surfaces of high buildings and road surface were calculated. Increase in the air temperature in the back stream of building roofs with increased temperature was determined. 4 figs.

  16. Flood damage in Italy: towards an assessment model of reconstruction costs

    Science.gov (United States)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto

    2016-04-01

    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy

  17. Flood monitoring and damage assessment in Thailand using multi-temporal HJ-1A/1B and MODIS images

    Science.gov (United States)

    Zhou, S. L.; Zhang, W. C.

    2017-02-01

    Flood is one of the most serious natural disasters in South Asia. How to monitor floods and assess damage caused is the most urgent problem for the government and disaster experts. With the advances of remote sensing, images acquired before the beginning of disaster to the very end or after the disaster from Earth-observing satellites benefit the decision making for reduction and protection of disaster dramatically. By using multi-temporal HJ-1A/1B and MODIS remote sensing data, applicability of different algorithms for flood monitoring and damage assessing was investigated in 2011 Thailand floods. Three different algorithms were adopted to monitor flood disaster events with water indices. Comparisons on the flood disaster monitoring and damage assessing by means of HJ-1A/1B and MODIS images suggested that multi-temporal HJ-1A/1B is much useful for the purpose, which demonstrated with the analysis of the thresholds estimated and problems in data post-processing. The variations of the inundated areas in the process of 2011 Thailand floods revealed were presented in this paper, and the damage caused by flooding was evaluated in three aspects, the population in the inundated region, the inundated information of different provinces and land use areas. Compared with MODIS, HJ-1A/1B images can provide more rapid and accurate flood extent and damage assessment for the disaster prevention, damage mitigation and disaster relief.

  18. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    V. I. Petrov

    2013-01-01

    Full Text Available Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months, р<0.0001 and in higher doses, than patients without muscle pain/weakness. There were not significant differences in creatine kinase levels between patients with and without muscle symptoms. Patients with SLCO1B1*5 genotype were revealed in both groups, but more often (58% among patients with muscle symptoms. Patients with abnormal C allele having muscle symptoms received statins significantly longer, than these without muscle signs (54.7 vs 13.9 months, р=0.0028.Conclusion. Association between occurrence of muscle symptoms and SLCO1B1*5 allele carriership, statin dose and therapy duration was revealed. Creatine kinase examination was not valuable for finding of statin-induced muscle damage.

  19. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    V. I. Petrov

    2015-09-01

    Full Text Available Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months, р<0.0001 and in higher doses, than patients without muscle pain/weakness. There were not significant differences in creatine kinase levels between patients with and without muscle symptoms. Patients with SLCO1B1*5 genotype were revealed in both groups, but more often (58% among patients with muscle symptoms. Patients with abnormal C allele having muscle symptoms received statins significantly longer, than these without muscle signs (54.7 vs 13.9 months, р=0.0028.Conclusion. Association between occurrence of muscle symptoms and SLCO1B1*5 allele carriership, statin dose and therapy duration was revealed. Creatine kinase examination was not valuable for finding of statin-induced muscle damage.

  20. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  1. QRS slopes for assessment of myocardial damage in chronic chagasic patients

    Science.gov (United States)

    Pueyo, E.; Laciar, E.; Anzuola, E.; Laguna, P.; Jané, R.

    2007-11-01

    In this study the slopes of the QRS complex are evaluated for determination of the degree of myocardial damage in chronic chagasic patients. Previous studies have demonstrated the ability of the slope indices to reflect alterations in the conduction velocity of the cardiac impulse. Results obtained in the present study show that chronic chagasic patients have significantly flatter QRS slopes as compared to healthy subjects. Not only that but the extent of slope lessening turns out to be proportional to the degree of myocardial damage caused by the disease. Additionally, when incorporating the slope indices into a classification analysis together with other indices indicative of the presence of ventricular late potentials obtained from high resolution electrocardiography, results show that the percentages of correct classification increase up to 62.5%, which means eight points above the percentages obtained prior to incorporation of the slope indices. It can be concluded that QRS slopes have great potential for assessing the degree of severity associated with Chagas' disease.

  2. QRS slopes for assessment of myocardial damage in chronic chagasic patients

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, E [Instituto de Investigacion en Ingenieria de Aragon (13A), and CIBER-BBN, Universidad de Zaragoza (Spain); Laciar, E [Gabinete de TecnologIa Medica, Universidad Nacional de San Juan (Argentina); Anzuola, E [Instituto de Investigacion en Ingenieria de Aragon (13A), and CIBER-BBN, Universidad de Zaragoza (Spain); Laguna, P [Instituto de Investigacion en Ingenieria de Aragon (13A), and CIBER-BBN, Universidad de Zaragoza (Spain); Jane, R [Department ESAII, CREB, Universitat Politecnica de Catalunya, Barcelona (Spain)

    2007-11-15

    In this study the slopes of the QRS complex are evaluated for determination of the degree of myocardial damage in chronic chagasic patients. Previous studies have demonstrated the ability of the slope indices to reflect alterations in the conduction velocity of the cardiac impulse. Results obtained in the present study show that chronic chagasic patients have significantly flatter QRS slopes as compared to healthy subjects. Not only that but the extent of slope lessening turns out to be proportional to the degree of myocardial damage caused by the disease. Additionally, when incorporating the slope indices into a classification analysis together with other indices indicative of the presence of ventricular late potentials obtained from high resolution electrocardiography, results show that the percentages of correct classification increase up to 62.5%, which means eight points above the percentages obtained prior to incorporation of the slope indices. It can be concluded that QRS slopes have great potential for assessing the degree of severity associated with Chagas' disease.

  3. Evaluation of DMSA scintigraphy and urography in assessing both acute and permanent renal damage in children

    Energy Technology Data Exchange (ETDEWEB)

    Stokland, E.; Jacobsson, B. [Dept. of Pediatric Radiology, Sahlgrenska Univ. Hospital, Goeteborg Univ. (Sweden).; Hellstroem, M. [Dept. of Radiology, Sahlgrenska Univ. Hospital, Goeteborg Univ. (Sweden); Jodal, U. [Dept. of Pediatrics, Sahlgrenska Univ. Hospital, Goeteborg Univ. (Sweden); Sixt, R. [Dept. of Pediatric Clinical Physiology, Sahlgrenska Univ. Hospital, Goeteborg Univ. (Sweden)

    1998-07-01

    Purpose: To evaluate dimercaptosuccinic acid (DMSA) scintigraphy and urography in the detection of renal involvement in children with urinary tract infection (UTI) in order to identify patients with a high risk of developing renal damage. Material and Methods: A total of 157 children (median age 0.4 years, range 5 days to 5.8 years) with first-time symptomatic UTI were examined scintigraphy (with an assessment of renal area involvement) and urography at the time of UTI and 1 year later. All evaluations were made blindly. Results: Of the total 314 kidneys, 80 (25%) were abnormal at initial scintigraphy. Of these 80 kidneys, 44 (55%) had normalized at follow-up. Of the 234 initially normal kidneys, 29 (12%) were abnormal at follow-up. One year after UTI, abnormalities were seen in 59 children at scintigraphy and in 18 children at urography. Renal area involvement was larger and split function abnormalities more common in kidneys that were abnormal at both scintigraphy and urography than in kidneys with only scintigraphic abnormalities. Conclusion: Quantitation of renal area involvement and split renal function at early scintigraphy would seem to be useful in identifying patients at risk of developing renal damage. Urography at 1 year after infection identified mainly those with the most severe scintigraphic abnormalities. The clinical importance of scintigraphic abnormalities that are not confirmed by urography is not known. (orig.)

  4. Re-assessing acalculia: Distinguishing spatial and purely arithmetical deficits in right-hemisphere damaged patients.

    Science.gov (United States)

    Benavides-Varela, S; Piva, D; Burgio, F; Passarini, L; Rolma, G; Meneghello, F; Semenza, C

    2017-03-01

    Arithmetical deficits in right-hemisphere damaged patients have been traditionally considered secondary to visuo-spatial impairments, although the exact relationship between the two deficits has rarely been assessed. The present study implemented a voxelwise lesion analysis among 30 right-hemisphere damaged patients and a controlled, matched-sample, cross-sectional analysis with 35 cognitively normal controls regressing three composite cognitive measures on standardized numerical measures. The results showed that patients and controls significantly differ in Number comprehension, Transcoding, and Written operations, particularly subtractions and multiplications. The percentage of patients performing below the cutoffs ranged between 27% and 47% across these tasks. Spatial errors were associated with extensive lesions in fronto-temporo-parietal regions -which frequently lead to neglect- whereas pure arithmetical errors appeared related to more confined lesions in the right angular gyrus and its proximity. Stepwise regression models consistently revealed that spatial errors were primarily predicted by composite measures of visuo-spatial attention/neglect and representational abilities. Conversely, specific errors of arithmetic nature linked to representational abilities only. Crucially, the proportion of arithmetical errors (ranging from 65% to 100% across tasks) was higher than that of spatial ones. These findings thus suggest that unilateral right hemisphere lesions can directly affect core numerical/arithmetical processes, and that right-hemisphere acalculia is not only ascribable to visuo-spatial deficits as traditionally thought.

  5. Quality Assessment of Palm Products upon Prolonged Heat Treatment

    National Research Council Canada - National Science Library

    Tarmizi, Azmil Haizam Ahmad; Lin, Siew Wai

    2008-01-01

    Extending the frying-life of oils is of commercial and economic importance. Due to this fact, assessment on the thermal stability of frying oils could provide considerable savings to the food processors...

  6. Physically-based Assessment of Tropical Cyclone Damage and Economic Losses

    Science.gov (United States)

    Lin, N.

    2012-12-01

    Estimating damage and economic losses caused by tropical cyclones (TC) is a topic of considerable research interest in many scientific fields, including meteorology, structural and coastal engineering, and actuarial sciences. One approach is based on the empirical relationship between TC characteristics and loss data. Another is to model the physical mechanism of TC-induced damage. In this talk we discuss about the physically-based approach to predict TC damage and losses due to extreme wind and storm surge. We first present an integrated vulnerability model, which, for the first time, explicitly models the essential mechanisms causing wind damage to residential areas during storm passage, including windborne-debris impact and the pressure-debris interaction that may lead, in a chain reaction, to structural failures (Lin and Vanmarcke 2010; Lin et al. 2010a). This model can be used to predict the economic losses in a residential neighborhood (with hundreds of buildings) during a specific TC (Yau et al. 2011) or applied jointly with a TC risk model (e.g., Emanuel et al 2008) to estimate the expected losses over long time periods. Then we present a TC storm surge risk model that has been applied to New York City (Lin et al. 2010b; Lin et al. 2012; Aerts et al. 2012), Miami-Dade County, Florida (Klima et al. 2011), Galveston, Texas (Lickley, 2012), and other coastal areas around the world (e.g., Tampa, Florida; Persian Gulf; Darwin, Australia; Shanghai, China). These physically-based models are applicable to various coastal areas and have the capability to account for the change of the climate and coastal exposure over time. We also point out that, although made computationally efficient for risk assessment, these models are not suitable for regional or global analysis, which has been a focus of the empirically-based economic analysis (e.g., Hsiang and Narita 2012). A future research direction is to simplify the physically-based models, possibly through

  7. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Wang, Yanni; Liu, Zhe; Li, Zhen; Shi, Haina; Kang, Yujun; Wang, Jianfu; Huang, Jinqiang; Jiang, Li

    2016-04-01

    For rainbow trout Oncorhynchus mykiss, high temperature is a major abiotic stress that limits its growth and productivity. In this study, spleen macrophage respiratory burst (RB), serum superoxide dismutase (SOD), serum malondialdehyde (MDA) and mRNA expression of the SERPINH1 (HSP47) gene in different tissues (liver, spleen, head kidney and heart) were measured in unstressed (18 °C) and heat-stressed (25 °C) fish. Spleen macrophage RB activity, serum SOD activity and MDA content all increased significantly (P heat shock, and peaked at 8, 12 and 4 h, respectively. SERPINH1 mRNA expression responded in a time- and tissue-specific manner to heat stress, which was mainly reflected in the significant up-regulation in all tissues (P heat-shock recovery period, the MDA content returned to the unstressed level. These results indicate that heat shock causes cell injury, induces oxidative damage and promotes SERPINH1 mRNA expression, which plays an important protective function during heat stress in O. mykiss. In practice, close attention should be given to temperature changes in O. mykiss production to reduce the effects of high temperature.

  8. Assessment of Damage to Nucleic Acids and Repair Machinery in Salmonella typhimurium Exposed to Chlorine

    Directory of Open Access Journals (Sweden)

    M. H. Phe

    2009-01-01

    Full Text Available Water disinfection is usually evaluated using mandatory methods based on cell culturability. However, such methods do not consider the potential of cells to recover, which should also be kept as low as possible. In this paper, we hypothesized that a successful disinfection is achieved only when the applied chlorine leads to both intracellular nucleic acid damage and strong alterations of the DNA repair machinery. Monitoring the SOS system responsiveness with a umuC'-‘lacZ reporter fusion, we found that the expression of this important cellular machinery was altered after the beginning of membrane permeabilization but prior to the total decline of both the cell culturability and the nucleic acid integrity as revealed by Sybr-II staining. Rapid measurement of such nucleic acid alterations by fluorochrome-based staining could be used as an alternative method for assessing the effectiveness of disinfection with chlorine.

  9. Assessment of damage from reduction of expected lifespan due to cancer

    Directory of Open Access Journals (Sweden)

    Boris Alengordovich Korobitsyn

    2013-09-01

    Full Text Available This paper presents the theoretical and methodological approaches to the assessment of damage from premature mortality and reduction of life expectancy due to various reasons. The concepts measuring the price of a human life are analyzed: the evaluation from the standpoint of the theory of human capital; indirect estimation taking into account non-monetary social costs; evaluation of individuals’ willingness to pay for the elimination of the risk of death; estimation based on the determination of insurance premiums and compensations under court decision; evaluation of the social investments, aimed to reduce the risk of premature mortality of the individual. The following indexes were calculated for all subordinate entities of the Russian Federation: reduction of life expectancy, lost years of potential life in the working age, and gross regional product lost due to the reduction of years of potential life in the working-age population as a result of cancer

  10. HEAT EXPOSURE ASSESSMENT IN THE WORKING ENVIRONMENT OF A GLASS MANUFACTURING UNIT

    Directory of Open Access Journals (Sweden)

    M. Pourmahabadian, M. Adelkhah, K. Azam

    2008-04-01

    Full Text Available Heat stress is a common health problem throughout industry. Any heat stress evaluation requires some exposure assessment of climatic conditions, especially air temperature, humidity, and speed, along with the average temperature of the solid surroundings. In this paper workplace environmental climatic parameters were measured and then evaluated by Wet Bulb Globe Temperature, Corrected Effective Temperature, Heat Stress Index, and Allowable Exposure Time indices among 40 workers in a glass manufacturing unit in Tehran. Also, the effect of available heat control devices on heat stress indices was investigated. The results of this study showed that the obtained heat stress index in individual section and press units is exceeded from 100 (in individual section unit: 302.6, in press unit: 283.6. Also, it is found that the mean average of allowable exposure time in individual section and press units were 13.15 and 12.26 minutes exposure for one hour, respectively. No significant relationship was found between environmental parameters in three parts of body regions (height of head, abdomen and ankle except for measured air velocity in both units (P<0.007. Positive correlation was found between wet bulb globe temperature, corrected effective temperature and heat stress index indices, but negative correlation was found between allowable exposure time and other indices. Mann Whitney non-parametric test revealed significant relationships in wet bulb globe temperature, corrected effective temperature, heat stress index and allowable exposure time indices when metallic shield was used as heat absorber.

  11. A protocol to assess insect resistance to heat waves, applied to bumblebees (Bombus Latreille, 1802).

    Science.gov (United States)

    Martinet, Baptiste; Lecocq, Thomas; Smet, Jérémy; Rasmont, Pierre

    2015-01-01

    Insect decline results from numerous interacting factors including climate change. One of the major phenomena related to climate change is the increase of the frequency of extreme events such as heat waves. Since heat waves are suspected to dramatically increase insect mortality, there is an urgent need to assess their potential impact. Here, we determined and compared the resistance to heat waves of insects under hyperthermic stress through their time before heat stupor (THS) when they are exposed to an extreme temperature (40°C). For this, we used a new experimental standardised device available in the field or in locations close to the field collecting sites. We applied this approach on different Arctic, Boreo-Alpine and Widespread bumblebee species in order to predict consequences of heat waves. Our results show a heat resistance gradient: the heat stress resistance of species with a centred arctic distribution is weaker than the heat resistance of the Boreo-Alpine species with a larger distribution which is itself lower than the heat stress resistance of the ubiquitous species.

  12. Risk-based damage assessment and maintenance management for turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama, Kazunari; Fujiwara, Toshihiro; Nakatani, Yujiro; Sawa, Testu; Ishii, Junji; Horino, Masayoshi; Nishimura, Mariko; Kitayama, Kazuhiro [Industrial and Power Systems and Services Company, Toshiba Corporation, Tokyo (Japan)

    2004-05-15

    A statistical approach for risk-based maintenance of damage tolerant components is presented. Damage risk is defined here as the expected cost due to repair of damage in the course of component life. The thermomechanical fatigue cracking was studied statistically as the typical damage phenomena for gas turbine nozzles. Probabilities of cycles to critical crack size and cycles to total amount of cracks were calculated through plant inspection data and experimental results of low cycle fatigue. The life cycle cost of damage tolerant components was proved to be optimized by considering the failure risk and the damage risk simultaneously. (orig.)

  13. Deformation analysis through the SBAS-DInSAR technique and geotechnical methods for structural damage assessment

    Science.gov (United States)

    Bonano, M.; Arangio, S.; Calò, F.; Di Mauro, M.; Manunta, M.; Marsella, M.; Sansosti, E.; Sonnessa, A.; Tagliafierro, V.; Lanari, R.

    2012-04-01

    Monitoring of displacements affecting single buildings or human-made infrastructures is of key importance for their diagnostic and damage assessment. The evaluation of the structural damage in urban areas is a critical problem related to the complexity of soil-structure interaction. Indeed, the structural damage is influenced by several factors, such as the uniformity of the settlements, the variability on the soil property, the type of foundations, the rigidity and type of the considered structure, as well as the rate at which the settlements occur. Concerning this latter issue, settlements occurring very slowly over periods of decades or more may be tolerable by masonry or reinforced concrete structures; on the other hand, the same settlements related to a few months or a few years would result in severe structural damage. In this context, remote sensing techniques allow non-invasive and non-destructive deformation analyses over large areas by properly exploiting a large number of space-borne radar data. Within this framework, Differential SAR Interferometry (DInSAR) has emerged as a valuable microwave methodology to detect and monitor ground displacements, with centimeter to millimeter accuracy, by exploiting the phase difference (interferogram) between two SAR images relevant to the same area. Recent developments of advanced DInSAR techniques are aimed at investigating not only single event deformation phenomena, but also the temporal evolution of the detected displacements through the generation of deformation time-series. These approaches benefit of the availability of huge archives of SAR data, including the ones acquired over the last 20 years by the Synthetic Aperture Radar (SAR) sensors on-board the ERS-1/2 and ENVISAT satellites of the European Space Agency (ESA). Among these advanced DInSAR approaches, we focus on the Small BAseline Subset (SBAS) algorithm (Berardino et al., 2002) that implements an easy combination of DInSAR data pairs characterized by

  14. Emergency Seismic Damage Assessment of the Ms8.0 Great Wenchuan Earthquake Based on Remote Sensing Imagery

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaoqing; Wang Long; Wang Yan; Ding Xiang; Zhang Feiyu

    2009-01-01

    The fast processing, seismic damage data extraction and loss evaluation from RS imagery acquired immediately after a destructive earthquake occurs, are important means for compen-sating the insufficiency of seismic damage information from ground-based investigations and provide an important basis for emergency command and rescue. The paper introduces the method of emergency seismic damage assessment using remote sensing data and its application to the great Wenchuan earthquake of magnitude 8.0 occurring in southwest Sichuan Province on May 12, 2008. The practical effectiveness of the method is also evaluated in the paper.

  15. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012

    Directory of Open Access Journals (Sweden)

    Akhtar Ali Memon

    2015-06-01

    Full Text Available This paper uses Normalized Difference Water Index (NDWI of McFeeters (1996, Water Index (WI introduced by Rogers and Kearney (2004, referred to as Red and Short Wave Infra-Red (RSWIR and WI suggested as the best by Ji et al. (2009, referred to as Green and Short Wave Infra-Red (GSWIR for delineating and mapping of surface water using MODIS (Terra near real time images during 2012 floods in Pakistan. The results from above indices have been compared with Landsat ETM+ classified images aiming to assess the accuracy of the indices. Accuracy assessment has been performed using spatial statistical techniques and found NDWI, RSWIR and GSWIR with kappa coefficient (κ of 46.66%, 70.80% and 60.61% respectively. It has been observed using statistical analysis and visual interpretation (expert knowledge gained by past experience that the NDWI and GSWIR have tendencies to underestimate and overestimate respectively the inundated area. Keeping in view the above facts, RSWIR has proved to be the best of the three indices. In addition, assessment of the damages has been carried out considering accumulated flood extent obtained from RSWIR. The information derived proved to be essential and valuable for disaster management plan and rehabilitation.

  16. TREES OF DAMAGES AS A MODEL OF RISKS ASSESSMENT FOR AVAILABILITY LOSSES AFTER CHANGES IN FINANCIAL INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. A. Arustamov

    2013-03-01

    Full Text Available The article deals with the methodology for risks assessment of availability losses in financial information systems after changes made in them by using trees of damages. A description of damages tree generation for each identified possible event is presented that potentially can lead to the system availability loss. An example is given, illustrating the methodology application that gives the possibility to choose the optimal software testing strategy.

  17. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    Science.gov (United States)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  18. Assessing the Conceptual Understanding about Heat and Thermodynamics at Undergraduate Level

    Science.gov (United States)

    Kulkarni, Vasudeo Digambar; Tambade, Popat Savaleram

    2013-01-01

    In this study, a Thermodynamic Concept Test (TCT) was designed to assess student's conceptual understanding heat and thermodynamics at undergraduate level. The different statistical tests such as item difficulty index, item discrimination index, point biserial coefficient were used for assessing TCT. For each item of the test these indices were…

  19. Guide to the measurement and assessment of heat stress in Gold Mines

    CSIR Research Space (South Africa)

    Stewart, JM

    1978-04-01

    Full Text Available This report is intended primarily for ventilation staff on mines, but is also of importance to management. In the gold mining industry the assessment of heat stress is likely to be for one of three purposes: to assess either the average or the worst...

  20. Including the urban heat island in spatial heat health risk assessment strategies: a case study for Birmingham, UK

    Directory of Open Access Journals (Sweden)

    Thornes John E

    2011-06-01

    Full Text Available Abstract Background Heatwaves present a significant health risk and the hazard is likely to escalate with the increased future temperatures presently predicted by climate change models. The impact of heatwaves is often felt strongest in towns and cities where populations are concentrated and where the climate is often unintentionally modified to produce an urban heat island effect; where urban areas can be significantly warmer than surrounding rural areas. The purpose of this interdisciplinary study is to integrate remotely sensed urban heat island data alongside commercial social segmentation data via a spatial risk assessment methodology in order to highlight potential heat health risk areas and build the foundations for a climate change risk assessment. This paper uses the city of Birmingham, UK as a case study area. Results When looking at vulnerable sections of the population, the analysis identifies a concentration of "very high" risk areas within the city centre, and a number of pockets of "high risk" areas scattered throughout the conurbation. Further analysis looks at household level data which yields a complicated picture with a considerable range of vulnerabilities at a neighbourhood scale. Conclusions The results illustrate that a concentration of "very high" risk people live within the urban heat island, and this should be taken into account by urban planners and city centre environmental managers when considering climate change adaptation strategies or heatwave alert schemes. The methodology has been designed to be transparent and to make use of powerful and readily available datasets so that it can be easily replicated in other urban areas.

  1. Damage assessment of long-range rocket system by electromagnetic pulse weapon

    Science.gov (United States)

    Cao, Lingyu; Liu, Guoqing; Li, Jinming

    2017-08-01

    This paper analyzes the damage mechanism and characteristics of electromagnetic pulse weapon, establishes the index system of survivability of long-range rocket launcher system, and uses AHP method to establish the combat effectiveness model of long-range rocket missile system. According to the damage mechanism and characteristics of electromagnetic pulse weapon, the damage effect of the remote rocket system is established by using the exponential method to realize the damage efficiency of the remote rocket system.

  2. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Directory of Open Access Journals (Sweden)

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  3. PERFORMANCE ASSESSMENT OF SOLAR DRYER WITH INDIRECT HEATING

    Directory of Open Access Journals (Sweden)

    Boryana Brashlyanova

    2014-03-01

    Full Text Available The performed tests were designed to identify and analyze the parameters of drying in a authors model solar dryer. They to be the basis for constructing of an improved model. Drying was carried out in a pilot model solar dryer with prunes in two cycles. Both samples were run under steady sunshine in outdoor air temperature ranging between 20-22°C in the morning and 33-35°C in the early afternoon hours. Depending on the ambient conditions, the drying temperature was found in the range of 30 to 50°C. The dried samples had a water activity Aw> 0.9, due to which the storage is at -18°C. The duration of the drying process of prunes was inconstant and lasted from 2 to 3 days, depending on the final moisture content of the product and the external temperature, humidity, and intensity of solar radiation. The obtained two products intermediate moisture prunes, in addition to direct human consumption could be used as a base for incorporation into other products. Prunes with intermediate moisture content 40% could be consumed directly at ambient temperature or after freezing and tempering at -6 to -5ºC. Based on the established parameters we are to design and produce an improved solar dryer model that allows better utilization of heat and shortening the process duration.

  4. Combining several thermal indices to generate a unique heat comfort assessment methodology

    Directory of Open Access Journals (Sweden)

    Wissam EL Hachem

    2015-11-01

    Full Text Available Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology, surrounding temperatures (heat balance and environmental factors and cognitive treatment (physiology.This paper proposes a combination of different multidisciplinary variables to generate a unique heat comfort assessment methodology. The variables at stake are physiological, biological, and environmental. Our own heat analysis is thoroughly presented and all relevant equations are described. Findings: Most companies are oblivious about potential dangers of heat stress accidents and thus about methods to monitor and prevent them. This methodology enables the company or the concerned individual to conduct a preliminary assessment with minimal wasted resources and time in unnecessary steps whilst providing a guideline for a detailed study with minimal error rates if needed. More so, thermal comfort is an integral part of sound ergonomics practices, which in turn are decisive for the success of any lean six sigma initiative. Research limitations/implications: This methodology requires several full implementations to finalize its design. Originality/value: Most used heat comfort models are inherently uncertain and tiresome to apply. An extensive literature review confirms the need for a uniform assessment methodology that combines the different thermal comfort models such as the Fanger comfort model (PMV, PPD and WGBT since high error rates coupled with tiresome calculations often hinder the thermal assessment process.

  5. Assessment of Damage in Seismically Excited RC-Structures from a Single Measured Response

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R.K.; Cakmak, A. S.

    . The distribution of local damage are the performed in such a way that these smoothed eigenfrequencies are reproduced. The local damage indicators for a certain substructure are defined as the average reduction of the stiffness matrix of the initial undamaged substructure. These damage indicators are identified...

  6. Using landscape analysis to assess and model tsunami damage in Aceh province, Sumatra

    Science.gov (United States)

    Louis R. Iverson; Anantha Prasad

    2007-01-01

    The nearly unprecedented loss of life resulting from the earthquake and tsunami of December 26,2004, was greatest in the province of Aceh, Sumatra (Indonesia). We evaluated tsunami damage and built empirical vulnerability models of damage/no damage based on elevation, distance from shore, vegetation, and exposure. We found that highly predictive models are possible and...

  7. Numerical fatigue life assessment of cardiovascular stents: A two-scale plasticity-damage model

    Science.gov (United States)

    Santos, H. A. F. A.; Auricchio, F.; Conti, M.

    2013-07-01

    Cardiovascular disease has become a major global health care problem in the last decades. To tackle this problem, the use of cardiovascular stents has been considered a promising and effective approach. Numerical simulations to evaluate the in vivo behavior of stents are becoming more and more important to assess potential failures. As the material failure of a stent device has been often associated with fatigue issues, numerical approaches for fatigue life assessment of stents have gained special interest in the engineering community. Numerical fatigue life predictions can be used to modify the design and prevent failure without making and testing numerous physical devices, thus preventing from undesired fatigue failures. We present a numerical fatigue life model for the analysis of cardiovascular balloon-expandable stainless steel stents that can hopefully provide useful information either to be used for product improvement or for clinicians to make life-saving decisions. This model incorporates a two-scale continuum damage mechanics model and the so-called Soderberg fatigue failure criterion. We provide numerical results for both Palmaz-Schatz and Cypher stent designs and demonstrate that a good agreement is found between the numerical and the available experimental results.

  8. Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen.

    Science.gov (United States)

    Marczynski, Boleslaw; Raulf-Heimsoth, Monika; Preuss, Ralf; Kappler, Martin; Schott, Klaus; Pesch, Beate; Zoubek, Gerd; Hahn, Jens-Uwe; Mensing, Thomas; Angerer, Jürgen; Käfferlein, Heiko U; Brüning, Thomas

    2006-04-01

    We conducted a cross-shift study with 66 bitumen-exposed mastic asphalt workers and 49 construction workers without exposure to bitumen. Exposure was assessed using personal monitoring of airborne bitumen exposure, urinary 1-hydroxypyrene (1-OHP), and the sum of 1-, 2 + 9-,3-,4-hydroxyphenanthrene (OHPH). Genotoxic effects in WBC were determined with nonspecific DNA adduct levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and the formation of DNA strand breaks and alkali-labile sites. Concentration of fumes and aerosols of bitumen correlated significantly with the concentrations of 1-OHP and OHPH after shift (r(s) = 0.27; P = 0.03 and r(s) = 0.55; P Bitumen-exposed workers had more DNA strand breaks than the reference group (P bitumen nor with urinary metabolite concentrations. Significantly more DNA adducts were observed after shift not only in bitumen-exposed workers but also in the reference group. Only low-exposed workers had significantly elevated 8-oxodGuo adduct levels before as well as after shift (P = 0.0002 and P = 0.02, respectively). Our results show that exposure to fumes and aerosols of bitumen may contribute to an increased DNA damage assessed with strand breaks.

  9. Application of crowdsourced hail data and damage information for hail risk assessment in the province of Styria, Austria

    Science.gov (United States)

    Tani, Satyanarayana; Rechberger, Andreas; Süsser Rechberger, Barbara; Teschl, Reinhard; Paulitsch, Helmut

    2017-04-01

    Hail storm damage is a major concern to the farmers in the province of Styria, Austria. Each year severe hail storms are causing damages to crops, resulting in losses of millions of euros. High spatial and timely ground truth information of the hail event and crop damage measurements are essential for better hail risk assessment. Usually, hail pad networks and visual damage surveys are used to collect the hail data and corresponding damage information. However, these hail pad networks are expensive and need laborious maintenance. The traditional crop damage assessment approaches are very labour-intensive and time-consuming. The advancements in information and communication technology (ICT) and the power of citizen based crowdsourcing data, will help to overcome these problems and ultimately provide a platform for data collection. A user-friendly and bilingual web interface was developed to collect hail data and crop damage information in the province of Styria, Austria. The dynamic web interface was developed using HTML5, JavaScript, and PHP7 combined with a MySQL database back-end. OpenStreetMap was integrated into the web interface and tile server optimised for an easy identification of geolocation information. The user needs an internet connection to transfer the data through smartphone or computer. Crowdsourced data will be quality tested and evaluated with 3D single polarisation C-band weather radar data to remove potential false reports. Further, the relationship between the reported hail events and radar-based hail detection algorithms (Waldvogel and Auer) and derived hail signature information intended for crop hail risk assessment will be investigated. The details about the web interface tool, application and verification methods to collect, analyse, and integrate different data sets are given. Further, the high spatial risk assessment information is communicated to support risk management policy.

  10. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miller, P. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamilton, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-04-03

    Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (THT). Plasma-enhanced CVD based on SiH4/N2O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to THT ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for THT values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.

  11. Damage assessment of bridge infrastructure subjected to flood-related hazards

    Science.gov (United States)

    Michalis, Panagiotis; Cahill, Paul; Bekić, Damir; Kerin, Igor; Pakrashi, Vikram; Lapthorne, John; Morais, João Gonçalo Martins Paulo; McKeogh, Eamon

    2017-04-01

    Transportation assets represent a critical component of society's infrastructure systems. Flood-related hazards are considered one of the main climate change impacts on highway and railway infrastructure, threatening the security and functionality of transportation systems. Of such hazards, flood-induced scour is a primarily cause of bridge collapses worldwide and one of the most complex and challenging water flow and erosion phenomena, leading to structural instability and ultimately catastrophic failures. Evaluation of scour risk under severe flood events is a particularly challenging issue considering that depth of foundations is very difficult to evaluate in water environment. The continual inspection, assessment and maintenance of bridges and other hydraulic structures under extreme flood events requires a multidisciplinary approach, including knowledge and expertise of hydraulics, hydrology, structural engineering, geotechnics and infrastructure management. The large number of bridges under a single management unit also highlights the need for efficient management, information sharing and self-informing systems to provide reliable, cost-effective flood and scour risk management. The "Intelligent Bridge Assessment Maintenance and Management System" (BRIDGE SMS) is an EU/FP7 funded project which aims to couple state-of-the art scientific expertise in multidisciplinary engineering sectors with industrial knowledge in infrastructure management. This involves the application of integrated low-cost structural health monitoring systems to provide real-time information towards the development of an intelligent decision support tool and a web-based platform to assess and efficiently manage bridge assets. This study documents the technological experience and presents results obtained from the application of sensing systems focusing on the damage assessment of water-hazards at bridges over watercourses in Ireland. The applied instrumentation is interfaced with an open

  12. Damage assessment in structure from changes in static parameter using neural networks

    Indian Academy of Sciences (India)

    Damodar Maity; Asish Saha

    2004-06-01

    Damage to structures may occur as a result of normal operations, accidents, deterioration or severe natural events such as earthquakes and storms. Most often the extent and location of damage may be determined through visual inspection. However, in some cases this may not be feasible. The basic strategy applied in this study is to train a neural network to recognize the behaviour of the undamaged structure as well as of the structure with various possible damaged states. When this trained network is subjected to the measured response, it should be able to detect any existing damage. This idea is applied on a simple cantilever beam. Strain and displacement are used as possible candidates for damage identification by a back-propagation neural network. The superiority of strain over displacement for identification of damage has been observed in this study.

  13. On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?

    Science.gov (United States)

    Wolf, Tanja; Chuang, Wen-Ching; McGregor, Glenn

    2015-10-23

    Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

  14. On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?

    Directory of Open Access Journals (Sweden)

    Tanja Wolf

    2015-10-01

    Full Text Available Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

  15. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  16. Development of two tier test to assess conceptual understanding in heat and temperature

    Science.gov (United States)

    Winarti; Cari; Suparmi; Sunarno, Widha; Istiyono, Edi

    2017-01-01

    Heat and temperature is a concept that has been learnt from primary school to undergraduate levels. One problem about heat and temperature is that they are presented abstractly, theoretical concept. A student conceptual frameworks develop from their daily experiences. The purpose of this research was to develop a two-tier test of heat and temperature concept and measure conceptual understanding of heat and temperature of the student. This study consist of two method is qualitative and quantitative method. The two-tier test was developed using procedures defined by Borg and Gall. The two-tier test consisted of 20 question and was tested for 137 students for collecting data. The result of the study showed that the two-tier test was effective in determining the students’ conceptual understanding and also it might be used as an alternative for assessment and evaluation of students’ achievement

  17. Contaminants in milk and impact of heating: An assessment study

    Directory of Open Access Journals (Sweden)

    Vandana Awasthi

    2012-01-01

    Full Text Available Background: The major contaminants usually encountered in milk and milk products include pesticide residues, heavy metals, and aflatoxin M1 (AFM1. Primarily, milk get contaminated before milching, from the cattle feed, from sources/materials used during the processing of milk as well as improper handling of the milk during the pre- and postprocessing period. Objective: The purpose of this study was to evaluate the effect of household practices on milk contaminants. Materials and Methods: Samples of pasteurized as well as unpasteurized milk (Vendor′s milk were analyzed for AFM1, pesticide residues, and heavy metals. Simulating the household practices, the impact of boiling on these contaminants was assessed. Results: The contaminant Aflatoxin M1 (AFM1 was detected at a concentration ranging from 0.071-0.075 ppb in unpasteurized as well as pasteurized milk samples analyzed during the course of study. Moreover, boiling had no impact on the quantity of AFM1 present in the milk. Pesticides and heavy metal contents were found to be within acceptable limits in all the milk samples tested. Conclusion: Mycotoxins especially aflatoxins in cattle feed and their consequential presence in milk and milk products is a serious concern world over as they are reported carcinogens. These fungal toxins are resistant to high temperatures and may lead to various health hazards. Preventive steps must be taken at each stage to ensure good quality of milk and milk products free from these contaminants. Awareness programs and education for the dairy farmers and milk processors may be helpful in this regard.

  18. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data.

  19. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  20. Operational challenges to community participation in post-disaster damage assessments: observations from Fiji.

    Science.gov (United States)

    Méheux, Kirstie; Dominey-Howes, Dale; Lloyd, Kate

    2010-10-01

    Community participation is becoming increasingly popular within the field of disaster management. International disaster policies, frameworks and charters embrace the notion that communities should play an active role in initiatives to identify vulnerabilities and risks and to mitigate those dangers, and, in the event of a disaster, that they should play a proactive part in response and recovery (see, for example, UNISDR, 1994; The Sphere Project, 2004; United Nations, 2005). A number of studies have investigated the participation of communities in disaster preparedness and mitigation efforts (see, for instance, Scott-Villiers, 2000; Andharia, 2002; Godschalk, Brody and Burby, 2003), There is, however, limited reflection on the challenges to ensuring participation in the operational context of disaster response. This paper draws on a study of the policy and practice of participatory damage assessment in Fiji to identify and discuss the barriers to formal implementation of community participation in a post-disaster context. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  1. The assessment of pragmatics in Iranian patients with right brain damage.

    Directory of Open Access Journals (Sweden)

    Davood Sobhani-Rad

    2014-06-01

    Full Text Available Pragmatics is appropriate use of language across a variety of social contexts that provides accurate interpretation of intentions. The occurrence of the right hemisphere lesions can interfere with pragmatic abilities, and particularly with the processing of nonliteral speech acts.Since the objective of this study was to assess different aspects of pragmatic competence in the right hemisphere damage (RHD patients, 20 Iranian patients with right hemisphere lesions were examined by adult pragmatic profile (APP and a novel checklist was introduced for Persian language speaking individuals. Meanwhile, 40 healthy adult individuals, who were age and gender matched with RHD patients, were considered as the control group. After obtaining video records, all subjects were evaluated for 35 pragmatic skills, including 24 verbal, 5 paralinguistic, and 6 nonverbal aspects, by a two-point scale system.Studying RHD patients and their healthy counterparts revealed that the performance by participants with right hemisphere lesions exhibited a high degree of inappropriate pragmatic abilities compared with controls in all domains. Furthermore, RHD patients showed a trend of increasing difficulty in understanding and producing different pragmatic phenomena, including standard communication acts.Present results indicated that the right hemisphere lesions significantly affected pragmatic abilities in verbal, paralinguistic and nonverbal aspects. Such a pattern of performance, which is in line with deficits previously reported for RHD, proved the unquestioned role of the right hemisphere in processing nonliteral language.

  2. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    Science.gov (United States)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  3. Flow cytometric scoring of micronucleated erythrocytes: an efficient platform for assessing in vivo cytogenetic damage.

    Science.gov (United States)

    Dertinger, Stephen D; Torous, Dorothea K; Hayashi, Makoto; MacGregor, James T

    2011-01-01

    The relative simplicity of the micronucleated erythrocyte endpoint has made it amenable to automated scoring approaches. Flow cytometry is one such scoring platform that has been employed successfully. This review describes the evolution and properties of flow cytometry-based scoring of micronucleated erythrocytes. The methodology has become widely applied to rodent blood specimens and the high throughput nature of the technology provides a number of advantages over manual microscopic scoring. For instance, the ability to efficiently survey many dose levels and many more cells per specimen relative to microscopy benefits studies that are designed to identify no observable effect levels or lowest observable effect levels. Furthermore, flow cytometry makes it practical to study species with low spontaneous reticulocyte (RET) counts and micronucleus (MN) frequencies, thereby facilitating integration of blood-based micronucleated reticulocyte (MN-RET) frequency measurements into experiments conducted across species of toxicological interest. This capability enhances genotoxicity assessments that have historically been made in dedicated MN tests performed in one species. Importantly, the feasibility of using MN-RET frequencies in blood from humans as an index of genetic damage in bone marrow opens a critical area of application that had not been practical previously. We conclude with recommendations for additional work that is needed to more fully realise the potential of flow cytometric in vivo MN scoring.

  4. Health Risk Assessment and DNA Damage of Volatile Organic Compounds in Car Painting Houses

    Directory of Open Access Journals (Sweden)

    Patpida Siripongpokin

    2014-06-01

    Full Text Available Car painters who work near volatile organic compounds (VOCs sources, including paints, solvents and painting processes may be exposed to highly elevated VOCs levels. This study investigates air samples from car painting houses in Thailand to evaluate the health risks following inhalation exposure. Personal air samplings were obtained at nine garages in Phitsanulok, Thailand from June to September 2012. The concentrations of benzene, toluene, ethylbenzene, xylenes, and styrene in the air workplaces were significantly higher than in a control group of office workers (p < 0.05. Toluene, xylene and ethylbenzene were the most abundant species. However, all VOCs in these air samples were lower than TWA limit of Thailand and the OSHA standard. The lifetime cancer and non-cancer risks for the workers exposed to VOCs were also assessed. The average lifetime cancer risk was 41.0 (38.2-47.2 per million, which is in the acceptable risk. The average lifetime non-cancer risk, the HI, was 0.962 (0.643-1.397, which is well below the reference hazard level. Urine samples, collected after 8-h work periods which were analyzed for VOCs metabolites, including t,t muconic acid, hippuric acid, mandelic acid and m-hippuric acid, demonstrate that the average levels of metabolites in car painters and in controls were close. All VOCs metabolites in urine samples were lower than BEI of ACGIH standard. Blood samples, collected after 8-h work periods which were analyzed by single cell gel electrophoresis (comet assay. The DNA damage, assessed by tail moment, demonstrates that the average of tail moment in car painters were significantly higher than in the controls (p < 0.05.

  5. Implications of global climate change for natural resource damage assessment, restoration, and rehabilitation.

    Science.gov (United States)

    Rohr, Jason R; Johnson, Philip; Hickey, Christopher W; Helm, Roger C; Fritz, Alyce; Brasfield, Sandra

    2013-01-01

    Various international and national regulations hold polluters liable for the cleanup of released hazardous substances and the restoration/rehabilitation of natural resources to preincident baseline conditions, a process often referred to as natural resource damage assessment and restoration (NRDAR). Here, we, the authors, describe how global climate change (GCC) will challenge each of the steps of NRDAR processes and offer eight recommendations to improve these processes in light of GCC. First, we call for a better understanding of the net effects of GCC and contaminants on natural resources. Second, we urge facilities and environmental managers to plan for GCC-related factors that are expected to increase the probability of contaminant releases. Third, we suggest re-evaluating definitions of baseline and reference conditions given that GCC will alter both their trajectories and variability. Fourth, we encourage long-term monitoring to improve the quantification of baseline conditions that will change as climate changes. This will enhance the accuracy of injury assessments, the effectiveness of restoration, and the detection of early warning signs that ecosystems are approaching tipping points. Fifth, in response to or anticipation of GCC, restoration projects may need to be conducted in areas distant from the site of injury or focused on functionally equivalent natural resources; thus, community involvement in NRDAR processes will be increasingly important. Sixth, we promote using NRDAR restoration projects as opportunities to mitigate GCC-related impacts. Seventh, we recommend adaptive management approaches to NRDAR processes and communication of successes and failures widely. Finally, we recommend focusing on managing the stressors that might be exacerbated by GCC, such as pollution and habitat loss, because there is a long history of successfully mitigating these stressors, which can be more easily managed on local scales than climate change. We believe that

  6. Longitudinal quantitative MRI assessment of cortical damage in multiple sclerosis: A pilot study.

    Science.gov (United States)

    Gracien, René-Maxime; Reitz, Sarah C; Hof, Stephanie-Michelle; Fleischer, Vinzenz; Droby, Amgad; Wahl, Mathias; Steinmetz, Helmuth; Groppa, Sergiu; Deichmann, Ralf; Klein, Johannes C

    2017-02-27

    Quantitative MRI (qMRI) allows assessing cortical pathology in multiple sclerosis (MS) on a microstructural level, where cortical damage has been shown to prolong T1 -relaxation time and increase proton density (PD) compared to controls. However, the evolution of these changes in MS over time has not been investigated so far. In this pilot study we used an advanced method for the longitudinal assessment of cortical tissue change in MS patients with qMRI in comparison to cortical atrophy, as derived from conventional MRI. Twelve patients with relapsing-remitting MS underwent 3T T1 /PD-mapping at two timepoints with a mean interval of 12 months. The respective cortical T1 /PD-values were extracted from the middle of the cortical layer and the cortical thickness was measured for surface-based identification of clusters with increasing/decreasing values. Statistical analysis showed clusters with increasing PD- and T1 -values over time (annualized rate for T1 /PD increase in these clusters: 3.4 ± 2.56% for T1 , P = 0.0007; 2.3 ± 2.59% for PD, P = 0.01). Changes are heterogeneous across the cortex and different patterns of longitudinal PD and T1 increase emerged. Analysis of the cortical thickness yielded only one small cluster indicating a decrease of cortical thickness. Changes of cortical tissue composition in MS seem to be reflected by a spatially inhomogeneous, multifocal increase of the PD values, indicating replacement of neural tissue by water, and of the T1 -relaxation time, a surrogate of demyelination, axonal loss, and gliosis. qMRI changes were more prominent than cortical atrophy, showing the potential of qMRI techniques to quantify microstructural alterations that remain undetected by conventional MRI. 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Bearing damage assessment using Jensen-Rényi Divergence based on EEMD

    Science.gov (United States)

    Singh, Jaskaran; Darpe, A. K.; Singh, S. P.

    2017-03-01

    An Ensemble Empirical Mode Decomposition (EEMD) and Jensen Rényi divergence (JRD) based methodology is proposed for the degradation assessment of rolling element bearings using vibration data. The EEMD decomposes vibration signals into a set of intrinsic mode functions (IMFs). A systematic methodology to select IMFs that are sensitive and closely related to the fault is proposed in the paper. The change in probability distribution of the energies of the sensitive IMFs is measured through JRD which acts as a damage identification parameter. Evaluation of JRD with sensitive IMFs makes it largely unaffected by change/fluctuations in operating conditions. Further, an algorithm based on Chebyshev's inequality is applied to JRD to identify exact points of change in bearing health and remove outliers. The identified change points are investigated for fault classification as possible locations where specific defect initiation could have taken place. For fault classification, two new parameters are proposed: 'α value' and Probable Fault Index, which together classify the fault. To standardize the degradation process, a Confidence Value parameter is proposed to quantify the bearing degradation value in a range of zero to unity. A simulation study is first carried out to demonstrate the robustness of the proposed JRD parameter under variable operating conditions of load and speed. The proposed methodology is then validated on experimental data (seeded defect data and accelerated bearing life test data). The first validation on two different vibration datasets (inner/outer) obtained from seeded defect experiments demonstrate the effectiveness of JRD parameter in detecting a change in health state as the severity of fault changes. The second validation is on two accelerated life tests. The results demonstrate the proposed approach as a potential tool for bearing performance degradation assessment.

  8. A comparative assessment of different frequency based damage detection in unidirectional composite plates using MFC sensors

    Science.gov (United States)

    de Medeiros, Ricardo; Sartorato, Murilo; Vandepitte, Dirk; Tita, Volnei

    2016-11-01

    The basic concept of the vibration based damage identification methods is that the dynamic behaviour of a structure can change if damage occurs. Damage in a structure can alter the structural integrity, and therefore, the physical properties like stiffness, mass and/or damping may change. The dynamic behaviour of a structure is a function of these physical properties and will, therefore, directly be affected by the damage. The dynamic behaviour can be described in terms of time, frequency and modal domain parameters. The changes in these parameters (or properties derived from these parameters) are used as indicators of damage. Hence, this work has two main objectives. The first one is to provide an overview of the structural vibration based damage identification methods. For this purpose, a fundamental description of the structural vibration based damage identification problem is given, followed by a short literature overview of the damage features, which are commonly addressed. The second objective is to create a damage identification method for detection of the damage in composite structures. To aid in this process, two basic principles are discussed, namely the effect of the potential damage case on the dynamic behaviour, and the consequences involved with the information reduction in the signal processing. Modal properties from the structural dynamic output response are obtained. In addition, experimental and computational results are presented for the application of modal analysis techniques applied to composite specimens with and without damage. The excitation of the structures is performed using an impact hammer and, for measuring the output data, accelerometers as well as piezoelectric sensors. Finite element models are developed by shell elements, and numerical results are compared to experimental data, showing good correlation for the response of the specimens in some specific frequency range. Finally, FRFs are analysed using suitable metrics, including a

  9. Application of a value-based equivalency method to assess environmental damage compensation under the European Environmental Liability Directive.

    Science.gov (United States)

    Martin-Ortega, Julia; Brouwer, Roy; Aiking, Harry

    2011-06-01

    The Environmental Liability Directive (ELD) establishes a framework of liability based on the 'polluter-pays' principle to prevent and remedy environmental damage. The ELD requires the testing of appropriate equivalency methods to assess the scale of compensatory measures needed to offset damage. The aim of this paper is to contribute to fill the existing knowledge gap on the application of the value equivalency approach for damage compensation in this context. We analyze the toxic spill damaging the Doñana National Park (Spain) in 1998. The welfare losses associated with the resource damage are estimated using non-market valuation and compared to the value of the compensatory measures taken after the accident. Our results show that the in-kind compensation may have been insufficient to offset the welfare losses. We conclude that a more comprehensive knowledge of the human welfare effects caused by environmental damage is of substantial importance to determine compensatory remediation, as insufficient information in this respect can lead to erroneous decisions causing loss to society. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Spatial Information in Support of 3D Flood Damage Assessment of Buildings at Micro Level: A Review

    Science.gov (United States)

    Amirebrahimi, S.; Rajabifard, A.; Sabri, S.; Mendis, P.

    2016-10-01

    Floods, as the most common and costliest natural disaster around the globe, have adverse impacts on buildings which are considered as major contributors to the overall economic damage. With emphasis on risk management methods for reducing the risks to structures and people, estimating damage from potential flood events becomes an important task for identifying and implementing the optimal flood risk-reduction solutions. While traditional Flood Damage Assessment (FDA) methods focus on simple representation of buildings for large-scale damage assessment purposes, recent emphasis on buildings' flood resilience resulted in development of a sophisticated method that allows for a detailed and effective damage evaluation at the scale of building and its components. In pursuit of finding the suitable spatial information model to satisfy the needs of implementing such frameworks, this article explores the technical developments for an effective representation of buildings, floods and other required information within the built environment. The search begins with the Geospatial domain and investigates the state-of-the-art and relevant developments from data point of view in this area. It is further extended to other relevant disciplines in the Architecture, Engineering and Construction domain (AEC/FM) and finally, even some overlapping areas between these domains are considered and explored.

  11. Comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia

    DEFF Research Database (Denmark)

    Sgro, Carla M.; Overgaard, Johannes; Kristensen, Torsten Nygård

    2010-01-01

    We examined latitudinal variation in adult and larval heat tolerance in Drosophila melanogaster from eastern Australia. Adults were assessed using static and ramping assays. Basal and hardened static heat knockdown time showed significant linear clines; heat tolerance increased towards the tropics...

  12. Assessing the impacts of lifetime sun exposure on skin damage and skin aging using a non-invasive method.

    Science.gov (United States)

    Kimlin, Michael G; Guo, Yuming

    2012-05-15

    Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. We recruited 180 participants (73 males, 107 females) aged 18-83 years. Digital imaging of skin hyperpigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Application of the adductome approach to assess intertissue DNA damage variations in human lung and esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Kanaly, Robert A. [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Department of Environmental Biosciences, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama 236-0027 (Japan); Matsui, Saburo [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Hanaoka, Tomoyuki [Epidemiology and Prevention Division, National Cancer Center Research Institute, Tokyo 104-0045 (Japan); Matsuda, Tomonari [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan)], E-mail: matsuda@z05.mbox.media.kyoto-u.ac.jp

    2007-12-01

    Methods for determining the differential susceptibility of human organs to DNA damage have not yet been explored to any large extent due to technical constraints. The development of comprehensive analytical approaches by which to detect intertissue variations in DNA damage susceptibility may advance our understanding of the roles of DNA adducts in cancer etiology and as exposure biomarkers at least. A strategy designed for the detection and comparison of multiple DNA adducts from different tissue samples was applied to assess esophageal and peripherally- and centrally-located lung tissue DNA obtained from the same person. This adductome approach utilized LC/ESI-MS/MS analysis methods designed to detect the neutral loss of 2'-deoxyribose from positively ionized 2'-deoxynucleoside adducts transmitting the [M+H]{sup +} > [M+H-116]{sup +} transition over 374 transitions. In the final analyses, adductome maps were produced which facilitated the visualization of putative DNA adducts and their relative levels of occurrence and allowed for comprehensive comparisons between samples, including a calf thymus DNA negative control. The largest putative adducts were distributed similarly across the samples, however, differences in the relative amounts of putative adducts in lung and esophagus tissue were also revealed. The largest-occurring lung tissue DNA putative adducts were 90% similar (n = 50), while putative adducts in esophagus tissue DNA were shown to be 80 and 84% similar to central and peripheral lung tissue DNA respectively. Seven DNA adducts, N{sup 2}-ethyl-2'-deoxyguanosine (N{sup 2}-ethyl-dG), 1,N{sup 6}-etheno-2'-deoxyadenosine ({epsilon}dA), {alpha}-S- and {alpha}-R-methyl-{gamma}-hydroxy-1,N{sup 2}-propano-2'-deoxyguanosine (1,N{sup 2}-PdG{sub 1}, 1,N{sup 2}-PdG{sub 2}), 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-8-hydroxy-pyrimido[1,2-a] purine-(3H)-one (8-OH-PdG) and the two stereoisomers of 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro

  14. Response and Damage Assessment of Reinforced Concrete Frames subject to Earthquakes

    DEFF Research Database (Denmark)

    Skjærbæk, Poul

    When civil engineering structures made of reinforced concrete (RC) such as some types of apartment buildings, hospitals, office buildings, bridges etc. are subjected to sufficiently high dynamic loads it is well known that some kind of damage will occur in the structure. The damage introduced...

  15. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2015-01-01

    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water con...

  16. Damage Model for Reliability Assessment of Solder Joints in Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    damage model by Miner’s rule. Our attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Based on the proposed method it is described how to find the damage level for a given temperature loading profile. The proposed method is discussed...

  17. Scenario-neutral Food Security Risk Assessment: A livestock Heat Stress Case Study

    Science.gov (United States)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2015-12-01

    Food security risk assessments can provide decision-makers with actionable information to identify critical system limitations, and alternatives to mitigate the impacts of future conditions. The majority of current risk assessments have been scenario-led and results are limited by the scenarios - selected future states of the world's climate system and socioeconomic factors. A generic scenario-neutral framework for food security risk assessments is presented here that uses plausible states of the world without initially assigning likelihoods. Measures of system vulnerabilities are identified and system risk is assessed for these states. This framework has benefited greatly by research in the water and natural resource fields to adapt their planning to provide better risk assessments. To illustrate the utility of this framework we develop a case study using livestock heat stress risk within the pastoral system of West Africa. Heat stress can have a major impact not only on livestock owners, but on the greater food production system, decreasing livestock growth, milk production, and reproduction, and in severe cases, death. A heat stress index calculated from daily weather is used as a vulnerability measure and is computed from historic daily weather data at several locations in the study region. To generate plausible states, a stochastic weather generator is developed to generate synthetic weather sequences at each location, consistent with the seasonal climate. A spatial model of monthly and seasonal heat stress provide projections of current and future livestock heat stress measures across the study region, and can incorporate in seasonal climate and other external covariates. These models, when linked with empirical thresholds of heat stress risk for specific breeds offer decision-makers with actionable information for use in near-term warning systems as well as for future planning. Future assessment can indicate under which states livestock are at greatest risk

  18. Assessing the Economic Cost of Landslide Damage in Low-Relief Regions: Case Study Evidence from the Flemish Ardennes (Belgium)

    Science.gov (United States)

    Vranken, L.; Van Turnhout, P.; Van Den Eeckhaut, M.; Vandekerckhove, L.; Vantilt, G.; Poesen, J.

    2012-04-01

    Several regions around the globe are at risk to incur damage from landslides. These landslides cause significant structural and functional damage to public and private buildings and infrastructure. Numerous studies investigated how natural factors and human activities control the (re-)activation of landslides. However, few studies have concentrated on a quantitative estimate of the overall damage caused by landslides at a regional scale. This study therefore starts with a quantitative economic assessment of the direct and indirect damage caused by landslides in the Flemish Ardennes (Belgium), a low-relief region (area=ca. 700 km2) susceptible to landslides. Based on focus interviews as well as on semi-structured interviews with homeowners, civil servants (e.g. from the technical services from the various towns), or with the owners and providers of lifelines such as electricity and sewage, we have quantitatively estimated the direct and indirect damage induced by landsliding and this for a 10 to 30 year period (depending on the type of infrastructure or buildings). Economic damage to public infrastructure and buildings was estimated for the entire region, while for private damage 10 cases with severe to small damage were quantified. For example, in the last 10 year, costs of road repair augmented to 814 560 €. Costs to repair damaged roads that have not yet been repaired, were estimated at 669 318 €. In the past 30 years, costs of measures to prevent road damage augmented to at least 14 872 380 €. More than 90% of this budget for preventive measures was spent 30 years ago, when an important freeway was damaged and had to be repaired. These preventive measures (building a grout wall and improving the drainage system) were effective as no further damage has been reported until present. To repair and prevent damage to waterworks and sewage systems, expenditures amounted to 551 044 € and this for the last 30 years. In the past 10 years, a new railway line

  19. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    Science.gov (United States)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact assessment of

  20. Enhanced recovery from contraction-induced damage in skeletal muscles of old mice following treatment with the heat shock protein inducer 17-(allylamino)-17-demethoxygeldanamycin.

    Science.gov (United States)

    Kayani, Anna C; Close, Graeme L; Broome, Caroline S; Jackson, Malcolm J; McArdle, Anne

    2008-12-01

    Unlike muscles of young mice, skeletal muscles of old mice fail to recover completely following contraction-induced damage. The mechanisms by which this occurs are not fully understood. The ability of muscles of old mice to adapt following exercise by the increased production of heat shock proteins (HSPs) is blunted. Studies using transgenic mice have shown that this inability to produce HSPs has a major effect on muscle regeneration. Overexpression of HSP70 facilitated complete recovery of maximum tetanic force generation in muscles of old transgenic mice following contraction induced-damage in comparison with a deficit in muscles of old wild-type (WT) mice. We hypothesized that pharmacological induction of HSP70 in muscles of old WT mice would result in enhanced recovery from contraction-induced damage. A single dose of 40 mg/kg of 17-(allylamino)-17-demethoxygeldanamycin (17AAG) resulted in a significant increase in the HSP70 content of extensor digitorum longus muscles of adult C57BL6/J mice 3 days following treatment compared with vehicle-treated mice. Four weekly treatments of adult and old mice resulted in a two- to four-fold increase in muscle HSP70 content. Treatment of old mice with 17AAG at 3 days prior to and weekly for 4 weeks following a severely damaging contraction protocol resulted in enhanced recovery of force generation at 28 days postdamage compared with muscles of vehicle-treated mice. Data suggest that 17AAG overcomes the mechanism by which activation of the stress response fails in muscles of old mice and may have therapeutic benefit in the recovery following damage in muscles of older individuals.

  1. Application of single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes.

    Science.gov (United States)

    Heaton, Paul R; Ransley, Raymond; Charlton, Chris J; Mann, Sarah J; Stevenson, Joy; Smith, Brigitte H E; Rawlings, John M; Harper, E Jean

    2002-06-01

    Increasing evidence suggests involvement of free-radical species in the development of oxidative DNA damage, the consequences of which have been implicated in a number of degenerative disorders associated with the aging process. Here we report the application of a single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes. Leukocytes were collected from 24 healthy adult cats and dogs and subjected to DNA damage ex vivo by exposure to a range of hydrogen peroxide (H(2)O(2)) concentrations (0-250 micromol/L). The optimal concentration of H(2)O(2) to induce a significant increase in DNA damage was 100 micromol/L for both canine and feline leukocyte samples. Levels of DNA damage were assessed and quantified by visual and computer image analysis. The results obtained showed high correlations between visual scoring and computer image analysis for feline samples (percentage DNA in tail, R(2) > 0.99; tail moment, R(2) > 0.95; tail length, R(2) > 0.90) and canine samples (percentage DNA in tail, R(2) > 0.97; tail moment, R(2) > 0.95; tail length, R(2) > 0.91). In conclusion, this method provides a way of assessing levels of DNA damage utilizing visual and/or computer image analysis in the feline and canine systems. With the capacity of the comet assay to be able to measure end products of free-radical reactions, it is a useful tool for determining the optimal effects of dietary antioxidants on a reliable biomarker of oxidative stress such as cellular DNA status in cats and dogs.

  2. Entropy Assessment on Environmental Influence of Condense Heat in Recovery System in Air-Conditioning Refrigerating Machine

    Institute of Scientific and Technical Information of China (English)

    TANG Wen-wu; WANG Han-qing

    2009-01-01

    This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of re-source loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter i-dentifieation.called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).

  3. Assessment of the impact of the 2003 and 2006 heat waves on cattle mortality in France.

    Directory of Open Access Journals (Sweden)

    Eric Morignat

    Full Text Available OBJECTIVES: While several studies have highlighted and quantified human mortality during the major heat waves that struck Western Europe in 2003 and 2006, the impact on farm animals has been overlooked. The aim of this study was to assess the effect of these two events on cattle mortality in France, one of the most severely impacted countries. METHODS: Poisson regressions were used to model the national baseline for cattle mortality between 2004 and 2005 and predict the weekly number of expected deaths in 2003 and 2006 for the whole cattle population and by subpopulation based on age and type of production. Observed and estimated values were compared to identify and quantify excess mortality. The same approach was used at a departmental scale (a French department being an administrative and territorial division to assess the spatio-temporal evolution of the mortality pattern. RESULTS: Overall, the models estimated relative excess mortality of 24% [95% confidence interval: 22-25%] for the two-week heat wave of 2003, and 12% [11-14%] for the three-week heat wave of 2006. In 2003, most cattle subpopulations were impacted during the heat wave and some in the following weeks too. In 2006, cattle subpopulations were impacted for a limited time only, with no excess mortality at the beginning or after the heat wave. No marked differences in cattle mortality were found among the different subpopulations by age and type of production. The implications of these results for risk prevention are discussed.

  4. Development of damage assessment package for building with isolation system and its application to 2011 Tohoku earthquake

    Science.gov (United States)

    Mita, Akira; Ichimura, Ken

    2012-04-01

    We developed a damage assessment package to assess buildings with various isolation systems. The package provides seven items to be used for damage assessment based on ARX method, MOESP method and double integration of acceleration data. The necessary condition for the package is to have a monitoring system with accelerometers at least at three levels i.e. on foundation, isolation layer and on top floor or roof of the building. Using this package, the performance of the isolation systems as well as superstructure during the earthquake can be quantitatively estimated. The package was tested for a 7-story base-isolated building in Yokohama, Japan. The building experienced the 2011 Tohoku Earthquake of the moment magnitude 9.0.

  5. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens

    NARCIS (Netherlands)

    Santos, Regiane R.; Awati, Ajay; Roubos-van den Hil, Petra J.; Tersteeg-Zijderveld, Monique H. G.; Koolmees, Peter A.; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the current research was to present a methodological approach allowing reproducible morphometric and morphological (Chiu/Park scale) analyses of the alterations in the intestines of broilers exposed to heat stress. Ross broilers were exposed over four consecutive days to a high-temperatur

  6. Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, H. II; Giddings, M.; Hanson, P.

    1982-09-01

    This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

  7. Analysis of time domain active sensing data from CX-100 wind turbine blade fatigue tests for damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mi Jin [Dept. of Aerospace Engineering and LANL-CBNU Engineering Institute, Chunbuk National University, Jeonju (Korea, Republic of); Jung, Hwee Kwon; Park, Gyu Hae [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Taylor, Stuart G.; Farinholt, Kevin M. [The Engineering Institute, Los Alamos National Laboratory, Los Alamos (United States)

    2016-04-15

    This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.

  8. Variation in assessment of oxidatively damaged DNA in mononuclear blood cells by the comet assay with visual scoring

    DEFF Research Database (Denmark)

    Forchhammer, Lykke; Bräuner, Elvira Vaclavik; Folkmann, Janne Kjaersgaard;

    2008-01-01

    The comet assay is popular for assessments of genotoxicity, but the comparison of results between studies is challenging because of differences in experimental procedures and reports of DNA damage in different units. We investigated the variation of DNA damage in mononuclear blood cells (MNBCs......) measured by the comet assay with focus on the variation related to alkaline unwinding and electrophoresis time, number of cells scored, as well as the putative benefits of transforming the primary end points to common units by the use of reference standards and calibration curves. Eight experienced......-response relationships of cells exposed to gamma-radiation and it was possible to reduce the variation in oxidized purines in MNBCs from humans by adjusting the level of lesions with protocol-specific calibration curves. However, there was a difference in the level of DNA damage measured by different investigators...

  9. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2017-10-01

    Full Text Available Tall fescue (Festuca arundinacea Schreb is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition or 44°C (heat stress for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC. Exogenous Spd could also reduce the specific energy fluxes per QA- reducing PSII reaction center (RC (TP0/RC and ET0/RC. Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.

  10. Assessing the impacts of lifetime sun exposure on skin damage and skin aging using a non-invasive method

    Energy Technology Data Exchange (ETDEWEB)

    Kimlin, Michael G., E-mail: m.kimlin@qut.edu.au; Guo, Yuming, E-mail: guoyuming@yahoo.cn

    2012-05-15

    Background: Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. Objectives: This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. Methods: We recruited 180 participants (73 males, 107 females) aged 18-83 years. Digital imaging of skin hyperpigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. Results: There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. Conclusion: The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. - Highlights: Black-Right-Pointing-Pointer This is the first study finding the non-linear relationship between lifetime sun exposure and skin damage and skin aging. Black-Right-Pointing-Pointer This study finds there is negative interaction between lifetime sun exposure and age for skin damage and aging. Black-Right-Pointing-Pointer This study suggests that future

  11. Detection and assessment of damage in 2D structures using measured modal response

    Science.gov (United States)

    Banan, Mohammad Reza; Mehdi-pour, Yousef

    2007-10-01

    Motivated by one of the concepts in the field of health monitoring for structural systems, a damage detection procedure is developed. In order to perform the system health monitoring, structural health along with sensor and actuator malfunction must be continuously checked. As a step toward developing a system health-monitoring scheme, this paper investigated structural damage detection, using a constrained eigenstructure assignment. The proposed damage detection method is constructed based on a concept of control theory and subspace rotation for two-dimensional (2D)-structural systems. To demonstrate the capabilities of the developed damage detection algorithm, the behavior of a simulated degraded braced-frame structure is studied. Using Monte Carlo simulation, the performance of the approach is evaluated. It shows that the proposed algorithm is potentially promising for application to real cases.

  12. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay

    Science.gov (United States)

    Kameya, Hiromi; Miyanoshita, Akihiro; Imamura, Taro; Todoriki, Setsuko

    2012-03-01

    We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratiocomet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history.

  13. Seismic behavior of an Italian Renaissance Sanctuary: Damage assessment by numerical modelling

    Science.gov (United States)

    Clementi, Francesco; Nespeca, Andrea; Lenci, Stefano

    2016-12-01

    The paper deals with modelling and analysis of architectural heritage through the discussion of an illustrative case study: the Medieval Sanctuary of Sant'Agostino (Offida, Italy). Using the finite element technique, a 3D numerical model of the sanctuary is built, and then used to identify the main sources of the damages. The work shows that advanced numerical analyses could offer significant information for the understanding of the causes of existing damage and, more generally, on the seismic vulnerability.

  14. Multicentre study for the evaluation of mutagenic/carcinogenic risk in nurses exposed to antineoplastic drugs: assessment of DNA damage.

    Science.gov (United States)

    Buschini, Annamaria; Villarini, Milena; Feretti, Donatella; Mussi, Francesca; Dominici, Luca; Zerbini, Ilaria; Moretti, Massimo; Ceretti, Elisabetta; Bonfiglioli, Roberta; Carrieri, Mariella; Gelatti, Umberto; Rossi, Carlo; Monarca, Silvano; Poli, Paola

    2013-11-01

    People who handle antineoplastic drugs, many of which classified as human carcinogens by International Agency for Research on Cancer, are exposed to low doses in comparison with patients; however, the long duration of exposure could lead to health effects. The aim of this work was to evaluate DNA damage in white blood cells from 63 nurses who handle antineoplastic drugs in five Italian hospitals and 74 control participants, using different versions of the Comet assay. Primary DNA damage was assessed by using the alkaline version of the assay on leucocytes, whereas to detect DNA oxidative damage and cryptic lesions specifically, the Comet/ENDO III assay and the Comet/araC assay were performed on leucocytes and lymphocytes, respectively. In the present study, no significant DNA damage was correlated with the work shift. The exposed population did not differ significantly from the reference group with respect to DNA primary and oxidative damage in leucocytes. Strikingly, in isolated lymphocytes treated with araC, lower data dispersion as well as a significantly lower mean value for the percentage of DNA in the comet tail was observed in exposed participants as compared with the control group (pantineoplastic drugs. Although stringent rules were adopted at national and international levels to prevent occupational exposure to antineoplastic drugs, data reported in this study support the idea that a more efficient survey on long-lasting exposures at very low concentrations is needed.

  15. Assessment of mitochondrial DNA damage in little brown bats (Myotis lucifugus) collected near a mercury-contaminated river

    Science.gov (United States)

    Karouna-Renier, Natalie K.; White, Carl; Perkins, Christopher R.; Schmerfeld, John J.; Yates, David

    2014-01-01

    Historical discharges of Hg into the South River near the town of Waynesboro, VA, USA, have resulted in persistently elevated Hg concentrations in sediment, surface water, ground water, soil, and wildlife downstream of the discharge site. In the present study, we examined mercury (Hg) levels in in little brown bats (Myotis lucifugus) from this location and assessed the utility of a non-destructively collected tissue sample (wing punch) for determining mitochondrial DNA (mtDNA) damage in Hg exposed bats. Bats captured 1 and 3 km from the South River, exhibited significantly higher levels of total Hg (THg) in blood and fur than those from the reference location. We compared levels of mtDNA damage using real-time quantitative PCR (qPCR) analysis of two distinct regions of mtDNA. Genotoxicity is among the many known toxic effects of Hg, resulting from direct interactions with DNA or from oxidative damage. Because it lacks many of the protective protein structures and repair mechanisms associated with nuclear DNA, mtDNA is more sensitive to the effects of genotoxic chemicals and therefore may be a useful biomarker in chronically exposed organisms. Significantly higher levels of damage were observed in both regions of mtDNA in bats captured 3 km from the river than in controls. However, levels of mtDNA damage exhibited weak correlations with fur and blood THg levels, suggesting that other factors may play a role in the site-specific differences.

  16. Assessment of mitochondrial DNA damage in little brown bats (Myotis lucifugus) collected near a mercury-contaminated river.

    Science.gov (United States)

    Karouna-Renier, Natalie K; White, Carl; Perkins, Christopher R; Schmerfeld, John J; Yates, David

    2014-10-01

    Historical discharges of Hg into the South River near the town of Waynesboro, VA, USA, have resulted in persistently elevated Hg concentrations in sediment, surface water, ground water, soil, and wildlife downstream of the discharge site. In the present study, we examined mercury (Hg) levels in in little brown bats (Myotis lucifugus) from this location and assessed the utility of a non-destructively collected tissue sample (wing punch) for determining mitochondrial DNA (mtDNA) damage in Hg exposed bats. Bats captured 1 and 3 km from the South River, exhibited significantly higher levels of total Hg (THg) in blood and fur than those from the reference location. We compared levels of mtDNA damage using real-time quantitative PCR (qPCR) analysis of two distinct regions of mtDNA. Genotoxicity is among the many known toxic effects of Hg, resulting from direct interactions with DNA or from oxidative damage. Because it lacks many of the protective protein structures and repair mechanisms associated with nuclear DNA, mtDNA is more sensitive to the effects of genotoxic chemicals and therefore may be a useful biomarker in chronically exposed organisms. Significantly higher levels of damage were observed in both regions of mtDNA in bats captured 3 km from the river than in controls. However, levels of mtDNA damage exhibited weak correlations with fur and blood THg levels, suggesting that other factors may play a role in the site-specific differences.

  17. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A. [TCS, Serco, Rutherford House, Olympus Park, Quedgeley, Gloucester, Gloucestershire GL2 4NF (United Kingdom); Shaw, S.E. [EDF Energy, Barnet Way, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  18. Assessment of Urban Heat Islands in Small- and Mid-Sized Cities in Brazil

    Directory of Open Access Journals (Sweden)

    Renata dos Santos Cardoso

    2017-02-01

    Full Text Available Urban heat islands (UHIs in large cities and different climatic regions have been thoroughly studied; however, their effects are becoming a common concern in smaller cities as well. We assessed UHIs in three tropical cities, analyzing how synoptic conditions, urban morphology, and land cover affect the heat island magnitude. Data gathering involved mobile surveys across Paranavaí (Paraná, Rancharia (São Paulo, and Presidente Prudente (São Paulo, Brazil, during summer evenings (December 2013–January 2014. Temperature data collected over five days in each city point to heat islands with magnitudes up to 6 °C, under calm synoptic conditions, whereas summer average UHI magnitudes peak at 3.7 °C. In addition, UHI magnitudes were higher in areas with closely spaced buildings and few or no trees and building materials that are not appropriate for the region’s climate and thermal comfort.

  19. Reliability Assessment of 2400 MWth Gas-Cooled Fast Reactor Natural Circulation Decay Heat Removal in Pressurized Situations

    Directory of Open Access Journals (Sweden)

    C. Bassi

    2008-01-01

    Full Text Available As the 2400 MWth gas-cooled fast reactor concept makes use of passive safety features in combination with active safety systems, the question of natural circulation decay heat removal (NCDHR reliability and performance assessment into the ongoing probabilistic safety assessment in support to the reactor design, named “probabilistic engineering assessment” (PEA, constitutes a challenge. Within the 5th Framework Program for Research and Development (FPRD of the European Community, a methodology has been developed to evaluate the reliability of passive systems characterized by a moving fluid and whose operation is based on physical principles, such as the natural circulation. This reliability method for passive systems (RMPSs is based on uncertainties propagation into thermal-hydraulic (T-H calculations. The aim of this exercise is finally to determine the performance reliability of the DHR system operating in a “passive” mode, taking into account the uncertainties of parameters retained for thermal-hydraulical calculations performed with the CATHARE 2 code. According to the PEA preliminary results, exhibiting the weight of pressurized scenarios (i.e., with intact primary circuit boundary for the core damage frequency (CDF, the RMPS exercise is first focusing on the NCDHR performance at these T-H conditions.

  20. [Investigation and assessment of damage in earthquake in Yushu, Qinghai based on multi-spectral remote sensing].

    Science.gov (United States)

    Wang, Fu-Tao; Zhou, Yi; Wang, Shi-Xin; Liu, Wen-Liang; Wei, Cheng-Jie; Han, Yu

    2011-04-01

    The devastating Yushu Earthquake occurred in Qinghai Province, northwest China, with a magnitude of 7.1 on April 14, 2010, which has caused huge destructive losses. Most buildings along the seismic zone were ruined, especially the old and the basic civil structure houses completely destroyed. The earthquake also triggered geological disasters, such as landslides, collapses, debris flows, etc. In the present study, the remote sensing technique was used to assess and analyze the situation of the earthquake damage. There are four classes of feature which can be interpreted according to the remote sensing imageries: (1) the damage degree of buildings, like civilian homes, temples; (2) the field disasters of earthquake, such as ground fissures, landslides, collapses, debris flows, and earthquake subsidence; (3) the damage degree of structures, such as dam; (4) the damage degree of the lifeline, for example, the highway. The features can be obtained according to high spatial resolution of remote sensing imageries, through image processing and interpretation methods. Post-disaster rehabilitation and reconstruction phase should fully consider the regional seismotectonic background and the carrying capacity of resources and environment. With the assessment results of earthquake disaster remote sensing, at last, preliminary suggestions were proposed for the rehabilitation and reconstruction planning of Yushu earthquake.

  1. An assessment of air-sea heat fluxes from ocean and coupled reanalyses

    Science.gov (United States)

    Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Chang, You-Soon; Drevillon, Marie; Ferry, Nicolas; Fujii, Yosuke; Köhl, Armin; Storto, Andrea; Toyoda, Takahiro; Wang, Xiaochun; Waters, Jennifer; Xue, Yan; Yin, Yonghong; Barnier, Bernard; Hernandez, Fabrice; Kumar, Arun; Lee, Tong; Masina, Simona; Andrew Peterson, K.

    2017-08-01

    Sixteen monthly air-sea heat flux products from global ocean/coupled reanalyses are compared over 1993-2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993-2009 of 4.2 ± 1.1 W m-2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1-2 W m-2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m-2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly cooling caused by differences in surface winds imposed in ORA-IP.

  2. DNA fragmentation dynamics allows the assessment of cryptic sperm damage in human: Evaluation of exposure to ionizing radiation, hyperthermia, acidic pH and nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiso, Rebeca; Tamayo, Maria [Laboratorio de Genetica Molecular y Radiobiologia, Centro Oncologico de Galicia, Doctor Camilo Veiras 1, 15009-A Coruna (Spain); Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruna (CHUAC), As Xubias, 84, 15006-A Coruna (Spain); Gosalvez, Jaime [Genetics Unit, Facultad de Biologia, Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid (Spain); Johnston, Steve [School of Agriculture and Food Science, University of Queensland, Gatton 4343 (Australia); Marino, Alfonso [Servicio de Oncologia Radioterapica, Centro Oncologico de Galicia, Doctor Camilo Veiras 1, 15009-A Coruna (Spain); Fernandez, Carlos; Losada, Carlos [Servicio de Radiofisica, Centro Oncologico de Galicia, Doctor Camilo Veiras 1, 15009-A Coruna (Spain); Fernandez, Jose Luis, E-mail: Jose.Luis.Fernandez.Garcia@sergas.es [Laboratorio de Genetica Molecular y Radiobiologia, Centro Oncologico de Galicia, Doctor Camilo Veiras 1, 15009-A Coruna (Spain); Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruna (CHUAC), As Xubias, 84, 15006-A Coruna (Spain)

    2012-06-01

    Sperm DNA fragmentation (SDF) is not a static seminal parameter, since the longevity of sperm DNA decreases progressively with time following ejaculation or thawing. While the dynamics of SDF is a species-specific characteristic, in the case of humans, there is still significant variation within patients. To evaluate the suitability of the dynamic SDF assay to assess the adverse effects of agents that cause genetic damage, fresh semen samples from different donors were exposed in vitro to (1) increasing acute doses of ionizing radiation, (2) elevated temperature (41 Degree-Sign C and 45 Degree-Sign C), (3) acidic pH (pH 4) and (4) the nitric oxide (NO) donor sodium nitroprusside (SNP). Sperm DNA fragmentation was analyzed after an incubation period of chronic (24 h), or acute (1 h) exposure to each treatment followed by incubation at 37 Degree-Sign C over a period of 24 h. SDF was assessed using the sperm chromatin dispersion (SCD) test. Dynamic SDF for each treatment was analyzed using Kaplan-Meier survival curves. All agents, except for ionizing radiation, accelerated SDF kinetics following chronic exposure over a 24 h period. Transient exposure to NO and heat but not acidic pH increased the basal (T0) level of SDF. Despite the removal of the three toxicants, the remaining sperm following acute exposure showed a decrease in their expected DNA longevity. It is concluded that the assessment of sperm DNA fragmentation dynamics is an effective methodological approach for revealing latent damage associated with toxicants that is not initially expressed following a single initial observation of SDF.

  3. Perceptual strain index for heat strain assessment in an experimental study: an application to construction workers.

    Science.gov (United States)

    Yang, Y; Chan, Albert P C

    2015-02-01

    Although the physiological strain index (PhSI) is universal and comprehensive, its restrictions are recognized in terms of invasive on-site measurements and the requirement of accurate instruments. The perceptual strain index (PeSI) has been proposed as a user-friendly and practical indicator for heat strain. However, the application of this index in assessing the heat strain of construction workers has yet to be examined and documented. This study aims to ascertain the reliability and applicability of PeSI in an experimental setting that simulates a stressful working environment (i.e., environment, work uniform, and work pace) experienced by construction workers. Ten males and two females performed intermittent exercise on a treadmill while wearing a summer work uniform at 34.5 °C and 75% relative humidity in a climatic chamber. Physiological parameters (core temperature, heart rate) and perceptual variables (thermal sensation, perceived exertion) were collated synchronously at 3 min intervals. The results of two-way repeated measures analysis of variance (clothing×time) revealed that the PeSI was useful in differentiating the heat strain levels between different work uniforms. Not only did the PeSI change in the same general manner with the PhSI, but it was also powerful in reflecting different levels of physiological strain. Thus, the PeSI offers considerable promise for heat strain assessment under simulated working conditions.

  4. Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines

    Science.gov (United States)

    Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.

    2014-01-01

    Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.

  5. Earthquake Damage Assessment over Port-au-Prince (Haiti) by Fusing Optical and SAR Data

    Science.gov (United States)

    Romaniello, V.; Piscini, A.; Bignami, C.; Anniballe, R.; Pierdicca, N.; Stramondo, S.

    2016-08-01

    This work proposes methodologies aiming at evaluating the sensitivity of optical and SAR change features obtained from satellite images with respect to the damage grade. The proposed methods are derived from the literature ([1], [2], [3], [4]) and the main novelty concerns the estimation of these change features at object scale.The test case is the Mw 7.0 earthquake that hit Haiti on January 12, 2010.The analysis of change detection indicators is based on ground truth information collected during a post- earthquake survey. We have generated the damage map of Port-au-Prince by considering a set of polygons extracted from the open source Open Street Map geo- database. The resulting damage map was calculated in terms of collapse ratio [5].We selected some features having a good sensitivity with damage at object scale [6]: the Normalised Difference Index, the Kullback-Libler Divergence, the Mutual Information and the Intensity Correlation Difference.The Naive Bayes and the Support Vector Machine classifiers were used to evaluate the goodness of these features. The classification results demonstrate that the simultaneous use of several change features from EO observations can improve the damage estimation at object scale.

  6. Damage tolerance and assessment of unidirectional carbon fiber composites: An experimental and numerical study

    Science.gov (United States)

    Flores, Mark David

    Composites are beginning to be used in a variety of different applications throughout industry. However, certification and damage tolerance is a growing concern in many aerospace and marine applications. Although compression-after-impact have been studied thoroughly, determining a damage tolerance methodology that accurately characterizes the failure of composites has not been established. An experimental investigation was performed to study the effect of stacking sequence, low-velocity impact response, and residual strength due to compression and fatigue. Digital Image Correlation (DIC) captured the strains and deformation of the plate due to compression. Computational investigations integrated non-destructive techniques (C-Scan, X-Ray) to determine the extent of the damage created by the manufacturing process and impact to accurately create a representative of the pre-existing damage. Fiber/matrix cracking, delamination growth, buckling, as well as other failures mechanisms occur in compression-after-impact laminated specimens examined experimentally. The results from this study provide knowledge of the compression after impact strength of plates, and a basis for validation of detailed modeling of progressive failure from impact damaged composites.

  7. Real Time Fatigue Damage Growth Assessment of a Composite Three-Stringer Panel Using Passive Thermography

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.

    2015-01-01

    Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.

  8. The 24 August 2016 Amatrice earthquake: macroseismic survey in the damage area and EMS intensity assessment

    Directory of Open Access Journals (Sweden)

    QUEST W.G. :

    2016-11-01

    Full Text Available The 24 August 2016 earthquake very heavily struck the central sector of the Apennines among the Lazio,Umbria, Marche and Abruzzi regions, devastating the town of Amatrice, the nearby villages and other localities along the Tronto valley. In this paper we present the results of the macroseismic field survey carried out using the European Macroseismic Scale (EMS to take the heterogeneity of the building stock into account. We focused on the epicentral area, where geological conditions may also have contributed to the severity of damage. On the whole, we investigated 143 localities; the maximum intensity 10 EMS has been estimated for Amatrice, Pescara del Tronto and some villages in between. The severely damaged area (8-9 EMS covers a strip trending broadly N-S and extending 15 km in length and 5 km in width; minor damage occurred over an area up to 35 km northward from the epicenter.

  9. Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan.

    Science.gov (United States)

    Long, Jordan; Giri, Chandra; Primavera, Jurgenne; Trivedi, Mandar

    2016-08-30

    We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30m Landsat imagery and a supervised decision-tree classification. A time sequence of 250m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons.

  10. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0

    Science.gov (United States)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.

    2005-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  11. Digital laminography assessment of the damage in concrete exposed to freezing temperatures

    KAUST Repository

    Wakimoto, Kentaro

    2008-10-01

    The research explores the possibility of using digital laminography as a non-destructive inspection X-ray method to image the damage existing in concrete exposed to low temperatures. Freezing-thawing and scaling tests were performed and digital laminography was used to determine the degree of damage existing inside the concrete samples. First, digital laminography was performed on the concrete sample and then a visual inspection was done by slicing the sample after it was vacuum-impregnated with epoxy in order to compare the differences in crack width. © 2008 Elsevier Ltd. All rights reserved.

  12. Assessment of Damage in Seismically Excited RC-Structures from a Single Measured Response

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Cakmak, A. S.

    1996-01-01

    A method has been developed for the localization of structural damage of substructures of seismically excited RC-structures using only the ground surface acceleration time series and a single response time series. From the response, the smoothed two lowest eigenfrequencies are estimated. The dist......A method has been developed for the localization of structural damage of substructures of seismically excited RC-structures using only the ground surface acceleration time series and a single response time series. From the response, the smoothed two lowest eigenfrequencies are estimated...

  13. Use of Neural Networks for Damage Assessment in a Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorithm for detecting location and size of a damage in a civil engineering structure is investigated. The structure considered is a 20 m high steel lattice mast subjected to wind excita...... as well as full-scale tests where the mast is identified by an ARMA-model. The results show that a neural network trained with simulated data is capable for detecting location of a damage in a steel lattice mast when the network is subjected to experimental data.·...

  14. Assessment of heat sources on the control of fast flow of Vestfonna Ice Cap, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Schäfer

    2013-10-01

    Full Text Available The dynamic regime of Svalbard's Nordaustlandet ice caps is dominated by fast flowing outlet glaciers, making assessment of their response to climate change challenging. A key element of the challenge lies in the fact that the motion of fast outlet glaciers occurs largely through basal sliding, and is governed by physical processes at the glacier bed, processes that are difficult both to observe and to simulate. Up to now, most of the sliding laws used in ice flow models were based on uniform parameters with a condition on temperature to identify regions of basal sliding. However these models are usually not able to reproduce observed velocities with sufficient accuracy. With the development of inverse methods, it is now common to infer a spatially varying field of sliding parameters from surface ice-velocity observations. These parameter distributions usually reflect a high spatial variability and represent valuable information to understand and test various hypotheses on physical processes involved in sliding. However, in these models, basal sliding is uncoupled from the thermal regime of basal ice and the evolution of the sliding parameters in prognostic simulations remains problematic. Here we explore the role of different heat sources (friction heating, strain heating and latent heat through percolation of melt water on the development of sliding and fast flow through thermomechanical coupling on Nordaustlandet outlet glaciers. We focus on Vestfonna with a special emphasis on Franklinbreen, a fast flowing outlet glacier which has been observed to accelerate between 1995 and 2008 and possibly already prior to 1995. We try to reconcile the impacts of temperature and heat sources on basal friction coefficients inferred from observed surface velocities during these two periods. Our simulations reproduce a temperature profile from borehole measurements, allowing an interpretation of the vertical temperature structure in terms of temporal

  15. Silicon Damage Response Function Derivation and Verification: Assessment of Impact on ASTM Standard E722

    Energy Technology Data Exchange (ETDEWEB)

    Depriest, Kendall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    Unsuccessful attempts by members of the radiation effects community to independently derive the Norgett-Robinson-Torrens (NRT) damage energy factors for silicon in ASTM standard E722-14 led to an investigation of the software coding and data that produced those damage energy factors. The ad hoc collaboration to discover the reason for lack of agreement revealed a coding error and resulted in a report documenting the methodology to produce the response function for the standard. The recommended changes in the NRT damage energy factors for silicon are shown to have significant impact for a narrow energy region of the 1-MeV(Si) equivalent fluence response function. However, when evaluating integral metrics over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in a small decrease in the total 1- MeV(Si) equivalent fluence of ~0.6% compared to the E722-14 response. Response functions based on the newly recommended NRT damage energy factors have been produced and are available for users of both the NuGET and MCNP codes.

  16. Assessment of DNA Damage after Photodynamic Therapy Using a Metallophthalocyanine Photosensitizer

    Directory of Open Access Journals (Sweden)

    A. El-Hussein

    2012-01-01

    Full Text Available Photodynamic therapy (PDT is a chemotherapeutic approach that utilizes a bifunctional reagent, a photosensitizer (PS that localizes to the target tissue relative to the surrounding tissue and is toxic when exposed to laser light. PDT rapidly induces cell death, inflammatory and immune reactions, and damage of the microvasculature. DNA damage results from a variety of factors including UV-light, X-rays, ionizing radiation, toxins, chemicals, or reactive oxygen species. The aim of this study was to determine the effect of PDT as well as the influence of presensitization leading to the adaptive response (AR on the integrity of DNA. Lung (A549, breast (MCF-7, and esophageal (SNO cancer cells and Zn sulfophthalocyanine as PS with irradiation conditions of 10 J/cm2 at 636 nm were used. Subcellular localization of PS, cell morphology, and viability after PDT and DNA damage were determined. A significant decrease in viability and marked DNA damage was observed in all 3 cancer cell types in response to PDT while the adaptive response was demonstrated to significantly decrease the effectiveness of the PDT.

  17. Laboratory validation of MEMS-based sensors for post-earthquake damage assessment image

    NARCIS (Netherlands)

    Pozzi, M.; Zonta, D.; Santana, J.; Colin, M.; Saillen, N.; Torfs, T.; Amditis, A.; Bimpas, M.; Stratakos, Y.; Ulieru, D.; Bairaktaris, D.; Frondistou-Yannas, S.; Kalidromitis, V.

    2011-01-01

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims

  18. Exposure Assessment of Four Pharmaceutical Powders Based on Dustiness and Evaluation of Damaged HEPA Filters

    DEFF Research Database (Denmark)

    Levin, Marcus; Koponen, Ismo K.; Jensen, Keld A.

    2014-01-01

    the penetration is still dominated by particles larger than 100nm. Whereas the exposure potential was evident, the potential dust concentrations in air ducts following the pouring scenario above were at pg/m(3) levels. Hence, filter penetration at these damage levels was assumed to be only critical, if the active...

  19. Laboratory validation of MEMS-based sensors for post-earthquake damage assessment image

    NARCIS (Netherlands)

    Pozzi, M.; Zonta, D.; Santana, J.; Colin, M.; Saillen, N.; Torfs, T.; Amditis, A.; Bimpas, M.; Stratakos, Y.; Ulieru, D.; Bairaktaris, D.; Frondistou-Yannas, S.; Kalidromitis, V.

    2011-01-01

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims

  20. Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regression

    Science.gov (United States)

    Ettinger, Susanne; Mounaud, Loïc; Magill, Christina; Yao-Lafourcade, Anne-Françoise; Thouret, Jean-Claude; Manville, Vern; Negulescu, Caterina; Zuccaro, Giulio; De Gregorio, Daniela; Nardone, Stefano; Uchuchoque, Juan Alexis Luque; Arguedas, Anita; Macedo, Luisa; Manrique Llerena, Nélida

    2016-10-01

    The focus of this study is an analysis of building vulnerability through investigating impacts from the 8 February 2013 flash flood event along the Avenida Venezuela channel in the city of Arequipa, Peru. On this day, 124.5 mm of rain fell within 3 h (monthly mean: 29.3 mm) triggering a flash flood that inundated at least 0.4 km2 of urban settlements along the channel, affecting more than 280 buildings, 23 of a total of 53 bridges (pedestrian, vehicle and railway), and leading to the partial collapse of sections of the main road, paralyzing central parts of the city for more than one week. This study assesses the aspects of building design and site specific environmental characteristics that render a building vulnerable by considering the example of a flash flood event in February 2013. A statistical methodology is developed that enables estimation of damage probability for buildings. The applied method uses observed inundation height as a hazard proxy in areas where more detailed hydrodynamic modeling data is not available. Building design and site-specific environmental conditions determine the physical vulnerability. The mathematical approach considers both physical vulnerability and hazard related parameters and helps to reduce uncertainty in the determination of descriptive parameters, parameter interdependency and respective contributions to damage. This study aims to (1) enable the estimation of damage probability for a certain hazard intensity, and (2) obtain data to visualize variations in damage susceptibility for buildings in flood prone areas. Data collection is based on a post-flood event field survey and the analysis of high (sub-metric) spatial resolution images (Pléiades 2012, 2013). An inventory of 30 city blocks was collated in a GIS database in order to estimate the physical vulnerability of buildings. As many as 1103 buildings were surveyed along the affected drainage and 898 buildings were included in the statistical analysis. Univariate and

  1. Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage

    Science.gov (United States)

    Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino

    2016-12-01

    Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.

  2. Assessment of Damage Containment Features of a Full-Scale PRSEUS Fuselage Panel Through Test and Teardown

    Science.gov (United States)

    Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.

  3. Preliminary assessment of post-Haiyan mangrove damage and short-term recovery in Eastern Samar, central Philippines.

    Science.gov (United States)

    Primavera, J H; Dela Cruz, M; Montilijao, C; Consunji, H; Dela Paz, M; Rollon, R N; Maranan, K; Samson, M S; Blanco, A

    2016-08-30

    Strong winds and storm surges from Typhoon Haiyan caused damage of US$12-15billion and >10,000 human casualties in central Philippines in November 2013. To validate a proposed government US$22million mangrove replanting program, mangrove damage and short-term recovery were surveyed in seven natural and planted mangrove sites in Eastern Samar province at 2.5month and 4.5month post-Haiyan. The preliminary assessment showed that natural mangroves (except for those directly hit by the storm) were recovering by means of tree sprouts and surviving seedlings and saplings compared to the devastated plantation. Likewise, tree mortality was higher in the plantation and natural forests hit by the storm surge, compared to more undamaged and partially damaged trees in natural mangroves. Hence the main recommendations to government are (1) to protect recovering mangroves by not releasing rehabilitation funds (that will inadvertently pay for clearing of live trees and for removal of seedlings), (2) to only plant in totally damaged sites (e.g., plantations), and (3) to only plant naturally dominant species, e.g., Sonneratia alba and Avicennia marina (instead of the popular Rhizophora apiculata, R. mucronata and R. stylosa).

  4. Assessment of the repair and damage of DNA induced by parent and reduced RSU-1069, a 2-nitroimidazole-aziridine

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, P.; Cunniffe, S.M.

    1989-04-01

    The cellular repair and damage of DNA induced by parent and reduced RSU-1069, a 2-nitroimidazole-aziridine, was assessed at both the molecular and cellular level. At the molecular level, after in vitro incubation with parent or reduced RSU-1069, plasmid DNA was transfected into Escherichia coli (AB1157) with subsequent selection for gene expression. For equivalent levels of DNA strand breakage following such treatment it is evident from the relative transformation frequencies that interactions with reduced RSU-1069 lead to DNA damage consistent with bifunctional action of a metabolite(s). At the cellular level, the cytoxicity of RSU-1069 was determined for a series of repair deficient mutants of E. coli under both aerobic and hypoxic conditions. The differential aerobic:hypoxic cytotoxicity ratio is approximately 3. We conclude that the repair of cellular DNA damage induced by RSU-1069 involves activation of the gene products under the control of the recA gene and not those under the control of the ada gene. The ability of cellular systems to repair damage induced by RSU-1069 may play a significant role in determining its efficiency to act as a hypoxic cell radiosensitizer and a hypoxia selective cytotoxin.

  5. Assessment of the progressive nature of cell damage in the pilocarpine model of epilepsy

    Directory of Open Access Journals (Sweden)

    L. Covolan

    2006-07-01

    Full Text Available Pilocarpine-induced (320 mg/kg, ip status epilepticus (SE in adult (2-3 months male Wistar rats results in extensive neuronal damage in limbic structures. Here we investigated whether the induction of a second SE (N = 6 would generate damage and cell loss similar to that seen after a first SE (N = 9. Counts of silver-stained (indicative of cell damage cells, using the Gallyas argyrophil III method, revealed a markedly lower neuronal injury in animals submitted to re-induction of SE compared to rats exposed to a single episode of pilocarpine-induced SE. This effect could be explained as follows: 1 the first SE removes the vulnerable cells, leaving behind resistant cells that are not affected by the second SE; 2 the first SE confers increased resistance to the remaining cells, analogous to the process of ischemic tolerance. Counting of Nissl-stained cells was performed to differentiate between these alternative mechanisms. Our data indicate that different neuronal populations react differently to SE induction. For some brain areas most, if not all, of the vulnerable cells are lost after an initial insult leaving only relatively resistant cells and little space for further damage or cell loss. For some other brain areas, in contrast, our data support the hypothesis that surviving cells might be modified by the initial insult which would confer a sort of excitotoxic tolerance. As a consequence of both mechanisms, subsequent insults after an initial insult result in very little damage regardless of their intensity.

  6. Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection

    Science.gov (United States)

    Hu, Wei-Hua; Moutinho, Carlos; Caetano, Elsa; Magalhães, Filipe; Cunha, Álvaro

    2012-11-01

    This paper aims at analyzing the feasibility of applying a vibration based damage detection approach, based on Principal Components Analysis (PCA), to eliminate environmental effects using the large amount of high quality data continuously collected by the dynamic monitoring system of Pedro e Inês footbridge since 2007. Few works describe real data, regularly collected along several years by reliable continuous dynamic monitoring systems in bridge structures. One main contribution is to show a large difference between making academic research based on numerical simulations or limited experimental samples, and making validity tests of innovative procedures using large high quality databases collected in real structures. The monitoring system, installed with the only initial objective of checking the efficiency of vibration control devices used to mitigate lateral and vertical vibrations, was therefore further developed for research purposes by implementing LabVIEW based automated signal processing and output-only modal identification routines, that enabled the analysis of the correlation of modal estimates with the temperature and the vibration level, as well as the automatic tracking of modal parameters along several years. With the final purpose of detecting potential structural damage at an early stage, the Principal Components Analysis (PCA) was employed to effectively eliminate temperature effects, whereas Novelty Analysis on the residual errors of the PCA model was used to provide a statistical indication of damage. The efficiency of this vibration based damage detection approach was verified using 3 years of measurements at Pedro e Inês footbridge under operational conditions and simulating several realistic damage scenarios affecting the boundary conditions. It is demonstrated that such a dynamic monitoring system, apart from providing relevant instantaneous dynamic information, working as an alert system associated to the verification of vibration

  7. A micromechanical model for the failure and damage assessment of woven composites

    Science.gov (United States)

    Abdelrahman, Wael Gamal Eldin

    A micromechanical model is advanced in order to study the stress transfer and associated damage and failure in classes of conventional and textile type fibrous composites. Unidirectionally reinforced matrix with straight and undulated fibers define the repeating constructing cell for conventional and textile composites, respectively. Starting with the case of straight reinforcement, we approximate and model the actual discrete composite as a concentric cylindrical system. For axisymmetric loading, and upon adopting some appropriate restrictions on the radial behavior of some field quantities, an elasticity-based procedure reduces the two-dimensional field equations, which hold in both fiber and matrix components together with the appropriate interface, symmetry and boundary conditions, to a quasi-one-dimensional system. This analysis is further extended to cases involving undulated fibers. Based upon local directions (slopes) of the undulated fibers, the linear transformation is used to obtain local stress distributions along the undulated fibers. The total stress field is found to be combinations of these local stresses and the inherent contributions obtained from the transformations of the normal loads along the undulated directions in the absence of reinforcement. This simple system retains total account of the system's physics and presents itself in the form of coupled partial differential equations in the longitudinal displacements and stresses of both the fiber and matrix components. According to this model, damage is simulated in the form of stress free boundary conditions. Perpetuation of damage is based upon the maximum normal stress criterion. The adverse effect of such damage on the stiffness properties of the composite is predicted. Results show the favorable effect of undulation in decreasing the rate of property degradation with increasing damage. The model is quite general and has been applied to several situations. These include response to static

  8. BioCAS: Biometeorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality

    Directory of Open Access Journals (Sweden)

    Kim, Kyu Rang

    2014-09-01

    Full Text Available An urban climate analysis system for Seoul was combined with biometeorological models for the spatially distributed assessment of heat stress risks. The Biometeorological Climate impact Assessment System (BioCAS is based on the Climate Analysis Seoul (CAS workbench which provides urban planners with gridded data relevant for local climate assessment at 25 m and 5 m spatial resolutions. The influence of building morphology and vegetation on mean radiant temperature Tmrt was simulated by the SOLWEIG model. Gridded hourly perceived temperature PT was computed using the Klima-Michel Model for a hot day in 2012. Daily maximum perceived temperature PTmax was then derived from these data and applied to an empirical-statistical model that explains the relationship between PTmax and excess mortality rate rEM in Seoul. The resultant rEM map quantifies the detrimental impact of hot weather at the building scale. Mean (maximum values of rEM in old and new town areas in an urban re-development site in Seoul were estimated at 2.3 % (50.7 % and 0 % (8.6 %, respectively, indicating that urban re-development in the new town area has generally resulted in a strong reduction of heat-stress related mortality. The study illustrates that BioCAS can generally be applied for the quantification of the impacts of hot weather on human health for different urban development scenarios. Further improvements are required, particularly to consider indoor climate conditions causing heat stress, as well as socio-economic status and population structure of local residents.

  9. Dietary rosemary oil alleviates heat stress-induced structural and functional damage through lipid peroxidation in the testes of growing Japanese quail.

    Science.gov (United States)

    Türk, Gaffari; Çeribaşı, Ali O; Şimşek, Ülkü G; Çeribaşı, Songül; Güvenç, Mehmet; Özer Kaya, Şeyma; Çiftçi, Mehmet; Sönmez, Mustafa; Yüce, Abdurrauf; Bayrakdar, Ali; Yaman, Mine; Tonbak, Fadime

    2016-01-01

    Supplementation of natural antioxidants to diets of male poultry has been reported to be effective in reducing or completely eliminating heat stress (HS)-induced reproductive failures. In this study, the aim is to investigate whether rosemary oil (RO) has a protective effect on HS-induced damage in spermatozoa production, testicular histologic structures, apoptosis, and androgenic receptor (AR) through lipid peroxidation mechanisms in growing Japanese quail. Male chicks (n=90) at 15-days of age were assigned to two groups. The first group (n=45) was kept in a thermo-neutral (TN) room at 22°C for 24h/d. The second group (n=45) was kept in a room with a greater ambient temperature of 34°C for 8h/d (from 9:00 AM to 5:00 PM) and 22°C for 16h/d. Animals in each of these two groups were randomly assigned to three subgroups (RO groups: 0, 125, 250ppm), consisting of 15 chicks (six treatment groups in 2×3 factorial design). Each of subgroups was replicated three times with each replicate including five chicks. The HS treatment significantly reduced the testicular spermatogenic cell counts, amount of testicular Bcl-2 (anti-apoptotic marker) and amount of AR. In addition, it significantly increased testicular lipid peroxidation, Bax (apoptotic marker) immunopositive staining, and the Bax/Bcl-2 ratio in conjunction with some histopathologic damage. Dietary supplementation of RO to diets of quail where the HS treatment was imposed alleviated HS-induced almost all negative changes such as increased testicular lipid peroxidation, decreased numbers of spermatogenic cells, and decreased amounts of Bcl-2 and AR, increased ratio of Bax/Bcl-2 and some testicular histopathologic lesion. In conclusion, dietary supplementation of RO for growing male Japanese quail reared in HS environmental conditions alleviates the HS-induced structural and functional damage by providing a decrease in lipid peroxidation.

  10. Energy performance modelling and heat recovery unit efficiency assessment of an office building

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2015-01-01

    Full Text Available This paper investigates and analyzes a typical multi-zone office building’s annual energy performance for the location and climate data of central Belgrade. The aim is to evaluate the HVAC system’s and HR unit’s performance in order to conduct the most preferable heating and cooling solution for the typical climate of Belgrade city. The energy performance of four HVAC system types (heat pump - air to air, gas-electricity, electrical and fan coil system was analyzed, compared and evaluated on a virtual office building model in order to assess the total annual energy performance and to determine the efficiency of the HR unit’s application. Further, the parameters of an energy efficient building envelope, HVAC system, internal loads, building operation schedules and occupancy intervals were implemented into the multi-zone analysis model. The investigation was conducted in EnergyPlus simulation engine using system thermodynamic algorithms and surface/air heat balance modules. The comparison and evaluation of the obtained results was achieved through the conversion of the calculated total energy demand into primary energy. The goal is conduct the most preferable heating and cooling solution (Best Case Scenario for the climate of Belgrade city and outline major criteria in qualitative enhancement.

  11. Closing the Energy Budget: Advances in assessing heat fluxes into shallow lakes and ponds (Invited)

    Science.gov (United States)

    Tyler, S. W.; Hausner, M. B.; Suarez, F. I.; Selker, J. S.

    2009-12-01

    While soil heat flux is traditionally directly measured in any land surface energy study, measuring heat flux into and out of lakes and ponds is complicated by water column mixing processes, differing radiation adsorption coefficients, turbidity variation and heat flux through the sediment-water interface. High resolution thermal profile, to assess heat storage changes in aquatic systems is both time consuming and challenging using traditional thermister or thermocouple strings or casts. Recent advances in Raman spectra distributed temperature sensing (DTS) offer the opportunity to measure, at high spatial and temporal resolution, the thermal storage changes occurring in lakes and ponds. Measurements of thermal storage using DTS are presented from two distinct environments; a strongly density stratified solar pond and a deep cavern system (Devils Hole in Death Valley National Park), demonstrating the effectiveness of high resolution temperature measurements. In the solar pond environment, closure of the energy budget using direct measurements of evaporation and net radiation was greatly improved by incorporating transient thermal measurements, and the development of a cooling boundary layer easily shown. At Devils Hole, variations in shading of the water surface produced small but measureable horizontal gradients in water column temperature for short periods of the day, which impact both pool evaporation and the metabolism and behavior of aquatic organisms

  12. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment.

    Science.gov (United States)

    Klinar, Dušan

    2016-04-01

    Biochar as a soil amendment and carbon sink becomes in last period one of the vast, interesting product of slow pyrolysis. Simplest and most used industrial process arrangement is a production of biochar and heat at the same time. Proposed mass and heat balance model consist of heat consumers (heat demand side) and heat generation-supply side. Direct burning of all generated uncondensed volatiles from biomass provides heat. Calculation of the mass and heat balance of both sides reveals the internal distribution of masses and energy inside process streams and units. Thermodynamic calculations verified not only the concept but also numerical range of the results. The comparisons with recent published scientific and vendors data prove its general applicability and reliability. The model opens the possibility for process efficiency innovations. Finally, the model was adapted to give more investors favorable results and support techno-economic assessments entirely.

  13. Assessment of DNA damage in Ardea cinerea and Ciconia ciconia: A 5-year study in Portuguese birds retrieved for rehabilitation.

    Science.gov (United States)

    Santos, Cátia S A; Brandão, Ricardo; Monteiro, Marta S; Bastos, Ana C; Soares, Amadeu M V M; Loureiro, Susana

    2017-02-01

    Over the past decades, the presence of micronucleated blood cells has been used to detect genotoxic effects of xenobiotics in fish, amphibians and birds. This study assessed the frequency of micronuclei (MN) and other nuclear abnormalities in erythrocytes of individuals of Ardea cinerea and Ciconia ciconia retrieved for rehabilitation in order to evaluate the influence of age, temporal and spatial factors on the occurrence of DNA damage in Portuguese wild birds. Blood smears from 65 birds with different life-history backgrounds (e.g. geographic origin, age) were collected between 2007 and 2011 and the frequency of erythrocyte nuclear abnormalities (ENAs) was analysed. Differences in DNA damage between ages were observed to occur in C. ciconia, with chicks displaying significantly higher frequencies of ENAs (both when looking at total ENAs or only MN frequency) than juveniles and adults. Additionally, significant differences in ENAs frequencies were observed between different years and geographic origins, whereas MN frequency alone did not show significant alterations concerning spatial and temporal variations. These results suggest that the assessment of ENAs rather than MN frequency alone may be a useful and valuable tool to complement the evaluation of DNA damage in populations of birds, as prompted by individual life-history traits and environmental factors.

  14. Assessment of the DNA Damage in Human Sperm and Lymphocytes Exposed to the Carcinogen Food Contaminant Furan with Comet Assay

    Directory of Open Access Journals (Sweden)

    Dilek Pandir

    2015-10-01

    Full Text Available ABSTRACTThe aim of this work was to assess the damage of DNA in human blood cell and spermin vitro under the influence of furan. These cells were administered 0-600 μM of furan at 37 and 32oC for 30 and 60 min, respectively. A significant increase in tail DNA%, tail length and moment indicating DNA damage was observed at increasing doses when compared to the controls. The treatment with 300 and 600 μM of furan showed a maximum increase of 86.74 ± 2.43 and 93.29 ± 8.68 compared to the control tail DNA% in lymphocytes. However, only 600 μM of furan showed a maximum increase of 94.71 ± 6.24 compared to the control tail DNA% in sperm. The results suggested that furan caused DNA damage in lymphocytes at increasing doses, but appeared to have not the same effect on human sperm at the low doses. Genotoxic activity had an impact on the risk assessment of furan formed on the food for human cells. Therefore, it would be important to further investigate these properties of furan as the food mutagen.

  15. Damage assessment using advanced non-intrusive inspection methods: integration of space, UAV, GPR, and field spectroscopy

    Science.gov (United States)

    Themistocleous, Kyriacos; Neocleous, Kyriacos; Pilakoutas, Kypros; Hadjimitsis, Diofantos G.

    2014-08-01

    The predominant approach for conducting road condition surveys and analyses is still largely based on extensive field observations. However, visual assessment alone cannot identify the actual extent and severity of damage. New non-invasive and cost-effective non-destructive (NDT) remote sensing technologies can be used to monitor road pavements across their life cycle, including remotely sensed aerial and satellite visual and thermal image (AI) data, Unmanned Aerial Vehicles (UAVs), Spectroscopy and Ground Penetrating Radar (GRP). These non-contact techniques can be used to obtain surface and sub-surface information about damage in road pavements, including the crack depth, and in-depth structural failure. Thus, a smart and cost-effective methodology is required that integrates several of these non-destructive/ no-contact techniques for the damage assessment and monitoring at different levels. This paper presents an overview of how an integration of the above technologies can be used to conduct detailed road condition surveys. The proposed approach can also be used to predict the future needs for road maintenance; this information is proven to be valuable to a strategic decision making tools that optimizes maintenance based on resources and environmental issues.

  16. Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D. F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-06-30

    This report provides an assessment of candidate salts proposed as the coolant for the loop that shuttles heat from the Next Generation Nuclear Plant (NGNP) to the Nuclear Hydrogen Initiative (NHI) hydrogen-production plant. The physical properties most relevant for coolant service were reviewed, and key chemical factors that influence material compatibility were also analyzed for the purpose of screening candidate salts. A preliminary assessment of the cost of the raw materials required to produce the coolant is also presented. Salts that are suitable for use as the primary coolant in a high-temperature nuclear reactor were previously analyzed. Some of the fluoride salts identified in the previous study are also appropriate for consideration as the secondary coolant in a heat-transfer loop; therefore, results from the previous report are used in this document. However, alternative coolant salts (i.e., chlorides and fluoroborates) that were not considered in the previous report should be considered for service in the heat-transfer loop. These alternative coolants are considered in this report.

  17. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, penamel without excessive heat accumulation and with minimal thermal damage. It is not clear whether the small (16%) but statistically significant reduction in the shear bond strength to enamel is clinically significant since the mean shear bond strength exceeded 30 MPa.

  18. Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario—correlation analysis

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.

    2016-06-01

    The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.

  19. Preclinical Assessment of Vernonia amygdalina Leaf Extracts as DNA Damaging Anti-cancer Agent in the Management of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ernest Izevbigie

    2008-12-01

    Full Text Available Breast cancer is the leading cause of death among women between 40 and 55 years of age and is the second overall cause of death among women. Fortunately, the mortality rate from breast cancer has decreased in recent years due to an increased emphasis on early detection and more effective treatments. Despite early detection, conventional and chemotherapeutic methods of treatment, about 7% of women still died every year. Hence, the aim of the present study was to assess the therapeutic efficacy of Vernonia amygdalina (VA leaf extracts as anti-cancer agent against human breast cancer in vitro using the MTT [3-(4, 5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet assays, respectively. In this experiment, human breast adenocarcinoma (MCF-7 cells were treated with different doses of VA leaf extracts for 48 hours. Data obtained from the MTT assay showed that VA significantly ((P < 0.05 reduced the viability of MCF-7 cells in a dose-dependent manner upon 48 hours of exposure. Data generated from the comet assay also indicated a slight dose-dependent increase in DNA damage in MCF-7 cells associated with VA treatment. We observed a slight increase in comet tail-length, tail arm and tail moment, as well as in percentages of DNA cleavage at all doses tested, showing an evidence that VA-induced minimal genotoxic damage in MCF-7 cells. Taken together, our findings suggest that VA treatment moderately (P < 0.05 reduces cellular viability and induces minimal DNA damage in MCF-7 cells. These findings provide evidence that VA extracts represent a DNA-damaging anti-cancer agent against breast cancer and its mechanisms of action functions, at least in part, through minimal DNA damage and moderate toxicity in tumors cells.

  20. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric

    Science.gov (United States)

    Bröde, Peter; Fiala, Dusan; Lemke, Bruno; Kjellstrom, Tord

    2017-04-01

    With a view to occupational effects of climate change, we performed a simulation study on the influence of different heat stress assessment metrics on estimated workability (WA) of labour in warm outdoor environments. Whole-day shifts with varying workloads were simulated using as input meteorological records for the hottest month from four cities with prevailing hot (Dallas, New Delhi) or warm-humid conditions (Managua, Osaka), respectively. In addition, we considered the effects of adaptive strategies like shielding against solar radiation and different work-rest schedules assuming an acclimated person wearing light work clothes (0.6 clo). We assessed WA according to Wet Bulb Globe Temperature (WBGT) by means of an empirical relation of worker performance from field studies (Hothaps), and as allowed work hours using safety threshold limits proposed by the corresponding standards. Using the physiological models Predicted Heat Strain (PHS) and Universal Thermal Climate Index (UTCI)-Fiala, we calculated WA as the percentage of working hours with body core temperature and cumulated sweat loss below standard limits (38 °C and 7.5% of body weight, respectively) recommended by ISO 7933 and below conservative (38 °C; 3%) and liberal (38.2 °C; 7.5%) limits in comparison. ANOVA results showed that the different metrics, workload, time of day and climate type determined the largest part of WA variance. WBGT-based metrics were highly correlated and indicated slightly more constrained WA for moderate workload, but were less restrictive with high workload and for afternoon work hours compared to PHS and UTCI-Fiala. Though PHS showed unrealistic dynamic responses to rest from work compared to UTCI-Fiala, differences in WA assessed by the physiological models largely depended on the applied limit criteria. In conclusion, our study showed that the choice of the heat stress assessment metric impacts notably on the estimated WA. Whereas PHS and UTCI-Fiala can account for

  1. Vulnerability Assessment of Housing Damage in the Philippines Due to an Increase Increase in Typhoon Intensity

    Science.gov (United States)

    Esteban, Miguel; Stromberg, Per; Gasparatos, Alexandros

    2010-05-01

    It is currently feared that the increase in surface sea temperature resulting from increasing level of greenhouse gases in the atmosphere could result in higher tropical cyclone intensity in the future. Although the vulnerability of infrastructure and economic systems have been studied for a number of developed countries, very little work has been done on developing countries. The present work first attempts to evaluate the vulnerability of different regions in the Philippines to the passage of tropical cyclones. To this effect a total of 22 typhoons and tropical storms that affected the Philippines were analysed for the period 2003-2008. The data used was collected by the National Disaster Coordinating Council of the Philippines, who issue "SitRep" NDCC Reports after each major storm. This agency provides damage data for each region, including number of casualties, affected people, damaged and destroyed houses, and losses in the infrastructure and agriculture. The likely economic effects of increased typhoon intensity by using a Monte Carlo Simulation that magnifies the intensity of historical tropical cyclones between the years 1978 and 2008 to simulate the economic damage by 2085. The methodology used is based on the work of Esteban et al. (2009), which in turn uses the results of Knutson and Tuleya (2004) for the estimation of the increase in tropical cyclone intensity in 2085. The results show that downtime could increase from a national 1% to 1.3% by 2050 if economic and population growth are taken into account (29 to 36bn USD, from a total GDP of 2,757bn USD by 2050). If these are ignored the time lost each year can be estimated to cost around 630m USD (PPP) for the control scenario, which could increase to between 766m or 945mm USD by the year 2085 for the two different scenarios considered. This indirect damage depends on the geographical location and is for example higher in some areas of the northern island of Luzon, while the island of Mindanao in the

  2. Post flood damage data collection and assessment in Albania based on DesInventar methodology

    Science.gov (United States)

    Toto, Emanuela; Massabo, Marco; Deda, Miranda; Rossello, Laura

    2015-04-01

    In 2013 in Albania was implemented a collection of disaster losses based on Desinventar. The DesInventar system consists in a methodology and software tool that lead to the systematic collection, documentation and analysis of loss data on disasters. The main sources of information about disasters used for the Albanian database were the Albanian Ministry of Internal Affairs, the National Library and the State archive. Specifically for floods the database created contains nearly 900 datasets, for a period of 148 years (from 1865 to 2013). The data are georeferenced on the administrative units of Albania: Region, Provinces and Municipalities. The datasets describe the events by reporting the date of occurrence, the duration, the localization in administrative units and the cause. Additional information regards the effects and damage that the event caused on people (deaths, injured, missing, affected, relocated, evacuated, victims) and on houses (houses damaged or destroyed). Other quantitative indicators are the losses in local currency or US dollars, the damage on roads, the crops affected , the lost cattle and the involvement of social elements over the territory such as education and health centers. Qualitative indicators simply register the sectors (e.g. transportations, communications, relief, agriculture, water supply, sewerage, power and energy, industries, education, health sector, other sectors) that were affected. Through the queries and analysis of the data collected it was possible to identify the most affected areas, the economic loss, the damage in agriculture, the houses and people affected and many other variables. The most vulnerable Regions for the past floods in Albania were studied and individuated, as well as the rivers that cause more damage in the country. Other analysis help to estimate the damage and losses during the main flood events of the recent years, occurred in 2010 and 2011, and to recognize the most affected sectors. The database was

  3. Experimental Damage Criterion for Static and Fatigue Life Assessment of Commercial Aluminum Alloy Die Castings

    Science.gov (United States)

    Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo

    2017-05-01

    Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.

  4. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    DEFF Research Database (Denmark)

    Skovgård Olsen, Anders; Zhou, Qianqian; Linde, Jens Jørgen;

    2015-01-01

    Estimating the expected annual damage (EAD) due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change...... adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost...... in the damage costs as a function of the return period. The shift occurs approximately at the 10 year return period and can perhaps be related to the design criteria for sewer systems. Further, it was tested if the EAD estimation could be simplified by assuming a single unit cost per flooded area. The results...

  5. The 2010 Oil Spill: Natural Resource Damage Assessment Under the Oil Pollution Act

    Science.gov (United States)

    2010-09-08

    The 2010 Deepwater Horizon oil spill leaked an estimated 4.1 million barrels of oil into the Gulf of Mexico , damaging the waters, shores, and...The NRDA process for the 2010 oil spill in the Gulf of Mexico will be conducted pursuant to OPA. Accordingly, this report will only address that...water), soil, sediment, ocean bottom, biota (including bird, fish, and invertebrates), and habitat (for example, marshes, mangroves , mudflats, and

  6. A joint fatigue - creep deterioration model for masonry with acoustic emission based damage assessment

    OpenAIRE

    Tomor, Adrienn K.; Verstrynge, Els

    2013-01-01

    The paper investigates the long-term fatigue and creep deterioration processes in historical brick masonry. Based on two independent laboratory test series, the relationship between stress level and life expectancy was considered for fatigue and creep loading in the form of SN type models. The process of deterioration was investigated with the help of acoustic emission technique to identify stages and characteristics of the damage accumulation process. Based on the test data and acoustic emis...

  7. Assessment of Radiation Damage to the Structural Material of EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    Chen Yixue; Wu Yican

    2005-01-01

    Radiation damage to structural material of fusion facilities is of high concern for safety. The superconducting tokamak EAST will conduct D-D plasma experiments with the neutron production of 1015 neutrons per second. To evaluate the material radiation damage a programme system has been devised with the Monte Carlo transport code MCNP-4C, the inventory code FISPACT99, a specific interface, and the fusion evaluated nuclear data library FENDL-2.The key nuclear responses, i.e. fast neutron flux, displacement per atom, and the helium and hydrogen production, are calculated for the structural material SS-316L of the first wall, and the vacuum vessel, using this programme. The results demonstrate that the radiation damage to the structural material is so little that it will not lead to any significant change of material properties according to the reference design. This indicates that there is a large potential space for EAST to test advanced operation regime from the viewpoint of structural material safety.

  8. Assessment of magnetic resonance techniques to measure muscle damage 24 h after eccentric exercise.

    Science.gov (United States)

    Fulford, J; Eston, R G; Rowlands, A V; Davies, R C

    2015-02-01

    The study examined which of a number of different magnetic resonance (MR) methods were sensitive to detecting muscle damage induced by eccentric exercise. Seventeen healthy, physically active participants, with muscle damage confirmed by non-MR methods were tested 24 h after performing eccentric exercise. Techniques investigated whether damage could be detected within the quadriceps muscle as a whole, and individually within the rectus femoris, vastus lateralis (VL), vastus medialis (VM), and vastus intermedius (VI). Relative to baseline values, significant changes were seen in leg and muscle cross-sectional areas and volumes and the resting inorganic phosphate concentration. Significant time effects over all muscles were also seen in the transverse relaxation time (T2) and apparent diffusion coefficient (ADC) values, with individually significant changes seen in the VL, VM, and VI for T2 and in the VI for ADC. A significant correlation was found between muscle volume and the average T2 change (r = 0.59) but not between T2 and ADC or Pi alterations. There were no significant time effects over all muscles for magnetization transfer contrast images, for baseline pH, phosphocreatine (PCr), phosphodiester, or ATP metabolite concentrations or the time constant describing the rate of PCr recovery following exercise.

  9. The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment.

    Science.gov (United States)

    Iannaccone, F; Debusschere, N; De Bock, S; De Beule, M; Van Loo, D; Vermassen, F; Segers, P; Verhegghe, B

    2014-03-01

    Carotid artery stenting is emerging as an alternative technique to surgery for the treatment of symptomatic severe carotid stenosis. Clinical and experimental evidence demonstrates that both plaque morphology and biomechanical changes due to the device implantation can be possible causes of an unsuccessful treatment. In order to gain further insights of the endovascular intervention, a virtual environment based on structural finite element simulations was built to emulate the stenting procedure on generalized atherosclerotic carotid geometries which included a damage model to quantify the injury of the vessel. Five possible lesion scenarios were simulated by changing both material properties and vascular geometrical features to cover both presumed vulnerable and stable plaques. The results were analyzed with respect to lumen gain and wall stresses which are potentially related to the failure of the procedure according to previous studies. Our findings show that an elliptic lumen shape and a thinner fibrous cap with an underlying lipid pool result in higher stenosis reduction, while large calcifications and fibrotic tissue are more prone to recoil. The shielding effect of a thicker fibrous cap helps to reduce local compressive stresses in the soft plaque. The presence of a soft plaque reduces the damage in the healthy vascular structures. Contrarily, the presence of hard plaque promotes less damage volume in the fibrous cap and reduces stress peaks in this region, but they seem to increase stresses in the media-intima layer. Finally the reliability of the achieved results was put into clinical perspective.

  10. Damage assessment of a two-span RC slab using wavelet analysis

    Science.gov (United States)

    Zhu, X. Q.; Hao, H.

    2007-04-01

    A two-span RC slab that measures 6400mm×800mm×100mm with 3000mm spans and 200mm overhang on each end was tested to failure in the laboratory. UB sections were used as supports. The slab was designed according to the moment redistribution method with 11 N6 bars at 75mm centres for both positive and negative reinforcement. The slab was incrementally loaded at the middle of each span to different load levels to create crack damage using four-point loading. Twelve loading stages were performed with increasing maximum load level. Two load cells are used to record the static loads on left and right spans. The crack locations and lengths were monitored in addition to the displacement measurements. Four displacement transducers are located at two sides of the middle of each span to measure the deflection under the static load. Three sets of accelerometers with nine of them in each set are evenly distributed along the slab to measure the dynamic responses. The measured responses from the RC slab in different cracked damage states are analyzed using the wavelet transform (WT). The damping ratios and instantaneous frequency are extracted. The results show that the damping ratio and instantaneous frequency changes could be two good indicators of damage in the reinforced concrete structure.

  11. Theoretical derivation of risk-ratios for assessing wind damage in a coastal forest

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the discussion of relationships between thinning and wind damage,and published information, a method for estimating risk ratios of wind dama ge was developed. Estimations of risk-ratio for Pinus thunbergii trees and stand s were deduced from stem bending theory and coefficients characterizing wind pro file, distribution of branches and optical stratification porosity. The results showed that if the value of constant ( in the branch distribution-model equals t he attenuation coefficient αs in the wind profile model for a single tree crown , then the parameter H/D1.33 (height over stem diameter cubed) can be used to co mpare and evaluate the risk-ratio of wind damage for individual trees. The same method can be applied to stands using the coefficient of wind profile in a stand , I.e. Attenuation coefficient α, the coefficient from distributions of optical stratification porosity, I.e. Extinction coefficient ν, and the parameter D1.3 3. The application of parameter H/D1.33 and the process of determining risk rati os of wind damage for stands were also given in the paper.

  12. Assessing the exposure to floods to estimate the risk of flood-related damage in French Mediterranean basins

    Directory of Open Access Journals (Sweden)

    Saint-Martin Clotilde

    2016-01-01

    Full Text Available The dreadful floods of 1999, 2002 and 2003 in South of France have alerted public opinion on the need for a more efficient and a further generalized national flood-forecasting system. This is why in 2003 Irstea and Meteo-France have implemented a new warning method for flash floods, including on small watersheds, using radar rainfall data in real-time: the AIGA method. This modelling method currently provides real-time information on the magnitude of floods, but doesn’t take into account the elements at risk surrounding the river streams. Its benefit for crisis management is therefore limited as it doesn’t give information on the actual flood risk. To improve the relevance of the AIGA method, this paper shows the benefits of the combination of hydrological warnings with an exposure index, to be able to assess the risk of flood-related damage in real time. To complete this aim, this work presents an innovative and easily reproducible method to evaluate exposure to floods over large areas with simple land-use data. For validation purpose, a damage database has been implemented to test the relevance of both AIGA warnings and exposure levels. A case study on the floods of the 3rd October 2015 is presented to test the effectiveness of the combination of hazard and exposure to assess the risk of flood-related damage. This combination seems to give an accurate overview of the streams at risk, where the most important amount of damage has been observed after the flood.

  13. A New Damage Assessment Method by Means of Neural Network and Multi-Sensor Satellite Data

    Directory of Open Access Journals (Sweden)

    Alessandro Piscini

    2017-08-01

    Full Text Available Artificial Neural Network (ANN is a valuable and well-established inversion technique for the estimation of geophysical parameters from satellite images. After training, ANNs are able to generate very fast products for several types of applications. Satellite remote sensing is an efficient way to detect and map strong earthquake damage for contributing to post-disaster activities during emergency phases. This work aims at presenting an application of the ANN inversion technique addressed to the evaluation of building collapse ratio (CR, defined as the number of collapsed buildings with respect to the total number of buildings in a city block, by employing optical and SAR satellite data. This is done in order to directly relate changes in images with damage that has occurred during strong earthquakes. Furthermore, once they have been trained, neural networks can be used rapidly at application stage. The goal was to obtain a general tool suitable for re-use in different scenarios. An ANN has been implemented in order to emulate a regression model and to estimate the CR as a continuous function. The adopted ANN has been trained using some features obtained from optical and Synthetic Aperture Radar (SAR images, as inputs, and the corresponding values of collapse ratio obtained from the survey of the 2010 M7 Haiti Earthquake, i.e., as target output. As regards the optical data, we selected three change parameters: the Normalized Difference Index (NDI, the Kullback–Leibler divergence (KLD, and Mutual Information (MI. Concerning the SAR images, the Intensity Correlation Difference (ICD and the KLD parameters have been considered. Exploiting an object-oriented approach, a segmentation of the study area into several regions has been performed. In particular, damage maps have been generated by considering a set of polygons (in which satellite parameters have been calculated extracted from the open source Open Street Map (OSM geo-database. The trained

  14. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    De Temmerman, G., E-mail: gregory.detemmerman@iter.org [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Morgan, T.W.; Eden, G.G. van; Kruif, T. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); Wirtz, M. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Microstructure and Properties of Materials (IEK-2), EURATOM Association, 52425 Jülich (Germany); Matejicek, J.; Chraska, T. [Institute of Plasma Physics, Association EURATOM-IPP, CR Prague (Czech Republic); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Wright, G.M. [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-08-15

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (F{sub HF}) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate F{sub HF} = 19 MJ m{sup −2} s{sup −1/2}, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  15. Coniferyl Aldehyde Reduces Radiation Damage Through Increased Protein Stability of Heat Shock Transcriptional Factor 1 by Phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo-Young [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of); Lee, Hae-June [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Nam, Joo-Won; Seo, Eun-Kyoung [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of); Lee, Yun-Sil, E-mail: yslee0425@ewha.ac.kr [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of)

    2015-03-15

    Purpose: We previously screened natural compounds and found that coniferyl aldehyde (CA) was identified as an inducer of HSF1. In this study, we further examined the protective effects of CA against ionizing radiation (IR) in normal cell system. Methods and Materials: Western blotting and reverse transcription-polymerase chain reaction tests were performed to evaluate expression of HSF1, HSP27, and HSP70 in response to CA. Cell death and cleavage of PARP and caspase-3 were analyzed to determine the protective effects of CA in the presence of IR or taxol. The protective effects of CA were also evaluated using animal models. Results: CA increased stability of the HSF1 protein by phosphorylation at Ser326, which was accompanied by increased expression of HSP27 and HSP70. HSF1 phosphorylation at Ser326 by CA was mediated by EKR1/2 activation. Cotreatment of CA with IR or taxol in normal cells induced protective effects with phosphorylation- dependent patterns at Ser326 of HSF1. The decrease in bone marrow (BM) cellularity and increase of terminal deoxynucleotidyl transferase dUTP nick end labeling–positive BM cells by IR were also significantly inhibited by CA in mice (30.6% and 56.0%, respectively). A549 lung orthotopic lung tumor model indicated that CA did not affect the IR-mediated reduction of lung tumor nodules, whereas CA protected normal lung tissues from the therapeutic irradiation. Conclusions: These results suggest that CA may be useful for inducing HSF1 to protect against normal cell damage after IR or chemotherapeutic agents.

  16. The reliability and validity of questionnaire for preliminary assessment of heat stress at workplace

    Directory of Open Access Journals (Sweden)

    Habibollah Dehghan

    2015-09-01

    Full Text Available Background: Heat stress is one of the most important consequences of occupational heat exposure in worldwide. Current heat stress indices are not suitable for heat strain screening in developing countries due to their inherent and applied limitations. The Aim of this study was design, validity and reliability of a questionnaire method entitled "Heat Strain Score Index" or HSSI for preliminary assessment of heat stress at workplace. Material and Methods: This cross-sectional study was conducted during 2009-2010. This research included seven stages (i Item generation (ii Evaluation of content validity by 9 subjects of occupational health specialists and 30 occupational health providers (iii Reliability analysis was performed on 98 workers (iv Structure validity was conducted on 150 workers (v Test of the measurement model (vi Criteria validity on 122 worker and (vii classification of level thermal risk with ROC curves. Data were analyzed with SPSS-18 and AMOS-16 software. Results: In stage of item generation 40 items were identified. In Content Validity evaluation in the level of occupational health specialists, 27 items modified, 3 items were removed and 3 items added in evaluation by occupational health providers, 19 items modified. Internal consistency (α of items was 0.91. Exploratory factor analysis on items HSSI scale identified four subscales which explained 71.6% of the variance. Confirmatory factor analysis provides evidence of model fits (GFI=0.991, RMSEA=0.036. Correlation between the HSSI score with aural temperature was 0.73.Cut-off point, sensitivity and specificity for upper green zone (no thermal strain were 13.5, 91% and 50%.whereas Cut-off point, sensitivity and specificity for lower red zone (thermal strain were 18, 86% and 73%. Conclusion: This study revealed HSSI scale includes 18 of measurable variables that high overlapped with WBGT index and others questionnaires. This scale demonstrated high reliability and validity

  17. Heat wave over India during summer 2015: an assessment of real time extended range forecast

    Science.gov (United States)

    Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun

    2017-08-01

    Hot winds are the marked feature of summer season in India during late spring preceding the climatological onset of the monsoon season in June. Some years the conditions becomes very vulnerable with the maximum temperature ( T max) exceeding 45 °C for many days over parts of north-western, eastern coastal states of India and Indo-Gangetic plain. During summer of 2015 (late May to early June) eastern coastal states, central and northwestern parts of India experienced severe heat wave conditions leading to loss of thousands of human life in extreme high temperature conditions. It is not only the loss of human life but also the animals and birds were very vulnerable to this extreme heat wave conditions. In this study, an attempt is made to assess the performance of real time extended range forecast (forecast up to 3 weeks) of this scorching T max based on the NCEP's Climate Forecast System (CFS) latest version coupled model (CFSv2). The heat wave condition was very severe during the week from 22 to 28 May with subsequent week from 29 May to 4 June also witnessed high T max over many parts of central India including eastern coastal states of India. The 8 ensemble members of operational CFSv2 model are used once in a week to prepare the weekly bias corrected deterministic (ensemble mean) T max forecast for 3 weeks valid from Friday to Thursday coinciding with the heat wave periods of 2015. Using the 8 ensemble members separately and the CFSv2 corresponding hindcast climatology the probability of above and below normal T max is also prepared for the same 3 weeks. The real time deterministic and probabilistic forecasts did indicate impending heat wave over many parts of India during late May and early June of 2015 associated with strong northwesterly wind over main land mass of India, delaying the sea breeze, leading to heat waves over eastern coastal regions of India. Thus, the capability of coupled model in providing early warning of such killer heat wave can be very

  18. Spatial Approach of Climate Risk Assessment and Uncertainty: A Case Study of Heat Wave Risk in Seoul

    Science.gov (United States)

    Ahn, S.; Lee, D. K.; Jeong, W.

    2016-12-01

    As climate change continuously reaches new climaxes, it is aggravating many climate extremes. Urban heat island effect (UHI) is one of them. It occurs in cities with sealed surfaces and building canyons, which make changes in storage, radiative and turbulent heat flux that make cities warmer than surrounding areas. However, applying adequate policies at the right place can attenuate the impacts of UHI. Therefore, heat wave risk assessment is important in the sense that it helps decision makers set priority in targets of application. Seoul is highly urbanized capital of South Korea. It is suffering from increasing heat wave days and tropical nights every year. More than 10 million residents are exposed to heat extremes and measures should be taken. Therefore, heat wave risk assessment of Seoul should be done in advance. While, risk assessment contains uncertainty; from variables to assessment procedure. However, there is no standardized assessment methodology. A fuzzy logic, introduced by Zadeh in 1965, is applied in quantifying these uncertainties. We fuzzified indices for assessing heat wave risk with threshold values. And indices were aggregated step by step with fuzzy operators, which make up "vulnerability" and "climate exposure". Vulnerability and climate exposure are further combined with fuzzy operator to derive complete heat wave risk assessment map. As a result, we expressed spatial distribution of UHI risk. Districts lying in the central area of the city showed higher risk than in marginal areas. In addition, hierarchic structured approach of assessing risk in this study makes it easy to track key variables of risk, therefore, giving decision makers insights to help their application of adaptation policies.

  19. Building damage assessment after the earthquake in Haiti using two postevent satellite stereo imagery and DSMs

    DEFF Research Database (Denmark)

    Tian, Jiaojiao; Nielsen, Allan Aasbjerg; Reinartz, Peter

    2015-01-01

    In this article, a novel after-disaster building damage monitoring method is presented. This method combines the multispectral imagery and digital surface models (DSMs) from stereo matching of two dates to obtain three kinds of changes: collapsed buildings, newly built buildings and temporary...... shelters. The proposed method contains three basic steps. The first step is to focus on the DSMs and orthorectified images preparation. The second step is to segment the panchromatic images in obtaining small homogeneous regions. In the last step, a rule-based classification is built on the change...

  20. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analy