WorldWideScience

Sample records for heart induces formation

  1. Radiation-induced heart injury

    International Nuclear Information System (INIS)

    Suzuki, Yoshihiko; Niibe, Hideo

    1975-01-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the internal between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue. (Evans, G.)

  2. Control of ribosome formation in rat heart

    International Nuclear Information System (INIS)

    Russo, L.A.

    1987-01-01

    Diabetes of 9 days duration produced a 17% diminution in the rate of total protein synthesis in rat hearts perfused as Langendorff preparations supplied with glucose, plasma levels of amino acids, and 400 μU/ml insulin. This reduction was attributable to a decrease in efficiency of protein synthesis and total RNA content. Total messenger RNA content decreased in diabetic hearts in proportion to the reduction in total RNA. Diabetes also resulted in diminished ribosome content as reflected by the induction in total RNA. Ribosome production was investigated by monitoring incorporation of [ 3 H]phenylalanine into the proteins of cytoplasmic ribosomes. Rates of ribosome formation in diabetic hearts were as fast as control rates in the presence of insulin, and were faster than control rates in the absence of the hormone. These results indicated that ribosome content fell in diabetic hearts despite unchanged or faster rates of ribosome formation

  3. Catholic Higher Education and Nursing: Formation of the Heart

    Science.gov (United States)

    Kalb, Kathleen Ann

    2013-01-01

    "Born from the heart of the church," a Catholic university that educates nurses is engaged in the "formation of the heart"; that is, in forming students who have a heart that "sees where love is needed and acts accordingly." Precisely because the identity and mission of the Catholic university make public its…

  4. Radiation-induced heart injury. Radiopathological study

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Niibe, H [Gunma Univ., Maebashi (Japan). School of Medicine

    1975-11-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the interval between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue.

  5. Radiation-induced heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Stroobandt, R; Knieriem, H J; De Wolf, L; Joossens, J V

    1975-01-01

    A 45-year old woman underwent a radical mastectomy in 1965 for carcinoma of the left breast with metastasis in the left axillar lymph nodes. Fifty per cent of the heart received 4,000 rads during postoperative X-ray therapy. Patient developed radiopneumonia and symptoms of acute pericarditis in 1967. Constrictive pericarditis developed gradually from 1972 on. A pericardiectomy was performed in June 1974 and a thickened pericardium could be removed. Light and electron microscopic examination of a surgical biopsy of the left ventricular epi-myocardium revealed epicardial fibrosis, interstitial fibrosis of the myocardium and perivascular fibrosis. The diagnosis of post-radiation pericarditis was made. The myocardial involvement may be responsible for the subsequent clinical course.

  6. Congenital heart malformations induced by hemodynamic altering surgical interventions

    Directory of Open Access Journals (Sweden)

    Madeline eMidgett

    2014-08-01

    Full Text Available Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.

  7. Heart Disease Management by Women: Does Intervention Format Matter?

    Science.gov (United States)

    Clark, Noreen M.; Janz, Nancy K.; Dodge, Julia A.; Lin, Xihong; Trabert, Britton L.; Kaciroti, Niko; Mosca, Lori; Wheeler, John R.; Keteyian, Steven

    2014-01-01

    A randomized controlled trial of two formats of a program (Women Take PRIDE) to enhance management of heart disease by patients was conducted. Older women (N = 575) were randomly assigned to a group or self-directed format or to a control group. Data regarding symptoms, functional health status, and weight were collected at baseline and at 4, 12,…

  8. Radiation-induced valvular heart disease.

    Science.gov (United States)

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bind...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  10. Hyperkalemia-induced complete heart block

    Directory of Open Access Journals (Sweden)

    Alireza Baratloo

    2015-05-01

    Full Text Available Background: Potassium, as an extracellular ion, plays an important role in the electrophysiologic function of the myocardium and any change in extracellular concentration of this ion might have a marked impression upon myocyte electrophysiologic gain. High serum potassium levels are thought to impair pulse conduction in Purkinje fibers and ventricles more than that in the Atrioventricular (AV node. Therefore, although complete AV block can occur, it is a rare initial presentation. Case Report: We describe a 62-year-old man with a history of diabetes mellitus, ischemic heart disease and previous Coronary Artery Bypass Graft (CABG, who came to our emergency department due to generalized weakness starting 2 days before admission. The patient also had decreased force in lower limbs, exacerbating from the morning, and was finally diagnosed as a hyperkalemia-induced Complete Heart Block (CHB. It should also be noted that the patient responded dramatically to the administration of 10 mL of 10% calcium gluconate along with external pacing until potassium level correction became effective. Conclusion: In spite of the fact that Hyperkalemia can be associated with frequent Electrocardiogram (ECG abnormality, advanced heart blocks (second- and third-degree AV blocks are usually found only in patients with pre-existing heart failure, conduction abnormalities, or other cardiac diseases. Institution of effective treatment rapidly and forgiveness of traditional non-effective, time consumptive and sometimes risking full-adjustment modalities, such as sodium bicarbonate infusion or exchange resins that prevent their use in the emergent phase, can help minimize patient morbidity and mortality.

  11. A case of congestive heart failure induced by therapeutic irradiation

    International Nuclear Information System (INIS)

    Kushigami, Motohiko; Suruda, Hidetoshi; Mizukoshi, Masato; Umemoto, Masaaki; Fujiwara, Setsuko; Yamamoto, Katsuhiro; Ueno, Yuji; Nishio, Ichiro; Masuyama, Yoshiaki

    1985-01-01

    Valvular insufficiency in radiation-induced heart disease is very rare. We described a patient, 53 years old woman, who developed congestive heart failure 2.5 years later following radiotherapy for esophageal carcinoma. The findings on examinations including cardiac catheterization revealed pericarditis with effusion, mitral and tricuspid valve insufficiency and pulmonary infarction. (author)

  12. Case of congestive heart failure induced by therapeutic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kushigami, Motohiko; Suruda, Hidetoshi; Mizukoshi, Masato; Umemoto, Masaaki; Fujiwara, Setsuko; Yamamoto, Katsuhiro; Ueno, Yuji; Nishio, Ichiro; Masuyama, Yoshiaki

    1985-02-01

    Valvular insufficiency in radiation-induced heart disease is very rare. We described a patient, 53 years old woman, who developed congestive heart failure 2.5 years later following radiotherapy for esophageal carcinoma. The findings on examinations including cardiac catheterization revealed pericarditis with effusion, mitral and tricuspid valve insufficiency and pulmonary infarction. (author).

  13. Protein interactions at the heart of cardiac chamber formation

    NARCIS (Netherlands)

    Boogerd, Cornelis J. J.; Moorman, Antoon F. M.; Barnett, Phil

    2009-01-01

    The vertebrate heart is a muscular pump that contracts in a rhythmic fashion to propel the blood through the body. During evolution, the morphologically complex four-chambered heart of birds and mammals has evolved from a single-layered tube with peristaltic contractility. The heart of Drosophila,

  14. [Role of melatonin in calcium overload-induced heart injury].

    Science.gov (United States)

    Kong, Lingheng; Wei, Ming; Sun, Na; Zhu, Juanxia; Su, Xingli

    2017-06-28

    To investigate the role of melatonin in calcium overload-induced heart injury.
 Methods: Thirty-two rats were divided into 4 groups: a control group (Control), a melatonin control group (Mel), a calcium overload group (CaP), and a calcium overload plus melatonin group (Mel+CaP). Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Triphenyltetrazolium chloride staining was used to measure the infarct size of myocardium. Lactate dehydrogenase (LDH) activity in the coronary flow was determined. The expressions of caspase-3 and cytochrome c were determined by Western blot. The pathological morphological changes in myocardial fiber were analyzed by HE staining.
 Results: Compared with the control group, calcium overload significantly induced an enlarged infarct size (Poverload-induced heart injury.

  15. Heart malformation induced by ionizing irradiation in rat embryo

    International Nuclear Information System (INIS)

    Higo, Hiromi; Satow, Yukio; Lee, Juing-Yi; Higo, Ken-ichi

    1986-01-01

    Proteins were extracted from morphologically abnormal heart induced by gamma-irradiation, and fractionated into the soluble and the insoluble (''muscle structural proteins'') fractions. Protein compositions of these fractions were examined by O'Farrell's two-dimensional polyacrylamide gel electrophoresis, and also by non-equilibrium pH gradient electrophoresis. The protein patterns thus obtained were then compared with those of the normal heart. Among about 450 major protein species observed, no significant difference was detected between normal and abnormal hearts as to the intensity and the location of the protein spots. Several minor protein species were found varying among the samples examined, but their relevance to the heart malformation are not clear at present. (author)

  16. Galaxies interactions and induced star formation

    CERN Document Server

    Kennicutt Jr, Robert C; Barnes, JE

    1998-01-01

    The papers that make up this volume present a comprehensive review of the field of galaxy interaction. Galaxies are dynamic forces that evolve, interact, merge, blaze and reshape. This book offers a historical perspective and studies such topics as induced star formation.

  17. ILK induces cardiomyogenesis in the human heart.

    Directory of Open Access Journals (Sweden)

    Alexandra Traister

    Full Text Available Integrin-linked kinase (ILK is a widely conserved serine/threonine kinase that regulates diverse signal transduction pathways implicated in cardiac hypertrophy and contractility. In this study we explored whether experimental overexpression of ILK would up-regulate morphogenesis in the human fetal heart.Primary cultures of human fetal myocardial cells (19-22 weeks gestation yielded scattered aggregates of cardioblasts positive for the early cardiac lineage marker nk × 2.5 and containing nascent sarcomeres. Cardiac cells in colonies uniformly expressed the gap junction protein connexin 43 (C × 43 and displayed a spectrum of differentiation with only a subset of cells exhibiting the late cardiomyogenic marker troponin T (cTnT and evidence of electrical excitability. Adenovirus-mediated overexpression of ILK potently increased the number of new aggregates of primitive cardioblasts (p<0.001. The number of cardioblast colonies was significantly decreased (p<0.05 when ILK expression was knocked down with ILK targeted siRNA. Interestingly, overexpression of the activation resistant ILK mutant (ILK(R211A resulted in much greater increase in the number of new cell aggregates as compared to overexpression of wild-type ILK (ILK(WT. The cardiomyogenic effects of ILK(R211A and ILK(WT were accompanied by concurrent activation of β-catenin (p<0.001 and increase expression of progenitor cell marker islet-1, which was also observed in lysates of transgenic mice with cardiac-specific over-expression of ILK(R211A and ILK(WT. Finally, endogenous ILK expression was shown to increase in concert with those of cardiomyogenic markers during directed cardiomyogenic differentiation in human embryonic stem cells (hESCs.In the human fetal heart ILK activation is instructive to the specification of mesodermal precursor cells towards a cardiomyogenic lineage. Induction of cardiomyogenesis by ILK overexpression bypasses the requirement of proximal PI3K activation for

  18. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  19. Effects of Pannus Formation on the Flow around a Bileaflet Mechanical Heart Valve

    Science.gov (United States)

    Kim, Woojin; Choi, Haecheon; Kweon, Jihoon; Yang, Dong Hyun; Kim, Namkug; Kim, Young-Hak

    2013-11-01

    A pannus, an abnormal layer of fibrovascular tissue observed on a bileaflet mechanical heart valve (BMHV), induces dysfunctions of BMHV such as the time delay and incomplete valve closing. We numerically simulate the flows around an intra-annular type BMHV model with and without pannus formation, respectively, and investigate the flow and bileaflet-movement modifications due to the pannus formation. Simulations are conducted at a physiological condition (mean flow rate of 5 l/min, cycle duration of 866 ms, and the Reynolds number of 7200 based on the inflow peak bulk velocity and inflow diameter). We model the pannus as an annulus with fixed outer radius and vary the inner radius of the pannus. Our preliminary results indicate that the flow field changes significantly and the bileaflet does not close properly due to the pannus formation. The detailed results will be given at the final presentation. Supported by the NRF Programs (NRF-2011-0028032, NRF-2012M2A8A4055647).

  20. Imaging of pannus formation in patients with mechanical heart valves.

    Science.gov (United States)

    Gündüz, Sabahattin; Özkan, Mehmet; Yesin, Mahmut

    2015-11-26

    Patient-prosthesis mismatch (PPM) should be recognized in patients with elevated transprosthetic gradients but without leaflet immobility, since the treatment strategy may differ in either etiology. However, thrombus and/or pannus formation should be excluded before a diagnosis of PPM is made. Particularly, pannus formation may not be diagnosed with 2-dimensional transesophageal echocardiography. Electrocardiographically gated 64-section multidetector computed tomography (MDCT) may be a promising tool in diagnosing or excluding pannus formation. Our report underlines the utility of MDCT in this regard and also emphasizes the importance of recognition of PPM as a differential diagnosis in such patients.

  1. Rescuing loading induced bone formation at senescence.

    Directory of Open Access Journals (Sweden)

    Sundar Srinivasan

    2010-09-01

    Full Text Available The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca(2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.

  2. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.

    Science.gov (United States)

    Wu, Yanqing; Reece, E Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R; Yang, Peixin

    2016-09-01

    Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene

  3. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bruno Zeitouni

    2007-10-01

    Full Text Available Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation.

  4. Three-dimentional simulation of flow-induced platelet activation in artificial heart valves

    Science.gov (United States)

    Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Since the advent of heart valve, several valve types such as mechanical and bio-prosthetic valves have been designed. Mechanical Heart Valves (MHV) are durable but suffer from thromboembolic complications that caused by shear-induced platelet activation near the valve region. Bio-prosthetic Heart Valves (BHV) are known for better hemodynamics. However, they usually have a short average life time. Realistic simulations of heart valves in combination with platelet activation models can lead to a better understanding of the potential risk of thrombus formation in such devices. In this study, an Eulerian approach is developed to calculate the platelet activation in three-dimensional simulations of flow through MHV and BHV using a parallel overset-curvilinear immersed boundary technique. A curvilinear body-fitted grid is used for the flow simulation through the anatomic aorta, while the sharp-interface immersed boundary method is used for simulation of the Left Ventricle (LV) with prescribed motion. In addition, dynamics of valves were calculated numerically using under-relaxed strong-coupling algorithm. Finally, the platelet activation results for BMV and MHV are compared with each other.

  5. Kinetics of formation of induced mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chepurnoj, A.I.; Levkovich, N.V.; Mikhova-Tsenova, N.; Mel'nikova, L.A.

    1990-01-01

    UV and γ-radiation mutagenic effect an various strains of Saccharomyces cerevisiae was studied by analyzing formation kinetics of induced mutants at the period of postirradiation incubation. Mechanisms of induced reverse formation was suggested. The presented analysis is considered to be differential taking account of more subtle aspects of induced mutagenesis. 8 refs.; 10 figs.; 3 tabs

  6. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  7. Heart rate responses induced by acoustic tempo and its interaction with basal heart rate.

    Science.gov (United States)

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2017-03-07

    Many studies have revealed the influences of music on the autonomic nervous system (ANS). Since previous studies focused on the effects of acoustic tempo on the ANS, and humans have their own physiological oscillations such as the heart rate (HR), the effects of acoustic tempo might depend on the HR. Here we show the relationship between HR elevation induced by acoustic tempo and individual basal HR. Since high tempo-induced HR elevation requires fast respiration, which is based on sympatho-respiratory coupling, we controlled the participants' respiration at a faster rate (20 CPM) than usual (15 CPM). We found that sound stimuli with a faster tempo than the individual basal HR increased the HR. However, the HR increased following a gradual increase in the acoustic tempo only when the extent of the gradual increase in tempo was within a specific range (around + 2%/min). The HR did not follow the increase in acoustic tempo when the rate of the increase in the acoustic tempo exceeded 3% per minute. These results suggest that the effect of the sympatho-respiratory coupling underlying the HR elevation caused by a high acoustic tempo depends on the basal HR, and the strength and the temporal dynamics of the tempo.

  8. Bone formation induced in an infant by systemic prostaglandin-E2 administration

    DEFF Research Database (Denmark)

    Jørgensen, H R; Svanholm, H; Høst, A

    1988-01-01

    We report a case of long-term systemic administration of prostaglandin E2 (PGE2) to a newborn infant with ductus-dependent congenital heart disease. After 46 days of treatment, radiography showed cortical hyperostosis of the long bones. The child died 62 days after discontinuation of prostaglandin...... treatment. Histologic examination of tubular bones showed hyperostosis presumably due to prostaglandin-induced rapid formation of primitive bone. The additional finding of extensive resorption of the outer cortical surface and bone formation at the inner surface suggested a reversible phase after...

  9. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    International Nuclear Information System (INIS)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. - Highlights: • Arsenic exposure has been associated with a number of adverse health effects. • The molecular mechanisms involved in arsenic-induced cardiotoxicity remain unclear. • Differential proteins were identified in arsenic-exposed rat heart by proteomics. • Arsenic induces heart toxicity through the Akt/p38 MAPK signaling pathway. - Label-free quantitative proteomic analysis of rat heart reveals putative mechanisms and biomarkers for arsenic-induced cardiotoxicity.

  10. Respiration Induced Heart Motion and Indications of Gated Delivery for Left-Sided Breast Irradiation

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Hu, Angela; Wang Kai; Newman, Francis; Crosby, Marcus; Hu Bin; White, Julia; Li, X. Allen

    2012-01-01

    Purpose: To investigate respiration-induced heart motion for left-sided breast irradiation using a four-dimensional computed tomography (4DCT) technique and to determine novel indications to assess heart motion and identify breast patients who may benefit from a gated treatment. Methods and Materials: Images of 4DCT acquired during free breathing for 20 left-sided breast cancer patients, who underwent whole breast irradiation with or without regional nodal irradiation, were analyzed retrospectively. Dose distributions were reconstructed in the phases of 0%, 20%, and 50%. The intrafractional heart displacement was measured in three selected transverse CT slices using D LAD (the distance from left ascending aorta to a fixed line [connecting middle point of sternum and the body] drawn on each slice) and maximum heart depth (MHD, the distance of the forefront of the heart to the line). Linear regression analysis was used to correlate these indices with mean heart dose and heart dose volume at different breathing phases. Results: Respiration-induced heart displacement resulted in observable variations in dose delivered to the heart. During a normal free-breathing cycle, heart-induced motion D LAD and MHD changed up to 9 and 11 mm respectively, resulting in up to 38% and 39% increases of mean doses and V 25.2 for the heart. MHD and D LAD were positively correlated with mean heart dose and heart dose volume. Respiratory-adapted gated treatment may better spare heart and ipsilateral-lung compared with the conventional non-gated plan in a subset of patients with large D LAD or MHD variations. Conclusion: Proposed indices offer novel assessment of heart displacement based on 4DCT images. MHD and D LAD can be used independently or jointly as selection criteria for respiratory gating procedure before treatment planning. Patients with great intrafractional MHD variations or tumor(s) close to the diaphragm may particularly benefit from the gated treatment.

  11. Microarray Expression Profile of Circular RNAs in Heart Tissue of Mice with Myocardial Infarction-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Hong-Jin Wu

    2016-06-01

    Full Text Available Background/Aims: Myocardial infarction (MI is a serious complication of atherosclerosis associated with increasing mortality attributable to heart failure. This study is aimed to assess the global changes in and characteristics of the transcriptome of circular RNAs (circRNAs in heart tissue during MI induced heart failure (HF. Methods: Using a post-myocardial infarction (MI model of HF in mice, we applied microarray assay to examine the transcriptome of circRNAs deregulated in the heart during HF. We confirmed the changes in circRNAs by quantitative PCR. Results: We revealed and confirmed a number of circRNAs that were deregulated during HF, which suggests a potential role of circRNAs in HF. Conclusions: The distinct expression patterns of circulatory circRNAs during HF indicate that circRNAs may actively respond to stress and thus serve as biomarkers of HF diagnosis and treatment.

  12. Alternative causes of bioreaction to prosthetic heart valves: three cases with pannus formation.

    Science.gov (United States)

    Karakoyun, Süleyman; Gürsoy, Ozan Mustafa; Kalçık, Macit; Coban Kökten, Sermin; Ozkan, Mehmet

    2014-01-01

    Pannus formation is an infrequent but serious complication of prosthetic heart valve surgery. The cause of pannus is recognized as a bioreaction to the prostheses; histological investigations have shown that pannus comprises collagen and elastic tissues containing endothelial cells, chronic inflammatory cells, and myofibroblasts. However, the detailed mechanism of its formation has not been fully demonstrated. We aimed to evaluate the potential role of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) in the pathogenesis of pannus formation in three patients with mechanical prosthetic heart valves. Pannus specimens removed from the prostheses were fixed in 10% neutral-buffered formalin for 24 hours after surgical removal and paraffin-embedded using standard procedures. Serial sections were cut at 4 µm for immunohistochemistry analysis. Hematoxylin and eosin (HE) was used in the histological analysis. VEGF and MMP-2 were studied in the immunohistochemistry analysis. Three patients with mechanical prosthetic obstruction due to pannus overgrowth underwent redo valve surgery. In the first and second patients, the mitral prosthesis was explanted along with the pannus overgrowth. The third patient had both aortic and mitral prostheses; the aortic prosthesis was explanted with obstructive pannus formation, whereas the mitral valve was spared with excision of the nonobstructive pannus. The immunohistochemical study demonstrated the expressions of MMP-2 and VEGF in all of the pannus specimens acquired from these cases. VEGF and MMP-2 may play a role in the mechanism of pannus formation as the elements of the chronic active inflammatory process.

  13. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Baumstark-Khan, C; Schnitzler, L; Rink, H

    1984-02-01

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis.

  14. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    International Nuclear Information System (INIS)

    Baumstark-Khan, C.; Schnitzler, L.; Rink, H.

    1984-01-01

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis. (orig.)

  15. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention

    International Nuclear Information System (INIS)

    Andratschke, Nicolaus; Maurer, Jean; Molls, Michael; Trott, Klaus-Ruediger

    2011-01-01

    The clinical importance of radiation-induced heart disease, in particular in post-operative radiotherapy of breast cancer patients, has been recognised only recently. There is general agreement, that a co-ordinated research effort would be needed to explore all the potential strategies of how to reduce the late risk of radiation-induced heart disease in radiotherapy. This approach would be based, on one hand, on a comprehensive understanding of the radiobiological mechanisms of radiation-induced heart disease after radiotherapy which would require large-scale long-term animal experiments with high precision local heart irradiation. On the other hand - in close co-operation with mechanistic in vivo research studies - clinical studies in patients need to determine the influence of dose distribution in the heart on the risk of radiation-induced heart disease. The aim of these clinical studies would be to identify the critical structures within the organ which need to be spared and their radiation sensitivity as well as a potential volume and dose effect. The results of the mechanistic studies might also provide concepts of how to modify the gradual progression of radiation damage in the heart by drugs or biological molecules. The results of the studies in patients would need to also incorporate detailed dosimetric and imaging studies in order to develop early indicators of impending radiation-induced heart disease which would be a pre-condition to develop sound criteria for treatment plan optimisation.

  16. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    International Nuclear Information System (INIS)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-01-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 μM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt max of 105 ± 8 mN/s in control hearts vs. 49 ± 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 ± 0.2 in control hearts vs. 2.2 ± 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 ± 1 μM cytochrome c/min/mg in control hearts vs. 14 ± 3 μM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  17. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  18. Very late coronary spasm inducing acute myocardial infarction in a heart transplant recipient.

    Science.gov (United States)

    Santoro, Francesco; Lopizzo, Agostino; Centola, Antonio; Cuculo, Andrea; Ruggiero, Antonio; Di Biase, Matteo; Brunetti, Natale Daniele

    2016-12-01

    : We report coronary angio findings of very late (10-year) coronary spasm inducing acute myocardial infarction with typical chest pain in a heart transplant recipient. Coronary spasm was promptly relieved by intra-coronary infusion of nitrates.

  19. Radiation-induced damage of the Wistar Rat heart

    International Nuclear Information System (INIS)

    Cilliers, G.D.; Lochner, A.

    1993-01-01

    A time sequence study was performed on Wistar rats to investigate the early effects of radiation on the mechanical function and energy metabolism of the heart. Two series of rats were exposed to 20 Gy electron irradiation to a field including the heart and approximately a third of the lungs. The hearts were excised at varying time intervals (8-180 days) post irradiation. In one series of hearts the mechanical function was measured using the isolated perfused working rat heart model. At the end of the perfusion the hearts were freeze-clamped for analysis of the high energy phosphate contents (ATP, ADP, AMP and creatine phosphate). In the second series, mitochondria were isolated and the oxidative phosphorylation function measured polarographically (substrate: glutamate). Maximal depression of mechanical function was observed at 60 days post irradiation. Thereafter the work performance of these hearts improved significantly, almost reaching control levels after 180 days. The mitochondrial oxidative phosphorylation function (as measured on the total mitochondrial population) was significantly depressed 30-120 days post irradiation. As in the case of the mechanical changes, the depression was transient and after 180 days post irradiation, values similar to those of controls were obtained. Myocardial high energy phosphates remained unaltered throughout the experiment. (author)

  20. Role of vortices in cavitation formation in the flow across a mechanical heart valve.

    Science.gov (United States)

    Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H

    2008-07-01

    Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous

  1. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  2. GRAVES’ DISEASE INDUCED REVERSIBLE SEVERE RIGHT HEART FAILURE

    Directory of Open Access Journals (Sweden)

    Kathyayani

    2015-07-01

    Full Text Available A middle aged man presented with evidence of right - sided heart failure in atrial fibrillation (AF and was found to have severe Tricuspid Regurgitation (TR with pulmonary artery hypertension (PAH, with normal left ventricular function. The common possible seconda ry causes of PAH were ruled out, but during investigation he was found to have elevated thyroid function tests compatible with the diagnosis of Graves’ disease. The treatment of Graves’ disease was started with anti - thyroid drugs and associated with a sign ificant reduction in the pulmonary arterial pressure. This case report is presented to highlight one of the rare and underdiagnosed presentations of Graves’ disease. Thyrotoxicosis can present with profound cardiovascular complications. In recent times, th ere have been few reports of secondary PAH with TR in patients with hyperthyroidism. Previously asymptomatic Graves’ disease having the signs and symptoms of right heart failure is a rare presentation and the association could be easily missed. This case p resentation emphasizes that the diagnosis of thyroid heart disease with heart failure secondary to Graves’ disease should be considered in any patient regardless of age, gender with clinical features of heart failure of unknown etiology and timely initiation of anti - thyroid drugs is necessary to treat these reversible cardiac failures.

  3. Respiration Induced Heart Motion and Indications of Gated Delivery for Left-Sided Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, X. Sharon, E-mail: xiangrong.qi@ucdenver.edu [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Hu, Angela [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Wang Kai [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Newman, Francis [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Crosby, Marcus; Hu Bin; White, Julia; Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

    2012-04-01

    Purpose: To investigate respiration-induced heart motion for left-sided breast irradiation using a four-dimensional computed tomography (4DCT) technique and to determine novel indications to assess heart motion and identify breast patients who may benefit from a gated treatment. Methods and Materials: Images of 4DCT acquired during free breathing for 20 left-sided breast cancer patients, who underwent whole breast irradiation with or without regional nodal irradiation, were analyzed retrospectively. Dose distributions were reconstructed in the phases of 0%, 20%, and 50%. The intrafractional heart displacement was measured in three selected transverse CT slices using D{sub LAD} (the distance from left ascending aorta to a fixed line [connecting middle point of sternum and the body] drawn on each slice) and maximum heart depth (MHD, the distance of the forefront of the heart to the line). Linear regression analysis was used to correlate these indices with mean heart dose and heart dose volume at different breathing phases. Results: Respiration-induced heart displacement resulted in observable variations in dose delivered to the heart. During a normal free-breathing cycle, heart-induced motion D{sub LAD} and MHD changed up to 9 and 11 mm respectively, resulting in up to 38% and 39% increases of mean doses and V{sub 25.2} for the heart. MHD and D{sub LAD} were positively correlated with mean heart dose and heart dose volume. Respiratory-adapted gated treatment may better spare heart and ipsilateral-lung compared with the conventional non-gated plan in a subset of patients with large D{sub LAD} or MHD variations. Conclusion: Proposed indices offer novel assessment of heart displacement based on 4DCT images. MHD and D{sub LAD} can be used independently or jointly as selection criteria for respiratory gating procedure before treatment planning. Patients with great intrafractional MHD variations or tumor(s) close to the diaphragm may particularly benefit from the gated

  4. Radiation-induced heart disease due to intrathonacic tumor radiotherapy of a single dose to the rabbits' heart

    International Nuclear Information System (INIS)

    Zhou Weibing; Feng Yan; Chen Jiayi; Luo Quanyong

    2007-01-01

    Objective: To observe the changes of radiation-induced heart disease (RIHD) in the rabbits irradiated in clinical related dose, and to evaluate the apoptosis and hypoxia in the irradiated heart by the new scintigraphic agents of 99 Tc m -HL91 and 99 Tc m -Annexin V of heart SPECT. Methods: Tenty-four New Zealand white rabbits 4-month old and 2-3 kg by weight were divided into two groups. Group 1 (clinical related dose group): 16 irradiated by a single close from 0 to 18 Gy. Group 2 (high dose group): 8 irradiated dose from 22 to 80 Gy. The serum cTnI/CKMB, ECG, and heart SPECT(using 99 Tc m -MIBI, 99 Tc m -HL91 and 99 Tc m -Annexin V as agents) were detected before and after irradiation. The animals were followed for 5 months. Then biopsy of rabbit heart was performed and pathologic examination was made by H.E. stain. Results: In the 16 rabbits of clinical related dose group, none died of RIHD. Whereas 2 rabbits died of RIHD in the high dose group. One died of myocardial infarction and the other of congestive heart failure. According to the Stewart introduced heart lesion grading system, of the clinical close ann, there were moderate in 1 rabbit, minimal in 14; and of the high dose ann, it was severe in 2, marked in 1, moderate in 5. The parallel relation was observed between the ECG results and the pathological changes (χ 2 =0.08, P=0.771). Serum value of cTnI, was elevated at the 12th hour after irradiation reaching the peak and maintained for 4 months. However, it came down in the 5th month. The difference of serum cTnI value before and after radiation was statistically significant. Myocardial perfusion scintigraphy tested by heart SPECT ( 99 Tc m -MIBI) showed defects was present in all irradiated rabbits. The relationship between the defects and radiation dose or between the defects and the real RIHD was uncertain. The SPECT images displayed that 99 Tc m -HL91 and 99m Tc-Annexin V did not accumulate in the irradiated heart. Conclusions: No serious damage is

  5. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    DEFF Research Database (Denmark)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative...... proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33...... proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb...

  6. Membrane formation : diffusion induced demixing processes in ternary polymeric systems

    NARCIS (Netherlands)

    Reuvers, Albertus Johannes

    1987-01-01

    In this thesis the mechanism of membrane formation by means of immersion precipitation is studied. Immersion of a concentrated polymer solution film into a nonsolvent bath induces an exchange of solvent and nonsolvent in the film by means of diffusion. This process results in an asymmetric polymer

  7. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  8. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation.

    Science.gov (United States)

    Lamb, Damon G; Calabrese, Ronald L

    2013-01-01

    Neurons can have widely differing intrinsic membrane properties, in particular the density of specific conductances, but how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. We then examined the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics.

  9. Role of coronary endothelium in cyclic AMP formation by the heart

    International Nuclear Information System (INIS)

    Kroll, K.; Schrader, J.

    1986-01-01

    In order to quantify the activation of adenylate cyclase of the coronary endothelium in vivo, endothelial adenine nucleotides of isolated guinea pig hearts were selectively pre-labeled by intracoronary infusion of tritiated (H3)-adenosine, and the coronary efflux of H3-cAMP was measured. The adenosine receptor agonist, NECA (12 μM), increased total cAMP release 4 fold, and raised H3-cAMP release 22 fold. Several classes of coronary vasodilators (adenosine, L-PIA, D-PIA, the beta 2-adrenergic agonist procaterol, and PGE1) caused dose-dependent increases in endothelial-derived H3-cAMP release. These increases were accompanied by decreases in vascular resistance, at agonist doses without positive intropic effects. Hypoxic perfusion also raised H3-cAMP release, and this was antagonized by theophylline. It is concluded: (1) cyclic AMP formation by coronary endothelium can dominate total cAMP production by the heart; (2) coronary endothelial adenylate cyclase-coupled receptors for adenosine (A2), catecholamines (beta2) and prostaglandins are activated in parallel with coronary vasodilation; (3) endothelial adenylate cyclase can be activated by endogenous adenosine

  10. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  11. Suppression of T cell-induced osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  12. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats.

    Science.gov (United States)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-10-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanism of vacancy formation induced by hydrogen in tungsten

    Directory of Open Access Journals (Sweden)

    Yi-Nan Liu

    2013-12-01

    Full Text Available We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  14. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle.

    Science.gov (United States)

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J

    2015-10-15

    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  15. Formation of novel morphologies of aragonite induced by inorganic template

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Nan, Zhaodong

    2011-01-01

    Graphical abstract: Glass-slices were used as a template to induce formation and assembly of aragonite. Different morphologies, such as hemisphere, twinborn hemisphere and flower-shaped particles, were produced by direction of the glass-slices. Highlights: → Glass-slices were used as a template to induce formation and assembly of aragonite. → Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. → Planes were always appeared in these as-synthesized samples. → Thermodynamic theory was applied to explain the production of the aragonite. -- Abstract: A glass-slice was used as a template to induce formation and assembly of aragonite. Thermodynamic theory was applied to explain the production of the aragonite. Transformation of three-dimensional nucleation to template-based two-dimensional surface nucleation caused the production of aragonite. Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. Planes were always appeared in these as-synthesized samples because the nucleation and the growth of these samples were adsorbed at the surfaces of the glass-slices. The formation mechanism of the as-formed sample was proposed. Compared with organic template, the present study provides a facile method to apply inorganic template to prepare functional materials.

  16. Role of heat shock transcription factor 1(HSF1)-upregulated macrophage in ameliorating pressure overload-induced heart failure in mice.

    Science.gov (United States)

    Du, Peizhao; Chang, Yaowei; Dai, Fangjie; Wei, Chunyan; Zhang, Qi; Li, Jiming

    2018-08-15

    In order to explore the role of macrophages in HSF1-mediated alleviation of heart failure, mice model of pressure overload-induced heart failure was established using transverse aortic constriction (TAC). Changes in cardiac function and morphology were studied in TAC and SHAM groups using ultrasonic device, tissue staining, electron microscopy, real-time quantitative polymerase chain reaction (RT-QPCR), and Western blotting. We found that mice in the TAC group showed evidence of impaired cardiac function and aggravation of fibrosis on ultrasonic and histopathological examination when compared to those in the SHAM group. The expressions of HSF1, LC3II/LC3I, Becline-1 and HIF-1, as well as autophagosome formation in TAC group were greater than that in SHAM group. On sub-group analyses in the TAC group, improved cardiac function and alleviation of fibrosis was observed in the HSF1 TG subgroup as compared to that in the wild type subgroup. Expressions of LC3II/LC3I, Becline-1 and HIF-1, too showed an obvious increase; and increased autophagosome formation was observed on electron microscopy. Opposite results were observed in the HSF1 KO subgroup. These results collectively suggest that in the pressure overload heart failure model, HSF1 promoted formation of macrophages by inducing upregulation of HIF-1 expression, through which heart failure was ameliorated. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Min Zheng

    Full Text Available BACKGROUND: The paraventricular nucleus (PVN of the hypothalamus plays an important role in the progression of heart failure (HF. We investigated whether cyclooxygenase-2 (COX-2 inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS and renin-angiotensin system (RAS in rats with adriamycin-induced heart failure. METHODOLOGY/PRINCIPAL FINDING: Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg. On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW and lung to body weight (LW/BW ratios, heart rate (HR, left ventricular end-diastolic pressure (LVEDP, left ventricular peak systolic pressure (LVPSP and maximum rate of change in left ventricular pressure (LV±dp/dtmax were improved in HF+CLB rats. Angiotensin II (ANG II, norepinephrine (NE, COX-2 and glutamate (Glu in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats. CONCLUSIONS: These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure.

  18. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    Science.gov (United States)

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  19. Glucocorticoids and inhibition of bone formation induced by skeletal unloading

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Cone, C.M.; Morey-Holton, E.

    1988-01-01

    Skeletal unloading or loss of normal weight bearing in the growing animal inhibits bone formation and reduces bone calcium. To determine whether the inhibition of bone formation induced by skeletal unloading is a consequence of an increase in plasma glucocorticoids and/or an increase in bone sensitivity to glucocorticoids, the authors measured plasma corticosterone throughout the day in unloaded and normally loaded rats (hindlimb elevation model) and examined the effect of adrenalectomy on the response of bone to skeletal unloading. Plasma corticosterone levels were similar in normally loaded and unloaded rats at all times. Skeletal unloading in sham-adrenalectomized animals reduced tibial and vertebral calcium by 11.5 and 11.1%, respectively, and in adrenalectomized animals by 15.3 and 20.3%, respectively. Uptake of 45 Ca and [ 3 H]proline in the tibia was reduced by 8 and 14%, respectively, in the sham-adrenalectomized animals and by 13 and 19% in the adrenalectomized animals. Bone formation and apposition rates were reduced to the same level in sham- and adrenalectomized animals. These results suggest that the inhibition of bone formation induced by skeletal unloading is not a consequence of increased plasma glucocorticoids or an increase in bone sensitivity to the glucocorticoids but, rather, point to a local mediator in bone that senses mechanical load and transmits that information to the bone-forming cells directly

  20. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    Science.gov (United States)

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  1. Antiarrhythmic effect of tamoxifen on the vulnerability induced by hyperthyroidism to heart ischemia/reperfusion damage.

    Science.gov (United States)

    Pavón, Natalia; Hernández-Esquivel, Luz; Buelna-Chontal, Mabel; Chávez, Edmundo

    2014-09-01

    Hyperthyroidism, known to have deleterious effects on heart function, and is associated with an enhanced metabolic state, implying an increased production of reactive oxygen species. Tamoxifen is a selective antagonist of estrogen receptors. These receptors make the hyperthyroid heart more susceptible to ischemia/reperfusion. Tamoxifen is also well-known as an antioxidant. The aim of the present study was to explore the possible protective effect of tamoxifen on heart function in hyperthyroid rats. Rats were injected daily with 3,5,3'-triiodothyronine at 2mg/kg body weight during 5 days to induce hyperthyroidism. One group was treated with 10mg/kg tamoxifen and another was not. The protective effect of the drug on heart rhythm was analyzed after 5 min of coronary occlusion followed by 5 min reperfusion. In hyperthyroid rats not treated with tamoxifen, ECG tracings showed post-reperfusion arrhythmias, and heart mitochondria isolated from the ventricular free wall lost the ability to accumulate and retain matrix Ca(2+) and to form a high electric gradient. Both of these adverse effects were avoided with tamoxifen treatment. Hyperthyroidism-induced oxidative stress caused inhibition of cis-aconitase and disruption of mitochondrial DNA, effects which were also avoided by tamoxifen treatment. The current results support the idea that tamoxifen inhibits the hypersensitivity of hyperthyroid rat myocardium to reperfusion damage, probably because its antioxidant activity inhibits the mitochondrial permeability transition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Diagnosis of the prosthetic heart valve pannus formation with real-time three-dimensional transoesophageal echocardiography.

    Science.gov (United States)

    Ozkan, Mehmet; Gündüz, Sabahattin; Yildiz, Mustafa; Duran, Nilüfer Eksi

    2010-05-01

    Prosthetic heart valve obstruction (PHVO) caused by pannus formation is an uncommon but serious complication. Although two-dimensional transesophageal echocardiography (2D-TEE) is the method of choice in the evaluation of PHVO, visualization of pannus is almost impossible with 2D-TEE. While demonstrating the precise aetiology of PHVO is essential for guiding the therapy, either thrombolysis for valve thrombosis or surgery for pannus formation, more sophisticated imaging techniques are needed in patients with suspected pannus formation. We present real-time 3D-TEE imaging in a patient with mechanical mitral PHVO, clearly demonstrating pannus overgrowth.

  3. Myofibril-Inducing RNA (MIR is essential for tropomyosin expression and myofibrillogenesis in axolotl hearts

    Directory of Open Access Journals (Sweden)

    Lemanski Sharon L

    2009-09-01

    Full Text Available Abstract The Mexican axolotl, Ambystoma mexicanum, carries the naturally-occurring recessive mutant gene 'c' that results in a failure of homozygous (c/c embryos to form hearts that beat because of an absence of organized myofibrils. Our previous studies have shown that a noncoding RNA, Myofibril-Inducing RNA (MIR, is capable of promoting myofibrillogenesis and heart beating in the mutant (c/c axolotls. The present study demonstrates that the MIR gene is essential for tropomyosin (TM expression in axolotl hearts during development. Gene expression studies show that mRNA expression of various tropomyosin isoforms in untreated mutant hearts and in normal hearts knocked down with double-stranded MIR (dsMIR are similar to untreated normal. However, at the protein level, selected tropomyosin isoforms are significantly reduced in mutant and dsMIR treated normal hearts. These results suggest that MIR is involved in controlling the translation or post-translation of various TM isoforms and subsequently of regulating cardiac contractility.

  4. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  5. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure.

    Science.gov (United States)

    Honda, Nobuhiro; Hirooka, Yoshitaka; Ito, Koji; Matsukawa, Ryuichi; Shinohara, Keisuke; Kishi, Takuya; Yasukawa, Keiji; Utsumi, Hideo; Sunagawa, Kenji

    2013-11-01

    Enhanced central sympathetic outflow is an indicator of the prognosis of heart failure. Although the central sympatholytic drug moxonidine is an established therapeutic strategy for hypertension, its benefits for hypertensive heart failure are poorly understood. In the present study, we investigated the effects of central sympathoinhibition by intracerebral infusion of moxonidine on survival in a rat model of hypertensive heart failure and the possible mechanisms involved. As a model of hypertensive heart failure, we fed Dahl salt-sensitive rats an 8% NaCl diet from 7 weeks of age. Intracerebroventricular (ICV) infusion of moxonidine (moxonidine-ICV-treated group [Mox-ICV]) or vehicle (vehicle-ICV-treated group [Veh-ICV]) was performed at 14-20 weeks of age, during the increased heart failure phase. Survival rates were examined, and sympathetic activity, left ventricular function and remodelling, and brain oxidative stress were measured. Hypertension and left ventricular hypertrophy were established by 13 weeks of age. At around 20 weeks of age, Veh-ICV rats exhibited overt heart failure concomitant with increased urinary norepinephrine (uNE) excretion as an index of sympathetic activity, dilated left ventricle, decreased percentage fractional shortening, and myocardial fibrosis. Survival rates at 21 weeks of age (n = 28) were only 23% in Veh-ICV rats, and 76% (n = 17) in Mox-ICV rats with concomitant decreases in uNE, myocardial fibrosis, collagen type I/III ratio, brain oxidative stress, and suppressed left ventricular dysfunction. Moxonidine-induced central sympathoinhibition attenuated brain oxidative stress, prevented cardiac dysfunction and remodelling, and improved the prognosis in rats with hypertensive heart failure. Central sympathoinhibition can be effective for the treatment of hypertensive heart failure.

  6. Fatal postoperative systemic pulmonary hypertension in benfluorex-induced valvular heart disease surgery: A case report.

    Science.gov (United States)

    Baufreton, Christophe; Bruneval, Patrick; Rousselet, Marie-Christine; Ennezat, Pierre-Vladimir; Fouquet, Olivier; Giraud, Raphael; Banfi, Carlo

    2017-01-01

    Drug-induced valvular heart disease (DI-VHD) remains an under-recognized entity. This report describes a heart valve replacement which was complicated by intractable systemic pulmonary arterial hypertension in a 61-year-old female with severe restrictive mitral and aortic disease. The diagnosis of valvular disease was preceded by a history of unexplained respiratory distress. The patient had been exposed to benfluorex for 6.5 years. The diagnostic procedure documented specific drug-induced valvular fibrosis. Surgical mitral and aortic valve replacement was performed. Heart valve replacement was postoperatively complicated by unanticipated disproportionate pulmonary hypertension. This issue was fatal despite intensive care including prolonged extracorporeal life support. Benfluorex is a fenfluramine derivative which has been marketed between 1976 and 2009. Although norfenfluramine is the common active and toxic metabolite of all fenfluramine derivatives, the valvular and pulmonary arterial toxicity of benfluorex was much less known than that of fenfluramine and dexfenfluramine. The vast majority of benfluorex-induced valvular heart disease remains misdiagnosed as hypothetical rheumatic fever due to similarities between both etiologies. Better recognition of DI-VHD is likely to improve patient outcome.

  7. Cardioprotective properties of citicoline against hyperthyroidism-induced reperfusion damage in rat hearts.

    Science.gov (United States)

    Hernández-Esquivel, Luz; Pavón, Natalia; Buelna-Chontal, Mabel; González-Pacheco, Héctor; Belmont, Javier; Chávez, Edmundo

    2015-06-01

    Hyperthyroidism represents an increased risk factor for cardiovascular morbidity, especially when the heart is subjected to an ischemia/reperfusion process. The aim of this study was to explore the possible protective effect of the nucleotide citicoline on the susceptibility of hyperthyroid rat hearts to undergo reperfusion-induced damage, which is associated with mitochondrial dysfunction. Hence, we analyzed the protective effect of citicoline on the electrical behavior and on the mitochondrial function in rat hearts. Hyperthyroidism was established after a daily i.p. injection of triiodothyronine (at 2 mg/kg of body weight) during 5 days. Thereafter, citicoline was administered i.p. (at 125 mg/kg of body weight) for 5 days. In hyperthyroid rat hearts, citicoline protected against reperfusion-induced ventricular arrhythmias. Moreover, citicoline maintained the accumulation of mitochondrial Ca(2+), allowing mitochondria to reach a high transmembrane electric gradient that protected against the release of cytochrome c. It also preserved the activity of the enzyme aconitase that inhibited the release of cytokines. The protection also included the inhibition of oxidative stress-induced mDNA disruption. We conclude that citicoline protects against the reperfusion damage that is found in the hyperthyroid myocardium. This effect might be due to its inhibitory action on the permeability transition in mitochondria.

  8. Thyroid Echography-induced Thyroid Storm and Exacerbation of Acute Heart Failure.

    Science.gov (United States)

    Nakabayashi, Keisuke; Nakazawa, Naomi; Suzuki, Toshiaki; Asano, Ryotaro; Saito, Hideki; Nomura, Hidekimi; Isomura, Daichi; Okada, Hisayuki; Sugiura, Ryo; Oka, Toshiaki

    2016-01-01

    Hyperthyroidism and thyroid storm affect cardiac circulation in some conditions. Several factors including trauma can induce thyroid storms. We herein describe the case of a 57-year-old woman who experienced a thyroid storm and exacerbation of acute heart failure on thyroid echography. She initially demonstrated a good clinical course after medical rate control for atrial fibrillation; however, thyroid echography for evaluating hyperthyroidism led to a thyroid storm and she collapsed. A multidisciplinary approach stabilized her thyroid hormone levels and hemodynamics. Thus, the medical staff should be prepared for a deterioration in the patient's condition during thyroid echography in heart failure patients with hyperthyroidism.

  9. Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells.

    Science.gov (United States)

    Matsu-ura, Toru; Sasaki, Hiroshi; Okada, Motoi; Mikoshiba, Katsuhiko; Ashraf, Muhammad

    2016-02-15

    Pluripotent stem cells, such as embryonic stem cells or induced pluripotent stem cells, have a great potential for regenerative medicine. Induced pluripotent stem cells, in particular, are suitable for replacement of tissue by autologous transplantation. However, tumorigenicity is a major risk in clinical application of both embryonic stem cells and induced pluripotent stem cells. This study explores the possibility of manipulating the cell cycle for inhibition of tumorigenicity. We genetically modified mouse induced pluripotent stem cells (miPSCs) to overexpress p27 tumor suppressor and examined their proliferation rate, gene expression, cardiac differentiation, tumorigenicity, and therapeutic potential in a mouse model of coronary artery ligation. Overexpression of p27 inhibited cell division of miPSCs, and that inhibition was dependent on the expression level of p27. p27 overexpressing miPSCs had pluripotency characteristics but lost stemness earlier than normal miPSCs during embryoid body and teratoma formation. These cellular characteristics led to none or smaller teratoma when the cells were injected into nude mice. Transplantation of both miPSCs and p27 overexpressing miPSCs into the infarcted mouse heart reduced the infarction size and improved left ventricular function. The overexpression of p27 attenuated tumorigenicity by reducing proliferation and earlier loss of stemness of miPSCs. The overexpression of p27 did not affect pluripotency and differentiation characteristics of miPSC. Therefore, regulation of the proliferation rate of miPSCs offers great therapeutic potential for repair of the injured myocardium.

  10. Expression of manganese superoxide dismutase in rat blood, heart and brain during induced systemic hypoxia

    Directory of Open Access Journals (Sweden)

    Septelia I. Wanandi

    2011-02-01

    Full Text Available Background: Hypoxia results in an increased generation of ROS. Until now, little is known about the role of MnSOD - a major endogenous antioxidant enzyme - on the cell adaptation response against hypoxia. The aim of this study was to  determine the MnSOD mRNA expression and levels of specific activity in blood, heart and brain of rats during induced systemic hypoxia.Methods: Twenty-five male Sprague Dawley rats were subjected to systemic hypoxia in an hypoxic chamber (at 8-10% O2 for 0, 1, 7, 14 and 21 days, respectively. The mRNA relative expression of MnSOD was analyzed using Real Time RT-PCR. MnSOD specific activity was determined using xanthine oxidase inhibition assay.Results: The MnSOD mRNA relative expression in rat blood and heart was decreased during early induced systemic hypoxia (day 1 and increased as hypoxia continued, whereas the mRNA expression in brain was increased since day 1 and reached its maximum level at day 7. The result of MnSOD specific activity during early systemic hypoxia was similar to the mRNA expression. Under very late hypoxic condition (day 21, MnSOD specific activity in blood, heart and brain was significantly decreased. We demonstrate a positive correlation between MnSOD mRNA expression and specific activity in these 3 tissues during day 0-14 of induced systemic hypoxia. Furthermore, mRNA expression and specific activity levels in heart strongly correlate with those in blood.Conclusion: The MnSOD expression at early and late phases of induced systemic hypoxia is distinctly regulated. The MnSOD expression in brain differs from that in blood and heart revealing that brain tissue can  possibly survive better from induced systemic hypoxia than heart and blood. The determination of MnSOD expression in blood can be used to describe its expression in heart under systemic hypoxic condition. (Med J Indones 2011; 20:27-33Keywords: MnSOD, mRNA expression, ROS, specific activity, systemic hypoxia

  11. The formation of rats' choroidal neovascularization induced by acrolein

    Directory of Open Access Journals (Sweden)

    Guan-Feng Wang

    2016-04-01

    Full Text Available AIM:To investigate the formation of rats' choroidal neovascularization(CNVinduced by acrolein. METHODS:Twelve Sprague-Dawley rats were randomly divided into three groups. Acrolein 200μL(2.5 mg/kg/dwas poured into the rats' stomach for 4wk as acrolein 4wk and for 8wk as acrolein 8wk group. The same volume of fresh water was also done to the rats as the control group. Remove all eye balls and embed into paraffin with HE staining.RESLUTS:The RPE-Bruch membrane was intact with no obvious abnormality in the control group and acrolein 4wk group. Lost in the continuity of RPE and the movement of choroidal neovascularization were found in the acrolein 8wk. CONCLUSION:The long time use of acrolein can induce the formation of choroial neovascularization in rats.

  12. Branch formation induced by microbeam irradiation of Adiantum protonemata

    International Nuclear Information System (INIS)

    Wada, M.

    1998-01-01

    Branches were induced in centrifuged Adiantum protonemal cells by partial irradiation with polarized red light. Nuclear behavior and microtubule pattern change during branch formation were investigated. A branch formed at any part where a red microbeam was focused along a long apical cell. The nucleus moved towards the irradiated area and remained there until a branch developed. The pattern of microtubules changed from parallel to oblique at the irradiated area and then a transverse arrangement of microtubules appeared on both sides of the area. It appeared as if the nucleus was suspended between two microtubule rings. This nuclear behavior and the changes in microtubule pattern were different from those observed during branch formation under whole cell irradiation. From the results of this work we suggest that there is an importance for precise control of experimental conditions

  13. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart.

    Science.gov (United States)

    Doroudgar, Shirin; Glembotski, Christopher C

    2011-04-01

    Intercellular communication depends on many factors, including proteins released via the classical or non-classical secretory pathways, many of which must be properly folded to be functional. Owing to their adverse effects on the secretion machinery, stresses such as ischemia can impair the folding of secreted proteins. Paradoxically, cells rely on secreted proteins to mount a response designed to resist stress-induced damage. This review examines this paradox using proteins secreted from the heart, cardiokines, as examples, and focuses on how the ischemic heart maintains or even increases the release of select cardiokines that regulate important cellular processes in the heart, including excitation-contraction coupling, hypertrophic growth, myocardial remodeling and stem cell function, in ways that moderate ischemic damage and enhance cardiac repair. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Induced massive star formation in the trifid nebula?

    Science.gov (United States)

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  15. Fragment formation in light-ion induced reactions

    International Nuclear Information System (INIS)

    Hirata, Yuichi

    2001-01-01

    The intermediate mass fragment (IMF) formation in the 12 GeV proton induced reaction on Au target is analyzed by the quantum molecular dynamics model combined with the JAM hadronic cascade model and the non-equilibrated percolation model. We show that the sideward peaked angular distribution of IMF occur in the multifragmentation at very short time scale around 20 fm/c where non-equilibrated features of the residual nucleus fluctuates the nucleon density and fragments in the repulsive Coulomb force are pushed for the sideward direction. (author)

  16. Mental stress-induced left ventricular dysfunction and adverse outcome in ischemic heart disease patients.

    Science.gov (United States)

    Sun, Julia L; Boyle, Stephen H; Samad, Zainab; Babyak, Michael A; Wilson, Jennifer L; Kuhn, Cynthia; Becker, Richard C; Ortel, Thomas L; Williams, Redford B; Rogers, Joseph G; O'Connor, Christopher M; Velazquez, Eric J; Jiang, Wei

    2017-04-01

    Aims Mental stress-induced myocardial ischemia (MSIMI) occurs in up to 70% of patients with clinically stable ischemic heart disease and is associated with increased risk of adverse prognosis. We aimed to examine the prognostic value of indices of MSIMI and exercise stress-induced myocardial ischemia (ESIMI) in a population of ischemic heart disease patients that was not confined by having a recent positive physical stress test. Methods and results The Responses of Mental Stress Induced Myocardial Ischemia to Escitalopram Treatment (REMIT) study enrolled 310 subjects who underwent mental and exercise stress testing and were followed annually for a median of four years. Study endpoints included time to first and total rate of major adverse cardiovascular events, defined as all-cause mortality and hospitalizations for cardiovascular causes. Cox and negative binomial regression adjusting for age, sex, resting left ventricular ejection fraction, and heart failure status were used to examine associations of indices of MSIMI and ESIMI with study endpoints. The continuous variable of mental stress-induced left ventricular ejection fraction change was significantly associated with both endpoints (all p values mental stress, patients had a 5% increase in the probability of a major adverse cardiovascular event at the median follow-up time and a 20% increase in the number of major adverse cardiovascular events endured over the follow-up period of six years. Indices of ESIMI did not predict endpoints ( ps > 0.05). Conclusion In patients with stable ischemic heart disease, mental, but not exercise, stress-induced left ventricular ejection fraction change significantly predicts risk of future adverse cardiovascular events.

  17. Simulation of Exercise-Induced Syncope in a Heart Model with Severe Aortic Valve Stenosis

    Directory of Open Access Journals (Sweden)

    Matjaž Sever

    2012-01-01

    Full Text Available Severe aortic valve stenosis (AVS can cause an exercise-induced reflex syncope (RS. The precise mechanism of this syncope is not known. The changes in hemodynamics are variable, including arrhythmias and myocardial ischemia, and one of the few consistent changes is a sudden fall in systemic and pulmonary arterial pressures (suggesting a reduced vascular resistance followed by a decline in heart rate. The contribution of the cardioinhibitory and vasodepressor components of the RS to hemodynamics was evaluated by a computer model. This lumped-parameter computer simulation was based on equivalent electronic circuits (EECs that reflect the hemodynamic conditions of a heart with severe AVS and a concomitantly decreased contractility as a long-term detrimental consequence of compensatory left ventricular hypertrophy. In addition, the EECs model simulated the resetting of the sympathetic nervous tone in the heart and systemic circuit during exercise and exercise-induced syncope, the fluctuating intra-thoracic pressure during respiration, and the passive relaxation of ventricle during diastole. The results of this simulation were consistent with the published case reports of exertional syncope in patients with AVS. The value of the EEC model is its ability to quantify the effect of a selective and gradable change in heart rate, ventricular contractility, or systemic vascular resistance on the hemodynamics during an exertional syncope in patients with severe AVS.

  18. THE ROLE OF FACTORS AFFECTING THE FORMATION OF CHRONIC HEART FAILURE WITH PRESERVED EJECTION FRACTION

    Directory of Open Access Journals (Sweden)

    M. V. Kurkina

    2017-01-01

    Full Text Available Aim. To study the combination and contribution of risk factors (age, hypertension (HT, obesity, diabetes mellitus, chronic kidney disease (CKD, length of illness leading to the formation of chronic heart failure (CHF with preserved ejection fraction (EF.Material and methods. The study included 100 hypertensive patients (aged 40 to 80 years with concomitant obesity or diabetes or CKD. Patients were divided into 4 groups depending on the presence of one major and/or several concomitant diseases. Echocardiography, assessment of large arterial vessels stiffness indices (SI m/s, CAVI m/s, and determination of small muscle arteries tonus (RI% were performed in all patients.Results. Remodeling of the left ventricle (LV and left atrial (LA was observed in all patients with comorbid status, as well as reduction in diastolic function. The LV myocardial mass index in the first group was 117.2±31.4 g/m2, in the second one – 125.9±27.4 g/m2, in the third group – 121.5±15.6 g/m2 and in the fourth one – 126.1±11.5 g/m2. A significant increase in the LA volume index was founded in the first group  – 33.4±3.9 ml/m2, in the second one – 39.6±9.1 ml/m2, in the third group – 38.1±5.2 ml/m2 and in the fourth one – 39.8±6.6 ml/m2 (р<0.05. The parameters reflecting the rigidity of large arterial vessels (SI m/s, CAVI m/s also exceeded the threshold values in each group; significant differences SI were between the first and fourth, second  and fourth groups  (р<0.05, CAVI between the first and third groups  (р<0.05. A significant correlation was found between CAVI and age (r=0.63, which indicated an increase in arterial stiffness with age.Conclusions. In the formation of CHF with preserved EF, additional factors enhance the changes associated with LV remodeling and LA overload. These changes occur with a progressive decrease in LV diastolic function and increase in myocardial stiffness. HT and obesity are the main contributors to the

  19. Left ventricular fluid dynamics in heart failure: echocardiographic measurement and utilities of vortex formation time.

    Science.gov (United States)

    Poh, Kian Keong; Lee, Li Ching; Shen, Liang; Chong, Eric; Tan, Yee Leng; Chai, Ping; Yeo, Tiong Cheng; Wood, Malissa J

    2012-05-01

    In clinical heart failure (HF), inefficient propagation of blood through the left ventricle (LV) may result from suboptimal vortex formation (VF) ability of the LV during early diastole. We aim to (i) validate echocardiographic-derived vortex formation time (adapted) (VFTa) in control subjects and (ii) examine its utility in both systolic and diastolic HF. Transthoracic echocardiography was performed in 32 normal subjects and in 130 patients who were hospitalized with HF [91, reduced ejection fraction (rEF) and 39, preserved ejection fraction (pEF)]. In addition to biplane left ventricular ejection fraction (LVEF) and conventional parameters, the Tei index and tissue Doppler (TD) indices were measured. VFTa was obtained using the formula: 4 × (1 - β)/π × α³ × LVEF, where β is the fraction of total transmitral diastolic stroke volume contributed by atrial contraction (assessed by time velocity integral of the mitral E- and A-waves) and α is the biplane end-diastolic volume (EDV)(1/3) divided by mitral annular diameter during early diastole. VFTa was correlated with demographic, cardiac parameters, and a composite clinical endpoint comprising cardiac death and repeat hospitalization for HF. Mean VFTa was 2.67 ± 0.8 in control subjects; reduced in HF, preserved EF HF, 2.21 ± 0.8; HF with reduced EF, 1.25 ± 0.6 (PTD early diastolic myocardial velocities (E', septal, r = 0.46; lateral, r = 0.43), systolic myocardial velocities (S', septal, r = 0.47; lateral, r = 0.41), and inversely with the Tei index (r = -0.41); all Ps < 0.001. Sixty-two HF patients (49%) met the composite endpoint. VFTa of <1.32 was associated with significantly reduced event-free survival (Kaplan Meier log rank = 16.3, P= 0.0001) and predicted the endpoint with a sensitivity and specificity of 65 and 72%, respectively. VFTa, a dimensionless index, incorporating LV geometry, systolic and diastolic parameters, may be useful in the diagnosis and prognosis of HF.

  20. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  1. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling.

    Science.gov (United States)

    Abilez, Oscar J; Tzatzalos, Evangeline; Yang, Huaxiao; Zhao, Ming-Tao; Jung, Gwanghyun; Zöllner, Alexander M; Tiburcy, Malte; Riegler, Johannes; Matsa, Elena; Shukla, Praveen; Zhuge, Yan; Chour, Tony; Chen, Vincent C; Burridge, Paul W; Karakikes, Ioannis; Kuhl, Ellen; Bernstein, Daniel; Couture, Larry A; Gold, Joseph D; Zimmermann, Wolfram H; Wu, Joseph C

    2018-02-01

    The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin + flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 10 6 hPSC-CMs were mixed with 0.4 × 10 6 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, β-adrenergic receptors, and t

  2. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    International Nuclear Information System (INIS)

    Ye, Lusi; Jiang, Ying; Zuo, Xiaoxia

    2015-01-01

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  3. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Lusi [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015 (China); Jiang, Ying [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Zuo, Xiaoxia, E-mail: susanzuo@hotmail.com [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China)

    2015-11-06

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  4. Curcumin mediated attenuation of carbofuran induced toxicity in the heart of Wistar rats.

    Science.gov (United States)

    Jaiswal, S K; Gupta, V K; Siddiqi, N J; Sharma, B

    2017-07-31

    Carbofuran is used to improve the agricultural productivity as well as to protect the house hold and industrial products, but due to accumulation in the biological system, it causes serious side effects in many non-targets mammalian systems. The aim of present study is to evaluate the carbofuran induced oxidative stress in rat heart and its attenuation by using herbal product curcumin. Rats were divided into four groups; one group received 20 % LD50 of carbofuran another group of rats received same doses of carbofuran was  pretreated with curcumin (100 mg kg-1 body weight) and remaining two other groups served as control and curcumin treated animals. The activity of lactate dehydrogenase (LDH) in the heart tissues and serum was evaluated and the activity of enzymatic antioxidants superoxide dismutase (SOD) and catalase (CAT) was estimated in the heart tissues. The level of malondialdehyde (MDA) in heart tissues was also measured. The Total cholesterol (TC) and high density lipoprotein (HDL) was measured in the serum of the entire animals group. The results of present study showed that the activity of LDH in heart tissues were decreased and in serum was elevated. The MDA level was significantly elevated due to exposure of carbofuran. The enzymatic antioxidants, SOD and CAT activities were also inhibited. The ratio of pro-oxidant (P)/antioxidant (A) was also found to be sharply increased in the rat heart tissues of carbofuran exposed animals. The alterations in all the parameter were recovered by the pretreatment of curcumin (100 mg kg-1 body weight).

  5. Formation of radiation induced precipitates in VVER RPV materials

    International Nuclear Information System (INIS)

    Platonov, P.A.; Chernobaeva, A.A.

    2016-01-01

    This paper presents an analysis of experimental results received in course of research of copper-enriched precipitates (Cu-precipitates) and nickel-manganese-silicon clusters (Ni-Mn-Si clusters), which are formed in steels of VVER-type reactor pressure vessels (RPVs) under neutron irradiation. Based on this analysis, a hypothetical model is suggested for cluster formation in course of evolution of a cascade region. The model presumes cluster formation in two stages. At the first stage, in course of cascade region crystallization, a stable cluster is formed in the center of the cascade region, which consists of vacancies and Cu atoms following the mechanism of the inverse Kirkendall effect. At the second stage, diffusion of Ni, Mn and P atoms with a flow of vacancies from the matrix takes place to form a cluster. The size of a cluster is limited by a balance of vacancies' flows entering and leaving the cluster. The paper also considers a possibility of stabilization of atomic-vacancy cluster due to uneven distribution of Ni, Mn and P atoms, which explains dependence of cluster density on the content of these elements. Kinetics of cluster formation and evolution presumed by suggested model is analyzed. It is demonstrated that a fall in cluster density and an increase in their size under high irradiation doses may be caused by a decrease of matrix supersaturation with vacancies resulting from high density of dislocation loops. - Highlights: • The analysis of the mechanism of formation of radiation-induced clusters in RPV steels has been done. • Radiation-induced clusters are formed after the mechanism based on the inverse Kirkendall effect in two stages. • At post-dynamic stage a flow of vacancies moving to the center of the cascade entrains Cu atoms contained and forms a stable atom-vacancies cluster. • At the 2nd stage Cu, Ni, Mn, Si atoms forming complexes with vacancies diffuse into a cluster driving out Fe and Cr atoms from the cluster. • The cluster

  6. QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-01-01

    Full Text Available We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF in clinical practice in China, on a rat heart failure (HF model. 3 groups were divided: HF model group (LAD ligation, QSYQ group (LAD ligation and treated with QSYQ, and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2, deregulated ejection fraction (EF value, increased formation of oxidative stress (Malondialdehyde, MDA, and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4 and NADPH oxidase 2 (NOX2 pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect.

  7. Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat.

    Science.gov (United States)

    Schultrich, Katharina; Frenzel, Falko; Oberemm, Axel; Buhrke, Thorsten; Braeuning, Albert; Lampen, Alfonso

    2017-09-01

    The chlorinated propanols 2- and 3-monochloropropanediol (MCPD), and their fatty acid esters have gained public attention due to their frequent occurrence as heat-induced food contaminants. Toxic properties of 3-MCPD in kidney and testis have extensively been characterized. Other 3-MCPD target organs include heart and liver, while 2-MCPD toxicity has been observed in striated muscle, heart, kidney, and liver. Inhibition of glycolysis appears to be important in 3-MCPD toxicity, whereas mechanisms of 2-MCPD toxicity are still unknown. It is thus not clear whether toxicity by the two isomeric compounds is dependent on similar or dissimilar modes of action. A 28-day oral feeding study in rats was conducted using daily non-toxic doses of 2-MCPD or 3-MCPD [10 mg/kg body weight], or an equimolar (53 mg/kg body weight) or a lower (13.3 mg/kg body weight) dose of 2-MCPD dipalmitate. Comprehensive comparative proteomic analyses of substance-induced alterations in the common target organ heart revealed striking similarities between effects induced by 2-MCPD and its dipalmitate ester, whereas the degree of effect overlap between 2-MCPD and 3-MCPD was much less. The present data demonstrate that even if exerting effects in the same organ and targeting similar metabolic networks, profound differences between molecular effects of 2-MCPD and 3-MCPD exist thus warranting the necessity of separate risk assessment for the two substances. This study for the first time provides molecular insight into molecular details of 2-MCPD toxicity. Furthermore, for the first time, molecular data on 3-MCPD toxicity in the heart are presented.

  8. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII

    International Nuclear Information System (INIS)

    Dai, Wenjian; Chen, Haiyang; Jiang, Jiandong; Kong, Weijia; Wang, Yiguang

    2010-01-01

    Myofibrillogenesis regulator-1(MR-1) can aggravate cardiac hypertrophy induced by angiotensin(Ang) II in mice through activation of NF-κB signaling pathway, and nuclear transcription factor (NF)-κB and activator protein-1(AP-1) regulate inflammatory and immune responses by increasing the expression of specific inflammatory genes in various tissues including heart. Whether inhibition of MR-1 expression will attenuate AngII-induced inflammatory injury in mice heart has not been explored. Herein, we monitored the activation of NF-κB and AP-1, together with expression of pro-inflammatory of interleukin(IL)-6, tumor necrosis factor(TNF)-α, vascular-cell adhesion molecule (VCAM)-1, platelet endothelial cell adhesion molecule (PECAM), and inflammatory cell infiltration in heart of mice which are induced firstly by AngII (PBS),then received MR-1-siRNA or control-siRNA injecting. We found that the activation of NF-κB and AP-1 was inhibited significantly, together with the decreased expression of IL-6, TNF-α, VCAM-1, and PECAM in AngII-induced mice myocardium in MR-1-siRNA injection groups compared with control-siRNA injecting groups. However, the expression level of MR-1 was not an apparent change in PBS-infused groups than in unoperation groups, and MR-1-siRNA do not affect the expression of MR-1 in PBS-infused mice. Our findings suggest that silencing MR-1 protected mice myocardium against inflammatory injury induced by AngII by suppression of pro-inflammatory transcription factors NF-κB and AP-1 signaling pathway.

  9. Boundary-induced pattern formation from uniform temporal oscillation

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  10. Lipopolysaccharide induces amyloid formation of antimicrobial peptide HAL-2.

    Science.gov (United States)

    Wang, Jiarong; Li, Yan; Wang, Xiaoming; Chen, Wei; Sun, Hongbin; Wang, Junfeng

    2014-11-01

    Lipopolysaccharide (LPS), the important component of the outer membrane of Gram-negative bacteria, contributes to the integrity of the outer membrane and protects the cell against bactericidal agents, including antimicrobial peptides. However, the mechanisms of interaction between antimicrobial peptides and LPS are not clearly understood. Halictines-2 (HAL-2), one of the novel antimicrobial peptides, was isolated from the venom of the eusocial bee Halictus sexcinctus. HAL-2 has exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria and even against cancer cells. Here, we studied the interactions between HAL-2 and LPS to elucidate the antibacterial mechanism of HAL-2 in vitro. Our results show that HAL-2 adopts a significant degree of β-strand structure in the presence of LPS. LPS is capable of inducing HAL-2 amyloid formation, which may play a vital role in its antimicrobial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Electron irradiation induced nanocrystal formation in Cu-borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Mohammed Mohammed; Möbus, Günter, E-mail: g.moebus@sheffield.ac.uk [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2016-03-15

    Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.

  12. Deuterium ion irradiation induced blister formation and destruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaemin; Kim, Nam-Kyun; Kim, Hyun-Su; Jin, Younggil; Roh, Ki-Baek; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-11-01

    Highlights: • The areal number density of blisters on the grain with (1 1 1) plane orientation increased with increasing ion fluence. • No more blisters were created above the temperature about 900 K due to high thermal mobility of ions and inactivity of traps. • The destruction of blister at the boundary induced by sputtering is proposed. • The blisters were destructed at the position about the boundary by high sputtering yield of oblique incident ions and thin thickness due to plastic deformation at the boundary. - Abstract: The blisters formation and destruction induced by the deuterium ions on a polycrystalline tungsten were investigated with varying irradiation deuterium ion fluence from 3.04 × 10{sup 23} to 1.84 × 10{sup 25} D m{sup −2} s{sup −1} and an fixed irradiated ion energy of 100 eV in an electron cyclotron resonance plasma source, which was similar to the far-scrape off layer region in the nuclear fusion reactors. Target temperature was monitored during the irradiation. Most of blisters formed easily on the grain with (1 1 1) plane orientation which had about 250 nm in diameter. In addition, the areal number density of blisters increased with increasing the ion fluence under the surface temperature reaching to about 900 K. When the fluence exceeded 4.6 × 10{sup 24} D m{sup −2}, the areal number density of the blister decreased. It could be explained that the destruction of the blister was initiated by erosion at the boundary region where the thickness of blister lid was thin and the sputtering yield was high by oblique incident ions, resulting in remaining the lid open, e.g., un-eroded center dome. It is possible to work as a tungsten dust formation from the plasma facing divertor material at far-SOL region of fusion reactor.

  13. The effects of infographics and several quantitative versus qualitative formats for cardiovascular disease risk, including heart age, on people's risk understanding.

    NARCIS (Netherlands)

    Damman, Olga C; Vonk, Suzanne I; Van den Haak, Maaike J; van Hooijdonk, Charlotte M J; Timmermans, Danielle R M

    2018-01-01

    To study how comprehension of cardiovascular disease (CVD) risk is influenced by: (1) infographics about qualitative risk information, with/without risk numbers; (2) which qualitative risk dimension is emphasized; (3) heart age vs. traditional risk format.

  14. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  15. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    Science.gov (United States)

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases.

  16. Hypothyroidism-induced myocardial damage and heart failure: an overlooked entity.

    Science.gov (United States)

    Shuvy, Mony; Shifman, Oshrat E Tayer; Nusair, Samir; Pappo, Orit; Lotan, Chaim

    2009-01-01

    Hypothyroid state may induce cardiac muscle impairment such as diastolic dysfunction and abnormal relaxation time. Advanced heart failure in hypothyroid patients has been described only in severe symptomatic cases, mostly during myxedematous coma. We describe an unusual case of asymptomatic patient with hypothyroidism who presented with severely reduced cardiac function with elevated cardiac enzymes reflecting significant myocardial injury. Comprehensive evaluation for heart failure was suggestive only for long-standing untreated hypothyroidism. Endomyocadial biopsy demonstrated unique histological findings of mucopolysaccharide accumulation attributed to hypothyroid state. Asymptomatic hypothyroidism may cause severe reduction in cardiac function accompanied with elevated cardiac enzymes. To our knowledge, this is the first description of human myocardial biopsy revealing mucopolysaccharide accumulation attributed to hypothyroid state.

  17. Pulmonary hypertension and isolated right heart failure complicating amiodarone induced hyperthyroidism.

    Science.gov (United States)

    Wong, Sean-Man; Tse, Hung-Fat; Siu, Chung-Wah

    2012-03-01

    Hyperthyroidism is a common side effect encountered in patients prescribed long-term amiodarone therapy for cardiac arrhythmias. We previously studied 354 patients prescribed amiodarone in whom the occurrence of hyperthyroidism was associated with major adverse cardiovascular events including heart failure, myocardial infarction, ventricular arrhythmias, stroke and even death [1]. We now present a case of amiodarone-induced hyperthyroidism complicated by isolated right heart failure and pulmonary hypertension that resolved with treatment of hyperthyroidism. Detailed quantitative echocardiography enables improved understanding of the haemodynamic mechanisms underlying the condition. Copyright © 2011 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  18. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts.

    Science.gov (United States)

    Ghosh, Rajeshwary; Goswami, Sumanta K; Feitoza, Luis Felipe B B; Hammock, Bruce; Gomes, Aldrin V

    2016-11-15

    One of the most common nonsteroidal anti-inflammatory drugs (NSAIDs) used worldwide, diclofenac (DIC), has been linked to increased risk of cardiovascular disease (CVD). The molecular mechanism(s) by which DIC causes CVD is unknown. Proteasome activities were studied in hearts, livers, and kidneys from male Swiss Webster mice treated with either 100mg/kg DIC for 18h (acute treatment) or 10mg/kg DIC for 28days (chronic treatment). Cultured H9c2 cells and neonatal cardiomyocytes were also treated with different concentrations of DIC and proteasome function, cell death and ROS generation studied. Isolated mouse heart mitochondria were utilized to determine the effect of DIC on various electron transport chain complex activities. DIC significantly inhibited the chymotrypsin-like proteasome activity in rat cardiac H9c2 cells, murine neonatal cardiomyocytes, and mouse hearts, but did not affect proteasome subunit expression levels. Proteasome activity was also affected in liver and kidney tissues from DIC treated animals. The levels of polyubiquitinated proteins increased in hearts from DIC treated mice. Importantly, the levels of oxidized proteins increased while the β5i immunoproteasome activity decreased in hearts from DIC treated mice. DIC increased ROS production and cell death in H9c2 cells and neonatal cardiomyocytes while the cardioprotective NSAID, aspirin, had no effect on ROS levels or cell viability. DIC inhibited mitochondrial Complex III, a major source of ROS, and impaired mitochondrial membrane potential suggesting that mitochondria are the major sites of ROS generation. These results suggest that DIC induces cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Measurement of the efficacy of 2% lipid in reversing bupivacaine- induced asystole in isolated rat hearts

    Science.gov (United States)

    2014-01-01

    Background The reversal efficacy of 2% lipid emulsion in cardiac asystole induced by different concentrations of bupivacaine is poorly defined and needs to be determined. Methods Forty-two male Sprague–Dawley rats were randomly divided into seven groups: B40, B60, B80, B100, B120, B140 and B160, n = 6. The Langendorff isolated heart perfusion model was used, which consisted of a balanced perfusion with Krebs-Henseleit solution for 25 minutes and a continuous infusion of 100 μmol/L bupivacaine until asystole had been induced for 3 minutes. The hearts in the seven groups were perfused with Krebs-Henseleit solution containing a 2% lipid emulsion, and 40, 60, 80, 100, 120, 140 or 160 μmol/L bupivacaine, respectively. Cardiac recovery was defined as a spontaneous and regular rhythm with a rate-pressure product > 10% of the baseline value for more than 1 minute. Our primary outcome was the rate-pressure product 25 minutes after cardiac recovery. Other cardiac function parameters were also recorded. Results All groups demonstrated cardiac recovery. During the recovery phase, heart rate, rate-pressure product, the maximum left ventricular pressure rise and decline in heart rate in the B120-B160 groups was significantly lower than those in the B40-B80 groups (P bupivacaine and the reversal effects of a 2% lipid emulsion showed a typical transoid S-shaped curve, R2 = 0.9983, IC50 value was 102.5 μmol/L (95% CI: 92.44 - 113.6). Conclusions There is a concentration-response relationship between the concentrations of bupivacaine and the reversal effects of 2% lipid emulsion. PMID:25089118

  1. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  2. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  3. Formation and breakdown of adenosine in the heart : investigations on myocardial purine metabolismen

    NARCIS (Netherlands)

    P.W. Achterberg (Peter)

    1986-01-01

    textabstractAdenosine, a strong coronary vasodilator, is a breakdown product of the myocardial high-energy phosphate ATP. ATP serves as the direct energy source for contraction of the heart. Chapter 1 of this thesis gives a general introduction on contractility dependent ATP-breakdown, the

  4. Cardiac Ablation of Rheb1 Induces Impaired Heart Growth, Endoplasmic Reticulum-Associated Apoptosis and Heart Failure in Infant Mice

    Science.gov (United States)

    Cao, Yunshan; Tao, Lichan; Shen, Shutong; Xiao, Junjie; Wu, Hang; Li, Beibei; Wu, Xiangqi; Luo, Wen; Xiao, Qi; Hu, Xiaoshan; Liu, Hailang; Nie, Junwei; Lu, Shuangshuang; Yuan, Baiyin; Han, Zhonglin; Xiao, Bo; Yang, Zhongzhou; Li, Xinli

    2013-01-01

    Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure. PMID:24351823

  5. Stabilization of beta-catenin induces pancreas tumor formation.

    Science.gov (United States)

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  6. The peptide NDP-MSH induces phenotype changes in the heart that resemble ischemic preconditioning.

    Science.gov (United States)

    Catania, Anna; Lonati, Caterina; Sordi, Andrea; Leonardi, Patrizia; Carlin, Andrea; Gatti, Stefano

    2010-01-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) is a pro-opiomelanocortin (POMC)-derived peptide that exerts multiple protective effects on host cells. Previous investigations showed that treatment with alpha-MSH or synthetic melanocortin agonists reduces heart damage in reperfusion injury and transplantation. The aim of this preclinical research was to determine whether melanocortin treatment induces preconditioning-like cardioprotection. In particular, the plan was to assess whether melanocortin administration causes phenotype changes similar to those induced by repetitive ischemic events. The idea was conceived because both ischemic preconditioning and melanocortin signaling largely depend on cAMP response element binding protein (CREB) phosphorylation. Rats received single i.v. injections of 750microg/kg of the alpha-MSH analogue Nle(4),DPhe(7)-alpha-MSH (NDP-MSH) or saline and were sacrificed at 0.5, 1, 3, or 5h. Western blot analysis showed that rat hearts expressed melanocortin 1 receptor (MC1R) protein. Treatment with NDP-MSH was associated with early and marked increase in interleukin 6 (IL-6) mRNA. This was followed by signal transducer and activator of transcription 3 (STAT3) phosphorylation and induction of suppressor of cytokine signaling 3 (SOCS3). There were no changes in expression of other cytokines of the IL-6 family. Expression of IL-10, IL-1beta, and TNF-alpha was likewise unaltered. In hearts of rats treated with NDP-MSH there was increased expression of the orphan nuclear receptor Nur77. The data indicate that NDP-MSH induces phenotype changes that closely resemble ischemic preconditioning and likely contribute to its established protection against reperfusion injury. In addition, the increased expression of Nur77 and SOCS3 could be part of a broader anti-inflammatory effect.

  7. Sex Differences in Mental Stress-Induced Myocardial Ischemia in Patients With Coronary Heart Disease.

    Science.gov (United States)

    Vaccarino, Viola; Wilmot, Kobina; Al Mheid, Ibhar; Ramadan, Ronnie; Pimple, Pratik; Shah, Amit J; Garcia, Ernest V; Nye, Jonathon; Ward, Laura; Hammadah, Muhammad; Kutner, Michael; Long, Qi; Bremner, J Douglas; Esteves, Fabio; Raggi, Paolo; Quyyumi, Arshed A

    2016-08-24

    Emerging data suggest that young women with coronary heart disease (CHD) are disproportionally vulnerable to the adverse cardiovascular effects of psychological stress. We hypothesized that younger, but not older, women with stable CHD are more likely than their male peers to develop mental stress-induced myocardial ischemia (MSIMI). We studied 686 patients (191 women) with stable coronary heart disease (CHD). Patients underwent (99m)Tc-sestamibi myocardial perfusion imaging at rest and with both mental (speech task) and conventional (exercise/pharmacological) stress testing. We compared quantitative (by automated software) and visual parameters of inducible ischemia between women and men and assessed age as an effect modifier. Women had a more-adverse psychosocial profile than men whereas there were few differences in medical history and CHD risk factors. Both quantitative and visual indicators of ischemia with mental stress were disproportionally larger in younger women. For each 10 years of decreasing age, the total reversibility severity score with mental stress was 9.6 incremental points higher (interaction, P<0.001) and the incidence of MSIMI was 82.6% higher (interaction, P=0.004) in women than in men. Incidence of MSIMI in women ≤50 years was almost 4-fold higher than in men of similar age and older patients. These results persisted when adjusting for sociodemographic and medical risk factors, psychosocial factors, and medications. There were no significant sex differences in inducible ischemia with conventional stress. Young women with stable CHD are susceptible to MSIMI, which could play a role in the prognosis of this group. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  8. Biologically induced formation of realgar deposits in soil

    Science.gov (United States)

    Drahota, Petr; Mikutta, Christian; Falteisek, Lukáš; Duchoslav, Vojtěch; Klementová, Mariana

    2017-12-01

    The formation of realgar (As4S4) has recently been identified as a prominent As sequestration pathway in the naturally As-enriched wetland soil at the Mokrsko geochemical anomaly (Czech Republic). Here we used bulk soil and pore water analyses, synchrotron X-ray absorption spectroscopy, S isotopes, and DNA extractions to determine the distribution and speciation of As as a function of soil depth and metabolic properties of microbial communities in wetland soil profiles. Total solid-phase analyses showed that As was strongly correlated with organic matter, caused by a considerable As accumulation (up to 21 g kg-1) in an organic-rich soil horizon artificially buried in 1980 at a depth of ∼80 cm. Extended X-ray absorption fine structure spectroscopy revealed that As in the buried organic horizon was predominantly present as realgar occurring as nanocrystallites (50-100 nm) in millimeter-scale deposits associated with particulate organic matter. The realgar was depleted in the 34S isotope by 9-12.5‰ relative to the aqueous sulfate supplied to the soil, implying its biologically induced formation. Analysis of the microbial communities by 16S rDNA sequencing showed that realgar deposits formed in strictly anaerobic organic-rich domains dominated by sulfate-reducing and fermenting metabolisms. In contrast, realgar deposits were not observed in similar domains with even small contributions of oxidative metabolisms. No association of realgar with specific microbial species was observed. Our investigation shows that strongly reducing microenvironments associated with buried organic matter are significant biogeochemical traps for As, with an estimated As accumulation rate of 61 g As m-2 yr-1. Nevertheless the production of biologically induced realgar in these microenvironments is too slow to lower As groundwater concentrations at our field site (∼6790 mg L-1). Our study demonstrates the intricate link between geochemistry and microbial community dynamics in wetland

  9. Tachycardia-Induced Right Heart Failure and Severe Tricuspid Regurgitation That Improved with Medication.

    Science.gov (United States)

    Yang, Young Ae; Yang, Dong Heon; Kim, Hong Nyun; Kwon, Sang Hoon; Jang, Se Young; Bae, Myung Hwan; Lee, Jang Hoon; Chae, Shung Chull

    2015-12-01

    Secondary tricuspid regurgitation (TR) primarily develops due to left heart failure or primary pulmonary diseases. Tricuspid annular dilation, which is commonly caused by right ventricular volume and pressure overload followed by right ventricle dilation, is believed to be the main mechanism underlying secondary TR. It is reported that once the tricuspid annulus is dilated, its size cannot spontaneously return to normal, and it may continue to dilate. These reports also suggest the use of an aggressive surgical approach for secondary TR. In the present report, we describe a case of tachycardia-induced severe TR that was completely resolved without the need for surgery.

  10. Attenuation of ischemia-reperfusion-induced alterations in intracellular Ca2+ in cardiomyocytes from hearts treated with N-acetylcysteine and N-mercaptopropionylglycine.

    Science.gov (United States)

    Saini-Chohan, Harjot K; Dhalla, Naranjan S

    2009-12-01

    This study was undertaken to test whether Ca(2+)-handling abnormalities in cardiomyocytes after ischemia-reperfusion (I/R) are prevented by antioxidants such as N-acetyl L-cysteine (NAC), which is known to reduce oxidative stress by increasing the glutathione redox status, and N-(2-mercaptopropionyl)-glycine (MPG), which scavenges both peroxynitrite and hydroxyl radicals. For this purpose, isolated rat hearts were subjected to 30 min of global ischemia followed by 30 min of reperfusion, and cardiomyocytes were prepared to monitor changes in the intracellular concentration of free Ca(2+) ([Ca(2+)](i)). Marked depression in the left ventricular developed pressure and elevation in the left ventricular end-diastolic pressure in I/R hearts were attenuated by treatment with NAC or MPG. Cardiomyocytes obtained from I/R hearts showed an increase in the basal level of [Ca(2+)](i) as well as augmentation of the low Na(+)-induced increase in [Ca(2+)](i), with no change in the KCl-induced increase in [Ca(2+)](i). These I/R-induced alterations in Ca(2+) handling by cardiomyocytes were attenuated by treatment of hearts with NAC or MPG. Furthermore, reduction in the isoproterenol-, ATP-, ouabain-, and caffeine-induced increases in [Ca(2+)](i) in cardiomyocytes from I/R hearts were limited by treatment with NAC or MPG. The increases in the basal [Ca(2+)](i), unlike the KCl-induced increase in [Ca(2+)](i), were fully or partially prevented by both NAC and MPG upon exposing cardiomyocytes to hypoxia-reoxygenation, H(2)O(2), or a mixture of xanthine and xanthine oxidase. These results suggest that improvement in cardiac function of I/R hearts treated with NAC or MPG was associated with attenuation of changes in Ca(2+) handling by cardiomyocytes, and the results support the view that oxidative stress due to oxyradical generation and peroxynitrite formation plays an important role in the development of intracellular Ca(2+) overload in cardiomyocytes as a consequence of I/R injury.

  11. Efficacy of wheat germ oil in modulating radiation-induced heart damage in rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Azab, Kh.Sh.

    2006-01-01

    Wheat Germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. This study was designed to investigate the cardio-protective efficacy of wheat germ oil, on radiation-induced oxidative damage in rat's heart. Wheat germ oil was supplemented by gavage to rats at a dose of 81 mg/ kg body wt for 10 successive days pre- and 7 successive days post-exposure to 7 Gy (single dose) of whole body gamma irradiation. The dose of wheat germ oil is equivalent to daily human nutritional supplementation quantity. The results revealed that whole body ?-irradiation of rats produced significant alterations in blood cells picture. The erythrocyte, leucocyte, platelet counts and hemoglobin levels decreased after irradiation. Also, radiation-induced biochemical disorders manifested by significant elevation in xanthine oxidase activity (XO) and thiobarbituric acid reactive substances (TBARS) level, with decrease in reduced glutathione (GSH) content in heart tissues, indicating depression in the antioxidant status. Serum lipid profile as total cholesterol, high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and triglycerides levels (TG) were significantly higher than normal control rats. Radiation exposure produced a significant rise in the activities of serum markers for heart damage as creatine phosphokinase (CPK), aspartate aminotransferase (AST) and lactic dehydrogenase (LDH) indicating acute cardiac toxicity. Moreover, the obtained results revealed abnormal electrophoretic pattern of LDH isoenzymes in the 7th day after exposure to gamma rays. Three bands only appear on the agarose film comparing with 4 bands in normal control rats. The rats that received wheat germ oil supplement showed significantly less severe damage and remarkable improvement in all of the measured parameters when compared to

  12. Early biomarkers of doxorubicin-induced heart injury in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Varsha G., E-mail: varsha.desai@fda.hhs.gov [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Kwekel, Joshua C.; Vijay, Vikrant; Moland, Carrie L. [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Herman, Eugene H. [Toxicology and Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, The National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850-9734 (United States); Lee, Taewon [Department of Mathematics, Korea University, Sejong, Chungnam 339-700 (Korea, Republic of); Han, Tao [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Lewis, Sherry M. [Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Davis, Kelly J.; Muskhelishvili, Levan [Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Kerr, Susan [Arkansas Heart Hospital, Little Rock, AR 72211 (United States); Fuscoe, James C. [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2014-12-01

    Cardiac troponins, which are used as myocardial injury markers, are released in plasma only after tissue damage has occurred. Therefore, there is a need for identification of biomarkers of earlier events in cardiac injury to limit the extent of damage. To accomplish this, expression profiling of 1179 unique microRNAs (miRNAs) was performed in a chronic cardiotoxicity mouse model developed in our laboratory. Male B6C3F{sub 1} mice were injected intravenously with 3 mg/kg doxorubicin (DOX; an anti-cancer drug), or saline once a week for 2, 3, 4, 6, and 8 weeks, resulting in cumulative DOX doses of 6, 9, 12, 18, and 24 mg/kg, respectively. Mice were euthanized a week after the last dose. Cardiac injury was evidenced in mice exposed to 18 mg/kg and higher cumulative DOX dose whereas examination of hearts by light microscopy revealed cardiac lesions at 24 mg/kg DOX. Also, 24 miRNAs were differentially expressed in mouse hearts, with the expression of 1, 1, 2, 8, and 21 miRNAs altered at 6, 9, 12, 18, and 24 mg/kg DOX, respectively. A pro-apoptotic miR-34a was the only miRNA that was up-regulated at all cumulative DOX doses and showed a significant dose-related response. Up-regulation of miR-34a at 6 mg/kg DOX may suggest apoptosis as an early molecular change in the hearts of DOX-treated mice. At 12 mg/kg DOX, up-regulation of miR-34a was associated with down-regulation of hypertrophy-related miR-150; changes observed before cardiac injury. These findings may lead to the development of biomarkers of earlier events in DOX-induced cardiotoxicity that occur before the release of cardiac troponins. - Highlights: • Upregulation of miR-34a before doxorubicin-induced cardiac tissue injury • Apoptosis might be an early event in mouse heart during doxorubicin treatment. • Expression of miR-150 declined before doxorubicin-induced cardiac tissue injury.

  13. [Effect of 2,3-butanedione monoxime on calcium paradox-induced heart injury in rats].

    Science.gov (United States)

    Kong, Ling-Heng; Gu, Xiao-Ming; Su, Xing-Li; Sun, Na; Wei, Ming; Zhu, Juan-Xia; Chang, Pan; Zhou, Jing-Jun

    2016-05-01

    To investigate the Effect of 2,3-butanedione monoxime (BDM) on calcium paradox-induced heart injury and its underlying mechanisms. Thirty-two adult male SD rats were randomized into 4 groups, namely the control group, BDM treatment control group, calcium paradox group, and BDM treatment group. Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion and the left ventricular pressure (LVP) and left ventricular end-diastolic pressure (LVEDP) were monitored. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Lactate dehydrogenase (LDH) content in the coronary flow was determined. Triphenyltetrazolium chloride staining was used to measure the infarct size, and myocardial cell apoptosis was tested with TUNEL method. Western blotting was used to determine the expression of cleaved caspase-3 and cytochrome c. Compared with the control group, BDM at 20 mmol/L had no effect on cardiac performance, cell death, apoptotic index or the content of LDH, cleaved caspase-3 and cytochrome c at the end of perfusion under control conditions (P>0.05). Calcium paradox treatment significantly decreased the cardiac function and the level of LVDP and induced a larger infarct size (Pparadox, and markedly down-regulated the levels of LVEDP and LDH (Pparadox, suggesting the value of BDM as an potential drug for myocardial ischemia reperfusion injur.

  14. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  15. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.

    Science.gov (United States)

    Tong, Yu; Ehrat, Florian; Vanderlinden, Willem; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Polavarapu, Lakshminarayana; Urban, Alexander S

    2016-12-27

    Perovskite nanocrystals (NCs) are an important extension to the fascinating field of hybrid halide perovskites. Showing significantly enhanced photoluminescence (PL) efficiency and emission wavelengths tunable through halide content and size, they hold great promise for light-emitting applications. Despite the rapid advancement in this field, the physical nature and size-dependent excitonic properties have not been well investigated due to the challenges associated with their preparation. Herein we report the spontaneous formation of highly luminescent, quasi-2D organic-inorganic hybrid perovskite nanoplatelets (NPls) upon dilution of a dispersion of bulk-like NCs. The fragmentation of the large NCs is attributed to osmotic swelling induced by the added solvent. An excess of organic ligands in the solvent quickly passivates the newly formed surfaces, stabilizing the NPls in the process. The thickness of the NPls can be controlled both by the dilution level and by the ligand concentration. Such colloidal NPls and their thin films were found to be extremely stable under continuous UV light irradiation. Full tunability of the NPl emission wavelength is achieved by varying the halide ion used (bromide, iodide). Additionally, time-resolved PL measurements reveal an increasing radiative decay rate with decreasing thickness of the NPls, likely due to an increasing exciton binding energy. Similarly, measurements on iodide-containing NPls show a transformation from biexponential to monoexponential PL decay with decreasing thickness, likely due to an increasing fraction of excitonic recombination. This interesting phenomenon of change in fluorescence upon dilution is a result of the intricate nature of the perovskite material itself and is uncommon in inorganic materials. Our findings enable the synthesis of halide perovskite NCs with high quantum efficiency and good stability as well as a tuning of both their optical and morphological properties.

  16. Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats

    International Nuclear Information System (INIS)

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Tian, Jingjing; Cai, Zongwei; Dong, Chuan

    2015-01-01

    Highlights: • PM 2.5 induces heart mitochondrial morphological damage of rats. • Mitochondrial fission/fusion gene expression is important regulation mechanism. • Proinflammatoy cytokine level changes are accompanied with mitochondrial damage. • Alterations in oxidative stress and calcium homeostasis are focused on. - Abstract: Epidemiological studies suggested that ambient fine particulate matter (PM 2.5 ) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM 2.5 -induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM 2.5 with different dosages (0.375, 1.5, 6.0 and 24.0 mg/kg body weight) were investigated. The results indicated that the PM 2.5 exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM 2.5 exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na + K + -ATPase and Ca 2+ -ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM 2.5 -induced heart injury, and may have relations with cardiovascular disease

  17. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts

    Directory of Open Access Journals (Sweden)

    Carmine Rocca

    2018-05-01

    Full Text Available G protein-coupled estrogen receptor (GPER is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS and mitochondrial K+-ATP (MitoKATP channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N-[N-(3,5 difluorophenacetyl-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, 5 μM, of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions

  18. Large animal model of functional tricuspid regurgitation in pacing induced end-stage heart failure.

    Science.gov (United States)

    Malinowski, Marcin; Proudfoot, Alistair G; Langholz, David; Eberhart, Lenora; Brown, Michael; Schubert, Hans; Wodarek, Jeremy; Timek, Tomasz A

    2017-06-01

    Functional tricuspid regurgitation (FTR) is common in patients with advanced heart failure and frequently complicates left ventricular assist device implantation yet remains poorly understood. We set out to establish large animal model of FTR that could serve as a research platform to investigate the pathogenesis of FTR associated with end-stage heart failure. : Through right thoracotomy, ten adult sheep underwent implantation of pacemaker with epicardial LV lead, five sonomicrometry crystals on the right ventricle, and left and right ventricular telemetry pressure sensors during a beating heart off-pump procedure. After 5 ± 1 days of recovery, baseline haemodynamic, echocardiographic and sonomicrometry data were collected. Animals were paced thereafter at a rate of 220-240 beats/min until the development of heart failure and concomitant tricuspid regurgitation. : Three animals died during early recovery period and one during the pacing phase. Six surviving animals were paced for a mean of 14 ± 5 days. Cardiac function was significantly depressed compared to baseline, with LV ejection fraction falling from 69 ± 2% to 22 ± 4% ( P  tricuspid annulus (from 29.5 ± 1.6 to 36.5 ± 4.5 mm; P  = 0.01) and right ventricle (from 21.9 ± 0.2 to 30.3 ± 0.6 mm; P  = 0.03). Sonomicrometry derived contractility of RV free wall was depressed and at least moderate tricuspid insufficiency developed in all animals. : Biventricular dysfunction, tricuspid annular dilatation and significant FTR were observed in our model of ovine tachycardia induced cardiomyopathy. This animal model reflects the clinical situation of end-stage heart failure patients presenting for mechanical support. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. PFOS prenatal exposure induce mitochondrial injury and gene expression change in hearts of weaned SD rats

    International Nuclear Information System (INIS)

    Xia, Wei; Wan, Yanjian; Li, Yuan-yuan; Zeng, Huaicai; Lv, Ziquan; Li, Gengqi; Wei, Zhengzheng; Xu, Shun-qing

    2011-01-01

    heart function. The results indicate PFOS prenatal exposure can induce cardiac mitochondrial injury and gene transcript change, which may be a significant mechanism of the developmental toxicity of PFOS to rat.

  20. Ion-induced aerosol formation in a H20-H2S04 system

    International Nuclear Information System (INIS)

    Raes, F.; Janssens, A.

    1986-01-01

    The results of an experiment that was set up to demonstrate the occurrence of ion-induced aerosol formation (see Part I of this paper, Raes and Janssens, 1985) are analysed quantitatively by modelling the dynamics of aerosol formation and growth under different irradiation conditions. The model calculations indicate that ion-induced aerosol formation may contribute significantly to the total particle formation in a gas mixture that is simultaneously being irradiated with u.v. and γ irradiation. However, the measurements do not appear to be accurate enough to support these calculations. A qualitative comparison of the experiments with the calculations suggests that ion-induced nucleation is actually occurring in the experiments and that the classical theory of ion-induced aerosol formation may underestimate the actual rate of aerosol formation around ions. (author)

  1. Pharmacological and physiological assessment of serotonin formation and degradation in isolated preparations from mouse and human hearts.

    Science.gov (United States)

    Gergs, Ulrich; Jung, Franziska; Buchwalow, Igor B; Hofmann, Britt; Simm, Andreas; Treede, Hendrik; Neumann, Joachim

    2017-12-01

    Using transgenic (TG) mice that overexpress the human serotonin (5-HT) 4a receptor specifically in cardiomyocytes, we wanted to know whether 5-HT can be formed and degraded in the mammalian heart and whether this can likewise lead to inotropic and chronotropic effects in this TG model. We noted that the 5-HT precursor 5-hydroxy-tryptophan (5-HTP) can exert inotropic and chronotropic effects in cardiac preparations from TG mice but not from wild-type (WT) mice; similar results were found in human atrial preparations as well as in intact TG animals using echocardiography. Moreover, by immunohistochemistry we could detect 5-HT metabolizing enzymes and 5-HT transporters in mouse hearts as well as in human atria. Hence, in the presence of an inhibitor of aromatic l-amino acid decarboxylase, the positive inotropic effects of 5-HTP were absent in TG and isolated human atrial preparations, and, moreover, inhibitors of enzymes involved in 5-HT degradation enhanced the efficacy of 5-HT in TG atria. A releaser of neurotransmitters increased inotropy in the isolated TG atrium, and this effect could be blocked by a 5-HT 4a receptor antagonist. Fluoxetine, an inhibitor of 5-HT uptake, elevated the potency of 5-HT to increase contractility in the TG atrium. In addition, inhibitors of organic cation and monoamine transporters apparently reduced the positive inotropic potency of 5-HT in the TG atrium. Hence, we tentatively conclude that a local production and degradation of 5-HT in the mammalian heart and more specifically in mammalian myocytes probably occurs. Conceivably, this formation of 5-HT and possibly impaired degradation may be clinically relevant in cases of unexplained tachycardia and other arrhythmias. NEW & NOTEWORTHY The present work suggests that inotropically active serotonin (5-HT) can be formed in the mouse and human heart and probably by cardiomyocytes themselves. Moreover, active degradation of 5-HT seems to occur in the mammalian heart. These findings may again

  2. High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation.

    Science.gov (United States)

    Gao, Lin-Rui; Wang, Guang; Zhang, Jing; Li, Shuai; Chuai, Manli; Bao, Yongping; Hocher, Berthold; Yang, Xuesong

    2018-09-01

    An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI + cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. © 2018 Wiley Periodicals, Inc.

  3. Day-night variation in heart rate variability changes induced by endotoxaemia in healthy volunteers.

    Science.gov (United States)

    Alamili, M; Rosenberg, J; Gögenur, I

    2015-04-01

    Morbidity and mortality in response to sepsis may be dependent on clock time for the initiation of sepsis. Endotoxaemia, an experimental model for systemic inflammation, induces alterations in sympatico-vagal balance in the autonomic nervous system (ANS). The activity of sympathetic and parasympathetic activity can be estimated by measuring heart rate variability (HRV). Based on the intimate link between ANS and the inflammatory response, we hypothesized, that HRV changes seen during endotoxaemia would be different based on time of the day the endotoxaemia is initiated. We investigated day/night variation in endotoxaemia-induced changes in HRV. A randomized, crossover study with 12 healthy men (age 18-31) was conducted. Endotoxaemia were induced by lipopolysaccharide (LPS) endotoxin 0.3 ng/kg b.w. in two visits (day visit and night visit). At the day visit, endotoxaemia were induced at 12:00 h, and at the night visit it was induced at 24:00 h. Holter recordings were started 1 h before administration of LPS, and continued for 10 h. Time-domain and frequency-domain parameters of HRV were analysed. A total of nine persons finished the study with valid recordings. Endotoxaemia at both night and day resulted in a significant depression in HRV parameters high-frequency power (HF), low-frequency power (LF), standard deviation of normal-to-normal (NN) intervals, root mean square of successive differences and proportion of NN50 divided by total number of NNs (Pnight-time endotoxaemia, a more pronounced depression of LF, HF and SDNN (Pday-time endotoxaemia. Endotoxaemia induced changes in HRV exhibit a day-night difference. This difference may have clinical consequences in patients with sepsis. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring.

    Directory of Open Access Journals (Sweden)

    DaLiao Xiao

    Full Text Available Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease.

  5. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    Science.gov (United States)

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  6. Cardioprotective Effects of QiShenYiQi Dripping Pills on Transverse Aortic Constriction-Induced Heart Failure in Mice.

    Science.gov (United States)

    Ruan, Guoran; Ren, Haojin; Zhang, Chi; Zhu, Xiaogang; Xu, Chao; Wang, Liyue

    2018-01-01

    QiShenYiQi dripping pills (QSYQ), a traditional Chinese medicine, are commonly used to treat coronary heart disease, and QSYQ was recently approved as a complementary treatment for ischemic heart failure in China. However, only few studies reported on whether QSYQ exerts a protective effect on heart failure induced by pressure overload. In this study, we explored the role of QSYQ in a mouse model of heart failure induced by transverse aortic constriction (TAC). Twenty-eight C57BL/6J mice were divided into four groups: Sham + NS group, Sham + QSYQ group, TAC + NS group, and TAC + QSYQ group. QSYQ dissolved in normal saline (NS) was administered intragastrically (3.5 mg/100 g/day) in the Sham + QSYQ and TAC + QSYQ groups. In the Sham + NS and TAC + NS groups, NS was provided every day intragastrically. Eight weeks after TAC, echocardiography, and cardiac catheterization were performed to evaluate the cardiac function, and immunofluorescent staining with anti-actinin2 antibody was performed to determine the structure of the myocardial fibers. Moreover, TUNEL staining and Masson trichrome staining were employed to assess the effects of QSYQ on cardiac apoptosis and cardiac fibrosis. Western blots and real-time polymerase chain reaction (PCR) were used to measure the expression levels of vascular endothelial growth factor (VEGF) in the heart, and immunohistochemical staining with anti-CD31 antibody was performed to explore the role of QSYQ in cardiac angiogenesis. Results showed that TAC-induced cardiac dysfunction and disrupted structure of myocardial fibers significantly improved after QSYQ treatment. Moreover, QSYQ treatment also significantly improved cardiac apoptosis and cardiac fibrosis in TAC-induced heart failure, which was accompanied by an increase in VEGF expression levels and maintenance of microvessel density in the heart. In conclusion, QSYQ exerts a protective effect on TAC-induced heart failure, which could be attributed to enhanced cardiac angiogenesis

  7. ST Elevation Infarction after Heart Transplantation Induced by Coronary Spasms and Mural Thrombus Detected by Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Clemmensen, Tor Skibsted; Holm, Niels Ramsing; Eiskjær, Hans

    2016-01-01

    The case illustrates the possible link between coronary spasms, intraluminal thrombus formation, and widespread organized and layered thrombi in HTx patients. Furthermore, the case underlines the clinical value of OCT as a novel method for high-resolution vessel imaging in heart-transplanted (HTx...

  8. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  9. Myocardial remodeling and bioelectric changes in tachycardia-induced heart failure in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Song, B.; Wang, B.N.; Chen, D.N.; Luo, Z.G. [Department of Cardiovascular Medicine, The First Affiliated Hospital, Anhui Medical University, HeFei, Anhui Province (China)

    2013-09-06

    In this study, electrical and structural remodeling of ventricles was examined in tachycardia-induced heart failure (HF). We studied two groups of weight-matched adult male mongrel dogs: a sham-operated control group (n=5) and a pacing group (n=5) that underwent ventricular pacing at 230 bpm for 3 weeks. Clinical symptoms of congestive HF were observed in both groups. Their hemodynamic parameters were determined and the severity of the HF was evaluated by M-mode echocardiography. Changes in heart morphology were observed by scanning electron and light microscopy. Ventricular action potential duration (APD), as well as the 50 and 90% APD were measured in both groups. All dogs exhibited clinical symptoms of congestive HF after rapid right ventricular pacing for 3 weeks. These data indicate that rapid, right ventricular pacing produces a useful experimental model of low-output HF in dogs, characterized by biventricular pump dysfunction, biventricular cardiac dilation, and non-ischemic impairment of left ventricular contractility. Electrical and structural myocardial remodeling play an essential role in congestive HF progression, and should thus be prevented.

  10. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  11. ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage.

    Science.gov (United States)

    Sato, Teruki; Sato, Chitose; Kadowaki, Ayumi; Watanabe, Hiroyuki; Ho, Lena; Ishida, Junji; Yamaguchi, Tomokazu; Kimura, Akinori; Fukamizu, Akiyoshi; Penninger, Josef M; Reversade, Bruno; Ito, Hiroshi; Imai, Yumiko; Kuba, Keiji

    2017-06-01

    Elabela/Toddler/Apela (ELA) has been identified as a novel endogenous peptide ligand for APJ/Apelin receptor/Aplnr. ELA plays a crucial role in early cardiac development of zebrafish as well as in maintenance of self-renewal of human embryonic stem cells. Apelin was the first identified APJ ligand, and exerts positive inotropic heart effects and regulates the renin-angiotensin system. The aim of this study was to investigate the biological effects of ELA in the cardiovascular system. Continuous infusion of ELA peptide significantly suppressed pressure overload-induced cardiac hypertrophy, fibrosis and impaired contractility in mice. ELA treatment reduced mRNA expression levels of genes associated with heart failure and fibrosis. The cardioprotective effects of ELA were diminished in APJ knockout mice, indicating that APJ is the key receptor for ELA in the adult heart. Mechanistically, ELA downregulated angiotensin-converting enzyme (ACE) expression in the stressed hearts, whereas it showed little effects on angiotensin-converting enzyme 2 (ACE2) expression, which are distinct from the effects of Apelin. FoxM1 transcription factor, which induces ACE expression in the stressed hearts, was downregulated by ELA but not by Apelin. ELA antagonized angiotensin II-induced hypertension, cardiac hypertrophy, and fibrosis in mice. The ELA-APJ axis protects from pressure overload-induced heart failure possibly via suppression of ACE expression and pathogenic angiotensin II signalling. The different effects of ELA and Apelin on the expression of ACE and ACE2 implicate fine-tuned mechanisms for a ligand-induced APJ activation and downstream signalling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  12. Early Treatment of radiation-Induced Heart Damage in Rats by Caffeic acid phenethyl Ester

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Mansour, H. H.

    2012-12-01

    The study designed to determine the therapeutic effect of caffeic acid phenethyl ester (CAPE) in minimising radiation-induced injuries in rats. Rats were exposed to 7 Gy γ-rays, 30 minutes later; rats were injected with CAPE (10μmol/ kg body, i.p.) for 7 consecutive days. Rats were sacrificed at 8 and 15 days after starting the experiment. Gamma-irradiation induced significant increase in malonaldehyde (MDA) level and xanthine oxidase (XO) and adenosine deaminase (ADA) activities, and significant decrease in total nitrate/nitrate (NO (x)) level and glutathione peroxidise (Gpx), superoxide dismutase (SOD)and catalase (CAT) activities in heart tissue and augmented activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST) in serum. Irradiated rats early treated with CAPE showed significant decrease in MDA, XO and ADA and significant increase in group. Cardiac enzymes were restored. Conclusion, CAPE could exhibits curable effect on gamma irradiation-induced cardiac-oxidative impairment in rats. (Author)

  13. Vent-induced prosthetic leaflet thrombosis treated by open-heart valve-in-valve implantation.

    Science.gov (United States)

    Stamm, Christof; Pasic, Miralem; Buz, Semih; Hetzer, Roland

    2015-09-01

    A patient required emergency mitral valve replacement and extracorporeal membrane oxygenation (ECMO) support for acute biventricular failure. The left ventricular (LV) vent inserted via the left upper pulmonary vein induced thrombotic immobilization of a prosthetic valve leaflet, with significant intra-prosthesis regurgitation after ECMO explantation. Therefore, the left atrium was opened on the beating heart during conventional extracorporeal circulation, all prosthesis leaflets were excised and a 29-mm expandable Edwards Sapien prosthesis was inserted within the scaffold of the original prosthesis under direct vision. This case illustrates the benefits and potential problems of LV venting on ECMO support, and a rapid and safe way of replacing the prosthesis leaflets in a critical situation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Femtosecond laser-induced ripple patterns for homogenous nanostructuring of pyrolytic carbon heart valve implant

    Science.gov (United States)

    Stępak, Bogusz; Dzienny, Paulina; Franke, Volker; Kunicki, Piotr; Gotszalk, Teodor; Antończak, Arkadiusz

    2018-04-01

    Laser-induced periodic surface structures (LIPSS) are highly periodic wavy surface features which are frequently smaller than incident light wavelength that bring possibility of nanostructuring of many materials. In this paper the possibility of using them to homogeneously structure the surface of artificial heart valve made of PyC was examined. By changing laser irradiation parameters such like energy density and pulse separation the most suitable conditions were established for 1030 nm wavelength. A wide spectrum of periodicities and geometries was obtained. Interesting side effects like creating a thin shell-like layer were observed. Modified surfaces were examined using EDX and Raman spectroscopy to determine change in elemental composition of surface.

  15. Heart block and acute kidney injury due to hyperparathyroidism-induced hypercalcemic crisis.

    Science.gov (United States)

    Brown, Taylor C; Healy, James M; McDonald, Mary J; Hansson, Joni H; Quinn, Courtney E

    2014-12-01

    We describe a patient who presented with multi-system organ failure due to extreme hypercalcemia (serum calcium 19.8 mg/dL), resulting from primary hyperparathyroidism. He was found to have a 4.8 cm solitary atypical parathyroid adenoma. His course was complicated by complete heart block, acute kidney injury, and significant neurocognitive disturbances. Relevant literature was reviewed and discussed. Hyperparathyroidism-induced hypercalcemic crisis (HIHC) is a rare presentation of primary hyperparathyroidism and only a small minority of these patients develop significant cardiac and renal complications. In cases of HIHC, a multidisciplinary effort can facilitate rapid treatment of life-threatening hypercalcemia and definitive treatment by surgical resection. As such, temporary transvenous cardiac pacing and renal replacement therapy can provide a life-saving bridge to definitive parathyroidectomy in cases of HIHC.

  16. Vitamin E and Hippophea rhamnoides L. extract reduce nicotine-induced oxidative stress in rat heart.

    Science.gov (United States)

    Gumustekin, Kenan; Taysi, Seyithan; Alp, Hamit Hakan; Aktas, Omer; Oztasan, Nuray; Akcay, Fatih; Suleyman, Halis; Akar, Sedat; Dane, Senol; Gul, Mustafa

    2010-06-01

    The effects of vitamin E and Hippophea rhamnoides L. extract (HRe-1) on nicotine-induced oxidative stress in rat heart were investigated. There were eight rats per group and supplementation period was 3 weeks. The groups were: nicotine [0.5 mg kg(-1)day(-1), intraperitoneal (i.p.)]; nicotine plus vitamin E [75 mg kg(-1)day(-1), intragastric (i.g.)]; nicotine plus HRe-1 (250 mg kg(-1)day(-1), i.g.); and the control group (receiving only vehicles). Nicotine increased the malondialdehyde level, which was prevented by both vitamin E and HRe-1. Glutathione peroxidase (GPx) activity in nicotine plus vitamin E supplemented group was higher than the others. Glutathione S-transferase (GST) activity in nicotine plus HRe-1 supplemented group was increased compared with the control group. Catalase activity was higher in nicotine group compared with others. GPx activity in nicotine plus vitamin E supplemented group was elevated compared with the others. Total and non-enzymatic superoxide scavenger activities in nicotine plus vitamin E supplemented group were lower than nicotine plus HRe-1 supplemented group. Superoxide dismutase (SOD) activity was higher in nicotine plus HRe-1 supplemented group compared with others. Glutathione reductase activity and nitric oxide level were not affected. Increased SOD and GST activities might have taken part in the prevention of nicotine-induced oxidative stress in HRe-1 supplemented group in rat heart. Flavonols such as quercetin, and isorahmnetin, tocopherols such as alpha-tocopherol and beta-tocopherol and carotenoids such as alpha-carotene and beta-carotene, reported to be present in H. rhamnoides L. extracts may be responsible for the antioxidant effects of this plant extract. 2010 John Wiley & Sons, Ltd.

  17. Heart Rate Variability Responses of Individuals With and Without Saline-Induced Obstructive Sleep Apnea.

    Science.gov (United States)

    Vena, Daniel; Bradley, T Douglas; Millar, Philip J; Floras, John S; Rubianto, Jonathan; Gavrilovic, Bojan; Perger, Elisa; Yadollahi, Azadeh

    2018-03-30

    Postoperative development of obstructive sleep apnea (OSA) has been attributed to the fluid overloaded state of patients during the postoperative period. In this context, alterations in cardiac autonomic regulation caused by OSA may explain the increased postoperative risk for adverse cardiovascular events. This study tests the hypothesis that individuals with fluid overload-induced OSA will experience autonomic dysregulation, compared to those without fluid overload-induced OSA. Twenty-one normotensive, nonobese (mean body mass index 24.5 kg/m2) males (mean age 37 years) underwent a sleep study. Participants were randomly assigned to infusion with saline during sleep either at the minimum rate (control) or as a bolus of 22 mL/kg body weight (intervention). Participants were blinded to the intervention and crossed over to the other study arm after 1 week. Measures of heart rate variability were calculated from electrocardiography recordings presaline and postsaline infusion in the intervention arm. Heart rate variability measures computed were: standard deviation of the RR interval; root mean square of successive differences; low-frequency, high-frequency, and total power; and the ratio of low-frequency to high-frequency power. Although presaline infusion values were similar, postsaline infusion values of the standard deviation of the RR interval and high-frequency power were lower in the group whose apnea-hypopnea index increased in response to saline infusion, compared to the group whose apnea-hypopnea index did not increase in response to saline infusion ( P variability, consistent with vagal withdrawal. Future work should explore autonomic dysregulation in the postoperative period and its association with adverse events. Copyright © 2018 American Academy of Sleep Medicine. All rights reserved.

  18. AAV-mediated knock-down of HRC exacerbates transverse aorta constriction-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Chang Sik Park

    Full Text Available Histidine-rich calcium binding protein (HRC is located in the lumen of sarcoplasmic reticulum (SR that binds to both triadin (TRN and SERCA affecting Ca(2+ cycling in the SR. Chronic overexpression of HRC that may disrupt intracellular Ca(2+ homeostasis is implicated in pathogenesis of cardiac hypertrophy. Ablation of HRC showed relatively normal phenotypes under basal condition, but exhibited a significantly increased susceptibility to isoproterenol-induced cardiac hypertrophy. In the present study, we characterized the functions of HRC related to Ca(2+ cycling and pathogenesis of cardiac hypertrophy using the in vitro siRNA- and the in vivo adeno-associated virus (AAV-mediated HRC knock-down (KD systems, respectively.AAV-mediated HRC-KD system was used with or without C57BL/6 mouse model of transverse aortic constriction-induced failing heart (TAC-FH to examine whether HRC-KD could enhance cardiac function in failing heart (FH. Initially we expected that HRC-KD could elicit cardiac functional recovery in failing heart (FH, since predesigned siRNA-mediated HRC-KD enhanced Ca(2+ cycling and increased activities of RyR2 and SERCA2 without change in SR Ca(2+ load in neonatal rat ventricular cells (NRVCs and HL-1 cells. However, AAV9-mediated HRC-KD in TAC-FH was associated with decreased fractional shortening and increased cardiac fibrosis compared with control. We found that phospho-RyR2, phospho-CaMKII, phospho-p38 MAPK, and phospho-PLB were significantly upregulated by HRC-KD in TAC-FH. A significantly increased level of cleaved caspase-3, a cardiac cell death marker was also found, consistent with the result of TUNEL assay.Increased Ca(2+ leak and cytosolic Ca(2+ concentration due to a partial KD of HRC could enhance activity of CaMKII and phosphorylation of p38 MAPK, causing the mitochondrial death pathway observed in TAC-FH. Our results present evidence that down-regulation of HRC could deteriorate cardiac function in TAC-FH through

  19. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....

  20. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  1. Local heart irradiation of ApoE(-/-) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    NARCIS (Netherlands)

    Gabriels, Karen; Hoving, Saske; Seemann, Ingar; Visser, Nils L.; Gijbels, Marion J.; Pol, Jeffrey F.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2012-01-01

    Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the

  2. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Prevalence and clinical characteristics of mental stress-induced myocardial ischemia in patients with coronary heart disease.

    Science.gov (United States)

    Jiang, Wei; Samad, Zainab; Boyle, Stephen; Becker, Richard C; Williams, Redford; Kuhn, Cynthia; Ortel, Thomas L; Rogers, Joseph; Kuchibhatla, Maragatha; O'Connor, Christopher; Velazquez, Eric J

    2013-02-19

    The goal of this study was to evaluate the prevalence and clinical characteristics of mental stress-induced myocardial ischemia. Mental stress-induced myocardial ischemia is prevalent and a risk factor for poor prognosis in patients with coronary heart disease, but past studies mainly studied patients with exercise-induced myocardial ischemia. Eligible patients with clinically stable coronary heart disease, regardless of exercise stress testing status, underwent a battery of 3 mental stress tests followed by a treadmill test. Stress-induced ischemia, assessed by echocardiography and electrocardiography, was defined as: 1) development or worsening of regional wall motion abnormality; 2) left ventricular ejection fraction reduction ≥ 8%; and/or 3) horizontal or downsloping ST-segment depression ≥ 1 mm in 2 or more leads lasting for ≥ 3 consecutive beats during at least 1 mental test or during the exercise test. Mental stress-induced ischemia occurred in 43.45%, whereas exercise-induced ischemia occurred in 33.79% (p = 0.002) of the study population (N = 310). Women (odds ratio [OR]: 1.88), patients who were not married (OR: 1.99), and patients who lived alone (OR: 2.24) were more likely to have mental stress-induced ischemia (all p mental stress-induced ischemia (all p Mental stress-induced ischemia is more common than exercise-induced ischemia in patients with clinically stable coronary heart disease. Women, unmarried men, and individuals living alone are at higher risk for mental stress-induced ischemia. (Responses of Myocardial Ischemia to Escitalopram Treatment [REMIT]; NCT00574847). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    Science.gov (United States)

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  5. Protection against Ischemia-Induced Oxidative Stress Conferred by Vagal Stimulation in the Rat Heart: Involvement of the AMPK-PKC Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Jin Zang

    2012-11-01

    Full Text Available Reactive oxygen species (ROS production is an important mechanism in myocardial ischemia and nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of major sources of ROS in the heart. Previous studies showed that vagus nerve stimulation (VNS is beneficial in treating ischemic heart diseases. However, the effect of VNS on ROS production remains elusive. In this study, we investigated the role of VNS onischemia-induced ROS production. Our results demonstrated that VNS alleviated the myocardial injury, attenuated the cardiac dysfunction, reserved the antioxidant enzyme activity and inhibited the formation of ROS as evidenced by the decreased NADPH oxidase (Nox activity and superoxide fluorescence intensity as well as the expression of p67phox, Rac1 and nitrotyrosine. Furthermore, VNS resulted in the phosphorylation and activation of adenosine monophosphate activated protein kinase (AMPK, which in turn led to an inactivation of Nox by protein kinase C (PKC; however, the phenomena were repressed by the administration of a muscarinic antagonist atropine. Taken together, these data indicate that VNS decreases ROS via AMPK-PKC-Nox pathway; this may have potential importance for the treatment of ischemic heart diseases.

  6. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    International Nuclear Information System (INIS)

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2007-01-01

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-α antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL). TNF-α might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-κB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed

  7. Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism.

    Directory of Open Access Journals (Sweden)

    Lorenz Bott-Flügel

    Full Text Available The release of the neurotransmitter norepinephrine (NE is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR, NE release was induced by electrical stimulation under control conditions (S1, and with capadenoson 6 · 10(-8 M (30 µg/l, 6 · 10(-7 M (300 µg/l or 2-chloro-N(6-cyclopentyladenosine (CCPA 10(-6 M (S2. Under control conditions (S1, NE release was significantly higher in SHR hearts compared to Wistar (766+/-87 pmol/g vs. 173+/-18 pmol/g, p<0.01. Capadenoson led to a concentration-dependent decrease of the stimulation-induced NE release in SHR (S2/S1  =  0.90 ± 0.08 with capadenoson 6 · 10(-8 M, 0.54 ± 0.02 with 6 · 10(-7 M, but not in Wistar hearts (S2/S1  =  1.05 ± 0.12 with 6 · 10(-8 M, 1.03 ± 0.09 with 6 · 10(-7 M. CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [(35S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/-2% A(1-receptor stimulation. These results suggest that partial adenosine A(1-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release.

  8. Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts

    Directory of Open Access Journals (Sweden)

    Matsumoto Shuhei

    2012-01-01

    Full Text Available Abstract Background The authors examined whether milrinone and levosimendan could exert cardiac postconditioning effects in rats under normoglycemia and hyperglycemia, and whether the effects could be mediated by mitochondrial permeability transition pore (mPTP. Methods Wistar rats underwent 30-min coronary artery occlusion followed by 2-h reperfusion. The rats received milrinone or levosimendan just before reperfusion under normoglycemic or hyperglycemic conditions with or without atractyloside, an mPTP opener. Results Under normoglycemia, both 30 μg/kg milrinone (29 ± 12% and 10 μg/kg levosimendan (33 ± 13% reduced infarct size compared with that in the control (58 ± 7%. Under hyperglycemia, milrinone (34 ± 13% reduced infarct size at the same dose as under normoglycemia. In contrast, neither 10 nor 30 μg/kg levosimendan protected hyperglycemic hearts, and only 100 μg/kg levosimendan (32 ± 9% reduced infarct size compared with that in the hyperglycemic control (58 ± 13%. All of these cardioprotective effects under normoglycemia and hyperglycemia are abolished by atractyloside. Conclusion Milrinone and levosimendan exert postconditioning effects via inhibition of mPTP opening. Hyperglycemia raises the threshold of levosimendan-induced postconditioning, while milrinone-induced postconditioning is not influenced by hyperglycemia.

  9. Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts.

    Science.gov (United States)

    Matsumoto, Shuhei; Cho, Sungsam; Tosaka, Shinya; Higashijima, Ushio; Maekawa, Takuji; Hara, Tetsuya; Sumikawa, Koji

    2012-01-12

    The authors examined whether milrinone and levosimendan could exert cardiac postconditioning effects in rats under normoglycemia and hyperglycemia, and whether the effects could be mediated by mitochondrial permeability transition pore (mPTP). Wistar rats underwent 30-min coronary artery occlusion followed by 2-h reperfusion. The rats received milrinone or levosimendan just before reperfusion under normoglycemic or hyperglycemic conditions with or without atractyloside, an mPTP opener. Under normoglycemia, both 30 μg/kg milrinone (29 ± 12%) and 10 μg/kg levosimendan (33 ± 13%) reduced infarct size compared with that in the control (58 ± 7%). Under hyperglycemia, milrinone (34 ± 13%) reduced infarct size at the same dose as under normoglycemia. In contrast, neither 10 nor 30 μg/kg levosimendan protected hyperglycemic hearts, and only 100 μg/kg levosimendan (32 ± 9%) reduced infarct size compared with that in the hyperglycemic control (58 ± 13%). All of these cardioprotective effects under normoglycemia and hyperglycemia are abolished by atractyloside. Milrinone and levosimendan exert postconditioning effects via inhibition of mPTP opening. Hyperglycemia raises the threshold of levosimendan-induced postconditioning, while milrinone-induced postconditioning is not influenced by hyperglycemia.

  10. Clinical significance of exercise-induced left ventricular wall motion abnormality occurring at a low heart rate

    International Nuclear Information System (INIS)

    Kimchi, A.; Rozanski, A.; Fletcher, C.; Maddahi, J.; Swan, H.J.; Berman, D.S.

    1987-01-01

    We studied the relationship between the heart rate at the time of onset of exercise-induced wall motion abnormality and the severity of coronary artery disease in 89 patients who underwent exercise equilibrium radionuclide ventriculography as part of their evaluation for coronary artery disease. Segmental wall motion was scored with a five-point system (3 = normal; -1 = dyskinesis); a decrease of one score defined the onset of wall motion abnormality. The onset of wall motion abnormality at less than or equal to 70% of maximal predicted heart rate had 100% predictive accuracy for coronary artery disease and higher sensitivity than the onset of ischemic ST segment depression at similar heart rate during exercise: 36% (25 of 69 patients with coronary disease) vs 19% (13 of 69 patients), p = 0.01. Wall motion abnormality occurring at less than or equal to 70% of maximal predicted heart rate was present in 49% of patients (23 of 47) with critical stenosis (greater than or equal to 90% luminal diameter narrowing), and in only 5% of patients (2 of 42) without such severe stenosis, p less than 0.001. The sensitivity of exercise-induced wall motion abnormality occurring at a low heart rate for the presence of severe coronary artery disease was similar to that of a deterioration in wall motion by more than two scores during exercise (49% vs 53%) or an absolute decrease of greater than or equal to 5% in exercise left ventricular ejection fraction (49% vs 45%)

  11. Aspects of Myocardial Infarction-induced Remodeling relevant to the Development of Heart Failure

    NARCIS (Netherlands)

    E.A.J. Kalkman (Ed)

    1997-01-01

    textabstractHeart failure can be defined as the pathophysiological state in which the pump function of the heart is insufficient to meet the metabolic demands of the body (Guyton, 1986; Ruggie, 1986). Thus, heart failure is a pathophysiological condition (rather than a disease per se), and can occur

  12. Correlation between Amitriptyline-Induced Cardiotoxic Effects and Cardiac S100b Protein in Isolated Rat Hearts

    Directory of Open Access Journals (Sweden)

    Nil Hocaoğlu

    2016-12-01

    Full Text Available Background: Amitriptyline is an important cause of mortality due to its cardiovascular toxicity. Aims: To investigate the changes in levels of cardiac S100b protein on amitriptyline-induced cardiotoxicity and also to examine the correlation between amitriptyline-induced cardiotoxic effects and cardiac S100b protein in an isolated rat heart model. Study Design: Animal experimentation, isolated heart model. Methods: After a stabilization period, isolated hearts were randomized to two groups (n=5 and n=7. In the control group, isolated hearts were subjected to an infusion of 5% dextrose for 60 minutes. In the amitriptyline group, 5.5×10-5 M amitriptyline was infused for 60 minutes to achieve amitriptyline toxicity. After the infusion period, heart tissues were removed for histological examination. Results: In comparison to control treatment, amitriptyline infusion decreased left ventricular developed pressure (LVDP, dp/dtmax and heart rate (HR and significantly prolonged QRS duration (p<0.05. The semiquantitative scores for S100b protein levels in amitriptyline-infused hearts were higher than in the control group (p<0.01. At the end of the experiment, in the amitriptyline-infused group, significant correlations were found between LVDP and S100b protein scores (r=-0.807, p=0.003 and between QRS duration and S100b protein scores (r=0.859, p=0.001. Conclusion: Our results indicate that the S100b protein may be a helpful indicator or biomarker in studying the cardiotoxic effects of amitriptyline.

  13. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  14. Proteomic Analysis of Trauma-Induced Heterotopic Ossification Formation

    Science.gov (United States)

    2014-10-01

    journal name, book title, editors(s), publisher, volume number, page number(s), date, DOI, PMID, and/or ISBN. (1) Lay Press: a. Arthur Nead...Blast Injured. September 24, 2014. http://www.newswise.com/articles/ . c. Amy Andersen . Possible New Treatment For Soft Tissue Bone Formation In

  15. Antifibrillatory effects of renal denervation on ventricular fibrillation in a canine model of pacing-induced heart failure.

    Science.gov (United States)

    Luo, Qingzhi; Jin, Qi; Zhang, Ning; Huang, Shangwei; Han, Yanxin; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun

    2018-01-01

    What is the central question of this study? In the present study, we investigated the effects of renal denervation on the vulnerability to ventricular fibrillation and the ventricular electrical properties in a rapid pacing-induced heart failure canine model. What is the main finding and its importance? Renal denervation significantly attenuated the process of heart failure and improved left ventricular systolic dysfunction, stabilized ventricular electrophysiological properties and decreased the vulnerability of the heart to ventricular fibrillation during heart failure. Thus, renal denervation can attenuate ventricular electrical remodelling and exert a potential antifibrillatory action in a pacing-induced heart failure canine model. In this study, we investigated the effects of renal denervation (RDN) on the vulnerability to ventricular fibrillation (VF) and the ventricular electrical properties in a canine model of pacing-induced heart failure (HF). Eighteen beagles were divided into the following three groups: control (n = 6), HF (n = 6) and HF+RDN (n = 6). Heart failure was induced by rapid right ventricular pacing. Renal denervation was performed simultaneously with the pacemaker implantation in the HF+RDN group. A 64-unipolar basket catheter was used to perform global endocardial mapping of the left ventricle. The restitution properties and dispersion of refractoriness were estimated from the activation recovery intervals (ARIs) by a pacing protocol. The VF threshold (VFT) was defined as the maximal pacing cycle length required to induce VF using a specific pacing protocol. The defibrillation threshold (DFT) was measured by an up-down algorithm. Renal denervation partly restored left ventricular systolic function and attenuated the process of HF. Compared with the control group, the VFT in the HF group was decreased by 27% (106 ± 8.0 versus 135 ± 10 ms, P Renal denervation significantly flattened the ventricular ARI restitution curve by 15% (1

  16. Shock-induced star formation in a model of the Mice

    OpenAIRE

    Barnes, Joshua E.

    2004-01-01

    Star formation plays an important role in the fate of interacting galaxies. To date, most galactic simulations including star formation have used a density-dependent star formation rule designed to approximate a Schmidt law. Here, I present a new star formation rule which is governed by the local rate of energy dissipation in shocks. The new and old rules are compared using self-consistent simulations of NGC 4676; shock-induced star formation provides a better match to the observations of thi...

  17. Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats

    Directory of Open Access Journals (Sweden)

    Haller Hermann

    2002-01-01

    Full Text Available Abstract Background We are investigating a double transgenic rat (dTGR model, in which rats transgenic for the human angiotensinogen and renin genes are crossed. These rats develop moderately severe hypertension but die of end-organ cardiac and renal damage by week 7. The heart shows necrosis and fibrosis, whereas the kidneys resemble the hemolytic-uremic syndrome vasculopathy. Surface adhesion molecules (ICAM-1 and VCAM-1 are expressed early on the endothelium, while the corresponding ligands are found on circulating leukocytes. Leukocyte infiltration in the vascular wall accompanies PAI-1, MCP-1, iNOS and Tissue Factor expression. Furthermore we show evidence that Ang II causes the upregulation of NF-kB in our model. Methods We started PDTC-treatment on four weeks old dTGR (200 mg/kg sc and age-matched SD rats.. Blood-pressure- and albuminuria- measurements were monitored during the treatement period (four weeks. The seven weeks old animals were killed, hearts and kidneys were isolated and used for immunohistochemical-and electromobility shift assay analsis. Results Chronic treatment with the antioxidant PDTC decreased blood pressure (162 ± 8 vs. 190 ± 7 mm Hg, p = 0.02. Cardiac hypertrophy index was significantly reduced (4.90 ± 0.1 vs. 5.77 ± 0.1 mg/g, p Conclusion Our data show that inhibition of NF-κB by PDTC markedly reduces inflammation, iNOS expression in the dTGR most likely leading to decreased cytotoxicity, and cell proliferation. Thus, NF-κB activation plays an important role in ANG II-induced end-organ damage.

  18. NF-κB involvement in hyperoxia-induced myocardial damage in newborn rat hearts.

    Science.gov (United States)

    Zara, Susi; De Colli, Marianna; Rapino, Monica; Di Valerio, Valentina; Marconi, Guya Diletta; Cataldi, Amelia; Macchi, Veronica; De Caro, Raffaele; Porzionato, Andrea

    2013-11-01

    Premature newborns are frequently exposed to hyperoxia ventilation and some literature data indicate the possibility of hyperoxia-induced myocardial damage. Since nuclear factor κB (NF-κB) is a crucial signaling molecule involved in physiological response to hyperoxia in different cell types as well as in various tissues, our attention has been focused on the role played by NF-κB pathway in response to moderate and severe hyperoxia exposure in rat neonatal heart tissue. Akt and IκBα levels, involved in NF-κB activation, along with the balance between apoptotic and survival pathways have also been investigated. Experimental design of the study has involved exposure of newborn rats to room air (controls), 60 % O2 (moderate hyperoxia), or 95 % O2 (severe hyperoxia) for the first two postnatal weeks. Morphological analysis shows a less compact tissue in rat heart exposed to moderate hyperoxia and a decreased number of nuclei in samples exposed to severe hyperoxia. A significant increase of NF-κB positive nuclei percentage and p-IκBα expression in samples exposed to 95 % hyperoxia compared to control and to 60 % hyperoxia is evidenced; in parallel, an increase of pAkt/Akt ratio in both samples exposed to 95 and 60 % hyperoxia is shown. Furthermore, a more evident cytochrome c/Apaf-1 immunocomplex and a decreased Bcl2 expression in 95 % hyperoxia-exposed sample compared to 60 % exposed one is evidenced. In conclusion, our findings suggest the involvement of the NF-κB pathway and Akt signaling in the mechanisms of myocardial hyperoxic damage in the newborns, with particular reference to the induction of oxidative stress-related apoptosis.

  19. Caquexia associada à insuficiência cardíaca Heart failure-induced cachexia

    Directory of Open Access Journals (Sweden)

    Marina Politi Okoshi

    2013-05-01

    Full Text Available Pacientes com insuficiência cardíaca frequentemente desenvolvem estado de caquexia, que constitui fator independente de redução da sobrevida. Caquexia pode ser diagnosticada quando ocorre perda de peso corporal maior que 6% do peso habitual, na ausência de outras doenças. Embora sua fisiopatologia não esteja completamente esclarecida, vários fatores parecem estar envolvidos, como diminuição da ingestão alimentar, anormalidades do trato gastrointestinal, ativação imunológica e neuro-hormonal e alteração da relação entre processos anabólicos e catabólicos. Como não há terapia específica para a caquexia associada à insuficiência cardíaca, o tratamento baseia-se no suporte nutricional, bloqueio neuro-hormonal, controle do edema e anemia e exercícios físicos. Fármacos com propriedades imunomodulatórias e anabólicas encontram-se em investigação clínica e experimental.Heart failure patients often develop cachexia, which is an independent factor for survival reduction. Cachexia can be diagnosed when there is loss of more than 6% of the body weight, in the absence of other diseases. Even though its pathophysiology has not yet been completely clarified, various factors seem to be involved, such as reduction in food consumption, gastrointestinal tract abnormalities, immunologic and neuro-hormonal activarion and changes in the relationship between anabolic and catabolic processes. Since there is not specific therapy for heart failure-induced cachexia, management is based on nutritional support, neuro-hormonal blockade, control of edema and anemia and exercise. Drugs with anabolic and immunomodulating properties are being evaluated and clinical and non-clinical trials.

  20. Analysis of left ventricular function of the mouse heart during experimentally induced hyperthyroidism and recovery.

    Science.gov (United States)

    Hübner, Neele Saskia; Merkle, Annette; Jung, Bernd; von Elverfeldt, Dominik; Harsan, Laura-Adela

    2015-01-01

    Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Gabriele G. Schiattarella

    2018-05-01

    Full Text Available Left ventricular hypertrophy (LVH is a major contributor to the development of heart failure (HF. Alterations in cyclic adenosine monophosphate (cAMP-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA anchor proteins (AKAPs, tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 (Akap1-/-, Akap1 heterozygous (Akap1+/-, and their wild-type (wt littermates underwent transverse aortic constriction (TAC or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1-/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 (Siah2 knockout mice (Siah2-/-. Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  2. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure.

    Science.gov (United States)

    Schiattarella, Gabriele G; Boccella, Nicola; Paolillo, Roberta; Cattaneo, Fabio; Trimarco, Valentina; Franzone, Anna; D'Apice, Stefania; Giugliano, Giuseppe; Rinaldi, Laura; Borzacchiello, Domenica; Gentile, Alessandra; Lombardi, Assunta; Feliciello, Antonio; Esposito, Giovanni; Perrino, Cinzia

    2018-01-01

    Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 ( Akap1 -/- ), Akap1 heterozygous ( Akap1 +/- ), and their wild-type ( wt ) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1 -/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 ( Siah2 ) knockout mice ( Siah2 -/- ). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  3. Pathology of experimental radiation pancarditis, 1. Observation on radiation-induced heart injuries following a single dose of x-ray irradiation to rabbit heart with special reference to its pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, S [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1980-01-01

    Radiation-induced heart injuries were morphologically studied by using the rabbits irradiated with a single dose of 3,000R (group I) or 300R X-ray (group II) from 1 hour until 6 months. There was no essential difference in the lesions of the hearts from group I and that of group II. Acute epicarditis was found as early as 1 hour after irradiation and it became maximum in severity at 1 - 2 days. In the myocardium, there were degeneration and resolution of the myocardial cell, various architectural changes of mitochondria, and disorganization of the intercalated disc. Polymorphonuclear cell infiltration and endothelial injuries of the capillaries occurred in the interstitial tissue. In addition, endocarditis with or without thrombus formation was often found. Acute inflammation was seen in the myocardium of group II rather later than that of group I, but it disappeared earlier. In the later stage, fibrosis finally occurred in the epicardium and endocardium. Glycoprotein degeneration of the muscle cells and fibrosis appeared in the myocardium. The pathogenesis of radiation pancarditis is thought to be dependent not only on the disturbance of microcirculation caused by endothelial cell damage of the capillaries, but also on alterations of the myocardial mitochondria as a result of direct injury.

  4. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    International Nuclear Information System (INIS)

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Moros, Eduardo G.; Zheng, Junying; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity

  5. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Vijayalakshmi; Tripathi, Preeti [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Sharma, Sunil [Department of Radiation Oncology, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Moros, Eduardo G. [Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Zheng, Junying [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hauer-Jensen, Martin [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States); Boerma, Marjan, E-mail: mboerma@uams.edu [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States)

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.

  6. γIrradiation induced formation of PCB-solvent adducts in aliphatic solvents

    International Nuclear Information System (INIS)

    Lepine, F.; Milot, S.; Gagne, N.

    1990-01-01

    γIrradiation induced formation of PCB-solvent adducts was investigated as a model for PCB residues in irradiated food. Formation of cyclohexyl adducts of PCBs was found to be significant when pure PCB congeners and Aroclor mixture were irradiated in cyclohexane and cyclohexene. Reaction pathways were investigated, and the effects of oxygen and electron scavenger were studied

  7. Formation dynamics of UV and EUV induced hydrogen plasma

    NARCIS (Netherlands)

    Dolgov, A.A.; Lee, Christopher James; Yakushev, O.; Lopaev, D.V.; Abrikosov, A.; Krivtsun, V.M.; Zotovich, A.; Bijkerk, F.

    2014-01-01

    The comparative study of the dynamics of ultraviolet (UV) and extreme ultraviolet (EUV) induced hydrogen plasma was performed. It was shown that for low H2 pressures and bias voltages, the dynamics of the two plasmas are significantly different. In the case of UV radiation, the plasma above the

  8. Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Frisvad, Jens Christian; Knudsen, Peter Boldsen

    2015-01-01

    Sclerotia are known to be fungal survival structures, and induction of sclerotia may prompt production of otherwise undiscovered metabolites. Aspergillus sclerotiicarbonarius (IBT 28362) was investigated under sclerotium producing conditions, which revealed a highly altered metabolic profile. Four...... new compounds were isolated from cultivation under sclerotium formation conditions and their structures elucidated using different analytical techniques (HRMS, UV, 1D and 2D NMR). This included sclerolizine, an alkylated and oxidized pyrrolizine, the new emindole analog emindole SC and two new...

  9. Spontaneous formation of optically induced surface relief gratings

    International Nuclear Information System (INIS)

    Leblond, H; Barille, R; Ahmadi-Kandjani, S; Nunzi, J-M; Ortyl, E; Kucharski, S

    2009-01-01

    We develop a model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, to describe single-beam surface relief grating formation in azopolymer thin films. The model allows us to explain the mechanism of spontaneous patterning, and self-organization. It allows us to compute the surface relief profile and its evolution, with good agreement with experiments.

  10. Spontaneous formation of optically induced surface relief gratings

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, H; Barille, R; Ahmadi-Kandjani, S; Nunzi, J-M [Laboratoire POMA, Universite d' Angers, CNRS FRE 2988, 2, Bd Lavoisier, 49045 Angers (France); Ortyl, E; Kucharski, S, E-mail: herve.leblond@univ-angers.f [Wroclaw University of Technology, Faculty of Chemistry, Department of Polymer Engineering and Technology, 50-370 Wroclaw (Poland)

    2009-10-28

    We develop a model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, to describe single-beam surface relief grating formation in azopolymer thin films. The model allows us to explain the mechanism of spontaneous patterning, and self-organization. It allows us to compute the surface relief profile and its evolution, with good agreement with experiments.

  11. Characterisation of genes induced during memory formation in the chick

    International Nuclear Information System (INIS)

    Bailey, K.A.; Luermans, J.; Gibbs, M.

    2002-01-01

    Full text: Memory formation can be divided into short-term and long-term. Short-term memory involves electro-chemical activity in the neurons whereas long-term memory requires a permanent change that includes protein synthesis. One of the problems involved with identifying late memory related genes is determining an optimal system in which to study gene expression. We have used a discriminated passive avoidance task in chicks to identify genes that are differentially regulated during memory formation. A mRNA subtraction method was previously used to specifically identify several genes that are expressed in the chick intermediate medial hyperstriatum ventrale (IMHV) within two hours of training. Eight bands ranging in size from 400bp to 1100bp were obtained in the initially screen. We are currently cloning these PCR products into suitable vectors for further analysis. Two of these clones have been sequenced and analysed using both the blastn and blastx programs in ANGIS. The first clone was found to correspond to cytochrome c oxidase subunit 2. Cytochrome C oxidase (COX) is a transmembrane protein localized in the inner mitochondrial membrane and forms part of the mitochondrial respiratory chain complex. The second clone codes for the ferritin heavy chain. Ferritin is a ubiquitous protein that is involved in iron homeostasis. At present it is unclear what role these two proteins play in memory formation but further studies are being undertaken to determine the expression profiles of these genes following memory induction. Copyright (2002) Australian Neuroscience Society

  12. An in vitro model of Mycobacterium leprae induced granuloma formation.

    Science.gov (United States)

    Wang, Hongsheng; Maeda, Yumi; Fukutomi, Yasuo; Makino, Masahiko

    2013-06-20

    Leprosy is a contagious and chronic systemic granulomatous disease caused by Mycobacterium leprae. In the pathogenesis of leprosy, granulomas play a key role, however, the mechanisms of the formation and maintenance of M. leprae granulomas are still not clearly understood. To better understand the molecular physiology of M. leprae granulomas and the interaction between the bacilli and human host cells, we developed an in vitro model of human granulomas, which mimicked the in vivo granulomas of leprosy. Macrophages were differentiated from human monocytes, and infected with M. leprae, and then cultured with autologous human peripheral blood mononuclear cells (PBMCs). Robust granuloma-like aggregates were obtained only when the M. leprae infected macrophages were co-cultured with PBMCs. Histological examination showed M. leprae within the cytoplasmic center of the multinucleated giant cells, and these bacilli were metabolically active. Macrophages of both M1 and M2 types co-existed in the granuloma like aggregates. There was a strong relationship between the formation of granulomas and changes in the expression levels of cell surface antigens on macrophages, cytokine production and the macrophage polarization. The viability of M. leprae isolated from granulomas indicated that the formation of host cell aggregates benefited the host, but the bacilli also remained metabolically active. A simple in vitro model of human M. leprae granulomas was established using human monocyte-derived macrophages and PBMCs. This system may be useful to unravel the mechanisms of disease progression, and subsequently develop methods to control leprosy.

  13. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    Science.gov (United States)

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  14. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Omar Rafael Alemán

    2016-01-01

    Full Text Available Neutrophils (PMN are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  15. Corona discharge induced snow formation in a cloud chamber.

    Science.gov (United States)

    Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan

    2017-09-18

    Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.

  16. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Osadchiy, Oleg; Olesen, Søren-Peter

    2011-01-01

    Widely used murine models of adrenergic-induced cardiomyopathy offer little insight into electrical derangements seen in human heart failure owing to profound differences in the characteristics of ventricular repolarization in mice and rats compared with humans. We therefore sought to determine...... whether sustained adrenergic activation may produce a clinically relevant heart failure phenotype in the guinea-pig, an animal species whose ventricular action potential shape and restitution properties resemble those determined in humans. Isoprenaline (ISO), a ß-adrenoceptor agonist, was infused...... at variable dosage and duration using either subcutaneously implanted osmotic minipumps or daily injections, in an attempt to establish the relevant treatment protocol. We found that 3 months of daily ISO injections (final dose of 1 mg kg(-1), i.p.) promote heart failure evidenced by cardiac hypertrophy...

  17. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  18. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  19. The role of ion-induced aerosol formation in the lower atmosphere

    International Nuclear Information System (INIS)

    Raes, Frank; Janssens, Augustin; Dingenen, Rita van

    1986-01-01

    The rate of ion-induced aerosol formation in a H 2 0-H 2 S0 4 mixture depends on the relative humidity, the relative acidity and the number of ions (clusters) available for nucleation. Figure 1 shows the rates of homogeneous and ion-induced aerosol formation as a function of the H 2 S0 4 sup((gas)) concentration, for conditions prevailing in the lower atmosphere. The rate of ion-induced aerosol formation is plotted for different concentrations of pre-existing aerosol. It can be seen that ion-induced aerosol formation will only play a role in the formation of new particles when (1) the H 2 S0 4 sup((gas)) concentration is confined within the critical values for ion-induced and homogeneous aerosol formation (about 5 x 10 7 and 4 x 10 8 cm -3 respectively), and (2) the concentration of pre-existing aerosol is lower than about 5 x 10 3 cm -3 (Dp = 0.1 μm). It will be shown by numerical calculations that such conditions may be expected above the oceans. (author)

  20. Acute Effects of Different Formats of Small-Sided and Conditioned Handball Games on Heart Rate Responses in Female Students During PE Classes

    Directory of Open Access Journals (Sweden)

    Filipe Manuel Clemente

    2014-06-01

    Full Text Available The aim of this study was to analyze the impact of different formats (2-a-side, 3-a-side and 4-a-side on heart rate responses of female students during small-sided and conditioned handball games. The heart rate responses were measured using heart rate monitors during physical education classes. Eight female students participated in the study (15 ± 0.0 years. The one-way ANOVA showed statistical differences with moderate effect between the three different formats (F(2, 1674 = 86.538; p-value ˂ 0.001;  = 0.094; Power = 1.0. The results showed that smaller formats (2-a-side and 3-a-side increased the heart rate responses of female students during small-sided and conditioned handball games during physical education (PE classes. The results also suggested that 2-a-side games can be used for anaerobic workouts and the 3-a-side and 4-a-side games can be better used to reach lactate-threshold and for aerobic workouts of high intensity.

  1. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    Science.gov (United States)

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Microjet formation in a capillary by laser-induced cavitation

    Science.gov (United States)

    Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2010-11-01

    A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.

  3. Induced star formation and colors of binary and interacting galaxies

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Komberg, B.V.; Moskovskij Gosudarstvennyj Univ.

    1980-01-01

    The colours of 208 galaxies in pairs and groups are compared (on colour-colour diagram) with those of single galaxies of the same morphological type. Different colours of galaxies in pairs and groups can be explained if one assumes that in some of them the star formation is slowed down, while in others it is speeded up. The latter is the most conspicuous in E, SO, and Ir2 galaxies when they are accompanied by brighter spirals. The relation of abundance rate to the rate of star formation in galaxies and to the activity level of their nuclei is discussed. This relation is particularly conspicuous in the galaxies of early morphological types (E, SO, Sa) and in systems of the type Ir2 where the relative abundance of gas is significantly above the normal. It is noted that such galaxies as well as galaxies with UV excess, Seyfertlike objects, emission-line galaxies and quasars - avoid regions occupied with rich clusters and frequently occur in pairs and small groups

  4. Heavy-ion irradiation induced diamond formation in carbonaceous materials

    International Nuclear Information System (INIS)

    Daulton, T. L.

    1999-01-01

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond

  5. The protective effect of curcumin against sodium fluoride-induced oxidative stress in rat heart

    Directory of Open Access Journals (Sweden)

    Nabavi S.F.

    2011-01-01

    Full Text Available In the present study the cardioprotective effects of curcumin, a herbal polyphenolic compound, against sodium fluoride (NaF-induced toxicity in rat heart was evaluated. Fifty rats were divided into five experimental groups containing 10 rats each. Group I received standard water and diet and was used as a normal group; groups II and III were pretreated with curcumin intraperitoneally for 7 days prior to NaF intoxication. Group IV was pretreated with vitamin C, a standard antioxidant, intraperitoneally for 7 days prior to NaF intoxication and used as a positive control group. The animals in group V were intoxicated with NaF for the same time and used as a control group. There was a significant increase in lipid peroxidation along with a decrease in superoxide dismutase activity in the homogenates of tissues of the NaF-treated animals. Curcumin pretreatment in animals prior to fluoride intoxication normalized the levels of biochemical parameters measured.

  6. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    Science.gov (United States)

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  7. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects.

    Science.gov (United States)

    Granados-Riveron, Javier T; Ghosh, Tushar K; Pope, Mark; Bu'Lock, Frances; Thornborough, Christopher; Eason, Jacqueline; Kirk, Edwin P; Fatkin, Diane; Feneley, Michael P; Harvey, Richard P; Armour, John A L; David Brook, J

    2010-10-15

    Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.

  8. The Role of Cerl2 in the Establishment of Left-Right Asymmetries during Axis Formation and Heart Development

    Directory of Open Access Journals (Sweden)

    José A. Belo

    2017-12-01

    Full Text Available The formation of the asymmetric left-right (LR body axis is one of the fundamental aspects of vertebrate embryonic development, and one still raising passionate discussions among scientists. Although the conserved role of nodal is unquestionable in this process, several of the details around this signaling cascade are still unanswered. To further understand this mechanism, we have been studying Cerberus-like 2 (Cerl2, an inhibitor of Nodal, and its role in the generation of asymmetries in the early vertebrate embryo. The absence of Cerl2 results in a wide spectrum of malformations commonly known as heterotaxia, which comprises defects in either global organ position (e.g., situs inversus totalis, reversed orientation of at least one organ (e.g., situs ambiguus, and mirror images of usually asymmetric paired organs (e.g., left or right isomerisms of the lungs. Moreover, these laterality defects are frequently associated with congenital heart diseases (e.g., transposition of the great arteries, or atrioventricular septal defects. Here, reviewing the knowledge on the establishment of LR asymmetry in mouse embryos, the emerging conclusion is that as necessary as is the activation of the Nodal signaling cascade, the tight control that Cerl2-mediates on Nodal signaling is equally important, and that generates a further regionalized LR genetic program in the proper time and space.

  9. BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2012-01-01

    Full Text Available Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9 in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's MDSCs were extracted by type I collagenase and trypsin methods, and BMP9 was introduced into MDSCs by infection with recombinant adenovirus. Effects of BMP9-induced osteogenetic differentiation of MDSCs were identified with alkaline phosphatase (ALP activity and expression of later marker. In stem-cell implantation assay, MDSCs have also shown valuable potential bone formation ability induced by BMP9 in rabbit radius defects repairing test. Taken together, our findings suggest that MDSCs are potentiated osteogenetic stem cells which can be induced by BMP9 to treat large segmental bone defects, nonunion fracture, and/or osteoporotic fracture.

  10. Heart regeneration.

    Science.gov (United States)

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Spatial pattern formation induced by Gaussian white noise.

    Science.gov (United States)

    Scarsoglio, Stefania; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2011-02-01

    The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Ectopic Liver Tissue Formation in Rats with Induced Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Bauyrzhan Umbayev

    2014-12-01

    Full Text Available Introduction: The possible alternative approach to whole-organ transplantation is a cell-based therapy, which can also be used as a "bridge" to liver transplantation.  However, morphological and functional changes in the liver of patients suffering from chronic liver fibrosis and cirrhosis restrict the effectiveness of direct cell transplantation. Therefore, extra hepatic sites for cell transplantation, including the spleen, pancreas, peritoneal cavity, and subrenal capsule, could be a useful therapeutic approach for compensation of liver functions. However, a method of transplantation of hepatocytes into ectopic sites is needed to improve hepatocyte engraftment. Previously published data has demonstrated that mouse lymph nodes can support the engraftment and proliferation of hepatocytes as ES and rescue Fah mice from lethal liver failure. Thus, the aim of the study was to evaluate the engraftment of i.p. injected allogeneic hepatocytes into extra hepatic sites in albino rats with chemically induced liver fibrosis (LF. Materials and methods: Albino rats were randomly divided into 4 groups: (1 intact group (n = 18; (2 rats with induced LF (n = 18; (3 rats with induced LF and transplanted with hepatocytes (n = 18; (4 as a control, rats were treated with cyclosporine A only (n = 18. In order to prevent an immune response, groups 2 and 3 were subjected to immunosuppression by cyclosporine A (25 mg/kg per day. LF was induced using N-nitrosodimethylamine (NDMA, i.p., 10 mg/kg, three times a week for 4 weeks and confirmed by histological analysis of the liver samples. Hepatocytes transplantation (HT was performed two days after NDMA exposure cessation by i.p. injection of 5×106 freshly isolated allogeneic hepatocytes. Liver function was assessed by quantifying blood biochemical parameters (ALT, AST, GGT, total protein, bilirubin, and albumin at 1 week, 1 month, and 2 months after hepatocytes transplantation (HT. To confirm a hepatocytes

  13. Radiation-induced formation of cavities in amorphous germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1989-01-01

    Prethinned polycrystalline Ge TEM samples were irradiated with 1.5 MeV Kr + ions at room temperature while structural and morphological changes were observed in situ in the Argonne High Voltage Electron Microscope-Tandem Facility. After a Kr + dose of 1.2x10 14 ions/cm 2 , the irradiated Ge was completely amorphized. A high density of small void-like cavities was observed after a Kr + dose of 7x10 14 ions/cm 2 . With increasing Kr + ion dose, these cavities grew into large holes transforming the irradiated Ge into a sponge-like porous material after 8.5x10 15 ions/cm 2 . The radiation-induced nucleation of void-like cavities in amorphous material is astonishing, and the final structure of the irradiated Ge with enormous surface area may have potential applications

  14. Ion and laser beam induced metastable alloy formation

    International Nuclear Information System (INIS)

    Westendorp, J.F.M.

    1986-01-01

    This thesis deals with ion and laser beam induced thin film mixing. It describes the development of an Ultra High Vacuum apparatus for deposition, ion irradiation and in situ analysis of thin film sandwiches. This chamber has been developed in close collaboration with High Voltage Engineering Europa. Thin films can be deposited by an e-gun evaporator. The atom flux is monitored by a quadrupole mass spectrometer. A comparison is made between ion beam and laser mixing of Cu with Au and Cu with W. The comparison provides a better understanding of the relative importance of purely collisional mixing, the role of thermodynamic effects and the contribution of diffusion due to defect generation and migration. (Auth.)

  15. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Xia, E-mail: zhai_xia_cool@126.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Qin, Ying, E-mail: qinyinggaofeng@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Chen, Yang, E-mail: cy_hmu@126.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Lin, Lexun, E-mail: linlexun@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wang, Tianying, E-mail: wangty0929@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhong, Xiaoyan, E-mail: littlerock712@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wu, Xiaoyu, E-mail: xiaoyu_wu2006@163.com [Department of Cardiology, The First Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Chen, Sijia, E-mail: chensj0802@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Li, Jing, E-mail: jing070822@163.com [Center of Electron Microscopy, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wang, Yan, E-mail: wangyan@hrbmu.edu.cn [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Fengmin, E-mail: fengminzhang@ems.hrbmu.edu.cn [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhao, Wenran, E-mail: zhaowenran2002@aliyun.com [Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); and others

    2016-12-10

    Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.

  16. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo

    International Nuclear Information System (INIS)

    Zhai, Xia; Qin, Ying; Chen, Yang; Lin, Lexun; Wang, Tianying; Zhong, Xiaoyan; Wu, Xiaoyu; Chen, Sijia; Li, Jing; Wang, Yan; Zhang, Fengmin; Zhao, Wenran

    2016-01-01

    Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.

  17. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  18. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    Directory of Open Access Journals (Sweden)

    Th. F. Mentel

    2013-09-01

    Full Text Available Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4–6% yield. Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate–vegetation feedback mechanisms.

  19. Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Noeman Saad A

    2011-08-01

    Full Text Available Abstract Background Obesity has become a leading global health problem owing to its strong association with a high incidence of diseases. Aim To induce rat obesity using high fat diet (HFD and to estimate oxidative stress markers in their liver, heart and kidney tissues in order to shed the light on the effect of obesity on these organs. Materials and methods Sixty white albino rats weighing 150-200 g were randomly divided into two equal groups; group I: received high fat diet for 16 weeks, and group II (control group: received only normal diet (rat chow for 16 weeks. Blood samples were taken for measurement of lipid profile, tissue samples from liver, heart and kidney were taken for determination of malondialdehyde (MDA, protein carbonyl (PCO, reduced glutathione (GSH levels, and the activities of glutathione S- transferase (GST glutathione peroxidase (GPx, catalase (CAT and paraoxonase1 (PON1 enzymes. Results Data showed that feeding HFD diet significantly increased final body weight and induced a state of dyslipideamia. Also our results showed a significant increase MDA and PCO levels in the hepatic, heart and renal tissues of obese rats, as well as a significant decrease in the activity of GST, GPx and PON 1 enzymes. On the other hand CAT enzyme activity showed significant decrease only in renal tissues of obese rats with non significant difference in hepatic and heart tissues. GSH levels showed significant decrease in both renal and hepatic tissues of obese animals and significant increase in their heart tissues. Correlation studies in obese animals showed a negative correlation between MDA and PCO tissue levels and the activities of GPx, GST and PON1 in all tissues and also with CAT enzyme activity in renal tissues. Also a negative correlation was detected between MDA & PCO tissues levels and GSH levels in both hepatic and renal tissues. While positive correlation was found between them and GSH levels in heart tissues. Conclusion High fat

  20. Ionic liquid-induced aggregate formation and their applications.

    Science.gov (United States)

    Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2018-06-01

    In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.

  1. Formation of helium induced nanostructure 'fuzz' on various tungsten grades

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.

    2010-01-01

    The response of a variety of W material grades to nanostructure 'fuzz' formation is explored. W targets are exposed to He or D 2 -0.2He plasmas in PISCES-B at 900-1320 K to below sputter threshold He + ions of energy 25-60 eV for up to 2.2 x 10 4 s. SEM and XPS reveal nanoscopic reorganization of the W surface to a layer of 'fuzz' of porosity ∼90% as determined by a 'fuzz' removal/weight loss method. The variability of 'fuzz' growth is examined at 1120 K for 1 h durations: SR, SC and doped W grades - La 2 O 3 (1% wt.), Re (5% and 10% wt.), and TiC (1.5% wt.) developed 2-3 μm thick 'fuzz' layers, while a VPS grade developed a layer 4 μm thick. An RC grade revealed additional 'fuzz' at deep (>100 μm) grain boundaries. However, heat treatment up to 1900 K produced reintegration of 'fuzz' with the bulk and He release at ∼1000 K and ∼1400-1800 K due to depopulation from vacancy complexes.

  2. A RAT MODEL OF HEART FAILURE INDUCED BY ISOPROTERENOL AND A HIGH SALT DIET

    Science.gov (United States)

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4wk) isoproterenol (ISO) infusion in Spontaneously Hypertensive Heart Failure (SHHF) rats caused cardiac injury with minimal hypertrophy. O...

  3. Fast nonclinical ventricular tachycardia inducible after ablation in patients with structural heart disease: Definition and clinical implications.

    Science.gov (United States)

    Watanabe, Masaya; de Riva, Marta; Piers, Sebastiaan R D; Dekkers, Olaf M; Ebert, Micaela; Venlet, Jeroen; Trines, Serge A; Schalij, Martin J; Pijnappels, Daniël A; Zeppenfeld, Katja

    2018-01-08

    Noninducibility of ventricular tachycardia (VT) with an equal or longer cycle length (CL) than that of the clinical VT is considered the minimum ablation endpoint in patients with structural heart disease. Because their clinical relevance remains unclear, fast nonclinical VTs are often not targeted. However, an accepted definition for fast VT is lacking. The shortest possible CL of a monomorphic reentrant VT is determined by the ventricular refractory period (VRP). The purpose of this study was to propose a patient-specific definition for fast VT based on the individual VRP (fVT VRP ) and assess the prognostic significance of persistent inducibility after ablation of fVT VRP for VT recurrence. Of 191 patients with previous myocardial infarction or with nonischemic cardiomyopathy undergoing VT ablation, 70 (age 63 ± 13 years; 64% ischemic) remained inducible for a nonclinical VT and composed the study population. FVT VRP was defined as any VT with CL ≤VRP 400 + 30 ms. Patients were followed for VT recurrence. After ablation, 30 patients (43%) remained inducible exclusively for fVT VRP and 40 (57%) for any slower VT. Patients with only fVT VRP had 3-year VT-free survival of 64% (95% confidence interval [CI] 46%-82%) compared to 27% (95% CI 14%-48%) for patients with any slower remaining VT (P = .013). Inducibility of only fVT VRP was independently associated with lower VT recurrence (hazard ratio 0.38; 95% CI 0.19-0.86; P = .019). Among 36 patients inducible for any fVT VRP , only 1 had recurrence with fVT VRP . In patients with structural heart disease, inducibility of exclusively fVT VRP after ablation is associated with low VT recurrence. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  4. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-09-01

    Full Text Available This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared. The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung as a result of degradation products being released.

  5. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    International Nuclear Information System (INIS)

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-01-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 ± 9.01 vs. 41.94 ± 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 ± 1303 vs. 1667 ± 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 ± 1084 vs. 1566 ± 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  6. Impact of cavitation on lesion formation induced by high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Fan Pengfei; Jie Yu; Yang Xin; Tu Juan; Guo Xiasheng; Zhang Dong; Huang Pintong

    2017-01-01

    High intensity focused ultrasound (HIFU) has shown a great promise in noninvasive cancer therapy. The impact of acoustic cavitation on the lesion formation induced by HIFU is investigated both experimentally and theoretically in transparent protein-containing gel and ex vivo liver tissue samples. A numerical model that accounts for nonlinear acoustic propagation and heat transfer is used to simulate the lesion formation induced by the thermal effect. The results showed that lesions could be induced in the samples exposed to HIFU with various acoustic pressures and pulse lengths. The measured areas of lesions formed in the lateral direction were comparable to the simulated results, while much larger discrepancy was observed between the experimental and simulated data for the areas of longitudinal lesion cross-section. Meanwhile, a series of stripe-wiped-off B-mode pictures were obtained by using a special imaging processing method so that HIFU-induced cavitation bubble activities could be monitored in real-time and quantitatively analyzed as the functions of acoustic pressure and pulse length. The results indicated that, unlike the lateral area of HIFU-induced lesion that was less affected by the cavitation activity, the longitudinal cross-section of HIFU-induced lesion was significantly influenced by the generation of cavitation bubbles through the temperature elevation resulting from HIFU exposures. Therefore, considering the clinical safety in HIFU treatments, more attention should be paid on the lesion formation in the longitudinal direction to avoid uncontrollable variation resulting from HIFU-induced cavitation activity. (paper)

  7. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  8. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor, E-mail: ikoturbash@uams.edu [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Miousse, Isabelle R. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Sridharan, Vijayalakshmi [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne; Skinner, Charles M. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melnyk, Stepan B.; Pavliv, Oleksandra [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354 (United States); Boerma, Marjan [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2016-05-15

    Highlights: • Radiation-induced dynamic changes in cardiac DNA methylation were detected. • Early LINE-1 hypomethylation was followed by hypermethylation at a later time-point. • Radiation affected one-carbon metabolism in the heart tissue. • Irradiation resulted in accumulation of satellite DNA mRNA transcripts. - Abstract: DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation—proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ({sup 56}Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or {sup 56}Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with {sup 56}Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and

  9. Radiation induced color center and colloid formation in synthetic NaCl and natural rock salt

    International Nuclear Information System (INIS)

    Levy, P.W.; Swyler, K.J.; Klaffky, R.W.

    1979-01-01

    F-center and colloid particle formation has been studied in synthetic NaCl and natural rock salt crystals with apparatus for making optical absorption measurements during irradiation. F-center and colloid formation are functions of temperature, dose, dose rate, strain applied prior to irradiation and numerous other factors. Many of the observed properties are in accord with the Jain-Lidiard theory for radiation induced F-center and colloid growth above room temperature

  10. Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure

    DEFF Research Database (Denmark)

    St John Sutton, Martin; Ghio, Stefano; Plappert, Ted

    2009-01-01

    BACKGROUND: Cardiac resynchronization therapy (CRT) improves LV structure, function, and clinical outcomes in New York Heart Association class III/IV heart failure with prolonged QRS. It is not known whether patients with New York Heart Association class I/II systolic heart failure exhibit left...... ventricular (LV) reverse remodeling with CRT or whether reverse remodeling is modified by the cause of heart failure. METHODS AND RESULTS: Six hundred ten patients with New York Heart Association class I/II heart failure, QRS duration > or =120 ms, LV end-diastolic dimension > or =55 mm, and LV ejection...... reduction in LV end-diastolic and end-systolic volume indexes and a 3-fold greater increase in LV ejection fraction in patients with nonischemic causes of heart failure. CONCLUSIONS: CRT in patients with New York Heart Association I/II resulted in major structural and functional reverse remodeling at 1 year...

  11. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    Science.gov (United States)

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.

  12. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo

    2016-03-01

    Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A.

    1997-01-01

    Processes of formation and annihilation of coordination defects in As 2 Se 3 Bi y and (As 2 Se 3 )(Bi 2 Se 3 ) y amorphous chalcogenide semiconductors induced by influence of Co 60 gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As 2 Se 3 Bi y glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs

  14. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A. [Institute of Materials, Lvov (Ukraine)

    1997-12-01

    Processes of formation and annihilation of coordination defects in As{sub 2}Se{sub 3}Bi{sub y} and (As{sub 2}Se{sub 3})(Bi{sub 2}Se{sub 3}){sub y} amorphous chalcogenide semiconductors induced by influence of Co{sup 60} gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As{sub 2}Se{sub 3}Bi{sub y} glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs.

  15. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    Science.gov (United States)

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.

  16. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tobias Dörr

    2010-02-01

    Full Text Available Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival. The mechanism of persister formation is unknown, but isolated persisters show increased levels of toxin/antitoxin (TA transcripts. We have found previously that one or more components of the SOS response induce persister formation after exposure to a DNA-damaging antibiotic. The SOS response induces several TA genes in Escherichia coli. Here, we show that a knockout of a particular SOS-TA locus, tisAB/istR, had a sharply decreased level of persisters tolerant to ciprofloxacin, an antibiotic that causes DNA damage. Step-wise administration of ciprofloxacin induced persister formation in a tisAB-dependent manner, and cells producing TisB toxin were tolerant to multiple antibiotics. TisB is a membrane peptide that was shown to decrease proton motive force and ATP levels, consistent with its role in forming dormant cells. These results suggest that a DNA damage-induced toxin controls production of multidrug tolerant cells and thus provide a model of persister formation.

  17. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    Science.gov (United States)

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Targeting Germinal Matrix Hemorrhage-Induced Overexpression of Sodium-Coupled Bicarbonate Exchanger Reduces Posthemorrhagic Hydrocephalus Formation in Neonatal Rats.

    Science.gov (United States)

    Li, Qian; Ding, Yan; Krafft, Paul; Wan, Weifeng; Yan, Feng; Wu, Guangyong; Zhang, Yixin; Zhan, Qunling; Zhang, John H

    2018-01-31

    Germinal matrix hemorrhage (GMH) is a leading cause of mortality and lifelong morbidity in preterm infants. Posthemorrhagic hydrocephalus (PHH) is a common complication of GMH. A sodium-coupled bicarbonate exchanger (NCBE) encoded by solute carrier family 4 member 10 gene is expressed on the choroid plexus basolateral membrane and may play a role in cerebrospinal fluid production and the development of PHH. Following GMH, iron degraded from hemoglobin has been linked to PHH. Choroid plexus epithelial cells also contain iron-responsive element-binding proteins (IRPs), IRP1, and IRP2 that bind to mRNA iron-responsive elements. The present study aims to resolve the following issues: (1) whether the expression of NCBE is regulated by IRPs; (2) whether NCBE regulates the formation of GMH-induced hydrocephalus; and (3) whether inhibition of NCBE reduces PHH development. GMH model was established in P7 rat pups by injecting bacterial collagenase into the right ganglionic eminence. Another group received iron trichloride injections instead of collagenase. Deferoxamine was administered intraperitoneally for 3 consecutive days after GMH/iron trichloride. Solute carrier family 4 member 10 small interfering RNA or scrambled small interfering RNA was administered by intracerebroventricular injection 24 hours before GMH and followed with an injection every 7 days over 21 days. NCBE expression increased while IRP2 expression decreased after GMH/iron trichloride. Deferoxamine ameliorated both the GMH-induced and iron trichloride-induced decrease of IRP2 and decreased NCBE expressions. Deferoxamine and solute carrier family 4 member 10 small interfering RNA improved cognitive and motor functions at 21 to 28 days post GMH and reduced cerebrospinal fluid production as well as the degree of hydrocephalus at 28 days after GMH. Targeting iron-induced overexpression of NCBE may be a translatable therapeutic strategy for the treatment of PHH following GMH. © 2018 The Authors

  19. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    International Nuclear Information System (INIS)

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa; Fotakis, Costas; Laera, Anna Maria; Piscopiello, Emanuela; Tapfer, Leander

    2007-01-01

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS registered polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements

  20. Osteoclasts secrete non-bone derived signals that induce bone formation

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Neutzsky-Wulff, Anita V; Dziegiel, Morten Hanefeld

    2008-01-01

    Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption......) from human osteoclasts cultured on either bone or plastic, and tested their effects on bone nodule formation by osteoblasts. Both types of CM were shown to dose-dependently induce bone nodule formation, whereas non-conditioned osteoclast culture medium had no effects. These data show that osteoclasts...

  1. Zero Flow Global Ischemia-Induced Injuries in Rat Heart Are Attenuated by Natural Honey

    OpenAIRE

    Najafi, Moslem; Zahednezhad, Fahimeh; Samadzadeh, Mehrban; Vaez, Haleh

    2012-01-01

    Purpose: In the present study, effects of preischemic administration of natural honey on cardiac arrhythmias and myocardial infarction size during zero flow global ischemia were investigated in isolated rat heart. Methods: The isolated hearts were subjected to 30 min zero flow global ischemia followed by 120 min reperfusion then perfused by a modified drug free Krebs-Henseleit solution throughout the experiment (control) or the solution containing 0.25, 0.5, 1 and 2% of natural honey...

  2. Activation delay-induced mechanical dyssynchrony in single-ventricle heart disease

    DEFF Research Database (Denmark)

    Forsha, Daniel; Risum, Niels; Barker, Piers

    2017-01-01

    We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome.......We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome....

  3. A specific subtype of osteoclasts secretes factors inducing nodule formation by osteoblasts

    DEFF Research Database (Denmark)

    Henriksen, Kim; Andreassen, Kim V; Thudium, Christian S

    2012-01-01

    Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium wa...... dependent and independent of their resorptive activity, secrete factors stimulating osteoblastic bone formation.......Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium...... release. The osteoblastic cell line 2T3 was treated with 50% of CM or non-CM for 12days. Bone formation was assessed by Alizarin Red extraction. CM from mature osteoclasts induced bone formation, while CM from macrophages did not. Non-resorbing osteoclasts generated from osteopetrosis patients showed...

  4. Effect of eplerenone on serum TNF-α levels in adriamycin induced heart failure male rat models

    International Nuclear Information System (INIS)

    Xuan Nan; Song Liping; Xing Haiyan

    2009-01-01

    Objective: To investigate the effect of eplerenone on serum TNF-α levels in adriamycin induced heart failure male rat models. Methods: Forty male rat models of adriamycin-induced heart failure were prepared with weekly intraperitoneal injection of adriamycin (4/mg/kg) for six weeks. Twenty surviving models were randomly divided into two groups: (1)eplerenone-treated group, n=10, treated with garage of eplerenone 200mg/kg/d for 12 weeks (2) non-treated group n=10. All the surviving models (group (1) n=8, group (2) n=6) were sacrificed after 12 weeks with left ventricular hemodynamic function parameters tested and serum TNF-α levels measured. Ten male rats without adriamycin administration served as controls. Results: Left ventricular hemodynamic parameters in the non-treated group were significantly worse than those in controls (P<0.05). The parameters in the eplerenone treated group were significantly better than those in the non-treated group (P<0.05). The serum TNF-α levels in the non-treated group were significantly higher than those in controls (P<0.05). TNF-α levels in the eplerenone group were significantly lower than those in the non-treated group (P<0.05). Conclusion: Eplerenone could reduce the serum TNF-α levels in the rat models of heart failure. (authors)

  5. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease.

    Science.gov (United States)

    Kura, Branislav; Babal, Pavel; Slezak, Jan

    2017-10-01

    Radiotherapy is the most commonly used methodology to treat oncological disease, one of the most widespread causes of death worldwide. Oncological patients cured by radiotherapy applied to the mediastinal area have been shown to suffer from cardiovascular disease. The increase in the prevalence of radiation-induced heart disease has emphasized the need to seek new therapeutic targets to mitigate the negative impact of radiation on the heart. In this regard, microRNAs (miRNAs) have received considerable interest. miRNAs regulate post-transcriptional gene expression by their ability to target various mRNA sequences because of their imperfect pairing with mRNAs. It has been recognized that miRNAs modulate a diverse spectrum of cardiac functions with developmental, pathophysiological, and clinical implications. This makes them promising potential targets for diagnosis and treatment. This review summarizes the recent findings about the possible involvement of miRNAs in radiation-induced heart disease and their potential use as diagnostic or treatment targets in this respect.

  6. Radiation-induced changes in the ultrastructure and mechanical function of the rat heart

    International Nuclear Information System (INIS)

    Cilliers, G.D.; Lochner, A.

    1989-01-01

    A time sequence study was performed to study the early effects of radiation on the ultrastructure of the rat heart. Wistar rats were exposed to 20 Gy electron irradiation to a field including the heart and a third of the lung. The hearts were excised at varying time intervals (1 h-180 days), and the ultrastructure of perfusion-fixed subepicardium and subendocardium studied. Changes were observed in both myocytes and interstitium at all time intervals. The most pronounced change observed in the myocyte was that of intercalated disc damage which reached a peak at 30 days post-irradiation. Mitochondrial damage, characterized by swelling and fenstration in areas of myofibrillar contracture, was focal and relatively scarce. Swelling of the capillary endothelial cells and ollapse of the capillaries were marked up to 60 days. Of significance was the observation that the damage to both myocytes and interstitium receded after 60 days and the hearts exhibited an almost normal ultrastructure from 100 to 180 days post-irradiation. Mechanical function of these hearts followed a similar pattern: maximal depression was observed 60 days after irradiation. Thereafter the work performance of these hearts improved significantly, almost reaching control level after 180 days. (author). 34 refs.; 21 figs.; 1 tab

  7. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Madison Floyd

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also

  8. Analysis of microRNA Expression Profiles Induced by Yiqifumai Injection in Rats with Chronic Heart Failure

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-02-01

    Full Text Available Background: Yiqifumai Injection (YQFM is clinically used to treat various cardiovascular diseases including chronic heart failure (CHF. The efficacy of YQFM for treating heart failure has been suggested, but the mechanism of action for pharmacological effects of YQFM is unclear.Methods: Echocardiography detection, left ventricular intubation evaluation, histopathology and immunohistochemical examination were performed in CHF rats to evaluate the cardioprotective effect of YQFM. Rat miRNA microarray and bioinformatics analysis were employed to investigate the differentially expressed microRNAs. In vitro models of AngII-induced hypertrophy and t-BHP induced oxidative stress in H9c2 myocardial cells were used to validate the anti-hypertrophy and anti-apoptosis effects of YQFM. Measurement of cell surface area, ATP content and cell viability, Real-time PCR and Western blot were performed.Results: YQFM significantly improved the cardiac function of CHF rats by increasing left ventricular ejection fraction and fractional shortening, decreasing left ventricular internal diameter and enhancing cardiac output. Seven microRNAs which have a reversible regulation by YQFM treatment were found. Among them, miR-21-3p and miR-542-3p are related to myocardial hypertrophy and cell proliferation, respectively and were further verified by RT-PCR. Target gene network was established and potential related signaling pathways were predicted. YQFM could significantly alleviate AngII induced hypertrophy in cellular model. It also significantly increased cell viabilities and ATP content in t-BHP induced apoptotic cell model. Western blot analysis showed that YQFM could increase the phosphorylation of Akt.Conclusion: Our findings provided scientific evidence to uncover the mechanism of action of YQFM on miRNAs regulation against CHF by miRNA expression profile technology. The results indicated that YQFM has a potential effect on alleviate cardiac hypertrophy and apoptosis

  9. Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure.

    Science.gov (United States)

    Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A

    1996-09-01

    To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.

  10. THE ROLE OF BETABLOCKERS IN LOWERING THE RISK OF CHEMOTHERAPY-INDUCED HEART FAILURE IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Adrian Tase

    2015-07-01

    Full Text Available Anthracyclines and molecular targeted therapy, pharmacologic agents currently used in breast cancer, are potentially cardiotoxic, leading to cardiac dysfunction, and even to overt heart failure. This paper reviews the art of protecting the heart in breast cancer recipients of chemotherapy with betablockers. The main mechanism of anthracycline induced cardiotoxicity is the oxydative stress, occurring in mitochondrial arena. Recent trials supporting β-blockers cardioprotection in this particular population of patients are discussed. As a result of these studies, betablockers are, along with renin-angiotensin-aldosterone antagonists, statins, and dexrazoxane, the most cardioprotective drugs. The paper also covers some methods (biomarkers, imaging, integrating the sphere of prevention with those of monitoring and treatment. The trials outcomes are illustrated by curves, plots, histograms, tables, etc.

  11. EPR study of N+-ion-induced free radical formation in antibiotic-producers

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfen; Chen Ruyi; Gao Juncheng; Zhang Peiling; Ying Hengfeng.

    1995-01-01

    Under the room temperature, electron paramagnetic resonance (EPR) spectrometer was used to study free radical formation in antibiotic-producers in order to investigate antibiotic-producer mutagenic breeding, which were induced by N + ion implanting into antibiotic-producers (e.g., Streptomyces ribosidificus, Streptomyces kanamyceticus and the phage-resistant culture of Streptomyces kanamyceticus). The results show that a lot of free radicals can be induced by N + ion implanting into antibiotic-producers, and the yields of the free radicals increase with implanting dose. The death rate of antibiotic-producers rises due to the increase of N + -ion-induced free radical yields. (author)

  12. A deficiency of apoptosis inducing factor (AIF in Harlequin mouse heart mitochondria paradoxically reduces ROS generation during ischemia-reperfusion

    Directory of Open Access Journals (Sweden)

    Qun eChen

    2014-07-01

    Full Text Available Background and Aims: AIF (apoptosis inducing factor is a flavin and NADH containing protein located within mitochondria required for optimal function of the respiratory chain. AIF may function as an antioxidant within mitochondria, yet when released from mitochondria it activates caspase-independent cell death. The Harlequin (Hq mouse has a markedly reduced content of AIF, providing an experimental model to query if the main role of AIF in the exacerbation of cell death is enhanced mitochondrial generation of reactive oxygen species (ROS or the activation of cell death programs. We asked if the ROS generation is altered in Hq heart mitochondria at baseline or following ischemia-reperfusion (IR.Methods: Buffer perfused mouse hearts underwent 30 min ischemia and 30 min reperfusion. Mitochondrial function including oxidative phosphorylation and H2O2 generation was measured. Immunoblotting was used to determine the contents of AIF and PAR [poly(ADP-ribose] in cell fractions.Results: There were no differences in the release of H2O2 between wild type (WT and Hq heart mitochondria at baseline. IR increased H2O2 generation from WT but not from Hq mitochondria compared to corresponding time controls. The complex I activity was decreased in WT but not in Hq mice following IR. The relocation of AIF from mitochondria to nucleus was increased in WT but not in Hq mice. IR activated PARP-1 only in WT mice. Cell injury was decreased in Hq mouse heart following in vitro IR.Conclusion: A deficiency of AIF within mitochondria does not increase ROS production during IR, indicating that AIF functions less as an antioxidant within mitochondria. The decreased cardiac injury in Hq mouse heart accompanied by less AIF translocation to the nucleus suggests that AIF relocation, rather than the AIF content within mitochondria, contributes to cardiac injury during IR.

  13. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lifeng [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Zhou, Yong [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Yu, Shanhe [Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025 (China); Ji, Guixiang [Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042 (China); Wang, Lei [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Liu, Wei [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Gu, Aihua, E-mail: aihuagu@njmu.edu.cn [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China)

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  14. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    International Nuclear Information System (INIS)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao; Wang, Bin; Wu, Yun-Xiang; Zhang, Shu-Jie; Irwin, Michael G.; Wong, Tak-Ming; Zhang, Ye

    2015-01-01

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.

  15. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    Energy Technology Data Exchange (ETDEWEB)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao; Wang, Bin; Wu, Yun-Xiang [Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601 (China); Zhang, Shu-Jie [Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601 (China); Irwin, Michael G.; Wong, Tak-Ming [Department of Anesthesiology, University of Hong Kong (Hong Kong); Zhang, Ye, E-mail: zhangye_hassan@aliyun.com [Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601 (China)

    2015-11-01

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.

  16. Study on the abnormal morphogenesis of the arterial end of the heart induced by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-02-01

    Transposition complexes of the great arteries were frequently produced in rat embryonic hearts whose mothers were exposed to a single whole-body dose of 130 rad 14.1 MeV fast neutron radiation on 8 day after conception. To clarify the morphogenesis of transposition complexes, especially double outlet right ventricle (DORV), embryonic rat hearts were serially sectioned and were reconstructed photographically 13 to 16 days after conception, when truncal swelling, intercalated valve swelling, and conical ridges appeared. In the control group, all the hearts had a normal D (dextral) loop. In the experimental group, 82.6% of the hearts had a D loop, 11.3% had an L (levo) loop, and 5.9% had an A (anterior) loop. In this group, the D loop hearts were divided into normal, retarded, and abnormal. Most of the retarded hearts developed into abnormal hearts. The positional relationships between experimentally produced swelling and ridges are classified. Morphologic anomalies are formed in the truncoconal region and correspond to the site of and the quantitative changes of the swelling and ridges. Abnormality in the position and extent of the swelling and ridges is the most important characteristic in the morphogenesis of transposition complexes. The second most important characteristic is abnormality in the time of appearance and the extent and site of cell death in the conical septum. DORV is embryologically divided into two types: a type in which the great arteries are normally related and a type in which they are inversely related. The developmental process of the DORV is entirely different from that of the complete transposition of the great arteries.

  17. Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Riedl

    2017-01-01

    Discussion: Therefore, our findings of (i neutrophils adhering to complement-activated endothelial cells, (ii the formation of neutrophil-platelet aggregates on endothelial cells, and (iii the ability of aHUS serum to induce similar effects identify a possible role for neutrophils in aHUS manifestation.

  18. Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation

    NARCIS (Netherlands)

    Croes, M.; Kruyt, M. C.; Groen, W. M.; Van Dorenmalen, K. M.A.; Dhert, W. J.A.; Öner, F. C.; Alblas, J.

    2018-01-01

    Interleukin 17 (IL-17) stimulates the osteogenic differentiation of progenitor cells in vitro through a synergy with bone morphogenetic protein (BMP)-2. This study investigates whether the diverse responses mediated by IL-17 in vivo also lead to enhanced BMP-2-induced bone formation. Since IL-17 is

  19. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    Science.gov (United States)

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  20. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.

    2007-01-01

    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  1. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Garrott, Kara; Dyavanapalli, Jhansi; Cauley, Edmund; Dwyer, Mary Kate; Kuzmiak-Glancy, Sarah; Wang, Xin; Mendelowitz, David; Kay, Matthew W

    2017-09-01

    A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were

  2. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge.

    Science.gov (United States)

    Song, Erfei; Jahng, James Ws; Chong, Lisa P; Sung, Hye K; Han, Meng; Luo, Cuiting; Wu, Donghai; Boo, Stellar; Hinz, Boris; Cooper, Matthew A; Robertson, Avril Ab; Berger, Thorsten; Mak, Tak W; George, Isaac; Schulze, P Christian; Wang, Yu; Xu, Aimin; Sweeney, Gary

    2017-01-01

    Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1β, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

  3. Laser-Induced Formation and Disintegration of Gold Nanopeanuts and Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Shin; Yoon, Jun Hee; Kim, Hyung Jun; Huh, Young Duk; Yoon, Sang Woon [Dankook University, Yongin (Korea, Republic of)

    2010-04-15

    We report the laser-induced formation of peanut-shaped gold nanoparticles (Au nanopeanuts) and gold nanowires (AuNWs), and their morphological properties. Pulsed laser irradiation of citrate-capped gold nanoparticles at 532 nm induces fragmentation, spherical growth, the formation of Au nanopeanuts, and the formation of AuNWs, sequentially. High-resolution transmission electron microscopy images reveal that the Au nanopeanuts are formed by instantaneous fusion of spherical nanoparticles in random orientation by laser heating. Furthermore, Au nanopeanuts are bridged in a linear direction to form AuNWs by an amorphous accumulation of gold atoms in the junction. The laser-produced Au nanopeanuts and AuNWs slowly disintegrate, restoring the spherical shape of the original Au nanoparticles when the laser irradiation is stopped. The addition of citrate effectively prevents them from transforming back to the nanospheres.

  4. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    Science.gov (United States)

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  5. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  6. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Scott J. Neal

    2016-05-01

    Full Text Available Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.

  7. The effects of infographics and several quantitative versus qualitative formats for cardiovascular disease risk, including heart age, on people's risk understanding.

    Science.gov (United States)

    Damman, Olga C; Vonk, Suzanne I; van den Haak, Maaike J; van Hooijdonk, Charlotte M J; Timmermans, Danielle R M

    2018-03-11

    To study how comprehension of cardiovascular disease (CVD) risk is influenced by: (1) infographics about qualitative risk information, with/without risk numbers; (2) which qualitative risk dimension is emphasized; (3) heart age vs. traditional risk format. For aim 1, a 2 (infographics versus text) x 2 (risk number versus no risk number) between-subjects design was used. For aim 2, three pieces of information were tested within-subjects. Aim 3 used a simple comparison group. Participants (45-65 yrs old) were recruited through an online access panel; low educated people were oversampled. They received hypothetical risk information (20%/61yrs). Primary outcomes: recall, risk appraisals, subjective/objective risk comprehension. behavioral intentions, information evaluations. Infographics of qualitative risk dimensions negatively affected recall, subjective risk comprehension and information evaluations. No effect of type of risk dimension was found on risk perception. Heart age influenced recall, comprehension, evaluations and affective risk appraisals. Infographics of hypothetical CVD risk information had detrimental effects on measures related to risk perception/comprehension, but effects were mainly seen in undereducated participants. Heart age influenced perceptions/comprehension of hypothetical risk in a way that seemed to support understanding. Heart age seems a fruitful risk communication approach in disease risk calculators. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  9. Drying-induced deformation of Horonobe sedimentary rock in the Koetoi and Wakkanai formations

    International Nuclear Information System (INIS)

    Illankoon, Thilini Nuwanradha; Yee, Suu Mon; Osada, Masahiko; Maekawa, Keisuke; Tada, Hiroyuki; Kumasaka, Hiroo

    2013-01-01

    In order to increase the long-term safety of geological disposal sites, knowledge of the drying-induced deformation characteristics of the rock mass in underground ventilated galleries is necessary to understand its cracking susceptibility and the chance of further propagation of the excavation damaged zone. Hence, strain was measured in ten cylindrical mudstone specimens (4 from Koetoi formation and 6 from Wakkanai formation respectively) cored at Horonobe Underground Research Laboratory (URL), an off-site (generic) URL, to examine deformation behavior during desiccation. The specimens were prepared in one-dimensional drying conditions in a 25degC or 40degC climatic chamber with 50% relative humidity. Mercury intrusion porosimetry (MIP) was also conducted to measure the pore size distributions of each formation. The recorded data showed that the Koetoi formation specimens generated smaller maximum shrinkage values (10,000 μ) compared to those from the Wakkanai formation (13,000 μ and 24,000 μ for Wakkanai groups I and II respectively). Wakkanai formation specimens were divided into two groups (Wakkanai groups I and II) according to their strain behavior. The porosity of the Koetoi formation was 54% whereas that of the Wakkanai formation was 27 - 38%. MIP results clearly indicate that the Wakkanai formation has a greater mesopore volume (63% and 73% of porosity for Wakkanai groups I and II respectively) than the Koetoi formation (8% of porosity) which contributes to its greater shrinkage. In addition, Wakkanai groups I and II have different pore size distribution patterns. Therefore, Wakkanai groups I and II exhibit distinct strain behaviors during drying. Similarities in grain density, a decrease in porosity and a gradual increase in mesopore volume with depth confirm the progressive hardening of Horonobe sedimentary rock. The pore volume in the 0.013 - 0.025 μm pore radius range exerts a strong influence on shrinkage generation in the Wakkanai formation

  10. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    Science.gov (United States)

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  11. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dehai Yu

    2017-01-01

    Full Text Available Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal. By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

  12. Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Seemann, Ingar; Visser, Nils L.; Gijbels, Marion J.; Pol, Jeffrey F.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2012-01-01

    Background and purpose: Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the interaction of irradiation with such cardiovascular risk factors in radiation-induced damage to the heart and coronary arteries. Material and methods: Hypercholesterolemic and atherosclerosis-prone ApoE −/− mice received local heart irradiation with a single dose of 0, 2, 8 or 16 Gy. Histopathological changes, microvascular damage and functional alterations were assessed after 20 and 40 weeks. Results: Inflammatory cells were significantly increased in the left ventricular myocardium at 20 and 40 weeks after 8 and 16 Gy. Microvascular density decreased at both follow-up time-points after 8 and 16 Gy. Remaining vessels had decreased alkaline phosphatase activity (2–16 Gy) and increased von Willebrand Factor expression (16 Gy), indicative of endothelial cell damage. The endocardium was extensively damaged after 16 Gy, with foam cell accumulations at 20 weeks, and fibrosis and protein leakage at 40 weeks. Despite an accelerated coronary atherosclerotic lesion development at 20 weeks after 16 Gy, gated SPECT and ultrasound measurements showed only minor changes in functional cardiac parameters at 20 weeks. Conclusions: The combination of hypercholesterolemia and local cardiac irradiation induced an inflammatory response, microvascular and endocardial damage, and accelerated the development of coronary atherosclerosis. Despite these pronounced effects, cardiac function of ApoE −/− mice was maintained.

  13. Hydro-mechanical foundation for blood swirling vortex flows formation in the cardio-vascular system and the problem of artificial heart creation

    Directory of Open Access Journals (Sweden)

    Sergey G. Chefranov

    2013-11-01

    Full Text Available Leonardo da Vinci perhaps was the first who paid attention to the energetic efficiency of existence of vortices emerging near sines of Valsalva and defining normal functioning (opening of aortal valve. However up to now a fundamental problem of defining of mechanisms of mysterious energetic efficiency of functioning of cardio-vascular system (CVS of blood feeding of the organism is still remaining significantly not solved and this is, for example, one of the main restriction for the creation of artificial heart and corresponding valve systems. In the present paper, results witnessing possible important role of the very hydro-mechanical mechanism in the realization of the noted energetic efficiency of CVS due to formation in the CVS of spiral structural organization of the arterial blood flow observed by methods of MRT and color Doppler-measuring in the left ventricular of the heart and in aorta.

  14. The influence of projectile ion induced chemistry on surface pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Satpati, Biswarup [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2016-07-14

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  15. Missing ozone-induced potential aerosol formation in a suburban deciduous forest

    Science.gov (United States)

    Nakayama, T.; Kuruma, Y.; Matsumi, Y.; Morino, Y.; Sato, K.; Tsurumaru, H.; Ramasamy, S.; Sakamoto, Y.; Kato, S.; Miyazaki, Y.; Mochizuki, T.; Kawamura, K.; Sadanaga, Y.; Nakashima, Y.; Matsuda, K.; Kajii, Y.

    2017-12-01

    As a new approach to investigating formation processes of secondary organic aerosol (SOA) in the atmosphere, ozone-induced potential aerosol formation was measured in summer at a suburban forest site surrounded by deciduous trees, near Tokyo, Japan. After passage through a reactor containing high concentrations of ozone, increases in total particle volume (average of 1.4 × 109 nm3/cm3, which corresponds to 17% that of pre-existing particles) were observed, especially during daytime. The observed aerosol formations were compared with the results of box model simulations using simultaneously measured concentrations of gaseous and particulate species. According to the model, the relative contributions of isoprene, monoterpene, and aromatic hydrocarbon oxidation to SOA formation in the reactor were 24, 21, and 55%, respectively. However, the model could explain, on average, only ∼40% of the observed particle formation, and large discrepancies between the observations and model were found, especially around noon and in the afternoon when the concentrations of isoprene and oxygenated volatile organic compounds were high. The results suggest a significant contribution of missing (unaccounted-for) SOA formation processes from identified and/or unidentified volatile organic compounds, especially those emitted during daytime. Further efforts should be made to explore and parameterize this missing SOA formation to assist in the improvement of atmospheric chemistry and climate models.

  16. Getting to the Heart of Masculinity Stressors: Masculinity Threats Induce Pronounced Vagal Withdrawal During a Speaking Task.

    Science.gov (United States)

    Kramer, Brandon L; Himmelstein, Mary S; Springer, Kristen W

    2017-12-01

    Previous work has found that traditional masculinity ideals and behaviors play a crucial role in higher rates of morbidity and mortality for men. Some studies also suggest that threatening men's masculinity can be stressful. Over time, this stress can weigh on men's cardiovascular and metabolic systems, which may contribute to men's higher rates of cardiometabolic health issues. The purpose of this study is to explore how masculinity threats affect men's heart rate and heart rate variability reactivity (i.e., vagal withdrawal) to masculinity feedback on a social speaking task. Two hundred and eighty-five undergraduate males were randomly assigned to one of six conditions during a laboratory-based speech task. They received one of two feedback types (masculinity or control) and one of three feedback levels (low, high, or dropping) in order to assess whether masculinity threats influence heart rate reactivity and vagal withdrawal patterns during the speech task. Men who receive low masculinity feedback during the speech task experienced more pronounced vagal withdrawal relative to those who received the control. Masculinity threats can induce vagal withdrawal that may accumulate over the life course to contribute to men's relatively worse cardiometabolic health.

  17. Global Changes in the Rat Heart Proteome Induced by Prolonged Morphine Treatment and Withdrawal

    Czech Academy of Sciences Publication Activity Database

    Drastichová, Z.; Škrabalová, J.; Jedelský, P.; Neckář, Jan; Kolář, František; Novotný, J.

    2012-01-01

    Roč. 7, č. 10 (2012), e47167 E-ISSN 1932-6203 R&D Projects: GA AV ČR(CZ) IAA501110901 Institutional support: RVO:67985823 Keywords : morphine * rat * heart * proteome Subject RIV: ED - Physiology Impact factor: 3.730, year: 2012

  18. Mitochondrial Enzyme Plays Critical Role in Chemotherapy-Induced Heart Damage | Center for Cancer Research

    Science.gov (United States)

    Doxorubicin (DOX) is an effective drug for treating cancers ranging from leukemia and lymphoma to solid tumors, such as breast cancer. DOX kills dividing cells in two ways: inserting between the base pairs of DNA and trapping a complex of DNA and an enzyme that cuts DNA, topoisomerase 2α, preventing DNA repair. However, DOX also causes congestive heart failure in about 30

  19. Left ventricular assist device as bridge to recovery for anthracycline-induced terminal heart failure

    DEFF Research Database (Denmark)

    Appel, Jon M; Sander, Kåre; Hansen, Peter Bo

    2012-01-01

    Anthracycline treatments are hampered by dose-related cardiotoxicity, frequently leading to heart failure (HF) with a very poor prognosis. The authors report a case of a 19-year-old man developing HF after anthracycline treatment for Ewing sarcoma. Despite medical treatment, his condition...

  20. Lipoxygenase independent hexanal formation in isolated soy proteins induced by reducing agents.

    Science.gov (United States)

    Lei, Q; Boatright, W L

    2008-08-01

    Compared to corresponding controls, 6.5 mM dithiothreitol (DTT) elevated headspace hexanal level over aqueous slurries of both commercial isolated soy proteins (ISP) and laboratory ISP prepared with 80 degrees C treatment. Further analysis revealed that lipoxygenase (LOX) activity was not detected from these ISP, indicating that LOX is not involved in the observed hexanal increase. Levels of the induced headspace hexanal over the ISP aqueous slurries were proportional to the amount of DTT added in the range of 0 to 65 mM. Subsequent systematic investigations with model systems revealed that iron was required for the reducing agent-induced hexanal formation from linoleic acid. Erythorbate, another reducing agent, can also induce hexanal formation in both ISP and model systems. As a comparison, the LOX activity and hexanal synthesis in defatted soy flour were examined. The corresponding results showed that defatted soy flour maintained high LOX activities and that hexanal synthesis in such sample was significantly inhibited by high concentration DTT (above 130 mM). Data from the current investigation demonstrate the existence of LOX independent hexanal formation induced by reducing agents in ISP and the potential requirement of iron as a catalyst.

  1. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase.

    Science.gov (United States)

    Yoshioka, Yasuhiro; Kitao, Tatsuya; Kishino, Takashi; Yamamuro, Akiko; Maeda, Sadaaki

    2006-04-15

    We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.

  2. Mössbauer spectroscopy study of surfactant sputtering induced Fe silicide formation on a Si surface

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, C.; Zhang, K. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Brüsewitz, C.; Vetter, U. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4001 (South Africa)

    2015-12-01

    Highlights: • We study the formation of self-organized nanoscale dot and ripple patterns on Si. • Patterns are created by keV noble gas ion irradiation and simultaneous {sup 57}Fe co-deposition. • Ion-induced phase separation and the formation of a-FeSi{sub 2} is identified as relevant process. - Abstract: The formation of Fe silicides in surface ripple patterns, generated by erosion of a Si surface with keV Ar and Xe ions and simultaneous co-deposition of Fe, was investigated with conversion electron Mössbauer spectroscopy, atomic force microscopy and Rutherford backscattering spectrometry. For the dot and ripple patterns studied, we find an average Fe concentration in the irradiated layer between 6 and 25 at.%. The Mössbauer spectra clearly show evidence of the formation of Fe disilicides with Fe content close to 33 at.%, but very little evidence of the formation of metallic Fe particles. The results support the process of ion-induced phase separation toward an amorphous Fe disilicide phase as pattern generation mechanism. The observed amorphous phase is in agreement with thermodynamic calculations of amorphous Fe silicides.

  3. Heart Health - Brave Heart

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues Cover Story Heart Health Brave Heart Past Issues / Winter 2009 Table of Contents For ... you can have a good life after a heart attack." Lifestyle Changes Surviving—and thriving—after such ...

  4. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  5. Structural and functional alterations in the atrioventricular node and atrioventricular ring tissue in ischaemia-induced heart failure.

    Science.gov (United States)

    Yanni, Joseph; Maczewski, Michal; Mackiewicz, Urszula; Siew, Samuel; Fedorenko, Olga; Atkinson, Andrew; Price, Marcus; Beresewicz, Andrzej; Anderson, Robert H; Boyett, Mark R; Dobrzynski, Halina

    2014-07-01

    Heart failure (HF) causes dysfunction of the atrioventricular node (AVN) - first or second-degree heart block is a risk factor for sudden cardiac death in HF patients. The aim of the study was to determine if HF causes remodelling of the AVN and right atrioventricular ring (RAVR). HF was induced in rats (n=4) by ligation of the proximal left coronary artery, which resulted in a large infarct of the left ventricle. Sham-operated rats (n=4) were used as controls. Eight weeks after surgery, functional experiments were performed and the hearts were frozen. The body weight of HF rats was similar to control rats, but the mean heart weight of HF rats was significantly enlarged. In HF rats compared to controls, the left ventricle was dilated, left ventricular end-diastolic pressure elevated (21.0 ± 0.6 and 5.4 ± 0.2 mm Hg), left ventricular ejection fraction reduced (0.2 ± 0.02 and 0.5 ± 0.02) and left ventricular end-systolic pressure reduced (102 ± 4.2 and 127 ± 3.1 mm Hg). In HF rats, the in vivo and in vitro PR intervals were increased (41% and 20%), as was the Wenckebach cycle length, indicative of AVN dysfunction. The collagen content was significantly increased in the AVN and RAVR indicating fibrosis. Immunolabelling of caveolin3 (cell membrane marker) showed that there was hypertrophy in HF (cell diameter was increased by 63%, 39% in AVN, RAVR). The TUNEL assay showed that the myocytes of the AVN and RAVR in HF undergo apoptotic cell death. Immunolabelling showed that expression of HCN4 was significantly decreased in the AVN and RAVR (43% and 47%) in HF. We conclude that in HF there is remodelling of the AVN and RAVR and this remodelling may explain the AVN dysfunction.

  6. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  7. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    Science.gov (United States)

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload.

    Directory of Open Access Journals (Sweden)

    Elena Montes-Cobos

    Full Text Available Mineralocorticoid receptor (MR inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox. Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.

  9. Substantial species differences in relation to formation and degradation of N-acyl-ethanolamine phospholipids in heart tissue

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.

    2002-01-01

    beneficial effects on the heart, but in the literature there are indications of species differences in the activity of these enzymes. We have examined heart microsomes from rats, mice, guinea pigs, rabbits, frogs, cows, dogs, cats, mini pigs and human beings for activities of these two enzymes. N......-Acyl-transferase activity was very high in dogs and cats (>13 pmol/min/mg protein) whereas it was very low to barely detectable in the other species (45 pmol/min/mg protein) whereas it was 9 pmol/min/mg protein in frogs and below that in the other species. The ratio of activity between the two enzymes varied from 0.......002 to 15 in the investigated species. The activity of the two enzymes in rat hearts as opposed to rat brain did not change during development. These results indicate that there may be substantial species differences in the generation of anandamide and other NAEs as well as NAPEs in heart tissues....

  10. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays.

    Science.gov (United States)

    Barjaktarovic, Zarko; Schmaltz, Dominik; Shyla, Alena; Azimzadeh, Omid; Schulz, Sabine; Haagen, Julia; Dörr, Wolfgang; Sarioglu, Hakan; Schäfer, Alexander; Atkinson, Michael J; Zischka, Hans; Tapio, Soile

    2011-01-01

    Radiation therapy treatment of breast cancer, Hodgkin's disease or childhood cancers expose the heart to high local radiation doses, causing an increased risk of cardiovascular disease in the survivors decades after the treatment. The mechanisms that underlie the radiation damage remain poorly understood so far. Previous data show that impairment of mitochondrial oxidative metabolism is directly linked to the development of cardiovascular disease. In this study, the radiation-induced in vivo effects on cardiac mitochondrial proteome and function were investigated. C57BL/6N mice were exposed to local irradiation of the heart with doses of 0.2 Gy or 2 Gy (X-ray, 200 kV) at the age of eight weeks, the control mice were sham-irradiated. After four weeks the cardiac mitochondria were isolated and tested for proteomic and functional alterations. Two complementary proteomics approaches using both peptide and protein quantification strategies showed radiation-induced deregulation of 25 proteins in total. Three main biological categories were affected: the oxidative phophorylation, the pyruvate metabolism, and the cytoskeletal structure. The mitochondria exposed to high-dose irradiation showed functional impairment reflected as partial deactivation of Complex I (32%) and Complex III (11%), decreased succinate-driven respiratory capacity (13%), increased level of reactive oxygen species and enhanced oxidation of mitochondrial proteins. The changes in the pyruvate metabolism and structural proteins were seen with both low and high radiation doses. This is the first study showing the biological alterations in the murine heart mitochondria several weeks after the exposure to low- and high-dose of ionizing radiation. Our results show that doses, equivalent to a single dose in radiotherapy, cause long-lasting changes in mitochondrial oxidative metabolism and mitochondria-associated cytoskeleton. This prompts us to propose that these first pathological changes lead to an increased

  11. Protective Effect of Carvacrol Against Oxidative Stress and Heart Injury in Cyclophosphamide-Induced Cardiotoxicity in Rat

    Directory of Open Access Journals (Sweden)

    Songul Cetik

    2015-08-01

    Full Text Available Possible protective effects of carvacrol (Car against cyclophosphamide (CP-induced cardiotoxicity was examined in this study. Experimental groups of the rats were randomly divided into 13 groups,each including seven animals: Group 1 (control treated with saline; groups 2, 3, and 4 treated with 50, 100, or 150 mg/kg of CP, respectively; group 5 treated with 0.5 mL olive oil; groups 6 and 7 treated with 5.0 and 10 mg/kg of Car, respectively; groups 8, 9, or 10 treated with respective CP plus 5.0 mg/kg of Car; and groups 11, 12, or 13 treated with respective CP plus 10 mg/kg of Car. Serum alanine transaminase (ALT,aspartat transaminase (AST, lactate dehydrogenase (LDH, malondialdehyde (MDA,creatine kinase-MB (CK-MB, total oxidant state (TOS, oxidative stress index (OSI, and levels were high only in the CP groups. There was a dose-dependence on the CP-induced cardiotoxicity. Hemorrhage, inflammatory cell infiltration and the separation of the muscle fibers in the heart tissue supported the biochemical data. With 5.0 and 10 mg/kg Car, there was an important decrease in the CP toxicity and this was related to the oxidative and nitrosative stress in the CP-induced cardiotoxicity. Reduced inflammation and lipid peroxidation in the heart tissue and increase of serum glutathione (GSH and total antioxidant capacity (TAS levels were found when carvacrol was applied. Based on these findings, it could be proposed that Car was a strong candidate in preventing the CP-induced cardiotoxicity but further clinical studies should be done in order to verify its application on humans.

  12. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  13. The diagnosis of anthracycline-induced cardiac damage and heart failure

    Directory of Open Access Journals (Sweden)

    Jarosław Dudka

    2009-05-01

    Full Text Available Routine examinations during chemotherapy containing anthracyclines evaluate heart function before treatment and monitor cardiotoxic effects during and after therapy. A number of methods are useful in cardiac assessment, including electrocardiography, radiology techniques (RTG, CT, MRI, PET-CT, PET-MRI, echocardiography, radioisotope imaging techniques (scyntygraphy, MUGA, PET, and ultra-structure evaluation in biopsy samples. Nevertheless, there is a continuous need for new methods to predict future damage at the initial stages of cardiac changes. In recent years the therapeutic usefulness of biochemical blood parameters in anthracycline-treated patients has been assessed. The levels of cardiac troponines (cTnI, cTnT, natriuretic peptides (ANP, BNP, and endothelin 1 have been included in the studies. Heart-type fatty acid binding protein (H-FABP is another promising factor showing cardiomyocytic impairment. However, the clinical use of biochemical parameters in diagnosing anthracycline-related cardiotoxicity is still a controversial issue.

  14. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Jabůrek, Martin; Zelenka, Jaroslav; Ježek, Petr

    2010-01-01

    Roč. 59, č. 5 (2010), s. 737-747 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA303/07/0105; GA MŠk ME09018; GA AV ČR(CZ) KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : Heart mitochondrial phospholipase A2 * Fatty Acids * Adenine nucleotide translocase Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  15. Acute hypoxia stress induced abundant differential expression genes and alternative splicing events in heart of tilapia.

    Science.gov (United States)

    Xia, Jun Hong; Li, Hong Lian; Li, Bi Jun; Gu, Xiao Hui; Lin, Hao Ran

    2018-01-10

    Hypoxia is one of the critical environmental stressors for fish in aquatic environments. Although accumulating evidences indicate that gene expression is regulated by hypoxia stress in fish, how genes undergoing differential gene expression and/or alternative splicing (AS) in response to hypoxia stress in heart are not well understood. Using RNA-seq, we surveyed and detected 289 differential expressed genes (DEG) and 103 genes that undergo differential usage of exons and splice junctions events (DUES) in heart of a hypoxia tolerant fish, Nile tilapia, Oreochromis niloticus following 12h hypoxic treatment. The spatio-temporal expression analysis validated the significant association of differential exon usages in two randomly selected DUES genes (fam162a and ndrg2) in 5 tissues (heart, liver, brain, gill and spleen) sampled at three time points (6h, 12h, and 24h) under acute hypoxia treatment. Functional analysis significantly associated the differential expressed genes with the categories related to energy conservation, protein synthesis and immune response. Different enrichment categories were found between the DEG and DUES dataset. The Isomerase activity, Oxidoreductase activity, Glycolysis and Oxidative stress process were significantly enriched for the DEG gene dataset, but the Structural constituent of ribosome and Structural molecule activity, Ribosomal protein and RNA binding protein were significantly enriched only for the DUES genes. Our comparative transcriptomic analysis reveals abundant stress responsive genes and their differential regulation function in the heart tissues of Nile tilapia under acute hypoxia stress. Our findings will facilitate future investigation on transcriptome complexity and AS regulation during hypoxia stress in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  17. Vaccine-induced myositis with intramuscular sterile abscess formation: MRI and ultrasound findings

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ahmet Veysel; Bekci, Tumay; Selcuk, Mustafa Bekir [Ondokuz Mayis University, Department of Radiology, Faculty of Medicine, Samsun (Turkey); Dabak, Nevzat [Ondokuz Mayis University, Department of Orthopaedics and Traumatology, Faculty of Medicine, Samsun (Turkey); Ulu, Esra Meltem Kayahan [Samsun Medical Park Hospital, Department of Radiology, Samsun (Turkey)

    2015-12-15

    Although limb swelling is a well-known complication of vaccination, its rarity and wide band of differential diagnosis of limb swelling make it a diagnostic challenge. In this case report, we describe three cases of vaccine-induced myositis with intramuscular sterile abscess formation in patients with limb swelling and their magnetic resonance imaging and ultrasonography findings. Both radiologists and clinicians should be familiar with this rare entity, its clinical and imaging spectrum, and follow-up strategies. (orig.)

  18. Vaccine-induced myositis with intramuscular sterile abscess formation: MRI and ultrasound findings

    International Nuclear Information System (INIS)

    Polat, Ahmet Veysel; Bekci, Tumay; Selcuk, Mustafa Bekir; Dabak, Nevzat; Ulu, Esra Meltem Kayahan

    2015-01-01

    Although limb swelling is a well-known complication of vaccination, its rarity and wide band of differential diagnosis of limb swelling make it a diagnostic challenge. In this case report, we describe three cases of vaccine-induced myositis with intramuscular sterile abscess formation in patients with limb swelling and their magnetic resonance imaging and ultrasonography findings. Both radiologists and clinicians should be familiar with this rare entity, its clinical and imaging spectrum, and follow-up strategies. (orig.)

  19. Formation region and amplitude of colour superconductivity in an instanton-induced model

    CERN Document Server

    Liao Jin Feng

    2002-01-01

    Colour superconductivity is investigated in the frame of a two flavour instanton-induced model. The ratio of diquark to quark-antiquark coupling constants is restricted to be c/(N sub c -1) with 1 <=c <=2.87 and controls the formation region and amplitude of colour superconductivity. While the finite current quark mass changes the chiral transition significantly, it does not considerably change the colour superconductivity

  20. Laser-Induced Breakdown Spectroscopy (LIBS for Monitoring the Formation of Hydroxyapatite Porous Layers

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2017-12-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO42 biocompatible eutectic glass immersed in simulated body fluid (SBF. Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, and micro-Raman spectroscopy.

  1. Laser-Induced Breakdown Spectroscopy (LIBS) for Monitoring the Formation of Hydroxyapatite Porous Layers

    OpenAIRE

    Sola, Daniel; Paulés, Daniel; Grima, Lorena; Anzano, Jesús

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy.

  2. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure

    Science.gov (United States)

    Springer, Jochen; Tschirner, Anika; Haghikia, Arash; von Haehling, Stephan; Lal, Hind; Grzesiak, Aleksandra; Kaschina, Elena; Palus, Sandra; Pötsch, Mareike; von Websky, Karoline; Hocher, Berthold; Latouche, Celine; Jaisser, Frederic; Morawietz, Lars; Coats, Andrew J.S.; Beadle, John; Argiles, Josep M.; Thum, Thomas; Földes, Gabor; Doehner, Wolfram; Hilfiker-Kleiner, Denise; Force, Thomas; Anker, Stefan D.

    2014-01-01

    Aims Symptoms of cancer cachexia (CC) include fatigue, shortness of breath, and impaired exercise capacity, which are also hallmark symptoms of heart failure (HF). Herein, we evaluate the effects of drugs commonly used to treat HF (bisoprolol, imidapril, spironolactone) on development of cardiac wasting, HF, and death in the rat hepatoma CC model (AH-130). Methods and results Tumour-bearing rats showed a progressive loss of body weight and left-ventricular (LV) mass that was associated with a progressive deterioration in cardiac function. Strikingly, bisoprolol and spironolactone significantly reduced wasting of LV mass, attenuated cardiac dysfunction, and improved survival. In contrast, imidapril had no beneficial effect. Several key anabolic and catabolic pathways were dysregulated in the cachectic hearts and, in addition, we found enhanced fibrosis that was corrected by treatment with spironolactone. Finally, we found cardiac wasting and fibrotic remodelling in patients who died as a result of CC. In living cancer patients, with and without cachexia, serum levels of brain natriuretic peptide and aldosterone were elevated. Conclusion Systemic effects of tumours lead not only to CC but also to cardiac wasting, associated with LV-dysfunction, fibrotic remodelling, and increased mortality. These adverse effects of the tumour on the heart and on survival can be mitigated by treatment with either the β-blocker bisoprolol or the aldosterone antagonist spironolactone. We suggest that clinical trials employing these agents be considered to attempt to limit this devastating complication of cancer. PMID:23990596

  3. Cyanobacteria blooms induce embryonic heart failure in an endangered fish species.

    Science.gov (United States)

    Zi, Jinmei; Pan, Xiaofu; MacIsaac, Hugh J; Yang, Junxing; Xu, Runbing; Chen, Shanyuan; Chang, Xuexiu

    2018-01-01

    Cyanobacterial blooms drive water-quality and aquatic-ecosystem deterioration in eutrophic lakes worldwide, mainly owing to their harmful, secondary metabolites. The response of fish exposed to these cyanobacterial chemicals, however, remains largely unknown. In this paper, we employed an endangered fish species (Sinocyclocheilus grahami) in Dianchi Lake, China to evaluate the risks of cell-free exudates (MaE) produced by a dominant cyanobacterium (Microcystis aeruginosa) on embryo development, as well as the molecular mechanisms responsible. MaE (3d cultured) caused a reduction of fertilization (35.4%) and hatching (15.5%) rates, and increased mortality rates (≤90.0%) and malformation rate (27.6%), typically accompanied by heart failure. Proteomics analysis revealed that two greatest changed proteins - protein S100A1 (over-expressed 26 times compared with control) and myosin light chain (under-expressed 25 fold) - are closely associated with heart function. Further study revealed that heart failure was due to calcium ion imbalance and malformed cardiac structure. We conclude that harmful secondary metabolites from cyanobacteria may adversely affect embryo development in this endangered fish, and possibly contribute to its disappearance and unsuccessful recovery in Dianchi Lake. Hazardous consequences of substances released by cyanobacteria should raise concerns for managers addressing recovery of this and other imperiled species in affected lakes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Furosemide Induced Electrolyte Imbalance: A Real Danger of Overdiuresis in Patients with Heart Failure

    Directory of Open Access Journals (Sweden)

    Yaseen Ali

    2014-12-01

    Full Text Available Background: Chronic heart failure is one of the most common reasons for hospital admissions in the United States. There have been several approaches for treating heart failure but loop diuretics has been at the forefront to alleviate the symptoms. Loop diuretics have their own side effects as with any medication use, and a lesser known and monitored one is metabolic alkalosis. Case report: The patient was a 76 years old female with past medical history of diabetes, hypertension, chronic kidney disease, dyslipidemia and chronic heart failure who came to the hospital with progressive shortness of breath for the past few days and was started on aggressive diuresis with intravenous loop diuretics and well responded. On the morning of d 6 of her admission, she was kept on the floor and started on BIPAP to correct hypercarbia and respiratory acidosis due to metabolic alkalosis and back to baseline with normal mentation by the middle of the day. Conclusion: Hypokalemia due to the diuretic effect can cause alkalosis by resulting in the shift of hydrogen ions intracellularly, stimulating the apical H+/K+ ATPase in the collecting duct, stimulating renal ammonia genesis, reabsorption, and secretion, leading to impaired chloride ion reabsorption in the distal nephron and reducing the glomerular filtration rate (GFR. The patient improved after being started on oxygen therapy and switched to acetazolamide as an alternative diuretic, indicating that acetazolamide corrected the effect of metabolic alkalosis by causing metabolic acidosis due to decrease reclamation of bicarbonate at the level of proximal convoluted tubule.

  5. Irradiation induced aerosol formation in flue gas: experiments on low doses

    International Nuclear Information System (INIS)

    Maekelae, J.M.

    1992-01-01

    Laboratory experiments on irradiation induced aerosol formation from gaseous sulphur dioxide in humid air are presented. This work is connected to the aerosol particle formation process in the electron beam technique for cleaning flue gas. As a partial process of this method primary products of the radiolysis of water vapour convert sulphur dioxide into gaseous sulphuric acid which then nucleates with water vapour forming small acid droplets. This experimental work has been performed on relatively low absorbed doses. Aerosol particle formation is strongly dependent on dose. In the experiments, the first aerosol particles were detected already on absorbed doses of 0.1-10 mGy. The particle size in these cases is in the so-called ultrafine size range (1-20 nm). In this article three experimental set-ups with some characteristic results are presented. (Author)

  6. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    Science.gov (United States)

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

    Science.gov (United States)

    Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli

    2018-03-01

    Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

  8. Mitochondrial damage: An important mechanism of ambient PM{sub 2.5} exposure-induced acute heart injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Tian, Jingjing [Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan (China); Cai, Zongwei, E-mail: zwcai@hkbu.edu.hk [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR (China); Dong, Chuan, E-mail: dc@sxu.edu.cn [Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan (China)

    2015-04-28

    Highlights: • PM{sub 2.5} induces heart mitochondrial morphological damage of rats. • Mitochondrial fission/fusion gene expression is important regulation mechanism. • Proinflammatoy cytokine level changes are accompanied with mitochondrial damage. • Alterations in oxidative stress and calcium homeostasis are focused on. - Abstract: Epidemiological studies suggested that ambient fine particulate matter (PM{sub 2.5}) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM{sub 2.5}-induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM{sub 2.5} with different dosages (0.375, 1.5, 6.0 and 24.0 mg/kg body weight) were investigated. The results indicated that the PM{sub 2.5} exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM{sub 2.5} exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na{sup +}K{sup +}-ATPase and Ca{sup 2+}-ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM{sub 2.5}-induced heart injury, and may have relations with cardiovascular disease.

  9. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  10. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  11. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  12. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes.

    Science.gov (United States)

    Beutner, Gisela; Eliseev, Roman A; Porter, George A

    2014-01-01

    Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes.

  13. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease

    Directory of Open Access Journals (Sweden)

    Muneer G. Hasham

    2017-03-01

    Full Text Available Systemic autoimmune diseases such as systemic lupus erythematosus (SLE and rheumatoid arthritis (RA show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8 agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity.

  14. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    International Nuclear Information System (INIS)

    Pirzio, L.

    2004-07-01

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  15. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  16. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  17. Increase vs. decrease of calcium uptake by isolated heart cells induced by H2O2 vs. HOCl

    International Nuclear Information System (INIS)

    Kaminishi, T.; Matsuoka, T.; Yanagishita, T.; Kako, K.J.

    1989-01-01

    Adult rat heart myocytes were labeled rapidly with exogenous [45Ca2+]. Addition of 2.5 mM H2O2 to the heart cell suspension raised the content of rapidly exchangeable intracellular Ca2+ twofold, whereas addition of 1-30 mM HOCl decreased the Ca2+ content. The H2O2-induced increase in Ca2+ content was dependent on the medium Na+, pH, and temperature but was not significantly affected by addition of verapamil, diltiazem, amiloride, or 3-aminobenzamide. The [3H]ouabain binding to myocytes was suppressed by H2O2, whereas the Ca2+ efflux from myocytes was not influenced. An uncoupler, carbonyl cyanide m-chlorophenylhydrazone, reduced Ca2+ content, implying that the H2O2-induced change in Ca2+ content was not directly related to ATP depletion. On the other hand, the H2O2-induced Ca2+ accumulation in myocytes was prevented by deferoxamine or o-phenanthroline. These results suggest that H2O2 inhibited Na+-K+-ATPase, resulting in an increase in intracellular Na+ concentration and stimulation of sarcolemmal Na+-Ca2+ exchange activity, which caused a transient net Ca2+ influx into myocytes. By contrast, HOCl decreased the Ca2+ content of the rapidly exchangeable pool below control levels and this action of HOCl was antagonized by 1,4-dithiothreitol. HOCl accelerated Ca2+ efflux from myocytes. Ca2+ uptake and Ca2+-ATPase of the isolated sarcoplasmic reticular (SR) fraction were highly sensitive to the action of HOCl. Ca2+ uptake by intracellular sites, studied with myocytes permeabilized with digitonin, was inhibited by both H2O2 and HOCl. Thus these results suggest that HOCl inhibits the SR Ca2+ pump, resulting in the observed acceleration of Ca2+ efflux from and decline in Ca2+ content of myocytes

  18. Heart MRI

    Science.gov (United States)

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  19. Zero Flow Global Ischemia-Induced Injuries in Rat Heart Are Attenuated by Natural Honey

    Directory of Open Access Journals (Sweden)

    Moslem Najafi

    2012-06-01

    Full Text Available Purpose: In the present study, effects of preischemic administration of natural honey on cardiac arrhythmias and myocardial infarction size during zero flow global ischemia were investigated in isolated rat heart. Methods:The isolated hearts were subjected to 30 min zero flow global ischemia followed by 120 min reperfusion then perfused by a modified drug free Krebs-Henseleit solution throughout the experiment (control or the solution containing 0.25, 0.5, 1 and 2% of natural honey for 15 min before induction of global ischemia (treated groups, respectively. Cardiac arrhythmias were determined based on the Lambeth conventions and the infarct size was measured by computerized planimetry. Results: Myocardial infarction size was 55.8±7.8% in the control group, while preischemic perfusion of honey (0.25, 0.5, 1 and 2% reduced it to 39.3±11, 30.6±5.5 (P<0.01, 17.9±5.6 (P<0.001 and 8.7±1.1% (P<0.001, respectively. A direct linear correlation between honey concentrations and infarction size reduction was observed (R2=0.9948. In addition, total number of ventricular ectopic beats were significantly decreased by all used concentrations of honey (P<0.05 during reperfusion time. Honey (0.25, 0.5 and 1 % also lowered incidence of irreversible ventricular fibrillation (P<0.05. Moreover, number and duration of ventricular tachycardia were reduced in all honey treated groups. Conclusion: Preischemic administration of natural honey before zero flow global ischemia can protect isolated rat heart against ischemia/reperfusion injuries as reduction of infarction size and arrhythmias. Maybe, antioxidant and free radical scavenging activities of honey, reduction of necrotized tissue and providing energy sources may involve in these cardioprotective effects of honey.

  20. Zero Flow Global Ischemia-Induced Injuries in Rat Heart Are Attenuated by Natural Honey

    Science.gov (United States)

    Najafi, Moslem; Zahednezhad, Fahimeh; Samadzadeh, Mehrban; Vaez, Haleh

    2012-01-01

    Purpose: In the present study, effects of preischemic administration of natural honey on cardiac arrhythmias and myocardial infarction size during zero flow global ischemia were investigated in isolated rat heart. Methods: The isolated hearts were subjected to 30 min zero flow global ischemia followed by 120 min reperfusion then perfused by a modified drug free Krebs-Henseleit solution throughout the experiment (control) or the solution containing 0.25, 0.5, 1 and 2% of natural honey for 15 min before induction of global ischemia (treated groups), respectively. Cardiac arrhythmias were determined based on the Lambeth conventions and the infarct size was measured by computerized planimetry. Results: Myocardial infarction size was 55.8±7.8% in the control group, while preischemic perfusion of honey (0.25, 0.5, 1 and 2%) reduced it to 39.3±11, 30.6±5.5 (Phoney concentrations and infarction size reduction was observed (R2=0.9948). In addition, total number of ventricular ectopic beats were significantly decreased by all used concentrations of honey (PHoney (0.25, 0.5 and 1 %) also lowered incidence of irreversible ventricular fibrillation (Phoney treated groups. Conclusion: Preischemic administration of natural honey before zero flow global ischemia can protect isolated rat heart against ischemia/reperfusion injuries as reduction of infarction size and arrhythmias. Maybe, antioxidant and free radical scavenging activities of honey, reduction of necrotized tissue and providing energy sources may involve in these cardioprotective effects of honey. PMID:24312788

  1. Respiratory induced heart rate variability during slow mechanical ventilation Marker to exclude brain death patients

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Kružliak, P.; Šrámek, V.; Cundrle, I.; Leinveber, P.; Adamek, M.; Zvoníček, V.

    2017-01-01

    Roč. 129, 7-8 (2017), s. 251-258 ISSN 0043-5325 R&D Projects: GA ČR GAP103/11/0933; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MZd NS10105 Institutional support: RVO:68081731 Keywords : critical illness * sedation * brain death * respiratory rate variability * heart rate variability * mechanical ventilation Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 0.974, year: 2016

  2. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant-pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of the transcriptome data of agarwood and A. sinensis lays the foundation

  3. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories.

    Directory of Open Access Journals (Sweden)

    Jovan Nikolic

    2016-10-01

    Full Text Available Stress granules (SGs are membrane-less dynamic structures consisting of mRNA and protein aggregates that form rapidly in response to a wide range of environmental cellular stresses and viral infections. They act as storage sites for translationally silenced mRNAs under stress conditions. During viral infection, SG formation results in the modulation of innate antiviral immune responses, and several viruses have the ability to either promote or prevent SG assembly. Here, we show that rabies virus (RABV induces SG formation in infected cells, as revealed by the detection of SG-marker proteins Ras GTPase-activating protein-binding protein 1 (G3BP1, T-cell intracellular antigen 1 (TIA-1 and poly(A-binding protein (PABP in the RNA granules formed during viral infection. As shown by live cell imaging, RABV-induced SGs are highly dynamic structures that increase in number, grow in size by fusion events, and undergo assembly/disassembly cycles. Some SGs localize in close proximity to cytoplasmic viral factories, known as Negri bodies (NBs. Three dimensional reconstructions reveal that both structures remain distinct even when they are in close contact. In addition, viral mRNAs synthesized in NBs accumulate in the SGs during viral infection, revealing material exchange between both compartments. Although RABV-induced SG formation is not affected in MEFs lacking TIA-1, TIA-1 depletion promotes viral translation which results in an increase of viral replication indicating that TIA-1 has an antiviral effect. Inhibition of PKR expression significantly prevents RABV-SG formation and favors viral replication by increasing viral translation. This is correlated with a drastic inhibition of IFN-B gene expression indicating that SGs likely mediate an antiviral response which is however not sufficient to fully counteract RABV infection.

  4. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice.

    Science.gov (United States)

    Danigo, Aurore; Nasser, Mohamad; Bessaguet, Flavien; Javellaud, James; Oudart, Nicole; Achard, Jean-Michel; Demiot, Claire

    2015-02-18

    Angiotensin II type 1 receptor (AT1R) blockers have beneficial effects on neurovascular complications in diabetes and in organ's protection against ischemic episodes. The present study examines whether the AT1R blocker candesartan (1) has a beneficial effect on diabetes-induced alteration of pressure-induced vasodilation (PIV, a cutaneous physiological neurovascular mechanism which could delay the occurrence of tissue ischemia), and (2) could be protective against skin pressure ulcer formation. Male Swiss mice aged 5-6 weeks were randomly assigned to four experimental groups. In two groups, diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 200 mg.kg(-1)). After 6 weeks, control and STZ mice received either no treatment or candesartan (1 mg/kg-daily in drinking water) during 2 weeks. At the end of treatment (8 weeks of diabetes duration), C-fiber mediated nociception threshold, endothelium-dependent vasodilation and PIV were assessed. Pressure ulcers (PUs) were then induced by pinching the dorsal skin between two magnetic plates for three hours. Skin ulcer area development was assessed during three days, and histological examination of the depth of the skin lesion was performed at day three. After 8 weeks of diabetes, the skin neurovascular functions (C-fiber nociception, endothelium-dependent vasodilation and PIV) were markedly altered in STZ-treated mice, but were fully restored by treatment with candesartan. Whereas in diabetes mice exposure of the skin to pressure induced wide and deep necrotic lesions, treatment with candersartan restored their ability to resist to pressure-induced ulceration as efficiently as the control mice. Candesartan decreases the vulnerability to pressure-induced ulceration and restores skin neurovascular functions in mice with STZ-induced established diabetes.

  5. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikole J. Byrne, BSc

    2017-08-01

    Full Text Available This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2 inhibitor empagliflozin improved heart failure (HF outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

  6. Possible Ameliorative Effect of Chicory Extract (Cichorium Intybus) on Radiation-Induced Oxidative Damage in Rats Heart

    International Nuclear Information System (INIS)

    Osman, N. N; Farag, M. F. S.; Darwish, M. M

    2011-01-01

    The radioprotective effect of aqueous leaf extract of Chicorium intybus (Chicory) against radiation induced-oxidative stress and changes in the levels of 150-180 g were divided into four groups. Group 1: control animals, group 2: animals orally administrated with chicory extract at a daily dose of 250 mg/kg b.wt/day for four weeks, group 3: animals exposed to whole body gamma irradiation (6.5 Gy), group 4: animals orally administrated with chicory extract two weeks before and two weeks after irradiation. Serum level of creatinine phosphokinase (CPK), lactate dehydrogenase (LDH), serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lipid profile was measured.also concentration of superoxide dismutase (SOD), glutathione (GSH), Catalase (CAT) and TBARS level was estimated in the cardiac tissue. The results showed decreased body weight and heart weight in irradiated animals. Compared to the control normal rats, irradiated rats had higher total cholesterol, triglycerides, low-density lipoprotein-cholesterol (LDL-C), serum creatinine phosphokinase(CPK), lactate dehydrogenase (LDH), serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lower high-density lipoprotein-cholesterol (HDL-C) levels. Moreover, cardiac tissue TBARS was markedly increased while SOD, GSH and CAT were significantly decreased. Oral and heart weights, serum cardiac enzymes and lipid profile. Cardiac GSH, SOD and CAT were significantly increased while TBARS was markedly reduced, membrane bound enzymes in rats' heart was investigated. Rats weighing about administration of chicory extract at doses of 250 mg/kg b.wt. improved the body compared to irradiated rats. These results may suggest a strong antioxidant effect of chicory, which was effective in mitigating adverse effect of γ irradiation on animals

  7. Global Transcriptomic Profiling of Cardiac Hypertrophy and Fatty Heart Induced by Long-Term High-Energy Diet in Bama Miniature Pigs.

    Directory of Open Access Journals (Sweden)

    Jihan Xia

    Full Text Available A long-term high-energy diet affects human health and leads to obesity and metabolic syndrome in addition to cardiac steatosis and hypertrophy. Ectopic fat accumulation in the heart has been demonstrated to be a risk factor for heart disorders, but the molecular mechanism of heart disease remains largely unknown. Bama miniature pigs were fed a high-fat, high-sucrose diet (HFHSD for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased body weight (2.73-fold, P<0.01, insulin level (4.60-fold, P<0.01, heart weight (1.82-fold, P<0.05 and heart volume (1.60-fold, P<0.05 compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. Microarray analyses revealed that 1,022 genes were significantly differentially expressed (P<0.05, ≥1.5-fold change, including 591 up-regulated and 431 down-regulated genes in the HFHSD group relative to the control group. KEGG analysis indicated that the observed heart disorder involved the signal transduction-related MAPK, cytokine, and PPAR signaling pathways, energy metabolism-related fatty acid and oxidative phosphorylation signaling pathways, heart function signaling-related focal adhesion, axon guidance, hypertrophic cardiomyopathy and actin cytoskeleton signaling pathways, inflammation and apoptosis pathways, and others. Quantitative RT-PCR assays identified several important differentially expressed heart-related genes, including STAT3, ACSL4, ATF4, FADD, PPP3CA, CD74, SLA-8, VCL, ACTN2 and FGFR1, which may be targets of further research. This study shows that a long-term, high-energy diet induces obesity, cardiac steatosis, and hypertrophy and provides insights into the molecular mechanisms of hypertrophy and fatty heart to facilitate further research.

  8. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  9. Hypoxia-inducible factor-1α, vascular endothelial growth factor, inducible nitric oxide synthase, and endothelin-1 expression correlates with angiogenesis in congenital heart disease

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Yin

    2016-07-01

    Full Text Available In Taiwan, the average prevalence of congenital heart disease (CHD is 13.08/1000 live births. Most children with CHD die before the age of 5 years; therefore, identifying treatment methods to extend the life of CHD patients is an important issue in clinical practice. The objective of this study is to evaluate the roles of hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, inducible nitric oxide synthase (iNOS, endothelin-1 (ET-1, and CD34 in CHD autopsy cases in comparison with autopsy cases without CHD. The study included 19 autopsy cases, which were divided into the following four groups: acyanotic CHD (n = 11, cyanotic CHD (n = 3, CHD associated with chromosomal abnormalities (n = 3, and complex CHD (n = 2. Heart specimens obtained from 10 autopsy cases without CHD were included as controls. Our results indicated that high percentages of HIF-1α (100%, VEGF (89.5%, iNOS (78.9%, and ET-1 (84.2% expressions were observed in CHD autopsy cases and this was found to be significant. HIF-1α induced by hypoxia could play a potential role in relating downstream gene expressions in CHD patients. Upregulation of VEGF by HIF-1α could play an important role in triggering angiogenesis to protect myocardial cell survival in a hypoxic microenvironment. Therefore, HIF-1α could be a significant prognosis marker in CHD and be a prospective candidate in the development of target therapy in cardiovascular diseases.

  10. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    Science.gov (United States)

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  11. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish.

    Science.gov (United States)

    Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna

    2018-06-08

    N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.

  12. Day-night variation in heart rate variability changes induced by endotoxaemia in healthy volunteers

    DEFF Research Database (Denmark)

    Alamili, M.; Rosenberg, J; Gögenur, I

    2015-01-01

    /night variation in endotoxaemia-induced changes in HRV. METHODS: A randomized, crossover study with 12 healthy men (age 18-31) was conducted. Endotoxaemia were induced by lipopolysaccharide (LPS) endotoxin 0.3 ng/kg b.w. in two visits (day visit and night visit). At the day visit, endotoxaemia were induced at 12...... at both night and day resulted in a significant depression in HRV parameters high-frequency power (HF), low-frequency power (LF), standard deviation of normal-to-normal (NN) intervals, root mean square of successive differences and proportion of NN50 divided by total number of NNs (P

  13. Radiation-induced grain subdivision and bubble formation in U3Si2 at LWR temperature

    Science.gov (United States)

    Yao, Tiankai; Gong, Bowen; He, Lingfeng; Harp, Jason; Tonks, Michael; Lian, Jie

    2018-01-01

    U3Si2, an advanced fuel form proposed for light water reactors (LWRs), has excellent thermal conductivity and a high fissile element density. However, limited understanding of the radiation performance and fission gas behavior of U3Si2 is available at LWR conditions. This study explores the irradiation behavior of U3Si2 by 300 keV Xe+ ion beam bombardment combining with in-situ transmission electron microscopy (TEM) observation. The crystal structure of U3Si2 is stable against radiation-induced amorphization at 350 °C even up to a very high dose of 64 displacements per atom (dpa). Grain subdivision of U3Si2 occurs at a relatively low dose of 0.8 dpa and continues to above 48 dpa, leading to the formation of high-density nanoparticles. Nano-sized Xe gas bubbles prevail at a dose of 24 dpa, and Xe bubble coalescence was identified with the increase of irradiation dose. The volumetric swelling resulting from Xe gas bubble formation and coalescence was estimated with respect to radiation dose, and a 2.2% volumetric swelling was observed for U3Si2 irradiated at 64 dpa. Due to extremely high susceptibility to oxidation, the nano-sized U3Si2 grains upon radiation-induced grain subdivision were oxidized to nanocrystalline UO2 in a high vacuum chamber for TEM observation, eventually leading to the formation of UO2 nanocrystallites stable up to 80 dpa.

  14. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface.

    Science.gov (United States)

    Crespo Tapia, Natalia; den Besten, Heidy M W; Abee, Tjakko

    2018-05-20

    Listeria monocytogenes is a food-borne pathogen that can grow as a biofilm on surfaces. Biofilm formation in food-processing environments is a big concern for food safety, as it can cause product contamination through the food-processing line. Although motile aerobic bacteria have been described to form biofilms at the air-liquid interface of cell cultures, to our knowledge, this type of biofilm has not been described in L. monocytogenes before. In this study we report L. monocytogenes biofilm formation at the air-liquid interface of aerobically grown cultures, and that this phenotype is specifically induced when the media is supplemented with glycerol as a carbon and energy source. Planktonic growth, metabolic activity assays and HPLC measurements of glycerol consumption over time showed that glycerol utilization in L. monocytogenes is restricted to growth under aerobic conditions. Gene expression analysis showed that genes encoding the glycerol transporter GlpF, the glycerol kinase GlpK and the glycerol 3-phosphate dehydrogenase GlpD were upregulated in the presence of oxygen, and downregulated in absence of oxygen. Additionally, motility assays revealed the induction of aerotaxis in the presence of glycerol. Our results demonstrate that the formation of biofilms at the air-liquid interface is dependent on glycerol-induced aerotaxis towards the surface of the culture, where L. monocytogenes has access to higher concentrations of oxygen, and is therefore able to utilize this compound as a carbon source. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Anizotropy characteristics of the left ventricle false chordae tendineae as one of varieties of myoendocardial formations of the human heart

    Science.gov (United States)

    Gavrylyak, M. S.; Malyk, Yu. Yu.; Tsyhykalo, O. V.; Semeniuk, T. O.; Penteleichuk, N. P.; Burkovets, D. N.; Yermolenko, S. B.

    2018-01-01

    The morphological and anizotropy characteristics of the left ventricle false chordae tendineae of human heart in the aspect of their anisotropic properties using spectroscopic-polarization methods was studied. There are given the results of statistical correlation structure of the spectral dependence of the two-dimensional Mueller matrix elements and phase shifts of histological sections of different morphological structure and physiological state. The relationship between the distribution of orientations of the optical axes birefringent miozyn fibrils with a set of statistical moments that characterize the distributions of Mueller matrix elements in different spectral ranges and half-width corresponding autocorrelation functions are established.

  16. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Aoife Gowran

    2016-01-01

    Full Text Available A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.

  17. Glycation induces formation of amyloid cross-beta structure in albumin.

    Science.gov (United States)

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  18. Ammonia Released by Streptomyces aburaviensis Induces Droplet Formation in Streptomyces violaceoruber.

    Science.gov (United States)

    Schmidt, Kathrin; Spiteller, Dieter

    2017-08-01

    Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1 H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.

  19. Ginger extract mitigates ethanol-induced changes of alpha and beta - myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats.

    Science.gov (United States)

    Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef

    2017-09-01

    The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association.

    Science.gov (United States)

    Musunuru, Kiran; Sheikh, Farah; Gupta, Rajat M; Houser, Steven R; Maher, Kevin O; Milan, David J; Terzic, Andre; Wu, Joseph C

    2018-01-01

    Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to

  1. Alterations in myocardial free fatty acid clearance precede mechanical abnormalities in canine tachycardia-induced heart failure.

    Science.gov (United States)

    Freeman, G L; Colston, J T; Miller, D D

    1994-01-01

    The purpose of this study was to evaluate whether abnormalities of free fatty acid metabolism are present before the onset of overt mechanical dysfunction in dogs with tachycardia-induced heart failure. We studied six dogs chronically instrumented to allow assessment of left ventricular function in the pressure-volume plane. Free fatty acid clearance was assessed according to the washout rate of a free fatty acid analog, iodophenylpentadecanoic acid ([123I]PPA or IPPA). IPPA clearance was measured within 1 hour of the hemodynamic assessment. The animals were studied under baseline conditions and 11.7 +/- 3.6 days after ventricular pacing at a rate of 240 beats/min. Hemodynamic studies after pacing showed a nonsignificant increase in left ventricular end-diastolic pressure (11.7 +/- 4.7 to 17.4 +/- 6.5 mm Hg) and a nonsignificant decrease in the maximum derivative of pressure with respect to time (1836 +/- 164 vs 1688 +/- 422 mm Hg/sec). There was also no change in the time constant of left ventricular relaxation, which was 34.8 +/- 7.67 msec before and 35.3 +/- 7.3 msec after pacing. However, a significant prolongation in the clearance half-time of [123I]PPA, from 86.1 +/- 23.9 to 146.5 +/- 22.6 minutes (p < 0.01) was found. Thus abnormal lipid clearance appears before the onset of significant mechanical dysfunction in tachycardia-induced heart failure. This suggests that abnormal substrate metabolism may play an important role in the pathogenesis of this condition.

  2. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

    Science.gov (United States)

    Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S

    2016-01-11

    Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. Myocardial hydroxyproline reduced by early administration of methylprednisolone or ibuprofen to rabbits with radiation-induced heart disease

    International Nuclear Information System (INIS)

    Reeves, W.C.; Cunningham, D.; Schwiter, E.J.; Abt, A.; Skarlatos, S.; Wood, M.A.; Whitesell, L.

    1982-01-01

    The ability of methylprednisolone (MP) and ibuprofen (IB) to reduce the severity of the late state of radiation-induced heart disease was assessed in 57 New Zealand white rabbits. Before and shortly after cardiac irradiation, 15 rabbits received i.v. MP, 30 mg/kg twice daily for 3 days, and 15 others received IB, 12.5 mg/kg twice daily for 2 days. No drug administered to 14 irradiated rabbits, and neither irradiation nor drugs were administered to 13 rabbits that served as controls. All 15 rabbits treated with MP and 13 of the 15 treated with IB lived for 100 days. Only seven of the untreated, irradiated rabbits lived that long. Longevity of each treated group of rabbits was better (p < 0.01 and 0.05) than that of the untreated, irradiated rabbits. Surviving rabbits were killed 100 days after irradiation. Pericarditis (p < 0.05) and pericardial effusion (p < 0.01) were less frequent in the treated, irradiated groups than in the untreated, irradiated rabbits. At least some rabbits in each irradiated group had microscopic evidence of myocardial fibrosis. The fibrosis was quantitated by determination of myocardial hydroxyproline concentrations (MHP). MHP concentration in the untreated, irradiated rabbits was greater than in those treated with MP (p < 0.05) or IB (p < 0.01) and in the untreated, unirradiated rabbits (p < 0.01). Early administrative of MP or IB retarded the development of myocardial fibrosis, pericarditis and pericardial effusin, and improved survival in this experimental model of radiation-induced heart disease

  4. Myocardial hydroxyproline reduced by early administration of methylprednisolone or ibuprofen to rabbits with radiation-induced heart disease

    International Nuclear Information System (INIS)

    Reeves, W.C.; Cunningham, D.; Schwiter, E.J.; Abt, A.; Skarlatos, S.; Wood, M.A.; Whitesell, L.

    1982-01-01

    The ability of methylprednisolone (MP) and ibuprofen (IB) to reduce the severity of the late state of radiation-induced heart disease was assessed in 57 New Zealand white rabbits. Before and shortly after cardiac irradiation, 15 rabbits received i.v. MP, 30 mg/kg twice daily for 3 days, and 15 others received IB, 12.5 mg/kg twice daily for 2 days. No drug was administered to 14 irradiated rabbits, and neither irradiation nor drugs were administered to 13 rabbits that served as controls, All 15 rabbits treated with MP and 13 of the 15 treated with IB lived for 100 days. Only seven of the untreated, irradiated rabbits lived that long. Longevity of each treated group of rabbits was better (p less than 0.01 and 0.05) than that of the untreated, irradiated rabbits. Surviving rabbits were killed 100 days after irradiation. Pericarditis (p less than 0.05) and pericardial effusion (p less than 0.01) were less frequent in the treated, irradiated groups than in the untreated, irradiated rabbits. At least some rabbits in each irradiated group had microscopic evidence of myocardial fibrosis. The fibrosis was quantitated by determination of myocardial hydroxyproline concentrations (MHP). MHP concentration in the untreated, irradiated rabbits was greater than in those treated with MP (p less than 0.05) or IB (p less than 0.01) and in the untreated, unirradiated rabbits (p less than 0.01). Early administration of MP or IB retarded the development of myocardial fibrosis, pericarditis and pericardial effusion, and improved survival in this experimental model of radiation-induced heart disease

  5. Measured time-correlated neutron-induced radiations in a sandstone formation. Final report

    International Nuclear Information System (INIS)

    Peters, C.; Karaoglan, E.; Ertel, J.; Brotzman, J.; Kennedy, C. Jr.

    1981-07-01

    The Grand Junction Operations Office, Department of Energy, via its contractor, The Bendix Field Engineering Corporation, is developing technologies to explore for uranium as a part of the National Uranium Resource Evaluation Program. This report is addressed to measurements of the inelastic- and capture-gamma rays induced by 14 MeV neutrons in uranium ore in a simulated sandstone formation. The associated-particle technique and timing correlation was used to measure the production of inelastic-gamma rays versus time and to separate the inelastic-gamma-ray energy spectrum from the capture-gamma-ray energy spectrum. The measurements of the fission-coincidence signal demonstrate that this technique appears to be very sensitive to the presence of uranium. These measurements indicate that the fission-coincidence signal would be improved for uranium assay by using a low-energy neutron source rather than 14-MeV neutrons. The results of these measurements demonstrate that the concept of the Borehole Neutron Diagnostic Probe is a promising new logging tool. Measurements for a wide variety of controlled borehole and formation parameters are needed to determine the optimum design and to calibrate the responses. These measurements should be performed with a prototype logging tool in formations that have densities closer to those found in the field than the simulated formation used in these measurements

  6. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    Science.gov (United States)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  7. 5-Fluorouracil-induced acute reversible heart failure not explained by coronary spasms, myocarditis or takotsubo

    DEFF Research Database (Denmark)

    Fakhri, Yama; Dalsgaard, Morten; Nielsen, Dorte

    2016-01-01

    A 69-year-old woman presented with arterial hypotension, pulmonary oedema and a severely depressed left ventricular ejection fraction (LVEF) of 25% only 3 days after having received her first treatment for colorectal cancer with 5-fluorouracil (5-FU)-based therapy. The ECG demonstrated widespread......, cardiac MRI scan 9 days later showed a normal LVEF with signs of neither myocardial oedema nor necrosis. Despite the high therapeutic efficacy of 5-FU in treatment of colorectal cancer, it is associated with undesired cardiac toxicities including coronary spasms, toxic inflammation and takotsubo...... ST-segment depression and echocardiography showed uniform hypokinesia of all left ventricular (LV) myocardial segments without signs of regional LV ballooning. Coronary angiography was normal and the patient gained full recovery after receiving treatment with heart failure medication. Interestingly...

  8. Role of complex formation in the photosensitized degradation of DNA induced by N'-formylkynurenine

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Charlier, M.

    1976-01-01

    N'-Formylkynurenine derivatives efficiently bind to DNA or polynucleotides. Homopolynucleotides and DNA displayed marked differences in the binding process. Association constants were derived which indicated that the oxidized indole ring is more strongly bound to DNA than the unoxidized one. Irradiation of such complexes with wavelengths greater than 320 nm induced pyrimidine dimer formation as well as DNA chain breaks. Complex formation is shown to play an important role in these photosensitized reactions. The photodynamic action of N-formylkynurenine on DNA constituents was negligible at neutral pH but guanine and xanthine derivatives were sensitizable at higher pH. Thymine dimer splitting can occur in aggregated frozen aqueous solutions of N'-formylkynurenine and thymine dimer but this photosensitized splitting was negligible in liquid solutions at room temperature. (author)

  9. Analysis of oxide formation induced by UV laser coloration of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.L., E-mail: zlli@SIMTech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Seng, H.L.; Yakovlev, N.L. [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-12-15

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  10. Analysis of oxide formation induced by UV laser coloration of stainless steel

    International Nuclear Information System (INIS)

    Li, Z.L.; Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C.; Seng, H.L.; Yakovlev, N.L.

    2009-01-01

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  11. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Energy Technology Data Exchange (ETDEWEB)

    Sobol, Emil [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Baum, Olga [Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Shekhter, Anatoly [Sechenov First Medical University of Moscow, Institute of Regenerative Medicine, Moscow, Russia; Wachsmann-Hogiu, Sebastian [University of California, Center for Biophotonics, Department of Pathology and Laboratory Medicine, Sacramento, California, United StateseMcGill University, Department of Bioengineering, Montreal, Canada; Shnirelman, Alexander [Concordia University, Department of Mathematics and Statistics, Montreal, Canada; Alexandrovskaya, Yulia [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Sadovskyy, Ivan [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States; Vinokur, Valerii [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States

    2017-05-31

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-anderror approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  12. Compensatory role of the NBCn1 sodium/bicarbonate cotransporter on Ca2+-induced mitochondrial swelling in hypertrophic hearts.

    Science.gov (United States)

    Vargas, Lorena A; Velasquez, Fernanda Carrizo; Alvarez, Bernardo V

    2017-03-01

    NBC Na + /HCO 3 - cotransporter (NBCn1) and NHE1 Na + /H + exchanger have been associated with cardiac disorders and recently located in coronary endothelial cells (CEC) and cardiomyocytes mitochondria, respectively. Mitochondrial NHE1 blockade delays permeability transition pore (MPTP) opening and reduces superoxide levels, two critical events exacerbated in cells of diseased hearts. Conversely, activation of NBCn1 prevented apoptosis in CEC subjected to ischemic stress. We characterized the role of the NHE1 and NBCn1 transporters in heart mitochondria from hypertrophic (SHR) and control (Wistar) rats. Expression of NHE1 was analyzed in left ventricular mitochondrial lysates (LVML), by immunoblots. NHE1 expression increased by ~40% in SHR compared to control (P < 0.05, n = 4). To examine NHE1-mediated Na + /H + exchange activity in cardiac hypertrophy, mitochondria were loaded with BCECF-AM dye and the maximal rate of pHm change measured after the addition of 50 mM NaCl. SHR mitochondria had greater changes in pHm compared to Wistar, 0.10 ± 0.01 vs. 0.06 ± 0.01, respectively (P < 0.05, n = 5). In addition, mitochondrial suspensions from SHR and control myocardium were exposed to 200 μM CaCl 2 to induce MPTP opening (light-scattering decrease, LSD) and swelling. Surprisingly, SHR rats showed smaller LSD and a reduction in mitochondrial swelling, 67 ± 10% (n = 15), compared to control, 100 ± 8% (n = 13). NBC inhibition with S0859 (1 μM) significantly increased swelling in both control 139 ± 10% (n = 8) and SHR 115 ± 10% (n = 4). Finally, NBCn1 Na + /HCO 3 - cotransporter increased by twofold its expression in SHR LVML, compared to normal (P < 0.05, n = 5). We conclude that increased NBCn1 activity may play a compensatory role in hypertrophic hearts, protecting mitochondria from Ca 2+ -induced MPTP opening and swelling.

  13. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    Science.gov (United States)

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  14. Influence of short-term aluminum exposure on demineralized bone matrix induced bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Severson, A.R. (Minnesota Univ., Duluth, MN (United States). Dept. of Anatomy and Cell Biology); Haut, C.F.; Firling, C.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biology); Huntley, T.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biochemistry and Molecular Biology)

    1992-12-01

    The effects of aluminum exposure on bone formation employing the demineralized bone matrix (DBM) induced bone development model were studied using 4-week-old Sprague-Dawley rats injected with a saline (control) or an aluminum chloride (experimental) solution. After 2 weeks of aluminum treatment, 20-mg portions of rat DBM were implanted subcutaneously on each side in the thoracic region of the control and experimental rats. Animals were killed 7, 12, or 21 days after implantation of the DBM and the developing plaques removed. No morphological, histochemical, or biochemical differences were apparent between plaques from day 7 control and experimental rats. Plaques from day 12 control and experimental rats exhibited cartilage formation and alkaline phosphatase activity localized in osteochondrogenic cells, chondrocytes, osteoblasts, and extracellular matrix. Unlike the plaques from control rats that contained many osteoblastic mineralizing fronts, the plaques from the 12-day experimental group had a preponderance of cartilaginous tissue, no evidence of mineralization, increased levels of alkaline phosphatase activity, and a reduced calcium content. Plaques developing for 21 days in control animals demonstrated extensive new bone formation and bone marrow development, while those in the experimental rats demonstrated unmineralized osteoid-like matrix with poorly developed bone marrow. Alkaline phosphatase activity of the plaques continued to remain high on day 21 for the control and experimental groups. Calcium levels were significantly reduced in the experimental group. These biochemical changes correlated with histochemical reductions in bone calcification. Thus, aluminum administration to rats appears to alter the differentiation and calcification of developing cartilage and bone in the DBM-induced bone formation model and suggests that aluminum by some mechanism alters the matrix calcification in growing bones. (orig.).

  15. Ridge formation induced by jets in pp collisions at 7 TeV

    International Nuclear Information System (INIS)

    Hwa, Rudolph C.; Yang, C. B.

    2011-01-01

    An interpretation of the ridge phenomenon found in pp collisions at 7 TeV is given in terms of enhancement of soft partons due to energy loss of semihard jets. A description of ridge formation in nuclear collisions can directly be extended to pp collisions since hydrodynamics is not used and azimuthal anisotropy is generated by semihard scattering. The observed ridge structure is then understood as a manifestation of soft-soft transverse correlation induced by semihard partons without long-range longitudinal correlation. Both the p T and multiplicity dependencies are well reproduced. Some predictions are made about other observables.

  16. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  17. Radiation Induced Formation of Acrylated Palm Oil Nanoparticles using Cetyltrimethylammonium Bromide Microemulsion System

    International Nuclear Information System (INIS)

    Rida Tajau; Rida Tajau; Wan Mohd Zin Wan Yunus

    2011-01-01

    In this study, we report the preparation of Acrylated Palm Oil (APO) nanoparticles using aqueous Cetyltrimethylammonium bromide (CTAB) microemulsion system. This microemulsion system which contains the dispersed APO nano droplets was subjected to the gamma irradiation to induce the formation of the crosslinked APO nanoparticle. After irradiation at higher doses, the size of APO nanoparticles was transformed from a submicron-sized to a nano-sized of the particles. Size decreasing might be due to the intermolecular and the intramolecular crosslinking reactions of the APO nanoparticles during the irradiation process. (author)

  18. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease.

    Science.gov (United States)

    Cheung, Carlos Chun Ho; Soon, Choong Yee; Chuang, Chia-Lin; Phillips, Anthony R J; Zhang, Shaoping; Cooper, Garth J S

    2015-09-01

    Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Progranulin Inhibits Human T Lymphocyte Proliferation by Inducing the Formation of Regulatory T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Kyu Hwan Kwack

    2017-01-01

    Full Text Available We have examined the effect of progranulin (PGRN on human T cell proliferation and its underlying mechanism. We show that PGRN inhibits the PHA-induced multiplication of T lymphocytes. It increases the number of iTregs when T lymphocytes are activated by PHA but does not do so in the absence of PHA. PGRN-mediated inhibition of T lymphocyte proliferation, as well as the induction of iTregs, was completely reversed by a TGF-β inhibitor or a Treg inhibitor. PGRN induced TGF-β secretion in the presence of PHA whereas it did not in the absence of PHA. Our findings indicate that PGRN suppresses T lymphocyte proliferation by enhancing the formation of iTregs from activated T lymphocytes in response to TGF-β.

  20. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.

    Science.gov (United States)

    Honda, Ryo

    2018-04-12

    Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer's disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Computer simulation of radiation-induced nanostructure formation in amorphous materials

    International Nuclear Information System (INIS)

    Li, K.-D.; Perez-Bergquist, Alejandro; Wang, Lumin

    2009-01-01

    In this study, 3D simulations based on a theoretical model were developed to investigate radiation-induced nanostructure formation in amorphous materials. Model variables include vacancy production and recombination rates, ion sputtering effects, and redeposition of sputtered atoms. In addition, a phase field model was developed to predict vacancy diffusion as a function of free energies of mixing and interfacial energies. The distribution profile of the vacancy production rate along the depth of an irradiated matrix was considered as a near Gaussian approximation according to Monte-Carlo TRIM code calculations. Dynamic processes responsible for nanostructure evolution were simulated by updating the vacancy concentration profile over time. Simulated morphologies include cellular nanoholes, nanowalls, nanovoids, and nanofibers, with the resultant morphology dependant upon the incident ion species and ion fluence. These simulated morphologies are consistent with experimental observations achieved under comparable experimental conditions. Our model provides a distinct numerical approach to accurately predicting morphological results for ion-irradiation-induced nanostructures.

  2. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  3. Heart murmurs

    Science.gov (United States)

    Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... The heart has 4 chambers: Two upper chambers (atria) Two lower chambers (ventricles) The heart has valves that close ...

  4. The Influence of a High Salt Diet on a Rat Model of Isoproterenol-Induced Heart Failure

    Science.gov (United States)

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4 weeks) isoproterenol (ISO) infusion exacerbated cardiomyopathy in Spontaneously Hypertensive Heart Failure (SHHF) rats. Others have shown...

  5. Haloperidol aggravates transverse aortic constriction-induced heart failure via mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Yasuharu Shinoda

    2016-07-01

    Full Text Available Haloperidol is an antipsychotic drug that inhibits the dopamine D2 receptor among others. Haloperidol also binds the sigma-1 receptor (σ1R and inhibits it irreversibly. A serious outcome of haloperidol treatment of schizophrenia patients is death due to sudden cardiac failure. Although the cause remains unclear, we hypothesized that these effects were mediated by chronic haloperidol inhibition of cardiac σ1R. To test this, we treated neonatal rat cardiomyocytes with haloperidol, exposed them to angiotensin II and assessed hypertrophy, σ1R expression, mitochondrial Ca2+ transport and ATP levels. In this context, haloperidol treatment altered mitochondrial Ca2+ transport resulting in decreased ATP content by inactivating cardiac σ1R and/or reducing its expression. We also performed transverse aortic constriction (TAC and then treated mice with haloperidol. After two weeks, haloperidol-treated mice showed enhanced heart failure marked by deteriorated cardiac function, reduced ATP production and increasing mortality relative to TAC only mice. ATP supplementation via sodium pyruvate rescued phenotypes seen in haloperidol-treated TAC mice. We conclude that σ1R inactivation or downregulation in response to haloperidol treatment impairs mitochondrial Ca2+ mobilization, depleting ATP depletion from cardiomyocytes. These findings suggest a novel approach to mitigate haloperidol-related adverse effects in schizophrenia patients by ATP supplementation.

  6. Haloperidol aggravates transverse aortic constriction-induced heart failure via mitochondrial dysfunction.

    Science.gov (United States)

    Shinoda, Yasuharu; Tagashira, Hideaki; Bhuiyan, Md Shenuarin; Hasegawa, Hideyuki; Kanai, Hiroshi; Fukunaga, Kohji

    2016-07-01

    Haloperidol is an antipsychotic drug that inhibits the dopamine D2 receptor among others. Haloperidol also binds the sigma-1 receptor (σ1R) and inhibits it irreversibly. A serious outcome of haloperidol treatment of schizophrenia patients is death due to sudden cardiac failure. Although the cause remains unclear, we hypothesized that these effects were mediated by chronic haloperidol inhibition of cardiac σ1R. To test this, we treated neonatal rat cardiomyocytes with haloperidol, exposed them to angiotensin II and assessed hypertrophy, σ1R expression, mitochondrial Ca(2+) transport and ATP levels. In this context, haloperidol treatment altered mitochondrial Ca(2+) transport resulting in decreased ATP content by inactivating cardiac σ1R and/or reducing its expression. We also performed transverse aortic constriction (TAC) and then treated mice with haloperidol. After two weeks, haloperidol-treated mice showed enhanced heart failure marked by deteriorated cardiac function, reduced ATP production and increasing mortality relative to TAC only mice. ATP supplementation via sodium pyruvate rescued phenotypes seen in haloperidol-treated TAC mice. We conclude that σ1R inactivation or downregulation in response to haloperidol treatment impairs mitochondrial Ca(2+) mobilization, depleting ATP depletion from cardiomyocytes. These findings suggest a novel approach to mitigate haloperidol-related adverse effects in schizophrenia patients by ATP supplementation. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Beneficial Effect of Preferential Music on Exercise Induced Changes in Heart Rate Variability.

    Science.gov (United States)

    Archana, R; Mukilan, R

    2016-05-01

    Music is known to reduce pain, anxiety and fear in several stressful conditions in both males and females. Further, listening to preferred music enhances the endurance during running performance of women rather than listening to non-preferred music. In recent years Heart Rate Variability (HRV) has been used as an indicator of autonomic nervous activity. This study was aimed to assess the effectiveness of preferential music on HRV after moderate exercise. This was an experimental study done in 30 healthy students aged between 20-25 years, of either sex. HRV was measured at rest, 15 minutes of exercise only and 15 minutes of exercise with listening preferential music in same participants. Data was analysed by One-Way ANOVA and Tukey HSD Post-hoc Test. Statistical significance was taken to be a p-value of less than 0.05. Low frequency and high frequency component was significantly increased followed by only exercise. Music minimized increase in both high and low frequency component followed by exercise. However, only high frequency change was statistically significant. LF/HF ratio was significantly increased followed by only exercise. Music significantly minimized increase in LF/HF ratio. This study provides the preliminary evidence that listening to preferential music could be an effective method of relaxation, as indicated by a shift of the autonomic balance towards the parasympathetic activity among medical students.

  8. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.

    Science.gov (United States)

    Li, Chi-Pei; Lo, Chi-Wen; Lu, Po-Chien

    2010-03-01

    Among the clinical complications of mechanical heart valves (MHVs), hemolysis was previously thought to result from Reynolds stresses in turbulent flows. A more recent hypothesis suggests viscous dissipative stresses at spatial scales similar in size to red blood cells may be related to hemolysis in MHVs, but the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. We studied the St. Jude Medical (SJM) 27 mm valve in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with particle image velocimetry (PIV). Assuming a dynamic equilibrium assumption between the resolved and sub-grid-scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed Reynolds stresses up to 80 N/m2 throughout the cardiac cycle, and viscous dissipative stresses below 12 N/m2. The viscous dissipative stresses remain far below the threshold of red blood cell hemolysis, but could potentially damage platelets, implying the need for further study in the phenomenon of MHV hemolytic complications.

  9. TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.

    Science.gov (United States)

    Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer

    2011-07-01

    Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.

  10. Exercise-induced bone formation is poorly linked to local strain magnitude in the sheep tibia.

    Directory of Open Access Journals (Sweden)

    Ian J Wallace

    Full Text Available Functional interpretations of limb bone structure frequently assume that diaphyses adjust their shape by adding bone primarily across the plane in which they are habitually loaded in order to minimize loading-induced strains. Here, to test this hypothesis, we characterize the in vivo strain environment of the sheep tibial midshaft during treadmill exercise and examine whether this activity promotes bone formation disproportionately in the direction of loading in diaphyseal regions that experience the highest strains. It is shown that during treadmill exercise, sheep tibiae were bent in an anteroposterior direction, generating maximal tensile and compressive strains on the anterior and posterior shaft surfaces, respectively. Exercise led to significantly increased periosteal bone formation; however, rather than being biased toward areas of maximal strains across the anteroposterior axis, exercise-related osteogenesis occurred primarily around the medial half of the shaft circumference, in both high and low strain regions. Overall, the results of this study demonstrate that loading-induced bone growth is not closely linked to local strain magnitude in every instance. Therefore, caution is necessary when bone shaft shape is used to infer functional loading history in the absence of in vivo data on how bones are loaded and how they actually respond to loading.

  11. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes

    Science.gov (United States)

    Juin, Amélie; Billottet, Clotilde; Moreau, Violaine; Destaing, Olivier; Albiges-Rizo, Corinne; Rosenbaum, Jean; Génot, Elisabeth; Saltel, Frédéric

    2012-01-01

    Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induced linear F-actin structures, distributed along the fibrils, on endothelial cells, macrophages, fibroblasts, and tumor cells. These structures share features with conventional invadosomes, as they express cortactin and N-WASP and accumulate the scaffold protein Tks5, which proved essential for their formation. On the basis of their ability to degrade extracellular matrix elements and their original architecture, we named these structures “linear invadosomes.” Interestingly, podosomes or invadopodia were replaced by linear invadosomes upon contact of the cells with fibrillar collagen I. However, linear invadosomes clearly differ from classical invadosomes, as they do not contain paxillin, vinculin, and β1/β3 integrins. Using knockout mouse embryonic fibroblasts and RGD peptide, we demonstrate that linear invadosome formation and activity are independent of β1 and β3 integrins. Finally, linear invadosomes also formed in a three-dimensional collagen matrix. This study demonstrates that fibrillar collagen I is the physiological inducer of a novel class of invadosomes. PMID:22114353

  12. Cardiac-specific overexpression of catalase prevents diabetes-induced pathological changes by inhibiting NF-κB signaling activation in the heart.

    Science.gov (United States)

    Cong, Weitao; Ruan, Dandan; Xuan, Yuanhu; Niu, Chao; Tao, Youli; Wang, Yang; Zhan, Kungao; Cai, Lu; Jin, Litai; Tan, Yi

    2015-12-01

    Catalase is an antioxidant enzyme that specifically catabolizes hydrogen peroxide (H2O2). Overexpression of catalase via a heart-specific promoter (CAT-TG) was reported to reduce diabetes-induced accumulation of reactive oxygen species (ROS) and further prevent diabetes-induced pathological abnormalities, including cardiac structural derangement and left ventricular abnormity in mice. However, the mechanism by which catalase overexpression protects heart function remains unclear. This study found that activation of a ROS-dependent NF-κB signaling pathway was downregulated in hearts of diabetic mice overexpressing catalase. In addition, catalase overexpression inhibited the significant increase in nitration levels of key enzymes involved in energy metabolism, including α-oxoglutarate dehydrogenase E1 component (α-KGD) and ATP synthase α and β subunits (ATP-α and ATP-β). To assess the effects of the NF-κB pathway activation on heart function, Bay11-7082, an inhibitor of the NF-κB signaling pathway, was injected into diabetic mice, protecting mice against the development of cardiac damage and increased nitrative modifications of key enzymes involved in energy metabolism. In conclusion, these findings demonstrated that catalase protects mouse hearts against diabetic cardiomyopathy, partially by suppressing NF-κB-dependent inflammatory responses and associated protein nitration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida.

    Science.gov (United States)

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-10-10

    Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (N t ), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated N t contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced N t contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial N t and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high N t contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two N t levels. After 168 h, an enhanced N t accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low N t . However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low N t to such an extent so that the benefit of the enhanced N t was almost compensated. Combined dark exposure and low N t of

  14. Observational evidence for supernova-induced star formation: Canis Major R1

    International Nuclear Information System (INIS)

    Herbst, W.; Assousa, G.E.

    1977-01-01

    The R association CMa R1, which contains two classical Herbig emission stars (Z CMa and HD 53367) and several other extremely young stellar objects, is found to lie at the edge of a large-scale ring of emission nebulosity. The form of the ring, which is also seen at radio wavelengths, and the absence of luminous stellar objects at its center suggest that it may be a relatively old supernova remnant (SNR). This suggestion is greatly strengthened by the discovery of an expanding H I shell coincident with the optical feature and the discovery of a runaway star, HD 54662, in CMa OB1. An age of order 5 x 10 5 years is derived for the SNR by comparing its properties with theoretical expectation based on models of SNRs evolving in a uniform medium. The close agreement between the likely ages of the stars and the age of the SNR, as well as the location of the recently formed objects with respect to the supernova shell, strongly support the hypothesis that a supernova event triggered star formation in CMa R1. Several other cases where evidence exists for supernova-induced star formation are briefly discussed, the most interesting being the Orion region where the hypothesis may provide a simple explanation for such diverse features as the runaway stars, Barnard's loop, and the gas kinematics and recent star formation in the Trapezium region

  15. Formation of thermally induced aggregates of the soya globulin beta-conglycinin.

    Science.gov (United States)

    Mills, E N; Huang, L; Noel, T R; Gunning, A P; Morris, V J

    2001-06-11

    The effect of ionic strength (I) on the formation of thermally induced aggregates by the 7S globular storage protein of soya, beta-conglycinin, has been studied using atomic force microscopy. Aggregates were only apparent when I> or =0.1, and had a fibrous appearance, with a height (diameter) of 8-11 nm. At high ionic strength (I=1.0) the aggregates appeared to associate into clumps. When aggregate formation was studied at I=0.2, it was clear that aggregation only began at temperatures above the main thermal transition for the protein at 75 degrees C, as determined by differential scanning calorimetry. This coincided with a small change in secondary structure, as indicated by circular dichroism spectroscopy, suggesting that a degree of unfolding was necessary for aggregation to proceed. Despite prolonged heating the size of the aggregates did not increase indefinitely, suggesting that certain beta-conglycinin isoforms were able to act as chain terminators. At higher protein concentrations (1% w/v) the linear aggregates appeared to form large macroaggregates, which may be the precursors of protein gel formation. The ability of beta-conglycinin to form such distinctive aggregates is discussed in relation to the presence of acidic inserts in certain of the beta-conglycinin subunits, which may play an important role in limiting aggregate length.

  16. Microwave-induced electrostatic etching: generation of highly reactive magnesium for application in Grignard reagent formation.

    Science.gov (United States)

    van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A

    2010-04-07

    A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.

  17. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  18. Formation of Tidally Induced Bars in Galactic Flybys: Prograde versus Retrograde Encounters

    Science.gov (United States)

    Łokas, Ewa L.

    2018-04-01

    Bars in disk galaxies can be formed by interactions with other systems, including those of comparable mass. It has long been established that the effect of such interactions on galaxy morphology depends strongly on the orbital configuration, in particular the orientation of the intrinsic spin of the galactic disk with respect to its orbital angular momentum. Prograde encounters modify the morphology strongly, including the formation of tidally induced bars, while retrograde flybys should have little effect on morphology. Recent works on the subject reached conflicting conclusions, one using the impulse approximation and claiming no dependence on this angle in the properties of tidal bars. To resolve the controversy, we performed self-consistent N-body simulations of hyperbolic encounters between two identical Milky Way-like galaxies assuming different velocities and impact parameters, with one of the galaxies on a prograde and the other on a retrograde orbit. The galaxies were initially composed of an exponential stellar disk and an NFW dark halo, and they were stable against bar formation in isolation for 3 Gyr. We find that strong tidally induced bars form only in galaxies on prograde orbits. For smaller impact parameters and lower relative velocities, the bars are stronger and have lower pattern speeds. Stronger bars undergo extended periods of buckling instability that thicken their vertical structure. The encounters also lead to the formation of two-armed spirals with strength inversely proportional to the strength of the bars. We conclude that proper modeling of prograde and retrograde encounters cannot rely on the simplest impulse approximation.

  19. Effect of mental challenge induced by movie clips on action potential duration in normal human subjects independent of heart rate.

    Science.gov (United States)

    Child, Nicholas; Hanson, Ben; Bishop, Martin; Rinaldi, Christopher A; Bostock, Julian; Western, David; Cooklin, Michael; O'Neil, Mark; Wright, Matthew; Razavi, Reza; Gill, Jaswinder; Taggart, Peter

    2014-06-01

    Mental stress and emotion have long been associated with ventricular arrhythmias and sudden death in animal models and humans. The effect of mental challenge on ventricular action potential duration (APD) in conscious healthy humans has not been reported. Activation recovery intervals measured from unipolar electrograms as a surrogate for APD (n=19) were recorded from right and left ventricular endocardium during steady-state pacing, whilst subjects watched an emotionally charged film clip. To assess the possible modulating role of altered respiration on APD, the subjects then repeated the same breathing pattern they had during the stress, but without the movie clip. Hemodynamic parameters (mean, systolic, and diastolic blood pressure, and rate of pressure increase) and respiration rate increased during the stressful part of the film clip (P=0.001). APD decreased during the stressful parts of the film clip, for example, for global right ventricular activation recovery interval at end of film clip 193.8 ms (SD, 14) versus 198.0 ms (SD, 13) during the matched breathing control (end film left ventricle 199.8 ms [SD, 16] versus control 201.6 ms [SD, 15]; P=0.004). Respiration rate increased during the stressful part of the film clip (by 2 breaths per minute) and was well matched in the respective control period without any hemodynamic or activation recovery interval changes. Our results document for the first time direct recordings of the effect of a mental challenge protocol on ventricular APD in conscious humans. The effect of mental challenge on APD was not secondary to emotionally induced altered respiration or heart rate. © 2014 American Heart Association, Inc.

  20. Mechanism of acetylcholine receptor cluster formation induced by DC electric field.

    Directory of Open Access Journals (Sweden)

    Hailong Luke Zhang

    Full Text Available BACKGROUND: The formation of acetylcholine receptor (AChR cluster is a key event during the development of the neuromuscular junction. It is induced through the activation of muscle-specific kinase (MuSK by the heparan-sulfate proteoglycan agrin released from the motor axon. On the other hand, DC electric field, a non-neuronal stimulus, is also highly effective in causing AChRs to cluster along the cathode-facing edge of muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: To understand its molecular mechanism, quantum dots (QDs were used to follow the movement of AChRs as they became clustered under the influence of electric field. From analyses of trajectories of AChR movement in the membrane, it was concluded that diffuse receptors underwent Brownian motion until they were immobilized at sites of cluster formation. This supports the diffusion-mediated trapping model in explaining AChR clustering under the influence of this stimulus. Disrupting F-actin cytoskeleton assembly and interfering with rapsyn-AChR interaction suppressed this phenomenon, suggesting that these are integral components of the trapping mechanism induced by the electric field. Consistent with the idea that signaling pathways are activated by this stimulus, the localization of tyrosine-phosphorylated forms of AChR β-subunit and Src was observed at cathodal AChR clusters. Furthermore, disrupting MuSK activity through the expression of a kinase-dead form of this enzyme abolished electric field-induced AChR clustering. CONCLUSIONS: These results suggest that DC electric field as a physical stimulus elicits molecular reactions in muscle cells in the form of cathodal MuSK activation in a ligand-free manner to trigger a signaling pathway that leads to cytoskeletal assembly and AChR clustering.

  1. ION-INDUCED PROCESSING OF COSMIC SILICATES: A POSSIBLE FORMATION PATHWAY TO GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, C.; Sabri, T. [Max Planck Institute for Astronomy, Heidelberg, Laboratory Astrophysics and Cluster Physics Group, Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Wendler, E. [Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Th., E-mail: cornelia.jaeger@uni-jena.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-01

    Ion-induced processing of dust grains in the interstellar medium and in protoplanetary and planetary disks plays an important role in the entire dust cycle. We have studied the ion-induced processing of amorphous MgFeSiO{sub 4} and Mg{sub 2}SiO{sub 4} grains by 10 and 20 keV protons and 90 keV Ar{sup +} ions. The Ar{sup +} ions were used to compare the significance of the light protons with that of heavier, but chemically inert projectiles. The bombardment was performed in a two-beam irradiation chamber for in situ ion-implantation at temperatures of 15 and 300 K and Rutherford Backscattering Spectroscopy to monitor the alteration of the silicate composition under ion irradiation. A depletion of oxygen from the silicate structure by selective sputtering of oxygen from the surface of the grains was observed in both samples. The silicate particles kept their amorphous structure, but the loss of oxygen caused the reduction of ferrous (Fe{sup 2+}) ions and the formation of iron inclusions in the MgFeSiO{sub 4} grains. A few Si inclusions were produced in the iron-free magnesium silicate sample pointing to a much less efficient reduction of Si{sup 4+} and formation of metallic Si inclusions. Consequently, ion-induced processing of magnesium-iron silicates can produce grains that are very similar to the glassy grains with embedded metals and sulfides frequently observed in interplanetary dust particles and meteorites. The metallic iron inclusions are strong absorbers in the NIR range and therefore a ubiquitous requirement to increase the temperature of silicate dust grains in IR-dominated astrophysical environments such as circumstellar shells or protoplanetary disks.

  2. Shock-induced kelyphite formation in the core of a complex impact crater

    Science.gov (United States)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This

  3. Flavonols Protect Against UV Radiation-Induced Thymine Dimer Formation in an Artificial Skin Mimic.

    Science.gov (United States)

    Maini, Sabia; Fahlman, Brian M; Krol, Ed S

    2015-01-01

    Exposure of skin to ultraviolet light has been shown to have a number of deleterious effects including photoaging, photoimmunosuppression and photoinduced DNA damage which can lead to the development of skin cancer. In this paper we present a study on the ability of three flavonols to protect EpiDerm™, an artificial skin mimic, against UV-induced damage. EpiDerm™ samples were treated with flavonol in acetone and exposed to UVA (100 kJ/m(2) at 365 nm) and UVB (9000 J/m(2) at 310 nm) radiation. Secretion of matrix metalloproteinase-1 (MMP-1) and tumor necrosis factor-α (TNF-a) were determined by ELISA, cyclobutane pyrimidine dimers were quantified using LC-APCI-MS. EpiDerm™ treated topically with quercetin significantly decreased MMP-1 secretion induced by UVA (100 µM) or UVB (200 µM) and TNF-a secretion was significantly reduced at 100 µM quercetin for both UVA and UVB radiation. In addition, topically applied quercetin was found to be photostable over the duration of the experiment. EpiDerm™ samples were treated topically with quercetin, kaempferol or galangin (52 µM) immediately prior to UVA or UVB exposure, and the cyclobutane thymine dimers (T-T (CPD)) were quantified using an HPLC-APCI MS/MS method. All three flavonols significantly decreased T-T (CPD) formation in UVB irradiated EpiDerm™, however no effect could be observed for the UVA irradiation experiments as thymine dimer formation was below the limit of quantitation. Our results suggest that flavonols can provide protection against UV radiation-induced skin damage through both antioxidant activity and direct photo-absorption. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  4. The magnitude and course of exercise-induced stroke volume changes determine the exercise tolerance in heart transplant recipients with heart failure and normal ejection fraction

    Czech Academy of Sciences Publication Activity Database

    Meluzín, J.; Hude, P.; Leinveber, P.; Jurák, Pavel; Soukup, L.; Viščor, Ivo; Špinarová, L.; Štěpánová, R.; Podroužková, H.; Vondra, Vlastimil; Langer, P.; Němec, P.

    2014-01-01

    Roč. 20, č. 1 (2014), s. 674-687 ISSN 1205-6626 R&D Projects: GA MŠk(CZ) LO1212 Keywords : heart failure * stroke volume index * exercise tolerance * bioimpedance Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 0.758, year: 2013

  5. Noninvasive cardiac activation imaging of ventricular arrhythmias during drug-induced QT prolongation in the rabbit heart.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; Zhou, Zhaoye; He, Bin

    2013-10-01

    Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis. © 2013 Heart Rhythm Society. All rights reserved.

  6. Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects.

    Science.gov (United States)

    Böer, Ulrike; Buettner, Falk F R; Schridde, Ariane; Klingenberg, Melanie; Sarikouch, Samir; Haverich, Axel; Wilhelmi, Mathias

    2017-03-01

    Glutaraldehyde-fixed porcine heart valves (ga-pV) are one of the most frequently used substitutes for insufficient aortic and pulmonary heart valves which, however, degenerate after 10-15 years. Yet, xeno-immunogenicity of ga-pV in humans including identification of immunogens still needs to be investigated. We here determined the immunogenicity of ga-pV in patients with respect to antibody formation, identity of immunogens and potential options to reduce antibody levels. Levels of tissue-specific and anti-αGal antibodies were determined retrospectively in patients who received ga-pV for 51 months (n=4), 25 months (n=6) or 5 months (n=4) and compared to age-matched untreated subjects (n=10) or younger subjects with or without vegetarian diet (n=12/15). Immunogenic proteins were investigated by Western blot approaches. Tissue-specific antibodies in patients were elevated after 5 (1.73-fold) and 25 (1.46-fold, both PVegetarian diet reduced significantly (0.63-fold, P<.01) the level of pre-formed αGal but not of tissue-specific antibodies. Immune response in patients towards ga-pV is induced by the porcine proteins albumin and collagen 6A1 as well as αGal epitopes, which seemed to be more sustained. In contrast, in healthy young subjects pre-formed anti-Gal antibodies were reduced by a meat-free nutrition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation.

    Science.gov (United States)

    Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G

    2009-11-01

    Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.

  8. Formation and damping of a shock wave induced by laser in a metallic target

    International Nuclear Information System (INIS)

    Cottet, F.

    1981-01-01

    In the first part of this work, a numerical simulation of the formation and of the damping of the shock wave induced in a solid target by a laser impulse is developed. It allows to interpret the experimental obtained in the second part of the study. Two series of experiments have been realized. An iron target metallographic study is intended to verify if laser shocks produce effects comparable with conventional shocks, particularly a deformation by albite twinning the existence of which is related to the shock amplitude and its evolution during the propagation in the target. Macles observation become a possible mean to estimate the value of the induced pressures. Another experiment series has been realized to determine more directly the shock parameters. Piezoelectric cermets have been used to detect a shock-wave passage and to measure the time taken to go through targets of variable thickness. The numerical solution allows, afterwards, to deduce the maximum pressure of the induced shock. The most part of the tests have been done on copper targets, the behaviour of which is well known in a large pressure domain. Some tests have been realized on aluminium and iron targets [fr

  9. Radiation-induced segregation and void formation in C+ ion-irradiated vanadium-carbon alloys

    International Nuclear Information System (INIS)

    Takeyama, T.; Ohnuki, S.; Takahashi, H.; Sato, Y.; Mochizuki, S.

    1982-01-01

    To clarify the effect of interstitial elements on radiation-induced segregation and void formation in V and V-C alloys irradiated by 200 keV C + ions to a dose of 48 dpa at 973 K, the microstructural observation and the measurement of C segregation to the surfaces were carried out by TEM and XPS. Voids, dislocations and precipitates were produced in all of the specimens during irradiation. The addition of C in V led to a reduction of void size and to increase in void number density, consequently the void swelling was suppressed strongly. Radiation-induced segregation of C was observed clearly on and near the irradiated surfaces of V-C alloys and as a result of the enrichment of C atoms, carbides precipitated on the surfaces. It is the first evidence of the radiation-induced segregation of interstitial elements on the surfaces. Also, quasi-carbides were observed on the (210) habit plaints near large voids and dislocations in V. The phenomena show that C atoms, which was insolved and/or implanted, interact strongly with vacancies rather than self-interstitial atoms and migrate with vacancies toward defect sinks, such as surfaces, voids, and dislocations. The segregated zones of C reduced the sink efficiency of the defects, and showed the effect of the suppression on void in V-C alloys. (author)

  10. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons.

    Science.gov (United States)

    Wang, Yin; Ma, Keli; Wang, Peixiang; Baba, Otto; Zhang, Helen; Parent, Jack M; Zheng, Pan; Liu, Yang; Minassian, Berge A; Liu, Yan

    2013-08-01

    Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.

  11. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system.

  12. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.

    Science.gov (United States)

    Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E

    2013-12-01

    Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. © 2013 Elsevier Ltd. All rights reserved.

  13. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  14. Enlarged Heart

    Science.gov (United States)

    ... rheumatic fever, a heart defect, infections (infectious endocarditis), connective tissue disorders, certain medications or radiation treatments for cancer, your heart may enlarge. Disease of the heart ...

  15. Effect of game format on heart rate, activity profile, and player involvement in elite and recreational youth players

    DEFF Research Database (Denmark)

    Randers, Morten Bredsgaard; Andersen, T B; Rasmussen, L S

    2014-01-01

     ± 12 bpm, P = 0.001, d = 0.59) and number of technical actions (65.1 ± 24.0 vs 36.9 ± 20.4, P ... bpm, P = 0.679, d = 0.10). In conclusion, HR is high in youth football matches irrespective of the level of play and the game format. Playing with fewer players on smaller pitches results...

  16. Cardiac function improved by sarcoplasmic reticulum Ca2+-ATPase overexpression in a heart failure model induced by chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Wei XIN

    2011-04-01

    Full Text Available Objective Chronic myocardial ischemia(CMI has become an important cause of heart failure(HF.The aim of present study was to examine the effects of Sarco-endoplasmic reticulum calcium ATPase(SERCA2a gene transfer in HF model in large animal induced by CMI.Methods HF was reproduced in minipigs by ligating the initial segment of proximal left anterior descending(LAD coronary artery with an ameroid constrictor to produce progressive vessel occlusion and ischemia.After confirmation of myocardial perfusion defect and cardiac function impairment by SPECT and echocardiography in the model,animals were divided into 4 groups: HF group;HF+enhanced green fluorescent protein(EGFP group;HF+SERCA2a group;and sham operation group as control.rAAV1-EGFP and rAAV1-SERCA2a(1×1012 vg for each animal were directly and intramyocardially injected to the animals of HF+EGFP and HF+SERCA2a groups.Sixty days after the gene transfer,the expression of SERCA2a at the protein level was examined by Western blotting and immunohistochemistry,the changes in cardiac function were determined by echocardiographic and hemodynamic analysis,and the changes in serum inflammatory and neuro-hormonal factors(including BNP,TNF-a,IL-6,ET-1 and Ang II were determined by radioimmunoassay.Results Sixty days after gene transfer,LVEF,Ev/Av and ±dp/dtmax increased significantly(P < 0.05,along with an increase of SERCA2a protein expression in the ischemic myocardium(PP < 0.05,accompanied by a significant decrease of inflammatory and neural-hormonal factors(PP < 0.05 in HF+SERCA2a group as compared with HF/HF+EGFP group.Conclusions Overexpression of SERCA2a may significantly improve the cardiac function of the ischemic myocardium of HF model induced by CMI and reverse the activation of neural-hormonal factors,implying that it has a potential therapeutic significance in CMI related heart failure.

  17. Sulforaphane-induced transcription of thioredoxin reductase in lens: possible significance against cataract formation

    Directory of Open Access Journals (Sweden)

    Varma SD

    2013-10-01

    Full Text Available Shambhu D Varma, Krish Chandrasekaran, Svitlana Kovtun Department of Ophthalmology and Visual Sciences, University of Maryland, Baltimore, MD, USA Purpose: Sulforaphane is a phytochemically derived organic isothiocyanate 1-isothiocyanato-4-methylsulfinyl-butane present naturally in crucifers, including broccoli and cauliflower. Biochemically, it has been reported to induce the transcription of several antioxidant enzymes. Since such enzymes have been implicated in preventing cataract formation triggered by the intraocular generation of oxy-radical species, the purpose of this investigation was to examine whether it could induce the formation of antioxidant enzymes in the eye lens. Thioredoxin reductase (TrxR was used as the target of such induction. Methods: Mice lenses were cultured for an overnight period of 17 hours in medium 199 fortified with 10% fetal calf serum. Incubation was conducted in the absence and presence of sulforaphane (5 µM. Subsequently, the lenses were homogenized in phosphate-buffered saline (PBS, followed by centrifugation. TrxR activity was determined in the supernatant by measuring the nicotinamide adenine dinucleotide phosphate (reduced (NADPH-dependent reduction of 5,5´-dithiobis-2-nitrobenzoic acid (DTNB. Non-specific reduction of DTNB was corrected for by conducting parallel determinations in the presence of aurothiomalate. The reduction of DTNB was followed spectrophotometrically at 410 nm. Results: The activity of TrxR in the lenses incubated with sulforaphane was found to be elevated to 18 times of that observed in lenses incubated without sulforaphane. It was also noticeably higher in the lenses incubated without sulforaphane than in the un-incubated fresh lenses. However, this increase was much lower than that observed for lenses incubated with sulforaphane. Conclusion: Sulforaphane has been found to enhance TrxR activity in the mouse lens in culture. In view of the protective effect of the antioxidant enzymes

  18. Raffinose Induces Biofilm Formation by Streptococcus mutans in Low Concentrations of Sucrose by Increasing Production of Extracellular DNA and Fructan.

    Science.gov (United States)

    Nagasawa, Ryo; Sato, Tsutomu; Senpuku, Hidenobu

    2017-08-01

    Streptococcus mutans is the primary etiological agent of dental caries and causes tooth decay by forming a firmly attached biofilm on tooth surfaces. Biofilm formation is induced by the presence of sucrose, which is a substrate for the synthesis of extracellular polysaccharides but not in the presence of oligosaccharides. Nonetheless, in this study, we found that raffinose, which is an oligosaccharide with an intestinal regulatory function and antiallergic effect, induced biofilm formation by S. mutans in a mixed culture with sucrose, which was at concentrations less than those required to induce biofilm formation directly. We analyzed the possible mechanism behind the small requirement for sucrose for biofilm formation in the presence of raffinose. Our results suggested that sucrose contributed to an increase in bacterial cell surface hydrophobicity and biofilm formation. Next, we examined how the effects of raffinose interacted with the effects of sucrose for biofilm formation. We showed that the presence of raffinose induced fructan synthesis by fructosyltransferase and aggregated extracellular DNA (eDNA, which is probably genomic DNA released from dead cells) into the biofilm. eDNA seemed to be important for biofilm formation, because the degradation of DNA by DNase I resulted in a significant reduction in biofilm formation. When assessing the role of fructan in biofilm formation, we found that fructan enhanced eDNA-dependent cell aggregation. Therefore, our results show that raffinose and sucrose have cooperative effects and that this induction of biofilm formation depends on supportive elements that mainly consist of eDNA and fructan. IMPORTANCE The sucrose-dependent mechanism of biofilm formation in Streptococcus mutans has been studied extensively. Nonetheless, the effects of carbohydrates other than sucrose are inadequately understood. Our findings concerning raffinose advance the understanding of the mechanism underlying the joint effects of sucrose and

  19. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  20. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.

    Science.gov (United States)

    Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin

    2017-09-01

    Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the

  1. A combination of caffeine and taurine has no effect on short term memory but induces changes in heart rate and mean arterial blood pressure.

    Science.gov (United States)

    Bichler, A; Swenson, A; Harris, M A

    2006-11-01

    Red Bull energy drink has become extraordinarily popular amongst college students for use as a study aid. We investigated the combined effects of Red Bull's two active ingredients, caffeine and taurine, on short term memory. Studies on the effects of these two neuromodulators on memory have yielded mixed results, and their combined actions have not yet been investigated. In this double-blind study, college student subjects consumed either caffeine and taurine pills or a placebo and then completed a memory assessment. Heart rate and blood pressure were monitored throughout the testing period. The combination of caffeine and taurine had no effect on short term memory, but did cause a significant decline in heart rate and an increase in mean arterial blood pressure. The heart rate decline may have been caused by pressure-induced bradycardia that was triggered by caffeine ingestion and perhaps enhanced by the actions of taurine.

  2. Menadione-induced DNA fragmentation without 8-oxo-2'-deoxyguanosine formation in isolated rat hepatocytes

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Corcoran, G B; Poulsen, H E

    1995-01-01

    Menadione (2-methyl-1,4-naphthoquinone) induces oxidative stress in cells causing perturbations in the cytoplasm as well as nicking of DNA. The mechanisms by which DNA damage occurs are still unclear, but a widely discussed issue is whether menadione-generated reactive oxygen species (ROS) directly...... damage DNA. In the present study, we measured the effect of menadione on formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), an index of oxidative DNA base modifications, and on DNA fragmentation. Isolated hepatocytes from phenobarbital-pretreated rats were exposed to menadione, 25-400 micro......M, for 15, 90 or 180 min with or without prior depletion of reduced glutathione (GSH) by diethyl maleate. Menadione caused profound GSH depletion and internucleosomal DNA fragmentation, which was demonstrated by a prominent fragmentation ladder on agarose gel electrophoresis. We found no oxidative...

  3. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.

    Science.gov (United States)

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.

  4. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses

    International Nuclear Information System (INIS)

    Huang, Huan; Zhang, Lei; Wang, Yang; Han, Xiaodong; Wu, Yiqun; Zhang, Ze; Gan, Fuxi

    2012-01-01

    A simple method to optically synthesize Ag nanoparticles in Ge 2 Sb 2 Te 5 phase change matrix is described. The fine structures of the locally formed phase change chalcogenide nanocomposite are characterized by high-resolution transmission electron microscopy. The formation mechanism of the nanocomposite is discussed with temperature evolution and distribution simulations. This easy-prepared metal nano-particle-embedded phase change microstructure will have great potential in nanophotonics applications, such as for plasmonic functional structures. This also provides a generalized approach to the preparation of well-dispersed nanoparticle-embedded composite thin films in principle. -- Highlights: ► We describe a method to prepare chalcogenide microstructures with Ag nanoparticles. ► We give the fine structural images of phase change nanocomposites. ► We discuss the laser-induced fusion mechanism by temperature simulation. ► This microstructure will have great potential in nanophotonics applications.

  5. Human Metapneumovirus Induces Formation of Inclusion Bodies for Efficient Genome Replication and Transcription.

    Science.gov (United States)

    Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth; Dutch, Rebecca Ellis

    2017-12-15

    induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. Copyright © 2017 American Society for Microbiology.

  6. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.

    Directory of Open Access Journals (Sweden)

    Rodrigo W A Souza

    Full Text Available Heart failure (HF is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting.We employed ascending aortic stenosis (AS inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET or to an untrained group (AS-UN. At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65, MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels.Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.

  7. Effect of a weight reduction program on baseline and stress-induced heart rate variability in children with obesity.

    Science.gov (United States)

    Mazurak, Nazar; Sauer, Helene; Weimer, Katja; Dammann, Dirk; Zipfel, Stephan; Horing, Björn; Muth, Eric R; Teufel, Martin; Enck, Paul; Mack, Isabelle

    2016-02-01

    Autonomic dysregulation is a well-established feature in adults with obesity but not in children. Since this dysregulation could contribute to weight dynamics, this study aimed to compare autonomic regulation in children with obesity and normal-weight peers and to track autonomic status during weight reduction. Sixty children with obesity and 27 age- and sex-matched normal-weight healthy participants were included. Heart rate variability (HRV) was assessed at baseline and during a mental stress test and a subsequent recovery period. Children with obesity were investigated both upon admission and discharge. Upon admission, no significant differences in HRV parameters were found for normal-weight participants and those with obesity. Inpatient treatment led to significant changes in HRV with increase in general variability (standard deviation of the normal-to-normal interval (SDNN), P Children with obesity had sympathetic activation similar to normal-weight controls during mental stress with subsequent return to baseline values, and weight loss did not affect this profile. A weight reduction program induced a change in autonomic activity in children with obesity toward parasympathetic dominance but had no influence on autonomic nervous system reactivity during stress conditions. © 2015 The Obesity Society.

  8. Value of the New Spline QTc Formula in Adjusting for Pacing-Induced Changes in Heart Rate

    Directory of Open Access Journals (Sweden)

    Hirmand Nouraei

    2018-01-01

    Full Text Available Aims. To determine whether a new QTc calculation based on a Spline fit model derived and validated from a large population remained stable in the same individual across a range of heart rates (HRs. Second, to determine whether this formula incorporating QRS duration can be of value in QT measurement, compared to direct measurement of the JT interval, during ventricular pacing. Methods. Individuals (N=30; 14 males aged 51.9 ± 14.3 years were paced with decremental atrial followed by decremental ventricular pacing. Results. The new QTc changed minimally with shorter RR intervals, poorly fit even a linear relationship, and did not fit a second-order polynomial. In contrast, the Bazett formula (QTcBZT showed a steep and marked increase in QTc with shorter RR intervals. For atrial pacing data, QTcBZT was fit best by a second-order polynomial and demonstrated a dramatic increase in QTc with progressively shorter RR intervals. For ventricular pacing, the new QTc minus QRS duration did not meaningfully change with HR in contrast to the HR dependency of QTcBZT and JT interval. Conclusion. The new QT correction formula is minimally impacted by HR acceleration induced by atrial or ventricular pacing. The Spline QTc minus QRS duration is an excellent method to estimate QTc in ventricular paced complexes.

  9. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing.

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  10. Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J.; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed

    2006-01-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation. PMID:16870703

  11. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation.

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed; Pelletier, Jerry

    2006-10-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2alpha phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2alpha phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2alpha to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2alpha phosphorylation-dependent and -independent pathways that target translation initiation.

  12. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  13. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.

    Science.gov (United States)

    Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej

    2018-05-11

    Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches.

    Science.gov (United States)

    Brandt, Moritz; Schönfelder, Tanja; Schwenk, Melanie; Becker, Christian; Jäckel, Sven; Reinhardt, Christoph; Stark, Konstantin; Massberg, Steffen; Münzel, Thomas; von Brühl, Marie-Luise; Wenzel, Philip

    2014-01-01

    Interaction between vascular wall abnormalities, inflammatory leukocytes, platelets, coagulation factors and hemorheology in the pathogenesis of deep vein thrombosis (DVT) is incompletely understood, requiring well defined animal models of human disease. We subjected male C57BL/6 mice to ligation of the inferior vena cava (IVC) as a flow reduction model to induce DVT. Thrombus size and weight were analyzed macroscopically and sonographically by B-mode, pulse wave (pw) Doppler and power Doppler imaging (PDI) using high frequency ultrasound. Thrombus size varied substantially between individual procedures and mice, irrespective of the flow reduction achieved by the ligature. Interestingly, PDI accurately predicted thrombus size in a very robust fashion (r2 = 0.9734, p thrombus weight (r2 = 0.5597, p thrombus formation. Occlusion of side branches prior to ligation of IVC did not increase thrombus size, probably due to patent side branches inaccessible to surgery. Venous side branches influence thrombus size in experimental DVT and might therefore prevent thrombus formation. This renders vessel anatomy and hemorheology important determinants in mouse models of DVT, which should be controlled for.

  15. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  16. Turning snails into slugs: induced body plan changes and formation of an internal shell.

    Science.gov (United States)

    Osterauer, Raphaela; Marschner, Leonie; Betz, Oliver; Gerberding, Matthias; Sawasdee, Banthita; Cloetens, Peter; Haus, Nadine; Sures, Bernd; Triebskorn, Rita; Köhler, Heinz-R

    2010-01-01

    The archetypal body plan of conchiferan molluscs is characterized by an external calcareous shell, though internalization of shells has evolved independently in a number of molluscan clades, including gastropod families. In gastropods, the developmental process of torsion is regarded as a hallmark that is associated with a new anatomical configuration. This configuration is present in extant prosobranch gastropod species, which predominantly bear external shells. Here, we show that short-term exposure to platinum during development uncouples at least two of the processes associated with torsion of the freshwater snail Marisa cornuarietis. That is, the anus of the treated snails is located anteriorly, but the gill and the designated mantle tissue remains in a posterior location, thus preventing the formation of an external shell. In contrast to the prosobranchian archetype, platinum treatment results in the formation of a posterior gill and a cone-shaped internal shell, which persists across the lifetime. This first finding of artificially induced snail-slug conversion was also seen in the pulmonate snail Planorbarius corneus and demonstrates that selective alteration of embryonic key processes can result in fundamental changes of an existing body plan and-if altered regulation is inherited-may give rise to a new one. © 2010 Wiley Periodicals, Inc.

  17. Saccharomyces boulardii administration can inhibit the formation of gastric lymphoid follicles induced by Helicobacter suis infection.

    Science.gov (United States)

    Yang, Lin; Tian, Zi-Bin; Yu, Ya-Nan; Zhang, Cui-Ping; Li, Xiao-Yu; Mao, Tao; Jing, Xue; Zhao, Wen-Jun; Ding, Xue-Li; Yang, Ruo-Ming; Zhang, Shuai-Qing

    2017-01-01

    Helicobacter suis has a greater tendency to induce gastric mucosa-associated lymphoid tissue lymphoma compared with other Helicobacter species in humans and animals. Saccharomyces boulardii has been established as an adjunct to H. pylori eradication treatment, but the effect of S. boulardii administration alone on Helicobacter infection remains unclear. Here, we found that S. boulardii administration effectively decreased the bacterial load of H. suis and inhibited the formation of lymphoid follicles in the stomach post-infection. The levels of H. suis-specific immunoglobulin A (IgA) and secretory IgA in the gastric juice and small intestinal secretions and the production of mouse β-defensin-3 in the small intestinal secretions were significantly increased by S. boulardii administration at 12 weeks after H. suis infection. In addition, feeding with S. boulardii inhibited the expression of inflammatory cytokines and lymphoid follicle formation-related factors after H. suis infection. These results suggested that S. boulardii may be useful for the prevention and treatment of Helicobacter infection-related diseases in humans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  19. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    International Nuclear Information System (INIS)

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-01-01

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis

  20. The effect of the temperature in the formation of sputter-induced surface topography

    International Nuclear Information System (INIS)

    Zhang Jiping; Wang Zhenxia; Tao Zhenlan; Pan Jisheng

    1992-01-01

    The formation of the ion-induced surface topography has been studied extensively, but we know little of how to control the formation of the surface topography. In order to study further the mechanism of the formation of the surface topography at different target temperatures, we have selected two samples of the metal indium (99.99% purity) for study. The samples were bombarded by 27 keV Ar + ions at normal incidence, and the temperature was kept at 25 or 70 o C. The Ar + beam current was about 0.7 μA and the total dose was 1.4 x 10 18 ions cm -2 for each sample. The examination of the bombarded surface for each sample was carried out on an S-570 scanning electron microscope (SEM). In the bombarded surface of sample A at 25 o C, there are some terraces surrounded by deep ditches and among them there exhibit pebble-or sand-like structures. The terraces respond to the lowest-index planes of specimens in which the channel effect can be seen. The ditches are originated from grain boundaries, and the other part is high-index planes. In sample B at 70 o C, there are the same pebble-or sand-like structures, but instead of terraces there are some craters whose size and distribution is similar to that of the terraces in sample A. The middle of the crater is cavitated a little and its edge is raised. Like sample A, there are some deep ditches surrounding the craters. Comparing samples A and B, it can be accepted that these terraces and craters originated from the plane of the same orientation of grain. An interpretation of these observations is offered. (author)

  1. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  2. Heart-specific overexpression of (pro)renin receptor induces atrial fibrillation in mice.

    Science.gov (United States)

    Lian, Hong; Wang, Xiaojian; Wang, Juan; Liu, Ning; Zhang, Li; Lu, Yingdong; Yang, Yanmin; Zhang, Lianfeng

    2015-04-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia, causing substantial cardiovascular morbidity and mortality. The renin-angiotensin system (RAS) has been shown to be involved in the pathophysiology of AF. The (pro)renin receptor [(p)RR] is the last identified member of RAS. However, the role of (p)RR in AF is still unknown. Circulating levels of (p)RR were determined using an immunosorbent assay in 22 patients with AF (paroxysmal or persistent) and 22 healthy individuals. The plasma levels of (p)RR increased 3.6-fold in AF patients (Patrial flutter since 2 months, then spontaneously converted to atrial fibrillation by 10 months. The atria of the transgenic mice demonstrated significant dilation and fibrosis, and exhibited a high incidence of sudden death. Additionally, the genes of SERCA and HCN4, which are involved in the electrophysiology of AF, were significantly down-regulated and up-regulated respectively in transgenic mice atria. The phosphorylation of Erk1/2 significantly increased in the atria of the transgenic mice, and the activated Erk1/2 was found predominantly in cardiac fibroblasts, suggesting that the transgenic (p)RR gene may induce atrial fibrillation by activation of Erk1/2 in the cardiac fibroblasts of the atria. (p)RR promotes atrial structural and electrical remodeling in vivo, which indicates that (p)RR plays an important role in the pathological development of AF. Copyright © 2015. Published by Elsevier Ireland Ltd.

  3. The effects of the sulfonylurea glyburide on glutathione peroxidase, superoxide dismutase and catalase activities in the heart tissue of streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Bukan, N; Sancak, B; Bilgihan, A; Kosova, F; Buğdayci, G; Altan, N

    2004-09-01

    Oxygen free radicals have been suggested to be a contributory factor in diabetes complications. The aim of this study was to examine the effects of glyburide on the antioxidant enzyme activities in the heart tissue of diabetic rats. We investigated the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) in the hearts of both control and streptozotocin-induced diabetic rats. In the heart of diabetic rats, the activity of total superoxide dismutase decreased significantly (p < 0.005), whereas the activity of catalase and glutathione peroxidase increased to a large extent (p < 0.0001 and p = 0.05, respectively) at the end of the fourth week compared with the control group. Glyburide treatment of diabetic rats for 4 weeks corrected the changes observed in diabetic heart. In addition, blood glucose levels of untreated diabetic rats decreased following the glyburide treatment. These results demonstrate that the sulfonylurea glyburide is capable of exerting direct insulin-like effect on heart superoxide dismutase, catalase and glutathione peroxidase activities of diabetic rats in vivo.

  4. The Study of Fetal Rat Model of Intra-Amniotic Isoproterenol Injection Induced Heart Dysfunction and Phenotypic Switch of Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Yifei Li

    2014-01-01

    Full Text Available To establish a reliable isoproterenol induced heart dysfunction fetal rat model and understand the switches of contractile proteins, 45 pregnant rats were divided into 15 mg/kg-once, 15 mg/kg-twice, sham-operated once, sham-operated twice, and control groups. And 18 adult rats were divided into isoproterenol-treated and control groups. H&E staining, Masson staining, and transmission electron microscope were performed. Apoptotic rate assessed by TUNEL analysis and expressions of ANP, BNP, MMP-2, and CTGF of hearts were measured. Intra-amniotic injections of isoproterenol were supplied on E14.5 and E15.5 for fetuses and 7-day continuous intraperitoneal injections were performed for adults. Then echocardiography was performed with M-mode view assessment on E18.5 and 6 weeks later, respectively. Isoproterenol twice treated fetuses exhibited significant changes in histological evaluation, and mitochondrial damages were significantly severe with increased apoptotic rate. ANP and BNP increased and that of MMP-2 increased in isoproterenol twice treated group compared to control group, without CTGF. The isoforms transition of troponin I and myosin heavy chain of fetal heart dysfunction were opposite to adult procedure. The administration of intra-amniotic isoproterenol to fetal rats could induce heart dysfunction and the regulation of contractile proteins of fetuses was different from adult procedure.

  5. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Directory of Open Access Journals (Sweden)

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  6. Formation of tRNA granules in the nucleus of heat-induced human cells

    International Nuclear Information System (INIS)

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-01-01

    Highlights: ► tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. ► tRNAs form the unique granules in the nucleus. ► tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA Met (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA Met was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  7. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.

    Science.gov (United States)

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel

    2011-06-01

    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  8. Formation and properties of radiation-induced defects and radiolysis products in lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Tiliks, J.E.; Kizane, G.K.; Supe, A.A.; Abramenkovs, A.A.; Tiliks, J.J. (Latvian Univ., Riga (Latvia)); Vasiljev, V.G. (Acad. A.A. Bochvar Inst. of Inorganic Materials, Moscow (USSR))

    1991-12-01

    Formation and properties of radiation-induced defects and radiolysis products in polycrystalline powders and ceramic pellets of Li{sub 4}SiO{sub 4} were studied under the effect of various types of ionizing irradiation ({gamma} quants, accelerated electrons, reactor irradiation), humidity, temperature, impurities in the samples, etc. The content of radiation defects and radiolysis products poorly depends on irradiation type, dose rate, admixture elements. The concentration of defects highly depends on the temperature of irradiation, humidity, granural size. Empirical dependence of radiolysis degree {alpha} on the dose was found: {alpha}=5x10{sup -2}xD{sup 0.5} for {gamma} and electron irradiation (T{sub rad}=300-350 K) and {alpha}=5x10{sup -3}xD{sup 0.5} for reactor radiation (T{sub rad}=700-800 K); {alpha} - matrix dissociation degree (in %); D - dose (in MGy). Colloidal lithium and silicon, lithium and silicon oxides, and O{sub 2} are the final products of radiolysis. Radiation-induced defects change tritium thermo-extraction parameters, deteriorate mechanical, thermo-physical and electric properties of ceramics. (orig.).

  9. Spectral Induced Polarization Response of Biofilm Formation in Hanford Vadose Zone Sediment

    Science.gov (United States)

    Garcia, A.; Katsenovich, Y.; Lee, B.; Whitman, D.

    2017-12-01

    As a result of the U.S. Nuclear weapons program during the second world war and the cold war, there now exists a significant amount of uranium contamination at the U.S. Department of Energy Hanford site located in Washington state. In-situ immobilization of mobile uranium via injections of a soluble sodium tripolyphosphate amendment may prove effective in the formation of insoluble uranyl phosphate mineral, autunite. However, the injected polyphosphate undergoes hydrolysis in aqueous solutions to form orthophosphate, which serves as a readily available nutrient for the various microorganisms in the sediment. Sediment-filled column experiments conducted under saturated oxygen restricted conditions using geophysical Spectral Induced Polarization technique have shown the impact of microbes on the dissolution of autunite, a calcium uranyl phosphate mineral. Spectral Induced Polarization may be an effective way to track changes indicative of bacterial activities on the surrounding environment. This method can be a cost-effective alternative to the drilling of boreholes at a field scale.

  10. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.

    Science.gov (United States)

    Hoke, Eric T; Slotcavage, Daniel J; Dohner, Emma R; Bowring, Andrea R; Karunadasa, Hemamala I; McGehee, Michael D

    2015-01-01

    We report on reversible, light-induced transformations in (CH 3 NH 3 )Pb(Br x I 1- x ) 3 . Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.

  11. Cell colony formation induced by Xenopus egg extract as a marker for improvement of cloned blastocyst formation in pig

    DEFF Research Database (Denmark)

    Liu, Ying; Østrup, Olga; Li, Juan

    2011-01-01

    method based on the colony formation of cells after extract treatment, and subsequent in vitro cloning efficiency using treated cells as chromatin donors. Porcine fetal fibroblasts were treated with each batch of extract, and cultured in embryonic stem cell (ES) medium for 12 days. The number of forming...

  12. Drug-Induced- or Rheumatic- Valvular Heart Disease in Patients Exposed to Benfluorex?

    Directory of Open Access Journals (Sweden)

    Florent Le Ven

    Full Text Available There is a risk of misdiagnosis between benfluorex-induced VHD and acute rheumatic fever (ARF-related VHD due to common characteristics of both etiologies. We aimed at estimating the probability for a patient exposed to benfluorex presenting with VHD to have, at the same time, a history of ARF-related VHD. Such epidemiological approach could help at reducing the risk of misdiagnosis. We used INSEE data and related literature as well as various modeling hypotheses to drive and test a formula for calculating the probability of a patient presenting with VHD and a history of benfluorex intake to have a prior history of ARF-related VHD. Different scenarios were estimated by a Markov model on the life course of people born in France between 1940 and 1960. Sensitivity analyses were performed under these scenarios. According to the different scenarios and gender, the probability that a patient born between 1940 and 1960 presenting with VHD and a history of benfluorex intake would have had a prior history of ARF-related VHD varied from 0.2% to 2.7%. The probabilities by the year of birth were as follows: 0.8%-2.7% for a patient born in 1940, < 0.5% in all scenarios for patients born after 1955, and < 0.2% in all scenarios for patients, born in 1960. Our results indicate that the burden of ARF-related VHD is low in the patient population exposed to benfluorex. The probability of ARF related VHD should not be over-estimated in the diagnostic procedure of VHD.

  13. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    Science.gov (United States)

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation

    Science.gov (United States)

    Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.

    2013-01-01

    Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158

  15. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss.

    Science.gov (United States)

    Raghu Nadhanan, Rethi; Abimosleh, Suzanne M; Su, Yu-Wen; Scherer, Michaela A; Howarth, Gordon S; Xian, Cory J

    2012-06-01

    Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.

  16. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.

    Science.gov (United States)

    Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin

    2015-06-16

    In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with

  17. Merkel Cell Polyomavirus Small T Antigen Drives Cell Motility via Rho-GTPase-Induced Filopodium Formation.

    Science.gov (United States)

    Stakaitytė, Gabrielė; Nwogu, Nnenna; Dobson, Samuel J; Knight, Laura M; Wasson, Christopher W; Salguero, Francisco J; Blackbourn, David J; Blair, G Eric; Mankouri, Jamel; Macdonald, Andrew; Whitehouse, Adrian

    2018-01-15

    Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases, and MCPyV-induced tumorigenesis largely depends on the expression of the small tumor antigen (ST). Since the discovery of MCPyV, a number of mechanisms have been suggested to account for replication and tumorigenesis, but to date, little is known about potential links between MCPyV T antigen expression and the metastatic nature of MCC. Previously, we described the action of MCPyV ST on the microtubule network and how it impacts cell motility and migration. Here, we demonstrate that MCPyV ST affects the actin cytoskeleton to promote the formation of filopodia through a mechanism involving the catalytic subunit of protein phosphatase 4 (PP4C). We also show that MCPyV ST-induced cell motility is dependent upon the activities of the Rho family GTPases Cdc42 and RhoA. In addition, our results indicate that the MCPyV ST-PP4C interaction results in the dephosphorylation of β 1 integrin, likely driving the cell motility pathway. These findings describe a novel mechanism by which a tumor virus induces cell motility, which may ultimately lead to cancer metastasis, and provides opportunities and strategies for targeted interventions for disseminated MCC. IMPORTANCE Merkel cell polyomavirus (MCPyV) is the most recently discovered human tumor virus. It causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer. However, the molecular mechanisms implicating MCPyV-encoded proteins in cancer development are yet to be fully elucidated. This study builds

  18. Antigenotoxic potential of Asparagus racemosus root extract against electron beam radiation induced micronuclei formation in Swiss albino mice

    International Nuclear Information System (INIS)

    Bhandary, B. Satheesh Kumar; Sharmila, K.P.; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To evaluate the antigenotoxic potential of Asparagus Racemosus Root ethanolic extract (ARE) against electron beam radiation induced micronuclei formation in Swiss albino mice. Micronucleus assay was performed in the bone marrow of Swiss albino mice according to the method of Hosseinimehr et al., 2003. The experimental animals were orally administered 200 mg/kg body weight of ARE once daily for 15 consecutive days. At the end of experimental period, the animals were euthanized and the bone marrow was collected from the femur. Control (C), Radiation control (RC) and drug control (DC) group was also maintained. The number of radiation induced Micronucleated Polychromatic Erythrocytes (MnPCE) and Micronucleated Normochromatic Erythrocytes were decreased in the ARE treated mice which was statistically significant (p<0.05) compared to radiation control group. Present findings demonstrate the antigenotoxic potential of ARE against electron beam radiation induced micronuclei formation which may be attributed to scavenging of radiation-induced free radicals

  19. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart.

    Directory of Open Access Journals (Sweden)

    Boyd R Rorabaugh

    Full Text Available We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury.Adult male and female rats received daily injections of methamphetamine (5 mg/kg or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining.Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine.Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.

  20. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart

    Science.gov (United States)

    Seeley, Sarah L.; Stoops, Thorne S.; D’Souza, Manoranjan S.

    2017-01-01

    Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse. PMID:28575091

  1. Pharmacological activation of rapid delayed rectifier potassium current suppresses bradycardia-induced triggered activity in the isolated guinea pig heart

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    arrhythmias. We present here data that support that NS3623 affects native I(Kr) and report the effects that activating this potassium current have in the intact guinea pig heart. In Langendorff-perfused hearts, the compound showed a concentration-dependent shortening of action potential duration, which...

  2. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes

    Directory of Open Access Journals (Sweden)

    Sudip Banerjee

    Full Text Available The hepatotoxicity of acetaminophen (APAP occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1 inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP, a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo. In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein, reactive oxygen formation (superoxide, loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction. Keywords: Acetaminophen, Neuronal nitric oxide, Oxidative stress, Mitochondria

  3. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts.

    Science.gov (United States)

    Botta, Amy; Laher, Ismail; Beam, Julianne; Decoffe, Daniella; Brown, Kirsty; Halder, Swagata; Devlin, Angela; Gibson, Deanna L; Ghosh, Sanjoy

    2013-01-01

    PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα) and systemic (circulating chemokines and cytokines) inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age.

  4. Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces

    International Nuclear Information System (INIS)

    Meyer, F W; Hijazi, H; Bannister, M E; Unocic, K A; Garrison, L M; Parish, C M

    2016-01-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces at UHV conditions over a wide energy range using real-time sample imaging of tungsten target emissivity change to monitor the spatial extent of nano-fuzz growth, corroborated by ex situ SEM and FIB/SEM analysis, in conjunction with accurate ion-flux profile measurements. The measurements were carried out at the multicharged ion research facility (MIRF) at energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. To understand the energy dependence of the observed flux thresholds, the energy dependence of three contributing factors: ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were (2–4) × 10 23 m −2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. The role of trapping at C impurity sites is discussed. (paper)

  5. Phase-Transition-Induced Pattern Formation Applied to Basic Research on Homeopathy: A Systematic Review.

    Science.gov (United States)

    Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan

    2018-05-16

     Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review.  Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria.  The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon.  Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.

  6. Evaluation of toxicological effects induced by tributyltin in clam Ruditapes decussatus using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy: Study of metabolic responses in heart tissue and detection of a novel metabolite.

    Science.gov (United States)

    Hanana, H; Simon, G; Kervarec, N; Cérantola, S

    2014-01-01

    Tributyltin (TBT) is a highly toxic pollutant present in many aquatic ecosystems. Its toxicity in mollusks strongly affects their performance and survival. The main purpose of this study was to elucidate the mechanisms of TBT toxicity in clam Ruditapes decussatus by evaluating the metabolic responses of heart tissues, using high-resolution magic angle-spinning nuclear magnetic resonance (HRMAS NMR), after exposure to TBT (10 -9 , 10 -6 and 10 -4 M) during 24 h and 72 h. Results show that responses of clam heart tissue to TBT exposure are not dose dependent. Metabolic profile analyses indicated that TBT 10 -6 M, contrary to the two other doses tested, led to a significant depletion of taurine and betaine. Glycine levels decreased in all clam groups treated with the organotin. It is suggested that TBT abolished the cytoprotective effect of taurine, betaine and glycine thereby inducing cardiomyopathie. Moreover, results also showed that TBT induced increase in the level of alanine and succinate suggesting the occurrence of anaerobiosis particularly in clam group exposed to the highest dose of TBT. Taken together, these results demonstrate that TBT is a potential toxin with a variety of deleterious effects on clam and this organotin may affect different pathways depending to the used dose. The main finding of this study was the appearance of an original metabolite after TBT treatment likely N-glycine-N'-alanine. It is the first time that this molecule has been identified as a natural compound. Its exact role is unknown and remains to be elucidated. We suppose that its formation could play an important role in clam defense response by attenuating Ca 2+ dependent cell death induced by TBT. Therefore this compound could be a promising biomarker for TBT exposure.

  7. DNA radio-induced tandem lesions: formation, introduction in oligonucleotides and repair

    International Nuclear Information System (INIS)

    Bourdat, Anne-Gaelle

    2000-01-01

    Cell killing induced by excited photosensitizers, ionizing radiation or radiomimetic drugs can not be only explained by the formation of single DNA lesions. Thus, multiply damaged sites, are likely to have harmful biological consequences. One example of tandem base damage induced by ".OH radical in X-irradiated aqueous solution of DNA oligomers is N-(2-deoxy-β-D-erythro-pentofuranosyl)-formyl-amine (dβF)/8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). In order to investigate the biological significance of such a tandem lesion, both 8-oxodGuo and dβF were introduced in synthetic oligonucleotides at vicinal positions using the solid phase phosphoramidite method with the 'Pac phosphoramidite' chemistry. The purity of the synthetic DNA fragments and the integrity of modified nucleosides was confirmed using different complementary techniques: HPLC, PAGE, ESI MS, MALDI-TOF MS and capillary electrophoresis. Using the above synthetic substrates, investigations were carried out in order to determine the substrate specificity and the excision mechanism of three glycosylases involved in the base excision repair pathway: endonuclease III, Fpg and yOggl. Both tandem lesions were substrates for the BER enzymes. However, the tandem lesion are not completely excised by the repair enzymes. The rates of excision as inferred from the determination of the ratios of Vm/Km Michaelis kinetics constants were not found to be significantly affected by the presence of the tandem lesions. MALDI-TOF mass spectrometry was used in order to gain insights into mechanistic aspects of oligonucleotide cleavage by the BER enzymes. During in vitro DNA synthesis by Taq DNA polymerase, Klenow fragment exo- and DNA polymerase β, tandem base damage were found to block the progression of the enzymes. Finally, the level of tandem base damage in the DNA exposed to γ-ray using the liquid chromatography coupled to electro-spray ionization tandem mass spectrometry was determined. Both dβF-8-oxodGuo and 8

  8. Heart failure-induced changes of voltage-gated Ca2+ channels and cell excitability in rat cardiac postganglionic neurons.

    Science.gov (United States)

    Tu, Huiyin; Liu, Jinxu; Zhang, Dongze; Zheng, Hong; Patel, Kaushik P; Cornish, Kurtis G; Wang, Wei-Zhong; Muelleman, Robert L; Li, Yu-Long

    2014-01-15

    Chronic heart failure (CHF) is characterized by decreased cardiac parasympathetic and increased cardiac sympathetic nerve activity. This autonomic imbalance increases the risk of arrhythmias and sudden death in patients with CHF. We hypothesized that the molecular and cellular alterations of cardiac postganglionic parasympathetic (CPP) neurons located in the intracardiac ganglia and sympathetic (CPS) neurons located in the stellate ganglia (SG) possibly link to the cardiac autonomic imbalance in CHF. Rat CHF was induced by left coronary artery ligation. Single-cell real-time PCR and immunofluorescent data showed that L (Ca(v)1.2 and Ca(v)1.3), P/Q (Ca(v)2.1), N (Ca(v)2.2), and R (Ca(v)2.3) types of Ca2+ channels were expressed in CPP and CPS neurons, but CHF decreased the mRNA and protein expression of only the N-type Ca2+ channels in CPP neurons, and it did not affect mRNA and protein expression of all Ca2+ channel subtypes in the CPS neurons. Patch-clamp recording confirmed that CHF reduced N-type Ca2+ currents and cell excitability in the CPP neurons and enhanced N-type Ca2+ currents and cell excitability in the CPS neurons. N-type Ca2+ channel blocker (1 μM ω-conotoxin GVIA) lowered Ca2+ currents and cell excitability in the CPP and CPS neurons from sham-operated and CHF rats. These results suggest that CHF reduces the N-type Ca2+ channel currents and cell excitability in the CPP neurons and enhances the N-type Ca2+ currents and cell excitability in the CPS neurons, which may contribute to the cardiac autonomic imbalance in CHF.

  9. Effect of radiation-induced heart injury on content of cardiac troponin I and endothelin-1 in SD rats

    International Nuclear Information System (INIS)

    Xu Jiuhong; Gao Yaoming; Zhang Junning; Li Xinli

    2011-01-01

    Objective: To investigate the effect of radiation-induced heart injury (RIHD) on cardiac endothelin-1 (ET-1) and cardiac troponin I (cTnI) in SD rats, and the possibility regarding ET-1 and cTnI as biomarker of RIHD was also explored. Methods: Healthy female SD rats were randomly divided into two groups: the control group (C) and irradiation group (R). The rats in R group were irradiated with linear accelerator at a single dose of 25 Gy. Five milliliters blood was collected from the inferior vena cava on the 5th, 15th, 30th, 60th day after radiation. Blood was centrifuged and serum was collected. Content of ET-1 and cTnI in blood serum were detected by ELISA kits. Results: The content of ET-1 in the R group was always higher than that in the C group (P<0.01) during the whole process, and the difference between two groups had statistical significance only on the 5th day (P<0.01) and 15th day (P<0.05) after radiation. However, the content of cTnI in R group was higher than that in the C group within 30 days after radiation, then decreased, and only on the 15th day (P<0.05) and the 30th day (P<0.01) after radiation, there was statistical difference between two groups. Conclusion: The content of ET-1 and cTnI in blood serum increase obviously after receiving RIHD, so these two indicators can be used as markers to diagnose early RIHD sensitively and specifically. (authors)

  10. Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart.

    Science.gov (United States)

    Rajagopalan, Geetha; Chandrasekaran, Sathiya Priya; Carani Venkatraman, Anuradha

    2017-01-01

    Mitochondrial abnormality is thought to play a key role in cardiac disease originating from the metabolic syndrome (MS). We evaluated the effect of troxerutin (TX), a semi-synthetic derivative of the natural bioflavanoid rutin, on the respiratory chain complex activity, oxidative stress, mitochondrial biogenesis and dynamics in heart of high fat, high fructose diet (HFFD) -induced mouse model of MS. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD for 60 days. Mice from each dietary regimen were divided into two groups on the 16th day and were treated or untreated with TX (150 mg/kg body weight [bw], per oral) for the next 45 days. At the end of experimental period, respiratory chain complex activity, uncoupling proteins (UCP)-2 and -3, mtDNA content, mitochondrial biogenesis and dynamics, oxidative stress markers and reactive oxygen species (ROS) generation were analyzed. Reduced mtDNA abundance with alterations in the expression of genes related to mitochondrial biogenesis and fission and fusion processes were observed in HFFD-fed mice. Disorganized and smaller mitochondria, reduction in complexes I, III and IV activities (by about 55%) and protein levels of UCP-2 (52%) and UCP-3 (46%) were noted in these mice. TX administration suppressed oxidative stress, improved the oxidative capacity and biogenesis and restored fission/fusion imbalance in the cardiac mitochondria of HFFD-fed mice. TX protects the myocardium by modulating the putative molecules of mitochondrial biogenesis and dynamics and by its anti-oxidant function in a mouse model of MS. © 2016 John Wiley & Sons Australia, Ltd.

  11. Divergent effects of 17-β-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-α-induced neointima formation

    International Nuclear Information System (INIS)

    Nintasen, Rungrat; Riches, Kirsten; Mughal, Romana S.; Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa; Turner, Neil A.; Porter, Karen E.

    2012-01-01

    Highlights: ► TNF-α augments neointimal hyperplasia in human saphenous vein. ► TNF-α induces detrimental effects on endothelial and smooth muscle cell function. ► Estradiol exerts modulatory effects on TNF-induced vascular cell functions. ► The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α). TNF-α can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-α on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-α (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-α, an effect that was abolished by co-culture with E2. TNF-α increased SV–SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1–50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV–SMC proliferation to a level comparable to that of TNF-α alone. SV–EC migration was significantly impaired by TNF-α (42% of control), and co-culture with E2 partially restored the ability of SV–EC to migrate and repair the wound. In contrast, TNF-α increased SV–SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-α potently induced ICAM-1 and VCAM-1 expression in both SV–EC and SV–SMC. However there was no modulation by E2 in either cell-type. In conclusion, TNF-α induced SV neointima formation, increased SMC proliferation and migration, impaired

  12. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Nintasen, Rungrat [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Riches, Kirsten; Mughal, Romana S. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa [Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Turner, Neil A. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Porter, Karen E., E-mail: medkep@leeds.ac.uk [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  13. Formation of tRNA granules in the nucleus of heat-induced human cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Ryu [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Mizuno, Rie [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Watanabe, Kazunori, E-mail: watanabe@ric.u-tokyo.ac.jp [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Ijiri, Kenichi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  14. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage

    Science.gov (United States)

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J.; Moeller, Benjamin C.; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M.; Starr, Thomas B.; Swenberg, James A.

    2015-01-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N2-hydroxymethyl-dG (N2-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N2-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [13CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N2-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency’s Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. PMID:25904104

  15. Intermittent Hypoxia-Induced Carotid Body Chemosensory Potentiation and Hypertension Are Critically Dependent on Peroxynitrite Formation

    Directory of Open Access Journals (Sweden)

    Esteban A. Moya

    2016-01-01

    Full Text Available Oxidative stress is involved in the development of carotid body (CB chemosensory potentiation and systemic hypertension induced by chronic intermittent hypoxia (CIH, the main feature of obstructive sleep apnea. We tested whether peroxynitrite (ONOO−, a highly reactive nitrogen species, is involved in the enhanced CB oxygen chemosensitivity and the hypertension during CIH. Accordingly, we studied effects of Ebselen, an ONOO− scavenger, on 3-nitrotyrosine immunoreactivity (3-NT-ir in the CB, the CB chemosensory discharge, and arterial blood pressure (BP in rats exposed to CIH. Male Sprague-Dawley rats were exposed to CIH (5% O2, 12 times/h, 8 h/day for 7 days. Ebselen (10 mg/kg/day was administrated using osmotic minipumps and BP measured with radiotelemetry. Compared to the sham animals, CIH-treated rats showed increased 3-NT-ir within the CB, enhanced CB chemosensory responses to hypoxia, increased BP response to acute hypoxia, and hypertension. Rats treated with Ebselen and exposed to CIH displayed a significant reduction in 3-NT-ir levels (60.8 ± 14.9 versus 22.9 ± 4.2 a.u., reduced CB chemosensory response to 5% O2 (266.5 ± 13.4 versus 168.6 ± 16.8 Hz, and decreased mean BP (116.9 ± 13.2 versus 82.1 ± 5.1 mmHg. Our results suggest that CIH-induced CB chemosensory potentiation and hypertension are critically dependent on ONOO− formation.

  16. Process comparison for fracture-induced formation of surface structures on polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan (China); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-01-01

    Using three different splitting approaches such as point-load splitting, tension-splitting and peeling–splitting, different surface ripples were produced on poly(methyl methacrylate) (PMMA)-based polymer films. Independent of the splitting approaches, the spatial wavelength of the surface structures is a linear function of the film thickness with the approximately same differential ratio of the spatial wavelength to the film thickness. The apparent surface residual stress was calculated from the thickness dependence of the spatial frequency, and the magnitude of the apparent surface stress increased with the increase of the film thickness. After exposing the aged PMMA-based photoresist at liquid state to gamma-irradiation, the effects of aging and the gamma-irradiation were investigated on the splitting-induced formation of surface structures. For the peeling–splitting process, the differential ratio of the spatial wavelength to the film thickness for the aged samples is larger than that for non-aged samples. The point-load splitting could not produce any surface pattern on the gamma-irradiated films. None of the splitting approaches could form surface structures for polymer films exposed to irradiation of high dose. Both the spatial wavelength and the apparent surface stress increased with the film thickness for the irradiated polymer films. - Highlights: • Using splitting processes, surface ripples were formed on polymer films. • The surface ripples were induced by compressively apparent surface stress. • The spatial wavelength of the ripples is a linear function of the film thickness. • The spatial wavelength of the ripples is affected by gamma-ray irradiation. • The spatial wavelength of the ripples is affected by aging.

  17. Multimodal Imaging for In Vivo Evaluation of Induced Pluripotent Stem Cells in a Murine Model of Heart Failure.

    Science.gov (United States)

    Rojas, Sebastian V; Meier, Martin; Zweigerdt, Robert; Eckardt, Dominik; Rathert, Christian; Schecker, Natalie; Schmitto, Jan D; Rojas-Hernandez, Sara; Martin, Ulrich; Kutschka, Ingo; Haverich, Axel; Martens, Andreas

    2017-02-01

    Myocardial stem cell therapy in heart failure is strongly dependent on successful cellular transfer, engraftment, and survival. Moreover, massive cell loss directly after intramyocardial injection is commonly observed, generating the need for efficient longitudinal monitoring of transplanted cells in order to develop more efficient transplantation techniques. Therefore, the aim of the present study was to assess viability and cardiac retention of induced pluripotent stem cells after intramyocardial delivery using in vivo bioluminescence analysis (BLI) and magnetic resonance imaging (MRI). Murine induced pluripotent stem cells (iPSCs) were transfected for luciferase reporter gene expression and labeled intracellularly with supraparamagnetic iron oxide particles. Consequently, 5 × 10 5 cells were transplanted intramyocardially following left anterior descending coronary artery ligation in mice. Cardiac iPSCs were detected using BLI and serial T2* sequences by MRI in a 14-day follow-up. Additionally, infarct extension and left ventricular (LV) function were assessed by MRI. Controls received the same surgical procedure without cell injection. MRI sequences showed a strong MRI signal of labeled iPSCs correlating with myocardial late enhancement, demonstrating engraftment in the infarcted area. Mean iPSC volumes were 4.2 ± 0.4 mm 3 at Day 0; 3.1 ± 0.4 mm 3 at Day 7; and 5.1 ± 0.8 mm 3 after 2 weeks. Thoracic BLI radiance decreased directly after injection from 1.0 × 10 6  ± 4.2 × 10 4 (p/s/cm 2 /sr) to 1.0 × 10 5  ± 4.9 × 10 3 (p/s/cm 2 /sr) on Day 1. Afterward, BLI radiance increased to 1.1 × 10 6  ± 4.2 × 10 4 (p/s/cm 2 /sr) 2 weeks after injection. Cardiac graft localization was confirmed by ex vivo BLI analysis and histology. Left ventricular ejection fraction was higher in the iPSC group (30.9 ± 0.9%) compared to infarct controls (24.0 ± 2.1%; P stem cell fate in vivo, enabling cardiac graft localization with

  18. Nitrosothiol formation and protection against Fenton chemistry by nitric oxide-induced dinitrosyliron complex formation from anoxia-initiated cellular chelatable iron increase.

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K; Du, Jian; Patel, Aashka R; Lancaster, Jack R

    2014-07-18

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with (•)NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged (•)NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief (•)NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1-2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief (•)NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of (•)NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of (•)NO. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Nitrosothiol Formation and Protection against Fenton Chemistry by Nitric Oxide-induced Dinitrosyliron Complex Formation from Anoxia-initiated Cellular Chelatable Iron Increase*

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K.; Du, Jian; Patel, Aashka R.; Lancaster, Jack R.

    2014-01-01

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with •NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged •NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief •NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief •NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of •NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of •NO. PMID:24891512

  20. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate.

    NARCIS (Netherlands)

    Song, G.; Habibovic, Pamela; Bao, Chongyun; Hu, J.; van Blitterswijk, Clemens; Yuan, Huipin; Chen, W.; Xu, H.H.K.

    2013-01-01

    Osteoinductive biomaterials are promising for bone repair. There is no direct proof that bone marrow mesenchymal stem cells (BMSCs) home to non-osseous sites and participate in ectopic bone formation induced by osteoinductive bioceramics. The objective of this study was to use a sex-mismatched

  1. The I kappa B kinase inhibitor ACHP strongly attenuates TGF beta 1-induced myofibroblast formation and collagen synthesis

    NARCIS (Netherlands)

    Mia, Masum M.; Bank, Ruud A.

    2015-01-01

    Excessive accumulation of a collagen-rich extracellular matrix (ECM) by myofibroblasts is a characteristic feature of fibrosis, a pathological state leading to serious organ dysfunction. Transforming growth factor beta1 (TGF beta 1) is a strong inducer of myofibroblast formation and subsequent

  2. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  3. Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.

    Science.gov (United States)

    Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman

    2018-06-05

    The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Influence of viscosity of the medium on the disposition of carbon nanotubes anisotropic structures formation induced by electric field

    International Nuclear Information System (INIS)

    Yakovenko, O.S.; Matsuj, L.Yu.; Zhuravkov, O.V.; Vovchenko, L.D.

    2014-01-01

    To obtain carbon nanotubes (CNT)-polymer composites with anisotropic physical properties an electric field application can be used. This investigation considers factors of CNT anisotropic distribution formation induced by electric field and consideration is supported with experimental results where some factors were varied. In the article an influence of magnitude and type of electric field and time of processing by electric field on CNT anisotropic structures formation in polymer mediums of different viscosities (oil, epoxy resins) is investigated. The aim of this work was to examine the CNT structuration process induced by electric field in viscous mediums and to find out the most optimal conditions of preparation of polymer/carbon composite materials (CM) with specified distribution of carbon filler induced by electric field. Scoping on polymer/carbon CM structuration was conducted by optical microscopy method. It was found that the main factors during CNT network formation are the type and viscosity of polymer binder and applied electric field parameters. It was observed that for high viscous polymer CNT network formation is unfeasible even at high applied electric field strength. But also for low viscous medium at relatively low electric field strength the CNT network formation is complicated too. And it was seen from optical observation that a type of the polymer variation causes different response of network form under the same experimental conditions. These distinctions are considered in the article

  5. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Science.gov (United States)

    Matuszkiewicz, Mateusz; Sobczak, Miroslaw; Cabrera, Javier; Escobar, Carolina; Karpiński, Stanislaw; Filipecki, Marcin

    2018-01-01

    Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD) known as the hypersensitive response (HR), whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1) family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2) revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively). LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators belonging to the

  6. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Directory of Open Access Journals (Sweden)

    Mateusz Matuszkiewicz

    2018-03-01

    Full Text Available Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD known as the hypersensitive response (HR, whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1 family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2 revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively. LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators

  7. Gold nanoparticle array formation on dimpled Ta templates using pulsed laser-induced thin film dewetting.

    Science.gov (United States)

    El-Sayed, Hany A; Horwood, Corie A; Owusu-Ansah, Ebenezer; Shi, Yujun J; Birss, Viola I

    2015-04-28

    Here we show that pulsed laser-induced dewetting (PLiD) of a thin Au metallic film on a nano-scale ordered dimpled tantalum (DT) surface results in the formation of a high quality Au nanoparticle (NP) array. In contrast to thermal dewetting, PLiD does not result in deformation of the substrate, even when the Au film is heated to above its melting point. PLiD causes local heating of only the metal film and thus thermal oxidation of the Ta substrate can be avoided, also because of the high vacuum (low pO2) environment employed. Therefore, this technique can potentially be used to fabricate NP arrays composed of high melting point metals, such as Pt, not previously possible using conventional thermal annealing methods. We also show that the Au NPs formed by PLiD are more spherical in shape than those formed by thermal dewetting, likely demonstrating a different dewetting mechanism in the two cases. As the metallic NPs formed on DT templates are electrochemically addressable, a longer-term objective of this work is to determine the effect of NP size and shape (formed by laser vs. thermal dewetting) on their electrocatalytic properties.

  8. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

    International Nuclear Information System (INIS)

    Fernandez, Carlos; Lobo, Maria del Val T.; Gomez-Coronado, Diego; Lasuncion, Miguel A.

    2004-01-01

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14α-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells

  9. Analysis on the formation condition of the algae-induced odorous black water agglomerate.

    Science.gov (United States)

    Wang, Guofang; Li, Xianning; Fang, Yang; Huang, Rui

    2014-12-01

    The algae-induced odorous black water agglomerate (OBWA) is a phenomenon in which water turns black and emits odorous gas. It is an ecological and environmental problem that has occurred several times in Taihu, a large eutrophic shallow lake in China. In this study, the collected eutrophic water with different algae densities was used to simulate OBWA. The results revealed that the massive accumulation and death of algae was the substrate source for OBWA. When the algae density reached 1.0 × 10(8) cells/L in the static and dark condition, at a constant high temperature (30 ± 2 °C), OBWA happened. There was a time difference between the water stinking and blackening with the stinking first. When the oxidation-reduction potential (ORP) value was between -250 and -50 mV, Dimethyl trisulfide (DMTS), the main contributor to the water stinking at the initial stage, and other odorous organics were produced. Water blackening was closely related to the increases of sulfide and dissolved Fe(2+) concentration. When the ORP value was between -350 and -300 mV, heavy metal containing sulfides such as FeS formed. Therefore, the condition when the water ORP value decreased to about -300 mV was considered the precursor for OBWA formation.

  10. Analysis of laser-induced evaporation of Al target under conditions of vapour plasma formation

    International Nuclear Information System (INIS)

    Mazhukin, V.I.; Nossov, V.V.; Smurov, I.

    2004-01-01

    The plasma-controlled evaporation of the Al target induced by the laser pulse with intensity of 10 9 W/cm 2 and wavelength of 1.06 μm is analysed with account for the two-dimensional effects. The self consistent model is applied, including the heat transfer equation in condensed medium, the equations of radiation gas dynamics in evaporated substance and the Knudsen layer model at the two media boundary. It is found that the phase transition at the target surface is controlled by the two factors: the surface temperature that depends on the transmitted radiation intensity, and the plasma pressure, governed by the expansion regime. The process comes through three characteristic stages, the sonic evaporation at the beginning, the condensation during the period of plasma formation and initial expansion, and finally, the re-start of evaporation in subsonic regime after the partial brightening of the plasma. During the subsonic evaporation stage the vapour flow and the mass removal rate are much higher near the beam boundaries than in the centre due to smaller plasma counter-pressure. The vapour plasma pattern is characterised by the dense hot zone near the surface where the absorption of laser energy occurs, and rapid decrease of density outside the zone due to three-dimensional expansion

  11. Morphology and formation mechanism in precipitation of calcite induced by Curvibacter lanceolatus strain HJ-1

    Science.gov (United States)

    Zhang, Chonghong; Li, Fuchun; Lv, Jiejie

    2017-11-01

    Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.

  12. Heart Failure

    Science.gov (United States)

    Heart failure is a condition in which the heart can't pump enough blood to meet the body's needs. Heart failure does not mean that your heart has stopped ... and shortness of breath Common causes of heart failure are coronary artery disease, high blood pressure and ...

  13. Photo-induced formation of nitrous acid (HONO) on protein surfaces

    Science.gov (United States)

    Meusel, Hannah; Elshorbany, Yasin; Bartels-Rausch, Thorsten; Selzle, Kathrin; Lelieveld, Jos; Ammann, Markus; Pöschl, Ulrich; Su, Hang; Cheng, Yafang

    2014-05-01

    The study of nitrous acid (HONO) is of great interest, as the photolysis of HONO leads to the OH radical, which is the most important oxidant in the troposphere. HONO is directly emitted by combustion of fossil fuel and from soil biogenic nitrite (Su et al., 2011), and can also be formed by gas phase reactions of NO and OH and heterogeneous reactions of NO2. Previous atmospheric measurements have shown unexpectedly high HONO concentrations during daytime. Measured mixing ratios were about one order of magnitude higher than model simulations (Kleffmann et al. 2005, Vogel et al. 2003). The additional daytime source of HONO might be attributed to the photolysis of adsorbed nitric acid or heterogeneous photochemistry of NO2 on organic substrates, such as humic acids or polyphenolic compounds (Stemmler et al., 2006), or indirectly through nitration of phenols and subsequent photolysis of nitrophenols (Sosedova et al., 2011, Bejan et al., 2006). An important reactive surface for the heterogeneous formation of HONO could involve proteins, which are ubiquitous in the environment. They are part of coarse biological aerosol particles like pollen grains, fine particles (fragments of pollen, microorganism, plant debris) and dissolved in rainwater, soil and road dust (Miguel et al. 1999). In this project a thin film of bovine serum albumin (BSA), a model protein with 67 kDa and 21 tyrosine residues per molecule, is irradiated and exposed to nitrogen dioxide in humidified nitrogen. The formation of HONO is measured with long path absorption photometry (LOPAP). The generated HONO is in the range of 100 to 1100 ppt depending on light intensity, NO2 concentration and film thickness. Light induced HONO formation on protein surfaces is stable over the 20-hours experiment of irradiation and exposure. On the other hand, light activated proteins reacting with NO2 form nitrated proteins, as detected by liquid chromatography (LC-DAD). Our experiments on tetranitromethane (TNM) nitrated

  14. Gravity-induced differentiations and deficiency in flower formation observed on Columbus experiment WAICO1

    Science.gov (United States)

    Scherer, Günther; Pietrzyk, Peter

    formation. When mutants and wt only grown in the 1G centrifuge were compared the mutant leaves and cotyledons were smaller than in wt and hypocotyls were longer, but when the plants in µG for 12d were compared this difference was not found. Hence, gravity had an influence on leaf expansion and hypocotyl length in the mutant. The samples grown for 12d in 1G were kept in µG after 12d on due to a technical failure of the 1G centrifuge. They were retrieved about a year later. They had grown to full senescence and were preserved in a beautiful state as "straw". The observations on the root patterns by the astronaut photos at day 12 could be confirmed but plants had grown on and newer roots made coils just as the plants grown µG. Leaf sizes were different for wt and mutant. The most striking observation was that the mutants had developed small flower stems with a few flower buds but many flowers were incomplete, without the proper sepal or petal number or without gynaecium. The wild type plants had not developed any clear flower stem but only several malformed cell clumps shortly above the rosette. In ground laboratory experiments the mutants flower earlier which might explain why they developed flowers to some extent whereas the wt not at all. Microgravity might be a "stress" for flower formation. Taken together, several gravity-induced (or microgravity-induced) changes in differentiation occurred.

  15. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, Hiroyasu [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori [Division of Infections a