WorldWideScience

Sample records for health physics division

  1. Bibliography of the literature of the Health Physics Division through calendar year 1975

    International Nuclear Information System (INIS)

    Dixon, M.N.

    1976-03-01

    The literature of the Health Physics Division is documented. The bibliography contains open literature publications, report literature, and special literature. An author index and separate listings of theses and patents are included

  2. Bibliography of the literature of the Health Physics Division through calendar year 1975

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, M.N. (comp.)

    1976-03-01

    The literature of the Health Physics Division is documented. The bibliography contains open literature publications, report literature, and special literature. An author index and separate listings of theses and patents are included. (HLW)

  3. Argonne Physics Division Colloquium

    Science.gov (United States)

    [Argonne Logo] [DOE Logo] Physics Division Home News Division Information Contact PHY Org Chart Physics Division Colloquium Auditorium, Building 203, Argonne National Laboratory Fridays at 11:00 AM 2017 : Sereres Johnston 15 Sep 2017 Joint Physics and Materials Science Colloquium J. C. Séamus Davis, Cornell

  4. Report on R and D activities of Health Physics Division 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    Raju, A; Narayanan, K K; Katoch, D S; Sharma, R C [comps.; Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    1996-10-01

    This report is a compilation of the activities and also of the results of various R and D programmes of the Health Physics Division of Bhabha Atomic Research Centre (BARC) during the period 1994-1995. The topics covered are: environmental studies, radiation dosimetry- internal and external, operational health physics and nuclear safety, instruments and techniques, radiation physics, mathematical modelling and software development, micrometeorology and industrial hygiene. The matter is presented in the form of abstracts with the publication details. Also included are extracts from IAEA research agreements and the summary of theses submitted by the staff members of the Division during the above period.

  5. Report on R and D activities of Health Physics Division 1994-1995

    International Nuclear Information System (INIS)

    Raju, A.; Narayanan, K.K.; Katoch, D.S.; Sharma, R.C.

    1996-10-01

    This report is a compilation of the activities and also of the results of various R and D programmes of the Health Physics Division of Bhabha Atomic Research Centre (BARC) during the period 1994-1995. The topics covered are: environmental studies, radiation dosimetry- internal and external, operational health physics and nuclear safety, instruments and techniques, radiation physics, mathematical modelling and software development, micrometeorology and industrial hygiene. The matter is presented in the form of abstracts with the publication details. Also included are extracts from IAEA research agreements and the summary of theses submitted by the staff members of the Division during the above period

  6. Health physics division annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  7. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  8. Theoretical physics division

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Research activities of the theoretical physics division for 1979 are described. Short summaries are given of specific research work in the following fields: nuclear structure, nuclear reactions, intermediate energy physics, elementary particles [fr

  9. Report on R and D activities of Health Physics Division 1984 - 1985

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Somasundaram, S.

    1986-01-01

    A summary of the research and development programmes undertaken in Health Physics Division during the period 1984-1985 is contained in the report. The details of the various investigations are given in references listed under each abstract, most of which are published in the form of papers in symposia and journals or as BARC reports. Some of the investigations have been carried out in collaboration with other Divisions of BARC and outside organisations. A list of these leading to M.Sc./Ph.D Degrees submitted by members of the Division is given at the end. The Division has also a number of research contracts with IAEA. A summary of work carried out under these projects is included in a separate section. (author)

  10. Report on R and D activities of Health Physics Division: 1988-1989

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Chakraborty, P.P.; Sengupta, S.; Iyer, M.R.

    1991-01-01

    The report summarises the different aspects of R and D programmes carried out in the Health Physics Division, BARC during 1988 and 1989. The results of various types of investigations on radiation physics, radiation dosimetry, instrumentation and techniques, environmental studies, micrometeorology etc. are presented in the form of abstracts. References to the detailed studies covered in the abstracts are also given in the appropriate sections. (author)

  11. Theoretical Physics Division

    International Nuclear Information System (INIS)

    This report is a survey of the studies done in the Theoretical Physics Division of the Nuclear Physics Institute; the subjects studied in theoretical nuclear physics were the few-nucleon problem, nuclear structure, nuclear reactions, weak interactions, intermediate energy and high energy physics. In this last field, the subjects studied were field theory, group theory, symmetry and strong interactions [fr

  12. Report on R and D activities of Health Physics Division. 1982-83

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Somasundaram, S.

    1984-01-01

    The research and development work of the Health Physics Division of the Bhabha Atomic Research Centre, Bombay, during the period 1982-1983 is reported in the form of individual summaries under the headings: radiation physics, radiation dosimetry, instrumentation, environmental monitoring, operational health physics, industrial hygiene, reactor safety studies, micrometeorology, stable and radioactive elements in environmental systems, and in vivo radioactivity measurement. The work carried out under research contracts with the IAEA and under bilateral collaboration programmes is summarised under the heading: collaboration studies. (M.G.B.)

  13. Report on R and D activities of Health Physics Division 1990-1993

    International Nuclear Information System (INIS)

    Raju, A.; Narayanan, K.K.; Sharma, R.C.

    1994-01-01

    This report is a compilation of various R and D programmes undertaken, continued and/or completed by Health Physics Division of Bhabha Atomic Research Centre (BARC) during the period 1990-1993. The findings and results of several types of investigations on topics ranging from environmental studies, radiation dosimetry - internal and external, operational health physics, site evaluation studies, micrometeorology, instrumentation and techniques and industrial hygiene and safety are presented in the form of abstracts. The abstracts have been arranged subject wise. References to the scientific papers and technical reports published or presented have been included. Also included are extracts from IAEA Research Agreements and theses submitted for the award of M.Sc./Ph.D. degrees by research by the staff members of the Division. (author). appendix

  14. 3. Theoretical Physics Division

    International Nuclear Information System (INIS)

    For the period September 1980 - Aug 1981, the studies in theoretical physics divisions have been compiled under the following headings: in nuclear physics, nuclear structure, nuclear reactions and intermediate energies; in particle physics, NN and NantiN interactions, dual topological unitarization, quark model and quantum chromodynamics, classical and quantum field theories, non linear integrable equations and topological preons and Grand unified theories. A list of publications, lectures and meetings is included [fr

  15. Progress report, Biology and Health Physics Division, January 1 to March 31, 1978

    International Nuclear Information System (INIS)

    Progress of work in Biology and Health Physics Division is reported for first quarter 1978. Measurements of liquid and plastic scintillator responses over a wide range of gamma-ray energies and calculations of the shape of the Compton electron distribution have been made for different scintillator sizes. Other work performed in health physics included determination of errors involved in accurate determination of dose-equivalents resulting from tritium ingestion, and development of radiation monitors and techniques for using them to best advantage. A wide range of environmental studies were underway during the quarter, notably 14 C/ 12 C ratio measurement using an accelerator-spectrometer and contiuing studies of the beneficial uses of thermal effluents. Development of computer linkage techniques for medical records continued. Practical applications of the approach include linkage of personal exposure histories with death records pertaining to the exposed individuals. Work in the Biology Branch has continued to focus upon the effects of radiation on a variety of living organisms, ranging from bacterial viruses to humans. The principal sensitive target for long-term biological effects of radiation on all living organisms is DNA. The chemical nature of the damage caused in DNA by radiation and the response of cells to this damage is being studied by a variety of biochemical and genetic techniques. A review of literature on the causes of cancer in humans has continued. If effects are linearly related to total dose, as is normally assumed for purposes of radiation protection, then the total number of fatal cancers predicted to arise from the use of nuclear power in the future should be about 100 times less than the number induced by urban air pollution resulting from the combustion of coal and oil to produce the same amount of electricity. (OST)

  16. Physics division annual report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  17. Computers in Nuclear Physics Division

    International Nuclear Information System (INIS)

    Kowalczyk, M.; Tarasiuk, J.; Srebrny, J.

    1997-01-01

    Improving of the computer equipment in Nuclear Physics Division is described. It include: new computer equipment and hardware upgrading, software developing, new programs for computer booting and modernization of data acquisition systems

  18. Progress report, Biology and Health Physics Division, April 1 to June 30, 1975

    International Nuclear Information System (INIS)

    1975-09-01

    Interim results are reported on research at CRNL in health physics (dosimetry, instrumentation, monitoring); environmental research (limnology, radionuclide migration and kinetics); populaton research (tumor induction in mammals, human health records); and biology (radiobiology, genetic studies). (E.C.B.)

  19. Progress report, Biology and Health Physics Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in health physics (dosimetry, monitoring), environmental research, population research (tumor induction in mammals, human health record linkage), and biology (radiobiology of rodents, bacteria, bacteriophage T4, and insects). (E.C.B.)

  20. Theoretical physics division

    International Nuclear Information System (INIS)

    Anon.

    The studies in 1977 are reviewed. In theoretical nuclear physics: nuclear structure, nuclear reactions, intermediate energy physics; in elementary particle physics: field theory, strong interactions dynamics, nucleon-nucleon interactions, new particles, current algebra, symmetries and quarks are studied [fr

  1. Fermilab | Particle Physics Division

    Science.gov (United States)

    Diversity Education Safety Sustainability and Environment Contact Science Science Particle Physics Neutrinos Scientific Computing Research & Development Key Discoveries Benefits of Particle Physics Particle Superconducting Test Accelerator LHC and Future Accelerators Accelerators for Science and Society Particle Physics

  2. Progress report, Biology and Health Physics Division, July 1 to September 30, 1975

    International Nuclear Information System (INIS)

    1975-11-01

    Interim results are reported for research in health physics, i.e. dosimetry, detectors, and monitoring; environmental research (limnology, radionuclide migration and kinetics; population research (radiation carcinogenesis, radiation effects in human populations); and biology (radiobiology). (E.C.B.)

  3. Progress report, Physics Division

    International Nuclear Information System (INIS)

    1986-03-01

    This report reviews events and progress in the following areas: development of the TASCC facility; experimental and theoretical nuclear physics research; radionuclide standardization; condensed matter research; applied mathematics; and computer facility operation

  4. Industrial Safety and Applied Health Physics Division, annual report for 1982

    International Nuclear Information System (INIS)

    1983-12-01

    Activities during the past year are summarized for the Health Physics Department, the Environmental Management Department, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. The Environmental Management Department insures that the activities of the various organizations within ORNL are carried out in a responsible and safe manner. This responsibility involves the measurement, field monitoring, and evaluation of the amounts of radionuclides and hazardous materials released to the environment and the control of hazardous materials used within ORNL. The department also collaborates in the design of ORNL Facilities to help reduce the level of materials released to the environment. The Safety Department is responsible for maintaining a high level of staff safety. This includes aspects of both operational and industrial safety and also coordinates the activities of the Director's Safety Review Committee

  5. Industrial Safety and Applied Health Physics Division, annual report for 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Activities during the past year are summarized for the Health Physics Department, the Environmental Management Department, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. The Environmental Management Department insures that the activities of the various organizations within ORNL are carried out in a responsible and safe manner. This responsibility involves the measurement, field monitoring, and evaluation of the amounts of radionuclides and hazardous materials released to the environment and the control of hazardous materials used within ORNL. The department also collaborates in the design of ORNL Facilities to help reduce the level of materials released to the environment. The Safety Department is responsible for maintaining a high level of staff safety. This includes aspects of both operational and industrial safety and also coordinates the activities of the Director's Safety Review Committee. (ACR)

  6. Health Physics Division annual report for the period ending December 31, 1972 Part I : Research and development

    International Nuclear Information System (INIS)

    1973-01-01

    The Health Physics Division of the Bhabha Atomic Research Centre, Bombay (India) is responsible for: (i) assessment and control of radiation and industrial hazards in various research establishments and industrial installations of the Department of Atomic Energy and (ii) prescribing limits and conditions in respect of waste releases to the environment from the above establishments and installations. For effective discharge of these responsibilities, the Division is engaged in various research programmes in the following areas: (1) radiation dosimetry (2) instrumentation (3) pollution (4) environmental radioactivity, both natural and artificial (5) radioactive contamination and nuclear safety (6) industrial hygiene and safety (7) radioecology (8) micrometeorology. These programmes are described in brief. (M.G.B.)

  7. Progress report: physics division

    International Nuclear Information System (INIS)

    1980-11-01

    The isotope separator is being used to prepare targets of rare and expensive isotopes using natural element feedstock. Research in the Nuclear Physics branch included studies of gamma-ray muliplicities and intensities of gamma rays in the continuum feeding high spin states in 147 Gd, 6 Li parity non-conservation, and the 6 Li + 6 Li reaction. A catalogue of (n,γ) γ-rays has been compiled and submitted for publication, and a portable source for the calibration of gamma ray spectrometers has been developed. Construction of the superconducting cyclotron and development of the high current proton accelerator are continuing. The electron test accelerator is being used in experiments to investigate bremsstrahlung angular distributions. Fertile-to-fissile conversion work is being done at TRIUMF, and fusion blanket studies are being carried out at Chalk River. The Solid State Physics branch has carried out neutron scattering studies of solid Cs 2 , measurements of the structure factor for liquid 4 He, neutron powder diffraction studies of Mnsub(0.6) Znsub(0.4) Te, measurements of the transverse magnetic response in CsCoCl 3 , and analysis of structure data for UPd 3 . The Applied Mathematics and Computation branch has developed new face seal dynamics models. Expansion of the computing centre has been completed. (L.L.)

  8. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  9. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  10. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  11. Industrial Safety and Applied Health Physics Division annual report for 1981

    International Nuclear Information System (INIS)

    Auxier, J.A.; Oakes, T.W.

    1982-08-01

    Activities over the past year are summarized for the Health Physics Department, the Environmental Management Program, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. It was determined that the maximum whole-body dose sustained by an employee was about 3.8 rems, which is 76% of the applicable standard of 5 rems. The greatest cumulative dose to the skin of the whole body received by an employee during 1981 was about 5.9 rems, or 39% of the applicable standard of 15 rems. Atmospheric iodine sampled by the Department of Environmental Management at the perimeter stations averged 0.13E to 14 μCi/cc during 1981. This average represents 131 I released to uncontrolled areas. All air samples taken had values below the allowable standards. The concentrations of 90 Sr in milk from both the immediate and remote environs of ORNL are also within FRC range I. The average value of 1.5 E to 9 μCi/mL represents 0.5% of the CG/sub w/ for drinking water applicable to individuals in the general population. The Safety Department reported that the continuing emphasis on safety during CY 1981 resulted in significant improvements in the ORNL safety program: safety performance was better than all CY 1981 on-the-job injury and illness goals. Through December 31, 1981, the Laboratory had worked 600 days and accumulated 14,015,826 exposure-hours since the last lost-work-day case

  12. Industrial Safety and Applied Health Physics Division annual report for 1981

    Energy Technology Data Exchange (ETDEWEB)

    Auxier, J.A.; Oakes, T.W.

    1982-08-01

    Activities over the past year are summarized for the Health Physics Department, the Environmental Management Program, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. It was determined that the maximum whole-body dose sustained by an employee was about 3.8 rems, which is 76% of the applicable standard of 5 rems. The greatest cumulative dose to the skin of the whole body received by an employee during 1981 was about 5.9 rems, or 39% of the applicable standard of 15 rems. Atmospheric iodine sampled by the Department of Environmental Management at the perimeter stations averged 0.13E to 14 ..mu..Ci/cc during 1981. This average represents < 0.005% of the concentration guide of 1E to 10 ..mu..Ci/cc applicable to inhalation of /sup 131/I released to uncontrolled areas. All air samples taken had values below the allowable standards. The concentrations of /sup 90/Sr in milk from both the immediate and remote environs of ORNL are also within FRC range I. The average value of 1.5 E to 9 ..mu..Ci/mL represents 0.5% of the CG/sub w/ for drinking water applicable to individuals in the general population. The Safety Department reported that the continuing emphasis on safety during CY 1981 resulted in significant improvements in the ORNL safety program: safety performance was better than all CY 1981 on-the-job injury and illness goals. Through December 31, 1981, the Laboratory had worked 600 days and accumulated 14,015,826 exposure-hours since the last lost-work-day case.

  13. Progress report : Technical Physics Division

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.; Deshpande, R.Y.

    1978-01-01

    The research and development work carried out in the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, is reported. Some of the achievements are: (1) fabrication of mass spectrometers for heavy water analysis and lithium 6/7 isotope ratio measurement, (2) fabrication of electronic components for mass spectrometers, (3) growing of sodium iodide crystals for radiation detectors, (4) development of sandwich detectors comprising of NaI(Tl) and CaI(Na), (5) fabrication of mass spectrometer type leak detectors and (6) fabrication of the high vacuum components of the vacuum system of the variable energy cyclotron based at Calcutta. (M.G.B.)

  14. Progress report, Biology and Health Physics Division, April 1 to June 30, 1978

    International Nuclear Information System (INIS)

    The effects of neutrons reflected by the body of a wearer of a neutron threshold activation detector have been determined experimentally. Agreement with the previously calculated effect was good. Calculations and experiments are in progress on the response of organic scintillators to fast neutron and gamma radiation. Other work in health physics included examination of the feasibility of using water-permeable membranes to separate HTO from HT and design of instrumentation for measuring discharge of radio-xenons from a Mo-99 production plant. A variety of environmental research programs included studies dealing with the effects of thermal stress on food-chain organisms in fresh water and mobility of arsenic in sand columns. Computer studies on linked health records will be phased out at Chalk River Nuclear Laboratories. Similar work will be performed at Statistics Canada, the University of British Columbia, and in Hawaii under its cancer register. Work in biology has continued to focus upon the effects of radiation on a variety of organisms, ranging from bacterial viruses to humans. The principal target for long-term biological effects of radiation on all living organisms is DNA. The chemical nature of damage caused in DNA by radiation and the response of cells to this damage is being studied by a variety of biochemical and genetic techniques. Studies on cultured skin cells from various humans have shown interesting characteristics associated with different rare hereditary diseases. It has now been shown that repair-deficient ataxia telangiectasia (AT) cells are surprisingly different from repair-proficient AT cells in their reponse to ultraviolet light at 313 nm. (OST)

  15. Physics division annual report - 1999

    International Nuclear Information System (INIS)

    Thayer, K.

    2000-01-01

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R and D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design

  16. Physics division annual report 2005

    International Nuclear Information System (INIS)

    Glover, J.

    2007-01-01

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in 252 No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of 16 N beta-decay to determine the 12 C(α, γ) 16 O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for

  17. Physics division annual report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium

  18. Progress report, Biology and Health Physics Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    Progress is reported in research on dosimetry and monitoring, environmental effects of thermal effluents, radionuclide migration, hydrology, radiation carcinogenesis, data manipulation of human health records, and biological radiation effects. (E.C.B.)

  19. Physics Division annual report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne

  20. Physics Division annual report 2004

    International Nuclear Information System (INIS)

    Glover, J.

    2006-01-01

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to

  1. The role of the Swiss EIR Health Physics Division in the national and the Institute's radiological emergency organizations

    International Nuclear Information System (INIS)

    Nagel, E.; Brunner, H.

    1986-01-01

    Owing to the geographical concentration in Switzerland of the activities related to radioactivity (power plants, research, industry, transport) in a relatively small region between the Alps and the Rhine, it was a logical consequence to centralize the emergency organization for nuclear accidents in this area. Since 1984 the Swiss emergency organization has had an operational, well-equipped national emergency control centre. In the handling of radiation accidents the new organization can call on specialized laboratories and make use of experience and material from over the whole country. Of these facilities the Federal Institute for Reactor Research (EIR) is of major importance due to its activities and experience in research and radiation protection. Its Health Physics Division takes an active part in the emergency organization of the EIR itself. Both its well-equipped radioanalytical laboratory and trained personnel are at the disposal of the national emergency organization. Frequent training of the whole emergency organization and parts of it have improved preparedness. The evaluation of the exercises always reveals new problems to be solved in which rapid action and safe communications are of major importance. (author)

  2. Progress report, Biology and Health Physics Division, October 1 to December 31, 1978

    International Nuclear Information System (INIS)

    1979-03-01

    Analysis of radiation fields in the reactor vault during various shutdown conditions of the Douglas Point reactor has been carried out. Work is proceeding to bring up to date and to add additional features to the design of the automatic TLD reader. An analysis has been completed of experimental data obtained on the diffusion of tritiated water vapour through the skin. Radiation instrument studies have continued with the development of gamma and beta radiation survey meters intended for general use in radiation protection and the development of particular devices for special situations or experimental studies. A mathematical model of energy transformations in small lakes has been developed. Ground water samplers and seepage meters have been installed to intercept tritium-contaminated ground water flowing into Perch Lake. Cation exchange capacities of Perch Lake drainage basin soils were measured using a 60 Co tracer method. An environmental assessment group is being formed to produce models and procedures for pathways analysis of radionuclide transport in ground waters, surface waters and aquatic food chains. Progress has been made in comparison of the effects of the UV component of sunlight (designated as near UV radiation) with those of ionizing radiation. Both types of radiation are known to induce cancer. The types of damage produced in DNA by near UV radiation and repair of this damage have been explored. Research is continuing on (a) the radiation-induced release of membrane-bound components from the bacterial cell wall, (b) the induction of genetic changes in yeast by radiation and by mutagenic chemicals, and (c) radiation-induced tumors in rats. In addition, two collaborative review papers have been prepared, dealing (d) with the health hazards associated with the inhalation of radon daughters and (e) with low level radiation hazards in relation to the nuclear power industry in general. (OST)

  3. Progress report, Biology and Health Physics Division, January 1 to March 31, 1979

    International Nuclear Information System (INIS)

    1979-06-01

    An improved assay unit for determining the amount of plutonium in wastes, has been designed. A recently-written computer program for processing thermoluminescence dosimeter (TLD) readings will permit each TLD to have its own sensitivity calibration. TLDs used in fingertip dosimeters have been replaced by thinner TLDs which measure beta-ray doses more accurately. The performace characteristics of a new prototype monitor for tritiated water vapour in air have been measured. Work has started on a long-term environmental impact assessment of the waste management areas. A more detailed examination of the geochemical factors determining waste arsenic migration in ground water flow systems has been initiated. Studies have continued on the combined effects of thermal and nutrient enrichment on the productivity of fresh water organisms. A preliminary study of the plutonium content of surface waters has been made to identify potential sites for research on actinide behaviour in the environment. The third phase of a long-term experiment on synergism in rats has been started to determine whether ionizing radiation in combination with certain environmental carcinogens, such as cigarette tar and other chemicals, would increase the risk of tumours as compared with that from the separate treatments. A study on the genetic effects of x-rays at low dose rates has been largely completed. Research is continuing on (a) the radiation-induced release of membrane-bound components from the bacterial cell wall, (b) the induction of genetic changes in yeast by carcinogenic chemicals, (c) radiation-induced tumours in rats, (d) identification of the effects of ionizing radiation and ultraviolet light on the DNA of living organisms, and (e) the radiation sensitivity of human skin cells from individuals with rare familial diseases associated with proneness to cancer development. In addition, a collaborative paper has been prepared in which the health effects of energy development were reviewed

  4. Physics division annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example

  5. Division of Public Health

    Science.gov (United States)

    Frontier Learn what marijuana means for Alaska and you It's your health - Teen Health Autism: Learn the Outbreak of Life-threatening Coagulopathy Associated with Synthetic Cannabinoids Use Friday, May 25, 2018 Impacts of Climate Change in Alaska PDF Monday, January 8, 2018 Breastfeeding mothers reporting marijuana

  6. Activity Report of Reactor Physics Division - 1997

    International Nuclear Information System (INIS)

    Singh, Om Pal

    1998-01-01

    The research and development activities of the Reactor Physics Division of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1997 are reported. The activities are arranged under the headings: nuclear data processing and validation, PFBR and KAMINI core physics, FBTR core physics, radioactivity and shielding and safety analysis. A list of publications of the Division and seminars delivered are included at the end of the report

  7. Health, Safety, and Environment Division

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C [comp.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  8. Safety and Health Division achievements during 40 years

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2012-01-01

    During her speech, presenter outlined several issues regarding on establishment of Safety and Health Division since 40 years. This division contain of 3 sub unit; Physical Safety Group, Medical Physic Group and Non-ionizing Radiation group (NIR). The objectives of this division to implement R and D activities and services regarding safety and radiological health also non-radiological to ensure public safety, environment and asset suit with obligations established by authorities, IAEA standards and regulations.(author)

  9. Physics Division annual report - 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-07

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

  10. Physics Division annual report - 1998

    International Nuclear Information System (INIS)

    1999-01-01

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research

  11. Activity report of Reactor Physics Division - 1988

    International Nuclear Information System (INIS)

    Keshavamurthy, R.S.

    1989-01-01

    This report highlights the progress of activities carried out during the year 1988 in Reactor Physics Division in the form of brief summaries. The topics are organised under the following subject categories:(1) nuclear data evaluation , processing and validation, (2) core physics and analysis, (3) reactor kinetics and safety analysis, (4) noise analysis and (5) radiation transport and shielding. List of publications by the members of the Division and the Reactor Physics Seminars held during the year 1988, is included at the end of report. (author). refs., figs., tabs

  12. Nuclear Physics Division annual report 1992

    International Nuclear Information System (INIS)

    Betigeri, M.G.

    1993-01-01

    The report covers the research and development activities of the Nuclear Physics Division for the period January to December 1992. These research and development activities are reported under the headings: 1) Experiments, 2) Theory, 3) Applications, 4) Instrumentation, and 5) The Pelletron Accelerator. At the end a list of publications by the staff scientists of the Division is given. Colloquia and seminars held during the year are also listed. (author). refs., tabs., figs

  13. The division of plasma physics

    International Nuclear Information System (INIS)

    Evans, T.E.; Guilhem, D.; Klepper, C.C.

    1990-07-01

    The investigations presented in the 31th meeting on plasma physics were: the main results and observations during the ergodic divertor experiments in Tore Supra tokamak; the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the results of pressure measurements and particle fluxes in the Tore Supra pump limiter

  14. Theoretical Physics Division progress report

    International Nuclear Information System (INIS)

    1989-01-01

    The research areas covered in this report are solid state and quantum physics, theoretical metallurgy, fuel modelling and reactor materials, statistical physics and the theory of fluids. Attention is drawn to a number of items: (i) the application of theories of aerosol behaviour to the interpretation of conditions in the cover-gas space of a fast reactor; (ii) studies in non-linear dynamics, dynamical instabilities and chaotic behaviour covering for example, fluid behaviour in Taylor-Couette experiments, non-linear behaviour in electronic circuits and reaction-diffusion systems; (iii) the development of finite element computational techniques to describe the periodic behaviour of a system after a Hopf bifurcation and in simulating solidification processes; (iv) safety assessment of disposal concepts for low- and intermediate-level radioactive wastes. (U.K.)

  15. Activity report of Reactor Physics Division - 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The highlights of the various studies carried out during the year 1989 in Reactor Physics Division are presented in this report in the form of summaries. The topics are organised under the following subjects: (1) nuclear data evaluation, processing and validation, (2) core physics and analysis, (3) reacto r kinetics and safety analysis, (4) noise analysis, and radiation transport and shielding. It is observed that with the restart and operation of FBTR at low power for some time, some of the low power physics experiments were completed and plans and procedures for the remaining physics experiments at intermediate and high power (upto 10 MWt) have been prepared. The lists of publications by the members of Division and the Reactor Physics Seminars held during the year 19 89, are included at the end of the report. (author). refs., figs., tabs

  16. Physics Division activities report, 1986--1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  17. Physics Division activities report, 1986--1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e + e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC

  18. Activity report of Reactor Physics Division - 1993

    International Nuclear Information System (INIS)

    Indira, R.

    1994-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs

  19. Activity report of Reactor Physics Division-1995

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1996-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1995 are reported. The activity are arranged under the headings: Nuclear Data Processing and Validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. refs., figs., tabs

  20. Activity report of Reactor Physics Division - 1993

    Energy Technology Data Exchange (ETDEWEB)

    Indira, R [ed.; Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-12-31

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs.

  1. Nuclear Physics Division: annual report 1991

    International Nuclear Information System (INIS)

    Betigeri, M.G.

    1993-01-01

    A brief account of the research and development activities carried out by the Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay during the period January 1991 to December 1991 is presented. These R and D activities are reported under the headings : 1) Accelerator Facilities, 2) Research Activities, and 3) Instrumentation. At the end, a list of publications by the staff scientists of the Division is given. The list includes papers published in journals, papers presented at conferences, symposia etc., and technical reports. (author). figs., tabs

  2. Activity report of Reactor Physics Division : 1990

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1991-01-01

    The major Research and Development and Project activities carried out during the year 1990 in Reactor Physics Division are presented in the form of summaries in this report. The various activities are organised under the following areas : (1) Nuclear Data Evaluation, Processing and Validation, (2) Core Physics and Analysis, (3) Reactor Kinetics and Safety Analysis, (4) Noise Analysis, and (5) Radiation Transport and Shielding. FBTR was restarted in July 1990 and the power was raised upto 500 kW. A number of low power physics experiments on reactivity coefficients, kinetics and noise, neutron flux and gamma dose in B cells, were performed, which are discussed in this report. (author). figs., tabs

  3. Applied Physics Division 1998 Progress Report

    International Nuclear Information System (INIS)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M.

    2001-01-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program

  4. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  5. Women of the Solar Physics Division

    Science.gov (United States)

    Dupree, Andrea K.

    2007-05-01

    In 1970, when the Solar Physics Division was established, the invitation to become a founding member of the Division was extended by the Organizing Committee to a group of 61 solar scientists of which 4 were women (6.6%). At the first SPD meeting in Huntsville AL (1970), 11% of the papers were given by women. Near that time (1973), women accounted for 8% of all AAS members. The representation of women in the SPD has more than doubled in percentage since the first years. Currently, women comprise about 15.5% of SPD members which, however, is less than the percentage in the AAS general membership (18%) in March 2007. In the 37 years that the SPD has existed, women have frequently held the office of Treasurer and Secretary of the Division and made notable contributions. Elske V.P. Smith was elected the first Treasurer of the SPD and that began a long tradition. Women appear to be considered exceptionally trustworthy since they have been reelected and occupied the position of Treasurer for 75% of the available terms. The Office of SPD Secretary has seen a woman for 13% of the terms. Yet women are practically absent among those in the top leadership positions and in the lists of prize winners of the SPD. Among the 21 SPD Chairs, only 1 woman, Judith T. Karpen, has held that office. The Hale Prize has been awarded 19 times in almost 3 decades, and all of the awardees have been men. Several aspects of the participation of women and their contributions to the Solar Physics Division of the AAS will be reviewed, and compared to that of the AAS and astronomy in general.

  6. Progress report [of] Technical Physics Division

    International Nuclear Information System (INIS)

    Vijendran, P.; Deshpande, R.Y.

    1975-01-01

    Activities of the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, over the last few years are reported. This division is engaged in developing various technologies supporting the development of nuclear technology. The various fields in which development is actively being carried out are : (i) vacuum technology, (ii) mass spectrometry, (iii) crystal technology, (iv) cryogenics, and (v) magnet technology. For surface studies, the field emission microscope and the Auger electron spectrometer and other types of spectrometers have been devised and perfected. Electromagnets of requisite strength to be used in MHD programme and NMR instruments are being fabricated. Various crystals such as NaI(Tl), Ge, Fluorides, etc. required as windows and prisms in X and gamma-ray spectroscopy, have been grown. In the cryogenics field, expansion engines required for air liquefaction plants, vacuum insulated dewars, helium gas thermometers etc. have been constructed. In addition to the above, the Division provides consultancy and training to personnel from various institutions and laboratories. Equipment and systems perfected are transferred to commercial organizations for regular production. (A.K.)

  7. Physics division. Progress report, January 1, 1995--December 31, 1996

    International Nuclear Information System (INIS)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations

  8. Physics division. Progress report, January 1, 1995--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R. [eds.] [comps.] [and others

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  9. Physics division annual report - October 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K. [ed.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  10. Annual report of the Nuclear Physics Division

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Rao, K.R.P.M.

    1974-01-01

    The various activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, India, during the year 1973 are reported. The main research programme, centred around the 5.5 meV Van-de-Graaff accelerator at Trombay, planning of the proposed experiments with the Variable Energy Cyclotron at Calcutta, expected to go into operation soon, experiments in fission physics involving multiparameter studies of spontaneous and neutron induced fission, etc. are described in detail. Apart from the advanced studies in X-ray and neutron diffraction, neutron scattering in solids and liquids, attempts have been made to use these techniques for the understanding of the geometrical structures of many biologically significant molecules, the magnetic structures of technologically important materials like ferrites and the dynamics of condensed media. Experiments with (1) the Fast Critical Facility, (2) Purnima and (3) the development of X-ray fluorescence spectrometer and the neutron radiography facility are also explained. (K.B.)

  11. Progress report, Health Sciences Division

    International Nuclear Information System (INIS)

    1981-05-01

    In Health Physics Branch, work is continuing on development of neutron dosimetry techniques, new thermoluminescent dosimeters, and portable tritium-in-air monitoring instruments. Development of beneficial uses of waste heat has continued in the Environmental Research Branch. Other work includes studies in meteorology, biogeochemistry of nuclear waste management areas, and soil and groundwater studies. Research activity in the Radiation Biology Branch is dealing with the effects of radiation upon a variety of living organisms. Both genetic and mutagenic effects of damage to DNA are being studied as well as repair mechanisms and human diseases caused by repair mechanism deficiencies. In the Biomedical Research Branch, a collaborative study is being undertaken into the retention and excretion of uranium in fuel fabrication workers. (O.T.)

  12. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  13. APDAS : Applied Physics Division analytical services

    International Nuclear Information System (INIS)

    1989-01-01

    Applied Physics Division Analytical Services (APDAS) is a new initiative within the Australian Nuclear Science and Technology Organization. Because of its background and achievements in high-tech research, APDAS can provide solutions to many of the problems that arise in Australian industries. One of the facilities available to APDAS is a positive ion particle accelerator. This enables any positive ion in a gaseous medium to be accelerated to energies ranging from a few hundred thousand to three million electron volts for single charge states. Ion beams can be stead-state or pulsed with pulse durations as low as three nanoseconds. Target preparation and fully automated data recording are also available. Accelerator-based services, presently available are outlined in 7 separate leaflets, briefly describing the techniques, particular applications, typical costs and availability. These include : surface analysis and depth profiling using ion beams; standard neutron irradiation facility (SNIF); soil-moisture determination; hydrogen analysis neutron radiography; adsorbed dose calibration standards; gas phase enrichment monitor; 18 O analysis. 26 figs

  14. Laboratory portrait: the Saclay nuclear physics division

    International Nuclear Information System (INIS)

    Alamanos, N.; Auger, F.

    2005-01-01

    The research activities of the nuclear physics division (SPHN) of DAPNIA (Cea) take place within strong national and international collaborations. Its programs cover a broad range of topics in nuclear physics from low to high energies, they include the structure and dynamics of the nucleus, the structure of the nucleon, the search for phase transitions in nuclear matter, and contribution to the development of nuclear energy. Concerning the structure of the nucleus, SPHN is involved in the study of the structure of light exotic nuclei such as He 6-8 , C 10-11 , Ne 27 and in the study of shape coexistence in Kr isotopes. The experiments are performed at GANIL. SPHN is also involved in the study of the structure of Md 251 through experiments made in Finland. Near-barrier and sub-barrier fusion of light unstable nuclei and their respective stable isotopes with U 238 targets are studied in Louvain-la-Neuve (Belgium). Concerning nuclear phase transitions, the purpose of our activities is twofold: the study of the liquid-gas phase transition in nuclei at relatively low incident energies and the search for the quark-gluon plasma (QGP) at very high energies. We look for QGP signatures in 2 experiments: Phenix with the accelerator RHIC at Bnl and Alice at the LHC (CERN). Concerning the structure of the nucleon, SPHN is involved in 2 experimental programs both using electromagnetic probes, one to obtain information on the spin carried by the gluons in the proton (Compass at CERN) and the other to extract information on generalized parton distributions by means of deeply virtual Compton scattering (Clas at Jlab). Concerning nuclear energy, the activities are focused along 3 main lines: spallation studies, neutron cross-section measurements and application oriented modeling. (A.C.)

  15. Physics Division progress report, January 1, 1990--December 31, 1990

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1991-07-01

    This report provides selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1990, through December 31, 1990. It also provides a general description of the goals and interests of the Division, very brief descriptions of projects in the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; and (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and programs supporting the Strategic Defense Initiative

  16. Physics Division progress report, January 1, 1991--December 31, 1991

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1992-06-01

    This report provides selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1991, through December 31, 1991. It also provides a general description of the goals and interests of the Division, very brief descriptions of projects in the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and other programs

  17. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M [ed.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author).

  18. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author)

  19. Progress report physics division, 1983 July 1 - December 31

    International Nuclear Information System (INIS)

    1984-02-01

    This report summarizes work carried out during the last half of 1983 in the Physics Division of the Chalk River Nuclear Laboratories in the areas of superconducting cyclotron facility development, nuclear physics research, applied physics, solid state physics, and applied mathematics and computation

  20. Physics Division progress report, October 1, 1986--September 30, 1987

    International Nuclear Information System (INIS)

    Shera, E.B.; Sowerwine, H.

    1989-05-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period October 1, 1986 through September 30, 1987. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the nation's needs in defense and basic sciences: defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; laser physics and applications, especially to high-density plasmas; and fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission

  1. Progress report of Applied Physics Division. 1 October 1980 - 30 June 1981. Acting Division Chief - Dr. J. Parry

    International Nuclear Information System (INIS)

    2004-01-01

    In September 1980, the Commission approved a reorganization of Physics Division, Engineering Research Division and Instrumentation and Control Division to form two new research divisions to be known as Applied Physics Division and Nuclear Technology Division. The Applied Physics Division will be responsible for applied science programs, particularly those concerned with nuclear techniques. The Division is organized as four sections with the following responsibilities: (1) Nuclear Applications and Energy Studies Section. Program includes studies in nuclear physics, nuclear applications, ion implantation and neutron scattering. (2) Semiconductor and Radiation Physics Section. Studies in semiconductor radiation detectors, radiation standards and laser applications. (3) Electronic Systems Section. This includes systems analysis, digital systems, instrument design, project instrumentation and instrument maintenance. (4) Fusion Physics Section. This covers work carried out by staff currently attached to university groups (author)

  2. Physics Division annual report, April 1, 1993--March 31, 1994

    International Nuclear Information System (INIS)

    Thayer, K.J.; Henning, W.F.

    1994-08-01

    This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research

  3. Physics Division Annual Report, April 1, 1994--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Henning, W.F.

    1995-08-01

    This report summarizes the research performed over the past year by the Argonne Physics Division in the areas of nuclear and atomic physics. The Division`s programs in nuclear physics include operation of ATLAS as a national heavy-ion user facility and related accelerator development, nuclear structure research and reactions with beams of heavy ions, primarily at ATLAS but also using forefront instrumentation elsewhere, medium energy nuclear physics at SLAC, Fermilab, Novosibirsk, DESY and CEBAF, and nuclear theory. In atomic and molecular physics the research programs are directed towards studies of highly charged ions at ATLAS, and towards studies with synchrotron radiation, currently at the National Synchrotron Light Source at Brookhaven but also in preparation for the future program at the Advanced Photon Source at Argonne. Separate abstracts have been indexed for individual contributions to this report.

  4. Progress report April 1, to June 30, 1956. Physics Division

    International Nuclear Information System (INIS)

    1956-01-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from April 1, to June 30, 1956. It describes the research in nuclear physics, general physics; theoretical physics and electronics. The research areas covered in this report include nuclear reactions, nuclear decay, neutron capture gamma ray spectra, NRX production of plutonium and its higher isotopes, slow neutron spectrometry, neutron diffraction, gamma ray crystal spectrometry, theory of binary fission and analysis of neutron scattering data.

  5. Progress report April 1, to June 30, 1956. Physics Division

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1956-07-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from April 1, to June 30, 1956. It describes the research in nuclear physics, general physics; theoretical physics and electronics. The research areas covered in this report include nuclear reactions, nuclear decay, neutron capture gamma ray spectra, NRX production of plutonium and its higher isotopes, slow neutron spectrometry, neutron diffraction, gamma ray crystal spectrometry, theory of binary fission and analysis of neutron scattering data.

  6. Progress report, October 1 to December 31, 1959. Physics Division

    International Nuclear Information System (INIS)

    1959-01-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from October 1, to December 31, 1959. It describes the research in nuclear physics, general physics, theoretical physics and electronics. The research areas covered in this report include nuclear structure, the tandem accelerator, particle detector development, developments in electronics, neutron decay, beta ray spectrometer, fission studies, electronics development and neutron transport theory.

  7. Theoretical Physics Division progress report October 1978 -September 1979

    International Nuclear Information System (INIS)

    1980-03-01

    A progress report of the Theoretical Physics Division of the Atomic Energy Research Establishment, Harwell for the year October 1978 to September 1979 is presented. The sections include: (1) Nuclear, atomic and molecular physics (nuclear theory, atomic theory, nuclear power applications). (2) Theory of fluids (statistical mechanics, mathematical physics, computational fluid mechanics). (3) Radiation damage and theoretical metallurgy. (4) Theory of solid state materials (point defects and point-defect determined processes, surface studies, non-destructive examination). A bibliography is given of reports and publications written by the division during the period. (UK)

  8. MP-Division health and safety reference handbook. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, T.M.

    1987-09-01

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildings and equipment) and the environment. 33 refs., 18 figs., 2 tabs.

  9. MP-Division health and safety reference handbook

    International Nuclear Information System (INIS)

    Putnam, T.M.

    1987-09-01

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildings and equipment) and the environment. 33 refs., 18 figs., 2 tabs

  10. Annual progress report for 1983 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Menon, S.V.G.

    1984-01-01

    A resume of the work done in the Theoretical Physics Division of the Bhadha Atomic Research Centre, Bombay, during the calendar year 1983 is reported in the form of individual summaries. The main thrust of the work has been in the field of particle transport theory, reactor physics and reactor safety. (M.G.B)

  11. Annual progress report for 1984 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Menon, S.V.G.; Jain, R.P.

    1985-01-01

    This report presents a resume of the work done in the Theoretical Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1984. The report is divided into two parts, namely, Nuclear Technology and Mathematical Physics. The topics covered are described by brief summaries. A list of research publications and papers presented in symposia/workshops is also included. (author)

  12. Physics Division progress report for period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported.

  13. Physics Division progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported

  14. Physics Division progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described

  15. Progress report: Physics Division, 1982 January 1 to March 1

    International Nuclear Information System (INIS)

    1982-05-01

    The work of the Physics Division at Chalk River Nuclear Laboratories during the quarter is presented. Areas of interest include nuclear physics, neutron sources, the development of a superconducting cyclotron, high current proton accelerators and electron accelerators, diffraction studies and other solid state physics work in organic and inorganic substances, and computer codes. The operation of the MP tandem accelerator and the computer facilities is reviewed

  16. Physics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described.

  17. Progress report, Physics Division, 1 October - 31 December, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The work of the Physics Division during the quarter is reviewed. Nuclear physics activities included parity violation experiments, mass difference measurements using the ISOL facility, studies of high spin state decays, and scattering length measurements. In accelerator physics, construction of the heavy-ion superconducting cyclotron continued and development of the fast intense neutron source and the high current proton accelerator progressed. Neutron scattering experiments were carried out on a number of solids. Work in applied mathematics and computation is also reviewed

  18. Physics Division Annual Report, April 1, 1994--March 31, 1995

    International Nuclear Information System (INIS)

    Henning, W.F.

    1995-08-01

    This report summarizes the research performed over the past year by the Argonne Physics Division in the areas of nuclear and atomic physics. The Division's programs in nuclear physics include operation of ATLAS as a national heavy-ion user facility and related accelerator development, nuclear structure research and reactions with beams of heavy ions, primarily at ATLAS but also using forefront instrumentation elsewhere, medium energy nuclear physics at SLAC, Fermilab, Novosibirsk, DESY and CEBAF, and nuclear theory. In atomic and molecular physics the research programs are directed towards studies of highly charged ions at ATLAS, and towards studies with synchrotron radiation, currently at the National Synchrotron Light Source at Brookhaven but also in preparation for the future program at the Advanced Photon Source at Argonne. Separate abstracts have been indexed for individual contributions to this report

  19. Physics Division: Annual report, 1 January-31 December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-05-01

    This report summarizes the research programs of the Physics Division of the Lawrence Berkeley Laboratory during calendar 1985. The Division's principal activities are research in theoretical and experimental high energy physics, and the development of tools such as sophisticated detectors to carry out that research. The physics activity also includes a program in astrophysics, and the efforts of the Particle Data Group whose compilations serve the worldwide high energy physics community. Finally, in addition to the physics program, there is a smaller but highly significant research effort in applied mathematics. Some specific topics included in this report are: Research on e/sup +/e/sup -/ annihilation, superconducting super collider, double beta decay, high energy astrophysics and interdisciplinary experiments, detector research and development, electroweak interactions, strong interaction, quantum field theory, superstrings and quantum gravity, vortex methods and turbulence and computational mathematics.

  20. Physics Division: Annual report, 1 January-31 December 1985

    International Nuclear Information System (INIS)

    1987-05-01

    This report summarizes the research programs of the Physics Division of the Lawrence Berkeley Laboratory during calendar 1985. The Division's principal activities are research in theoretical and experimental high energy physics, and the development of tools such as sophisticated detectors to carry out that research. The physics activity also includes a program in astrophysics, and the efforts of the Particle Data Group whose compilations serve the worldwide high energy physics community. Finally, in addition to the physics program, there is a smaller but highly significant research effort in applied mathematics. Some specific topics included in this report are: Research on e + e - annihilation, superconducting super collider, double beta decay, high energy astrophysics and interdisciplinary experiments, detector research and development, electroweak interactions, strong interaction, quantum field theory, superstrings and quantum gravity, vortex methods and turbulence and computational mathematics

  1. Health physics as a career

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Health physics includes the protection of man and his environment against the effects of radiations and radioactive substances. As a career it deals with research, regulatory aspects of radiation protection and radiation monitoring. For a health physicist a post-graduate degree in Physics is required, while technical personnel should have a degree or technical diploma. NUCOR, UCOR, ESCOM and the Division for Radiation Control of the Department of Health and Welfare are some of the institutions that make use of the services of health physicists. As South Africa is one of the major uranium producers, there will be an increasing demand for health physicists in the future

  2. Physics division. Progress report for period ending September 30, 1995

    International Nuclear Information System (INIS)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, 69 As and 70 As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as 17,18 F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research

  3. Physics division. Progress report for period ending September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J. [ed.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.

  4. Physics Division annual review, April 1, 1992--March 31, 1993

    International Nuclear Information System (INIS)

    Thayer, K.J.

    1993-08-01

    This document is the annual review of the Argonne National Laboratory Physics Division for the period April 1, 1992--March 31, 1993. Work on the ATLAS device is covered, as well as work on a number of others in lab, as well as collaborative projects. Heavy ion nuclear physics research looked at quasi-elastic, and deep-inelastic reactions, cluster states, superdeformed nuclei, and nuclear shape effects. There were programs on accelerator mass spectroscopy, and accelerator and linac development. There were efforts in medium energy nuclear physics, weak interactions, theoretical nuclear and atomic physics, and experimental atomic and molecular physics based on accelerators and synchrotron radiation

  5. Annual progress report for 1985 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1986-01-01

    This report presents a resume of the work done in the Theoretical Physics Division during the calender year, 1985. The topics covered are described by their brief summaries. The main fields of the work were : (a) physics design of the 500 MWe PHWR and related developmental studies, (b) reactor physics work related to Rajasthan, Narora and Tarapur stations, (c) laser fusion studies, (d) mathematical physics studies on Monte-Carlo method, transport equation and Fokker-Planck Equation and (e) theoretical physics studies related to Feynman path integrals and quantum optics. The lists of research publications and Trombay Colloquia organised are also appended. (author)

  6. Progress report, Physics Division, July 1 to September 30, 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Progress in the Physics Division, Chalk River Nuclear Laboratories, is reported for the period July 1 to September 30, 1976. Operation of the MP Tandem accelerator is described. Design highlights are provided for a proposed superconcucting cyclotron. Elastic and inelastic scattering experiments, many conducted in cooperation with other laboratories, are summarized. Activities of the Chalk River computation centre are also described. (O.T.)

  7. Progress report of Applied Physics Division. July 1984 - June 1985

    International Nuclear Information System (INIS)

    2004-01-01

    The activities of the Division during 1984/85 were again directed towards the general program objectives of the past two years. A shift in emphasis resulted in some organization changes. The increased importance of nuclear safeguards research in the Government's support for the International Atomic Energy Agency program has prompted a re-arrangement of the nuclear physics and science activities. Dr JR. Bird holds the responsibility for the Nuclear Science Section comprising the Nuclear Applications Group, Biomedical and Reactor Applications Group and the Neutron Scattering Group. The newly formed Safeguards and Nuclear Physics Section is headed by Dr J.W. Boldeman and includes the Safeguards Group and Nuclear Physics Group. The organization of the remainder of the Division is unchanged. The work on the electronic properties of hydrogen in silicon has been particularly rewarding and the plasma physics studies received recognition with an IAEA sponsored workshop on Compact Torus Research held in Sydney in March 1985 (author)

  8. Progress report of Applied Physics Division. July 1984 - June 1985

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The activities of the Division during 1984/85 were again directed towards the general program objectives of the past two years. A shift in emphasis resulted in some organization changes. The increased importance of nuclear safeguards research in the Government's support for the International Atomic Energy Agency program has prompted a re-arrangement of the nuclear physics and science activities. Dr JR. Bird holds the responsibility for the Nuclear Science Section comprising the Nuclear Applications Group, Biomedical and Reactor Applications Group and the Neutron Scattering Group. The newly formed Safeguards and Nuclear Physics Section is headed by Dr J.W. Boldeman and includes the Safeguards Group and Nuclear Physics Group. The organization of the remainder of the Division is unchanged. The work on the electronic properties of hydrogen in silicon has been particularly rewarding and the plasma physics studies received recognition with an IAEA sponsored workshop on Compact Torus Research held in Sydney in March 1985 (author)

  9. Physics Division semiannual report, July 1-December 31, 1982

    International Nuclear Information System (INIS)

    Trela, W.J.

    1983-09-01

    The Physics Division is organized into three major research areas: Fusion Physics, Weapons Physics, and Basic Research. In Fusion Physics, the KrF laser project reached two important milestones: successful testing of a 1-m 2 electron diode for KrF gas excitation and completion of a combined aperture demonstration showing the feasibility of accurate alignment of spherical mirrors. In the CO 2 program, the 5-kJ Helios lasers were used to evaluate many physics issues concerning the use of 10-μm light for inertial fusion and the 30- to 40-kJ Antares laser construction projects is on schedule for completion in October 1983. In Weapons Physics, significant progress was made on developing continuous time-dependent imaging systems using tomographic techniques with 400-ps shuttering capability, fiber-optic Cerenkov detector systems for fast fusion measurements, and iron-doped indium-phosphide detectors with 70-ps impulse response. A proposal to build x-ray beam lines at the National Synchrotron Light Source was approved and we expect funding in 1984. In Basic Physics Research, we have begun new initiatives to study biomagnetism in collaboration with the Life Sciences Division and to develop a neutrino physics program. During this period numerous significant experiments were completed in our nuclear physics, condensed matter physics, and thermal physics programs

  10. Physics Division progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source

  11. Physics Division progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source.

  12. Progress report Health Sciences Division - 1984 July 01 to December 31

    International Nuclear Information System (INIS)

    1985-02-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Health Physics, Environmental Research, Radiation Biology, Biomedical Research and Medical. Some of the main areas of interest discussed are health and safety aspects of tritium. This includes instrumentation, environmental studies, metabolism, dosimetry and health effects

  13. Physics Division progress report for period ending September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics. (LEW)

  14. Physics Division progress report for period ending September 30, 1985

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics

  15. Progress report of Technical Physics Division: April 1980 - March 1982

    International Nuclear Information System (INIS)

    Chaudhry, Ramesh; Vijendran, P.

    1983-01-01

    Activities, with an individual summary of each, of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre (BARC), Bombay are reported for the period April 1980 - March 1982. The major thrust of the TPD's work has been in: (i) design and fabrication of instruments, devices and equipment and (ii) development of techniques in the frontline research and technology areas like vacuum science, surface analysis, cryogenics and crystal growing. The Division also provided custombuilt electronics equipment, vacuum systems and glass components and devices to the various Divisions of BARC and other units of the DAE. Training and manpower development activities and technology transfer activities are also reported. Lists of seminars, colloquia, publications during the period of the report are given. (M.G.B.)

  16. Physics Division progress report, January 1, 1984-September 30, 1986

    International Nuclear Information System (INIS)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center

  17. Physics Division progress report, January 1, 1984-September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Keller, W.E. (comp.)

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.

  18. Health physics

    International Nuclear Information System (INIS)

    Poston, J.W.

    1974-01-01

    In a series of eight lectures the following topics are dealt with: 1) interaction of radiation with matter; 2) radiation quantities and units; 3) the physical basis of radiation dosimetry; 4) detection and measurement of radiation; 5) mixed radiation dosimetry; 6) special methods in radiation dosimetry; 7) dose from electrons and beta rays; and 8) introduction to radiation biology

  19. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirejczyk, M.; Szeflinski, Z. [eds.

    1999-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  20. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M. [eds.

    1998-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  1. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2003

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Skwira, I.; Grodner, E.

    2004-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2003 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  2. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Popkiewicz, M. [eds.

    1997-12-31

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` by NPD director prof. Ch. Droste.

  3. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M.

    1998-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  4. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Szeflinski, Z.

    1999-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  5. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2000

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2000 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in 'Preface' written by NDP director prof. K. Siwek-Wilczynska

  6. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2004

    International Nuclear Information System (INIS)

    Kirejczyk, M.K.

    2005-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2004 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  7. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1999

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2000-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1999 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  8. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Popkiewicz, M.

    1997-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' by NPD director prof. Ch. Droste

  9. Utility subroutine package used by Applied Physics Division export codes

    International Nuclear Information System (INIS)

    Adams, C.H.; Derstine, K.L.; Henryson, H. II; Hosteny, R.P.; Toppel, B.J.

    1983-04-01

    This report describes the current state of the utility subroutine package used with codes being developed by the staff of the Applied Physics Division. The package provides a variety of useful functions for BCD input processing, dynamic core-storage allocation and managemnt, binary I/0 and data manipulation. The routines were written to conform to coding standards which facilitate the exchange of programs between different computers

  10. Progress report, Physics Division, July 1 to September 30, 1975

    International Nuclear Information System (INIS)

    1975-10-01

    Progress in the Physics Division, CRNL, for the period July 1 to September 30, 1975 is reported. Operation of the MP tandem accelerator and design studies for a superconducting heavy ion cyclotron are summarized. Research on nuclear reactions and radioisotope decay is reported. Studies of neutron scattering on liquid helium and properties of ferromagnetic alloys are presented. A summary of computing centre operations is also provided. (O.T.)

  11. Annual report 1983/1984. Division of Solid State Physics

    International Nuclear Information System (INIS)

    1984-10-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, as well as optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  12. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  13. Physics Division annual progress report, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    Trela, W.J.

    1984-12-01

    The Physics Division is organized into three major research areas: Weapons Physics, Inertial Fusion Physics, and Basic Research. In Weapons Physics, new strategic defensive research initiatives were developed in response to President Reagan's speech in May 1983. Significant advances have been made in high-speed diagnostics including electro-optic technique, fiber-optic systems, and imaging. In Inertial Fusion, the 40-kJ Antares CO 2 laser facility was completed, and the 1- by 1- by 2-m-long large-aperture module amplifier (LAM) was constructed and operated. In Basic Research, our main emphasis was on development of the Weapons Neutron Research (WNR) facility as a world-class pulsed neutron research facility

  14. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    International Nuclear Information System (INIS)

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration

  15. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  16. Engineering Physics Division integral experiments and their analyses

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Integral experiments are performed as part of the Engineering Physics Division's on-going research in the development and application of radiation shielding methods. Integral experiments performed at the Oak Ridge Electron Linear Accelerator (ORELA) under the Division's Magnetic Fusion program are designed to provide data against which ORNL and all other organizations involved in shielding calculations for fusion devices can test their calculational methods and interaction data. The Tower Shielding Facility (TSF) continues to be the primary source of integral data for fission reactor shielding design. The experiments performed at the TSF during the last few years have been sponsored by the Gas Cooled Fast Reactor (GCFR) program. During this report period final documentation was also prepared for the remaining LMFBR shielding experiments, including an examination of streaming through annular slits and measurement of secondary gamma-ray production in reinforced concrete

  17. Real division algebras and other algebras motivated by physics

    International Nuclear Information System (INIS)

    Benkart, G.; Osborn, J.M.

    1981-01-01

    In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

  18. Physics Division progress report for period ending September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  19. Physics Division progress report for period ending September 30, 1984

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes

  20. Physics Division annual report, April 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1996-11-01

    The past year has seen several major advances in the Division`s research programs. In heavy-ion physics these include experiments with radioactive beams of interest to nuclear astrophysics, a first exploration of the structure of nuclei situated beyond the proton drip line, the discovery of new proton emitters--the heaviest known, the first unambiguous detection of discrete linking transitions between superdeformed and normal deformed states, and the impact of the APEX results which were the first to report, conclusively, no sign of the previously reported sharp electron positron sum lines. The medium energy nuclear physics program of the Division has led the first round of experiments at the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility and the study of color transparency in rho meson propagation at the HERMES experiment at DESY, and it has established nuclear polarization in a laser driven polarized hydrogen target. In atomic physics, the non-dipolar contribution to photoionization has been quantitatively established for the first time, the atomic physics beamline at the Argonne 7 GeV Advanced Photon Source was constructed and, by now, first experiments have been successfully performed. The theory program has pushed exact many-body calculations with fully realistic interactions (the Argonne v{sub 18} potential) to the seven-nucleon system, and interesting results have been obtained for the structure of deformed nuclei through meanfield calculations and for the structure of baryons with QCD calculations based on the Dyson-Schwinger approach. Brief summaries are given of the individual research programs.

  1. The role of the Health and Safety Division of DNPDE

    International Nuclear Information System (INIS)

    Arkley, J.

    1985-01-01

    The paper concerns the role of the Health and Safety Division of the Dounreay Nuclear Power Development Establishment, Scotland. Radiological conditions in the workplace; dosimetry; off-site monitoring; and accidents and emergencies, are all discussed. (U.K.)

  2. Progress report - physical sciences TASCC division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1991-09-01

    This is the second in a new series of reports of the work of the TASCC Division since the creation of the Physical Sciences Unit in 1990. Physical Sciences comprises four main sectors, namely the TASCC, Physics and Chemistry Divisions, and the National Fusion Program Management Office. Physics Division is responsible for research and development in the areas of condensed matter physics, neutron and neutrino physics, and accelerator physics, while TASCC Division deals with research performed with the Tandem and Superconducting Cyclotron accelerators, primarily in the field of Heavy Ion Nuclear Physics

  3. Nuclear Physics Division biennial report 1993-1994

    International Nuclear Information System (INIS)

    Kumar, K.; Kataria, S.K.

    1995-01-01

    The activities of the Nuclear Physics Division of Bhabha Atomic Research Centre for the two year period January 1993 to December 1994 are summarised. The experimental nuclear physics research activities are centred around the 14 UD Pelletron accelerator. Instrumentation development for the research utilization of the accelerator as well as accelerator development activities connected with the superconducting LINAC booster are included. During the period the conversion of the 5.5 MV single stage Van de Graaff Accelerator into a 7 MV folded tandem accelerator for light and heavy ions, for use not only in low energy nuclear physics but also in various inter-disciplinary areas was carried out. The research activity in the field of study of heavy ion reactions involving elastic scattering, transfer reactions, fusion-fission phenomena, heavy ion resonances, high energy photons in nuclear reactions and level density determination from charged particle spectra emitted in heavy ion reactions are given. (author). refs., figs., tabs

  4. Nuclear Physics Division Biennial Report 1995-1996

    International Nuclear Information System (INIS)

    Kumar, K.; Nayak, B.K.; Jain, B.K.

    1997-01-01

    The report gives an overview of the scientific and technical activities of the Nuclear Physics Division (NPD) during the last two years. The physics report includes detailed experimental explorations carried out using heavy ion beams at the BARC-TIFR Pelletron facility located at Tata Institute of Fundamental Research (TIFR) and operated by NPD staff. The report also includes the experimental collaborations carried out at advanced accelerator facilities, like RHIC, COSY, etc., abroad for the quark gluon plasma studies and the η meson production in the intermediate energy nuclear reactions. The theoretical research reported includes that relevant to various experimental programs mentioned above and in general, the nuclear physics in non- and sub-nucleonic domains. In the field of accelerator development the division has the ongoing projects of the design, development, fabrication and installation of the 7 MV Folded Tandem Ion Accelerator (FOTIA) and Superconducting Linac Booster for the Pelletron Accelerator. The first stage of the linac project has been completed. It has successfully demonstrated the functioning of the indigenously developed resonator modules. On FOTIA project the installation has begun. The injector part for putting the beam in the vertical column is working. The Pelletron Accelerator, the main work horse for experimentalists, provided an excellent service to the users. A report on its running and maintenance is included. (author)

  5. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    International Nuclear Information System (INIS)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division

  6. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL`s research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  7. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2001

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2001 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one which contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  8. A Deliberate Practice Instructional Approach for Upper Division Physics Courses

    Science.gov (United States)

    Jones, David

    2015-05-01

    In upper division physics courses, an overarching educational goal is to have students think about and use the material much as a practicing physicist in the field does. Specifically, this would include knowledge (such as concepts, formalism, and instruments), approaches, and metacognitive skills that physicists use in solving ``typical'' (research context) problems to both understand and predict physical observations and accompanying models. Using an interactive instructional approach known as deliberate practice (described earlier in this session) we will discuss our work on how to provide students with the necessary practice and feedback to achieve these skills in a core DAMOP course of modern optics. We present the results of a direct and explicit comparison between this approach and traditional lecture-based instruction revealing evidence that a significant improvement of the students' mastery of these skills occurs when deliberate practice is employed. Our work was supported by the University of British Columbia through the CWSEI.

  9. Progress report: Physics Division, 1 July to 30 September 1981

    International Nuclear Information System (INIS)

    1981-11-01

    The work of the Physics Division during the quarter is reviewed. Nuclear physics activities included investigations of beta-delayed proton decay, lifetime measurements using the ISOL facility, radiocarbron dating experiments, studies of high spin states, and crystal blocking measurements for fission fragments from 16 O bombardment of 197 Au. Construction of the haavy ion superconducting cyclotron and development of the high current proton accelerator continued. Neutron diffraction studies were carried out on a number of compounds, low-frequency soliton modes were observed in a magnetic chain compound, vacancy formation energy in thorium metal was measured, and the size of a collision cascade initiated by a single ion passing through condensed matter was calculated. Work in applied mathematics and computation is reviewed

  10. Annual report of the Nuclear Physics Division [for] period ending December 31, 1976

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajitanand, N.N.; Kailas, S.

    1978-01-01

    The research and development (R and D) activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1976 are reported. The R and D activities of the Division cover the areas of nuclear physics, fission physics and solid state physics. Various experimental techniques and instruments developed are also briefly described. (M.G.B.)

  11. Report of the Solid State Physics Division (1991-1992)

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the activities carried out in the Solid State Physics Division at Bhabha Atomic Research Centre (BARC) covering the period from 1991-1992. The activities are reported in the form of individual summaries arranged under headings: Research Activities, Instrumentation and Software Development. The main research activity of the Division is centered around the utilisation of the neutron beams at the Dhruva and Cirus reactors. A number of research proposals from the universities, funded by the Inter University Consortium come under the category of powder diffraction studies. Another area of research where there is a good demand from universities is in the field of small angle neutron scattering. In addition to the neutron beam research, a number of other investigations pertaining to Raman scattering, liquid crystals, model membranes, magnetism, protein crystallography etc. have contributed significantly to the research programme. The fully indigenous guide laboratory is expected to become operational soon. A list of published papers, internal reports and submitted theses is given at the end. (author). refs., figs., tabs

  12. Progress report for 1978-79, Technical Physics Division

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.; Deshpande, R.Y.

    1980-01-01

    The research and development activities of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre, Bombay, during the calendar years 1978 and 1979 are reported. The TPD's major areas of work are electronics instrumentation, crystal technology, mass spectrometers, cryogenic equipment and vacuum equipment. Some of the major achievements are: (1) fabrication of various electronic instruments and components for the pulsed nuclear magnetic resonance spectrometers, (2) growth of large size NaI(Tl) and Ge crystals, (3) growth of CsI, KDP and arsenic selenide crystals, (4) fabrication of quadrupole mass filters and (5) fabrication of mass spectrometers for gas analysis and D/H analysis in water samples. (M.G.B.)

  13. Physics Division progress report, Special 50th anniversary issue, January 1, 1992--December 31, 1992

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1993-01-01

    This special anniversary issue of the Physics Division progress report presents a series of articles that describe the missions and projects of the past and present Physics Division Leaders during their respective tenures. The report also includes selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1992, through December 31, 1992, a general description of the goals and interests of the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; and (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and other programs

  14. Health and Safety Research Division progress report for the period April 1, 1987--September 30, 1988

    International Nuclear Information System (INIS)

    Kaye, S.V.

    1989-03-01

    The mission of the Health and Safety Research Division (HASRD) is to provide a sound scientific basis for the measurement and assessment of human health impacts of radiological and chemical substances. Our approach to fulfilling this mission is to conduct a broad program of experimental, theoretical, and field research based on a strong foundation of fundamental physical studies that blend into well-established programs in life sciences. Topics include biomedical screening techniques, biological and chemical sensors, risk assessment, health hazards, dosimetry, nuclear medicine, environmental pollution monitoring, electron-molecule interactions, interphase physics, surface physics, data base management, environmental mutagens, carcinogens, and tetratogens

  15. Health and Safety Research Division progress report for the period April 1, 1987--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.V.

    1989-03-01

    The mission of the Health and Safety Research Division (HASRD) is to provide a sound scientific basis for the measurement and assessment of human health impacts of radiological and chemical substances. Our approach to fulfilling this mission is to conduct a broad program of experimental, theoretical, and field research based on a strong foundation of fundamental physical studies that blend into well-established programs in life sciences. Topics include biomedical screening techniques, biological and chemical sensors, risk assessment, health hazards, dosimetry, nuclear medicine, environmental pollution monitoring, electron-molecule interactions, interphase physics, surface physics, data base management, environmental mutagens, carcinogens, and tetratogens.

  16. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  17. High Energy Physics division semiannual report of research activities, January 1, 1998 - June 30, 1998

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R.

    1999-01-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included

  18. High Energy Physics Division semiannual report of research activities, January 1, 1996--June 30, 1996

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1 - June 30, 1996. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. List of Division publications and colloquia are included

  19. High Energy Physics Division semiannual report of research activities, January 1, 1992--June 30, 1992

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1992-11-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1992--June 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  20. High Energy Physics Division semiannual report of research activities, January 1, 1994--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1994-June 30, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  1. High Energy Physics Division. Semiannual report of research activities, January 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1995-July 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  2. High Energy Physics Division semiannual report of research activities, July 1, 1991--December 31, 1991

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1992-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1991--December 31, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  3. High Energy Physics Division. Semiannual report of research activities, January 1, 1995--June 30, 1995

    International Nuclear Information System (INIS)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1995-July 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  4. High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R.

    1998-01-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included

  5. High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1993-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  6. High Energy Physics Division semiannual report of research activities, July 1, 1993--December 31, 1993

    International Nuclear Information System (INIS)

    Wagner, R.; Moonier, P.; Schoessow, P.; Talaga, R.

    1994-05-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1993--December 31, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  7. High Energy Physics Division semiannual report of research activities, January 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    1994-09-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1994-June 30, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  8. High Energy Physics Division semiannual report of research activities, January 1, 1993--June 30, 1993

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1993-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1993--June 30, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  9. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    International Nuclear Information System (INIS)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  10. High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

    1999-03-09

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  11. Physics Division annual review, 1 April 1975--31 March 1976

    International Nuclear Information System (INIS)

    1976-01-01

    An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages

  12. Physics Division annual review, 1 April 1975--31 March 1976. [ANL

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G. T.

    1976-01-01

    An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)

  13. Progress report - physical sciences - physics division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the Physics Division. Of special note within the period covered by this report was the successful acceleration of over 75 mA of protons to 600 keV in RFQ1 making it the highest current RFQ in the world. Our electron accelerator expertise has been recognized by the award of one of the R and D 100 awards for the IMPELA (10 MeV 50 kW) machine. Considerable activity was associated with bringing the new dual beam neutron spectrometer DUALSPEC to completion. This instrument has been jointly funded by AECL and NSERC through McMaster University and will be a central component of the national neutron scattering facility at NRU in the 1990's. A major effort was made with the writing of a Project Definition Document for installation of a cold neutron source at the most opportune time

  14. Physics Division progress report, January 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hollen, G.Y.; Schappert, G.T. [comp.

    1994-07-01

    This report discusses its following topics: Recent Weapons-Physics Experiments on the Pegasus II Pulsed Power Facility; Operation of a Large-Scale Plasma Source Ion Implantation Experiment; Production of Charm and Beauty Mesons at Fermilab Sudbury Neutrino Observatory; P-Division`s Essential Role in the Redirected Inertial Confinement Fusion Program; Trident Target Physics Program; Comparative Studies of Brain Activation with Magnetocephalography and Functional Magnetic Resonance Imaging; Cellular Communication, Interaction of G-Proteins, and Single-Photon Detection; Nuclear Magnetic Resonance Studies of Oxygen-doped La{sub 2}CuO{sub 4+{delta}} Thermoacoustic Engines; A Shipborne Raman Water-Vapor Lidar for the Central Pacific Experiment; Angara-5 Pinch Temperature Verification with Time-resolved Spectroscopy; Russian Collaborations on Megagauss Magnetic Fields and Pulsed-Power Applications; Studies of Energy Coupling from Underground Explosions; Trapping and Cooling Large Numbers of Antiprotons: A First Step Toward the Measurement of Gravity on Antimatter; and Nuclear-Energy Production Without a Long-Term High-Level Waste Stream.

  15. Progress report, Health Sciences Division, 1 October - 31 December, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The work of the Health Sciences Division during the quarter included development of improved radiation counters and dosimeters, studies of radionuclide migration through the environment, investigations of the effects of radiation upon a variety of living organisms, and calculation of improved dosimetry factors

  16. Health, Safety, and Environment Division: Annual progress report 1987

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.A. (comp.)

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  17. Health, Safety, and Environment Division: Annual progress report 1987

    International Nuclear Information System (INIS)

    Rosenthal, M.A.

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices

  18. Health, Safety, and Environment Division annual report, 1988

    International Nuclear Information System (INIS)

    Rosenthal, M.A.

    1989-10-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems occasionally arise from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy and to help develop better occupational health and safety practices. 52 refs

  19. HISTORY OF THE ENGINEERING PHYSICS AND MATHEMATICS DIVISION 1955-1993

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.

    2001-09-14

    A review of division progress reports noting significant events and findings of the Applied Nuclear Physics, Neutron Physics, Engineering Physics, and then Engineering Physics and Mathematics divisions from 1955 to 1993 was prepared for use in developing a history of the Oak Ridge National Laboratory in celebration of its 50th year. The research resulted in an accumulation of historic material and photographs covering 38 years of effort, and the decision was made to publish a brief history of the division. The history begins with a detailed account of the founding of the Applied Nuclear Physics Division in 1955 and continues through the name change to the Neutron Physics Division in the late 1950s. The material thereafter is presented in decades--the sixties, seventies, and eighties--and ends as we enter the nineties.

  20. Progress report Health Sciences Division - 1984 January 1 to June 30

    International Nuclear Information System (INIS)

    1984-09-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Health Physics, Environmental Research, Radiation Biology, Biomedical Research and Medical. Some of the main areas of interest discussed are research goals, radiation levels, biological end points, assessment of carcinogenic and genetic hazards, research on radiation effects. Practical applications of research are highlighted

  1. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department

  2. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  3. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1980-09-01

    This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department

  4. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1995-12-31

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: (i) Reaction Mechanism and Nuclear Structure (12 articles); (ii) Experimental Methods and Instrumentation (2 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  5. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    International Nuclear Information System (INIS)

    Osuch, S.

    1995-01-01

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: i) Reaction Mechanism and Nuclear Structure (12 articles); ii) Experimental Methods and Instrumentation (2 articles); iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented

  6. Progress report: Plasma Physics Division (July 1985 to March 1990)

    International Nuclear Information System (INIS)

    Venkatramani, N.; Thakur, A.V.; Viswanadam, C.

    1991-01-01

    The report summarizes the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during the period July 1985 to March 1990. The R and D activites are reported under the headings: 1) Thermal Plasma, 2) Electron Beam Technology, and 3) Industrial Design Section. A list of scientific and technical staff working in the different sections of the Division is also given. (author)

  7. Progress report - Health Sciences Division - 1985 July 01 -December 31

    International Nuclear Information System (INIS)

    1986-02-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Dosimetric Research, Environmental Research, Radiation Biology, and Medical. Some of the aspects discussed include measurement and application of environmental isotopes, dosimetry and employee monitoring, environmental processes of radioisotope transport, the effects of ionizing radiation on living cells (cancer, hyperthermia, DNA, etc.), and statistics of hospital procedures

  8. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M. (ed.)

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31.

  9. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31

  10. Applied Health Physics and Safety annual report for 1975

    International Nuclear Information System (INIS)

    1976-08-01

    This report describes and summarizes the activities of the applied sections and/or groups of the Health Physics Division. Projects and activities covered include personnel monitoring, environmental monitoring, radiation and safety surveys, and industrial safety

  11. Progress report of Physics Division. 1 October 1979 - 30 September 1980. Acting Division Chief - Dr. J. Parry

    International Nuclear Information System (INIS)

    2004-01-01

    The work of the Division concentrated on topics reported in the previous Progress Report with one additional project, namely, the application of ion beam techniques and laser annealing to the production of photovoltaic devices. The MOATA reactor and 3 MeV accelerator operated for Divisional projects and for other work, including collaborative projects supported by the Australian Institute of Nuclear Science and Engineering. Staff were seconded to the Reactors Department (New Reactor Study) and to universities (plasma physics and fusion program). Results obtained on four main themes (reactor calculations, neutron physics, nuclear applications and plasma physics) are reported in the following sections (author)

  12. Annual report of the Nuclear Physics Division [for] period ending December 31, 1982

    International Nuclear Information System (INIS)

    Eswaran, M.A.; Paranjpe, A.S.

    1985-01-01

    The research and development work of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay for the period ending on 31 December 1982 is reported in the form of individual summaries arranged under the headings: (1) nuclear physics, (2) solid state physics, and (3) instrumentation and techniques. A list of papers by the staff-members of the Division published in journals and presented at conferences during the report period is also given. (author)

  13. Health physics documentation

    International Nuclear Information System (INIS)

    Stablein, G.

    1980-01-01

    When dealing with radioactive material the health physicist receives innumerable papers and documents within the fields of researching, prosecuting, organizing and justifying radiation protection. Some of these papers are requested by the health physicist and some are required by law. The scope, quantity and deposit periods of the health physics documentation at the Karlsruhe Nuclear Research Center are presented and rationalizing methods discussed. The aim of this documentation should be the application of physics to accident prevention, i.e. documentation should protect those concerned and not the health physicist. (H.K.)

  14. Health in police officers: Role of risk factor clusters and police divisions.

    Science.gov (United States)

    Habersaat, Stephanie A; Geiger, Ashley M; Abdellaoui, Sid; Wolf, Jutta M

    2015-10-01

    Law enforcement is a stressful occupation associated with significant health problems. To date, most studies have focused on one specific factor or one domain of risk factors (e.g., organizational, personal). However, it is more likely that specific combinations of risk factors are differentially health relevant and further, depend on the area of police work. A self-selected group of officers from the criminal, community, and emergency division (N = 84) of a Swiss state police department answered questionnaires assessing personal and organizational risk factors as well as mental and physical health indicators. In general, few differences were observed across divisions in terms of risk factors or health indicators. Cluster analysis of all risk factors established a high-risk and a low-risk cluster with significant links to all mental health outcomes. Risk cluster-by-division interactions revealed that, in the high-risk cluster, Emergency officers reported fewer physical symptoms, while community officers reported more posttraumatic stress symptoms. Criminal officers in the high-risk cluster tended to perceived more stress. Finally, perceived stress did not mediate the relationship between risk clusters and posttraumatic stress symptoms. In summary, our results support the notion that police officers are a heterogeneous population in terms of processes linking risk factors and health indicators. This heterogeneity thereby appeared to be more dependent on personal factors and individuals' perception of their own work conditions than division-specific work environments. Our findings further suggest that stress-reduction interventions that do not target job-relevant sources of stress may only show limited effectiveness in reducing health risks associated with police work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Progress report - physical sciences - physics division 1991 July 01 - December 31

    International Nuclear Information System (INIS)

    1992-05-01

    The reports from the three branches in Physics Division, Accelerator Physics, Neutron and Solid State Physics and Theoretical Physics, are each presented in separate sections. Each section features a topical review, highlighting in this report the use of high-temperature rf and microwave response of materials, magnetic excitations in hexagonal ABX 3 materials, and meson exchange currents in nuclear beta decay. Noteworthy achievements in the Accelerator Physics program include the successful operation to design energy of the re-vaned RFQ1 accelerator enabling now an energy of 1250 keV. The ECR ion source has operated for greater than 75 hours without failure and has produced the 100 mA needed for the RFQ1 accelerator. The neutron scattering program was again hampered by the NRU Reactor being down for repair. The good news is that the reactor was brought back up to full power in December thus enabling experiments to begin again. Experiments earlier in the year were carried out at Oak Ridge (US), Riso (Denmark), National Institute for Standards and Technology (US) and the Rutherford-Appleton Laboratory (UK). A new high capacity, portable pumping system was commissioned replacing a fixed one that had become obsolete and allowing now greater use of environment control devices on all spectrometers. An analysis of double-charge exchange reactions in nuclei has been used to provide limits on the radius of the neutron halo in 11 Li. The most up-to-date, complete and accurate tables of neutron scattering lengths and cross-sections have been completed. Continuous quality improvement (CQI) analyses were initiated for all the activities in Physics Division with the goal to enhance performance and provide better service to our many customers

  16. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S [ed.

    1997-12-31

    In the presented Annual Report the activities of Nuclear Physics Division (NPD) of Warsaw University in 1995 are described. The report consists of three sections: (i) Reaction Mechanism and Nuclear Structure (11 articles); (ii) Instrumentation and Experimental Methods (9 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers are also given. The first, leading article in the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  17. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1996-12-31

    In the presented Annual Report the activities of Nuclear Physics Division (NPD) of Warsaw University in 1995 are described. The report consists of three sections: (i) Reaction Mechanism and Nuclear Structure (11 articles); (ii) Instrumentation and Experimental Methods (9 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers are also given. The first, leading article in the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  18. Physics Division progress report for period ending June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  19. Physics Division progress report for period ending September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  20. Physics division progress report for period ending September 30 1991

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  1. Physics division progress report for period ending September 30 1991

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development

  2. Physics Division progress report for period ending September 30, 1983

    International Nuclear Information System (INIS)

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed

  3. Physics Division progress report for period ending June 30, 1981

    International Nuclear Information System (INIS)

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers

  4. Engineering Physics and Mathematics Division progress report for period ending March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, and technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.

  5. Engineering Physics and Mathematics Division progress report for period ending March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, and technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center

  6. Progress report, Physics Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are described in nuclear physics (operation of the MP tandem accelerator, nuclear structure and decay), accelerator and applied physics, solid state physics, detectors, and mathematical computation. (E.C.B.)

  7. Physics Division annual review, April 1, 1991--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Henning, W.F.

    1992-08-01

    This report contains brief discusses on topics in the following areas: Research at atlas; operation and development of atlas; medium-energy nuclear physics and weak interactions; theoretical nuclear physics; and atomic and molecular physics research.

  8. Physics Division annual review, April 1, 1989--March 31, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    This report contains papers in the following research areas: research at atlas; operation and development of atlas; medium-energy nuclear physics and weak interactions; theoretical nuclear physics; and atomic and molecular physics research

  9. Progress report - physics division 1985 January 01 - June 30

    International Nuclear Information System (INIS)

    1985-08-01

    This report reviews progress made during the first half of 1985 in the following areas: development of the TASCC facility; experimental and theoretical nuclear physics research; accelerator physics; condensed matter physics; applied mathematics and computer facility operation

  10. Progress report, Physics Division, April 1 to June 30, 1976

    International Nuclear Information System (INIS)

    1976-08-01

    Preliminary results are reported on research covering such broad topics as nuclear physics, MP tandem operation, neutron and solid state physics, theoretical physics, and mathematical support of the programs described. (E.C.B.)

  11. Physics Division annual review, April 1, 1991--March 31, 1992

    International Nuclear Information System (INIS)

    Henning, W.F.

    1992-08-01

    This report contains brief discusses on topics in the following areas: Research at atlas; operation and development of atlas; medium-energy nuclear physics and weak interactions; theoretical nuclear physics; and atomic and molecular physics research

  12. Progress report, Physics Division, July 1 to September 30, 1977

    International Nuclear Information System (INIS)

    1977-10-01

    Research results are reported from the fields of nuclear and theoretical physics, neutron and solid state physics, accelerator physics, and mathematics and computation in support of these fields of endeavour. (E.C.B.)

  13. Research and development activities of High Pressure Physics Division (October 1993 - March 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Gyanchandani, Jyoti; Gangrade, B K [eds.; High Pressure Physics Div., Bhabha Atomic Research Centre, Mumbai (India)

    1996-07-01

    The research and development activities of the High Pressure Physics Division during the period October 1993-March 1996 are reported in the form of collection of papers presented in journals, conference proceedings and abstracts in conferences and Bhabha Atomic Research Centre (BARC) technical reports. The report is organised in two sections: (A) High Pressure Physics Division, and (B) Seismology Section. A list of staff members is enclosed at the end.

  14. Research and development activities of High Pressure Physics Division (October 1993 - March 1996)

    International Nuclear Information System (INIS)

    Gyanchandani, Jyoti; Gangrade, B.K.

    1996-07-01

    The research and development activities of the High Pressure Physics Division during the period October 1993-March 1996 are reported in the form of collection of papers presented in journals, conference proceedings and abstracts in conferences and Bhabha Atomic Research Centre (BARC) technical reports. The report is organised in two sections: (A) High Pressure Physics Division, and (B) Seismology Section. A list of staff members is enclosed at the end

  15. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  16. Physics Division annual review, April 1, 1990--March 31, 1991

    International Nuclear Information System (INIS)

    1991-06-01

    This report discusses: Research At Atlas; Operation and Development of Atlas; Medium-Energy Nuclear Physics and Weak Interactions; Theoretical Nuclear Physics; High-Resolution Laser-rf Spectroscopy with Beams of Atoms and Molecules; Fast Ion-Beam/Laser Studies of Atomic and Molecular Structure; Interactions of Fast Atomic and Molecular Ions with Solid and Gaseous Targets; Theoretical Atomic Physics; Atomic Physics at Atlas and the ECR Source; Atomic Physics at Synchrotron Light Sources; and Accelerator Facilities for Atomic Physics

  17. High Energy Physics Division semiannual report of research activities, July 1, 1990--December 31, 1990

    International Nuclear Information System (INIS)

    Berger, E.; Moonier, P.; May, E.; Norem, J.

    1991-02-01

    A report is presented of research and development activities conducted in the High Energy Physics Division at Argonne National Laboratory during the six month period July 1 through December 31, 1990. Analyses of data from experiments performed by members of the Division are summarized, and the status of experiments taking data and of those being prepared is reviewed. Descriptions are included of research on theoretical and phenomenological topics in particle physics. Progress reports are provided on accelerator research and development, detector research and development, and experimental facilities research. Lists are presented of publications, of colloquia and conference talks, and of significant external community activities of members of the Division

  18. Plenary lectures of the divisions semiconductor physics, thin films, dynamics and statistical physics, magnetism, metal physics, surface physics, low temperature physics

    International Nuclear Information System (INIS)

    Roessler, U.

    1992-01-01

    This volume contains a selection of plenary and invited lectures of the Solid State Division spring meeting of the DPG (Deutsche Physikalische Gesellschaft) 1992 in Regensburg. The constribution come mainly from five fields of the physics of condensed matter: doped fullerenes and high Tc superconductors, surfaces, time-resolved on nonlinear optics, polymer melts, and low-dimensional semiconductor systems. (orig.)

  19. Progress report - Health Sciences Division - 1985 January 01 - June 30

    International Nuclear Information System (INIS)

    1985-09-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Dosimetric Research, Environmental Research, Radiation Biology, and Medical. Some of the main areas of interest discussed are the impact of studies on cultured human fibroblasts with abnormal carcinogen sensitivity. This includes mechanisms of DNA repair and for the initiation of cancer, contribution of such genes to overall societal cancer burden, impact on risk assessment, distribution of risk, and radiation protection, application to improved treatment of cancer, screening for abnormal carcinogen sensitivity and Roberts syndrome

  20. Biomedical Research Group, Health Division annual report 1954

    Energy Technology Data Exchange (ETDEWEB)

    Langham, W.H.; Storer, J.B.

    1955-12-31

    This report covers the activities of the Biomedical Research Group (H-4) of the Health Division during the period January 1 through December 31, 1954. Organizationally, Group H-4 is divided into five sections, namely, Biochemistry, Radiobiology, Radiopathology, Biophysics, and Organic Chemistry. The activities of the Group are summarized under the headings of the various sections. The general nature of each section`s program, publications, documents and reports originating from its members, and abstracts and summaries of the projects pursued during the year are presented.

  1. Health and Safety Research Division progress report, October 1, 1982-June 30, 1984

    International Nuclear Information System (INIS)

    Kaye, S.V.

    1984-08-01

    The work accomplished by the Health and Safety Research Division, Oak Ridge National Laboratory is summarized. Research, assessments and technical measurements done by the division between October 1982 and June 1984 are summarized. Separate analytics were written for each chapter

  2. Nuclear Physics Division Biennial Report 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B K; Jain, A K [eds.; Nuclear Physics Div., Bhabha Atomic Research Centre, Mumbai (India)

    1999-09-01

    This report brings out, in brief, an overview of the research and development activities of the Division during the last two years. The main work-horse for the experimental research had been our 14 MV Pelletron Accelerator facility situated at TIFR. This facility, this year, also completed ten years of a very fruitful and productive operation. The beam time available to users during this period had been outstanding. It was around (60-70)%, which is very much at the international level of any efficiently run facility. To mark the occasion a two day seminar was held. In addition the division had collaborative research programs at various international advanced accelerators centres, like RHIC, CERN, COSY, RIKEN and Legnaro. These collaboration involved the development and fabrication of detector systems for quark-gluon plasma experiments at RHIC and eta-meson production at COSY. The experiments were carried out at these centres using the heavy-ion and the intermediate energy proton/deuteron beams. On the development side, the main efforts have been on the installation and commissioning of the Folded Tandem Ion Accelerator (FOTIA). The machine is expected to be ready soon during the current year. In addition, a write-up for a multi-GeV hadron facility proposal has also been initiated during the last two years by the division. (author)

  3. PUBLIC COMMENT ON THE DEPARTMENT OF HEALTH AND HUMAN SERVICES 2018 FEDERAL PHYSICAL ACITIVTY GUIDELINES

    Science.gov (United States)

    Title: Public Comment on Department of Health and Human Services (DHHS) 2018 Physical Activity Guidelines Author: Wayne E. Cascio, Director, Environmental Public Health Division, US EPA Abstract: In the 2008 Physical Activity Guidelines, the effects of air pollution and advers...

  4. Physics Division annual progress report for period ending June 30, 1977. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Stelson, P.H.

    1977-09-01

    The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)

  5. Physics Division progress report for period ending September 30, 1989

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1990-03-01

    This report discusses topics in the following areas: Holifield heavy ion research; Experimental Nuclear physics; The Uniser program; Experimental Atomic Physics; Theoretical Physics; Laser and electro-optics lab; High Energy Physics; compilations and evaluations; and accelerator design and development. (FI)

  6. Progress report 1979 July 01 to September 30, Health Sciences Division

    International Nuclear Information System (INIS)

    1979-12-01

    In September 1979, the Biology and Health Physics Division and the Medical Division were amalgamated to form the Health Sciences Division. This is the first progress report of the new division. A new TLD reader for semi-automatic handling of individual TLD chips has been commissioned. As high range radiation detectors for spent fuel monitoring, optical photo-diodes show performance similar to that of silicon rectifiers. Studies continue on the use of water-permeable plastic membranes in tritium monitoring, particularly where it is important to distinguish between 3 H in elemental form and combined as water. The first of a series of radionuclide injection experiments was made in the sand aquifer near Perch Lake. These experiments are to develop methods for studying radionuclide transport in fractured rock. Investigations of soil and groundwater in the vicinity of waste management areas have shown that tritium is the only radionuclide present in significant quantities. Radiation damage to DNA and subsequent repair is being studied by observing both somatic and genetic effcts. Rare hereditary human diseases that present clinical or laboratory features indicative of defects in the DNA repair mechanism are being studied. Work on various metabolic models that describe retention and distribution of radionuclides in humans has continued with emphasis on tritium as HT, carbon as CO2, and compounds of the alkaline earth and actinide elements. Committed effective dose equivalent conversion factors for infants and adults have been calculated for 380 classes of compounds of radionuclide and intake routes, for 65 elements. (OT)

  7. Physics Division annual review, April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Thayer, K.J.

    1989-08-01

    This document discusses the following main topics: Research at Atlas; Operation and Development of Atlas; Medium-Energy Nuclear Physics and Weak Interactions; Theoretical Nuclear Physics; Interactions of Fast Atomic and Molecular Ions with Solid and Gaseous Targets; Atomic Physics at Synchrotron Light Sources; Atomic Physics at Atlas and the ECR Source; Theoretical Atomic Physics; High-Resolution Laser-rf Spectroscopy of Atomic and Molecular Beams; and Fast Ion-Beam/Laser Studies of Atomic and Molecular Structure

  8. Physics Division annual review, April 1, 1988--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. (ed.)

    1989-08-01

    This document discusses the following main topics: Research at Atlas; Operation and Development of Atlas; Medium-Energy Nuclear Physics and Weak Interactions; Theoretical Nuclear Physics; Interactions of Fast Atomic and Molecular Ions with Solid and Gaseous Targets; Atomic Physics at Synchrotron Light Sources; Atomic Physics at Atlas and the ECR Source; Theoretical Atomic Physics; High-Resolution Laser-rf Spectroscopy of Atomic and Molecular Beams; and Fast Ion-Beam/Laser Studies of Atomic and Molecular Structure.

  9. Health physics information management

    International Nuclear Information System (INIS)

    Schauss, R.D.

    1982-01-01

    The records that men have kept over the centuries have made the civilizations of man possible. Recorded history shows that our progress is closely correlated to man's ability to communicate recorded facts to others, and to effectively use knowledge gained by others. During the past few decades our ability to store and use information, and to reach larger audiences has grown dramatically. The advent of computers is discussed and their evolution to the state-of-the-art is described. Data bases, batch and on-line processing, centralized and distributed processing as well as other computer jargon are generally explained and examples are given as they apply specifically to health physics programs. It is proposed that systems designed to manage information cannot be adapted to health physics problems without extensive involvement of the HP who must use the computerized program. Specific problems which arise during the development of a computerized health physics program are explained

  10. Introduction to health physics

    CERN Document Server

    Johnson, Thomas

    2017-01-01

    "A dynamic and comprehensive overview of the field of health physics"""This trusted, one-of-a-kind guide delivers authoritative and succinctly written coverage of the entire field of health physics including the biological basis for radiation safety standards, radioactivity, nuclear reactors, radioactive waste, and non-ionizing radiation, as well as radiation dosimetry, radiation instrumentation, and principles of radiation protection. This thorough overview of need-to-know topics, from a review of physical principles to a useful look at the interaction of radiation with matter, offers a problem-solving approach that will serve readers throughout their careers. More than 380 "Homework Problems" and 175+ "Example Problems" Essential background material on quantitative risk assessment for radiation exposure Unique Integration of industrial hygiene with radiation safety Authoritative radiation safety and environmental health coverage that supports the International Commission on Radiological Protection's standar...

  11. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  12. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e + e - colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given

  13. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al 3 Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs

  14. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al{sub 3} Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs.

  15. Progress report - physical sciences - physics division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    1991-09-01

    This is the second in the new series of reports for the Physics Division since the creation of the Physical Sciences Unit in 1990. This report has been subdivided into three self-contained sections covering the activities in the branches for Accelerator Physics, Neutron and Solid State Physics and Theoretical Physics. It is noteworthy that the RFQ1 program with the original vanes has come to a successful conclusion having accelerated 79 mA of protons to 600 keV. The new vanes to achieve a high energy of 1.2 MeV have now been installed and will form the basis for the low energy end of high current proton accelerator development. The progress in the neutron scattering program has been hampered by the NRU reactor being down for repairs since January 1991. Nevertheless a very successful opening ceremony was held to mark the completion of the new DUALSPEC spectrometers and several workshops have been held to promote the understanding of neutron scattering

  16. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2000-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry service for several customers outside the INP, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments for customers in southern Poland. The year 2000 was another eventful year for the Health Physics Laboratory. We started three new research projects granted by the Polish State Committee of Scientific Research. Mr P. Bilski co-ordinates the project on the measurements of radiation doses on board of commercial aircraft of Polish LOT Airlines. Dr B. Marczewska and I worked on the application of artificial diamonds for dosimetry of ionising radiation. We also participate in a

  17. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

  18. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures

  19. Health Physics Measurements Services

    Energy Technology Data Exchange (ETDEWEB)

    Carchon, R

    2001-04-01

    SCK-CEN's programme on health physics measurements includes various activities in dosimetry, calibration , instrumentation , gamma-ray spectrometry, whole body counting , the preparation of standard sources, non-destructive assay and the maintenance of Euratom Fork detectors. Main achievements in these topical areas in 2000 are summarised.

  20. Health physics instrumentation needs

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Kenoyer, J.L.

    1984-10-01

    Deficiencies and desirable improvements can be identified in every technical area in which health physics instruments are employed. The needed improvements cover the full spectrum including long-term reliability, human factors, accuracy, ruggedness, ease of calibration, improved radiation response, and improved mixed field response. Some specific areas of deficiency noted along with needed improvements. 17 references

  1. Health Physics Measurements Services

    International Nuclear Information System (INIS)

    Carchon, R.

    2001-01-01

    SCK-CEN's programme on health physics measurements includes various activities in dosimetry, calibration , instrumentation , gamma-ray spectrometry, whole body counting , the preparation of standard sources, non-destructive assay and the maintenance of Euratom Fork detectors. Main achievements in these topical areas in 2000 are summarised

  2. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    International Nuclear Information System (INIS)

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO 2 laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs

  3. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO{sub 2} laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs.

  4. Physics of Health Sciences

    Science.gov (United States)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  5. Operational health physics training

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

  6. Operational health physics training

    International Nuclear Information System (INIS)

    1988-09-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of α, β, γ, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included

  7. Nuclear Physics Divisions progress report for the period 1st January to 31st December 1979

    International Nuclear Information System (INIS)

    Sofield, C.J.; Lees, E.W.; Longworth, G.

    1980-04-01

    The annual progress report of the Nuclear Physics Division of the Atomic Energy Research Division of the Atomic Energy Research Establishment, Harwell for 1979, is presented under the headings; nuclear data and technology for nuclear power, nuclear studies, applications of nuclear and associated techniques, and accelerator operation, maintenance and development. Lists of reports, publications and conference papers and also of divisional, attached and research student staff are appended. (U.K.)

  8. Annual report of the Nuclear Physics Division [for] the period ending December 1975

    International Nuclear Information System (INIS)

    Jain, B.K.; Nadkarni, D.M.; Rao, K.R.P.M.

    1976-01-01

    The R and D activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during 1975, are described. The following are the significant areas of research activities of the Division : resonance reactions, nuclear spectra, fast fission, ternary and quaternary fission, neutron diffraction studies of magnetic materials, neutron inelastic scattering and dynamics of condensed media. The progress of development work on various experimental techniques and facilities including ion implantation facility and terminal tandem accelerator has been reported. (M.G.B.)

  9. Progress report: Physics Division, 1982 April 1 - June 30

    International Nuclear Information System (INIS)

    1982-08-01

    Nuclear physics studies that took place at Chalk River Nuclear Laboratories during the second quarter of 1982 are described, as well as work in solid state and theoretical physics. The MP Tandem accelerator was shut down to prepare for the installation of a superconducting cyclotron. Computer codes developed during the period and the operation of the computer facilities are described

  10. Progress report physics division 1984 July 1 - December 31

    International Nuclear Information System (INIS)

    1985-02-01

    This report reviews progress made during the last half of 1984 in the following areas: development of the TASCC facility; experimental and theoretical nuclear physics research; development of the heavy-ion superconducting cyclotron, the high current proton accelerator and the electron test accelerator; condensed matter physics; applied mathematics and computer facility operation

  11. Progress report physics division 1984 January 1 - June 30

    International Nuclear Information System (INIS)

    1984-08-01

    This report reviews progress made during the first half of 1984 in the following areas: development of the TASCC facility; experimental and theoretical nuclear physics research; development of the heavy-ion superconducting cyclotron, the high current proton accelerator and the electron test accelerator; condensed matter physics; applied mathematics and computer facility operation

  12. Identity Statuses in Upper-Division Physics Students

    Science.gov (United States)

    Irving, Paul W.; Sayre, Eleanor C.

    2016-01-01

    We use the theories of identity statuses and communities of practice to describe three different case studies of students finding their paths through undergraduate physics and developing a physics subject-specific identity. Each case study demonstrates a unique path that reinforces the link between the theories of communities of practice and…

  13. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    International Nuclear Information System (INIS)

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center

  14. High Energy Physics Division semiannual report of research activities, July 1, 1996 - December 31, 1996

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-12-01

    This report is divided into the following areas: (1) experimental research program; (2) theoretical research program; (3) accelerator research and development; (4) divisional computing activities; (5) publications; (6) colloquia and conference talks; (7) high energy physics community activities; and (7) High Energy Physics Division research personnel. Summaries are given for individual research programs for activities (1), (2) and (3)

  15. Research and development activities of the Neutron Physics Division for the period January 1977-December 1978

    International Nuclear Information System (INIS)

    Ramanadham, M.; Joneja, O.P.

    1979-01-01

    The research and development programmes of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, for the period 1977-1978 are outlined. The fields covered include reactor (neutron) physics, fusion and plasma neutronics, biological and high precision crystallography, solid state phenomena and seismology as well as the associated workshop facilities. (K.B.)

  16. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

  17. Uranium health physics

    International Nuclear Information System (INIS)

    1980-01-01

    This report contains the papers delivered at the Summer School on Uranium Health Physics held in Pretoria on the 14 and 15 April 1980. The following topics were discussed: uranium producton in South Africa; radiation physics; internal dosimetry and radiotoxicity of long-lived uranium isotopes; uranium monitoring; operational experience on uranium monitoring; dosimetry and radiotoxicity of inhaled radon daughters; occupational limits for inhalation of radon-222, radon-220 and their short-lived daughters; radon monitoring techniques; radon daughter dosimeters; operational experience on radon monitoring; and uranium mill tailings management

  18. Introduction to health physics

    International Nuclear Information System (INIS)

    Herman, C.

    1983-01-01

    This volume, in textbook format, deals with radiation toxicology, environmental health, and safety procedures related to radiation exposure. The first five chapters give basic information in mechanics, electricity, quantum theory, and atomic and nuclear structure. The remaining chapters deal with the biological effects of radiation and radiation protection. The text is descriptive and basically non-technical nor mathematical. The main purpose of this textbook is to lay the groundwork for attaining technical competency in health physics, i.e., the protection of the individual and population groups against the harmful effects of ionizing and non- ionizing radiation. Illustrated with plates, graphs, charts, and tables

  19. Theoretical Physics Division progress report October 1979 - September 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Research at Harwell on nuclear, atomic and molecular physics, the theory of fluids, radiation damage, safety studies, point defects and point defect determined processes, surface studies and nondestructive examination are described. (U.K.)

  20. Educative health physics

    International Nuclear Information System (INIS)

    Vetter, R.J.; O'Riordan, M.C.

    1992-01-01

    'Full-Text:' There is more to education in radiation protection than curricula, courses and certificates. In a broader sense, education implies the provision of knowledge, the development of competence, and the promotion of understanding. These purposes are served by 'Health Physics', the journal of radiation protection. The leading role of the journal is supported by an Advisory Board composed of members of the IRPA Publications Commission. A review is presented of the diversity of material in Health Physics throughout the last few years and set against the historical background. Expansion in the range of topics is described as well as the increase in didactic content both theoretical and operational. The global range of contributions is noted as is the attempt to provide an international perspective on developments in the discipline. Plans for the future are discussed. (author)

  1. Comparison of chosen physical fitness characteristics of Turkish professional basketball players by division and playing position.

    Science.gov (United States)

    Köklü, Yusuf; Alemdaroğlu, Utku; Koçak, Fatma Ünver; Erol, A Emre; Fındıkoğlu, Gülin

    2011-12-01

    The purpose of the present study was to compare chosen physical fitness characteristics of Turkish professional basketball players in different divisions (first and second division) and playing positions. Forty-five professional male basketball players (14 guards, 15 forwards, 16 centers) participated in this study voluntarily. For each player, anthropometric measurements were performed, as well as a multi-stage 20 m shuttle run, isokinetic leg strength, squat jump (SJ), countermovement jump (CMJ), 10-30 meter single-sprint and T-drill agility tests. The differences in terms of division were evaluated by independent t-test and the differences by playing position were evaluated by one-way ANOVA with Post Hoc Tukey test. First division players' CMJ measurements were significantly higher than those of second division players' (p≤0.05), whereas second division players' 10 m sprint times were significantly better than those of first division players' (p≤0.05). In addition, forwards and centers were significantly taller than guards. Centers were significantly heavier and their T-drill test performances were inferior to those of forwards and guards (p≤0.05). Moreover, guards had a significantly higher maximal oxygen uptake (VO2 max) than centers. Guards and forwards showed significantly better performance in the 10 and 30 m sprint tests than centers (p≤0.05). Forwards and centers had significantly better left leg flexor strength at 180°.s(-1)(p≤0.05). In conclusion, the findings of the present study indicated that physical performance of professional basketball players differed among guards, forwards and centers, whereas there were not significant differences between first and second division players. According to the present study, court positions have different demands and physical attributes which are specific to each playing position in professional basketball players. Therefore, these results suggest that coaches should tailor fitness programs according to

  2. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e + e - annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of πN scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies

  3. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  4. Theoretical Physics Division annual report (1 Sep 1981 - 31 Aug 1982)

    International Nuclear Information System (INIS)

    The Division of Theoretical Physics is organized in two groups, one oriented towards problems in nuclear physics and the other working on problems in particle physics. The fields of research can be summarized as follows: - in nuclear physics: systems with few nucleons, self-consistant calculations of nuclear properties, nuclear spectroscopy, nuclear physics at intermediate energies, weak interactions, nuclear reactions; - in particle physics: nucleon-nucleon scattering and the Paris potential, the nucleon-antinucleon interaction, dual topological unitarization and multiquark states, Gauge theories, covariant representations of classical systems, binding potentials derived from local relativistic wave equations, renormalization problems in quantum field theory [fr

  5. Research and development activities of the Neutron Physics Division for the period January 1980 - December 1980

    International Nuclear Information System (INIS)

    Basu, T.K.; Bhakay-Tamhane, S.

    1981-01-01

    The highlights of the research and development (R and D) activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, during January - December 1980 are summarised. The R and D activities are in the fields of critical and subcritical fission systems, the plasma focus device, applied neutron physics, neutron and X-ray crystallography, materials physics and seismology. (M.G.B.)

  6. Progress report, Physics Division, October 1 to December 31, 1976

    International Nuclear Information System (INIS)

    1977-02-01

    A summary is given of the CRNL MP Tandem operation, research activities covering the range of nuclear and solid state physics, progress in CdTe detector technology, and mathematics and computation applied to the overall CRNL research program. (E.C.B.)

  7. Progress report, Physics Division, April 1 to June 30, 1975

    International Nuclear Information System (INIS)

    1975-08-01

    The operation and research purposes of the Chalk River MP tandem accelerator are described. Besides programs in nuclear and solid state physics, research is carried out on improved radiation detectors and mathematical support of on-going programs. (E.C.B.)

  8. Progress report: Physics Division, 1983 January 1 -June 30

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear physics studies carried out during the first half of 1983 are described. Work continues on the Tandem Accelerator Superconducting Cyclotron facility. Advances in computer facilities and the new 8 π spectrometer are reported. Crystal structure studies via neutron scattering are also outlined

  9. On The Role Of Division, Jordan And Related Algebras In Particle Physics

    International Nuclear Information System (INIS)

    Gursey, F.; C-H Tze

    1996-11-01

    This monograph surveys the role of some associative and non-associative algebras, remarkable by their ubiquitous appearance in contemporary theoretical physics,particularly in particle physics. It concerns the interplay between division algebras, specifically quaternions and octonions, between Jordan and related algebras on the one hand, and unified theories of the basic interactions on the other. Selected applications of these algebraic structures are discussed: quaternion analyticity of Yang Mills instantons, octonionic aspects of exceptional broken gauge, supergravity theories, division algebras in anyonic phenomena and in theories of extended objects in critical dimensions. The topics presented deal primarily with original contributions by the authors

  10. High Energy Physics Division semiannual report of research activities. Semi-annual progress report, July 1, 1995--December 31, 1995

    International Nuclear Information System (INIS)

    Norem, J.; Bajt, D.; Rezmer, R.; Wagner, R.

    1996-10-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1995 - December 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  11. Physics Division annual report, 1 January-31 December 1984

    International Nuclear Information System (INIS)

    1985-10-01

    A brief overview of each of the several areas of research is given with a list of resulting publications. Areas of research include electron-positron annihilation, neutrino interactions, neutrinoless double beta decay of 100 Mo, double beta decay of 76 Ge, antiproton-proton interactions, right-handed gauge boson effects, muon decay asymmetry parameter measurements, supernovae detection, Nemesis search, and detector development. Areas of theoretical research include electroweak interactions, strong interactions, nonperturbative dynamics, supersymmetry, and cosmology and particle physics. 34 figs

  12. Progress report, Physics Division: 1982 October 1 - December 31

    International Nuclear Information System (INIS)

    1983-02-01

    Research activities in nuclear physics included use of a new transient field apparatus to measure spin rotation in Yb-162, study of the interference effect in thermal neutron radiative capture reaction in C-12, and analysis of the results of photo-fission measurements on U-238. In accelerator and applied physics, work has continued on the heavy-ion superconducting cyclotron and the electron test accelerator, and on the development of a high current proton accelerator. Data was compiled on thermal neutron cross sections of the elements and measurements were made of total neutron yields from (p,xn) reactions on Cu, Fe and Th targets. Investigations in solid state physics included neutron scattering studies of red blood cells and CsCoBr 3 , magnetic and phonon properties of USn 3 , and positron annihilation measurements on FeAl. In applied mathematics and computation, work was carried out on coolant boiling and heat transfer in Slowpoke-III, and the MARC code was applied to analysis of pump seal deformations and to temperature distribution around cracks in Bruce pressure tubes

  13. Progress report - physical sciences TASCC division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the TASCC Division. During the period covered by this report, the operation of the superconducting cyclotron has matured considerably, with over 30 accelerated ion beams more-or-less routinely available for a wide variety of nuclear physics experiments. The TASCC team, together with all the engineers, trades-people and other staff members who contributed to the design, constructed and commissioning of the Tandem Accelerator Superconducting Cyclotron facility, are to be heartily congratulated on bringing it to its present highly successful state in an unusually short period of time. In conjunction with our many outside collaborators, we are now engaged on exciting experiments in several areas of nuclear physics research, as reported in the following pages. We are well on the way to the establishment of a truly National Centre for Nuclear Physics research in Canada

  14. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  15. Physics Division annual report, 1 January-31 December 1984

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    A brief overview of each of the several areas of research is given with a list of resulting publications. Areas of research include electron-positron annihilation, neutrino interactions, neutrinoless double beta decay of /sup 100/Mo, double beta decay of /sup 76/Ge, antiproton-proton interactions, right-handed gauge boson effects, muon decay asymmetry parameter measurements, supernovae detection, Nemesis search, and detector development. Areas of theoretical research include electroweak interactions, strong interactions, nonperturbative dynamics, supersymmetry, and cosmology and particle physics. 34 figs. (WRF)

  16. Progress report, Physics Division: 1982 July 1 - September 30

    International Nuclear Information System (INIS)

    1982-12-01

    Nuclear physics work at CRNL included determination of the half lives of sup(26)Alsup(m), sup(34)Cl and sup(38)Ksup(m), development of the second of three ports of the isotope separator, extensive test runs for the parity violation experiment on the electron test accelerator, and completion of the analysis of circular polarization data for gamma decay in 21 Ne. Solid state physics research included studies of the crystal structures of K 2 ReBr 6 , analysis of small-angle scattering data from superoxide dismutase, and analysis of the temperature dependence of the positron annihilation peak rate in alpha and beta thorium in terms of the trapping model. Applied mathematics and computation research included mathematical modelling of transient thermal behaviour of Slowpoke-III fuel and development of a probability distribution for unobserved occurrences of dryout in a fuel bundle test. Testing began on the pre-processor program PRESTAR that aids in preparing input for the stress analysis program STARDYNE

  17. Progress report, Physics, Division, October 1 to December 31, 1980

    International Nuclear Information System (INIS)

    1981-02-01

    There were thirteen experiments performed on the CRNL MP tandem accelerator during the quarter. Nuclear physics research activities included the bombardment of tungsten with 97 MeV 16 O ions, construction of a decay scheme for 71 Br, measurement of differences in reaction Q-values, experimental determination of average γ-ray widths for nuclei far from stability, use of the( 3 He,n) reaction in inverse Doppler shift attenuation measurements, and measurement of the full spectrum of gamma rays from the 13 C(n,γ) 14 C reaction. Construction and development of the heavy ion superconducting cyclotron, the high current proton accelerator, and the electron test accelerator continued. Research in solid state physics included investigations of solid β-N 2 , measurments of the temperature dependence of the positron annihilation peak coincidence rate in FeCo, observations of the excitation spectrum in the anisotropic quasi one-dimensional antiferromagnet CsCoBr 3 , and development of a theory of neutron diffraction for cubic crystals of the type Msub(c)Asub(1-c)B. Additional hardware was installed in the computer centre, increasing the computer memory and disc facilties. (L.L.)

  18. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2002-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics (IFJ) in Cracow are principally research in the general area of radiation physics, dosimetry and radiation protection of the employees of the Institute. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti, CaF 2 :Tm and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P and LiF:Mg, Cu, Si, Na for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on IFJ premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry services for several customers outside the IFJ, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments (400 per year) for customers in the southern region of Poland. The year 2001 was another eventful year for the Health Physics Laboratory. M. Waligorski has received his Professor of Physics state nomination from A. Kwasniewski, the President of Poland. P. Bilski and M. Budzanowski were granted their Ph.D. degrees by the Scientific Council of the Institute of Nuclear Physics. We continued several national and international research projects. Dr

  19. Progress report Physical and Environmental Sciences TASCC Division 1994 July 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The TASCC division of the Physics and Environmental Sciences releases this progress report to overview the research and instrumentation and facility development. The accelerator operation was smooth for the Tandem and rather difficult for the cyclotron. Progress has been made on all major development projects. A listing is included of all publications, reports, lectures and conference contributions. 14 tabs., 28 figs.

  20. Progress report Physical and Environmental Sciences TASCC Division 1994 July 1 to December 31

    International Nuclear Information System (INIS)

    1995-05-01

    The TASCC division of the Physics and Environmental Sciences releases this progress report to overview the research and instrumentation and facility development. The accelerator operation was smooth for the Tandem and rather difficult for the cyclotron. Progress has been made on all major development projects. A listing is included of all publications, reports, lectures and conference contributions. 14 tabs., 28 figs

  1. PREFACE: X Workshop of the Gravitation and Mathematical Physics Division, Mexican Physical Society

    Science.gov (United States)

    2014-11-01

    The collection of papers in this volume was presented during the X Workshop of the Gravitation and Mathematical Physics Division of the Mexican Physical Society (DGFM-SMF), which was held in Pachuca, Hidalgo, México, December 2-6, 2013. The Workshop is a bi-annual series of conferences sponsored by the DGFM-SMF that started in 1993 with the purposes of discussing and exchanging the research and experience of the gravitational and mathematical physics communities in Mexico. Each Mexican Workshop has been devoted to subjects of broad interest, so that students, in particular, can have access to specialized courses and talks that allow them to raise up their qualifications as professional researchers. Recurrent topics in the Mexican Workshop are supergravity, branes, black holes, the early Universe, observational cosmology, quantum gravity and cosmology and numerical relativity. Following our previous Workshops, distinguished researchers in the field, working in Mexico, were invited to give courses, whereas young researchers were invited for plenary lectures. More specialized talks were also presented in parallel sessions, with ample participation of researchers, and graduate and undergraduate students; most of the presentations have been included in these proceedings. The contributions in this volume have been peer-reviewed, and they represent most of the courses, plenary talks and contributed talks presented during our Workshop. We are indebted to the contributors of these proceedings, as well as to the other participants and organizers, all for making the event a complete success. We acknowledge the professionalism of our reviewers, who helped us to keep high quality standards in all manuscripts. Acknowledgments The organizing committee would like to acknowledge the financial support of the Mexican National Science and Technology Council (CONACyT), the Mexican Physical Society (SMF), as well as several Institutions including: Centro de Investigación y Estudios

  2. Progress report: Health Sciences Division, 1983 July 1 - December 31

    International Nuclear Information System (INIS)

    1984-02-01

    This report summarizes programs in health physics, radiation biology, environmental sciences and biomedical research. Health physics research included work on neutron dosimetry, thermoluminescent dosimetry, measurements of γ- and β-sensitivity of MOSFET detectors, tritium monitoring, a stack effluent monitor, and other radiation instruments. Environmental research included studies of heated plumes, radiotracer studies of flow through rock fractures, radionuclide cycling by plants, stable cobalt in fish, long-term radiation protection objectives for radioactive waste disposal, and tritium in surface waters in the CRNL vicinity. Radiation biology research continued to be concerned with DNA damage from radiation and carcinogenic chemicals, and enzymatic Σrepair processesΣ which help protect cells from such damage. In biomedical research the experiment to measure the fraction of HT by volunteers that is converted to HTO in vivo is progressing satisfactorily

  3. Progress report, Physics Division, 1 January - 31 March 1981

    International Nuclear Information System (INIS)

    1981-05-01

    The nuclear physics group used the on-line isotope separator to make direct mass doublet measurments for the first time and to identify a new α-emitter, hafnium-162. A new NaI(Tl) detector gave improved data on the multiplicities and intensities of continuum γ-rays in gadolinium-147. Beam profile data for the Fast Intense Neutron source showed that tritium loss from bombarded targets is not caused by beam hot-spots. Geometry studies on the High Current Proton Accelerator showed that proton fraction increases with improved arc and gas efficiencies. In conjunction with fertile-to-fissile conversion experiments at TRIUMF, two types of monitoring foils agreed within 2.5% with results obtained by two other laboratories. Neutron diffraction data for a single β-N 2 crystal at 0.4 MPa showed that its scattering density distribution and mean translation displacements have almost perfect spherical symmetry. A new non-linear stress analysis code was marketed

  4. Progress report, Physics Division, 1 April - 30 June, 1981

    International Nuclear Information System (INIS)

    1981-08-01

    The nuclear physics group obtained an accurate value of the gamow-teller contribution to the 2 + → 2 + (T=1) super allowed β transition in 20 Na from kinematic shifts in the β-delayed α-particle spectrum, thus allowing calculation of the Fermi coupling constant. In experiments with an anti-Compton NaI(Tl) shield, the average properties of the continuum γ-rays were determined for the (HI,xn) reaction and the properties of the high-energy (approximately 14 MeV) giant resonance γ-rays were correlated with specific (HI,xn) reaction channels. A systematic analysis by different techniques showed that recoil distance lifetime measurements can have systematic errors of about 10% from undetected feeding, background and/or hyperfine interactions. Average neutron kinetic energies for the 124 Sn ( 28 Si,5n) 147 Gd reaction correlated very strongly, but unexpectedly, with the bombarding energy. In the High Current Proton Accelerator, beamlet stacking was found to improve injection emittance by a factor of 1.9. The line-shapes of selected phonons in the orientationally disordered crystal β-nitrogen were calculated with the Michel-Nandts model. Computer simulation was used to calculate the spin-wave properties of the disordered ferromagnet Nisub(2)Mnsub(0.8)Vsub(0.2)Sn

  5. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    1999-01-01

    The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti for medical applications in conventional and hadron radiotherapy, and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (radon in dwellings and in soil air) are also performed using track detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, monitoring and supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. The year 1998 was another eventful year for the Health Physics Laboratory. In retrospective, the main effort in 1998 has been directed towards preparation and participation in the 12th International Conference on Solid State Dosimetry in Burgos, Spain. One of the research projects is aimed at developing novel miniature TLD detectors with improved LET and dose characteristics for precise phantom measurements in eye cancer radiotherapy with proton beams. The second project concerns the application of ultra-sensitive LiF:Mg, Cu, P (MCP-N) TLD detectors in environmental monitoring of gamma ionising radiation. The main objective of this last project is to develop and to test a system for rapid, short-term monitoring of environmental radiation

  6. Physics Division annual review, 1 April 1986-31 March 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This review presents a broad view of the research activities within the Division for the year ending in March 1987. Major topic areas are: Medium Energy Physics Research; Theoretical Nuclear Physics; Superconducting Linac Development, and Accelerator Operations. Research at ATLAS is also included as a broad topic. Included in this research are studies in the areas of: Quasielastic Processes and Strongly Damped Collisions; Fusion and Fission of Heavy Ions; High Angular Momentum States in Nuclei; Accelerator Mass Spectroscopy; and Equipment Development

  7. Progress report for Applied Physics Division 1 July 1981 - 30 June 1982

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The Division is organised as four sections: nuclear applications and energy studies; semiconductor and radiation physics; electronics systems; and fusion physics. Research activities include studies in neutron fission, neutron capture and neutron scattering; use of nuclear techniques of analysis such as PIXE; development of semiconductor detectors; rotamak experiments, and further fusion studies on MHD surface waves and alfven resonance heating of plasmas. A list of publications is included

  8. Progress report, Physics and Health Sciences: Health Sciences Division

    International Nuclear Information System (INIS)

    1990-01-01

    This report reviews the activities of the Dosimetric Research, Environmental Research, and Radiation Biology Branches of Atomic Energy of Canada Ltd. The Reactor Stack Effluent Monitor, which is designed to cover the full range of releases for the main reactor stack at Chalk River, is the subject of a topical review. The GENMOD software has been improved to include a better method of calculating the distribution of particulates in respiratory organs. Development continues on methods of monitoring 147 Pm in urine. Attempts are being made to determine whether the saline waters discharging at 'moose licks' in the Nipigon region come from deep brines characteristic of the Precambrian shield. Trace metals and 90 Sr are being measured in mussel shells to determine whether the shells are suitable recorders of environmental changes. Work continues on the grow-back assay of lymphoblastoid cells to screen for inherited variations in response to genotoxic agents

  9. Progress report, Physics Division, July 1 to September 30, 1979

    International Nuclear Information System (INIS)

    1979-10-01

    Preparations are underway to use the intense electron beam produced by the Electron Test Accelerator for an experiment to test for violation of parity conservation in strong interactons. Using a capture γ-ray technique, the thermal neutron capture cross section of 90 Zr has been found to be significantly smaller than previous literature values. Commissioning of the Fast Intense Neutron Source to increase source strength has continued with some delay caused by the failure of the target rotating vacuum seal. The superconducting cyclotron program passed from full-scale test to construction phase. Design work is continuing and component fabrication has been started on a preaccelerator suitable for accelerator breeder applications. Development is continuing on a multi-aperture duoPIGatron ion source suitable for a high current accelerator. In fertile-to-fissile conversion experiments at TRIUMF, all of the neutron flux data taken previously at a proton energy of 480 MeV have been re-assessed. Experiments in solid state physics included (a) using small-angle scattering techniques for examination of detergent micelles in D 2 O solution, (b) the nature of phase transitions in two specimen antifluorites, (c) phonons in a large single crystal of deuterated ammonia, (d) vacancy formation energy in type 316 stainless steel by positron annihilation, (e) theoretical studies of the depth distribution of heavy-ion recoils. Possible improvements in the characteristics of CdTe detectors by introduction of hydrogen are being investigated. Operations of the MP Tandem accelerator and the main site computing facility are summarized. (OST)

  10. Promoting Staff Health: A Survey of the Health and Wellbeing Division

    LENUS (Irish Health Repository)

    Evans, David S.

    2016-01-01

    n order to gain a measure of the health and wellbeing of staff in the Health and Wellbeing Division a survey was undertaken in late 2015 with results contained in this report. It highlights the areas that we are doing well in and identifies a number of areas where improvements are needed. The results and suggestions given provide a benchmark as to the current health and wellbeing status of those in our Division and pave the way for a set of recommendations which will be delivered through the action plan currently being developed. As a starting point and in recognition of the fact that many of our staff are based in other cross divisional worksites, the Staff Health and Wellbeing Funding Initiative 2016 was introduced.

  11. Progress report [of] Technical Physics and Prototype Engineering Division, April 1982 - March 1984

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.; Chaudhry, Ramesh

    1985-01-01

    The work done by the Technical Physics and Prototype Engineering Division of the Bhabha Atomic Research Centre (BARC) at Bombay during the period from April 1982 to March 1984 is described in the form of summaries. The main thrust of the work of the Division is towards designing, developing, fabricating and if needed, producing on a large scale various instruments, equipment and components required for the programmes of the BARC and the Department of Atomic Energy. The summaries describing the work are grouped under the headings:(1) vacuum, (2) surface analysis, (3) mass spectrometry, (4) electronics, (5) cryogenics, (6) crystals and detectors, (7) glass technology and devices, and (8) optoelectronics. A list of publications of the staff-members of the Division during the report period is given. (M.G.B.)

  12. Engineering Physics Division progress report for period ending November 30, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, F.C.

    1979-01-01

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included. (RWR)

  13. Engineering Physics Division progress report for period ending November 30, 1978

    International Nuclear Information System (INIS)

    Maienschein, F.C.

    1979-01-01

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included

  14. Annual report of the Nuclear Physics Division [for] period ending December 1974

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Eswaran, M.A.; Nadkarni, D.M.

    1975-01-01

    The R and D activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the year 1974 are reported. During the year, the Division was reorganised into three units, namely, Van de Graaff Laboratory, Solid State Physics Section and Fission Physics Section. Topics of some of the research studies are: higher isospin states in 36 Ar through alpha particle capture resonance, spectra of doubly odd nuclei, shell correction energies obtained by the Strutinsky method for deformed nuclear shapes relevant to fission barrier calculations, trajectory calculations in spontaneous fission of 252 Cf, fission fragment and alpha particle energy correlations in the thermal neutron-induced fission of 235 U, magnetic structure of magnetic materials by polarised neutron diffraction, vibrational modes of water molecules in BeSO 4 .H 2 O and dynamics of NH 4 + ions in ammonium compounds by neutron inelastic scattering. (M.G.B.)

  15. Progress report, Health Sciences Division, 1 October to 31 December 1979

    International Nuclear Information System (INIS)

    1980-02-01

    This is the second quarterly progress report of the Health Sciences Division. Developments in health physics include construction of a simple monitor for measurement of tritium concentration at or above the maximum permissible level and measurements on the behaviour of Geiger counters at high temperature for monitoring activity in reactor cooling circuits. Environmental Research Branch continues to monitor groundwater in the vicinity of the glass blocks containing fission products. Work in radiation biology deals with the effects of radiation on a variety of living organisms. Emphasis continued on the study of damage to DNA and its repair. Research into certain human diseases which are believed to be caused by a deficient DNA repair mechanism is also summarized. (OT)

  16. Progress report, Health Sciences Division: 1982 July 1 - September 30

    International Nuclear Information System (INIS)

    1982-12-01

    Research at CRNL in health physics included characterization of electrochemically etched CR39 plastic, study of superheated liquid drops trapped in gels, measurement of HTO in background gamma fields, and development of components for a wide-range reactor stack effluent monitor. Environmental research continued with local hydrological studies, adsorption/desorption models of Co-60, studies of physical-chemical processes in sedimentation in lakes and rivers, and development of methods to determine the C-14 content of CO 2 and vegetation. Research in radiation biology included studies employing recombinant DNA technology, detection of damaged bases following uv irradiation, tumor induction studies, and work on improved heat resistance in yeast. Biomedical research included the completion of I-129 dose estimations in connection with a proposed waste repository

  17. International Conference-Session of the Section of Nuclear Physics of the Physical Sciences Division of RAS

    CERN Document Server

    2014-01-01

    From November 17 to 21, 2014 the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences and the National Research Nuclear University MEPhI will hold in MEPhI, Moscow, the International Conference-Session of SNP PSD RAS "Physics of Fundamental Interactions". The program of the session covers basic theoretical and experimental aspects of particle physics and related problems of nuclear physics and cosmology, and will consist of 30-minute highlight and review talks as well as 10-15-minute contributed reports. All highlight talks and part of contributed reports will be presented at plenary sessions of the conference. The remaining reports will be presented at the sections which will be formed after receiving of abstracts. On the recommendation of the Organizing Committee reports and talks containing new unpublished results will be published in special issues of journals "Nuclear Physics" and "Nuclear Physics and Engineering". For the institutions belonging to the Rosatom s...

  18. The health physics and radiological health handbook

    International Nuclear Information System (INIS)

    Shleien, B.

    1992-01-01

    This handbook was conceived in order to fill the need of health physics practitioners, technicians, and students for an easy to use, practical handbook containing health physics and radiological health data. While briefer and more specific data sources are sources are available on single subject areas, as are multi-volume compendia, there is no current up-to-date compilation of information useful on a daily basis by the health physicist. Separate abstracts have been prepared for 16 chapters in this book

  19. Report of the Nuclear Physics Division, January 1, 1978 -December 31, 1979

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajitanand, N.N.; Kerekatte, S.S.

    1980-01-01

    The research activities, with an individual summary of each, of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar years 1978 and 1979 are reported. The Division is organised into three sections, namely, the Solid State physics Section, the Fission Physics Section and the Van de Graaff Laboratory. The supporting facilities of the Division include a workshop, and facilities for electronic design and development, neutron radiography and accelerator maintenance. Techniques of neutron scattering, light scattering and Moessbauer spectroscopy are used for studies in solid state physics. Major activities of the Fission Physics Section relate to theoretical studies of the fission process, heavy ion reactions and nuclear level densities. The activities of this Section during the report period deserving a special mention are studies on the mass division in fission based on the nuclear exchange process and deduction of heavy ion fusion cross sections from fission fragment angular distribution. Experimental work for multiparameter studies of the light charged particles emitted in the thermal induced fission of 235 U and for search of superheavy elements by K X-ray technique is continued. Van de Graaff accelerator is used to study nuclear reactions, nuclear structure and cross sections. Ion beam techniques including ion implantation are used for blistering studies. During the period of the report, 2 MW tandem accelerator was commissioned and DUMAS heavy duty mass separator was tested for performance. A linear, position sensitive X-ray detector has been developed. The report also includes lists of staff members, articles published in journals, papers presented at conferences, symposia etc., reports issued, theses presented, seminars, workshops etc., lecturers delivered by the staff members at other institutions and training courses. (M.G.B.)

  20. Physics measurements and health education

    OpenAIRE

    HAJDUCH, Petr

    2016-01-01

    The thesis "Physical measurements and health education" looks at physical quantities that are related to human health and can be measured in a elementary school environment. It focuses especially on the cross-curricular relationship between physics and health education and also on the use of relevant online measurement systems. As part of this thesis, we suggest a number of activities that exploit this relationship.

  1. Progress report of Physics Division. 1st October 1976 - 30th September 1977. Acting Division Chief - Mr. W. Gemmell

    International Nuclear Information System (INIS)

    2004-01-01

    considerably improved the efficiency and flexibility of the Division's computer operations and many interesting ideas have arisen, some of which are being pursued vigorously. Most of the reactor physics work in the period has been involved with service type work on thorium. in the fuel cycle, safeguards and preliminary work on a new research reactor (author)

  2. Engineering Physics and Mathematics Division progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.

    1993-05-01

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.

  3. Engineering Physics Division progress report for period ending November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution.

  4. Engineering Physics and Mathematics Division progress report for period ending December 31, 1992

    International Nuclear Information System (INIS)

    Ward, R.C.

    1993-05-01

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period

  5. Engineering Physics Division progress report for period ending November 30, 1980

    International Nuclear Information System (INIS)

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution

  6. Physics Division annual review, 1 April 1983-31 March 1984

    International Nuclear Information System (INIS)

    1984-08-01

    A broad but necessarily incomplete review of the research activities within the Division is presented. Activities in medium-energy physics research include studies of pion reaction mechanisms, nuclear structure studies, two-nucleon physics with pions and electrons, weak interactions and particle searches. Research at the Superconducting Linac Accelerator includes studies on quasi-elastic processes and reaction strengths, heavy-ion fusion reactions, high angular momentum states in nuclei, accelerator mass spectrometry and equipment development at the Tandem-Linac Facility. Theoretical nuclear physics studies reviewed are grouped in the areas: nuclear forces and subnucleon degrees of freedom, variational calculation of finite many-body systems, nuclear shell theory and nuclear structure, intermediate energy physics, heavy-ion reactions and other theoretical studies. The status of the superconducting linac program is detailed, and operation and development of the tandem-linac accelerator and the Dynamitron Facility are described. The atomic and molecular physics research is detailed in the five ongoing programs: photoionization-photoelectron research, high-resolution laser-rf spectroscopy with atomic and molecular beams, photon interactions involving fast ions, interactions of fast atomic and molecular ions with solid and gaseous targets, and theoretical atomic physics. A complete list of publications and the Division roster are included

  7. Annual report of the Nuclear Physics Division [for the] period ending December 31, 1977

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajtanand, N.N.; Kerekatte, S.S.

    1979-01-01

    The research and development activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1977 are reported. The Division is organised into three research sections, namely, solid state physics section, fission physics section and Van de Graaff Laboratory. Techniques of neutron scattering, light scattering, compton scattering and Moessbauer spectroscopy are used in the studies of solid state physics Solid State Physics section. In the Fission Physics Section, experimental studies are concentrated on fission phenomena accompanied by light charged particle emission and theoretical investigations deal with various aspects of fission process, heavy ion reactions and other related areas of nuclear reactions. Research activities of the Van de Graaff Laboratory include: (1) experimental studies of (p,n), (α,n) and (α,α) nuclear reactions; (2) theoretical studies of nuclear structure, pion reactions, (p,2p) and other knock-out phenomena, ion-ion potentials and heavy ion collisions and (3) use of ion beam techniques for production of surface alloys and blistering by helium ion bombardment. Progress in the fabrication of DUMAS mass separator and tandem accelerator is reported. A 100 keV ion implantation facility has been set up and commissioned. (M.G.B.)

  8. Physics Division annual review, 1 April 1985-31 March 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The highlight of the Argonne Physics Division during the past year (1985/86) has been the completion and dedication of the final superconducting linac stages of the ATLAS system and the beginning of the research program that utilizes the full capabilities of that system. The transition to using the full ATLAS and the new experimental area has been a smooth one and the research program is beginning to bear fruit. The experimental facilities have also come into operation with three major components, consisting of the first stage of a gamma detection system incorporating an array of Compton-suppressed germanium detectors and BGO total energy detectors, a magnetic spectrograph of the Enge split-pole design, with a focal-plane detector system adapted to heavy ions, and a new scattering facility with a number of features. Interesting new data are emerging on quasi-elastic processes, on the transition between fission and quasi-fission and the study of nuclear structure at high spin. The past year has also seen the merging of the nuclear research in the Argonne Chemistry Division, mostly in heavy-ion and medium-energy nuclear physics, with the Physics Division. The merger is leading to full cooperation within the larger group and will help broaden and strengthen the total effort in nuclear physics. In medium-energy physics the year has seen the successful execution of an experiment at the SLAC NPAS station to study the delta resonance in nuclei. Progress is being made in the effort at Fermilab on deep inelastic muon scattering, on the development of a tensor polarized gas deuterium target for use with storage rings, and on the LAMPF neutrino oscillation experiment. In theoretical nuclear physics an effort is continuing on investigating the relevant degrees of freedom in the microscopic dynamics of nuclei and the importance of three-body forces. 51 figs., 2 tabs.

  9. Physics Division annual review, 1 April 1985-31 March 1986

    International Nuclear Information System (INIS)

    1986-09-01

    The highlight of the Argonne Physics Division during the past year (1985/86) has been the completion and dedication of the final superconducting linac stages of the ATLAS system and the beginning of the research program that utilizes the full capabilities of that system. The transition to using the full ATLAS and the new experimental area has been a smooth one and the research program is beginning to bear fruit. The experimental facilities have also come into operation with three major components, consisting of the first stage of a gamma detection system incorporating an array of Compton-suppressed germanium detectors and BGO total energy detectors, a magnetic spectrograph of the Enge split-pole design, with a focal-plane detector system adapted to heavy ions, and a new scattering facility with a number of features. Interesting new data are emerging on quasi-elastic processes, on the transition between fission and quasi-fission and the study of nuclear structure at high spin. The past year has also seen the merging of the nuclear research in the Argonne Chemistry Division, mostly in heavy-ion and medium-energy nuclear physics, with the Physics Division. The merger is leading to full cooperation within the larger group and will help broaden and strengthen the total effort in nuclear physics. In medium-energy physics the year has seen the successful execution of an experiment at the SLAC NPAS station to study the delta resonance in nuclei. Progress is being made in the effort at Fermilab on deep inelastic muon scattering, on the development of a tensor polarized gas deuterium target for use with storage rings, and on the LAMPF neutrino oscillation experiment. In theoretical nuclear physics an effort is continuing on investigating the relevant degrees of freedom in the microscopic dynamics of nuclei and the importance of three-body forces. 51 figs., 2 tabs

  10. Physical Health and Dual Diagnosis

    OpenAIRE

    Robson, Debbie; Keen, Sarah; Mauro, Pia

    2008-01-01

    The physical health of people with mental illness may be neglected for a variety of reasons. This paper looks at the common physical health problems experienced by people with a dual diagnosis of substance misuse and serious mental illness, and suggests ways of assessing and managing them.

  11. Progress report of Physics Division. 1st October 1977 - 30th September 1978. Acting Division Chief - Mr. W. Gemmell

    International Nuclear Information System (INIS)

    2004-01-01

    Two main features influenced the year's activities: the Government's constraints on staffing and the Commission's views on research and development objectives. The reduction in staff numbers in Physics Division was by natural wastage, chiefly in the technical officer area. This has reduced operation of the reactor to a major extent and of the accelerator, both of which are now somewhat under-staffed and inadequately serviced. The second influence was the view of the Commission that research activities should move away from the more traditional areas of nuclear energy towards problems of the front end of the fuel cycle and the environment. Also, the Commission decided to place increasing emphasis on fusion and possibly on alternative energy studies. Neutron capture studies were continued, mainly in collaboration with Oak Ridge National Laboratory, Brookhaven National Laboratory and Bruyires-le-Chgtel and, to a lesser extent, the Australian universities, with the objective of improving our understanding of the capture mechanism and of seeking applications of the results and techniques developed in the neutron capture research. Results from the measurement of the 252 Cf spontaneous fission neutron spectrum are now available in reasonably final form. other fission work was concerned with the shape of the fission barriers for the thorium isotopes and with confirming differences between the 0 + and 1 + resonances of 239 Pu. Commercial acceptance of the delayed neutron method of analyzing ore samples for uranium continued to gain ground. There was interest in the possibility of a similar service for thorium and the advantages of nuclear techniques of analysis became more widespread. Several of these techniques (backscattering, proton induced X-ray emission (PIXE), fission track) were actively developed. The major restraint was unavailability of staff. Particularly interesting was the coloration produced by proton irradiation of natural fluorite crystals. This coloration

  12. Annual progress report - Health Sciences Division - 1990 January 01 - December 31

    International Nuclear Information System (INIS)

    1991-06-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for the Dosimetric Research Branch and the Radiation Biology Branch. The major topics discussed in this report include: neutron dosimetry, photon dosimetry, beta ray dosimetry, tritium measurement and dosimetry, internal dosimetry, biological dosimetry, instrumentation and measurement techniques, bioassay and in vivo counting development, dosimetry services, external activities, dose estimation by electron spin resonance, molecular and physical approaches to the structure and genetic function of DNA that determine cellular radioresponse, carcinogenic risks of radiation, stress induced changes in DNA structure and in cell biology, assessment of variation in the responses of individuals to ionizing radiation, cytotoxicity of beryllium, RBE of tritium beta rays for causes of death other than myeloid leukemia in male CBA/H mice, animal facility operations, and the Chalk River follow-up study

  13. DIVISION OF FORMATION IN PHYSICAL EDUCATION: “CHRONICLE OF A DEATH ANNOUNCED”

    Directory of Open Access Journals (Sweden)

    Giovanni Frizzo

    2010-08-01

    Full Text Available The objective of this paper is systematize the process of implementing National Curriculum Guidelines for Physical Education, that promoted the division of the teacher’s formation in Licenciature and Graduation and that currently has been questioned in several universities who are carrying out a process of restructuring curriculum. We suppose that changes in curriculum of Physical Education are the expression of a societal project that needs to form a new worker model to attend the demands of capital, that goes through a structural crisis.

  14. Epidemiology applied to health physics

    International Nuclear Information System (INIS)

    1983-01-01

    The technical program of the mid-year meeting of the Health Physics Society, entitled Epidemiology Applied to Health physics, was developed to meet three objectives: (1) give health physicists a deeper understanding of the basics of epidemiological methods and their use in developing standards, regulations, and criteria and in risk assessment; (2) present current reports on recently completed or on-going epidemiology studies; and (3) encourage greater interaction between the health physics and epidemiology disciplines. Included are studies relating methods in epidemiology to radiation protection standards, risk assessment from exposure to bone-seekers, from occupational exposures in mines, mills and nuclear facilities, and from radioactivity in building materials

  15. Health and Safety Research Division: Progress report, October 1, 1985-March 31, 1987

    International Nuclear Information System (INIS)

    Walsh, P.J.

    1987-09-01

    This report summarizes the progress in our programs for the period October 1, 1985, through March 31, 1987. The division's presentations and publications represented important contributions on the forefronts of many fields. Eleven invention disclosures were filed, two patent applications submitted, and one patent issued. The company's transfers new technologies to the private sector more efficiently than in the past. The division's responsibilities to DOE under the Uranium Mill Tailings Remedial Action (UMTRA) program includes inclusion recommendations for 3100 properties. The nuclear medicine program developed new radiopharmaceuticals and radionuclide generators through clinical trials with some of our medical cooperatives. Two major collaborative indoor air quality studies and a large epidemiological study of drinking water quality and human health were completed. ORNL's first scanning tunneling microscope (STM) has achieved single atom resolution and has produced some of the world's best images of single atoms on the surface of a silicon crystal. The Biological and Radiation Physics Section, designed and constructed a soft x-ray spectrometer which has exhibited a measuring efficiency that is 10,000 times higher than other equipment. 1164 refs

  16. Health and Safety Research Division: Progress report, October 1, 1985-March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, P.J.

    1987-09-01

    This report summarizes the progress in our programs for the period October 1, 1985, through March 31, 1987. The division's presentations and publications represented important contributions on the forefronts of many fields. Eleven invention disclosures were filed, two patent applications submitted, and one patent issued. The company's transfers new technologies to the private sector more efficiently than in the past. The division's responsibilities to DOE under the Uranium Mill Tailings Remedial Action (UMTRA) program includes inclusion recommendations for 3100 properties. The nuclear medicine program developed new radiopharmaceuticals and radionuclide generators through clinical trials with some of our medical cooperatives. Two major collaborative indoor air quality studies and a large epidemiological study of drinking water quality and human health were completed. ORNL's first scanning tunneling microscope (STM) has achieved single atom resolution and has produced some of the world's best images of single atoms on the surface of a silicon crystal. The Biological and Radiation Physics Section, designed and constructed a soft x-ray spectrometer which has exhibited a measuring efficiency that is 10,000 times higher than other equipment. 1164 refs.

  17. Physical activity: genes & health

    CERN Multimedia

    2002-01-01

    Carl Johan SUNDBERG is an Associate Professor in Physiology and Licenced Physician. His research focus is Molecular mechanisms involved in the adaptation of human skeletal muscle to physical activity.

  18. Physics Division annual review, 1 April 1984-31 March 1985

    International Nuclear Information System (INIS)

    1985-09-01

    Separate abstracts were prepared for individual sections in this annual report of the Physics Division of Argonne National Laboratory. Many diverse topics of research were discussed. Among these were topics of medium-energy research such as a study of non-nucleonic effects in nuclei, two-nucleon physics with pions and electrons, nuclear structure studies and weak interaction studies. Research efforts which were performed at the superconducting Linac accelerator were studies of fusion of heavy ions, investigation of quasielastic and strongly damped collisions, studies of high angular momentum states in nuclei, accelerator mass spectrometry, and nuclear spectrometry. Atomic and molecular research programs included photoionization-photoelectron studies, high-resolution laser spectroscopy with beams, beam foil studies, and studies of interactions of beams with solids and gases. Theoretical endeavors were carried out in both atomic physics and nuclear physics

  19. Progress report, Health Sciences Division: 1982 October 1 - December 31

    International Nuclear Information System (INIS)

    1983-02-01

    Highlights of work in health physics include investigation of electrochemical etching procedures, further studies of gels saturated with superheated liquid drops, development of a beta dose rate meter using a chopper-stabilized amplifier, and operational tests of dose distributions on workers exposed in high gradient fields. Work in environmental research has included development of a model (LEEM) of one-dimensional vertical mixing of heat in lakes, further studies of the influence of sediment-water interaction on movement of contaminants in surface waters, application of nuclear techniques to an analysis of borehole waters for measurement of pipe flows, and efforts to determine the scale dependence of dispersivity. Research activity in radiation biology centres around the effects of radiation on a variety of organisms. The principal sensitive target is believed to be DNA and work continues towards understanding the nature of the damage and the response of cells as they attempt to repair the injury. Biomedical research has focussed on the study of metal ion-amino acid complexes and assembling data bases for internal dosimetry calculations. Computer codes are being developed to establish standard models and evaluate specific contamination cases

  20. 78 FR 19491 - Walking as a Way for Americans To Get the Recommended Amount of Physical Activity for Health

    Science.gov (United States)

    2013-04-01

    ...-2013-0003] Walking as a Way for Americans To Get the Recommended Amount of Physical Activity for Health...). ACTION: Request for information. SUMMARY: To address the public health problem of physical inactivity..., Physical Activity and Health Branch, Division of Nutrition, Physical Activity, and Obesity, Centers for...

  1. Progress report: Physical Sciences - Physics Division, 1992 July 01 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Ungrin, J; Kim, S M; Sears, V F [eds.

    1993-03-01

    This report summarizes operations and research activities in the Accelerator Physics, Neutron and Condensed Matter Science and Theoretical Physics branches at Chalk River Laboratories during the last half of 1992. 21 figs., 3 tabs.

  2. Progress report: Physical Sciences - Physics Division, 1992 July 01 -December 31

    International Nuclear Information System (INIS)

    Ungrin, J.; Kim, S.M.; Sears, V.F.

    1993-03-01

    This report summarizes operations and research activities in the Accelerator Physics, Neutron and Condensed Matter Science and Theoretical Physics branches at Chalk River Laboratories during the last half of 1992. 21 figs., 3 tabs

  3. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    International Nuclear Information System (INIS)

    Wahlstroem, C.G.

    1995-01-01

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper

  4. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C.G. [ed.

    1995-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  5. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C G [ed.

    1996-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  6. ACER: A framework on the use of mathematics in upper-division physics

    Science.gov (United States)

    Caballero, Marcos D.; Wilcox, Bethany R.; Pepper, Rachel E.; Pollock, Steven J.

    2013-01-01

    At the University of Colorado Boulder, as part of our broader efforts to transform middle- and upper-division physics courses, we research students' difficulties with particular concepts, methods, and tools in classical mechanics, electromagnetism, and quantum mechanics. Unsurprisingly, a number of difficulties are related to students' use of mathematical tools (e.g., approximation methods). Previous work has documented a number of challenges that students must overcome to use mathematical tools fluently in introductory physics (e.g., mapping meaning onto mathematical symbols). We have developed a theoretical framework to facilitate connecting students' difficulties to challenges with specific mathematical and physical concepts. In this paper, we motivate the need for this framework and demonstrate its utility for both researchers and course instructors by applying it to frame results from interview data on students' use of Taylor approximations.

  7. Operational power reactor health physics

    International Nuclear Information System (INIS)

    Watson, B.A.

    1987-01-01

    Operational Health Physics can be comprised of a multitude of organizations, both corporate and at the plant sites. The following discussion centers around Baltimore Gas and Electric's (BG and E) Calvert Cliffs Nuclear Power Plant, located in Lusby, Maryland. Calvert Cliffs is a twin Combustion Engineering 825 MWe pressurized water reactor site with Unit I having a General electric turbine-generator and Unit II having a Westinghouse turbine-generator. Having just completed each Unit's ten-year Inservice Inspection and Refueling Outge, a total of 20 reactor years operating health physics experience have been accumulated at Calvert Cliffs. Because BG and E has only one nuclear site most health physics functions are performed at the plant site. This is also true for the other BG and E nuclear related organizations, such as Engineering and Quality Assurance. Utilities with multiple plant sites have corporate health physics entity usually providing oversight to the various plant programs

  8. Research and development activities of the Neutron Physics Division for the period January 1979-December 1979

    International Nuclear Information System (INIS)

    Basu, T.K.; Vohra, Y.K.

    1980-01-01

    Research and Development (R and D) activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay during the calendar year 1979 are reported in the form of individual summaries. The Division's R and D work covers the fields of reactor neutron physics, applied neutronics, fusion plasma pinches, materials physics, crystallography and seismology. Some of the highlights of these activities are: (1) the development of a criticality formula for PURNIMA-II, a BeO reflected 233 U-uranyl nitrate solution critical experiment, (2) commissioning of a 21 K3, 50 KV fast capacitor bank for experiments of high-density plasma focus devices, (3) the design of a bore-hole model to develop carbon-oxygen logging method for identifying the oil and water zones in sand-stone formations in the earth's sub-surface using neutrons from a 14 MeV neutron generator, (4) proposal of a theoretical model for the equation of state of high-density matter in the intermediate pressure (approximately 10-100 Megabar) region, (5) development of a quantitative relation between the crater dimensions and the mound kinetic energy imparted by the shock from an underground nuclear explosion, and (6) texture studies of uranium fuel element samples using neutron diffraction. Progress of work on PURNIMA-II experiment, fusion blanket neutronics experiment, monitoring of nuclear explosions and discriminating them from earthquakes using seismic and microbarographic data is also reported. (M.G.B.)

  9. Health-physics Measurements: Services

    International Nuclear Information System (INIS)

    Hardeman, F.; Hurtgen, C.; Vanhavere, F.; Vanmarcke, H.

    1998-01-01

    SCK-CEN's programme on health-physics (1) offers complete services in health-physics measurements according to international quality standards; (2) contributes to improve continuously these measurement techniques and follows up international recommendations and legislation concerning the surveillance of workers; (3) provides support and advise to nuclear and non-nuclear industry on issues of radioactive contamination. Progress and achievements in 1997 are summarised

  10. Health Physics Positions Data Base

    International Nuclear Information System (INIS)

    Kerr, G.D.; Borges, T.; Stafford, R.S.; Lu, P.Y.; Carter, D.

    1992-05-01

    The Health Physics Positions (HPPOS) Data Base of the Nuclear Regulatory Commission (NRC) is a collection of summaries of NRC staff positions on a wide range of topics in radiation protection (health physics). The bases for the data base are 247 original documents in the form of letters, memoranda, and excerpts from technical reports. The HPPOS Data Base was developed by the NRC Headquarters and Regional Offices to help ensure uniformity in inspections, enforcement, and licensing actions

  11. Health and Safety Research Division progress report for period ending April 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.V.

    1978-08-01

    The research goal of the Health and Safety Research Division is to conduct basic and applied research that contributes new scientific knowledge with emphasis in biophysical areas that lead to a better understanding of how alternative energy-related technologies affect man. Included in the basic research are fundamental processes that are important to understand formation, mobility, toxicity, detection, and characterization of pollutants. The applied research includes the integration of data from basic and applied studies through development of concepts and methodologies that can be used for energy-related assessments with primary focus on the health and safety of man. The division has no responsibilities for on-site health and safety.

  12. Argonne National Laboratory Physics Division annual report, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1997-08-01

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

  13. Health Physics Education in Venezuela

    International Nuclear Information System (INIS)

    Solanas, J.

    1979-01-01

    Training courses on health physics have been organized regularly in Venezuela since 1962. The basic course consists of 20 hours for theoretical tuition and 10 hours for laboratory practice. Post-graduate courses have been organized by the Central University since 1965. Radiological technicians receive their training through the courses organized by the Ministry of Health. (author)

  14. Report of the Nuclear Physics Division (January 1, 1987 to December 31, 1987)

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Chakrabarty, D.R.

    1988-01-01

    Nuclear Physics Division is involved in research in nuclear and solid state physics. The year 1987 has been a fairly eventful one for the Division in the sense that several activities came to a high level of fruition. A beam of 5 + silicon ions accelerated to about 14 MeV in the BARC-TIFR Pelletron accelerator was obtained for the first time in September. Experiments on the cyclotron at Calcutta and the CN Van-de-Graaff accelerator at Trombay have continued. The latter continued to be heavily utilised for nuclear, chemical, materials and other applications in its twentysixth year of operation. For the neutron scattering programme at Dhruva Reactor two new diffractometers were commissioned, one of a conventional type and another based on a metre long position sensitive detectors (PSD). A neutron interferrometer was successfully operated at the CIRUS reactor. A modular CW argon laser giving a total power of about 2.7 watts has been incorporated with the Raman scattering spectrometer thus increasing the range of performable experiments. The modularity allows quick replacement of parts. A number of interesting investigations were carried out by the members of the Division; among others they include observations of quasi-molecular heavy ion resonances in Sisup(2s), anomalous behaviour of deep sub-barrier fission in uranium, crystalline to amorphous to crystalline transition in tetracyanoethylene, exceptional stability of the quasi-crystal Al 6 CuMg 4 and the development of a phenomenological mode to describe magnetisation curves in the new high-Tsub(c) superconductors. These and many other investigations are reported. (M.G.B.)

  15. Report of the Solid State Physics Division (July 1, 1990 to December 31, 1991)

    International Nuclear Information System (INIS)

    1992-01-01

    This is the first report summarizing the activities carried out by scientists in the recently constituted Solid State Physics Division at Bhabha Atomic Research Centre (BARC) covering the period from July 1990 to December 1991. The activities are reported in the form of individual summaries arranged under headings : Research Activities, Instrumentation, Papers published, Papers presented, Lectures, Physics colloquia, Theses and other activities. The main thrust of the research activities of the Division relates to experimental investigations of a variety of materials using microscopic scattering techniques like neutron scattering, light scattering, x-ray diffraction and related other techniques like Moessbauer Spectroscopy, calorimetry, nuclear magnetic resonance etc. During the period under review, a large number of high T c superconductors, proteins and enzyme derivatives, micellar systems, model membranes and other complex systems have been investigated to understand their basic structural and dynamical aspects. As a result, the structure-property correlations are better appreciated, whether they relate to drug-membrane interactions or biological functions of enzymes or nature of superconductivity etc. (author). figs

  16. Progress report 1990/91 of the Division of Fusion Plasma Physics

    International Nuclear Information System (INIS)

    Lehnert, B.

    1991-08-01

    A summary is given of the historical background, research, education and available resources of the Division of Fusion Plasma Physics at the newly established Alfven Laboratory. Experimental and theoretical research is performed, including basic physics of magnetized plasma as well as applications to magnetically confined fusion plasma, and to certain technical and cosmical problems. The major project consists of the 'Extrap' high-beta confinement scheme within which a large experimental facility, EXTRAP T2, is under preparation. This research is performed in terms of extensive international collaboration and commitments, in particular with the European Community (Euratom). The education includes pregraduate and postgraduate teaching, the latter being based on obligatory, optional and extra courses which are connected with the research activities

  17. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data.

  18. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data

  19. TRIGA reactor health physics considerations

    International Nuclear Information System (INIS)

    Johnson, A.G.

    1970-01-01

    The factors influencing the complexity of a TRIGA health physics program are discussed in details in order to serve as a basis for later consideration of various specific aspects of a typical TRIGA health physics program. The health physics program must be able to provide adequate assistance, control, and safety for individuals ranging from the inexperienced student to the experienced postgraduate researcher. Some of the major aspects discussed are: effluent release and control; reactor area air monitoring; area monitoring; adjacent facilities monitoring; portable instrumentation, personnel monitoring. TRIGA reactors have not been associated with many significant occurrences in the area of health physics, although some operational occurrences have had health physics implications. One specific occurrence at OSU is described involving the detection of non-fission-product radioactive particulates by the continuous air monitor on the reactor top. The studies of this particular situation indicate that most of the particulate activity is coming from the rotating rack and exhausting to the reactor top through the rotating rack loading tube

  20. Report of the Nuclear Physics Division [for the period] January 1, 1984 to December 31, 1984

    International Nuclear Information System (INIS)

    Dasannacharya, B.A.; Bansal, M.L.; Jain, A.K.

    1985-01-01

    The Research and Development (R and D) activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during 1984 are described in the form of individual summaries grouped under the broad headings: (1) nuclear physics, (2) solid state physics, and (3) techniques and instrumentation. The research programmes in the field of nuclear physics are based on the facilities:the 5.5 MV Van-de-Graaff accelerator and the CIRUS reactor, both at Bombay and the variable energy cyclotron at Calcutta. Solid state physics studies are carried out using neutron diffraction and neutron scattering, light scattering, Moessbauer spectroscopy, Compton profile spectroscopy, Auger electron spectroscopy. Studies in the field of liquid crystals are also carried out. A A-T window spectrometer was fabricated and installed at the spallation Neutron Source of the Rutherford Appleton Laboratory, U.K. The work of setting up of a 14 UD pelletron accelerator in collaboration with the Tata Institute of Fundamental Research (TIFR), Bombay is in advanced stage at TIFR. Instrumentation for DHRUVA reactor which incorporates specially designed beam tubes for neutron scattering work has been developed. Work on the development of superconducting materials and magnets is continuing. A list of papers published in journals and papers presented at conferences, symposia etc. during the year is given. (M.G.B.)

  1. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development

  2. Physics for Health in Europe

    CERN Multimedia

    CERN Bulletin

    Medicine increasingly relies on cutting-edge techniques for the early diagnosis and treatment of tumours and other serious diseases. The first “Physics for health in Europe” workshop will be held at CERN on 2-4 February 2010. It will aim to open the way to a European roadmap for using physics tools in the development of diagnostic techniques and new cancer therapies. Physics is not new to producing applications for life sciences. Several detection techniques are currently used in diagnosis instruments and hadron therapy is one of the most promising ways of treating tumours which cannot be treated with conventional irradiation techniques since they are either radio-resistant or located very close to critical organs.. However, despite this potential synergy, the two communities – physicists and medical doctors – do not often meet to plan common actions. The “Physics for Health in Europe” workshop is one of the first attempts to get both communities to...

  3. Research and development activities of the High Pressure Physics Division for the period March 1991-September 1993

    International Nuclear Information System (INIS)

    Godwal, B.K.; Bhadauria, Y.S.

    1993-01-01

    The research and development activities of the High Pressure Physics Division during the period March 1991 to September 1993 are reported in the form of abstracts and titles of the publications. The report is organised into two sections: (A) High Pressure Physics Section, and (B) Seismology Section. A list of staff members of the two sections is also given. (author)

  4. Physical activity and human health

    Directory of Open Access Journals (Sweden)

    Paulina Wojciechowska

    2015-01-01

    Full Text Available Introduction: The dynamic development of the automotive industry, transport, and the media means that human life has become much easier. At the same time, the comfortable living conditions have decreased physical activity. Biologically conditioned, the need of activity has been minimised by the ever-increasing pace of life. As a result, it may lead to the loss of physical and mental health. Active recreation is not only an excellent source of activity, but also a source of satisfaction. Youths and adults should therefore spend their free time primarily on various forms of physical activity. Aim of the research : To evaluate the physical fitness of students who regularly practice physical exercise, those who occasionally practice, and those not practicing any form of physical activity. Material and methods : In the research we used a questionnaire of the Ruffier test and an orthostatic test. The study involved a group of 15 people aged 20–25 years. Participation in the study was entirely voluntary and anonymous. The study group consisted only of women. Results obtained from the questionnaire survey were fully reflected during exercise tests performed. Results and conclusions: Only regularly practiced physical activity has an effect on our body. Regular exercise increases our body’s physical capacity. Activity is the best means of prevention of lifestyle diseases. Youths and adults should spend their free time mainly doing various forms of physical activity.

  5. [Experience in training in emergencies, Division of Special Projects in Health, Instituto Mexicano del Seguro Social].

    Science.gov (United States)

    Cruz-Vega, Felipe; Loría-Castellanos, Jorge; Hernández-Olivas, Irma Patricia; Franco-Bey, Rubén; Ochoa-Avila, César; Sánchez-Badillo, Victoria

    2016-01-01

    There has been interest in the Division of Special Projects in Health to offer the Instituto Mexicano del Seguro Social personnel resources for training and quality thereby respond to potential contingencies. Presented here is their experience in this field. To describe and analyse the productivity in different training programs in emergencies and disasters developed by the Division of Special Projects in Health, Mexican Social Security Institute (IMSS). Observational study in which different training activities conducted by the Division of Special Projects in Health between 1989 and 2014 are described. Descriptive statistics were used. In these 25 years have trained 20,674 participants; 19.451 IMSS and 1,223 other health institutions. The most productive courses were life support (BLS/ACLS) (47.17%), distance courses "Hospital medical evacuation plans and units" (14.17%), the workshop-run "Evacuation of hospital units with an emphasis on critical areas" (5.93%) and course "Programme Evaluators of Hospital Insurance" (8.43%). Although the Special Projects Division Health has primarily operational functions, it nevertheless has neglected its responsibility to maintain constantly trained and updated institute staff that every day is in a position to face any type of emergency and disaster. This increases the chance that the answer to any contingency is more organised and of higher quality, always to the benefit of the population. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  6. Physical activity and health benefits

    OpenAIRE

    Orsini, Nicola

    2008-01-01

    Physical activity (PA), due to its role in health promotion and disease prevention, is of particular interest to be investigated. The aims of this thesis were: to assess the associations between PA and different health outcomes (lower urinary tract symptoms, cancer incidence, and mortality) in the Cohort of Swedish Men (COSM); to perform a dose-response meta-analysis of published associations between walking and incidence of coronary heart disease (CHD); and to provide user-...

  7. Health and Safety Research Division progress report, April 1, 1981-September 30, 1982

    International Nuclear Information System (INIS)

    1983-02-01

    Research progress for the reporting period is briefly summarized for the following sections: (1) health studies, (2) technology assessments, (3) biological and radiation physics, (4) chemical physics, (5) Office of Risk Analysis, and (6) health and environmental risk and analysis

  8. Basic biology in health physics

    International Nuclear Information System (INIS)

    Wells, J.

    1976-10-01

    This report describes the consequences of the interaction of ionizing radiation with living cells and tissues. The basic processes of living cells, which are relevant to an understanding of health physics problems, are outlined with particular reference to cell-death, cancer induction and genetic effects. (author)

  9. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1981

    International Nuclear Information System (INIS)

    Birge, R.W.

    1982-12-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1981. During the year under review the Division devoted roughly half its effort to the final construction stages of the Time Projection Chamber and other equipment for the PEP-4 facility at SLAC. The year was marked by the successful passage of milestone after milestone - the two-sector test of the TPC with cosmic rays in July 1981, the full TPC test in November 1981, and the roll-in onto the PEP beam line on 6 January 1982. In other e + e - experiments, the Mark II detector continued its productive data-taking at PEP. In other areas, the final stages of data analysis, particularly for the structure functions, proceeded for the inelastic muon scattering experiment performed at Fermilab, a muon polarimeter experiment was developed and mounted at TRIUMF to probe for the presence of right-handed currents in muon decay, and the design and then construction began of fine-grained hadron calorimeters for the end caps of the Colliding Detector Facility at Fermilab. The Particle Data Group intensified its activities, despite financial constraints, as it proceeded toward production of a new edition of its authoritative Review of Particle Properties early in 1982. During 1981 the Theoretical Physics Group pursued a diverse spectrum of research in its own right and also interacted effectively with the experimental program. Research and development continued on the segmented mirror for the ten-meter telescope proposed by the University of California. Activities in the Computer Science and Mathematics Department encompassed networking, database management, software engineering, and computer graphics, as well as basic research in nonlinear phenomena in combustion and fluid flow

  10. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1982-12-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1981. During the year under review the Division devoted roughly half its effort to the final construction stages of the Time Projection Chamber and other equipment for the PEP-4 facility at SLAC. The year was marked by the successful passage of milestone after milestone - the two-sector test of the TPC with cosmic rays in July 1981, the full TPC test in November 1981, and the roll-in onto the PEP beam line on 6 January 1982. In other e/sup +/e/sup -/ experiments, the Mark II detector continued its productive data-taking at PEP. In other areas, the final stages of data analysis, particularly for the structure functions, proceeded for the inelastic muon scattering experiment performed at Fermilab, a muon polarimeter experiment was developed and mounted at TRIUMF to probe for the presence of right-handed currents in muon decay, and the design and then construction began of fine-grained hadron calorimeters for the end caps of the Colliding Detector Facility at Fermilab. The Particle Data Group intensified its activities, despite financial constraints, as it proceeded toward production of a new edition of its authoritative Review of Particle Properties early in 1982. During 1981 the Theoretical Physics Group pursued a diverse spectrum of research in its own right and also interacted effectively with the experimental program. Research and development continued on the segmented mirror for the ten-meter telescope proposed by the University of California. Activities in the Computer Science and Mathematics Department encompassed networking, database management, software engineering, and computer graphics, as well as basic research in nonlinear phenomena in combustion and fluid flow.

  11. Use of clickers and sustainable reform in upper-division physics courses

    Science.gov (United States)

    Dubson, Michael

    2008-03-01

    At the University of Colorado at Boulder, successful reforms of our freshmen and sophomore-level physics courses are now being extended to upper-division courses, including Mechanics, Math Methods, QM, E&M, and Thermal Physics. Our course reforms include clicker questions (ConcepTests) in lecture, peer instruction, and an added emphasis on conceptual understanding and qualitative reasoning on homework assignments and exams. Student feedback has been strongly positive, and I will argue that such conceptual training improves rather than dilutes, traditional, computationally-intensive problem-solving skills. In order for these reforms to be sustainable, reform efforts must begin with department-wide consensus and agreed-upon measures of success. I will discuss the design of good clicker questions and effective incorporation into upper-level courses, including examples from materials science. Condensed matter physics, which by nature involve intelligent use of approximation, particularly lends itself to conceptual training. I will demonstrate the use of a clicker system (made by iClicker) with audience-participation questions. Come prepared to think and interact, rather than just sit there!

  12. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  13. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    International Nuclear Information System (INIS)

    Hoffman, Larry G.

    2000-01-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division

  14. Integrating physical and mental health promotion strategies

    OpenAIRE

    Palma, Jessica Anne

    2010-01-01

    While health is defined as ‘a state of complete physical, mental and social well-being’, physical and mental health have traditionally been separated. This paper explores the question: How can physical and mental health promotion strategies be integrated and addressed simultaneously? A literature review on why physical and mental health are separated and why these two areas need to be integrated was conducted. A conceptual framework for how to integrate physical and mental health promotion st...

  15. Argonne National Laboratory Physics Division annual report, January--December 1996

    International Nuclear Information System (INIS)

    Thayer, K.J.

    1997-08-01

    The past year has seen several of the Physics Division's new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne's massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year

  16. Physical Activity and Health: The Benefits of Physical Activity

    Science.gov (United States)

    ... State and Local Programs Related Topics Diabetes Nutrition Physical Activity and Health Recommend on Facebook Tweet Share Compartir ... Your Chances of Living Longer The Benefits of Physical Activity Regular physical activity is one of the most ...

  17. Health and Safety Research Division progress report, October 1, 1988--March 31, 1990

    International Nuclear Information System (INIS)

    1990-09-01

    The Health and Safety Research Division (HASRD) of the Oak Ridge National Laboratory (ORNL) continues to maintain an outstanding program of basic and applied research displaying a high level of creativity and achievement as documented by awards, publications, professional service, and successful completion of variety of projects. Our focus is on human health and the scientific basis for measurement and assessment of health-related impacts of energy technologies. It is our custom to publish a division progress report every 18 months that summarizes our programmatic progress and other measures of achievement over the reporting period. Since it is not feasible to summarize in detail all of our work over the period covered by this report (October 1, 1988, to March 30, 1990), we intend this document to point the way to the expensive open literature that documents our findings. During the reporting period the Division continued to maintain strong programs in its traditional areas of R ampersand D, but also achieved noteworthy progress in other areas. Much of the Division's work on site characterization, development of new field instruments, compilation of data bases, and methodology development fits into this initiative. Other new work in tunneling microscopy in support of DOE's Human Genome Program and the comprehensive R ampersand D work related to surface-enhanced Raman spectroscopy have attained new and exciting results. These examples of our progress and numerous other activities are highlighted in this report

  18. Health and Safety Research Division progress report, October 1, 1988--March 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Health and Safety Research Division (HASRD) of the Oak Ridge National Laboratory (ORNL) continues to maintain an outstanding program of basic and applied research displaying a high level of creativity and achievement as documented by awards, publications, professional service, and successful completion of variety of projects. Our focus is on human health and the scientific basis for measurement and assessment of health-related impacts of energy technologies. It is our custom to publish a division progress report every 18 months that summarizes our programmatic progress and other measures of achievement over the reporting period. Since it is not feasible to summarize in detail all of our work over the period covered by this report (October 1, 1988, to March 30, 1990), we intend this document to point the way to the expensive open literature that documents our findings. During the reporting period the Division continued to maintain strong programs in its traditional areas of R D, but also achieved noteworthy progress in other areas. Much of the Division's work on site characterization, development of new field instruments, compilation of data bases, and methodology development fits into this initiative. Other new work in tunneling microscopy in support of DOE's Human Genome Program and the comprehensive R D work related to surface-enhanced Raman spectroscopy have attained new and exciting results. These examples of our progress and numerous other activities are highlighted in this report.

  19. Occupational health and environment research 1983: Health, Safety, and Environment Division. Progress report

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1985-05-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the workers, the public, and the environment. Evaluation of respiratory protective equipment included the XM-30 and M17A1 military masks, use of MAG-1 spectacles in respirators, and eight self-contained units. The latter units were used in an evaluation of test procedures used for Bureau of Mines approval of breathing apparatuses. Analyses of air samples from field studies of a modified in situ oil shale retorting facility were performed for total cyclohexane extractables and selected polynuclear aromatic hydrocarbons. Aerosols generation and characterization of effluents from oil shale processing were continued as part of an inhalation toxicology study. Additional data on plutonium excretion in urine are presented and point up problems in using the Langham equation to predict plutonium deposition in the body from long-term excretion data. Environmental surveillance at Los Alamos during 1983 showed the highest estimated radiation dose from Laboratory operations to be about 26% of the natural background radiation dose. Several studies on radionuclides and their transport in the Los Alamos environment are described. The chemical quality of surface and ground water near the geothermal hot dry rock facility is described. Short- and long-term consequences to man from releases of radionuclides into the environment can be simulated by the BIOTRAN computer model, which is discussed brirfly

  20. Global recommendations on physical activity for health

    Science.gov (United States)

    ... кий Español Global Strategy on Diet, Physical Activity and Health Menu Diet, Physical Activity & Health Global strategy development ... obesity Documents & publications Related links Global recommendations on physical activity for health WHO developed the "Global Recommendations on Physical Activity ...

  1. Occupational health and environmental reseach program of the Health Division 1980. Status report

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1981-12-01

    The primary responsibility of the Health Division at the Los Alamos National Laboratory is to provide effective health, safety, waste processing, and environmental programs for the Laboratory. During 1980, several new technical areas of radiobiological literature assessment were started that may be applicable to standards development. These areas include a new method for comparison of long-term effects of internal emitters in different species, a review of plutonium concentration in gonads, and preliminary study of plutonium distribution between bone and liver. Industrial hygiene studies were directed particularly toward the evaluation of potential hazards involved in the emerging oil shale industry. This work involved field surveys, aerosol production for inhalation toxicology experiments, and assistance in design of a controlled laboratory retort. Work was done on studies of resuspension of particles in controlled wind tunnel experiments. Instrumentation development resulted in a new type of prototype particulate stack sampler and a fluorescent lidar system that monitors the dispersal of atmospheric pollutants in real time over distances up to 8 kilometers. Investigation of human health effects that may be associated with exposures to plutonium and other transuranium radionuclides continues as a major effort. The national epidemiology study of plutonium workers at four Department of Energy facilities was devoted primarily to records ascertainment. An important study was completed on the validity of determining mortality status through the Social Security Administration. The study showed ascertainment of death was strongly related to the individual's age at the time of death. Analysis for plutonium and americium in human autopsy tissues was continued for both transuranium workers and for base-line studies of persons in the general population

  2. Coupled Multiple-Response versus Free-Response Conceptual Assessment: An Example from Upper-Division Physics

    Science.gov (United States)

    Wilcox, Bethany R.; Pollock, Steven J.

    2014-01-01

    Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE), provide rich, fine-grained information about students' reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase…

  3. Occupational health and environment research 1984: Health, Safety, and environmental Division. Progress report

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1986-05-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. Two supplied-air suits tested for their functional protection were considered to be unacceptable because of low fit factors. Respiratory protective equipment testing for the uS Air Force, Navy, and Army was performed during 1984. The laser aerosol spectrometer (LAS-X) has been shown to operate successfully for measuring and sizing aerosols used for quality assurance testing of high-efficiency particulate air filters used at DOE facilities. Radioanalyses for 239 Pu and 241 Am are presented for the complete skeletal parts of two persons. Air samples from work areas in a coal gasification plant in Yugoslavia show minimal concentration of organic vapors, amines, polynuclear aromatic hydrocarbons, and phenols. Aerosol characteristics of oil shale vapors and manmade vitreous fibers used in ongoing inhalation toxicology studies are presented. Epidemiologic studies of smoking patterns among Los Alamos employees reveal 24.3% smokers compared with the US rate of 32.5%. Environmental surveillance at Los Alamos during 1984 showed the highest estimated radiation dose to an individual at or outside the Laboratory boundary to be about 25% of the natural background radiation dose. Surveillance studies on water and sediment transport of radionuclides, depleted uranium, and silver are described. Bibliographic review of the rooting depth of native plants indicates that even many grass species will root to depths greater than the earth overburden depths to cover low-level radioactive waste sites

  4. Occupational health, waste management, and environmental research program of the Health Division 1981. Progress report

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1983-09-01

    The primary responsibility of the Health Division at the Los Alamos National Laboratory is to provide effective programs in health, safety, waste processing, and environmental protection for the Laboratory. During 1981, evaluations of respiratory protective equipment included 3 special DOE contractor supplied-air suits or hoods and 10 commercial supplied-air devices. Preliminary results of chemical permeation tests of different protective garment materials are reported. Industrial hygiene field studies of oil shale work were conducted at the Geokinetics true in situ facility and the Rio Blanco modified in situ facility. An occupational medical survey of workers at the Geokinetics, Inc., facility was completed. Research on the generation and characterization of aerosols was continued for inhalation studies of man-made mineral fibers and oil shale aerosols. The distribution of 241 Am in a whole body was determined by tissue analyses. Preliminary results of mortality in workers formerly employed at the Rocky Flats plant were reported. A simplified method for the analysis of plutonium in urine has been developed. Instrumentation development resulted in a portable computer system for field data analysis and a small, computerized, wristwatch-style radiation dosimeter. Environmental surveillance at Los Alamos during 1981 showed the highest estimated radiation dose due to Laboratory operations is about 4% of the dose due to the natural radioactivity here. A study was completed on alternative strategies for long-term management of Los Alamos transuranic wastes. A successful 10-day test burn of pentachlorophenol-contaminated wastes was conducted in the Controlled Air Incinerator. Decontamination factors for five fission products in the off-gas handling system of the incinerator were measured

  5. New directions in health physics

    International Nuclear Information System (INIS)

    Vaughan, B.E.

    1975-04-01

    Present statutory and other requirements placed on health physics groups include many areas besides that of radiological monitoring. It is not unusual for health physics groups to also monitor metal contamination and accidental release of certain toxic chemicals. The general approach in terms of medical surveillance, monitoring, sampling, and measurement technology will be applicable outside the nuclear area. With the creation of the U.S. Energy Research and Development Administration, and with abolition of the former U.S. Atomic Energy Commission, it is clear that technologies beyond strictly nuclear technology will be implemented to meet energy needs of the next decade. The impact of some of these technologies for electric power production on the environment are discussed with emphasis on coal. It is pointed out that coal consumption can be expected to increase, and the scale of operation for individual plants can be unbelievably large. The contributions of nuclear power plants and fossil fuels to meet energy demands by the year 2000 are estimated. Both health and environmental implications of such operations are discussed in relation to anticipated research and monitoring programs. (U.S.)

  6. Physical activity in relation to selected physical health components ...

    African Journals Online (AJOL)

    The aim of this study was to determine the relation between physical activity and selected physical health components. A total of 9860 employees of a financial institution in South Africa, between the ages 18 and 64 (x̄ =35.3 ± 18.6 years), voluntary participated in the study. Health risk factors and physical activity was ...

  7. Health and Safety Research Division progress report, July 1, 1984-September 30, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    This report summarizes progress made for the period July 1984 through September 1985. Sections describe research in health studies, dosimetry and biophysical transport, biological and radiation physics, chemical physics, and risk analysis

  8. Health and Safety Research Division progress report, July 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report summarizes progress made for the period July 1984 through September 1985. Sections describe research in health studies, dosimetry and biophysical transport, biological and radiation physics, chemical physics, and risk analysis. (ACR)

  9. Domestic work division and satisfaction in cohabiting adults: Associations with life satisfaction and self-rated health.

    Science.gov (United States)

    Wagman, Petra; Nordin, Maria; Alfredsson, Lars; Westerholm, Peter J M; Fransson, Eleonor I

    2017-01-01

    The amount and perception of domestic work may affect satisfaction with everyday life, but further knowledge is needed about the relationship between domestic work division and health and well-being. To describe the division of, and satisfaction with, domestic work and responsibility for home/family in adults living with a partner. A further aim was to investigate the associations between these aspects and self-rated life satisfaction and health. Data from the Work, Lipids and Fibrinogen survey collected 2009 were used, comprising 4924 participants living with a partner. Data were analyzed using logistic regression. The majority shared domestic work and responsibility for home/family equally with their partner. However, more women conducted the majority of the domestic work and were less satisfied with its division. When both division and satisfaction with division was included in the analysis, solely satisfaction with the division and the responsibility were associated with higher odds for good life satisfaction. Regarding health, higher odds for good self-rated health were seen in those who were satisfied with their division of responsibility. The results highlight the importance of taking into account not solely the actual division of domestic work but also the satisfaction with it.

  10. Health physics in JAERI, 26

    International Nuclear Information System (INIS)

    1984-10-01

    In the annual report No.26 (fiscal 1983) are described the activities of health physics including radioactive waste management in Tokai Research Establishment, Takasaki Radiation Chemistry Research Establishment and Oarai Research Establishment. In all the three research establishments, radiation monitoring in nuclear facilities, individual monitoring, environmental monitoring and maintenance of measuring instruments were carried out as in the previous years. There were no occupational exposures exceeding the maximum permissible doses and no releases of radioactive gaseous and liquid wastes beyond the release limits specified according to the regulations. In the environment there were observed no abnormal radioactivities due to facilities. (J.P.N.)

  11. Health physics training of plant staff

    International Nuclear Information System (INIS)

    Heublein, R.M. Jr.

    1982-01-01

    The scope of this document entitled Health Physics Training of Plant Staff addresses those critical elements common to all health physics training programs. The incorporation of these elements in a health physics training program will provide some assurances that the trainees are competent to work in the radiological environment of a nuclear plant. This paper provides sufficient detail for the health physicist to make managerial decisions concerning the planning, development, implementation, and evaluation of health physics training programs. Two models are provided in the appendices as examples of performance based health physics training programs

  12. The Battle River Project: school division implementation of the health-promoting schools approach: assessment for learning: using student health and school capacity measures to inform action and direct policy in a local school district.

    Science.gov (United States)

    Gleddie, Douglas L; Hobin, Erin P

    2011-03-01

    The Battle River Project (BRP) is a school division-level intervention in rural Alberta, Canada, built upon the health-promoting schools approach to health promotion. Using self-reported school and student-level data from administrators and students, the central aim of the BRP is to examine: 'How can the school environment and health behaviours (healthy eating, physical activity and mental wellness) of children and youth be improved when a health-promoting schools model, the Ever Active Schools program, is implemented with school division support?' Evidence used to inform school level changes included students' demographic, behavioral, and psychosocial variables linked to school environment data, comprised of school demographics and administrator-assessed quality of policies, facilities, and programs related to physical activity. Each participating school and the division were provided with a tailored report of their schools' results to reflect, plan and implement for positive health behavior change. The main lesson learned was that sharing school-specific evidence can operate as a catalyst for embedding health promoting policy and practices within the school and division culture.

  13. Progress report, Physics and Health Sciences: Physics Section

    International Nuclear Information System (INIS)

    1990-01-01

    This report reviews the research and operational activities of the TASCC Division, the Physics Division, and the Fusion Office of Atomic Energy of Canada Ltd. TASCC, the 8π spectrometer, the on-line isotope separator, and the large scattering chamber completed their first year of operation with results including the discovery of the first nucleus, 153 Dy, to exhibit more than one superdeformed band. DUALSPEC, the double neutron spectrometer at the NRU reactor, should be commissioned in 1990. Investigations were carried out into the cold fusion phenomenon with negative results. Studies on food irradiation showed that the induced radioactivity is less than 0.25 percent of that already present. Substantial funding commitments have been made to the Sudbury Neutrino Observatory. Theoretical work on multiple scattering of heavy ions appears to be expandable to relativistic energies. Canadian contributions to the NET project have been endorsed and continue to grow

  14. Progress report, Physics and Health Sciences: Physics Section

    International Nuclear Information System (INIS)

    1990-04-01

    This report reviews the research and operational activities of the TASCC Division, the Physics Division, and the Fusion Office of Atomic Energy of Canada Ltd. Commissioning of the TASCC facilities continues; the cyclotron's 17 beams are routinely used in experiments. The MP tandem accelerator has operated at 15 MV. The Applied Neutron Diffraction for Industry group has shown that it is able to measure internal strain and temperature in engineering components. Work is continuing on a cold source to be installed in NRU at the same time as the third reactor vessel. Assembly of the DUALSPEC spectrometer has begun. Progress in understanding and developing the theory of quantum groups resulted in the discovery of a new structure, the twisted quantum group

  15. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  16. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    International Nuclear Information System (INIS)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications

  17. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  18. Health and Safety Research Division progress report, April 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-02-01

    Research progress for the reporting period is briefly summarized for the following sections: (1) health studies, (2) technology assessments, (3) biological and radiation physics, (4) chemical physics, (5) Office of Risk Analysis, and (6) health and environmental risk and analysis. (ACR)

  19. Progress report of Physics Division. 1st January - 31st December 1973

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The reactor MOATA is operating successfully at 100 kW with the higher available flux being much appreciated by all users. An uranium analysis service commenced and the various mining exploration companies are gradually availing themselves of it in an increasing fashion. The possible introduction of a similar service for neutron radiography is being explored following successful laboratory studies. Various other applications of nuclear science are under development. The revised safety assessment carried out for 100 kW operation of MOATA led to a more generalized study of self limited, non boiling power transients and in particular the maximum reactivity limit for these transients. This involved a re-examination of the SPERT non boiling transients and the prediction of their outcome in quantitative terms on purely physics considerations without resort to normalization. The indications are that a 10 second period transient in MOATA would give rise to a power transient which would be self limited to 100 . A possible experiment to test this prediction is under examination. Various physics aspects of MOATA operation were studied on a mockup of the reactor on the split table machine and the degree of understanding by staff of this reactor's behavior much improved. The safety assessment of the split table machine (Critical Facility) was completed and should shortly be available from the printer for submission to the new Licensing and Regulatory Bureau for authority to operate. {nu}-bar measurements for the various fissile elements are complete, but studies of neutron emission from the individual fragments produced during the spontaneous fission of {sup 252}Cf fission and the neutron energy spectrum of {sup 252}Cf fission neutrons are being undertaken to clarify some of the remaining discrepancies. Analysis of neutron capture cross section data obtained at Oak Ridge National Laboratory is continuing. Details of the analysis for some element studies are given. Progress has

  20. Progress report of Physics Division. 1st January - 31st December 1973

    International Nuclear Information System (INIS)

    2004-01-01

    The reactor MOATA is operating successfully at 100 kW with the higher available flux being much appreciated by all users. An uranium analysis service commenced and the various mining exploration companies are gradually availing themselves of it in an increasing fashion. The possible introduction of a similar service for neutron radiography is being explored following successful laboratory studies. Various other applications of nuclear science are under development. The revised safety assessment carried out for 100 kW operation of MOATA led to a more generalized study of self limited, non boiling power transients and in particular the maximum reactivity limit for these transients. This involved a re-examination of the SPERT non boiling transients and the prediction of their outcome in quantitative terms on purely physics considerations without resort to normalization. The indications are that a 10 second period transient in MOATA would give rise to a power transient which would be self limited to 100 . A possible experiment to test this prediction is under examination. Various physics aspects of MOATA operation were studied on a mockup of the reactor on the split table machine and the degree of understanding by staff of this reactor's behavior much improved. The safety assessment of the split table machine (Critical Facility) was completed and should shortly be available from the printer for submission to the new Licensing and Regulatory Bureau for authority to operate. ν-bar measurements for the various fissile elements are complete, but studies of neutron emission from the individual fragments produced during the spontaneous fission of 252 Cf fission and the neutron energy spectrum of 252 Cf fission neutrons are being undertaken to clarify some of the remaining discrepancies. Analysis of neutron capture cross section data obtained at Oak Ridge National Laboratory is continuing. Details of the analysis for some element studies are given. Progress has also been

  1. 2016.11.22 Updated Materials Physics and Applications Division Overview Presentation for TV monitor in 3-1415-Lobby

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Susan M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-22

    These slides are the updated overview presentation for the TV monitor in 3-1415-Lobby at Los Alamos National Laboratory (LANL). It gives an overview of the Materials Physics and Applications Division, including descriptions of the leaders, where researchers are fellows (such as APS or OSA), the newest LANL fellows at MPA, and many other researchers who have won prizes. Finally, MPA's research accomplishments and focuses are detailed.

  2. Operating manual for the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1985-11-01

    This manual is intended to serve as a guide in the operation and maintenance of the Health Physics Researh Reactor (HPRR) of the Health Physics Dosimetry Applications Research (DOSAR) Facility. It includes descriptions of the HPRR and of associated equipment such as the reactor positioning devises and the derrick. Procedures for routine operation of the HPRR are given in detail, and checklists for the various steps are provided where applicable. Emergency procedures are similarly covered, and maintenance schedules are outlined. Also, a bibliography of references giving more detailed information on the DOSAR Facility is included. Changes to this manual will be approved by at least two of the following senior staff members: (1) the Operations Division Director, (2) the Reactor Operations Department Head, (3) the Supervisor of Reactor Operations TSF-HPRR Areas. The master copy and the copy of the manual issued to the HPRR Operations Supervisor will always reflect the latest revision. 22 figs

  3. Health physics operations in hospitals

    International Nuclear Information System (INIS)

    Anderson, W.; Trott, N.G.

    1984-01-01

    The special problems of applying the basic principles of radiological protection in the environment of a hospital are outlined, the hospital being not only a workplace but also the temporary home of the patients. In these circumstances, close co-operation is needed between all groups of hospital staff. Many technical innovations have been made over the past 50 years in the applications of both ionizing and non-ionizing radiation for diagnosis and therapy and, at the present time, an intensive development of these applications is in progress. Within that context, the role of health physics has become a major one. There is the need to provide high standards in radiological protection of the staff, of members of the public, and increasingly, of the patient. At the same time, there is the need to provide sound perspective on hazards arising from exposure to various forms of radiation, whether ionizing or non-ionizing, for that perspective will influence future developments in this field. (author)

  4. Health physics in JAERI, 22

    International Nuclear Information System (INIS)

    1980-10-01

    In the annual report No. 22 (fiscal 1979) are described the activities of health physics including radioactive waste management in Tokai Research Establishment, Takasaki Radiation Chemistry Research Establishment and Oarai Research Establishment. In all the three research establishments, radiation monitoring in nuclear facilities, individual monitoring, environmental monitoring and maintenance of measuring instruments were carried out as in previous years. There were no occupational exposures exceeding the maximum permissible doses and no release of radioactive gaseous and liquid wastes beyond the release limits specified according to regulations. In the environment there were observed no abnormal radioactivities due to facilities. In Tokai and Oarai Research Establishments radioactive waste management including decontamination works was also carried out and radioactive solid wastes were stored in the same way as in previous years. Construction of the Packaged Waste Storage Facility was completed, and of the Facility of Radiation Standards and the Medium-Level Waste Treatment Facility progressed on schedule in Tokai Research Establishment. In Oarai Research Establishment, construction was completed on the latter project of radioactive waste treatment facilities, starting in 1974. Technical development and research were made as in previous years for improving techniques and methods in monitoring of individuals, facilities and environment and also in waste management and decontamination. (author)

  5. Screening physical health? Yes! But...: nurses' views on physical health screening in mental health care.

    Science.gov (United States)

    Happell, Brenda; Scott, David; Nankivell, Janette; Platania-Phung, Chris

    2013-08-01

    To explore nurses' views on the role of nurses in screening and monitoring for physical care of consumers with serious mental illness, at a regional mental health care service. People with serious mental illness experience heightened incidence of preventable and treatable physical illnesses such as cardiovascular disease and diabetes. Screening and monitoring are considered universal clinical safeguards. Nurses can potentially facilitate systematic screening, but their views on physical health care practices are rarely investigated. Qualitative exploratory study. Focus group interviews with 38 nurses of a regional mental health care service district of Australia. To facilitate discussion, participants were presented with a screening system, called the Health Improvement Profile (HIP), as an exemplar of screening of physical health risks by nurses. Inductive data analysis and theme development were guided by a thematic analysis framework. Nurses argued that treatable and preventable physical health problems were common. Four main themes were identified: screening - essential for good practice; the policy-practice gap; 'screening then what?' and, is HIP the answer? Screening and monitoring were considered crucial to proper diagnosis and treatment, however, were not performed systematically or consistently. Nurse readiness for an enhanced role in screening was shaped by: role and responsibility issues, legal liability concerns, funding and staff shortages. Participants were concerned that lack of follow up would limit effectiveness of these interventions. Screening was considered an important clinical step in effective diagnosis and treatment; however, identified barriers need to be addressed to ensure screening is part of a systemic approach to improve physical health of consumers with serious mental illness. Nurses have potential to influence improvement in physical health outcomes for consumers of mental health services. Such potential can only be realised if a

  6. A little something from physics for medicine (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2014)

    International Nuclear Information System (INIS)

    2014-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'A little something from physics for medicine', was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) 'Translational medicine as a basis of progress in hematology/oncology'; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) 'Promising nuclear medicine research at the INR, RAS'; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) 'Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics'; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) 'New approaches in laser mass-spectrometry of organic objects'. The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239–1243 (conferences and symposia)

  7. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Content source: Division of Nutrition, Physical Activity, and Obesity , National Center for Chronic Disease Prevention and Health Promotion Email Recommend Tweet YouTube Instagram ...

  8. Progress report - Physical and Environmental Sciences - TASCC Division -1995 July 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J C [ed.

    1996-05-01

    Included in this progress report of the TASCC division at Chalk River Nuclear Laboratories is the research and development being carried out at this time and a listing of the relevant publications, reports, lectures and conference contributions. The TASCC staff is also detailed. 8 tabs.,16 figs.

  9. Progress report - Physical and Environmental Sciences - TASCC Division -1995 July 1 to December 31

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1996-05-01

    Included in this progress report of the TASCC division at Chalk River Nuclear Laboratories is the research and development being carried out at this time and a listing of the relevant publications, reports, lectures and conference contributions. The TASCC staff is also detailed. 8 tabs.,16 figs

  10. Progress report - Physical and Environmental Sciences - TASCC Division -1995 January 1 to June 30

    International Nuclear Information System (INIS)

    1995-08-01

    Included in this progress report of the TASCC division at Chalk River Nuclear Laboratories is the research and development being carried out at this time and a listing of the relevant publications, reports. lectures and conference contributions. 15 tabs. 19 figs

  11. Progress report - Physical and Environmental Sciences - TASCC Division -1995 January 1 to June 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Included in this progress report of the TASCC division at Chalk River Nuclear Laboratories is the research and development being carried out at this time and a listing of the relevant publications, reports. lectures and conference contributions. 15 tabs. 19 figs.

  12. Knowledge and practice of traditional healers in oral health in the Bui Division, Cameroon

    Directory of Open Access Journals (Sweden)

    Naidoo Sudeshni

    2011-01-01

    Full Text Available Abstract Background The majority of Cameroonians depend on traditional medicines for their health care needs and about seven per cent of the average household health budget is spent on traditional medicines irrespective of their incomes. The aim of the present study was to determine the oral care knowledge and practices of Traditional Healers (TH on oral health delivery in the urban and rural areas of Bui Division of Cameroon and the objectives to determine the cost of treatment and reasons why people visit TH. Methods The present study was cross sectional and utilized semi-structured questionnaires to collect data. Results The sample consisted of 21 TH and 52 clients of TH. Sixty two percent of the TH's were above 40 years and 90% male. The mean age was 46 years (range 20-77 years. Twenty four percent of the TH practiced as herbalists and the remainder both divination and herbalism. Sixty seven percent of people in the Bui Division, who patronize TH for their oral health needs, fall within the 20-40 year age group. There is little collaboration between the oral health workers and TH and only 6% of all patients seen by TH are referred to the dentist. Socio-cultural and economic factors affect the oral health care seeking behavior of patients in this area and only 6.5% of patients visit dental clinics. Reasons for not attending dental clinics included high cost, poor accessibility, superstition and fear. TH's are not experienced in the treatment of pulpitis - the majority of patients who presented with toothache had temporary or no relief, but despite this 67% reported being satisfied with their treatment. Sixty nine percent of the patients visited TH because of low cost - the average cost of treatment with TH (approximately $5 is very low, as compared to conventional treatment ($50. Conclusions Traditional healers are willing to co-operate with oral health workers in improving oral health. Since they have a vital role to play in health care

  13. Knowledge and practice of traditional healers in oral health in the Bui Division, Cameroon.

    Science.gov (United States)

    Agbor, Ashu M; Naidoo, Sudeshni

    2011-01-15

    The majority of Cameroonians depend on traditional medicines for their health care needs and about seven per cent of the average household health budget is spent on traditional medicines irrespective of their incomes. The aim of the present study was to determine the oral care knowledge and practices of Traditional Healers (TH) on oral health delivery in the urban and rural areas of Bui Division of Cameroon and the objectives to determine the cost of treatment and reasons why people visit TH. The present study was cross sectional and utilized semi-structured questionnaires to collect data. The sample consisted of 21 TH and 52 clients of TH. Sixty two percent of the TH's were above 40 years and 90% male. The mean age was 46 years (range 20-77 years). Twenty four percent of the TH practiced as herbalists and the remainder both divination and herbalism. Sixty seven percent of people in the Bui Division, who patronize TH for their oral health needs, fall within the 20-40 year age group. There is little collaboration between the oral health workers and TH and only 6% of all patients seen by TH are referred to the dentist. Socio-cultural and economic factors affect the oral health care seeking behavior of patients in this area and only 6.5% of patients visit dental clinics. Reasons for not attending dental clinics included high cost, poor accessibility, superstition and fear. TH's are not experienced in the treatment of pulpitis - the majority of patients who presented with toothache had temporary or no relief, but despite this 67% reported being satisfied with their treatment. Sixty nine percent of the patients visited TH because of low cost - the average cost of treatment with TH (approximately $5) is very low, as compared to conventional treatment ($50). Traditional healers are willing to co-operate with oral health workers in improving oral health. Since they have a vital role to play in health care seeking attitudes in this community and barriers affecting the oral

  14. Health and Safety Research Division. Progress report, October 1, 1979-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    Research progress for the period October 1, 1979 through March 31, 1981 is reported. Research conducted by the Office of Integrated Assessments and Policy Analysis, Health Studies Section, Technology Assessments Section, Biological and Radiation Physics Section, and Chemical Physics Section is summarized. (ACR)

  15. Health and Safety Research Division. Progress report, October 1, 1979-March 31, 1981

    International Nuclear Information System (INIS)

    1981-08-01

    Research progress for the period October 1, 1979 through March 31, 1981 is reported. Research conducted by the Office of Integrated Assessments and Policy Analysis, Health Studies Section, Technology Assessments Section, Biological and Radiation Physics Section, and Chemical Physics Section is summarized

  16. From the history of physics (Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 17 December 2012. The following reports were put on the session's agenda posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Dianov E M (Fiber Optics Research Center, RAS, Moscow) O n the threshold of a peta era ; (2) Zabrodskii A G (Ioffe Physical Technical Institute, RAS, St. Petersburg) S cientists' contribution to the great victory in WWII using the example of the Leningrad (now A F Ioffe) Physical Technical Institute ; (3) Ilkaev R I (Russian Federal Nuclear Center --- All-Russian Research Institute of Experimental Physics, Sarov) M ajor stages of the Soviet Atomic Project ; (4) Cherepashchuk A M (Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow) H istory of the Astronomy history . Papers written on the basis of the reports are published below. . On the Threshold of Peta-era, E M Dianov Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 486–492 . Scientists' contribution to the Great Victory in WWII on the example of the Leningrad (now A F Ioffe) Physical Technical Institute, A G Zabrodskii Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 493–502 . Major stages of the Atomic Project, R I Ilkaev Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 502–509. History of the Universe History, A M Cherepashchuk Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 509–530 (conferences and symposia)

  17. Physics Division annual progress report for period ending December 31, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report contains information on the Holifield Heavy-Ion Research Facility, nuclear physics, nuclear physics with neutrons, theoretical physics, the Nuclear Data Project, accelerator-based atomic physics, magnetic fusion energy-applied physics research, electron spectroscopy, and high-energy physics, as well as lists of publications, papers presented at meetings, and other general information. Sixty-two items containing significant information were abstracted and indexed individually. (RWR)

  18. Towards an integrated management of health physics and medical physics

    International Nuclear Information System (INIS)

    Mommaert, Chantal; Rogge, Frank; Cortenbosch, Geert; Schmitz, Frederic

    2007-01-01

    AVN is a licensed body that performs health physics control in different types of installations, from large nuclear facilities to small dentist cabinets. AVN can also provide medical physics services for the quality control of, for instance, medical devices used in a radiology or nuclear medicine department. Radiation protection for personnel and environment (health physics) and radiation protection for the patient (medical physics) are usually treated separately, using different referential documents, such as the European Directives 96/29/Euratom for health physics and 97/43/Euratom for medical physics. This difference is also clearly reflected in the Belgium legislation (two types of accreditation/licence for inspectors, different chapters in the law,..) From a practical point of view it is sometimes rather difficult to split the task 'on site' during an inspection. An RX system not complying with radiation protection criteria can definitively affect the patient as well as the workers. On the other hand, the hospitals, cannot easily differentiate these two tasks because they are not fully aware of the legislation and they are mixing both. Taking into account the health physics guidelines as well as medical physics guidelines, we have decided to move to an integrated approach of these two concepts. (orig.)

  19. Health-physics personnel: a need unfulfilled

    International Nuclear Information System (INIS)

    Kathren, R.E.

    1983-06-01

    Current trends and conditions in the health physics profession are discussed. The need for health physics personnel in academia, nuclear power plants, other nuclear industry, national laboratories, and other sectors and the shortfall in qualified personnel to fill the available positions is described. Reasons for the present situation and recommendations for alleviating it are presented

  20. Program report for FY 1980. Atmospheric and Geophysical Sciences Division of the Physics Department

    International Nuclear Information System (INIS)

    Knox, J.B.; Orphan, R.C.

    1981-02-01

    The FY 1980 research program conducted by the Atmospheric and Geophysical Sciences Division and supporting segments at Lawrence Livermore National Laboratory is reviewed briefly. The work is divided into five research themes: advanced modeling, regional modeling and assessments, CO 2 and climate research, stratospheric research, and special projects. Specific projects are described, and significant findings of the work are indicated. Unique numerical modeling capabilities in use and under development are described

  1. Physical Activity and Health in Preschool Children

    DEFF Research Database (Denmark)

    Christensen, Line Brinch

    Physical activity is beneficial in relation to several life style diseases and the association between physical activity and early predictors of life style diseases seem to be present already in preschool age. Since physical activity and other health behaviours are established during childhood...... and track from childhood into adult life, it is relevant to address physical activity already in the preschool age. The research in preschool children’s physical activity is relatively new, and because of methodological inconsistencies, the associations between physical activity and health are less clear...... in this age group. The objective of this thesis was to contribute to the knowledge base regarding physical activity in preschoolers; How active are preschoolers? Are activity levels related to specific settings during a typical week? And are the activity levels related to a range of health outcomes...

  2. Occupational training in the health physics curriculum

    International Nuclear Information System (INIS)

    Vetter, R.J.; Ziemer, P.L.

    1976-01-01

    In response to projected demands for health physics personnel with field training at the bachelor's degree level, the Bionucleonics Department has revised its curriculum in Radiological Health to provide applied training in health physics. The basic program provides a strong background in math, physics, chemistry and biology and an in-depth background in the fundamentals of health physics and field training in applied health physics. The field training is also open to graduate students. The field exercises are coordinated with Purdue's Radiological Control Program and include such tasks as contamination and direct radiation surveys; facility and personnel decontamination; reactor, accelerator, and analytical and diagnostic X-ray monitoring; instrument calibration; personnel monitoring; and emergency planning and accident evaluation. In a weekly discussion period associated with the field exercises, the students evaluate their field experience, discuss assigned problems, and receive additional information on regulations, regulatory guides, and management of radiation protection programs

  3. Measuring physical neighborhood quality related to health.

    Science.gov (United States)

    Rollings, Kimberly A; Wells, Nancy M; Evans, Gary W

    2015-04-29

    Although sociodemographic factors are one aspect of understanding the effects of neighborhood environments on health, equating neighborhood quality with socioeconomic status ignores the important role of physical neighborhood attributes. Prior work on neighborhood environments and health has relied primarily on level of socioeconomic disadvantage as the indicator of neighborhood quality without attention to physical neighborhood quality. A small but increasing number of studies have assessed neighborhood physical characteristics. Findings generally indicate that there is an association between living in deprived neighborhoods and poor health outcomes, but rigorous evidence linking specific physical neighborhood attributes to particular health outcomes is lacking. This paper discusses the methodological challenges and limitations of measuring physical neighborhood environments relevant to health and concludes with proposed directions for future work.

  4. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    International Nuclear Information System (INIS)

    2011-01-01

    The scientific session 'Econophysics and evolutionary economics' of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) 'The transition from simple reproduction to economic growth'; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) 'Experimental data on the development of fast-growing innovative companies in Russia'; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) 'Why is it sometimes possible to successfully model an economy?' (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) 'Theoretical economics'; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) 'Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market'; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) 'Fractal analysis of financial time series and the prediction problem'; Papers written on the basis of these reports are published below. The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733. High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737. Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742. On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume 54, Number

  5. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-31

    The scientific session 'Econophysics and evolutionary economics' of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) 'The transition from simple reproduction to economic growth'; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) 'Experimental data on the development of fast-growing innovative companies in Russia'; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) 'Why is it sometimes possible to successfully model an economy?' (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) 'Theoretical economics'; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) 'Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market'; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) 'Fractal analysis of financial time series and the prediction problem'; Papers written on the basis of these reports are published below. The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733. High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737. Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742. On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov

  6. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Science.gov (United States)

    2011-07-01

    The scientific session "Econophysics and evolutionary economics" of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) "The transition from simple reproduction to economic growth"; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) "Experimental data on the development of fast-growing innovative companies in Russia"; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) "Why is it sometimes possible to successfully model an economy? (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) "Theoretical economics"; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) "Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market"; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) "Fractal analysis of financial time series and the prediction problem"; Papers written on the basis of these reports are published below. • The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733 • High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737 • Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742 • On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume

  7. Physical Activity for Health and Longevity

    OpenAIRE

    Khoo, Selina; Müller, Andre Matthias

    2013-01-01

    International audience; The aging process is commonly associated with declines in health, cognitive function and well-being. However, lifestyle factors like diet, alcohol consumption, smoking and physical activity were repeatedly highlighted as predictors of a healthy aging process. However, recent research has shown that physical activity is the strongest predictor of health in older adults. Recent studies have confirmed the strong effect of physical activity on cardiovascular, metabolic, mu...

  8. Health at the Sub-catchment Scale: Typhoid and Its Environmental Determinants in Central Division, Fiji.

    Science.gov (United States)

    Jenkins, Aaron Peter; Jupiter, Stacy; Mueller, Ute; Jenney, Adam; Vosaki, Gandercillar; Rosa, Varanisese; Naucukidi, Alanieta; Mulholland, Kim; Strugnell, Richard; Kama, Mike; Horwitz, Pierre

    2016-12-01

    The impact of environmental change on transmission patterns of waterborne enteric diseases is a major public health concern. This study concerns the burden and spatial nature of enteric fever, attributable to Salmonella Typhi infection in the Central Division, Republic of Fiji at a sub-catchment scale over 30-months (2013-2015). Quantitative spatial analysis suggested relationships between environmental conditions of sub-catchments and incidence and recurrence of typhoid fever. Average incidence per inhabited sub-catchment for the Central Division was high at 205.9/100,000, with cases recurring in each calendar year in 26% of sub-catchments. Although the numbers of cases were highest within dense, urban coastal sub-catchments, the incidence was highest in low-density mountainous rural areas. Significant environmental determinants at this scale suggest increased risk of exposure where sediment yields increase following runoff. The study suggests that populations living on large systems that broaden into meandering mid-reaches and floodplains with alluvial deposition are at a greater risk compared to small populations living near small, erosional, high-energy headwaters and small streams unconnected to large hydrological networks. This study suggests that anthropogenic alteration of land cover and hydrology (particularly via fragmentation of riparian forest and connectivity between road and river networks) facilitates increased transmission of typhoid fever and that environmental transmission of typhoid fever is important in Fiji.

  9. Changes in division of labour and tasks within public dentistry: relationship to employees work demands, health and work ability.

    Science.gov (United States)

    Rolander, Bo; Wåhlin, Charlotte; Johnston, Venerina; Wagman, Petra; Lindmark, Ulrika

    2016-08-01

    By 2023, fewer dentists are expected in Sweden, at the same time as the demand for dental care is expected to increase. Older people, in particular, are expected to require more dental health than previous generations. To meet this demand, the public sector dentistry in Sweden is moving towards changes in division of labour among dental professionals, including dentists, dental hygienists and dental nurses. However, the impact of this reallocation on the physical and psychosocial wellbeing of employees is unknown. The aim of this study was to compare workplaces with an equal or larger proportion of dental hygienists than dentists (HDH) with workplaces with a larger proportion of dentists than dental hygienists (HD) on the physical and psychosocial work load, musculoskeletal and psychosomatic disorders and sickness presence. A total of 298 persons employed in the Public Dental Service in a Swedish County Council participated in this study. The medium large clinics HDH reported 85% of employee's with considerably more high psychosocial demands compared to employees in medium HD (53%) and large HD (57%). Employees in medium large clinics HDH also reported sleep problems due to work (25%) compared with employees in medium large clinics HD (6%), large clinics HD (11%) and small clinics HDH (3%). Clinic size does not seem to influence the outcome of the HD and HD clinics to any great extent. Of all employees, about 94-100% reported high precision demands and 78-91% poor work postures.

  10. Progress report - physics and health sciences - physics section 1990 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1990-10-01

    This is the ninth semi-annual report on the Physics section of Physics and Health Sciences. Major areas of discussion include: nuclear physics, accelerator physics, general physics, neutron's solid state physics, theoretical physics and fusion

  11. Health physics personnel: a need unfulfilled

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1983-01-01

    For the past decade, the demand for health physics personnel, at both the professional and technical levels, has been increasing, and indeed has become quite acute in recent years. The need for health physics personnel is demonstrated by a summary of projected requirements and potential candidates by the year 1991. Suggestions made for ensuring the availability of qualified health physics personnel includes: 1) a characterization study of health physicists should be conducted, with emphasis on industry, to determine qualifications, job satisfaction factors, and other data pertinent to entry and retention in the field; 2) the curricula currently offered by post-secondary schools should be evaluated for quality and relevance; and 3) an industry standard or protocol for qualification and training of health physics should be developed and implemented

  12. Research and development activities of the Neutron Physics Division for the period January 1981 to December 1981

    International Nuclear Information System (INIS)

    Bhakay-Tamhane, Sandhya; Roy, Falguni

    1982-01-01

    Research and development activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, during 1981 are reported in the form of individual summaries. These are presented under headings: Purnima laboratories, crystallography, materials physics and seismology. These activities include studies of: (i) 233 U-uranyl nitrate solution critical systems, (2) fusion blanket neutronics, (3) fusion plasma experiments using 20 KJ capacitor bank, (4) crystal structures using neutron and X-ray diffraction, (5) materials behaviour at high temperatures and under shock waves, and (6) detection of underground nuclear explosions and discriminating them from earthquakes. Design work for many systems/components of the 233 U-fuelled neutron source reactor under construction at Kalpakkam has been completed and fabrication work is being taken up. A 500 KJ capacitor bank facility is being set up for pulsed fusion studies. The feasibility study for a three-dimensional network of sensors close to the working mines of the Kolar Gold Fields, for rockburst studies, was completed. Several computer programs for biological crystallography were implemented on the computers made available to the Division. A list of publications and lectures by the staff is given in an appendix. (M.G.B.)

  13. Physics Division annual review, 1 April 1987--31 March 1988

    International Nuclear Information System (INIS)

    1988-06-01

    This paper contains a description of the research project at Argonne National Laboratory over the past year (4/11/87--3/31/88). The major sections of this report in nuclear physics are: research at ATLAS; operation and development of TLAS: medium-energy nuclear physics and weak interactions; and theoretical nuclei physics. The major sections in atomic physics are: high-resolution laser-rf spectroscopy with beams of atoms, molecules and ions; beam-foil research, ion-beam laser interactions, and collision dynamics of heavy ions; interactions of fast atomic and molecular ions with solid and gaseous target; theoretical atomic physics; atomic physics at ATLAS; atomic physics using a synchrotron light source; and molecular structures and dynamics from coulomb-explosion measurements

  14. Physics Division annual review, 1 April 1987--31 March 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This paper contains a description of the research project at Argonne National Laboratory over the past year (4/11/87--3/31/88). The major sections of this report in nuclear physics are: research at ATLAS; operation and development of TLAS: medium-energy nuclear physics and weak interactions; and theoretical nuclei physics. The major sections in atomic physics are: high-resolution laser-rf spectroscopy with beams of atoms, molecules and ions; beam-foil research, ion-beam laser interactions, and collision dynamics of heavy ions; interactions of fast atomic and molecular ions with solid and gaseous target; theoretical atomic physics; atomic physics at ATLAS; atomic physics using a synchrotron light source; and molecular structures and dynamics from coulomb-explosion measurements. (LSP)

  15. Pet ownership and physical health.

    Science.gov (United States)

    Matchock, Robert L

    2015-09-01

    Pet ownership and brief human-animal interactions can serve as a form of social support and convey a host of beneficial psychological and physiological health benefits. This article critically examines recent relevant literature on the pet-health connection. Cross-sectional studies indicate correlations between pet ownership and numerous aspects of positive health outcomes, including improvements on cardiovascular measures and decreases in loneliness. Quasi-experimental studies and better controlled experimental studies corroborate these associations and suggest that owning and/or interacting with a pet may be causally related to some positive health outcomes. The value of pet ownership and animal-assisted therapy (AAT), as a nonpharmacological treatment modality, augmentation to traditional treatment, and healthy preventive behavior (in the case of pet ownership), is starting to be realized. However, more investigations that employ randomized controlled trials with larger sample sizes and investigations that more closely examine the underlying mechanism of the pet-health effect, such as oxytocin, are needed.

  16. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1986-03-01

    These technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded

  17. Health physics considerations in decontamination and decommissioning

    International Nuclear Information System (INIS)

    1985-12-01

    These proceedings contain papers on legal considerations, environmental aspects, decommissioning equipment and methods, instrumentation, applied health physics, waste classification and disposal, and project experience. Separate abstracts have been prepared for individual papers

  18. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  19. Health physics practices at research accelerators

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-02-01

    A review is given of the uses of particle accelerators in health physics, the text being a short course given at the Health Physics Society Ninth Midyear Topical Symposium in February, 1976. Topics discussed include: (1) the radiation environment of high energy accelerators; (2) dosimetry at research accelerators; (3) shielding; (4) induced activity; (5) environmental impact of high energy accelerators; (6) population dose equivalent calculation; and (7) the application of the ''as low as practicable concept'' at accelerators

  20. Campus Health Centers' Lack of Information Regarding Providers: A Content Analysis of Division-I Campus Health Centers' Provider Websites.

    Science.gov (United States)

    Perrault, Evan K

    2018-07-01

    Campus health centers are a convenient, and usually affordable, location for college students to obtain health care. Staffed by licensed and trained professionals, these providers can generally offer similar levels of care that providers at off-campus clinics can deliver. Yet, previous research finds students may forgo this convenient, on-campus option partially because of a lack of knowledge regarding the quality of providers at these campus clinics. This study sought to examine where this information deficit may come from by analyzing campus health centers' online provider information. All Division-I colleges or universities with an on-campus health center, which had information on their websites about their providers (n = 294), had their providers' online information analyzed (n = 2,127 providers). Results revealed that schools commonly offer professional information (e.g., provider specialties, education), but very little about their providers outside of the medical context (e.g., hobbies) that would allow a prospective student patient to more easily relate. While 181 different kinds of credentials were provided next to providers' names (e.g., MD, PA-C, FNP-BC), only nine schools offered information to help students understand what these different credentials meant. Most schools had information about their providers within one-click of the homepage. Recommendations for improving online information about campus health center providers are offered.

  1. Physics Division annual review, 1 April 1980-31 March 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; accelerator operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)

  2. Physics Division annual review, 1 April 1980-31 March 1981

    International Nuclear Information System (INIS)

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; accelerator operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed

  3. Theoretical Physics Division annual report, January--December 1975. Volume 1

    International Nuclear Information System (INIS)

    Wainwright, T.; Tarter, B.

    1976-01-01

    Discussions of theoretical work during this period are reported for the following general areas: (1) atomic, molecular, and nuclear physics, (2) laser fusion, propagation, and effects, (3) pulsed power and plasma physics, (4) energy and the environment, and (5) related research

  4. Vascular Health in American Football Players: Cardiovascular Risk Increased in Division III Players

    Directory of Open Access Journals (Sweden)

    Deborah L. Feairheller

    2016-01-01

    Full Text Available Studies report that football players have high blood pressure (BP and increased cardiovascular risk. There are over 70,000 NCAA football players and 450 Division III schools sponsor football programs, yet limited research exists on vascular health of athletes. This study aimed to compare vascular and cardiovascular health measures between football players and nonathlete controls. Twenty-three athletes and 19 nonathletes participated. Vascular health measures included flow-mediated dilation (FMD and carotid artery intima-media thickness (IMT. Cardiovascular measures included clinic and 24 hr BP levels, body composition, VO2 max, and fasting glucose/cholesterol levels. Compared to controls, football players had a worse vascular and cardiovascular profile. Football players had thicker carotid artery IMT (0.49 ± 0.06 mm versus 0.46 ± 0.07 mm and larger brachial artery diameter during FMD (4.3±0.5 mm versus 3.7±0.6 mm, but no difference in percent FMD. Systolic BP was significantly higher in football players at all measurements: resting (128.2±6.4 mmHg versus 122.4±6.8 mmHg, submaximal exercise (150.4±18.8 mmHg versus 137.3±9.5 mmHg, maximal exercise (211.3±25.9 mmHg versus 191.4±19.2 mmHg, and 24-hour BP (124.9±6.3 mmHg versus 109.8±3.7 mmHg. Football players also had higher fasting glucose (91.6±6.5 mg/dL versus 86.6±5.8 mg/dL, lower HDL (36.5±11.2 mg/dL versus 47.1±14.8 mg/dL, and higher body fat percentage (29.2±7.9% versus 23.2±7.0%. Division III collegiate football players remain an understudied population and may be at increased cardiovascular risk.

  5. About the Western Ecology Division (WED) of EPA's National Health and Environmental Effects Research Laboratory

    Science.gov (United States)

    The Western Ecology Division (WED) conducts innovative research on watershed ecological epidemiology and the development of tools to achieve sustainable and resilient watersheds for application by stakeholders.

  6. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975

    International Nuclear Information System (INIS)

    Lepore, J.L.

    1975-01-01

    This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures

  7. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975. [LBL

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.L. (ed.)

    1975-01-01

    This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures. (RWR)

  8. Health(y) Education in Health and Physical Education

    Science.gov (United States)

    Schenker, Katarina

    2018-01-01

    Teachers in the school subject Health and Physical Education (HPE) need to be able both to teach health and to do so in a healthy (equitable) way. The health field has, however, met with difficulties in finding its form within the subject. Research indicates that HPE can be excluding, meaning that it may give more favours to some pupils (bodies)…

  9. Influence of physical activity on psychosomatic health in obese women.

    Science.gov (United States)

    Menzyk, K; Cajdler, A; Pokorski, M

    2008-12-01

    It is unclear to what extent the known psychosomatic benefits of exercise hold true for the obese. In the present study, we investigated the hypothesis that the psychosomatic health and components of general intelligence, such as the capacity for logical-deductive tasks, would be better in regularly exercising than non-exercising obese women. We addressed the issue in a self-reported survey study, comprising two groups of middle-aged obese women (age 30-50 years, BMI >30 kg/m(2)) of 25 persons each. The criterion for the group division was regular exercise, minimum twice a week, for at least 2 months. The following psychometric tools were used: Physical Fitness and Exercise Scale, Patient Health Questionnaire-9 for depression, Life Satisfaction Scale, General Health Inventory-28, Raven's Matrices Test for intelligence, and a test for selfcontentment with one's body figure shape. The exercising obese women scored significantly better in Life Satisfaction Scale (17.1 +/- 1.2 vs.12.0 +/- 0.9), had a lower level of depression (8.1 +/- 0.6 vs. 13.4 +/- 0.7), and a better assessment of the health status (24.6 +/- 1.6 vs. 36.4 +/- 2.2) (reversed score) compared with non-exercising ones (Pexercising obese women also appreciably better assessed their bodily looks. Interestingly, if depression was present in exercising women, it had more detrimental health effects than in physically inactive ones. The study failed to substantiate appreciable changes in general intelligence between active and non-active obese women. In conclusion, physical activity is of benefit for the psychosomatic health in obese women, which should be considered in behavioral counseling.

  10. Physics Division annual review, 1 April 1982-31 March 1983

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1983-06-01

    Nuclear, atomic, and molecular physics research activities at ANL are described. Progress summaries are given under general headings: medium-energy physics research (nuclear structure, two-nucleon physics with pions and electrons, weak interactions, particle searches, measurement of the electric dipole moment of the neutron, and GeV electron microtron); research at the tandem and superconducting linac (high angular momentum states in nuclei, fusion of heavy ions, reaction mechanisms and distribution of reaction strengths, accelerator mass spectrometry, selected nuclear spectroscopy at the tandem-linac, and equipment development at the tandem-linac facility); theoretical nuclear physics (nuclear forces and subnucleon degrees of freedom, variational calculations of finite many-body systems, nuclear shell theory and nuclear structure, intermediate energy physics, and heavy-ion reactions); the superconducting linac; accelerator operations (tandem-linac and the Dynamitron facility); and data acquisition and analysis systems. Atomic and molecular physics research is reported under the following broad headings: photoionization-photoelectron research, high-resolution laser-rf spectroscopy, beam-foil research and collision dynamics of heavy ions, interactions of fast atomic and molecular ions with solid and gaseous targets, theoretical atomic physics, and electron spectroscopy with fast atomic and molecular-ion beams. Publications are listed

  11. Physics Division annual review, 1 April 1978-31 March 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    A broad review is presented of work in the areas of nuclear physics research (the superconducting linac; medium-energy physics; heavy-ion research at the tandem and superconducting linac accelerators - resonant structures in heavy-ion reactions, fusion cross sections, high-angular-momentum-states in nuclei; charged-particle research; accelerator operations and development; neutron and photonuclear physics; theoretical physics - heavy-ion direct reactions, nuclear shell theory and nuclear structure, nuclear matter, intermediate-energy physics, dense nuclear matter and classical calculations of the high-energy collisions of heavy ions; radiative transitions and nuclear resonance reactions experimental atomic and molecular physics research (dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization-photon-electron research, spectroscopy of free atoms, Moessbauer effect research, monochromatic x-ray beam project); and applied physics (interaction of energetic particles with solids scanning secondary-ion microprobe). Most of the reports are quite brief (about a page); 24 pages of references are included. 21 items with significant amounts of information are abstracted individually. (RWR)

  12. Physics Learning using Inquiry-Student Team Achievement Division (ISTAD and Guided Inquiry Models Viewed by Students Achievement Motivation

    Directory of Open Access Journals (Sweden)

    S. H. Sulistijo

    2017-04-01

    Full Text Available This study aims to determine the differences in learning outcomes of between students that are given the Physics learning models of Inquiry-Student Team Achievement Division (ISTAD and guided inquiry, between students who have high achievement motivation and low achievement motivation. This study was an experimental study with a 2x2x2 factorial design. The study population was the students of class X of SMAN 1 Toroh Grobogan of academic year 2016/2017. Samples were obtained by cluster random sampling technique consists of two classes, class X IPA 3 is used as an experimental class using ISTAD model and class X IPA 4 as the control class using guided inquiry model. Data collection techniques using test techniques for learning outcomes, and technical questionnaire to obtain the data of students' achievement motivation. Analysis of data using two-way ANOVA. The results showed that: (1 there is a difference between the learning outcomes of students with the ISTAD Physics models and with the physics model of guided inquiry. (2 There are differences in learning outcomes between students who have high achievement motivation and low achievement motivation. (3 There is no interaction between ISTAD and guided inquiry Physics models learning and achievement motivation of students.

  13. Progress report: Physical Sciences - TASCC Division, 1992 July 01 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J C [ed.

    1993-05-01

    This report summarizes operations and research activities in the Nuclear Physics Branch and the TASCC Accelerators and Development Branch at Chalk River Laboratories during the last half of 1992. 27 figs., 10 tabs.

  14. High Energy Physics Division semiannual report of research activities, January 1, 1990--June 30, 1990

    International Nuclear Information System (INIS)

    1990-12-01

    This report discusses research programs at ANL in High Energy Physics. The major categories of this research are: experimental programs; theoretical program; experimental facilities research; accelerator research and development; and SSC detector research and development

  15. Progress report: Physical Sciences - TASCC Division, 1992 July 01 -December 31

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1993-05-01

    This report summarizes operations and research activities in the Nuclear Physics Branch and the TASCC Accelerators and Development Branch at Chalk River Laboratories during the last half of 1992. 27 figs., 10 tabs

  16. Radiological and Environmental Research Division annual report, October 1979-September 1980: fundamental molecular physics and chemistry

    International Nuclear Information System (INIS)

    1981-09-01

    Research is reported on the physics and chemistry of atoms, ions, and molecules, especially their interactions with external agents such as photons and electrons. Individual items from the report were prepared separately for the data base

  17. Overview. Health Physics Laboratory. Section 10

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    1995-01-01

    The activities of the Health Physics Laboratory at the Niewodniczanski Institute of Nuclear Physics are presented and namely: research in the area of radiation physics and radiation protection of the employees of the Institute of Nuclear Physics, theoretical research concerns radiation detectors, radiation protection and studies of concepts of radiation protection and experimental research concerns solid state dosimetry. In this report, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given

  18. Overview. Health Physics Laboratory. Section 10

    Energy Technology Data Exchange (ETDEWEB)

    Waligorski, M.P.R. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of the Health Physics Laboratory at the Niewodniczanski Institute of Nuclear Physics are presented and namely: research in the area of radiation physics and radiation protection of the employees of the Institute of Nuclear Physics, theoretical research concerns radiation detectors, radiation protection and studies of concepts of radiation protection and experimental research concerns solid state dosimetry. In this report, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  19. Health Physics Enrollments and Degrees Survey, 2006 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2007-01-01

    This annual survey collects 2006 data on the number of health physics degrees awarded as well as the number of students enrolled in health physics academic programs. Thirty universities offer health physics degrees; all responded to the survey

  20. Psychological trauma, physical health and somatisation.

    Science.gov (United States)

    Ng, V; Norwood, A

    2000-09-01

    The aim of this review is to examine the relationship between trauma, physical health and somatisation. A search was made on the Procite Database at the Department of Psychiatry at the Uniformed Services University of the Health Sciences for research articles with the following key words: posttraumatic stress disorder, somatisation, trauma (the Procite Database holds more than 15,000 articles related to trauma and disaster). A review of the current research findings show a link between prior exposure to traumatic events (such as war, disaster, motor vehicles and industrial accidents, crime and sexual assault, domestic violence and child abuse) and subsequent physical heath and medical care utilisation. Possible mechanisms and conceptualisations which may explain the association between trauma and physical health, such as high-risk health behaviours, neurobiology, alexithymia and culture are discussed. Because traumatised persons show high medical utilisation, good screening, thorough assessment, empirically-based treatment and appropriate referral of such patients are essential.

  1. Expression of results in quantum chemistry physical chemistry division commission on physicochemical symbols, terminology and units

    CERN Document Server

    Whiffen, D H

    2013-01-01

    Expression of Results in Quantum Chemistry recommends the appropriate insertion of physical constants in the output information of a theoretical paper in order to make the numerical end results of theoretical work easily transformed to SI units by the reader. The acceptance of this recommendation would circumvent the need for a set of atomic units each with its own symbol and name. It is the traditional use of the phrase """"atomic units"""" in this area which has obscured the real problem. The four SI dimensions of length, mass, time, and current require four physical constants to be permitte

  2. Physics, computer science and mathematics division. Annual report, 1 January - 31 December 1982

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1983-08-01

    Experimental physics research activities are described under the following headings: research on e/sup +/e/sup -/ annihilation; research at Fermilab; search for effects of a right-handed gauge boson; the particle data center; high energy astrophysics and interdisciplinary experiments; detector and other research and development; publications and reports of other research; computation and communication; and engineering, evaluation, and support operations. Theoretical particle physics research and heavy ion fusion research are described. Also, activities of the Computer Science and Mathematics Department are summarized. Publications are listed. (WHK)

  3. Physics, computer science and mathematics division. Annual report, 1 January - 31 December 1982

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1983-08-01

    Experimental physics research activities are described under the following headings: research on e + e - annihilation; research at Fermilab; search for effects of a right-handed gauge boson; the particle data center; high energy astrophysics and interdisciplinary experiments; detector and other research and development; publications and reports of other research; computation and communication; and engineering, evaluation, and support operations. Theoretical particle physics research and heavy ion fusion research are described. Also, activities of the Computer Science and Mathematics Department are summarized. Publications are listed

  4. Nuclear Physics Division progress report for the period 1st April 1975 - 31 March 1976

    International Nuclear Information System (INIS)

    Gayther, D.B.; Ivanovich, M.; Sanders, L.G.

    1976-01-01

    The report is in sections entitled: nuclear data and technology for nuclear power; nuclear studies; other studies and applications (Synchrocyclotron Group, Mossbauer Effect Group, Ion-crystal Interactions Group, High Voltage Group, Hydrology and Coastal Sediment Group, Industrial Physics Group); accelerator operation, maintenance and development; reports and publications. (U.K.)

  5. Engineering Physics and Mathematics Division progress report for period ending June 30, 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The report is divided into eight sections: (1) nuclear data measurements and evaluation; (2) systems analysis and shielding; (3) applied physics and fusion reactor analysis; (4) mathematical modeling and intelligent control; (5) reliability and human factors research; (6) applied risk and decision analysis; (7) information analysis and data management; and (8) mathematical sciences. Each section then consists of abstracts of presented or published papers

  6. High Energy Physics Division semiannual report of research activities, January 1 - June 30, 1997

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-12-01

    This report is divided into: the experimental research program; theoretical physics program; accelerator research and development; and divisional computing activities. The experimental research program covers: experiments with data; experiments in planning or construction; and detector development. Work done for this period is summarized for each area

  7. Nuclear Physics Division Progress Report for the period 1st April 1976 to 31 December 1976

    International Nuclear Information System (INIS)

    Ivanovich, M.; Sanders, L.G.; Syme, D.B.

    1977-05-01

    The main contents of the report are as follows: nuclear data and technology for nuclear power; nuclear studies; other studies and applications (Synchrocyclotron Group, Moessbauer Effect Group, Ion-Crystal Interactions Group, High Voltage Group, Hydrology and Coastal Sediment Group, Industrial Physics Group); accelerator operation, maintenance and development; reports, publications and conference papers. (U.K.)

  8. Psychosocial health mediates the gratitude-physical health link.

    Science.gov (United States)

    O'Connell, Brenda H; Killeen-Byrt, Mary

    2018-04-29

    There is now a growing body of research demonstrating the physical health benefits of being grateful. However, research has only just began to explore the mechanisms accounting for this gratitude-health relationship. This study examines the relationship between dispositional gratitude and self-reported physical health symptoms, and explores whether this relationship is explained through reduced levels of perceived loneliness and stress. This study employed a cross-sectional design with a sample of 607 healthy adults. Serial mediation analysis revealed that the positive effect of gratitude on physical health was significantly mediated by lower reported levels of perceived loneliness and stress. These findings are important given evidence that gratitude can be cultivated, and may serve to buffer against stress and loneliness and improve somatic health symptoms in the general population.

  9. Intervention to promote physical health in staff within mental health facilities and the impact on patients' physical health

    DEFF Research Database (Denmark)

    Hjorth, Peter; Davidsen, Annette S; Kilian, Reinhold

    2016-01-01

    of an intervention programme for improving physical health in staff working in longtermpsychiatric treatment facilities. Furthermore, the paper measured the association betweenstaff’s changes in physical health and the patients’ changes in physical health. Methods: Thestudy was a cluster randomized controlled 12......-month intervention study, and the interventionwas active awareness on physical health. Results: In the intervention group the staff reducedtheir waist circumference by 2.3 cm (95% CI: 0.3–4.4) when controlling for gender, age andcigarette consumption. In the control group, the staff changed their waist...... blood pressure was seen. Indications that staff acted aspositive role models for the patients’ physical health were seen....

  10. The effectiveness of worksite physical activity programs on physical activity, physical fitness, and health

    NARCIS (Netherlands)

    Proper, K.I.; Koning, M.; Beek, A.J. van der; Hildebrandt, V.H.; Bosscher, R.J.; Mechelen, W. van

    2003-01-01

    Objective: To critically review the literature with respect to the effectiveness of worksite physical activity programs on physical activity, physical fitness, and health. Data Sources: A search for relevant English-written papers published between 1980 and 2000 was conducted using MEDLINE, EMBASE,

  11. Health physics research abstracts no. 11

    International Nuclear Information System (INIS)

    1984-07-01

    The present issue No. 11 of Health Physics Research Abstracts is the continuation of a series of Bulletins published by the Agency since 1967. They collect reports from Member States on Health Physics research in progress or just completed. The main aim in issuing such reports is to draw attention to work that is about to be published and to enable interested scientists to obtain further information through direct correspondence with the investigators. The attention of users of this publication is drawn to the fact that abstracts of published documents on Health Physics are published eventually in INIS Atomindex, which is one of the output products of the Agency's International Nuclear Information System. The present issue contains 235 reports received up to December 1983 from the following Member States. In parentheses the country's ISO code and number of reports are given

  12. Engineering Physics and Mathematics Division progress report for period ending June 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The report is divided into eight sections: (1) nuclear data measurements and evaluation; (2) systems analysis and shielding; (3) applied physics and fusion reactor analysis; (4) mathematical modeling and intelligent control; (5) reliability and human factors research; (6) applied risk and decision analysis; (7) information analysis and data management; and (8) mathematical sciences. Each section then consists of abstracts of presented or published papers. (WRF)

  13. Progress report of the neutron and nuclear physics division for the year 1984

    International Nuclear Information System (INIS)

    1985-10-01

    This progress report gives a presentation of the nuclear physics work carried out in the Service de Physique Neutronique et Nucleaire (C.E. Bruyeres-le-Chatel) during the year 1984. It comprises a part about technical work and equipments and a second part on measurement, interpretation and evaluation of nuclear data. The third part is devoted to more theoretical works: bound state and scattering nuclear models, field theory and astrophysics [fr

  14. Health Physics in the 21st Century

    CERN Document Server

    Bevelacqua, Joseph John

    2008-01-01

    Adopting a proactive approach and focusing on emerging radiation-generating technologies, Health Physics in the 21st Century meets the growing need for a presentation of the relevant radiological characteristics and hazards. As such, this monograph discusses those technologies that will affect the health physics and radiation protection profession over the decades to come. After an introductory overview, the second part of this book looks at fission and fusion energy, followed by a section devoted to accelerators, while the final main section deals with radiation on manned space missions.

  15. Health physics research abstracts No. 13

    International Nuclear Information System (INIS)

    1987-05-01

    No. 13 of Health Physics Research Abstracts is the continuation of a series of bulletins published by the IAEA since 1967 and which collect reports from Member States on health physics research in progress or just completed. The present issue contains 370 reports received up to March 1987 and covers the following topics: Personnel monitoring, dosimetry, assessment of dose to man, operational radiation protection techniques, radiation levels, effects of radiation, environmental studies, pathways and monitoring, analysis and evaluation of radiation hazards resulting from the operation of nuclear facilities, radiation accidents and emergency preparedness, epidemiology of radiation damage, optimization of radiation protection, research programmes and projects

  16. Health Physics Society: origins and development

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1978-08-01

    Events leading up to the birth of the Health Physics Society in June, 1955, are reviewed. Membership requirements, chapters, and sections are discussed. An international organization, International Radiation Protection Association (IRPA), founded in 1963, was the outgrowth of the Health Physics Society. Other events in the history of the organization, such as the initiation of publishing of a society journal in 1957, the employment of the first Executive Secretary in 1965, and the establishment of awards, are reviewed. The two appendixes include lists of the officers of the society and award recipients

  17. Health physics research abstracts No. 12

    International Nuclear Information System (INIS)

    1985-11-01

    The No. 12 of Health Physics Research Abstracts is the continuation of a series of Bulletins published by the IAEA since 1967 and which collect reports from Member States on Health Physics research in progress or just completed. The present issue contains 386 reports received up to December 1984 and covering the following topics: personnel monitoring, dosimetry, assessment of dose to man, operational radiation protection techniques, biological effects of radiations, environmental studies, pathways and monitoring, radiation hazards resulting from the operation of nuclear facilities, radiation accidents and emergency plans, epidemiology of radiation damage, optimization of radiation protection, research programs and projects

  18. About the Atlantic Ecology Division (AED) of EPA's National Health and Environmental Effects Research Laboratory

    Science.gov (United States)

    The Atlantic Ecology Division (AED), conducts innovative research and predictive modeling to assess and forecast the risks of anthropogenic stressors to near coastal waters and their watersheds, to develop tools to support resilient watersheds.

  19. Love, Legislation, and OSHA [Occupational Safety and Health Act]: Highlights from the Manpower Division

    Science.gov (United States)

    Vadnais, Arthur

    1974-01-01

    The conference of the Manpower Division of the American Vocational Association is summarized. Skill centers, relevant Federal legislation, student-instructor relationship, curriculum development, and organization business items were among the topics discussed. (AG)

  20. What's new in magnetism (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 May 2015)

    Science.gov (United States)

    2015-10-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "What's new in magnetism?", was held in the conference hall of the Lebedev Physical Institute, RAS, on 27 May 2015.The papers collected in this issue were written based on talks given at the session: (1) Kalashnikova A M, Pisarev R V (Ioffe Physical-Technical Institute, RAS, St. Petersburg), Kimel A V (Radboud University Nijmegen, Institute for Molecules and Materials, The Netherlands; Moscow State Technical University of Radio Engineering, Electronics and Automation, Moscow) "Ultrafast optomagnetism"; (2) Pyatakov A P, Sergeev A S, Nikolaeva E P, Kosykh T B, Nikolaev A V (Lomonosov Moscow State University, Moscow), Zvezdin K A (Prokhorov General Physics Institute, RAS, Moscow; Kintech Laboratory Ltd, Moscow), Zvezdin A K (Prokhorov General Physics Institute, RAS, Moscow; Lebedev Physical Institute, RAS, Moscow) "Micromagnetism and topological defects in magnetoelectric media"; (3) Mukhin A A, Kuzmenko A M, Ivanov V Yu (Prokhorov General Physics Institute, RAS, Moscow), Pimenov A V, Shuvaev A M, Dziom V E (Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria) "Dynamic magnetoelectric phenomena within electromagnons in rare-earth borate multiferroics"; (4) Nikitov S A (Kotel'nikov Institute of Radio Engineering and Electronics, RAS, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region; Chernyshevskii Saratov State University, Saratov), Kalyabin D V, Osokin S A (Kotel'nikov Institute of Radio Engineering and Electronics, RAS, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Lisenkov I V (Kotel'nikov Institute of Radio Engineering and Electronics, RAS, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region; Oakland University, Rochester, USA), Slavin A N (Oakland University, Rochester, USA), Barabanenkov

  1. Progress report of the Neutron and Nuclear Physics Division for the year 1981

    International Nuclear Information System (INIS)

    1982-05-01

    This progress report gives a presentation of the nuclear physics work carried out in the Service de Physique Neutronique et Nucleaire (C.E. Bruyeres-le-Chatel) during the year 1981. It comprises a part about technical work and equipments and a second part on experiments and their interpretations. The third part is devoted to nuclear data evaluations and processing along with theoretical work. At the end of the report a list is given of the documents issued during the year 1981 and a list of talks given in the laboratory [fr

  2. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  3. Automated testing of health physics instruments

    International Nuclear Information System (INIS)

    Swinth, K.L.; Endres, A.W.; Hadley, R.T.; Kenoyer, J.L.

    1983-12-01

    A microcomputer controlled CAMAC system has been adapted for automated testing of health physics survey instruments. Once the survey instrument is positioned, the system automatically performs tests for angular dependence or battery lifetime. Rotation of the instrument is performed by a computer controlled stepping motor while readout is performed by an auto ranging digital volt meter and data stored on computer disks

  4. Sport and physical activity for mental health

    CERN Document Server

    Carless, David

    2010-01-01

    With approximately 1 in 6 adults likely to experience a significant mental health problem at any one time (Office for National Statistics), research into effective interventions has never been more important. During the past decade there has been an increasing interest in the role that sport and physical activity can play in the treatment of mental health problems, and in mental health promotion. The benefits resulting from physiological changes during exercise are well documented, including improvement in mood and control of anxiety and depression. Research also suggests that socio-cultural a

  5. The changing emphases in health physics

    International Nuclear Information System (INIS)

    Denham, D.H.; Kathren, R.L.

    1987-11-01

    This paper explores the changing emphases in health physics as evidenced by the subject matter of published papers in four primary English language journals of interest to health physicists. Articles from each journal were first grouped by subject and date of publication and were then compiled according to the list of professional domains practiced by health physicists. Five domains of practice were examined, measurements including dosimetry and environmental monitoring; regulations and standards; facilities and equipment including shielding, ventilation, and instrumentation; operations and procedures; and education and training. 2 tabs

  6. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  7. Progress report of Physics Division. 1st April 1972 - 30th September 1972

    International Nuclear Information System (INIS)

    2004-01-01

    The building housing the zero power split table machine for reactor physics studies was officially opened by the Prime Minister, the Right Honourable William McMahon, on 19th June, 1972. Preparation of the Safety Document for the machine continued and the collection began of components for the first reactor assembly which will use fuel already available. An order was placed with CERCA (Compagnie pour Vitude et la R6alisation de Combustibles Atomiques) for delivery of 15 kg 235 U during the first quarter of 1973. Major effort continued to be devoted to the safety analysis of the Commission's other reactors. MOATA was prepared for 100 kW operation, with increased interest in its use for neutron beam work in physics and metallurgy fields. A convenient pneumatic transfer unit is now operational for analysis of uranium ores by delayed neutron analysis and levels down to 0.001 per cent have been detected with reasonable accuracy. A major review of nuclear reactions in the analysis of materials was prepared. Installation commenced on a system of switching and focussing magnets to provide protons and hence neutrons at a point 4 m above the floor and equidistant from the walls and roof of the building. This should reduce scattered neutron return problems with the neutron capture gamma ray studies and the fast neutron transport experiment in thorium metal. Analysis continued at a more intense level on the neutron capture cross section measurements from Oak Ridge National Laboratory. This analysis forms an important aspect of our work as long as our major equipment is unable to compete with the excellent Oak Ridge National Laboratory Electron Linear Accelerator. Collaboration takes the form of material assistance in the analysis of the abundance of information supplied by this facility to which we hope to provide a few confirmatory checkpoints. The advent of the zero power split table machine provided the impetus for a critical examination of the adequacy of our data library

  8. Radiological and Environmental Research Division Annual Report. Atmosphere Physics January - December 1979.

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, R. E.; Hicks, B. B.

    1978-01-01

    A comparison of this document with previous reports of this series will reveal some substantial changes in the research performed by this Section. There have been several projects in which scientific work has evolved, creating the bases for exciting new programs. For example, the Section's work on micrometeorology was initially in support of planetary boundary layer modeling studies. In recent years, the techniques that were developed have been extended to .include air pollutants, and we are now closely identified with work on the dry deposition of airborne particles and trace gases. In this area of research, three separate programs can be identified'. Under EPA sponsorship, we are developing methods for parameterizing the dry deposition of acid aerosol for, the MAP3S program. In a second EPA program, we are conducting field experiments to investigate the physical, chemical and biological factors that control dry deposition rates to natural surfaces. Under DOE sponsorship, we are conducting field experiments concentrating on the deposition of trace gases and particles to open water surfaces.

  9. Everyday discrimination and physical health: Exploring mental health processes.

    Science.gov (United States)

    Earnshaw, Valerie A; Rosenthal, Lisa; Carroll-Scott, Amy; Santilli, Alycia; Gilstad-Hayden, Kathryn; Ickovics, Jeannette R

    2016-10-01

    Goals of this study were to examine the mental health processes whereby everyday discrimination is associated with physical health outcomes. Data are drawn from a community health survey conducted with 1299 US adults in a low-resource urban area. Frequency of everyday discrimination was associated with overall self-rated health, use of the emergency department, and one or more chronic diseases via stress and depressive symptoms operating in serial mediation. Associations were consistent across members of different racial/ethnic groups and were observed even after controlling for indicators of stressors associated with structural discrimination, including perceived neighborhood unsafety, food insecurity, and financial stress. © The Author(s) 2015.

  10. Progress report physical sciences - TASCC division - 1991 July 01 -December 31

    International Nuclear Information System (INIS)

    1992-06-01

    The past six-month period saw completion of our program of cyclotron commissioning, with the extraction on 1992 October 14 of a 3.0 MeV/u beam of 238 U. In three years were developed the cyclotron and its subsystems to demonstrate the full range of operating parameters, and they converted what was, in effect, a prototype accelerator into a fully engineered, reliable facility. The number of available beams was increased from two, to forty-two. Currently, we are adding one or two new beams per month. In spite of the commissioning activity during the reporting period, the number of cyclotron-based experiments has increased . Reaction studies and atomic-physics experiments dominated. Perhaps the outcome of broadest interest was the production and detection of secondary (radioactive beams downstream from a gold target bombarded by 40 MeV/u 12 C from the cyclotron. . Including beam development, the cyclotron operated for 967 hours, or 32% of the total facility beam time, about the same percentage as in the previous six-month period. Between July and the end of the year, Tandem beams were used, either for experiments or development purposes, for a total of 3117 hours. This beam time was 86% of the scheduled operating time and 71% of the the total time available - a rather lower value than usual owing to an unexpected materials failure in the conductive-rim chain pulleys of the charging system. Viewed as a whole, the facility operated for 83% of its scheduled time, or 67% of the total time. Most of our eexperiments are collaborative efforts. This period, the former contributed 40% of the total laboratory research efforts and figure prominently in all nine scientific publications. The numbers and diversity of our user community continue to increase, particularly in non-nuclear areas: accelerator mass spectrometry, single event upset and materials science, etc

  11. 100th anniversary of the discovery of cosmic rays (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 24 October 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled ''100th anniversary of the discovery of cosmic rays'', was held on 24 October 2012 in the conference hall of the Lebedev Physical Institute, RAS. The agenda of the session announced on the RAS Physical Sciences Division website www.gpad.ac.ru included the following reports: (1) Panasyuk M I (Skobeltsyn Institute of Nuclear Physics of the Lomonosov State University, Moscow) T he contribution of Russian scientists to the centennial history of the development of the physics of cosmic rays ; (2) Ryazhskaya O G (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) O n experiments in underground physics ; (3) Krymskii G F, Berezhko E G (Shafer Institute of Cosmophysical Research and Aeronomy, Siberian Branch of the Russian Academy of Sciences, Yakutsk) T he origin of cosmic rays ; (4) Stozhkov Yu I (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) C osmic rays in the heliosphere ; (5) Troitsky S V (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) ''Cosmic particles of energies >10 19 eV: a short review of results''. Papers based on reports 2 and 5 are presented below. . On experiments in Underground Physics, O G Ryazhskaya Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 296–304 . Cosmic particles with energies above 10 19 eV: a brief summary of results, S V Troitsky Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 304–310 (conferences and symposia)

  12. Contemporary health physics problems and solutions

    CERN Document Server

    Bevelacqua, Joseph John

    2009-01-01

    This is the first text specifically designed to train potential health physicists to think and respond like professionals. Written by a former chairman of the American Board of Health Physics Comprehensive Panel of Examiners with more than 20 years of professional and academic experience in the field, it offers a balanced presentation of all the theoretical and practical issues essential for a full working knowledge of radiation exposure assessments. As the only book to cover the entire radiation protection field, it includes detailed coverage of the medical, university, reactor, fuel cycle, e

  13. Health physics aspects of 252Cf

    International Nuclear Information System (INIS)

    Bhagwat, A.M.

    1974-01-01

    After briefly describing the methods of production, radioactive, chemical and biological properties of californium-252, its health physics aspects are reviewed in detail. Its external and internal radiation hazards can be minimised through control of radiation and contamination and proper shield design. Use of various shielding materials is evaluated. The following aspects are also discussed : (1) radiation detectors for neutrons and gamma radiation (2) personnel monitoring techniques (3) bioassay and (4) storage and transportation. (M.G.B.)

  14. The relationship between physical and mental health: A mediation analysis.

    Science.gov (United States)

    Ohrnberger, Julius; Fichera, Eleonora; Sutton, Matt

    2017-12-01

    There is a strong link between mental health and physical health, but little is known about the pathways from one to the other. We analyse the direct and indirect effects of past mental health on present physical health and past physical health on present mental health using lifestyle choices and social capital in a mediation framework. We use data on 10,693 individuals aged 50 years and over from six waves (2002-2012) of the English Longitudinal Study of Ageing. Mental health is measured by the Centre for Epidemiological Studies Depression Scale (CES) and physical health by the Activities of Daily Living (ADL). We find significant direct and indirect effects for both forms of health, with indirect effects explaining 10% of the effect of past mental health on physical health and 8% of the effect of past physical health on mental health. Physical activity is the largest contributor to the indirect effects. There are stronger indirect effects for males in mental health (9.9%) and for older age groups in mental health (13.6%) and in physical health (12.6%). Health policies aiming at changing physical and mental health need to consider not only the direct cross-effects but also the indirect cross-effects between mental health and physical health. Copyright © 2017. Published by Elsevier Ltd.

  15. [The importance of physical activity and fitness for human health].

    Science.gov (United States)

    Brandes, M

    2012-01-01

    The decline of physical activity is considered to play an important role in the deterioration of health predictors, such as overweight, and the associated increase of cardiovascular and all-cause mortality. Therefore, most interventional strategies aim for increasing physical activity. Instead of physical activity, some studies use physical fitness as a key variable. Though physical fitness is influenced by genetic factors, physical fitness has to be developed by physical activity. As recent reports demonstrate the prospective associations between physical fitness and health and mortality, these associations are not reported for physical activity. Due to the fact that physical fitness-in contrast to physical activity-is evaluated with standardized laboratory measurements, it appears advisable to assess physical fitness for prospective health perspectives. Although physical fitness is determined by genetics, physical activity is the primary modifiable determinant for increasing physical fitness and should be aimed for to improve physical fitness in interventional strategies.

  16. An operational health physics quality assurance program

    International Nuclear Information System (INIS)

    Costigan, S.A.; McAtee, J.L. III; Somers, W.M.; Huchton, R.L.

    1996-01-01

    DOE Order 5700.6C, Quality Assurance, stipulates QA requirements for all DOE activities. This order is now codified as 10CFR830.120, Nuclear Safety Management, Quality Assurance Requirements, which is applicable to DOE nuclear facilities. A Quality Assurance Management Plan (QAMP) was developed by the Health Physics Operations Group (ESH-1) at Los Alamos National Laboratory (LANL). The goal of the ESH-1 QAMP is to ensure that operational radiation protection activities meet the criteria outlined in DOE Order 5700.6C, DOE-ER-STD-6001-92 and 10CFR830.120. The ten required elements are QA Program, Personal Training and Qualifications, Quality Improvement, Documents and Records, Work Processes, Design, Procurement, Inspection and Acceptance Testing, Management Assessment and Independent Assessment. The QAMP has been useful for the development of QAMPs at nuclear facilities and has helped ensure uniformity of institutional requirements where Health Physics services are deployed to facilities. To implement a subset of QAMP requirements, a Quality Assurance Self-Evaluation Program (QASE) was established. This program provides a novel self-audit mechanism for the formal identification and correction of non-conforming items related to Operational Health Physics. Additionally, the QASE is a useful management tool for Radiological Control Technician Supervisors and staff and provides a tracking mechanism for ongoing problem areas. Data have been Collected for two calendar years on a number of concerns that fall into four general categories: radiological posting and labeling, instrumentation, monitoring requirements, and radiological documents/records

  17. Progress report of Physics Division including Applied Mathematics and Computing Section. 1st October 1970 - 31st March 1971

    International Nuclear Information System (INIS)

    2004-01-01

    The initial MOATA safety assessment was based on data and calculations available before the advent of multigroup diffusion theory codes in two dimensions. That assessment is being revised and extended to gain approval for 100 kW operation. The more detailed representation obtained in the new calculations has resulted in a much better understanding of the physics of this reactor. The properties of the reactor are determined to a large extent by neutron leakage from the rather thin core tanks. In particular the effect of leakage on the coupling between the core tanks and on reactivity coefficients has been clarified and quantified. In neutron data studies, the theoretical fission product library was revised, checked against any experimental values and distributed to interested overseas centres. Some further nubar work was done vith much better neutron energy resolution, and confirmed our earlier measurements. A promising formulation of R matrix theory of nuclear interaction is expected to lead to simpler multilevel resonance parameter description. With large amounts of digital data being collected, dissplayed and used by theoreticians and experimentalists, more attention -was given to visual interactive computer displays. This interest is generating constructive proposals for use of the dataway now being installed between the Division and the IBM 360/50 computer. The study of gamma rays following the capture of keV neutrons continues to reveal new and interesting features of the physical processes involved. A detailed international compilation of the gamma rays emitted and their intensities is in progress. The work on nickel-68, amongst others, has enabled a partial capture cross section to be generated from the gamma ray parameters obtained by experiment. Much work still remains to be done, possibly at other establishments with more extensive facilities. The electrical and mechanical components of our new zero power split table machine for reactor physics assemblies

  18. Coupled multiple-response versus free-response conceptual assessment: An example from upper-division physics

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2014-10-01

    Full Text Available Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE, provide rich, fine-grained information about students’ reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase the scalability and usability of the CUE, we set out to create a new version of the assessment that preserves the insights afforded by a free-response format while exploiting the logistical advantages of a multiple-choice assessment. We used our extensive database of responses to the free-response CUE to construct distractors for a new version where students can select multiple responses and receive partial credit based on the accuracy and consistency of their selections. Here, we describe the development of this modified CUE format, which we call coupled multiple response (CMR, and present data from direct comparisons of both versions. We find that the two formats have the same average score and perform similarly on multiple measures of validity and reliability, suggesting that the new version is a potentially viable alternative to the original CUE for the purpose of large-scale research-based assessment. We also compare the details of student responses on each of the two versions. While the CMR version does not capture the full scope of potential student responses, nearly three-quarters of our students’ responses to the free-response version contained one or more elements that matched options provided on the CMR version.

  19. Problematic Internet use and physical health.

    Science.gov (United States)

    Kelley, Kevin J; Gruber, Elon M

    2013-06-01

    Background and aims A considerable body of literature has emerged over the past two decades assessing the relationship between problematic or addictive use of the Internet and various indices of psychological well-being. Conversely, comparatively little research has assessed the relationship between problematic or addictive use of the Internet and one's physical health. Method The current study assesses this relationship using a sample of college students (N = 133) who responded online to two questionnaires: the Problematic Internet Use Questionnaire (PIUQ; Demetrovics, Szeredi&Rózsa, 2008) and the SF-36v2 Health Survey (Ware et al., 2008). Results The findings indicate that problematic Internet use is associated with poorer physical health. These results are consistent with other data that assessed the relationship between these two variables. Furthermore, this relationship supersedes the influence of the number of hours spent online per day. Conclusions The findings are discussed in terms of the limitations of the study design and conclusions that can be drawn from this preliminary empirical effort.

  20. Student research activities in the Technology Assessments Section of the Health and Safety Research Division, Summer 1980

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Roberts, D.A.

    1981-08-01

    Reports summarizing activities of students assigned to the Technology Assessments Section of the Health and Safety Research Division for the summer 1980 are presented. Unless indicated otherwise, each report was written by the student whose work is being described. For each student, the student's supervisor, the name of the program under which the student was brought to ORNL, the academic level of the student, and the name of the ORNL project to which the student was assigned are tabulated. The reports are presented in alphabetical order of the students' last names.

  1. Student research activities in the Technology Assessments Section of the Health and Safety Research Division, Summer 1980

    International Nuclear Information System (INIS)

    Chester, R.O.; Roberts, D.A.

    1981-08-01

    Reports summarizing activities of students assigned to the Technology Assessments Section of the Health and Safety Research Division for the summer 1980 are presented. Unless indicated otherwise, each report was written by the student whose work is being described. For each student, the student's supervisor, the name of the program under which the student was brought to ORNL, the academic level of the student, and the name of the ORNL project to which the student was assigned are tabulated. The reports are presented in alphabetical order of the students' last names

  2. Physical fitness and health education program at NASA Headquarters

    Science.gov (United States)

    Angotti, Cathy

    1993-01-01

    The topics discussed include the following: policy procedures to enter the NASA Headquarters Physical Fitness and Health Program; eligibility; TDY eligibility; health promotions offered; and general facility management.

  3. African Journal for Physical Activity and Health Sciences - Vol 20 ...

    African Journals Online (AJOL)

    African Journal for Physical, Health Education, Recreation and Dance. ... Exercise Improves Blood Glucose Level in Pregnant Women with Gestational Diabetes Mellitus ... Physical activity and health in children: How much do we know?

  4. Poverty, urbanisation, physical inactivity and health in African societies

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences ... health, social and psychological benefits of engaging in sufficient, regular physical activities. ... The recreational alternatives brought about by technological advances especially in the ...

  5. African Journal for Physical Activity and Health Sciences - Vol 19 ...

    African Journals Online (AJOL)

    African Journal for Physical, Health Education, Recreation and Dance. ... Adiposity and physical activity among children in countries at different stages of the physical ... The world in turmoil: Promotion of peace and international understanding ...

  6. Importance of health physics records in litigation

    International Nuclear Information System (INIS)

    Forbes, J.L.

    1982-01-01

    The nuclear insurance pools, through American Nuclear Insurers (ANI) and the Mutual Atomic Energy Liability Underwriters (MAELU), have been providing the third-party liability insurance required of the nuclear industry by the Price-Anderson Act since 1957. Records of claims of radiation injury have been kept for twenty-five years, and a recent upsurge of the claim rate has been noted. An explanation for this new trend is postulated and some examples are discussed. The use of health physics records as evidence in litigation is described, and specific examples of the types of records required to defend against past and future claims are given

  7. Assessment of health physics manpower needs

    International Nuclear Information System (INIS)

    Moeller, D.W.; Eliassen, R.

    1976-01-01

    A detailed analysis of data on current employment and projected need indicates that there is a serious impending shortage of qualified professional health physicists within the U.S. Because of the withdrawal and curtailment of Federal financial support, health physics programs at the Master of Science degree levels at many of the nation's colleges and universities are on the decline. Estimates are that during the next 5 to 10 yr, the number of graduates from these programs will be sufficient to meet only about half the projected requirements. Through the Energy Reorganization Act of 1974, a major responsibility for addressing this problem at the Federal level has been assigned to the U.S. Energy Research and Development Administration. (author)

  8. Human radiation experimentation: a health physics perspective

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1996-01-01

    This paper observes ethical human experimentation can be considered in terms of two basic principles or tests: informed, willing and knowledgeable subjects; and expectation of benefits. A number of human experiments are evaluated in terms of these principles, including a sixteenth century toxicology experiment, the deliberate exposure by an x-ray pioneer, and the plutonium injection cases of the 1940's. The following rational ethic is proposed for the practice of health physics with respect to human radiation experimentation: At all levels, the health physicist has a professional as well as personal obligation to ensure that proper human requirements, including proper informed consent and willing subjects, arc carried out with respect to human radiation experimentation, and must be convinced that the real or potential benefits to be derived from the experiment clearly exceed the potential detriment and risk. (author)

  9. Physical Restraint Initiation in Nursing Homes and Subsequent Resident Health

    Science.gov (United States)

    Engberg, John; Castle, Nicholas G.; McCaffrey, Daniel

    2008-01-01

    Purpose: It is widely believed that physical restraint use causes mental and physical health decline in nursing home residents. Yet few studies exist showing an association between restraint initiation and health decline. In this research, we examined whether physical restraint initiation is associated with subsequent lower physical or mental…

  10. Divisible Atoms or None at All? Facing the European Contributions to Developments of Chemistry and Physics in China.

    Science.gov (United States)

    Južnič, Stanislav

    2016-12-01

    atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.

  11. Technology Development, Evaluation, and Application (TDEA) FY 1995 progress report - Environmental, Safety, and Health (ESH) division

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, L.L.

    1996-09-01

    This report covers six months of effort, including startup time. Five projects were supported by the division: Pilot Program for the Risk-Based Surveillance of Lung Cancer in Los Alamos National Laboratory Workers, Optimization of Placement of Workplace Continuous Air Monitoring Instrumentation, A Polymeric Barrier Monitor to Protect Workers, Evaluation of a Real-Time Beryllium Detection Instrument and the Implications of Its Use, and High-Energy Dosimetry. A project summary for each is provided. An appendix to the report includes the 1995 Request for Proposals, Committee Members, Priority Technical Areas of Interest for FY95, Relative Prioritization and Weighting Factors, Format for Proposals, and Charter.

  12. Technology Development, Evaluation, and Application (TDEA) FY 1995 progress report - Environmental, Safety, and Health (ESH) division

    International Nuclear Information System (INIS)

    Andrews, L.L.

    1996-09-01

    This report covers six months of effort, including startup time. Five projects were supported by the division: Pilot Program for the Risk-Based Surveillance of Lung Cancer in Los Alamos National Laboratory Workers, Optimization of Placement of Workplace Continuous Air Monitoring Instrumentation, A Polymeric Barrier Monitor to Protect Workers, Evaluation of a Real-Time Beryllium Detection Instrument and the Implications of Its Use, and High-Energy Dosimetry. A project summary for each is provided. An appendix to the report includes the 1995 Request for Proposals, Committee Members, Priority Technical Areas of Interest for FY95, Relative Prioritization and Weighting Factors, Format for Proposals, and Charter

  13. Near-Earth space hazards and their detection (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 March 2013)

    Science.gov (United States)

    2013-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), titled "Near-Earth space hazards and their detection", was held on 27 March 2013 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Emel'yanenko V V, Shustov B M (Institute of Astronomy, RAS, Moscow) "The Chelyabinsk event and the asteroid-comet hazard"; (2) Chugai N N (Institute of Astronomy, RAS, Moscow) "A physical model of the Chelyabinsk event"; (3) Lipunov V M (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "MASTER global network of optical monitoring"; (4) Beskin G M (Special Astrophysical Observatory, RAS, Arkhyz, Karachai-Cirkassian Republic) "Wide-field optical monitoring systems with subsecond time resolution for the detection and study of cosmic threats". The expanded papers written on the base of oral reports 1 and 4 are given below. • The Chelyabinsk event and the asteroid-comet hazard, V V Emel'yanenko, B M Shustov Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 833-836 • Wide-field subsecond temporal resolution optical monitoring systems for the detection and study of cosmic hazards, G M Beskin, S V Karpov, V L Plokhotnichenko, S F Bondar, A V Perkov, E A Ivanov, E V Katkova, V V Sasyuk, A Shearer Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 836-842

  14. Marital Satisfaction and Depression as Predictors of Physical Health Status.

    Science.gov (United States)

    Weiss, Robert L.; Aved, Barbara M.

    1978-01-01

    Results indicate correlation between physical health status and depression was greater for wives than husbands. For wives, marital satisfaction and depression were related through uncontrolled variance in physical health status. For husbands, significant relationship between marital satisfaction and depression remained when physical health was…

  15. Health Physics Enrollments and Degrees Survey, 2005 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2006-01-01

    This annual report details the number of health physics bachelor's, master's, and postdoctoral degrees awarded at a sampling of academic programs from 1998-2005. It also looks at health physics degrees by curriculum and the number of students enrolled in health physics degree programs at 30 U.S. universities in 2005

  16. Health Physics Enrollments and Degrees Survey, 2004 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2005-01-01

    This annual report details the number of health physics bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2004. It also looks at health physics degrees by curriculum and the number of students enrolled in health physics degree programs at 28 U.S. universities in 2004

  17. Complex evaluation of student‘s physical activity by physical health, physical fitness and body composition parameters

    OpenAIRE

    Šiupšinskas, Laimonas

    2007-01-01

    Physical activity level of students is decreasing. Students are specific population group with similar patterns of habitual physical activity influenced by study process. That formed requirement to search for a new ways to assess physical activity of the students indirectly. Offered method assesses level of physical health, measures physical fitness and evaluates body composition. The aim of the study is to evaluate indirectly measured health-enhanced physical activity of the students by phys...

  18. Operational Health Physics-Science or Philosophy?

    International Nuclear Information System (INIS)

    Carter, M. W.

    2004-01-01

    Operational health physics is concerned with protecting workers and the public from harm due to ionizing radiation. This requires the application of philosophy (ethics) as well as science. Operational health physics philosophy has been dominated by the ICRP. A particular aspect of ICRP's philosophy that is often misunderstood is (As low as reasonably achievable, economic and social factors being taken into account). (ALARA) Although the ALARA philosophy has been interpreted as a cost-benefit approach it is in fact a risk-benefit approach including social considerations as the ICRP has emphasised from time to time. A recent report has accused the ICRP of using a discarded philosophical approach, namely Utilitarianism, as a result of which its recommendations are unethical. The report suggests that a (rights) based philosophy such as Rawls' Theory of Justice would be a more appropriate basis. This paper discusses this accusation, considers some relevant philosophies and concludes that the accusation is not valid and that ICRP's recommendations are ethical but are frequently misinterpreted. (Author)

  19. Operational Health Physics-Science or Philosophy?

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M. W.

    2004-07-01

    Operational health physics is concerned with protecting workers and the public from harm due to ionizing radiation. This requires the application of philosophy (ethics) as well as science. Operational health physics philosophy has been dominated by the ICRP. A particular aspect of ICRP's philosophy that is often misunderstood is (As low as reasonably achievable, economic and social factors being taken into account). (ALARA) Although the ALARA philosophy has been interpreted as a cost-benefit approach it is in fact a risk-benefit approach including social considerations as the ICRP has emphasised from time to time. A recent report has accused the ICRP of using a discarded philosophical approach, namely Utilitarianism, as a result of which its recommendations are unethical. The report suggests that a (rights) based philosophy such as Rawls' Theory of Justice would be a more appropriate basis. This paper discusses this accusation, considers some relevant philosophies and concludes that the accusation is not valid and that ICRP's recommendations are ethical but are frequently misinterpreted. (Author)

  20. Health Physics Positions Data Base: Revision 1

    International Nuclear Information System (INIS)

    Kerr, G.D.; Borges, T.; Stafford, R.S.; Lu, P.Y.; Carter, D.

    1994-02-01

    The Health Physics Positions (HPPOS) Data Base of the Nuclear Regulatory Commission (NRC) is a collection of NRC staff positions on a wide range of topics involving radiation protection (health physics). It consists of 328 documents in the form of letters, memoranda, and excerpts from technical reports. The HPPOS Data Base was developed by the NRC Headquarters and Regional Offices to help ensure uniformity in inspections, enforcement, and licensing actions. Staff members of the Oak Ridge National Laboratory (ORNL) have assisted the NRC staff in summarizing the documents during the preparation of this NUREG report. These summaries are also being made available as a open-quotes stand aloneclose quotes software package for IBM and IBM-compatible personal computers. The software package for this report is called HPPOS Version 2.0. A variety of indexing schemes were used to increase the usefulness of the NUREG report and its associated software. The software package and the summaries in the report are written in the context of the open-quotes newclose quotes 10 CFR Part 20 (section section 20.1001--20.2401). The purpose of this NUREG report is to allow interested individuals to familiarize themselves with the contents of the HPPOS Data Base and with the basis of many NRC decisions and regulations. The HPPOS summaries and original documents are intended to serve as a source of information for radiation protection programs at nuclear research and power reactors, nuclear medicine, and other industries that either process or use nuclear materials