Sample records for head porous debris

  1. Permeability and compression of fibrous porous media generated from dilute suspensions of fiberglass debris during a loss of coolant accident

    Lee, Saya, E-mail:; Abdulsattar, Suhaeb S.; Vaghetto, Rodolfo; Hassan, Yassin A.


    Highlights: • Experimental investigation on fibrous debris buildup was conducted. • Head loss through fibrous media was recorded at different approach velocities. • A head loss model through fibrous media was proposed for high porosity (>0.99). • A compression model of fibrous media was developed. - Abstract: Permeability of fibrous porous media has been studied for decades in various engineering applications, including liquid purifications, air filters, and textiles. In nuclear engineering, fiberglass has been found to be a hazard during a Loss-of-Coolant Accident. The high energy steam jet from a break impinges on surrounding fiberglass insulation materials, producing a large amount of fibrous debris. The fibrous debris is then transported through the reactor containment and reaches the sump strainers. Accumulation of such debris on the surface of the strainers produces a fibrous bed, which is a fibrous porous medium that can undermine reactor core cooling. The present study investigated the buildup of fibrous porous media on two types of perforated plate and the pressure drop through the fibrous porous media without chemical effect. The development of the fibrous bed was visually recorded in order to correlate the pressure drop, the approach velocity, and the thickness of the fibrous porous media. The experimental results were compared to semi-theoretical models and theoretical models proposed by other researchers. Additionally, a compression model was developed to predict the thickness and the local porosity of a fibrous bed as a function of pressure.

  2. Numerical models for the analysis of thermal behavior and coolability of a particulate debris bed in reactor lower head

    Ahn, Kwang Il; Kim, Sang Baik; Kim, Byung Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)


    This report provides three distinctive, but closely related numerical models developed for the analysis of thermal behavior and coolability of a particulate debris bed that is may be formed inside the reactor lower head during severe accident late phases. The first numerical module presented in the report, MELTPRO-DRY, is used to analyze numerically heat-up and melting process of the dry particle bed, downward- and sideward-relocation of the liquid melt under gravity force and capillary force acting among porous particles, and solidification of the liquid melt relocated into colder region. The second module, MELTPROG-WET, is used to simulate numerically the cooling process of the particulate debris bed under the existence of water, which is subjected to two types of numerical models. The first type of WET module utilizes distinctive models that parametrically simulate the water cooling process, that is, quenching region, dryout region, and transition region. The choice of each parametric model depends on temperature gradient between the cooling water and the debris particles. The second type of WET module utilizes two-phase flow model that mechanically simulates the cooling process of the debris bed. For a consistent simulation from the water cooling to the dryout debris bed, on the other hand, the aforementioned two modules, MELTPROG-DRY and MELTPROG-WET, were integrated into a single computer program DBCOOL. Each of computational models was verified through limited applications to a heat-generating particulate bed contained in the rectangular cavity. 22 refs., 5 figs., 2 tabs. (Author)

  3. Bone ingrowth and wear debris in well-fixed cementless porous-coated tibial components removed from patients.

    Sumner, D R; Kienapfel, H; Jacobs, J J; Urban, R M; Turner, T M; Galante, J O


    Bone ingrowth and the distribution of wear debris within the porous coating of 13 primary cementless porous-coated tibial components removed for reasons unrelated to fixation or infection were quantitatively described. The average length of implantation was 15.3 months (range, 3-30 months). The implants were all of the same design, made for Ti6A14V with a commercially pure titanium fiber-metal porous coating, which covered the undersurface of the tray and the four fixation pegs. In all but one component, supplemental screw fixation was used. The average extent of bone ingrowth within the tray was 27.1 +/- 16.1%, and the average volume fraction was 9.5 +/- 7.5%. There was significantly more bone ingrowth within the fixation pegs than within the tray and also more bone ingrowth in the anterior half of the tray than posteriorly. There was no correlation between the amount of bone ingrowth and the length of implantation, age, or sex of the patient; however, the depth and orientation of the resection plane were found to correlate with the topographic distribution of bone ingrowth. Particulate debris appeared to gain access to the interface via soft tissue pathways both at the periphery and through the holes for adjuvant screw fixation.

  4. Transfer of metallic debris from the metal surface of an acetabular cup to artificial femoral heads by scraping: comparison between alumina and cobalt-chrome heads.

    Chang, Chong Bum; Yoo, Jeong Joon; Song, Won Seok; Kim, Deug Joong; Koo, Kyung-Hoi; Kim, Hee Joong


    We aimed to investigate the transfer of metal to both ceramic (alumina) and metal (cobalt-chrome) heads that were scraped by a titanium alloy surface under different load conditions. The ceramic and metal heads for total hip arthroplasties were scraped by an acetabular metal shell under various loads using a creep tester. Microstructural changes in the scraped area were visualized with a scanning electron microscope, and chemical element changes were assessed using an energy dispersive X-ray spectrometry. Changes in the roughness of the scraped surface were evaluated by a three-dimensional surface profiling system. Metal transfer to the ceramic and metal heads began to be detectable at a 10 kg load, which could be exerted by one-handed force. The surface roughness values significantly increased with increasing test loads in both heads. When the contact force increased, scratching of the head surface occurred in addition to the transfer of metal. The results documented that metallic debris was transferred from the titanium alloy acetabular shell to both ceramic and metal heads by minor scraping. This study suggests that the greatest possible effort should be made to protect femoral heads, regardless of material, from contact with metallic surfaces during total hip arthroplasty.

  5. Photogrammetric analysis of slope failures feeding the head of the Illgraben debris flow channel

    Bennett, G. L.; Molnar, P.; Eisenbeiss, H.; McArdell, B. W.


    Our understanding of slope failure is restricted by a lack of inventories of sufficient size and directly measured volumes. We used digital photogrammetry to produce a multi-temporal record of erosion of a rock slope in the Illgraben. From this we extracted an inventory of ~2500 slope failures for 3 epochs of 6/7 years between 1986 and 2005 ranging over 6 orders of magnitude in volume. Through analysis of their magnitude-frequency, volume-area and depth-slope gradient relations we aimed to understand the characteristics of slope failure at the head of this active alpine debris-flow catchment. The slope failure volumes follow a characteristic magnitude-frequency distribution with a roll-over at 50m3 and a power-law tail between ~200m3 and 1.6x106m3 with an exponent of 1.65. We compared different methods to estimate the power law scaling exponent and found the maximum likelihood estimator to be the most accurate. Conversely, least squares regression on the probability density function consistently underestimated the exponent. Slope failure volume scales with failure area as a power law with an exponent of 1.1. This exponent is low for the bedrock nature of the slope in comparison with worldwide studies of bedrock and soil landslides and likely results from the highly fractured and incohesive nature of the quartzitic bedrock of the study slope. Comparing the results for different epochs we find that the magnitude-frequency and volume-area relationships are reasonably time-invariant demonstrating their general nature for the setting. We interpret the magnitude-frequency distribution of slope failure volumes as the result of two separate slope failure processes. Type (1) failures are frequent, small slides and slumps within the weathered layer of highly fractured rock and loose sediment. These make up the roll-over of the distribution. Type (2) failures are less frequent rockslides and rockfalls within the internal bedded and fractured slope along pre

  6. Analysis of arson fire debris by low temperature dynamic headspace adsorption porous layer open tubular columns.

    Nichols, Jessica E; Harries, Megan E; Lovestead, Tara M; Bruno, Thomas J


    In this paper we present results of the application of PLOT-cryoadsorption (PLOT-cryo) to the analysis of ignitable liquids in fire debris. We tested ignitable liquids, broadly divided into fuels and solvents (although the majority of the results presented here were obtained with gasoline and diesel fuel) on three substrates: Douglas fir, oak plywood and Nylon carpet. We determined that PLOT-cryo allows the analyst to distinguish all of the ignitable liquids tested by use of a very rapid sampling protocol, and performs better (more recovered components, higher efficiency, lower elution solvent volumes) than a conventional purge and trap method. We also tested the effect of latency (the time period between applying the ignitable liquid and ignition), and we tested a variety of sampling times and a variety of PLOT capillary lengths. Reliable results can be obtained with sampling time periods as short as 3min, and on PLOT capillaries as short as 20cm. The variability of separate samples was also assessed, a study made possible by the high throughput nature of the PLOT-cryo method. We also determined that the method performs better than the conventional carbon strip method that is commonly used in fire debris analysis.

  7. Application of the porous medium heat transfer model of ICARE/CATHARE code against debris bed and 'bundle' experiments

    Repetto, G. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire, DPAM, 13 - Saint-Paul-lez-Durance (France); Ederli, St. [Ente per le Nuove Technologie, l' Energia e l' Ambiente (ENEA) (Italy)


    ICARE/CATHARE code is developed by the 'Institut de Radioprotection et de Surete Nucleaire' to simulate Nuclear Reactor behaviour during the course of a Loss of Cooling accident up to the core melting. The assessment of the heat transfer model in porous medium has been performed against experiments performed in ACRR (SNL-USA) and in Phebus reactors (at Cadarache - France). Calculation versus experiment results indicate a good agreement for the thermal behaviour. The heat transfers inside solid debris bed can be well predicted using the Imura-Yagi correlation to calculate the debris bed equivalent thermal conductivity in a wide range of particles size. In the case of 'Rod like geometry' calculations, the fuel rod assembly was modelled assuming several rings of fuel rods, with heat transfer including radiative phenomena using view factors between rods. An alternative modelling has been used considering the fuel rods as a porous medium with with pure UO{sub 2} spherical particles of 1 cm diameter and a total porosity representative of the fuel bundle inside a cylindrical shroud. With this approach (heat exchanges accounted for with the Imura-Yagi correlation), the radial gradient calculated in a small bundle was significantly increased, from a few degrees (with the previous modelling) to about 150/200 K at 2273 K. This modelling has been recently improved, to account for the heat transfer inside a fuel rod bundle, by a specific model based on an electrical analogy, considering the porous medium as a cluster of true cylinders. (authors)

  8. Experimental study on debris flow head and the energy theory%泥石流龙头运动的实验研究及能量理论



    The initiation and development of debris flow are experimentally studied with various kinds of gravel and flows in a debris flow test flume. The study indicates that the critical slope for initiation of debris flow is closely related to the diameter of the bed material and the height of debris flow head is proportional to the diameter of the gravel composing the head. The mechanism of collision and momentum exchange explains the high instantaneous but low average velocities of small gravel and relatively stable velocity of large gravel. The energy theory of debris flow is established and a theoretical formula of debris flow velocity is derived. The formula is in good agreement with the experimental and field data.%本文采用多种卵石进行水流冲刷沟床沉积物发展形成两相泥石流的实验,研究了泥石流的形成和发展过程,发现了形成泥石流的临界坡降与沟床卵石粒径的关系,揭示泥石流头部隆起高度与龙头卵石粒径成正比,提出了小卵石瞬时速度高而大卵石平均速度高的碰撞分选机理.本文建立了龙头运动的能量理论和泥石流平均速度的理论公式,并成功地计算了泥石流运动的平均速度.

  9. Porous channels in the cuticle of the head-arrester system in dragon/damselflies (Insecta:Odonata).

    Gorb, S N

    The ultrastructure of the porous channels (PC) of the postcervical sclerite (SPC), which provides additional head fixation to the neck in adult odonates, was studied using TEM and high resolution SEM microscopy. Single chitin-protein microfibrils, about 0.14 micron thick, are arranged into channels with cylinder-like shapes. The axial rod of the chitin fiber (0.04 micron thick) is located in the center of the cylinder. The orientation of the axial rods was three-dimensionally demonstrated after dissolving the protein cover with NaOH. The PCs are arranged vertically to the surface and pass from the epidermal cells through all the cuticular layers to the surface of the cuticle. In the exo- and endocuticle, the PCs are usually oval in cross-section and about 0.3 micron thick. In the endocuticle, the cross-sectional area of the PCs varies widely, from 0.01-0.15 micron2. The shape of the PC is determined by the macromolecular organization of the chitin-protein microfibrils: the long axis of the channel is orientated parallel to the axis of the preferred orientation of the cuticular microfibrils. The microfibrils tend to follow the line of the channel very closely. In fractures orientated perpendicular to the surface, the PC resembles a ribbon-like construction, which was clearly demonstrated by casts. The strongly parallel orientation of PCs in the deep layers of the cuticle changes within the microtrichia (MT), and they begin to be curved. Numerous PCs pass through the microtrichium, and most of them end on its side wall. PCs usually contain channel filaments about 0.09 micron thick. Usually, a single channel contained one filament, but channels located in the deep layers of the endocuticle have from one to five single filaments. The filaments were observed in the intact cuticle and in the cuticle enzymatically treated with chitinase, while in the cuticle treated with NaOH filaments were absent. The porous channel system of the odonate arrester is interpreted as a

  10. Adverse reaction to metal debris after ReCap-M2A-Magnum large-diameter-head metal-on-metal total hip arthroplasty


    Background and purpose The clinical findings of adverse reaction to metal debris (ARMD) following large-diameter-head metal-on-metal total hip arthroplasty (LDH MoM THA) may include periarticular fluid collections, soft tissue masses, and gluteal muscle necrosis. The ReCap-M2a-Magnum LDH MoM THA was the most commonly used hip device at our institution from 2005 to 2012. We assessed the prevalence of and risk factors for ARMD with this device. Methods 74 patients (80 hips) had a ReCap-M2a-Magnum LDH MoM THA during the period August 2005 to December 2006. These patients were studied with hip MRI, serum chromium and cobalt ion measurements, the Oxford hip score questionnaire, and by clinical examination. The prevalence of ARMD was recorded and risk factors for ARMD were assessed using logistic regression models. The mean follow-up time was 6.0 (5.5–6.7) years. Results A revision operation due to ARMD was needed by 3 of 74 patients (3 of 80 hips). 8 additional patients (8 hips) had definite ARMD, but revision was not performed. 29 patients (32 hips) were considered to have a probable or possible ARMD. Altogether, 43 of 80 hips had a definite, probable, or possible ARMD and 34 patients (37 hips) were considered not to have ARMD. In 46 of 78 hips, MRI revealed a soft tissue mass or a collection of fluid (of any size). The symptoms clicking in the hip, local hip swelling, and a feeling of subluxation were associated with ARMD. Interpretation ARMD is common after ReCap-M2a-Magnum total hip arthroplasty, and we discourage the use of this device. Asymptomatic patients with a small fluid collection on MRI may not need instant revision surgery but must be followed up closely. PMID:24171688

  11. Treatment of steroid-induced osteonecrosis of the femoral head using porous Se@SiO2 nanocomposites to suppress reactive oxygen species

    Deng, Guoying; Niu, Kerun; Zhou, Feng; Li, Buxiao; Kang, Yingjie; Liu, Xijian; Hu, Junqing; Li, Bo; Wang, Qiugen; Yi, Chengqing; Wang, Qian


    Reducing oxidative stress (ROS) have been demonstrated effective for steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH). Selenium (Se) plays an important role in suppressing oxidative stress and has huge potential in ONFH treatments. However the Se has a narrow margin between beneficial and toxic effects which make it hard for therapy use in vivo. In order to make the deficiency up, a control release of Se (Se@SiO2) were realized by nanotechnology modification. Porous Se@SiO2 nanocomposites have favorable biocompatibility and can reduced the ROS damage effectively. In vitro, the cck-8 analysis, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) stain and flow cytometry analysis showed rare negative influence by porous Se@SiO2 nanocomposites but significantly protective effect against H2O2 by reducing ROS level (detected by DCFH-DA). In vivo, the biosafety of porous Se@SiO2 nanocomposites were confirmed by the serum biochemistry, the ROS level in serum were significantly reduced and the curative effect were confirmed by Micro CT scan, serum Elisa assay (inflammatory factors), Western blotting (quantitative measurement of ONFH) and HE staining. It is expected that the porous Se@SiO2 nanocomposites may prevent steroid-induced ONFH by reducing oxidative stress. PMID:28256626

  12. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    Garcia, E.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Porter, C.L. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Wallace, M.T. [Argonne National Lab., Idaho Falls, ID (United States)


    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications.

  13. Map of debris flows caused by rainfall during 1996 in parts of the Reedsport and Deer Head Point quadrangles, Douglas County, southern Coast Range, Oregon

    Coe, Jeffrey A.; Michael, John A.; Burgos, Marianela Mercado


    This 1:12,000-scale map shows an inventory of debris flows caused by rainfall during 1996 in a 94.4 km2 area in the southern Coast Range of Oregon. This map and associated digital data are part of a larger U.S. Geological Survey study of debris flows in the southern Coast Range. Available evidence indicates that the flows were triggered by a rain storm that occurred between November 17 and 19. The closest rain gage in the Coast Range (Goodwin Peak) recorded 245 mm during the storm. Maximum rainfall intensity during the storm was 13.2 mm/hr on November 18. Debris flows were photogrammetrically mapped from 1:12,000-scale aerial photographs flown in May, 1997. The inventory is presented on imagery derived from LiDAR data acquired in 2008. We classified mapped debris flows into four categories based on the type of debris-flow activity: (1) discrete slide source areas, (2) predominantly erosion, (3) predominantly transport or mixed erosion and deposition, and (4) predominantly deposition. Locations of woody-debris jams are also shown on the map. The area encompassed by debris flows is 2.1 percent of the 94.4 km2 map area.

  14. Identification of mechanisms for landslide type initiation of debris flows

    Klubertanz, Georg; Laloui, Lyesse; Vulliet, Laurent


    The modelling of debris flow initiation in slopes is addressed in this paper. First, possible factors governing debris flow initiation are established. Then, a coupled hydro-mechanical model for deformable porous media with two pore fluids that is used to assess the problem of the debris flow initiation in slopes is briefly outlined. Various ways to identify failure and to approach the transition of the failed mass into a debris flow are discussed in the framework of small strain theory and e...

  15. Macroscopic third-body wear caused by porous metal surface fragments in total hip arthroplasty.

    Kleinhans, Jennifer A; Jakubowitz, Eike; Seeger, Joern B; Heisel, Christian; Kretzer, J Philippe


    Implants with surfaces of various porosities and pore sizes are in clinical use. This article demonstrates how macroscopic porous metal fragments can detach from the implant surface in total hip arthroplasty (THA) and cause significant third-body damage such as deep scratches and indentations in implants' bearing surfaces. Radiographs prior to revision surgery due to aseptic loosening of the acetabular component revealed the presence of numerous small metal fragments approximately 1 to 2 mm in size in the periarticular area. The size, shape, and material of the metal fragments (cobalt-chromium-molybdenum [CoCrMo]) indicated that they originated from the porous metal surface. In this case, the acetabular liner composite material consisted of two-thirds polyurethane and one-third aluminium oxide ceramic. The femoral head was made of aluminium oxide ceramic. The aluminium oxide femoral head, which had been in situ for 21 years, showed no signs of macroscopic indentations or scratches, suggesting that an aluminium oxide bearing surface, which is significantly harder than the CoCrMo debris, is not significantly affected by metal debris embedment in the counterface material. The polyurethane-aluminium oxide composite material used for the acetabular liner is not comparable to a traditional ceramic bearing surface material. Debris damaged the surface of and became embedded in the liner, causing accelerated wear of the femoral head. In porous metal surface THA, ceramic-on-ceramic bearing couples should, due to their superior hardness, be considered to prevent excessive wear, including debris embedment and scratching of the bearing surfaces, especially in revision cases.

  16. Superior sealing effect of hydroxyapatite in porous-coated implants

    Rahbek, Ole; Kold, Søren Vedding; Bendix, Knud


    Migration of wear debris to the periprosthetic bone is a major cause of osteolysis and implant failure. Both closed-pore porous coatings and hydroxyapatite (HA) coatings have been claimed to prevent the migration of wear debris. We investigated whether HA could augment the sealing effect...... of a porous coating under both stable and unstable conditions....

  17. Hydroplaning and submarine debris flows

    de Blasio, Fabio V.; Engvik, Lars; Harbitz, Carl B.; ElverhøI, Anders


    Examination of submarine clastic deposits along the continental margins reveals the remnants of holocenic or older debris flows with run-out distances up to hundreds of kilometers. Laboratory experiments on subaqueous debris flows, where typically one tenth of a cubic meter of material is dropped down a flume, also show high velocities and long run-out distances compared to subaerial debris flows. Moreover, they show the tendency of the head of the flow to run out ahead of the rest of the body. The experiments reveal the possible clue to the mechanism of long run-out. This mechanism, called hydroplaning, begins as the dynamic pressure at the front of the debris flow becomes of the order of the pressure exerted by the weight of the sediment. In such conditions a layer of water can intrude under the sediment with a lubrication effect and a decrease in the resistance forces between the sediment and the seabed. A physical-mathematical model of hydroplaning is presented and investigated numerically. The model is applied to both laboratory- and field-scale debris flows. Agreement with laboratory experiments makes us confident in the extrapolation of our model to natural flows and shows that long run-out distances can be naturally attained.

  18. The debris-flow rheology myth

    Iverson, R.M.; ,


    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  19. Debris flow initiation in proglacial gullies on Mount Rainier, Washington

    Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul


    Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.

  20. Orbital Debris-Debris Collision Avoidance

    Mason, James; Marshall, William; Levit, Creon


    We investigate the feasibility of using a medium-powered (5kW) ground-based laser combined with a ground-based telescope to prevent collisions between debris objects in low-Earth orbit (LEO), for which there is no current, effective mitigation strategy. The scheme utilizes photon pressure alone as a means to perturb the orbit of a debris object. Applied over multiple engagements, this alters the debris orbit sufficiently to reduce the risk of an upcoming conjunction. We employ standard assumptions for atmospheric conditions and the resulting beam propagation. Using case studies designed to represent the properties (e.g. area and mass) of the current debris population, we show that one could significantly reduce the risk of more than half of all debris-debris collisions using only one such laser/telescope facility. We speculate on whether this could mitigate the debris fragmentation rate such that it falls below the natural debris re-entry rate due to atmospheric drag, and thus whether continuous long-term ope...

  1. Density Estimations in Laboratory Debris Flow Experiments

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.


    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  2. The potentials of porous concrete for ballistic protection

    Weerheijm, J.; Roebroeks, G.; Krabbenborg, D.; Agar Ozbek, A.S.


    A special porous concrete has been developed by the Delft University in collaboration with TNO. The concrete has a static compressive strength of 45 MPa. It fragments at impact into small size debris relative to reference concrete. The porous concrete was developed at laboratory scale and tested at

  3. The potentials of porous concrete for ballistic protection

    Weerheijm, J.; Roebroeks, G.; Krabbenborg, D.; Agar Ozbek, A.S.


    A special porous concrete has been developed by the Delft University in collaboration with TNO. The concrete has a static compressive strength of 45 MPa. It fragments at impact into small size debris relative to reference concrete. The porous concrete was developed at laboratory scale and tested at

  4. The influence of dust grain porosity on the analysis of debris disc observations

    Brunngräber, Robert; Kirchschlager, Florian; Ertel, Steve


    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution -- the so-called 'blowout size' -- is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of two. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The ana...

  5. Modeling debris-covered glaciers: response to steady debris deposition

    Anderson, Leif S.; Anderson, Robert S.


    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  6. Porous bioceramic beta-tricalcium phosphate for treatment of osteonecrosis of the femoral head%磷酸三钙多孔生物陶瓷修复股骨头坏死

    孙伟; 李子荣; 高福强; 史振才; 王佰亮; 郭万首


    BACKGROUND:It is a clinical difficult in the treatment of osteonecrosis with joint preservation, and to solve this problem, a variety of bone graft substitutes are at the exploration stage. OBJECTIVE:To evaluate the clinical outcome of lightbulb operation with porous bioceramic β-tricalcium phosphate in a consecutive series of patients with osteonecrosis of the femoral head. METHODS:From January to December 2008, 58 patients (88 hips) who had undergone lightbulb operation with porous bioceramic β-tricalcium phosphate were involved in this study. Al patients were evaluated both clinicaly and radiographicaly at postoperative 3, 6, 12 months and annualy. Functional improvement was assessed with the Harris hip score. RESULTS AND CONCLUSION: Among these patients, 56 patients (85 hips) were folowed up for 2-5 years. According to the ARCO staging system, there were 27 hips of stage II, 40 hips of stage IIIa, 18 hips of IIIb. According to the hospital’s classification, type C was in 4 hips, L1 in 15 hips, L2 in 28 hips, and L3 in 38 hips. According to the Harris hip score system, excelent outcome was in 55 hips, good in 12 hips, fair in 5 hips and poor in 13 hips. Nine of 11 patients who failed to preserve their own joints were subjected to hip replacement. The  mean preoperative and postoperative Harris scores were 61.2 and 85.3, respectively, with a mean improvement of 24.1 points (P < 0.001). All hips were radiologically stable, with no progress of osteonecrosis, and bone density in the bone graft area increased obviously. The replacement time of porous bioceramic β-tricalcium phosphate was 1-1.5 years. These findings suggest that the porous bioceramic β-tricalcium phosphate provides an option to treat osteonecrosis of the femoral head with satisfactory clinical outcomes, and profits the repair and reconstruction of femoral head osteonecrosis. When in the lateral column of femoral head, the porous bioceramic β-tricalcium phosphate can play a supporting role

  7. Special Report Debris - Race

    U.S. Environmental Protection Agency — Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and...

  8. Disaster Debris Recovery Database

    U.S. Environmental Protection Agency — The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 3,500 composting facilities, demolition contractors, haulers, transfer...

  9. Planetesimals in Debris Disks

    Youdin, Andrew N


    Planetesimals form in gas-rich protoplanetary disks around young stars. However, protoplanetary disks fade in about 10 Myr. The planetesimals (and also many of the planets) left behind are too dim to study directly. Fortunately, collisions between planetesimals produce dusty debris disks. These debris disks trace the processes of terrestrial planet formation for 100 Myr and of exoplanetary system evolution out to 10 Gyr. This chapter begins with a summary of planetesimal formation as a prelude to the epoch of planetesimal destruction. Our review of debris disks covers the key issues, including dust production and dynamics, needed to understand the observations. Our discussion of extrasolar debris keeps an eye on similarities to and differences from Solar System dust.

  10. Roll Call Debris - Race

    U.S. Environmental Protection Agency — Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and...

  11. LEGACY - EOP Marine Debris

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contains towed diver surveys of and weights of marine debris removed from the near shore environments of the NWHI.

  12. Fleet Debris Levels

    U.S. Environmental Protection Agency — Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and...

  13. Characterization of Debris from the DebriSat Hypervelocity Test

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.


    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  14. Space Debris & its Mitigation

    Kaushal, Sourabh; Arora, Nishant


    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  15. Superior sealing effect of hydroxyapatite in porous-coated implants: experimental studies on the migration of polyethylene particles around stable and unstable implants in dogs

    Rahbek, Ole; Kold, Søren Vedding; Bendix, Knud


    Migration of wear debris to the periprosthetic bone is a major cause of osteolysis and implant failure. Both closed-pore porous coatings and hydroxyapatite (HA) coatings have been claimed to prevent the migration of wear debris. We investigated whether HA could augment the sealing effect...... of a porous coating under both stable and unstable conditions....

  16. Studies on in-vessel debris coolability in ALPHA program

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others


    In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heated vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.

  17. Space Debris Mitigation Guidelines

    Johnson, Nicholas L.


    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  18. Chemical Classification of Space Debris

    LI Chunlai; ZUO Wei; LIU Jianjun; OUYANG Ziyuan


    Space debris, here referring to all non-operating orbital objects, has steadily increased in number so that it has become a potential barrier to the exploration of space. The ever-increasing number of space debris pieces in space has created an increasingly threatening hazard to all on-the-orbit spacecraft, and all future space exploration activities have to be designed and operated with respect to the increasing threat posed by space debris. Generally, space debris is classified as large, medium and small debris pieces based on their sizes. The large debris piece is easily catalogued, but medium to small debris pieces are very difficult to track and also quite different in damage mechanisms from the large ones. In this paper, a scheme of chemical classification of space debris is developed. In our scheme, the first-order classification is employed to divide space debris into two groups: natural micrometeoroids and artificial space debris.The second-order classification is based on their chemical patterns and compositions. The natural micrometeoroids are further divided into three types, namely maric, metal and phyllosilicate micrometeorites, while the artificial space debris is divided into seven types, which are polymers, non-metal debris, metals and their alloys, oxides, sulphides and their analogs, halides and carbides. Of the latter seven types, some can also be further divided into several sub-types. Chemical classification of space debris is very useful for the study of the chemical damage mechanism of small debris pieces, and also is of great significance in constraining the origin and source of space debris and assessing their impact on spacecraft and human space activities.

  19. Eddy covariance and lysimeter measurements of moisture fluxes over supraglacial debris

    Brock, Benjamin


    Supraglacial debris covers have the potential to evaporate large quantities of water derived from either sub-debris ice melt or precipitation. Currently, knowledge of evaporation and condensation rates in supraglacial debris is limited due to the difficulty of making direct measurements. This paper presents eddy covariance and lysimeter measurements of moisture fluxes made over a 0.2 m debris layer at Miage debris covered glacier, Italian Alps, during the 2013 ablation season. The meteorological data are complimented by reflectometer measurements of volumetric water fraction in the saturated and vadose zones of the debris layer. The lysimeters were designed specifically to mimic the debris cover and were embedded within the debris matrix, level with the surface. Over the ablation season, the latent heat flux is dominated by evaporation, and the flux magnitude closely follows the daily cycle of daytime solar heating and night time radiative cooling of debris. Mean flux values are of the order of 1 kg m-2 day-1, but often higher for short periods following rainfall. Condensation rates are relatively small and restricted to night time and humid conditions when the debris-atmosphere vapour pressure gradient reverses due to relatively warm air overlying cold debris. The reflectometer measurements provide evidence of vertical water movement through capillary rise in the upper part of the fine-grained debris layer, just above the saturated horizon, and demonstrate how debris bulk water content increases after rainfall. The latent heat flux responds directly to changes in wind speed, indicating that atmospheric turbulence can penetrate porous upper debris layers to the saturated horizon. Hence, vertical sorting of debris sediments and antecedent rainfall are important in determining evaporation rates, in addition to current meteorological conditions. Comparison of lysimeter measurements with rainfall data provides an estimate that between 45% and 89% of rainfall is

  20. Debris flow characteristics and relationships in the Central Spanish Pyrenees

    A. Lorente


    Full Text Available Unconfined debris flows (i.e. not in incised channels are one of the most active geomorphic processes in mountainous areas. Since they can threaten settlements and infrastructure, statistical and physically based procedures have been developed to assess the potential for landslide erosion. In this study, information on debris flow characteristics was obtained in the field to define the debris flow runout distance and to establish relationships between debris flow parameters. Such relationships are needed for building models which allow us to improve the spatial prediction of debris flow hazards. In general, unconfined debris flows triggered in the Flysch Sector of the Central Spanish Pyrenees are of the same order of magnitude as others reported in the literature. The deposition of sediment started at 17.8°, and the runout distance represented 60% of the difference in height between the head of the landslide and the point at which deposition started. The runout distance was relatively well correlated with the volume of sediment.

  1. Emerging insights into the dynamics of submarine debris flows

    Elverhøi, A.; Issler, D.; de Blasio, F. V.; Ilstad, T.; Harbitz, C. B.; Gauer, P.


    Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the "neck" of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an "outrunner" block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING) successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional) models fail at all scales

  2. Emerging insights into the dynamics of submarine debris flows

    A. Elverhøi


    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  3. Orbital debris issues

    Kessler, D. J.

    Orbital debris issues fall into three major topics: Environment Definition, Spacecraft Hazard, and Space Object Management. The major issue under Environment Definition is defining the debris flux for sizes smaller (10 cm in diameter) than those tracked by the North American Aerospace Defense Command (NORAD). Sources for this size debris are fragmentation of larger objects, either by explosion or collision, and solid rocket motor products. Modeling of these sources can predict fluxes in low Earth orbit which are greater than the meteoroid environment. Techniques to measure the environment in the size interval between 1 mm and 10 cm are being developed, including the use of telescopes and radar both on the ground and in space. Some impact sensors designed to detect meteoroids may have detected solid rocket motor products. Once the environment is defined, it can be combined with hypervelocity impact data and damage criteria to evaluate the Spacecraft Hazard. Shielding may be required to obtain an acceptable damage level. Space Object Management includes techniques to control the environment and the desired policy to effectively minimize the hazard to spacecraft. One control technique - reducing the likelihood of future explosions in space - has already been implemented by NASA. The effectiveness of other techniques has yet to be evaluated.

  4. 2D model for melt progression through rods and debris

    Fichot, F. [IPSN/DRS, CEA Cadarache, St. Paul-lez-Durance (France)


    During the degradation of a nuclear core in a severe accident scenario, the high temperatures reached lead to the melting of materials. The formation of liquid mixtures at various elevations is followed by the flow of molten materials through the core. Liquid mixture may flow under several configurations: axial relocation along the rods, horizontal motion over a plane surface such as the core support plate or a blockage of material, 2D relocation through a debris bed, etc.. The two-dimensional relocation of molten material through a porous debris bed, implemented for the simulation of late degradation phases, has opened a new way to the elaboration of the relocation model for the flow of liquid mixture along the rods. It is based on a volume averaging method, where wall friction and capillary effects are taken into account by introducing effective coefficients to characterize the solid matrix (rods, grids, debris, etc.). A local description of the liquid flow is necessary to derive the effective coefficients. Heat transfers are modelled in a similar way. The derivation of the conservation equations for the liquid mixture falling flow (momentum) in two directions (axial and radial-horizontal) and for the heat exchanges (energy) are the main points of this new model for simulating melt progression. In this presentation, the full model for the relocation and solidification of liquid materials through a rod bundle or a debris bed is described. It is implemented in the ICARE/CATHARE code, developed by IPSN in Cadarache. The main improvements and advantages of the new model are: A single formulation for liquid mixture relocation, in 2D, either through a rod bundle or a porous debris bed, Extensions to complex structures (grids, by-pass, etc..), The modeling of relocation of a liquid mixture over plane surfaces. (author)


    Wieczorek, Gerald F.


    Examination of recent debris-flow and hyperconcentrated-streamflow events in the western United States reveals (1) the topographic, geologic, hydrologic, and vegetative conditions that affect initiation of debris flows and (2) the wide ranging climatic conditions that can trigger debris flows. Recognition of these physiographic and climatic conditions has aided development of preliminary methods for hazard evaluation. Recent developments in the application of electronic data gathering, transmitting, and processing systems shows potential for real-time hazard warning.

  6. Space debris executive summary

    Canavan, G.H.; Judd, O.; Naka, R.F.


    Spacecraft, boosters, and fragments are potential hazards to space vehicles, and it is argued that collisions between them could produce a cascade that could preclude activity in LEO in 25 to 50 years. That has generated pressure for constraints on military space operations, so the AF SAB performed a study of technical aspects of the debris problem. The Study was independent of the efforts of the Air Force Space Command (AFSPC) as well as those of and NASA Johnson Space Center (JSC), which is the principal advocate for cascades and constraints. Most work on space debris has been performed by AFSPC and JSC, so the Study was in part an assessment of their efforts, in which both have been cooperative. The Study identified the main disagreements and quantified their impacts. It resolved some issues and provided bounds for the rest. It treated radar and optical observations; launch, explosion, and decay rates; and the number and distribution of fragments from explosions and collisions. That made it possible to address hazard to manned spacecraft at low altitudes and the possibility of cascading at higher altitudes, both of which now appear less likely.

  7. Porous carbons

    Satish M Manocha


    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  8. Space Debris Mitigation CONOPS Development


    Yoshikawa, T. (2003). Space debris capture by a joint compliance controlled robot . Paper presented at the Advanced Intelligent Mechatronics , 2003. AIM...80 Robotic Arm ............................................................................................................. 80 Tethers...than 10 centimeters 79 xi Figure 34 Robotic Arm Space Debris Removal Servicer with Joint Compliance Control82 Figure 35 Prototype of brush

  9. Space debris; challenges and solutions

    Van Beurden, E.; Prins, C.


    Space debris has been a hot topic for the last few decades, ever since the space industry started growing exponentially. Everyone agrees that space debris is a growing problem and the saturation point has almost been reached. With a big risk of a chain reaction, called the Kessler syndrome, billions

  10. Space debris: modeling and detectability

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.


    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  11. An Introduction to Space Debris

    Wright, David


    Space debris is any human-made object in orbit that no longer serves a useful purpose, including defunct satellites, discarded equipment and rocket stages, and fragments from the breakup of satellites and rocket stages. It is a concern because--due to its very high speed in orbit--even relatively small pieces can damage or destroy satellites in a collision. Since debris at high altitudes can stay in orbit for decades or longer, it accumulates as more is produced and the risk of collisions with satellites grows. Since there is currently no effective way to remove large amounts of debris from orbit, controlling the production of debris is essential for preserving the long-term use of space. Today there are 860 active satellites in orbit, supporting a wide range of civil and military uses. The 50 years of space activity since the launch of Sputnik 1 has also resulted in well over half a million pieces of orbiting debris larger than 1 cm in size. There are two main sources of space debris: (1) routine space activity and the accidental breakup of satellites and stages placed in orbit by such activity, and (2) the testing or use of destructive anti-satellite (ASAT) weapons that physically collide with satellites at high speed. The international community is attempting to reduce the first category by developing strict guidelines to limit the debris created as a result of routine space activities. However, the destruction of a single large spy satellite by an ASAT weapon could double the total amount of large debris in low earth orbit, and there are currently no international restrictions on these systems. This talk will give an introduction to what's in space, the origins of space debris, efforts to stem its growth, the threat it poses to satellites in orbit, and the long-term evolution of the debris population.

  12. Problems of Small Debris

    V. V. Zelentsov


    Full Text Available During the exploration of outer space (as of 1/1 2011 6853 was launched spacecraft (SC are successful 6264, representing 95% of the total number of starts. The most intensively exploited space Russia (USSR (3701 starts, 94% successful, USA (2774 starts, 90% successful, China (234 starts, 96% successful and India (89 starts, 90% successful. A small part of running the spacecraft returned to Earth (manned spacecraft and transport, and the rest remained in orbit. Some of them are descended from orbit and burned up in the atmosphere, the rest remained in the OCP and turned into space debris (SD.The composition of the Cabinet is diverse: finish the job spacecraft; boosters and the last stage of launch vehicles left in orbit after SC injection; technological waste arising during the opening drop-down structures and fragments of the destroyed spacecraft. The resulting explosion orbital SD forms ellipsoidal region which orbits blasted object. Then, as a result of precession, is the distribution of objects in orbit explosion exploding spacecraft.The whole Cabinet is divided into two factions: the observed (larger than 100 mm and not observed (less than 100 mm. Observed debris katalogalizirovan and 0.2% of the total number of SD, there was no SD is the bulk - 99.8%.SC meeting working with a fragment observed SD predictable and due to changes in altitude spacecraft avoids a possible meeting. Contact spacecraft with large fragment lead to disaster (which took place at a meeting of the Russian communications satellite "Cosmos-2251" and the American machine "Iridium". Meeting with small SD is not predictable, especially if it was formed by an explosion or collision fragments together. Orbit that KM is not predictable, and the speed can be up to 10 km / s. Meeting with small particle SD no less dangerous for the spacecraft. The impact speed of spacecraft with space debris particles can reach up to 10 ... 15 km / s at such speeds the breakdown probability thin

  13. Active Space Debris Removal System

    Gabriele GUERRA


    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  14. The earth orbiting space debris

    Rossi A.


    Full Text Available The space debris population is similar to the asteroid belt, since it is subject to a process of high-velocity mutual collisions that affects the long-term evolution of its size distribution. Presently, more than 10 000 artificial debris particles with diameters larger than 10 cm (and more than 300 000 with diameters larger than 1 cm are orbiting the Earth, and are monitored and studied by a large network of sensors around the Earth. Many objects of different kind compose the space debris population, produced by different source mechanisms ranging from high energy fragmentation of large spacecraft to slow diffusion of liquid metal. The impact against a space debris is a serious risk that every spacecraft must face now and it can be evaluated with ad-hoc algorithms. The long term evolution of the whole debris population is studied with computer models allowing the simulation of all the known source and sink mechanisms. One of these codes is described in this paper and the evolution of the debris environment over the next 100 years, under different traffic scenarios, is shown, pointing out the possible measures to mitigate the growth of the orbital debris population. .

  15. Porous Ascend

    Riiber, Jacob; Tamke, Martin; Ramsgaard Thomsen, Mette


    The Porous Ascend project investigates how algorithmic and generative approaches allows for the utilization of complex, and by other means inaccessible, ways of devising the schema by which we arrange the parts of an architectural object. It does so by pursuing to physically realize a structure...... of folded elements, based on the concept of applying recursion to the geometry of the non-periodic Penrose tiling. Within this process the project explores questions regarding the making of bespoke digital design tools, digital production, material behaviour and assemblage strategies. The project points...... with an outside and an efficient distribution of specific material behaviour....

  16. Bentonite debris flows in northern alaska.

    Anderson, D M; Reynolds, R C; Brown, J


    Seasonal freezing and thawing and the extreme cold of the arctic lead to the development of a variety of characteristic geomorphic features. A new one, bentonite debris flow channels, has been identified near Umiat, Alaska. These flows form when bentonite-rich Cretaceous Shales are exposed to Surface water on slopes of 5 to 30 degrees. The characteristic landform developed is a U-shaped channel 1 to 2 meters deep and from 8 to 10 meters in width. The channel shows a fluted floor and walls and is commonly flanked by a levee. The flow material is appa rently derived from the entire surface of the head portions of associated gullies. When this surface layer hydrates during snowmelt and runoff or during prolonged rain, the bentonite imbibes water and swells to a point at which its viscosity is lowered sufficiently to initiate creep or viscous flow.

  17. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    Godt, Jonathan W.; Coe, Jeffrey A.


    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43 mm of rain in 4 h, 35 mm of which fell in the first 2 h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30°) in catchments with small contributing areas (material along their paths.

  18. 14 CFR 417.211 - Debris analysis.


    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  19. Debris Engine: A Potential Thruster for Space Debris Removal

    Lan, Lei; Baoyin, Hexi


    We present a design concept for a space engine that can continuously remove the orbit debris by using the debris as a propellant. Space robotic cleaner is adopted to capture the targeting debris and to transfer them into the engine. Debris with larger size is first disintegrated into small pieces by using a mechanical method. The planetary ball mill is then adopted to grind the pieces into micrometer or smaller powder. The energy needed in this process is get from the nuclear and solar power. By the effect of gamma-ray photoelectric or the behavior of tangently rub of tungsten needles, the debris powered is charged. This behavior can be used to speed up the movement of powder in a tandem electrostatic particle accelerator. By ejecting the high-temperture and high-pressure charged powered from the nozzle of the engine,the continuously thrust is obtained. This thrust can be used to perform orbital maneuver and debris rendezvous for the spacecraft and robotic cleaner. The ejected charged particle will be blown a...

  20. Effects of basal debris on glacier flow.

    Iverson, Neal R; Cohen, Denis; Hooyer, Thomas S; Fischer, Urs H; Jackson, Miriam; Moore, Peter L; Lappegard, Gaute; Kohler, Jack


    Glacier movement is resisted partially by debris, either within glaciers or under glaciers in water-saturated layers. In experiments beneath a thick, sliding glacier, ice containing 2 to 11% debris exerted shear traction of 60 to 200 kilopascals on a smooth rock bed, comparable to the total shear traction beneath glaciers and contrary to the usual assumption that debris-bed friction is negligible. Imposed pore-water pressure that was 60 to 100% of the normal stress in a subglacial debris layer reduced shear traction on the debris sufficiently to halt its deformation and cause slip of ice over the debris. Slip resistance was thus less than debris shearing resistance.

  1. NASA Orbital Debris Baseline Populations

    Krisko, Paula H.; Vavrin, A. B.


    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  2. Disaster Debris Recovery Database - Recovery

    U.S. Environmental Protection Agency — The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations,...

  3. Disaster Debris Recovery Database - Landfills

    U.S. Environmental Protection Agency — The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations,...

  4. The influence of dust grain porosity on the analysis of debris disc observations

    Brunngräber, Robert; Wolf, Sebastian; Kirchschlager, Florian; Ertel, Steve


    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution - the so-called `blowout size' - is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend.

  5. Collisional Grooming of Debris Disks

    Kuchner, Marc J


    Debris disk images show clumps, rings, warps, and other structures, many of which have been interpreted as perturbations from hidden planets. But so far, no models of these structures have properly accounted for collisions between dust grains. We have developed new steady-state 3D models of debris disks that self-consistently incorporate grain-grain collisions. We summarize our algorithm and use it to illustrate how collisions interact with resonant trapping in the presence of a planet.

  6. Hydraulic System Wear Debris Analysis.


    drawn. Each one-=L sample was drawn with a clean plastic pipette of one-mL capacity. The samples were placed in clean Ferrogram preparation bottles ...and from cavities in a block which held linear seals into sampling bottles . Several photographs of this debris , which was deposited on Ferro- grams...silicon in the glass overshadowed the elements of the wear debris . To overcome this difficulty, the Ferrogram should be pre- pared on a carbon-filled

  7. Removing Orbital Debris with Lasers

    Phipps, Claude R; Bradford, Brian; George, E Victor; Libby, Stephen B; Liedahl, Duane A; Marcovici, Bogdan; Olivier, Scot S; Pleasance, Lyn D; Reilly, James P; Rubenchik, Alexander; Strafford, David N; Valley, Michael T


    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. Internat...

  8. The physics of debris flows

    Iverson, R.M.


    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  9. Experimental investigation of particulate debris spreading in a pool

    Konovalenko, A., E-mail: [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Basso, S., E-mail: [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Kudinov, P., E-mail: [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Yakush, S.E., E-mail: [Institute for Problems in Mechanics of the Russian Academy of Sciences, Ave. Vernadskogo 101 Bldg 1, Moscow 119526 (Russian Federation)


    Termination of severe accident progression by core debris cooling in a deep pool of water under reactor vessel is considered in several designs of light water reactors. However, success of this accident mitigation strategy is contingent upon the effectiveness of heat removal by natural circulation from the debris bed. It is assumed that a porous bed will be formed in the pool in the process of core melt fragmentation and quenching. Debris bed coolability depends on its properties and system conditions. The properties of the bed, including its geometry are the outcomes of the debris bed formation process. Spreading of the debris particles in the pool by two-phase turbulent flows induced by the heat generated in the bed can affect the shape of the bed and thus influence its coolability. The goal of this work is to provide experimental data on spreading of solid particles in the pool by large-scale two-phase flow. The aim is to provide data necessary for understanding of separate effects and for development and validation of models and codes. Validated codes can be then used for prediction of debris bed formation under prototypic severe accident conditions. In PDS-P (Particulate Debris Spreading in the Pool) experiments, air injection at the bottom of the test section is employed as a means to create large-scale flow in the pool in isothermal conditions. The test section is a rectangular tank with a 2D slice geometry, it has fixed width (72 mm), adjustable length (up to 1.5 m) and allows water filling to the depth of up to 1 m. Variable pool length and depth allows studying two-phase circulating flows of different characteristic sizes and patterns. The average void fraction in the pool is determined by video recording and subsequent image processing. Particles are supplied from the top of the facility above the water surface. Results of several series of PDS-P experiments are reported in this paper. The influence of the gas flow rate, pool dimensions, particle density

  10. Space Debris Environment Remediation Concepts

    Johnson, Nicholas L.; Klinkrad, Heiner


    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  11. Adaptive optics for laser space debris removal

    Bennet, Francis; Conan, Rodolphe; D'Orgeville, Celine; Dawson, Murray; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian; Smith, Craig; Uhlendorf, Kristina


    Space debris in low Earth orbit below 1500km is becoming an increasing threat to satellites and spacecrafts. Radar and laser tracking are currently used to monitor the orbits of thousands of space debris and active satellites are able to use this information to manoeuvre out of the way of a predicted collision. However, many satellites are not able to manoeuvre and debris-on debris collisions are becoming a signicant contributor to the growing space debris population. The removal of the space debris from orbit is the preferred and more denitive solution. Space debris removal may be achieved through laser ablation, whereby a high power laser corrected with an adaptive optics system could, in theory, allow ablation of the debris surface and so impart a remote thrust on the targeted object. The goal of this is to avoid collisions between space debris to prevent an exponential increase in the number of space debris objects. We are developing an experiment to demonstrate the feasibility of laser ablation for space debris removal. This laser ablation demonstrator utilises a pulsed sodium laser to probe the atmosphere ahead of the space debris and the sun re ection of the space debris is used to provide atmospheric tip{tilt information. A deformable mirror is then shaped to correct an infrared laser beam on the uplink path to the debris. We present here the design and the expected performance of the system.

  12. Fractal Structure of Debris Flow

    LI Yong; LIU Jingjing; HU Kaiheng; CHEN Xiaoqing


    One of the most remarkable characteristics of debris flow is the competence for supporting boulders on the surface of flow, which strongly suggests that there should be some structure in the fluid body. This paper analyzed the grain compositions from various samples of debris flows and then revealed the fractal structure. Specifically, the fractality holds in three domains that can be respectively identified as the slurry, matrix, and the coarse content. Furthermore, the matrix fractal, which distinguishes debris flow from other kinds of flows, involves a hierarchical structure in the sense that it might contain ever increasing grains while the total range of grain size increases. It provides a possible mechanism for the boulder suspension.

  13. Atomic gas in debris discs

    Hales, Antonio S.; Barlow, M. J.; Crawford, I. A.; Casassus, S.


    We have conducted a search for optical circumstellar absorption lines in the spectra of 16 debris disc host stars. None of the stars in our sample showed signs of emission line activity in either Hα, Ca II or Na I, confirming their more evolved nature. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines (when Na I D data were available). We analyse the characteristics of these spectral features to determine whether they are of circumstellar or interstellar origins. The strongest evidence for circumstellar gas is seen in the spectrum of HD 110058, which is known to host a debris disc observed close to edge-on. This is consistent with a recent ALMA detection of molecular gas in this debris disc, which shows many similarities to the β Pictoris system.

  14. Coolability of corium debris under severe accident conditions in light water reactors

    Rahman, Saidur


    The debris bed which may be formed in different stages of a severe accident will be hot and heated by decay heat from the radioactive fission products. In order to establish a steady state of long-term cooling, this hot debris needs to be quenched at first. If quenching by water ingression into the dry bed is not rapid enough then heat-up by decay heat in still dry regions may again yield melting. Thus, chances of coolability must be investigated considering quenching against heat-up due to decay heat, in the context of reactor safety research. As a basis of the present investigations, models for simulation of two phase flow through porous medium were already available in the MEWA code, being under development at IKE. The objective of this thesis is to apply the code in essential phases of severe accidents and to investigate the chances, options and measures for coolability. Further, within the tasks, improvements to remove weaknesses in modeling and implementation of extensions concerning missing parts are included. It was identified previously that classical models without explicit considering the interfacial friction, can predict dryout heat flux (DHF) well under top fed condition but under-predict DHF values under bottom flooding conditions. Tung and Dhir introduced an interfacial friction term in their model, but this model has deficits for smaller particles considered as relevant for reactor conditions. Therefore, some modification of Tung and Dhir model is proposed in the present work to extent it for smaller particles. A significant improvement with the new friction description (Modified Tung and Dhir, MTD) is obtained considering the aim of a unified description for both top and bottom flooding conditions and for broad bandwidth of bed conditions. Calculations for reactor conditions are carried out in order to explore whether or to which degree coolability can be concluded, how strong the trend to coolability is and where major limits occur. The general

  15. The Herschel Cold Debris Disks

    Gaspar, Andras


    The Herschel "DUst around NEarby Stars (DUNES)" survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue we carefully examine the alternative explanation, that the detections arise from confusion with IR cirrus and/or background galaxies that are not physically associated with the foreground star. We find that such an explanation is consistent with all of these detections.

  16. Origin of Theater-headed Tributaries to Escalante and Glen Canyons, Utah

    Irwin, R. P.; Fortezzo, C. M.; Tooth, S. E.; Howard, A. D.; Zimbelman, J. R.; Barnhart, C. J.; Benthem, A. J.; Brown, C. C.; Parsons, R. A.


    Theater-headed tributaries to Glen Canyon, Utah, are important analogs to martian valley networks. Our field study suggests a hybrid model involving seepage weathering of Navajo sandstone, sheet fracturing, and transport of debris by flash floods.

  17. Experiments and Characterization of the Two-Phase Flow Driven Particulate Debris Spreading in the Pool

    Konovalenko, Alexander; Basso, Simone; Kudinov, Pavel


    Melt fragmentation, quenching and long term coolability in a deep pool of water under reactor vessel are employed as a severe accident mitigation strategy in several designs of light water reactors. Success of the strategy is contingent upon effectiveness of natural circulation in removing the decay heat generated by the porous debris bed. Geometrical configuration of the bed is one of the factors which affect coolability of the bed. Boiling and two-phase turbulent flows in the pool serve as ...

  18. Agglomeration and size distribution of debris in DEFOR-A experiments with Bi{sub 2}O{sub 3}–WO{sub 3} corium simulant melt

    Kudinov, Pavel, E-mail:; Karbojian, Aram, E-mail:; Tran, Chi-Thanh, E-mail:; Villanueva, Walter, E-mail:


    Highlights: • Debris agglomeration in case of melt pouring into a coolant is experimentally investigated. • The effects of jet diameter, melt superheat and water subcooling are addressed. • Most influential factor which can significantly increase fraction of agglomerates is melt superheat. • Rapid decrease of the fraction of agglomerates as a function of water depth is obtained in all cases. • Provided data is valuable for model development and code validation. -- Abstract: Flooding of lower drywell has been adopted as a cornerstone of severe accident management strategy in Nordic type Boiling Water Reactors (BWR). It is assumed that the melt ejected into a deep pool of water will fragment, quench and form a porous debris bed coolable by natural circulation. If debris bed is not coolable, then dryout and possibly re-melting of the debris can occur. Melt attack on the containment basemat can threaten containment integrity. Agglomeration of melt debris and formation of solid “cake” regions provide a negative impact on coolability of the porous debris bed. In this work we present results of experimental investigation on the fraction of agglomerated debris obtained in the process of hot binary oxidic melt pouring into a pool of water. The Debris Bed Formation and Agglomeration (DEFOR-A) experiments provide data about the effects of the pool depth and water subcooling, melt jet diameter, and initial melt superheat on the fraction of agglomerated debris. The data presents first systematic study of the debris agglomeration phenomena and facilitates understanding of underlying physics which is necessary for development and validation of computational codes to enable prediction of the debris bed coolability in different scenarios of melt release.

  19. Marine Debris Research, Prevention, and Reduction Act

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  20. Space Debris Elimination (SpaDE) Project

    National Aeronautics and Space Administration — The amount of debris in low Earth orbit (LEO) has increased rapidly over the last twenty years. This prevalence of debris increases the likelihood of cascading...

  1. An Evolution Model of Space Debris Environment


    Various types of models including engineering models andevolution models have been developed to understand space debris environment since 1960s. Evolution model, consisting of a set of supporting models such as Launch Model, Breakup Model and Atmosphere Model, can reliably predicts the evolution of space debris environment. Of these supporting models, Breakup Model is employed to describe the distribution of debris and debris cloud during a explosion or collision case which is one of the main factors affecting the amount of total space debris. An analytical orbit debris environment model referred to as the “Particles-In-Boxes" model has been introduced. By regarding the orbit debris as the freedom particles running in the huge volume, the sources and sinks mechanism is established. Then the PIB model is expanded to the case of multiple-species in multiple-tier system. Combined with breakup model, the evolution of orbit debris environment is predicted.

  2. NASA Orbital Debris Requirements and Best Practices

    Hull, Scott


    Limitation of orbital debris accumulation is an international and national concern, reflectedin NASA debris limitation requirements. These requirements will be reviewed, along with some practices that can be employed to achieve the requirements.

  3. DebriSat Project Update and Planning

    Sorge, M.; Krisko, P. H.


    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  4. A Search for Optically Faint GEO Debris


    similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American...Examples are the results from the European Space Debris Facility in the Canary Islands, MODEST (the Michigan orbital DEbris Survey Telescope at Cerro ...filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American

  5. Amine Functionalized Porous Network

    Eddaoudi, Mohamed


    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  6. Applying Knowledge from Terrestrial Debris-Covered Glaciers to Constrain the Evolution of Martian Debris-Covered Ice

    Koutnik, M. R.; Pathare, A. V.; Todd, C.; Waddington, E.; Christian, J. E.


    We will discuss the application of terrestrial knowledge on debris emplacement, the effects of debris on glacier-surface topography, debris transport by ice flow, deformation of debris-laden ice, and atmosphere-glacier feedbacks to Mars ice.

  7. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail:; Moriyama, Kiyofumi; Park, Jin Ho


    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  8. An Experimental Study on the Nuclear Fuel Debris Filtering Efficiency Using Wire Debris

    Park, Joon-Kyoo; Kwon, Oh-Joon; Lee, Tae-Kwon; Park, Nam-Gyu; Kim, Jae-Ik [KEPCO NF, Daejeon (Korea, Republic of)


    If this debris vibrates over a long period of time, the cladding tubes could wear out. Especially, the wire types of debris from the tools during the plant maintenance operations can induce worn hole or wear scar on the fuel rods and may be make severe damage. Most of failures due to debris are observed under the first grid from the bottom of fuel assembly. In order to mitigate this defect, the fuel vendor have developed various anti-debris grids, such as protective grid or debris filtering bottom grid, which is located just above the bottom nozzle. The vendors have performed the debris filtering test to evaluate the efficiency of these grids. KEPCO NF (KEPCO Nuclear fuel) also has carried out the debris filtering test for the fuel assembly with protective grid. Some major design parameters, such as the maximum debris passable size or grid axial location, which affect the debris filtering capacity are found out thorough the test. This paper will discuss the filtering efficiency according to the relative dimensions of wire debris specimens and the effects of the specimen dimensions through simulation tests. The relative dimensions could be useful to develop the debris filtering grid. This study discussed the filtering efficiency according to the relative dimensions of wire debris specimens through simulation tests. The wire debris is used since the debris is more useful to evaluate debris filtering efficiency.

  9. Detecting debris flows using ground vibrations

    LaHusen, Richard G.


    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  10. Tailored Porous Materials



    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  11. A Probabilistic View of Debris Flow

    LI Yong; SU Pengcheng; CUI Peng; HU Kaiheng


    Most debris flows occur in valleys of area smaller than 50 km2. While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. We propose that debris flow develops by extending from tributaries to the mainstream. The debris flow observed in the mainstream is the confluence of the tributary flows and the process of the confluence can be considered as a combination of the tributary elements. The frequency distribution of tributaries is found subject to the Weibull form (or its generalizations). And the same distribution form applies to the discharge of debris flow. Then the process of debris flow is related to the geometric structure of the valley. Moreover, viewed from a large scale of water system, all valleys are tributaries, which have been found to assume the same distribution. With each valley corresponding to a debris flow, the distribution can be taken as the frequency distribution of debris flow and therefore provides a quantitative description of the fact that debris flow is inclined to occur at valley of small size. Furthermore, different parameters appear in different regions, suggesting the regional differentials of debris flow potential. We can use the failure rate, instead of the size per se, to describe the risk of a valley of a given area. Finally we claim that the valleys of debris flow in different regions are in the similar episode of evolution.

  12. Space Tourism: Orbital Debris Considerations

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.


    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  13. The fast debris evolution model

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.


    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  14. Evidence for debris flow gully formation initiated by shallow subsurface water on Mars

    Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.


    The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.

  15. Models and correlations of the DEBRIS Late-Phase Melt Progression Model

    Schmidt, R.C.; Gasser, R.D. [Sandia National Labs., Albuquerque, NM (United States). Reactor Safety Experiments Dept.


    The DEBRIS Late Phase Melt Progression Model is an assembly of models, embodied in a computer code, which is designed to treat late-phase melt progression in dry rubble (or debris) regions that can form as a consequence of a severe core uncover accident in a commercial light water nuclear reactor. The approach is fully two-dimensional, and incorporates a porous medium modeling framework together with conservation and constitutive relationships to simulate the time-dependent evolution of such regions as various physical processes act upon the materials. The objective of the code is to accurately model these processes so that the late-phase melt progression that would occur in different hypothetical severe nuclear reactor accidents can be better understood and characterized. In this report the models and correlations incorporated and used within the current version of DEBRIS are described. These include the global conservation equations solved, heat transfer and fission heating models, melting and refreezing models (including material interactions), liquid and solid relocation models, gas flow and pressure field models, and the temperature and compositionally dependent material properties employed. The specific models described here have been used in the experiment design analysis of the Phebus FPT-4 debris-bed fission-product release experiment. An earlier DEBRIS code version was used to analyze the MP-1 and MP-2 late-phase melt progression experiments conducted at Sandia National Laboratories for the US Nuclear Regulatory Commission.

  16. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    Godt, J.W.; Coe, J.A.


    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these

  17. Comparison of space debris estimates

    Canavan, G.H.; Judd, O.P.; Naka, R.F.


    Debris is thought to be a hazard to space systems through impact and cascading. The current environment is assessed as not threatening to defense systems. Projected reductions in launch rates to LEO should delay concerns for centuries. There is agreement between AFSPC and NASA analyses on catalogs and collision rates, but not on fragmentation rates. Experiments in the laboratory, field, and space are consistent with AFSPC estimates of the number of fragments per collision. A more careful treatment of growth rates greatly reduces long-term stability issues. Space debris has not been shown to be an issue in coming centuries; thus, it does not appear necessary for the Air Force to take additional steps to mitigate it.

  18. Debris flow study in Malaysia

    Bahrin Jaafar, Kamal


    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  19. Head Injuries

    ... object that's stuck in the wound. previous continue Concussions Concussions — the temporary loss of normal brain function due ... also a type of internal head injury. Repeated concussions can permanently damage the brain. In many cases, ...

  20. Head Tilt

    ... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & ... When this happens, the neck muscles go into spasm, causing the head to tilt to one side. ...

  1. Head Injuries

    ... ATV) Safety Balance Disorders Knowing Your Child's Medical History First Aid: Falls First Aid: Head Injuries Preventing Children's Sports Injuries Getting Help: Know the Numbers Concussions Stay Safe: Baseball Concussions Concussions: Getting Better Sports and Concussions Dealing ...

  2. Head MRI

    ... heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not ... to: Abnormal blood vessels in the brain ( arteriovenous malformations of the head ) Tumor of the nerve that ...

  3. DebriSat Laboratory Analyses


    Semiquantitative elemental composition. – Elemental mapping and line scans. • Fourier Transform Infrared ( FTIR ) spectroscopy – Identification of chemical...Transform Infrared ( FTIR ) spectroscopy – Nicolet 6700 spectrometer. – Harrick Scientific “praying mantis” diffuse reflectance accessory. • Qualitative...VIS-NIR Spectroscopy Dianna Alaan © The Aerospace Corporation 2015 DebriSat Laboratory Analyses 5 January, 2015 Paul M. Adams1, Zachary Lingley2

  4. Effects of the Basal Boundary on Debris-flow Dynamics

    Iverson, R. M.; Logan, M.; Lahusen, R. G.; Berti, M.


    Data aggregated from 37 large-scale experiments reveal some counterintuitive effects of bed roughness on debris-flow dynamics. In each experiment 10 m3 of water-saturated sand and gravel, mixed with 1 to 12% silt and clay by dry weight, was abruptly released from a gate at the head of a 2-m wide, 1.2-m deep, 82.5-m long rectangular flume inclined 31° throughout most of its length and adjoined to a gently sloping, planar runout surface at its toe. The flume's basal boundary consisted of either a smooth, planar concrete surface or a concrete surface roughened with a grid of conical bumps. Tilt-table tests with dry debris-flow sediment showed that this roughness imparted a basal friction angle of 38°, comparable to the sediment's internal friction angle of 38-42°, whereas the smooth-bed friction angle was 28°. About 20 electronic sensors installed in the flume yielded data on flow speeds and depths as well as basal stresses and pore pressures. Behavior observed in all experiments included development of steep, unsaturated, coarse-grained debris-flow snouts and tapering, liquefied, fine-grained tails. Flows on the rough bed were typically about 50% thicker and 20% slower than flows on the smooth bed, although the rough bed caused snout steepening that enabled flow fronts to move faster than expected, given the increased bed friction. Moreover, flows on rough beds ran out further than flows on smooth beds owing to enhanced grain-size segregation and lateral levee formation. With the rough bed, measured basal stresses and pore pressures differed little from values expected from static gravitational loading of partially liquefied debris. With the smooth bed, however, measured basal stresses and pore pressures were nearly twice as large as expected values. This anomaly resulted from flow disturbance at the upstream lips of steel plates in which sensors were mounted. The lips produced barely visible ripples in otherwise smooth flow surfaces, yet sufficed to generate

  5. Short-term efficacy of the minimally invasive treatment with implantation of porous tantalum rod for femur head necrosis in the early stage%多孔钽棒植入微创治疗早期股骨头坏死的近期疗效

    张劲松; 杨述华; 许伟华; 叶树楠; 雷鸣; 迮仁浩


    Objective To investigate the clinical efficacy of the minimally invasive treatment with implantation of porous tantalum rod for femur head necrosis in the early stage (ARCO Stage Ⅰ and ARCO Stage Ⅱ).Methods From February 2007 to September 2008, 31 patients (39 affected hips) with femur head necrosis in the early stage underwent treatment as below.A small incision was made 1.5 cm beneath the greater trochanter.Under the the perspective of C-arm, a tunnel from the femoral neck to the osteonecrosis zone of the femoral head was made.Through the tunnel,the porous tantalum rod was implanted into the osteonecrosis zone of the femoral head for about 5 mm beneath the subchondral bone.The pre-operative ARCO staging of the affected hips were Stage Ⅰ (n=l 6) and Stage Ⅱ (n=23).Among the 31 patients, 8 sustained lesion in both hips, and 23 in a single hip.Results A11 the patients were followed up within a period from 13 to 32 months, with 21.6 months on average.The final evaluation was made according to the last followup data.The efficacy of the surgery was evaluated according to the Harris hip score (HHS).The pre-operative excellent and good rate was 48.4% (1 5/3 1), while the post-operative one was 90.3% (28/3 1).Meanwhile, observations were made in order to know whether there were imaging developments, and whether further treatments were needed.Conclusions The minimally invasive treatment with implantation of porous tantalum rod for adult femur head necrosis in the early stage has the advantages of simple operations, small wound, short operation time, and less blood loss.The treatment can improve the function of the joint, efficiently prevent the collapse of the femoral head, and delay the development of the avascular necrosis of the adult femoral head.The short-term efficacy is good.%目的 探讨多孔钽金属棒植入微创治疗早期(ARCO I期、II期)股骨头坏死的临床疗效.方法 2007年2月至2008年9月治疗早期股骨头坏死31例(39

  6. Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event.

    Arbellay, Estelle; Stoffel, Markus; Bollschweiler, Michelle


    Vessel chronologies in ring-porous species have been successfully employed in the past to extract the climate signal from tree rings. Environmental signals recorded in vessels of ring-porous species have also been used in previous studies to reconstruct discrete events of drought, flooding and insect defoliation. However, very little is known about the ability of diffuse-porous species to record environmental signals in their xylem cells. Moreover, time series of wood anatomical features have only rarely been used to reconstruct former geomorphic events. This study was therefore undertaken to characterize the wood anatomical response of diffuse-porous Alnus incana (L.) Moench and Betula pendula Roth to debris-flow-induced wounding. Tree microscopic response to wounding was assessed through the analysis of wood anatomical differences between injured rings formed in the debris-flow event year and uninjured rings formed in the previous year. The two ring types were examined close and opposite to the injury in order to determine whether wound effects on xylem cells decrease with increasing tangential distance from the injury. Image analysis was used to measure vessel parameters as well as fiber and parenchyma cell (FPC) parameters. The results of this study indicate that injured rings are characterized by smaller vessels as compared with uninjured rings. By contrast, FPC parameters were not found to significantly differ between injured and uninjured rings. Vessel and FPC parameters mainly remained constant with increasing tangential distance from the injury, except for a higher proportion of vessel lumen area opposite to the injury within A. incana. This study highlights the existence of anatomical tree-ring signatures-in the form of smaller vessels-related to past debris-flow activity and addresses a new methodological approach to date injuries inflicted on trees by geomorphic processes.

  7. Percolation cooling of the Three Mile Island Unit 2 lower head by way of thermal cracking and gap formation

    Thomsen, K.L.


    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall The bulk permeability of the cracked top crust is estimated based on simple...

  8. Active debris removal of multiple priority targets

    Braun, Vitali; Lüpken, A.; Flegel, S.; Gelhaus, J.; Möckel, M.; Kebschull, C.; Wiedemann, C.; Vörsmann, P.


    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any further launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target.In this paper, chemical and electric propulsion systems were analysed with the main focus on removing multiple targets within one single mission. The targets were chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time, ΔV and system mass were identified as key parameters to allow for an evaluation of the different concepts. It was shown that it

  9. Space Debris: il problema dei rifiuti spaziali

    Michele Dussi


    Space Debris: the space garbage problemThe dramatic growth in space activities since 1957 has generated a large amount of “in-orbit garbage”, namely space-debris. Many of these are potentially dangerous for space vehicles and/or for the people on Earth. In an acceptable space security framework, amajor role is reserved to cooperative space debris monitoring in order to prevent and to mitigate the effects of the problem.

  10. 多孔钽棒植入联合外周血干细胞移植治疗早期股骨头坏死的临床效果观察%Clinical observations of efficacy of porous tantalum rod implantation and autologous peripheral blood stem cell transplantation for the treatment of early femoral head necrosis

    宋建治; 肖少雄; 徐礼森


    目的 探讨联合应用多孔钽棒植入与自体外周血干细胞移植治疗股骨头缺血性坏死(ANFH)的效果.方法 2009年7月至2011年3月联合应用多孔钽棒植入与自体外周血干细胞移植治疗36例(36髋)早期ANFH患者,左侧19例,右侧17例.按照国际骨循环研究会(ARCO)分类标准的ANFH病变Ⅰ、Ⅱ期患者36例(36髋).临床评价术前与术后疼痛评分、Harris髓关节评分及患者MRI低信号区所占股骨头体积的百分比.结果 全部获得随访,随访12~15个月,Harris髓关节评分术后为(91.70±6.90)分,与术前(68.32±7.10)分比较,Harris髓关节术后评分明显升高,差异有统计学意义(t =4.364,P<0.01),患者疼痛症状显著改善[术前疼痛评分为(15.55±6.60)分,术后为(29.78±5.67)分;t=3.423,P<0.05],髋关节屈伸和内外旋转功能明显恢复.MRI示术后股骨头坏死区域比术前明显缩小,与术前比较差异有统计学意义[(38.20±8.30)%与(21.43±5.10)%;t =6.527,P<0.05].结论 联合应用多孔钽棒植入与自体外周血干细胞移植治疗ANFH,可显著减轻关节疼痛,明显恢复关节功能,可有效防止股骨头塌陷,延缓病情发展,具有较好的临床效果.%Objective To investigate the effects of Porous tantalum rod implantation and autologous peripheral blood stem cell transplantation on the treatment of avascular necrosis of femoral head (ANFH).Methods Thirty-six cases with early ANFH (19 cases on the left side and 17 cases on the right side) treated by Porous tantalum rod implantation and matrix induced autologous peripheral blood stem cell trans-plantation from July 2009 to March 2011.The 36 cases had osteonecrosis of the femoral head(ONFH) lesions Ⅰ and Ⅱ according to the international bone circulation Research Association (ARCO) classification of ONFH lesion.All patients were followed up for 12-15 months.Clinical evaluation included preoperative and postoperative pain score,the Harris hip score

  11. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    Wiegman, Bruce M.


    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  12. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil


    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1

  13. Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado

    Cannon, S.H.; Kirkham, R.M.; Parise, M.


    A torrential rainstorm on September 1, 1994 at the recently burned hillslopes of Storm King Mountain, CO, resulted in the generation of debris flows from every burned drainage basin. Maps (1:5000 scale) of bedrock and surficial materials and of the debris-flow paths, coupled with a 10-m Digital Elevation Model (DEM) of topography, are used to evaluate the processes that generated fire-related debris flows in this setting. These evaluations form the basis for a descriptive model for fire-related debris-flow initiation. The prominent paths left by the debris flows originated in 0- and 1st-order hollows or channels. Discrete soil-slip scars do not occur at the heads of these paths. Although 58 soil-slip scars were mapped on hillslopes in the burned basins, material derived from these soil slips accounted for only about 7% of the total volume of material deposited at canyon mouths. This fact, combined with observations of significant erosion of hillslope materials, suggests that a runoff-dominated process of progressive sediment entrainment by surface runoff, rather than infiltration-triggered failure of discrete soil slips, was the primary mechanism of debris-flow initiation. A paucity of channel incision, along with observations of extensive hillslope erosion, indicates that a significant proportion of material in the debris flows was derived from the hillslopes, with a smaller contribution from the channels. Because of the importance of runoff-dominated rather than infiltration-dominated processes in the generation of these fire-related debris flows, the runoff-contributing area that extends upslope from the point of debris-flow initiation to the drainage divide, and its gradient, becomes a critical constraint in debris-flow initiation. Slope-area thresholds for fire-related debris-flow initiation from Storm King Mountain are defined by functions of the form Acr(tan ??)3 = S, where Acr is the critical area extending upslope from the initiation location to the

  14. Modeling debris-covered glaciers: extension due to steady debris input

    L. S. Anderson


    Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR. The model reproduces first-order relationships between debris cover, AARs, and glacier surface velocities from glaciers in High Asia. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  15. Mean Velocity Estimation of Viscous Debris Flows

    Hongjuan Yang; Fangqiang Wei; Kaiheng Hu


    The mean velocity estimation of debris flows, especially viscous debris flows, is an impor-tant part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations for computing debris flow velocity with the one-phase flow assumption were re-viewed and used to analyze field data of viscous debris flows. Results show that the viscous debris flow is difficult to be classified as a Newtonian laminar flow, a Newtonian turbulent flow, a Bingham fluid, or a dilatant fluid in the strict sense. However, we can establish empirical formulas to compute its mean velocity following equations for Newtonian turbulent flows, because most viscous debris flows are tur-bulent. Factors that potentially influence debris flow velocity were chosen according to two-phase flow theories. Through correlation analysis and data fitting, two empirical formulas were proposed. In the first one, velocity is expressed as a function of clay content, flow depth and channel slope. In the second one, a coefficient representing the grain size nonuniformity is used instead of clay content. Both formu-las can give reasonable estimate of the mean velocity of the viscous debris flow.

  16. Space debris measurement program at Phillips Laboratory

    Dao, Phan D.; Mcnutt, Ross T.


    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  17. Gradient Index in Wear Debris Image Collection

    LVZhi-yong; GAOHui-liang; YANXin-ping


    In order to solve a problem of oil on-line monitoring, this instrument adopts a prinripium of self-focus lens of Gradieat index fiber( GRIN Len) to design optics system and magnetic circuit. For the magnetic circuit, the monitor can catch particle wear debris in oil. And for the optics circuit. GRIN Len can transfer image of debris to apparatus of gather image, e . g, CCD and camera. And the image of debris is transferred to computer for analyzing seize and physiognomy of debris. The character of the monitor is of micro weight, micro volume andcurve imaging And it is directly pluged into oil to catch image of wear particles.

  18. 基于常水头渗透试验的 PAC 排水和抗堵塞能力%Drain and anti-clogging ability of porous asphalt concrete based on constant head permeability experiment

    王宏畅; 葛辉; 周明刚


    In order to clarify the drain and clogging behaviors of porous asphalts pavement, permea-bility coefficients were tested by using asphalt mixture homemade permeability testing device to sim-ulate multi-cycle drainage clogging experiment of porous asphalt concrete ( PAC) , and the fine ag-gregate with certain gradation was chosen as a plugging agent.The influences of asphalt mixture de-sign parameters such as the porosity, the normal maximum sizes of the aggregate, grading on the drain ability and anti-clogging ability of PAC were researched.The experimental results indicate that the porosity has an obvious influence on PAC drain ability and anti-clogging ability.The normal maximum size of the aggregate has an obvious influence on PAC anti-clogging ability, but no obvi-ous influence on the drain ability.PAC with the coarser graduation has a better performance on drain ability and anti-clogging ability.Asphalt type changes a little on PAC ability of drain and anti-clog-ging ability.The location of blocking occurred is concentrated on the top 40 mm of PAC-13 speci-men, fine particles with sizes of about 0.15 to 2.36 mm are the key particle size causing the clog-ging in the PAC-13 specimen.%为研究多空隙沥青路面的排水堵塞行为特性,通过自制常水头渗透测试装置,模拟多空隙沥青混合料( PAC)的循环堵塞试验,选用具有一定级配的细集料作为堵塞剂,测试其渗透系数.研究空隙率、最大公称粒径、级配类型等变化对PAC的排水及抗堵塞能力的影响规律.结果表明:PAC空隙率越大,其排水能力越强,抗堵塞的能力也越强;PAC的最大粒径变化对其排水能力没有明显的影响,但最大公称粒径较大的PAC试件抗堵塞的效果更好;与细型级配相比,粗型级配PAC的排水及抗堵塞能力更强;多孔沥青混合料PAC-13发生堵塞的位置集中在试件最上部的40 mm内,粒径为0.15~2.36 mm的颗粒则是造成混合料空隙堵塞的关键.

  19. Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian Alps)

    Berti, M.; Genevois, R.; LaHusen, R.; Simoni, A.; Tecca, P.R.


    In 1997 a field monitoring system was installed in Acquabona Creek in the Dolomites (Eastern Italian Alps) to observe the hydrologic conditions for debris flow occurrence and some dynamic properties of debris flow. The monitoring system consists of three remote stations: an upper one located at the head of a deeply-incised channel and two others located downstream. The system is equipped with sensors for measuring rainfall, pore pressures in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore-pressure at the base of the flow. Two video cameras record events at the upper channel station and one video is installed at the lowermost station. During summer 1998, three debris flows (volumes from less than 1000 m3 up to 9000 m3) occurred at Acquabona. The following results were obtained from a preliminary analysis of the data: 1) All of the flows were triggered by rainfalls of less than 1 hour duration, with peak rainfall intensities ranging from 4.8 to 14.7 mm / 10 minute. 2) Debris flows initiated in several reaches of the channel, including the head of the talus slope. 3) The initial surges of the mature flows had a higher solid concentration and a lower velocity (up to 4 m/s) than succeeding, more dilute surges (more than 7 m/s). 4) Total normal stress and pore fluid pressures measured at the base of the flow (mean depth about 1.1 m) were similar (about 15 kPa), indicating a completely liquefied flow. 5) Peak flows entrained debris at a rate of about 6 m3/m of channel length and channel bed scouring was proportional to the local slope gradient and was still evident in the lower channel where the slope was 7??. ?? 2000 Elsevier Science Ltd. All rights reserved.

  20. Porous monofilaments by continuous solid-state foaming

    Krause, B.; Kloth, M.; van der Vegt, N.F.A.; Wessling, Matthias


    We report a new semicontinuous process for the production of porous polyetherimide monofilaments. Dense, carbon-dioxide-saturated fibers are spun at rates up to 1 m/s, and porosity is introduced at the spinning head, which establishes the transition from the pressure cell to the heating bath. The pr

  1. 多孔预置管道股骨头坏死髓芯植入体的设计与制造%Design & Fabrication of Porous Core Implant with Preset Channel Network for Osteonecrosis of the Femoral Head

    边卫国; 李涤尘; 连芩; 张维杰; 朱林重; 王坤正


    Referring to the anatomical characterization of natural spongy bone and channel network in cortical bone, we designed a new pattern of biomimetic implant with preset channel for blood vessel inserting to treat early femoral head necrosis. The surgical procedure was simulated by CAD model. Ceramic stereolithography was applied to fabricate the green part. Other processes, such as dehydration, rinsing, drying and sintering, were taken successively. The final ceramic part kept identical with the engineered part either in the shape or in the internal structure. No deformation or crack happened. Pore size, interconnected pore size, porosity and interconnected porosity of ceramic part could satisfy cellular growth. Spectrum analysis showed that no phase transition or chemical reaction happened during fabrication process. The biocompatibility of the final part kept the same with original β-TCP powder. The compressive strength was 23. 54MPa, close to natural spongy bone. It is an ideal implant to treat early femoral head necrosis because it makes preimplantation of cells and biological factors, blood vessel inserting, early establishment of blood supply possible. At the same time, it could provide enough mechanical support to prevent collapse of femoral head. It could provide a wide clinical foreground.%参照人体松质骨及皮质骨内管道的解剖结构,设计多孔预置血管管道新型的早期股骨头坏死修复植入体模型,并利用计算机辅助设计(CAD)建模模拟外科植入过程.通过陶瓷激光光固化技术,直接生成β-TCP陶瓷胚体,并通过烧结等一系列的工艺流程,成型制造出特定形态与微结构的骨生物多孔预置管道植入体.制成试件无碎裂、变形,内部微结构清晰,尺寸与结构与设计模型基本保持一致.孔径等相关参数可满足细胞生长需求.X线衍射分析显示制造过程中无相变及化学反应发生,不影响β-TCP生物性能.试件抗压强度达到23.54 MPa,与松

  2. Hierarchical Porous Structures

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  3. Sampling supraglacial debris thickness using terrestrial photogrammetry

    Nicholson, Lindsey; Mertes, Jordan


    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  4. Head Start.

    Greenman, Geri


    Discusses an art project in which students created drawings of mop heads. Explains that the approach of drawing was more important than the subject. States that the students used the chiaroscuro technique, used by Rembrandt and Caravaggio, in which light appears out of the darkness. (CMK)

  5. Assessment and prediction of debris-flow hazards

    Wieczorek, Gerald F.; ,


    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  6. Porous silicon gettering

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others


    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  7. Orbital Debris Observations with WFCAM

    Bold, Matthew; Cross, Nick; Irwin, Mike; Kendrick, Richard; Kerr, Thomas; Lederer, Susan; Mann, Robert; Sutorius, Eckhard


    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.

  8. Reflectance Spectra of Space Debris in GEO

    Schildknecht, T.; Vannanti, A.; Krag, H.; Erd, C.

    The space debris environment in the Geostationary Earth Orbit (GEO) region is mostly investigated by means of optical surveys. Such surveys revealed a considerable amount of debris in the size range of 10 centimeter to one meter. Some of these debris exhibit particularly high area-to-mass ratios as derived from the evolution of their orbits. In order to understand the nature and eventually the origin of these objects, observations allowing to derive physical characteristics like size, shape and material are required. Information on the shape and the attitude motion of a debris piece may be obtained by photometric light curves. The most promising technique to investigate the surface material properties is reflectance spectroscopy. This paper discusses preliminary results obtained from spectrometric observations of space debris in GEO. The observations were acquired at the 1-meter ESA Space Debris Telescope (ESASDT) on Tenerife with a low-resolution spectrograph in the wavelength range of 450-960 nm. The target objects were space debris of different types with brightness as small as magnitude 15. Some simple-shaped, intact "calibration objects" with known surface materials like the MSG-2 satellites were also observed. The spectra show shape variations expected to be caused by the different physical properties of the objects. The determination of the possible materials is still in a preliminary phase. Limitations of the acquisition process of the spectra and the subsequent analysis are discussed. Future steps planned for a better characterization of the debris from the observed data are briefly outlined.

  9. Himalayan glacier retreat delayed by debris cover

    Scherler, D.; Bookhagen, B.; Strecker, M. R.


    Variable retreat rates and paucity of mass-balance data complicate a coherent picture of the current state and future fate of Himalayan glaciers. We report frontal changes and remotely-sensed surface velocities from >250 glaciers in the greater Himalayan realm (Hindu Kush, Karakoram, Himalaya, West Kunlun Shan) between 2000 and 2008 that provide evidence for widespread meltdown, which is obscured by debris cover. While debris-free glaciers in Tibet and other low-relief areas have been mainly retreating, debris-covered glaciers in high-relief areas, such as the central Himalaya, were mostly stagnating and in-situ down wasting but not retreating. Only Karakoram glaciers show no signs of stagnation or appreciable retreat, despite high debris cover, suggesting no recent mass loss. Our study shows that regional differences in topographic relief account for substantial differences in debris cover and thus retreat behaviour that need to be considered when comparing glacier retreat rates. The combination of melt rates lowered by debris cover and healthier glaciers in the strongly glaciated Karakoram slows down current glacier wastage in High Asia. Predictions of future water availability and global sea level have so far neglected the effect of debris cover on glacier melt rates and thus likely overestimate the speed of glacier meltdown in the Himalaya and other steep mountain ranges where debris covered glaciers are common.

  10. Estimates of current debris from flux models

    Canavan, G.H.


    Flux models that balance accuracy and simplicity are used to predict the growth of space debris to the present. Known and projected launch rates, decay models, and numerical integrations are used to predict distributions that closely resemble the current catalog-particularly in the regions containing most of the debris.


    Xiangjun FEI; Peng CUI; Yong LI


    Debris flows in nature generally fall into three groups distinct in their grain composition: water-stone flow,or sub-viscous debris flow,dominated by coarse grains; muddy flow,dominated by fine grains;and viscous debris flow composed of grains in large range. Liquid-phase velocity and sedimentary delivery resistance of sub-viscous debris flow have been discussed based on the composition characters of sub-and high-viscous debris flows. It is revealed that the presence of fine grains plays a vital role in affecting resistance and average velocity,particularly when the volume fraction of grains in the flow is relatively high,i.e. Sv > 0.45. Grain-size distribution of viscous debris flow is characterized by a bimodal curve,which explains the properties like high density and low resistance gradient of debris flows. A calculation formula is finally put forward,which has to some extent overcome locality limits and achieved a good agreement with the field observations of debris flows in Southwest China.

  12. Effects of radiation and debris to SSPS

    Utashima, Masayoshi; 歌島 昌由


    This paper studies effects of the radiation and space debris to the Space Solar Power Systems (SSPS). In the first half of the paper, the in-space transportation from low-Earth orbit to geostationary Earth orbit is studied in consideration of these effects. In the second half, the debris impacts to SSPS on geostationary Earth orbit are analyzed.

  13. Polyethylene and metal debris generated by non-articulating surfaces of modular acetabular components.

    Huk, O L; Bansal, M; Betts, F; Rimnac, C M; Lieberman, J R; Huo, M H; Salvati, E A


    We report a prospective study of the liner-metal interfaces of modular uncemented acetabular components as sources of debris. We collected the pseudomembrane from the screw-cup junction and the empty screw holes of the metal backing of 19 acetabula after an average implantation of 22 months. Associated osteolytic lesions were separately collected in two cases. The back surfaces of the liners and the screws were examined for damage, and some liners were scanned by electron microscopy. The tissues were studied histologically and by atomic absorption spectrophotometry to measure titanium content. The pseudomembrane from the screw-cup junction contained polyethylene debris in seven specimens and metal debris in ten. The material from empty screw holes was necrotic tissue or dense fibroconnective tissue with a proliferative histiocytic infiltrate and foreign-body giant-cell reaction. It contained polyethylene debris in 14 cases and metal in five. The two acetabular osteolytic lesions also showed a foreign-body giant-cell reaction to particulate debris. The average titanium levels in pseudomembranes from the screw-cup junction and the empty screw holes were 959 micrograms/g (48 to 11,900) and 74 micrograms/g (0.72 to 331) respectively. The tissue from the two lytic lesions showed average titanium levels of 139 and 147 micrograms/g respectively. The back surfaces of the PE liners showed surface deformation, burnishing, and embedded metal debris. All 30 retrieved screws demonstrated fretting at the base of the head and on the proximal shaft. Non-articular modular junctions create new interfaces for the generation of particulate debris, which may cause granulomatous reaction.

  14. Development of the Space Debris Sensor (SDS)

    Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.


    The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2018. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured at NASA Johnson Space Center's Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 microns to 500 microns in size. This paper describes the features of SDS and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.

  15. Planets, debris and their host metallicity correlations

    Fletcher, Mark


    Recent observations of debris discs, believed to be made up of remnant planetesimals, brought a number of surprises. Debris disc presence does not correlate with the host star's metallicity, and may anti-correlate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here we explore predictions of the alternative Tidal Downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high metallicity stars but release more debris per disruption than their low [M/H] analogs. This predicts no simple relation between debris disc presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars w...

  16. Debris flows: behavior and hazard assessment

    Iverson, Richard M.


    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  17. Development of the Space Debris Sensor (SDS)

    Hamilton, Joe; Liou, J. -C.; Anz-Meador, P.; Matney, M.; Christiansen, E.


    Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is an impact sensor designed to detect and characterize collisions with small orbital debris: from 50 microns to greater than 1millimeter debris size detection; Characterizes debris size, speed, direction, and density. The Space Debris Sensor (SDS) is a flight demonstration of DRAGONS on the International Space Station: Approximately 1 square meter of detection area facing the ISS velocity vector; Minimum two year mission on Columbus External Payloads Facility (EPF); Minimal obstruction from ISS hardware; Development is nearing final checkout and integration with the ISS; Current launch schedule is SpaceX13, about September 2017, or SpaceX14, about Jan 2018.

  18. Debris disc formation induced by planetary growth

    Kobayashi, Hiroshi


    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that ...

  19. Numerical model of characteristics of a particulate debris bed coolability with single phase flow

    Lee, Je Whan


    Designed on the basis of defense-in-depth concept, liquid metal cooled fast reactor, such as KALIMER-600 (Korea Advanced Liquid Metal Reactor) is unlikely to undergo the HCDA (hypothetical core disruptive accident). Because of its inherent safety features, most of the incidents of abnormal operation end with reactor trip and no further progression. Under a postulated, very low probable core meltdown scenario without reactor trip, however, there exists a possibility of re-criticality and vessel melting and the status of debris generated plays an important role. For this reason, the analysis on the ability of post-accident heat removal (PAHR) should be preceded. As a part of this, single phase flow coolability analysis of the particulate debris bed formed at the top of core catcher has been performed to achieve in-vessel fuel retention. The analysis is based on the Ergun equation and Macdonald's work that describe the phenomena of flow through a porous media with Hardee and Nilson's study of temperature relationship of the debris beds. The forming process of particulate debris bed is described and single phase cooling model with numerical results are presented. The analysis was conducted in the condition of three cases, inner and inner+middle and whole core meltdown case. It was proved that the inner and inner+middle core meltdown case could be cooled down with single phase flow. The whole core meltdown case will need some other management. Also, parameter sensitivity test was done.

  20. Erosion of steepland valleys by debris flows

    Stock, J.D.; Dietrich, W.E.


    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  1. Wear Debris Analysis:Fundamental Principle of Wear-Graphy

    陈铭; 王伟华; 殷勇辉; 王成焘


    A new wear-graphy technology was developed, which can simultaneously identify the shape and composition of wear debris, for both metals and non-metals.The fundamental principles of the wear-graphy system and its wear-gram system are discussed here.A method was developed to distribute wear debris on a slide uniformly to reduce overlapping of wear debris while smearing.The composition identification analyzes the wear debris using the scanning electron microscope (SEM) energy spectrum, infrared-thermal imaging and X-ray imaging technology.A wear debris analysis system based on database techniques is demonstrated, and a visible digitized wear-gram is acquired based on the information of wear debris with image collection and processing of the wear debris.The method gives the morphological characteristics of the wear debris, material composition identification of the wear debris, intelligent recognition of the wear debris, and storage and management of wear debris information.

  2. The Debris of Urban Imagination

    Claudio Sgarbi


    Full Text Available “Il Guasto” is an urban context, a place in the heart of the historic city of Bologna which is a mound of debris (resulting from the demolition of an important building, the Bentivoglio Family palace during a popular revolt in the 1506 on top of which a “public garden” was created 40 years ago. The garden is well known in Bologna as “Giardino del Guasto”. Underneath, in between the debris, an underground space (bunker was created to protect the citizen during the bombing of the second world war.The aim of the Design Studio of Azrieli School of Architecture and Urbanism, Carleton University (Ottawa, Canada, DSA Directed Studies Abroad (January 15th - April 13th, 2012, is to exercise creativity and design skills in an historical context bearing some negative connotations. A spell was cast on the site and the negative effects of this spell are still perceivable today after more than five hundred years. This makes us ponder upon the notions of permanence and durability (of architecture and ideas in the urban fabric and in the meanders of human memory. The site, centered on a garden, has been undergoing many changes in use, purpose and meaning and today still requires to be reimagined in the social context of the city and its famous university. [In the menu on the right, ARTICLE TOOLS, in "Supplementary Files" link you can download the .pdf presentations of Carleton University students, related to the workshop on Giardino del Guasto area, developed in Bologna in 2012].

  3. Computed Tomography (CT) -- Head

    Full Text Available ... Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special ... the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a CT ...

  4. Space Debris Removal: A Game Theoretic Analysis

    Richard Klima


    Full Text Available We analyse active space debris removal efforts from a strategic, game-theoretical perspective. Space debris is non-manoeuvrable, human-made objects orbiting Earth, which pose a significant threat to operational spacecraft. Active debris removal missions have been considered and investigated by different space agencies with the goal to protect valuable assets present in strategic orbital environments. An active debris removal mission is costly, but has a positive effect for all satellites in the same orbital band. This leads to a dilemma: each agency is faced with the choice between the individually costly action of debris removal, which has a positive impact on all players; or wait and hope that others jump in and do the ‘dirty’ work. The risk of the latter action is that, if everyone waits, the joint outcome will be catastrophic, leading to what in game theory is referred to as the ‘tragedy of the commons’. We introduce and thoroughly analyse this dilemma using empirical game theory and a space debris simulator. We consider two- and three-player settings, investigate the strategic properties and equilibria of the game and find that the cost/benefit ratio of debris removal strongly affects the game dynamics.

  5. Stochastic porous media equations

    Barbu, Viorel; Röckner, Michael


    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  6. POST Earthquake Debris Management - AN Overview

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  7. Algorithms for the Computation of Debris Risks

    Matney, Mark


    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.

  8. Algorithms for the Computation of Debris Risk

    Matney, Mark J.


    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.

  9. Head Position and Internally Headed Relative Clauses.

    Basilico, David


    Examines "Head Movement" in internally headed relative clauses (IHRCs). The article shows that in some cases, head movement to an external position need not take place and demonstrates that this movement of the head to a sentence-internal position results from the quantificational nature of IHRCs and Diesing's mapping hypothesis (1990, 1992). (56…

  10. Reactor vessel lower head integrity

    Rubin, A.M.


    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  11. RemoveDebris – Mission Analysis for a Low Cost Active Debris Removal Demonstration in 2016

    Joffre, E; Forshaw, J.; Secretin, T; Reynaud, S.; Salmon, T; Aurelien, P; Aglietti, G.


    Contracted by the European Commission in the frame of the EU’s Seventh Framework Programme for Research (FP7), a wide European consortium has been working since 2013 towards the design of a low cost in-orbit demonstration called RemoveDEBRIS. With a targeted launch date in the second quarter of 2016, the RemoveDEBRIS mission aims at demonstrating key Active Debris Removal (ADR) technologies, including capture means (net and harpoon firing on a distant target), relative navigation techniques (...

  12. Search for the Data of Space Debris Initial Distribution

    Ping-Ping, Zhang; Bao-Jun, Pang

    Space debris environment model is one of the kernels of the research on space debris Space debris environment model is based on the data of space debris that is if we have the data of space debris orbit parameter we can determine the state of space debris distribution and then the spacecraft risk assessment can be executed Because numbers of small size space debris cannot be detected or observed we have not small size space debris data The short of small size space debris data leads to the engineering model inaccurate model needs to be updated while in the status of seriously short of data the model can not be updated in time In allusion to the problem of scarcity of data on the basis of modern computer arithmetic this paper is trying to search new data with old data and the results of the model is close to other engineering models Key words space debris data

  13. Debris ingestion by juvenile marine turtles: an underestimated problem.

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva


    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal

    Liou, Jer-Chyi


    The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.

  15. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen


    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  16. Orbital Debris Shape Characterization Project Abstract

    Pease, Jessie


    I have been working on a project to further our understanding of orbital debris by helping create a new dataset previously too complex to be implemented in past orbital debris propagation models. I am doing this by creating documentation and 3D examples and illustrations of the shape categories. Earlier models assumed all orbital debris to be spherical aluminum fragments. My project will help expand our knowledge of shape populations to 6 categories: Straight Needle/Rod/Cylinder, Bent Needle/Rod/Cylinder, Flat Plate, Bent Plate, Nugget/Parallelepiped/Spheroid, and Flexible. The last category, Flexible, is still up for discussion and may be modified. These categories will be used to characterize fragments in the DebriSat experiment.

  17. New solutions for the space debris problem

    Pelton, Joseph N


    Addressing a pressing issue in space policy, Pelton explores the new forms of technology that are being developed to actively remove the defunct space objects from orbit and analyzes their implications in the existing regime of international space law and public international law. This authoritative review covers the due diligence guidelines that nations are using to minimize the generation of new debris, mandates to de-orbit satellites at end of life, and innovative endeavours to remove non-functional satellites, upper stage rockets and other large debris from orbit under new institutional, financial and regulatory guidelines.  Commercial space services currently exceed 100 billion USD business per annum, but the alarming proliferation in the population of orbital debris in low, medium and geosynchronous satellite orbits poses a serious threat to all kinds of space assets and applications. There is a graver concern that the existing space debris will begin to collide in a cascading manner, generating furth...

  18. Remote sensing and characterization of anomalous debris

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.


    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.


    Yuan-Fan TSAI; Huai-Kuang TSAI; Cheng-Yan KAO


    The Chi-Chi earthquake in 1999 caused disastrous landslides, which triggered numerous debris flows and killed hundreds of people. A critical rainfall intensity line for each debris-flow stream is studied to prevent such a disaster. However, setting rainfall lines from incomplete data is difficult, so this study considered eight critical factors to group streams, such that streams within a cluster have similar rainfall lines. A genetic algorithm is applied to group 377 debris-flow streams selected from the center of an area affected by the Chi-Chi earthquake. These streams are grouped into seven clusters with different characteristics. The results reveal that the proposed method effectively groups debris-flow streams.

  20. Molecular Gas in Young Debris Disks

    Moór, Attila; Kóspál, Ágnes; Ábrahám, Péter; Juhász, Attila; Apai, Dániel; Csengeri, Timea; Grady, Carol; Henning, Thomas; Kiss, Csaba; Pascucci, Ilaria


    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. So far only a very few debris disks with measurable gas component have been known. We carried out a survey with the APEX radio telescope to detect molecular gas at millimeter wavelengths in 28 infrared-luminous young debris disks, and discovered two new systems with substantial amount of CO. Motivated to understand the origin, physics, and evolutionary status of the gas in these systems we observed one of them, HD 21997, with ALMA and Herschel. Our results suggest that HD 21997 may be a hybrid system where secondary debris dust and residual primordial gas coexist. This poses a serious question to the current paradigm, since the age of the system (30 Myr) significantly exceeds model predictions for disk clearing and the ages of the oldest transitional disks.

  1. Wear debris in cemented total hip arthroplasty.

    Huo, M H; Salvati, E A; Buly, R L


    One of the most prevalent clinical problems in long-term follow up of total hip arthroplasty patients is loosening of prosthetic fixation. Factors contributing to mechanical failure of total hip reconstruction are complex and multiple. It has become increasingly apparent that wear debris from the prosthetic components may contribute significantly to this process. The authors summarize some of the current concepts concerning the detrimental effects of metallic debris in total hip arthroplasty.

  2. Expanding capabilities of the debris analysis workstation

    Spencer, David B.; Sorge, Marlon E.; Mains, Deanna L.; Shubert, Ann J.; Gerhart, Charlotte M.; Yates, Ken W.; Leake, Michael


    Determining the hazards from debris-generating events is a design and safety consideration for a number of space systems, both currently operating and planned. To meet these and other requirements, the United States Air Force (USAF) Phillips Laboratory (PL) Space Debris Research Program has developed a simulation software package called the Debris Analysis Workstation (DAW). This software provides an analysis capability for assessing a wide variety of debris hazards. DAW integrates several component debris analysis models and data visualization tools into a single analysis platform that meets the needs for Department of Defense space debris analysis, and is both user friendly and modular. This allows for studies to be performed expeditiously by analysts who are not debris experts. The current version of DAW includes models for spacecraft breakup, debris orbital lifetime, collision hazard risk assessment, and collision dispersion, as well as a satellite catalog database manager, a drag inclusive propagator, a graphical user interface, and data visualization routines. Together they provide capabilities to conduct several types of analyses, ranging from range safety assessments to satellite constellation risk assessment. Work is progressing to add new capabilities with the incorporation of additional models and improved designs. The existing tools are in their initial integrated form, but the 'glue' that will ultimately bring them together into an integrated system is an object oriented language layer scheduled to be added soon. Other candidate component models under consideration for incorporation include additional orbital propagators, error estimation routines, other dispersion models, and other breakup models. At present, DAW resides on a SUNR workstation, although future versions could be tailored for other platforms, depending on the need.

  3. DebriSat Pre Preshot Laboratory Analyses


    to be line of sight since witness plates protected by Whipple shield showed little change. LWIR spectral features from the deposited material are...Radhakrishnan Charles Griffice C. C. Wan UV -VIS-NIR Spectroscopy Dianna Alaan FIB/TEM Sample Preparation Miles Brodie © The Aerospace Corporation 2015 DebriSat...conditions responsible for the darkening. – UV -VIS-NIR-LWIR reflectance spectra were measured of post test debris for comparison with pre test

  4. Pore Water Pressure Contribution to Debris Flow Mobility

    Chiara Deangeli


    Problem statement: Debris flows are very to extremely rapid flows of saturated granular soils. Two main types of debris flow are generally recognized: Open slope debris flows and channelized debris flows. The former is the results of some form of slope failures, the latter can develop along preexisting stream courses by the mobilization of previously deposited debris blanket. The problem to be addressed is the influence of the mode of initiation on the subsequent mechanism of propagation. In ...

  5. Direct Detection of Dark Matter Debris Flows

    Kuhlen, Michael; Spergel, David N


    Tidal stripping of dark matter from subhalos falling into the Milky Way produces narrow, cold tidal streams as well as more spatially extended "debris flows" in the form of shells, sheets, and plumes. Here we focus on the debris flow in the Via Lactea II simulation, and show that this incompletely phase-mixed material exhibits distinctive high-velocity behavior. Unlike tidal streams, which may not necessarily intersect the Earth's location, debris flow is spatially uniform at 8 kpc and thus guaranteed to be present in the dark matter flux incident on direct detection experiments. At Earth-frame velocities greater than 450 km/s, debris flow comprises more than half of the dark matter at the Sun's location, and up to 80% at even higher velocities. Therefore, debris flow is most important for experiments that are particularly sensitive to the high velocity tail of the dark matter distribution, such as searches for light or inelastic dark matter or experiments with directional sensitivity. We show that debris flo...

  6. Chaotic Dispersal of Tidal Debris

    Price-Whelan, Adrian M; Valluri, Monica; Pearson, Sarah; Kupper, Andreas H W; Hogg, David W


    Several long, dynamically cold stellar streams have been observed around the Milky Way Galaxy, presumably formed from the tidal disruption of globular clusters. In integrable potentials---where all orbits are dynamically regular---tidal debris phase-mixes close to the orbit of the progenitor system. However, cosmological simulations of structure formation suggest that the Milky Way's dark matter halo is expected not to be fully integrable; an appreciable fraction of orbits will be chaotic. This paper examines the influence of chaos on the phase-space morphology of cold tidal streams. We find very stark results: Streams in chaotic regions look very different from those in regular regions. We find that streams (simulated using test particle ensembles of nearby orbits) can be sensitive to chaos on a much shorter time-scale than any standard prediction (from the Lyapunov or frequency-diffusion times). For example, on a weakly chaotic orbit with a chaotic timescale predicted to be >1000 orbital periods (>1000 Gyr)...

  7. Method of porous diamond deposition on porous silicon

    Baranauskas, Vitor; Peterlevitz, Alfredo C.; Chang, Dahge C.; Durrant, Steven F.


    In this paper, we discuss the experimental results of the fabrication of porous diamond/porous silicon and porous diamond structures by chemical vapor deposition of diamond over a skeleton of porous silicon, replicating the porous surface geometry around the Si pores and also creating new porous diamond structures. Scanning electron microscopy (SEM) revealed that the diamond nuclei are deposited on the top of the porous silicon skeleton, forming isolated grains in the first nucleation stages, and then growing like the usual structure of most ceramic materials, making a self-sustained porous diamond structure. Raman spectroscopy revealed that the diamond films are of good quality, close to that of diamond films grown on crystalline silicon.

  8. Global analysis of anthropogenic debris ingestion by sea turtles.

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy


    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  9. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    Herreid, Sam; Pellicciotti, Francesca


    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  10. Is HEADS in our heads?

    Boisen, Kirsten A; Hertz, Pernille Grarup; Blix, Charlotte


    BACKGROUND: Outpatient clinic visits are a window of opportunity to address health risk behaviors and promote a healthier lifestyle among young people. The HEADS (Home, Education, Eating, Activities, Drugs [i.e. substance use including tobacco, alcohol, and illegal drugs], Sexuality [including...... care professionals participated. We found only small reported differences between staff and young patients regarding whether home, education, and activity were addressed. However, staff reported twice the rate of addressing smoking, alcohol, illegal drugs, sexuality, and contraception compared to young...... patients. Young patients reported that smoking, alcohol, illegal drugs, sexuality, and contraception were addressed significantly more at adult clinics in comparison to pediatric clinics. After controlling for age, gender and duration of illness, according to young patients, adjusted odds ratios...

  11. Overview of the space debris environment

    Meshishnek, M. J.


    There is a component of the space environment that is man-made pollution, termed 'space debris' it exists at all inclinations and, primarily, at altitudes of roughly 350 km to 2000 km. The size of this debris ranges from several meters to a fraction of a micrometer in diameter, and the particle distribution follows an inverse power law, with the smaller size component far exceeding that of the larger. Debris is composed primarily of alumina from solid rocket motor exhausts, aluminum from spacecraft structures, and zinc and titanium oxides from thermal control coatings. The accepted model of the space debris environment is that of Kessler et al., a complex model that predicts the number of particles that will impact a surface as a function of altitude, inclination, solar cycle, and particle diameter, as well as their collision velocities. Recent data from LDEF has demonstrated both the accuracy and shortcomings of the Kessler model. Measured debris impactor fluxes are in good agreement with the model for ram surfaces. However, predictions of the model for other surfaces of a spacecraft are less accurate, most notably for the wake or trailing side. While the Kessler model is appropriate for long-term, average flux predictions, spatial-temporal impact fluxes measured on LDEF dramatically illustrated the presence of strong debris clouds that do not dissipate quickly in space and will encounter an orbiting spacecraft cyclically and repeatedly over its lifetime. LDEF data has also indicated the presence of debris in elliptical orbits, a fact not predicted by the Kessler model. This fact is responsible for the discrepancy between measured impact fluxes and predictions on trailing edge surfaces.

  12. Porous block nanofiber composite filters

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold


    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  13. Porous silicon gettering

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others


    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  14. Linking social drivers of marine debris with actual marine debris on beaches.

    Slavin, Chris; Grage, Anna; Campbell, Marnie L


    The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved.

  15. Debris mitigation techniques for petawatt-class lasers in high debris environments

    Jens Schwarz


    Full Text Available This paper addresses debris mitigation techniques for two different kinds of debris sources that are found in the high-energy density community. The first debris source stems from the laser-target interaction and this debris can be mitigated by avoiding a direct line of sight to the debris source (e.g. by using a sacrificial fold mirror or by inserting a thin debris shield. Several thin film debris shields have been investigated and nitrocellulose was found to be the best suited. The second debris source originates from an external high-energy density driver or experiment. In our specific case, this is the Z accelerator, a Z-pinch machine that generates 2 MJ of x rays at 300 TW. The center section of the Z accelerator is an extremely violent environment which requires the development of novel debris mitigation approaches for backlighting with petawatt lasers. Two such approaches are presented in this paper. First, a self-closing focusing cone. In our facility, the focused beam on target is fully enclosed inside a solid focusing cone. In the first debris mitigation scenario, the last part of the cone has a “flapper” that should seal the cone when the pressure wave from the Z-pinch explosion hits it. In the second scenario, an enclosed target assembly is used, with the last part of the focusing cone connected to a “target can” which houses the laser target. The laser produced x rays for backlighting escape through a 3 mm diameter hole that is protected by an x-ray filter stack. Both techniques are discussed in detail and have been successfully tested on the Z accelerator.

  16. Computed Tomography (CT) -- Head

    Full Text Available ... of the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT scanning of the head is typically ...

  17. Computed Tomography (CT) -- Head

    Full Text Available ... of the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT scanning of the head is typically ...

  18. Debris-flow mobilization from landslides

    Iverson, R.M.; Reid, M.E.; LaHusen, R.G.


    Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.

  19. Laser Systems for Orbital Debris Removal

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A


    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  20. Space Debris Reentry Analysis Methods and Tools

    WU Ziniu; HU Ruifeng; QU Xi; WANG Xiang; WU Zhe


    The reentry of uncontrolled spacecraft may be broken into many pieces of debris at an altitude in the range of 75-85 km.The surviving fragments could pose great hazard and risk to ground and people.In recent years,methods and tools for predicting and analyzing debris reentry and ground risk assessment have been studied and developed in National Aeronautics and Space Administration(NASA),European Space Agency(ESA) and other organizations,including the group of the present authors.This paper reviews the current progress on this topic of debris reentry briefly.We outline the Monte Carlo method for uncertainty analysis,breakup prediction,and parameters affecting survivability of debris.The existing analysis tools can be classified into two categories,i.e.the object-oriented and the spacecraft-oriented methods,the latter being more accurate than the first one.The past object-oriented tools include objects of only simple shapes.For more realistic simulation,here we present an object-oriented tool debris reentry and ablation prediction system(DRAPS) developed by the present authors,which introduces new object shapes to 15 types,as well as 51 predefined motions and relevant aerodynamic and aerothermal models.The aerodynamic and aerothermal models in DRAPS are validated using direct simulation Monte Carlo(DSMC) method.

  1. Head Impact Laboratory (HIL)

    Federal Laboratory Consortium — The HIL uses testing devices to evaluate vehicle interior energy attenuating (EA) technologies for mitigating head injuries resulting from head impacts during mine/...

  2. Debris flow monitoring experience in the Cancia basin (Dolomites, Northeast Italian Alps).

    Stancanelli, Laura; Bernard, Martino; Gregoretti, Carlo; Berti, Matteo; Simoni, Alessandro; Lanzoni, Stefano


    The monitoring campaign presented here aims to understand the dynamics of sediment transport processes in small head-water catchments of the Italian Alps and to evaluate the rainfall thresholds for debris flow triggering. The monitored basin of Cancia is located on the Eastern Italian Dolomites, in the Belluno Province. In particular, it is situated on the left side on the Boite river valley, next to the Borca di Cadore village, and is delimited by the western slope of the Mt. Antelao. The drainage area is 1.8 km2 while the elevation ranges from 2451 m a.s.l. to 880 m a.s.l., with a slope varying from 30-40° in the upper part to 10-15° in the lower part (fan area). The basin is characterized by a lithology very common in the Italian Alps, which consist of high permeability, poorly sorted rock debris, containing boulders up to 3-4 m in diameter, and include heterogeneous scree, alluvium and old debris flow deposits. The spatial distribution of sediment is characterized by: an upper part where prevails the presence of rocks, a medium part characterized by poorly sorted rock debris and fine sediment material, and a downstream part plenty of sediment material The Cancia basin is prone to stony debris flows, owing to the plenty availability of loose and coarse sediments and frequent convective events. In particular, the smaller grain sized material is provided by the erosion of lateral slope, while gravel, pebbles and cobbles are provided by the upper part of the basin, characterized by rocky material. The precipitation regime is marked by rainfalls of short duration and high intensity, usually occurring in the summer period. The debris flow channel has began to be surveyed in August 2009 to identify the debris flow generation area. At the beginning of July 2013 topographical surveys of the channel downstream the triggering area began in order to investigate the morphological evolution of the debris flow channel from 2013 until 2015. Moreover, at the beginning of

  3. Hydrophobic, Porous Battery Boxes

    Bragg, Bobby J.; Casey, John E., Jr.


    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  4. Amplification of postwildfire peak flow by debris

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.


    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  5. Signatures of massive collisions in debris discs

    Kral, Quentin; Augereau, Jean-Charles; Boccaletti, Anthony; Charnoz, Sebastien


    Violent stochastic collisional events have been invoked as a possible explanation for some debris discs displaying pronounced asymmetries or having a great luminosity excess. So far, no thorough modelling of the consequences of such events has been carried out, mainly because of the extreme numerical challenge of coupling the dynamical and collisional evolution of dust. We perform the first fully self-consistent modelling of the aftermath of massive breakups in debris discs. We follow the collisional and dynamical evolution of dust released after the breakup of a Ceres-sized body at 6 AU from its central star. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We use the recently developed LIDT-DD code (Kral et al., 2013), which handles the coupled collisional and dynamical evolution of debris discs. The main focus is placed on the complex interplay between destructive collisions, Keplerian dynamics and radiat...

  6. Parametric analysis: SOC meteoroid and debris protection

    Kowalski, R.


    The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.

  7. Clumps and Axisymmetric Features in Debris Discs

    Jiang, Ing-Guey


    This paper studied the structures of debris discs, focusing on the conditions that can form an axisymmetric-looking outer disc from systems with inner clumps. The main conclusion was that as long as the dominated dust grains are smaller than the blowout size, it is easy to form an axisymmetric-looking outer debris disc, which is part of a quasi-steady state of the whole system. This quasi-steady state is established through the balance between grain generations and a continuous out-going grain flow. Assuming there is an event that starts planetesimal collisions and the corresponding grain generations, this balance can be approached in a few thousand years. This result suggested that a quasi-steady-state picture could solve the possible mass budget problem of Vega's outer debris disc.

  8. Heading and head injuries in soccer.

    Kirkendall, D T; Jordan, S E; Garrett, W E


    In the world of sports, soccer is unique because of the purposeful use of the unprotected head for controlling and advancing the ball. This skill obviously places the player at risk of head injury and the game does carry some risk. Head injury can be a result of contact of the head with another head (or other body parts), ground, goal post, other unknown objects or even the ball. Such impacts can lead to contusions, fractures, eye injuries, concussions or even, in rare cases, death. Coaches, players, parents and physicians are rightly concerned about the risk of head injury in soccer. Current research shows that selected soccer players have some degree of cognitive dysfunction. It is important to determine the reasons behind such deficits. Purposeful heading has been blamed, but a closer look at the studies that focus on heading has revealed methodological concerns that question the validity of blaming purposeful heading of the ball. The player's history and age (did they play when the ball was leather and could absorb significant amounts of water), alcohol intake, drug intake, learning disabilities, concussion definition and control group use/composition are all factors that cloud the ability to blame purposeful heading. What does seem clear is that a player's history of concussive episodes is a more likely explanation for cognitive deficits. While it is likely that the subconcussive impact of purposeful heading is a doubtful factor in the noted deficits, it is unknown whether multiple subconcussive impacts might have some lingering effects. In addition, it is unknown whether the noted deficits have any affect on daily life. Proper instruction in the technique is critical because if the ball contacts an unprepared head (as in accidental head-ball contacts), the potential for serious injury is possible. To further our understanding of the relationship of heading, head injury and cognitive deficits, we need to: learn more about the actual impact of a ball on the

  9. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    Chen, C.-L.; Major, J.J.


    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  10. Effect of perturbations on debris-to-debris orbital transfers: A quantitative analysis

    Kumar, Kartik; Hekma, Enne; Agrawal, Abhishek; Topputo, Francesco


    We investigated the applicability of the Lambert solver (Izzo, 2014) for preliminary design of Multi-Target Active Debris Removal missions. Firstly, we computed ≈25 million debris-to-debris transfers using the Lambert solver for selected sets of debris objects in Low Earth Orbit, Geostationary Transfer Orbit, and Geosynchronous Orbit. Subsequently, we propagated the departure states of the Lambert transfers below selected ΔV cut-offs using the SGP4/SDP4 propagator (Vallado et al., 2006). We recorded the arrival position and velocity error vectors incurred by neglecting perturbations and analyzed the results for each orbital regime. Our results indicate that perturbations can play a significant role in determining the feasibility of debris-to-debris transfers. By using the Lambert solver and neglecting perturbations, the errors in the arrival position and velocity for individual legs can be large. The largest errors were obtained for transfers between debris objects in Sun-Synchronous Orbit (O (100) km error in magnitude of position vector and O (0.1) km/s error in magnitude of velocity vector). Hence, solely employing the Lambert solver to rank transfer legs could lead to incorrect choices for sequencing of multi-target trajectories. This is particularly relevant for transfers in Low Earth Orbit, where the effects of perturbations are the strongest.

  11. Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington

    Scott, Kevin M.; Vallance, J.W.


    Mount Rainier volcano has produced many large debris flows and debris avalanches during the last 10,000 years. These flows have periodically traveled more than 100 kilometers from the volcano to inundate parts of the now-populated Puget Sound Lowland. Meteorological floods also have caused damage, but future effects will be partly mitigated by reservoirs. Mount Rainier presents the most severe flow risks of any volcano in the United States. Volcanic debris flows (lahars) are of two types: (1) cohesive, relatively high clay flows originating as debris avalanches, and (2) noncohesive flows with less clay that begin most commonly as meltwater surges. Three case histories represent important subpopulations of flows with known magnitudes and frequencies. The risks of each subpopulation may be considered for general planning and design. A regional map illustrates the extent of inundation by the case-history flows, the largest of which originated as debris avalanches and moved from Mount Rainier to Puget Sound. The paleohydrologic record of these past flows indicates the potential for inundation by future flows from the volcano. A map of the volcano and its immediate vicinity shows examples of smaller debris avalanches and debris flows in the 20th century.

  12. Experiments of ECCS strainer blockage and debris settling in suppression pools

    Hecker, G.E.; Johnson, A.B.; Murthy, P.; Padmanabhan


    If a rupture occurs in a nuclear power station pipe that leads to or from the reactor pressure vessel, the resultant Loss of Coolant Accident (LOCA) would initiate a chain of events involving complex flow phenomena. In a Boiling Water Reactor (BWR), the steam or liquid pipe break pressurizes the dry well, forcing the inert containment gases and steam through downcomers into the suppression pool, thoroughly mixing any particulates and pipe insulation debris carried with the gas flow to the pool. As the steam flow decreases, its unsteady condensation at the end of the downcomers (Condensation Oscillation and Chugging) produces continued water motion in the suppression pool and downcomers. During the blowdown event, high pressure and then low pressure pumps automatically start injecting water from the suppression pool into the reactor to keep its temperature under control. Proper functioning of this Emergency Core Cooling System (ECCS) is critical for the first 30 minutes or so, before operators have time to consider and align alternative sources of cooling water. A major concern for proper operation of the ECCS is the effect of fragmented insulation and plant particulates on the head loss at pump suction strainers. Sufficient loss could exceed the NPSH margin, causing cavitation with a resultant loss of pump capacity and longevity. The bead loss increases with the mass of debris accumulated on the pump strainers, which in turn is dependent on the debris concentration versus time in the suppression pool. This paper describes two sets of experiments that quantified the strainer head loss. One set of experiments considered the mixing and settling of fibrous insulation debris and fine iron oxide particles in the suppression pool during and after chugging. These tests used a reduced scale facility which duplicated the kinetic energy per unit water volume to define the concentration of the actual materials in the pool versus time.

  13. Converging posterior distributions in space debris monitoring

    Lasanen, Sari [Department of Mathematical Sciences, University of Oulu, 90014 University of Oulu (Finland)], E-mail:


    Ground-based radars monitor the falling space debris in order to prevent collisions with spacecrafts and satellites. Experiments with European Incoherent Scatter (EISCAT) Scientific Association radars using new data acquisition equipment suitable for space debris detection have raised a question what happens to a Bayesian solution when the sampling frequency of the reflected signal is increased. Assuming slightly idealized measurements, we show that the posterior densities converge in this case. This shows that the sampling method suits well for the statistical inverse problem.

  14. Apparatus for controlling molten core debris. [LMFBR

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.


    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  15. TRAC laboratory monitoring of Chernobyl radioactive debris

    Sigg, R.A.


    A severe accident occurred at the Chernobyl nuclear power plant number 4 in the Soviet Union on April 25, 1986. An explosion released large amounts of radioactive debris, primarily fission products, to the atmosphere. As winds carried debris from the Soviet Union, scientists in Europe and the United States reported detecting fission product activities in air samples. Monitoring by the Tracking Radioactive Atmospheric Contaminants (TRAC) mobile laboratory showed concentrations in the Southeastern United States were well below those considered hazardous. This document provides details of this monitoring effort.

  16. Patterns In Debris Disks: No Planets Required?

    Kuchner, Marc


    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to hidden exoplanets. These patterns have been crucial for constraining the masses and orbits of these planets. But adding a bit of gas to our models of debris disks--too little gas to detect--seems to alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. Can we still use dust patterns to find hidden exoplanets?

  17. Discrete Element Modelling of Floating Debris

    Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed


    Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical

  18. Debris Flow Dam Formation in Southeast Tibet

    CHENG Zunlan; WU Jishan; GENG Xueyong


    Glaciers with their deposits abound in the alpine areas of Southeast Tibet. Large debris flows occur frequently from these deposits and form dams that block streams. In this paper, 3 events of large debris flows reported in Peilong Valley located in Southeast Tibet, and which resulted 2 blocking dams resulted, are discussed in details, focusing on the major factors controlling dam formation. The results shows that the first surge group caused by snow and ice avalanches, ice-lake breaks, and large-scale landslides, with a high peak discharge and high velocity, and an abundance of boulders, are most likely to form blocking dams.

  19. Channel geometry change of a first-order stream after a small debris flow in Ashio Mountains of central Japan

    Hattanji, T.; Wasklewicz, T.


    We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.

  20. Enabling Large-body Active Debris Removal Project

    National Aeronautics and Space Administration — Research suggests that: (1) orbital debris has reached the point that, even with no future launches, collisions among large-body debris will lead to unstable growth...

  1. Enabling Large-body Active Debris Removal Project

    National Aeronautics and Space Administration — Research suggests that: (1) orbital debris has reached an unstable point whereby, even with no future launches, the amount of debris will continue to grow through...

  2. Porous bioactive materials

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a network of smaller (<10

  3. Post-Main Sequence Evolution of Debris Discs

    Bonsor, Amy; Wyatt, Mark


    The population of debris discs on the main sequence is well constrained, however very little is known about debris discs around evolved stars. In this work we provide a theoretical framework that considers the effects of stellar evolution on debris discs; firstly considering the evolution of an individual disc from the main sequence through to the white dwarf phase, then extending this to the known population of debris discs around main sequence A stars. It is found that discs around evolved ...

  4. Influence of fine sediment on the fluidity of debris flows

    HOTTA, Norifumi; Kaneko, Takahiro; Iwata, Tomoyuki; Nishimoto, Haruo


    Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the fluidity of laboratory debris flows consisting of particles with various diameters...

  5. Debris flow relationships in the Central Spanish Pyrenees

    Beguería, S.; A. Lorente; Garcia-Ruiz, J. M.


    Debris flows represent the most active geomorphic risk in mountainous areas, affecting infrastructures, human settlements and touristic resorts (Takahashi et al., 1981). For this reason, much effort has been put in assessing where debris flows occur and ranking the factors that trigger them, but also in defining two essential parameters in establishing debris flow hazards: what is the distance travelled by debris flows (especially the runout distance), and what is the volume of material carri...

  6. Graded/Gradient Porous Biomaterials

    Xigeng Miao


    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  7. Review of gas and dust in debris discs

    Kral, Q.


    This proceeding summarises a talk given on the state-of-the-art of debris disc modelling. We first review the basics of debris disc physics, which is followed by a short overview of the state-of-the-art in terms of modelling dust and gas in debris disc systems.

  8. Review of gas and dust in debris discs

    Kral, Quentin


    This proceeding summarises a talk given on the state-of-the-art of debris disc modelling. We first review the basics of debris disc physics, which is followed by a short overview of the state-of-the-art in terms of modelling dust and gas in debris disc systems.

  9. Space Debris Research Activities In China In 2007

    Li Ming


    @@ The year 2007 was important for us to carry out the Eleventh Five-Year Space Debris Research Action Plan. Through the unremitting efforts of all space debris project research groups, we completed the space debris research projects in 2007 successfully, among which we made the substantive progress in many projects, which has laid a good foundation for the continuous research in the future.

  10. Uncertainties in Predicting Debris Flow Hazards Following Wildfire

    Hyde, K.D.; Riley, Karin; Stoof, C.R.


    Wildfire increases the probability of debris flows posing hazardous conditions where values-at-risk exist downstream of burned areas. Conditions and processes leading to postfire debris flows usually follow a general sequence defined here as the postfire debris flow hazard cascade: biophysical setti

  11. Monitoring the abundance of plastic debris in the marine environment

    Ryan, P.G.; Moore, C.J. C.J.; Franeker, van J.A.; Moloney, C.L.


    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and

  12. Review of gas and dust in debris discs

    Kral, Quentin


    This proceeding summarises a talk given on the state-of-the-art of debris disc modelling. We first review the basics of debris disc physics, which is followed by a short overview of the state-of-the-art in terms of modelling dust and gas in debris disc systems.

  13. Provision, transport and deposition of debris in urban waterways

    Deonie Allen; Scott Arthur; Nicolas Wallerstien; Janice Blanc; Heather Haynes


    abstract The transport of woody debris from urban surfaces, through local urban waterways, to constriction and blockage risk locations is not well understood. Flume trials have identified debris and water-course dimensions as influential factors on debris movement, and large woody debris movement has been traced in the natural rural environment using time series photography, active transponders, and field surveys. Using novel passive transponder technology, small woody debris has been traced through an urban case study watercourse to establish key influential factors on urban debris transport. Through incorporating urban debris transport detail into the source and deposition process, a complete picture of urban debris transport can be created, supporting effective culvert and trash screen design, watercourse maintenance and blockage risk assessment. This case study highlights that factors beyond watercourse depth and velocity are influential in debris movement within an urban watercourse. Debris dimension and source location upstream are shown to significantly affect the potential for debris to reach a downstream constriction, illustrating a possible distance limitation in nuisance flow debris blockage risk.

  14. On the Solar System-Debris Disk Connecction

    Moro-Martin, Amaya


    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  15. Systematic Screening of Adverse Reactions to Metal Debris after Recap-M2A-Magnum Metal-on-Metal Total Hip Arthroplasty.

    Mäntymäki, H; Junnila, M; Lankinen, P; Seppänen, M; Vahlberg, T; Mäkelä, K T


    An adverse reaction to metal debris is a known complication after large diameter head metal-on-metal total hip arthroplasty. However, the failure rate varies depending on the implant design. Therefore, we investigated the prevalence of adverse reaction to metal debris, as well as the symptoms and risk factors after undergoing a ReCap-M2a-Magnum large diameter head metal-on-metal total hip arthroplasty. Between 2005 and 2012, 1188 patients (1329 hips) underwent ReCap-M2a-Magnum total hip arthroplasty at our institution. Systematic screening for adverse reaction to metal debris was arranged using the Oxford Hip Score questionnaire, hip and pelvic radiographs, and assessments of the serum chromium and cobalt ion levels. Clinical evaluation and magnetic resonance imaging were performed for the symptomatic patients, as well as those with either chromium or cobalt ion levels ⩾5 µg/L. The prevalence of adverse reaction to metal debris after ReCap-M2a-Magnum total hip arthroplasty was assessed, and the risk factors for adverse reaction to metal debris were evaluated using logistic regression. The mean follow-up time was 5.2 (0.003-9.1) years. This study was an extension of a previous study conducted at our institution with 80 patients. In total, 33 patients (33 hips, 2.5% of all hips) required a revision operation due to adverse reaction to metal debris. Moreover, 157 hips exhibited definitive adverse reaction to metal debris, but a revision operation was not performed (157 of 1329 hips, 11.8% of all hips). Overall, 190 out of 1329 (14.3%) hips had definitive adverse reaction to metal debris. Pain, subluxation sensation, clicking, swelling, a small head size, and a fair/poor Oxford Hip Score were associated with definitive adverse reaction to metal debris. We found a high prevalence of adverse reaction to metal debris in the ReCap-M2a-Magnum total hip arthroplasty patients in this study; however, most of the patients did not require revision operations.

  16. Convection in Porous Media

    Nield, Donald A


    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  17. Europium-155 in Debris from Nuclear Weapons

    Aarkrog, Asker; Lippert, Jørgen Emil


    The lithium-drifted germanium detector enables determination of europium-155 on a routine basis in environmental samples contaminated with debris from nuclear weapons. From measurements of europium-155, cesium-144, and strontium-90 in air filters collected between 1961 and 1966, the yield...

  18. Spacecraft Robustness to Orbital Debris: Guidelines & Recommendations

    Heinrich, S.; Legloire, D.; Tromba, A.; Tholot, M.; Nold, O.


    The ever increasing number of orbital debris has already led the space community to implement guidelines and requirements for "cleaner" and "safer" space operations as non-debris generating missions and end of mission disposal in order to get preserved orbits rid of space junks. It is nowadays well-known that man-made orbital debris impacts are now a higher threat than natural micro-meteoroids and that recent events intentionally or accidentally generated so many new debris that may initiate a cascade chain effect known as "the Kessler Syndrome" potentially jeopardizing the useful orbits.The main recommendations on satellite design is to demonstrate an acceptable Probability of Non-Penetration (PNP) with regard to small population (risks with the introduction of new of probability and criticality classification scales. * Examples of design risks assessment with regard to the specific MMOD impact risks. * Lessons learnt on robustness survivability of systems (materials, shieldings, rules) coming from other industrial domains (automotive, military vehicles) * Guidelines and Recommendations implementable on satellite systems and mechanical architecture.

  19. Numerical modeling of the debris flows runout

    Federico, Francesco; Cesali, Chiara


    Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  20. Molecular gas in young debris disks

    Moór, A; Juhász, A; Kiss, Cs; Pascucci, I; Kóspál, Á; Apai, D; Henning, Th; Csengeri, T; Grady, C


    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas, and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J=3-2 survey with Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities...

  1. Orbiting Space Debris: Dangers, Measurement and Mitigation


    sure how many undetectable particles the fragmentation of a satellite creates. Actual ground-based tesis have been conducted in an attempt to...conducted by the Jet Propulsion Laboratory lo measure the presence of 0.2 lo 0.5 cm and 0.5 to 2 cm sized debris. The Areclbo radar in Puerto Rico

  2. Porous Electrode Studies.


    representation and analysis for their observed current distributions. Simonsson won the young author’s award of the Electrochemical Society for his paper...and T. Katan, Proc. Symp. Energy Storage and Conversion, the Electrochemical Society 77-6, 770 (1977) The optimum thickness of porous electrodes is...Chloride Electrodes; Surface Morphology on Charging and Dis- charging," T. Katan, S. Szpak, and D. N. Bennion, The Electrochemical Society , 143rd National

  3. Debris measure subsystem of the nanosatellite IRECIN

    Ferrante, M.; di Ciolo, L.; Ortenzi, A.; Petrozzi, M.; del Re, V.


    The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes an Electronic real-time system that acquires space debris measures. It uses a piezo-electric sensor. The described device is a subsystem on board of the IRECIN nanosatellite composed mainly by a r.i.s.c. microprocessor, an electronic part that interfaces to the debris sensor in order to provide a low noise electrical and suitable range to ADC 12 bit converter, and finally a memory in order to store the data. The microprocessor handles the Debris Measure System measuring the impacts number, their intensity and storing their waves form. This subsystem is able to communicate with the other IRECIN subsystems through I2C Bus and principally with the "Main Microprocessor" subsystem allowing the data download directly to the Ground Station. Moreover this subsystem lets free the "Main Microprocessor Board" from the management and charge of debris data. All electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Development Group. The proposed system is implemented on the IRECIN, a modular nanosatellite weighting less than 1.5 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are added for eclipse operations. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin-stabilized with the spin-axis normal to the orbit. debris and micrometeoroids mass and velocity.

  4. Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate

    Banerjee, Argha


    Recent geodetic mass-balance measurements reveal similar thinning rates on glaciers with or without debris cover in the Himalaya-Karakoram region. This comes as a surprise as a thick debris cover reduces the surface melting significantly due to its insulating effects. Here we present arguments, supported by results from numerical flowline model simulations of idealised glaciers, that a competition between the changes in the surface mass-balance forcing and that of the emergence/submergence velocities can lead to similar thinning rates on these two types of glaciers. As the climate starts warming, the thinning rate on a debris-covered glacier is initially smaller than that on a similar debris-free glacier. Subsequently, the rate on the debris-covered glacier becomes comparable to and then larger than that on the debris-free one. The time evolution of glacier-averaged thinning rates after an initial warming is strongly controlled by the time variation of the corresponding emergence velocity profile.

  5. The Debris Disk Explorer: a balloon-borne coronagraph for observing debris disks

    Roberts, Lewis C; Traub, Wesley; Unwin, Stephen; Trauger, John; Krist, John; Aldrich, Jack; Brugarolas, Paul; Stapelfeldt, Karl; Wyatt, Mark; Stuchlik, David; Lanzi, James


    The Debris Disk Explorer (DDX) is a proposed balloon-borne investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of tens of disks. These measurements will enable us to place the Solar System in context. By imaging debris disks around nearby stars, DDX will reveal the presence of perturbing planets via their influence on disk structure, and explore the physics and history of debris disks by characterizing the size and composition of disk dust. The DDX instrument is a 0.75-m diameter off-axis telescope and a coronagraph carried by a stratospheric balloon. DDX will take high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a month-long science flight launched from New Zealand. The long flight will fully explore the set of known de...

  6. Debris thickness and surface topography on Ngozumpa Glacier, Nepal

    McCarthy, Michael; Nicholson, Lindsey; Rieg, Lorenzo; Klug, Christoph; Wirbel, Anna; Del Gobbo, Costanza; Pritchard, Hamish; Willis, Ian; Mayer, Christoph


    The ablation zones of many Himalayan glaciers are partially to completely covered with a layer of rock debris, the thickness of which is a key control on surface melt rates. Although it is commonly assumed that supraglacial debris is redistributed by gravitational processes due to variable surface topography, the nature of such a relationship has not been fully explored. Here we present locally extensive debris thickness data collected on Ngozumpa Glacier, Nepal, using ground-penetrating radar (GPR), and investigate, by comparison with a high-resolution digital terrain model (DTM), the relationship between debris thickness and surface topography. We compare debris thickness with slope, aspect, and hillslope curvature and look at how debris thickness relates to features of interest on the glacier surface. The existence of a relationship between debris thickness and surface topography has potentially important implications for remote sensing estimates of debris thickness made using thermal band satellite imagery because DTMs are commonly available at relatively high spatial resolution. For this reason, we assess whether or not debris thickness and surface topography covary. Further, due to the typically non-linear relationship between debris thickness and surface temperature, remote sensing estimates of debris thickness are affected by sub-pixel scale debris thickness variability. To see how debris thickness varies at sub-pixel scale, and the extent to which such variability should affect remote sensing-derived debris thickness estimates, we explore the effects of resampling our debris thickness data to the resolution of the thermal bands of ASTER and Landsat satellite images.

  7. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia.

    Roman, Lauren; Schuyler, Qamar A; Hardesty, Britta Denise; Townsend, Kathy A


    Anthropogenic debris in the world's oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia's coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia's avifauna.

  8. Reading the Signatures of Extrasolar Planets in Debris Disks

    Kuchner, Marc J.


    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  9. Space Transportation System Liftoff Debris Mitigation Process Overview

    Mitchell, Michael; Riley, Christopher


    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  10. Triggering Mechanism and characteristic of Debris Flow in Peninsular Malaysia

    Norhidayu Kasim


    Full Text Available Forensic investigations have been carried out at eight (8 selected debris flow locations in Peninsular Malaysia in order to determine the mechanism and characteristic of debris flow. Comprehensive studies on the available records of past debris flow have been carried out in order to describe the fundamental characteristics of debris flow events. Site investigation and laboratory tests of particular debris flow sites were carried out to evaluate the causes of the debris flow triggering factors such as topographical, geotechnical and geological characteristics. Rainfall records are collected from the nearest meteorological station in order to analyse the reasonable correlation of rainfall with the occurrence of debris flow. Geological study shows that debris flow is prone to occur at granitic areas. The gradient of the initiation areas are above 20 and the debris tends to deposit in the areas with gradient between 2 to 15. Laboratory tests show that the soil type at the debris flow areas consists predominantly of silty sand classified as SM according to the Unified Soil Classification System. The relation between rainfall patterns and the possible occurrences of debris flow indicated that the trigger thresholds are found to be generally high in most cases

  11. Prevention of debris flow disasters on Chengdu-Kunming Railway


    Chengdu-Kunming Railway is an important transport line on southwestern China. However, this railway's safety is often threatened by debris flows. How to effectively forecast and alarm the debris flow disasters and reduce the losses is the aim to study the prevention system in this paper. The factors to cause or influence debris flow are divided into four parts——the basin environmental factors, the basin meteoric factors, the prevention work's elements and the flood-relief work's elements, and the prevention system is made up of three models——a judgment model to assess the debris flow gully's seriousness, a forecast model to predict the debris flow's occurrence and an alarm model to evaluate the debris flow's disaster. Afterwards, a concise structure chart is worked out and verified by the field data from Chengdu-Kunming Railway. This prevention system will provide beneficial reference for the debris flow's monitoring network to be executed on Chengdu-Kunming Railway.

  12. Prevention of debris flow disasters on Chengdu-Kunming Railway.

    Wang, W; Xu, W L; Liu, S J


    Chengdu-Kunming Railway is an important transport line on southwestern China. However, this railway's safety is often threatened by debris flows. How to effectively forecast and alarm the debris flow disasters and reduce the losses is the aim to study the prevention system in this paper. The factors to cause or influence debris flow are divided into four parts--the basin environmental factors, the basin meteoric factors, the prevention work's elements and the flood-relief work's elements, and the prevention system is made up of three models--a judgment model to assess the debris flow gully's seriousness, a forecast model to predict the debris flow's occurrence and an alarm model to evaluate the debris flow's disaster. Afterwards, a concise structure chart is worked out and verified by the field data from Chengdu-Kunming Railway. This prevention system will provide beneficial reference for the debris flow's monitoring network to be executed on Chengdu-Kunming Railway.

  13. Self-organization criticality of debris flow rheology

    WANG Yuyi; JAN Chyandeng; CHEN Xiaoqing; HAN Wenliang


    Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil onslope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sedimentrunoff system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be predicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magnitude, frequency and time interval of debris flows.

  14. Plume dynamics in heterogeneous porous media

    Neufeld, Jerome A.; Huppert, Herbert E.


    Buoyancy driven flows in layered porous media are present in many geological settings and play an important role in the mixing of fluids, from the dispersal of pollutants in underground aquifers to enhanced oil recovery techniques and, of more recent importance, the sequestration of carbon dioxide (CO2). Seismic images of the rise of a buoyant CO2 plume at Sleipner in the North Sea indicate that these plumes are greatly influenced by a vertical array of thin lenses of relatively low permeability material. We model propagation of CO2 at each layer as a gravity current in a porous medium which propagates along, and drains through, a thin, low permeability seal. Drainage, driven both by hydrostatic pressure and the body force on the draining fluid, leads to an initial rapid advance followed by a gradual retreat of the current to a steady-state. By incorporating a vertical array of these single layer models we are able to capture the rise of the buoyant plume in layered reservoirs. We find that the plume is characterized by a broad head with a tail given by the steady state extent.

  15. Preparation and characteristics of porous ceramics

    Dongmei SHAO; Peiping ZHANG; Liyan MA; Juanjuan LIU


    Pyrophyllite is always used for making porous ceramics. In order to design the preparation technics of porous ceramics with pyrophyllite reasonably we must know the classifications, characteristics, properties and applications of porous ceramics. The classification and characteristics of porous ceramics are reviewed in this article; and several common preparations with their advantages and disadvantages are also introduced. The authors discussed the problems existing in researching and developing process for porous ceramics, and forecasted the development prospect of porous ceramics.

  16. RemoveDEBRIS: An in-orbit active debris removal demonstration mission

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.


    Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  17. Final payload test results for the RemoveDebris active debris removal mission

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Salmon, Thierry; Retat, Ingo; Roe, Mark; Burgess, Christopher; Chabot, Thomas; Pisseloup, Aurélien; Phipps, Andy; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.


    Since the beginning of the space era, a significant amount of debris has progressively been generated in space. Active Debris Removal (ADR) missions have been suggested as a way of limiting and controlling future growth in orbital space debris by actively deploying vehicles to remove debris. The European Commission FP7-sponsored RemoveDebris mission, which started in 2013, draws on the expertise of some of Europe's most prominent space institutions in order to demonstrate key ADR technologies in a cost effective ambitious manner: net capture, harpoon capture, vision-based navigation, dragsail de-orbiting. This paper provides an overview of some of the final payload test results before launch. A comprehensive test campaign is underway on both payloads and platform. The tests aim to demonstrate both functional success of the experiments and that the experiments can survive the space environment. Space environmental tests (EVT) include vibration, thermal, vacuum or thermal-vacuum (TVAC) and in some cases EMC and shock. The test flow differs for each payload and depends on the heritage of the constituent payload parts. The paper will also provide an update to the launch, expected in 2017 from the International Space Station (ISS), and test philosophy that has been influenced from the launch and prerequisite NASA safety review for the mission. The RemoveDebris mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  18. Transient hazard model using radar data for predicting debris flows in Madison County, Virginia

    Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.


    During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a 16-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, VA. We developed a distributed version of Iverson's transient response model for regional slope stability analysis for the Madison County debris flows. This version of the model evaluates pore-pressure head response and factor of safety on a regional scale in areas prone to rainfall-induced shallow (slope stability during the storm. The results demonstrate that the spatial and temporal variation of the factor of safety correlates with the movement of the storm cell. When the rainstorm was treated as two separate rainfall events and a larger hydraulic conductivity and friction angle than the laboratory values were used, the timing and location of landslides predicted by the model were in closer agreement with eyewitness observations of debris flows. Application of spatially variable initial pre-storm water table depth and soil properties may improve both the spatial and temporal prediction of instability.

  19. The Influence of an EPS Concrete Buffer Layer Thickness on Debris Dams Impacted by Massive Stones in the Debris Flow

    Xianbin Yu


    Full Text Available The failure of debris dams impacted by the massive stones in a debris flow represents a difficult design problem. Reasonable materials selection and structural design can effectively improve the resistance impact performance of debris dams. Based on the cushioning properties of expanded polystyrene (EPS concrete, EPS concrete as a buffer layer poured on the surface of a rigid debris dam was proposed. A three-dimensional numerical calculation model of an EPS concrete buffer layer/rigid debris dam was established. The single-factor theory revealed change rules for the thickness of the buffer layer concerning the maximal impact force of the rigid debris dam surface through numerical simulation. Moreover, the impact force-time/history curves under different calculation conditions for the rigid debris dam surface were compared. Simulation results showed that the EPS concrete buffer layer can not only effectively extend the impact time of massive stones affecting the debris dam but also reduce the impact force of the rigid debris dam caused by massive stones in the debris flow. The research results provide theoretical guidance for transferring the energy of the massive stone impact, creating a structural design and optimizing debris dams.

  20. Light Emitting Porous Silicon


    ml - mm m lm m ~ m m ThO report Page 14 preparation method which has been originally described by Wohler [23] leads to a bright yellow substance with...Solid State Commun. 81, 307 (1992). [221 H. Kautsky, and H. Zocher, Z. Phys. 9,267 (1992). L TNO report Page 28 [231 F. Wohler , Lieb. Ann. 127, 275 (1863...Netherlands Fax + 31 70 328 09 61 Phone + 31 70 326 42 21 TNO- report copy no. e FEL-93eo047r Lh Emitting Porous Silicon sitho(s): DTICHMi.P.Th

  1. Porous Thermoelectric Materials

    Hiroshi Julian Goldsmid


    Full Text Available Thermoelectric materials are sometimes prepared using a sintering process in which the achievement of a high density is often one of the objectives. However, it has recently been shown that the introduction of a highly porous material is desirable in synthetic transverse thermoelements. Porosity may also be an advantage in conventional longitudinal thermoelectric modules in which a high thermal flux density creates problems, but heat transfer within the pores can degrade the thermoelectric figure of merit. The amount of this degradation is calculated and it is shown that it can be small enough to be acceptable in practical devices.

  2. Tortuosity of porous particles.

    Barrande, M; Bouchet, R; Denoyel, R


    Tortuosity is often used as an adjustable parameter in models of transfer properties through porous media. This parameter, not reducible to classical measured microstructural parameters like specific surface area, porosity, or pore size distribution, reflects the efficiency of percolation paths, which is linked to the topology of the material. The measurement of the effective conductivity of a bed of particles saturated with an electrolyte is a simple way to evaluate tortuosity. Nevertheless, it received only little attention because of the real difficulties in both getting reliable results and interpreting data. Notably, the discrimination between the contribution of interparticle and intraparticle porosities to the tortuosity is not resolved. To our knowledge, there is no model able to fit the experimental data of the tortuosity of a suspension, and a fortiori of a particle bed, in the whole porosity range. Only empirical expressions have been proposed, but they do not allow deriving intratortuosity of a porous particle. For a dilute system, Maxwell's equation predicts the effective conductivity of suspensions of spherical particles as a function of the bulk electrolyte conductivity and of particle conductivity. The intraparticle tortuosity can be derived from the particle conductivity obtained from the Maxwell equation applied to data at infinite dilution of particles. Then, by assuming that the Maxwell equation is a first-order approximation of the conductivity as a function of porosity, we propose an explicit relation of the tortuosity tau of a suspension of porous particles, obtained by conductivity measurement, as tau = tau(epsilon, epsilon(p), tau(p)), where epsilon is the total porosity of the suspension, tau(p) is the intraparticle tortuosity, and epsilon(p) is the particle porosity. This relationship fits the experimental data in the whole porosity range and can be used to determine tau(p) from an experiment at only one porosity. Finally, the obtained

  3. Small, porous polyacrylate beads

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)


    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  4. Crosslinked, porous, polyacrylate beads

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)


    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  5. Computed Tomography (CT) -- Head

    Full Text Available ... limitations of CT Scanning of the Head? What is CT Scanning of the Head? Computed tomography, more ... the body being studied. top of page How is the procedure performed? The technologist begins by positioning ...

  6. Mineralogical Evolution in Extreme Debris Disks

    Su, Kate


    Young (10-200 Myr), luminous (fractional luminosity on the order of 1.E-2) extreme debris disks provide a unique opportunity to explore exo-asteriod and exo-planetesimal collisions during the oligarchic and chaotic phases of terrestrial planet-building. We propose to obtain low-resolution grism spectra of four extreme debris disks to document and characterize the mineralogy changes in the mid-IR region where strong peaks originating from silica and forsterite dust can be easily identified. The proposed observations will supplement our on-going warm Spitzer monitoring program studying disk variability at 3.6 and 4.5 microns, provide immediate insights on the long-term mineralogical evolution in comparison with the existing Spitzer IRS spectra, and will bridge to similar studies that JWST will provide in the near future.

  7. MU radar measurements of orbital debris

    Sato, Toru; Kayama, Hidetoshi; Furusawa, Akira; Kimura, Iwane


    Distributions of orbital debris versus height and scattering cross section are determined from a series of observations made with a high-power VHF Doppler radar (MU radar) of Japan. An automated data processing algorithm has been developed to discriminate echoes of orbiting objects from those of undesired signals such as meteor trail echoes or lightning atmospherics. Although the results are preliminary, they showed good agreement with those from NORAD tracking radar observations using a much higher frequency. It is found that the collision frequency of a Space Station of 1 km x 1 km size at an altitude of 500 km with orbiting debris is expected to be as high as once per two years.

  8. Herschel Observations of Dusty Debris Disks

    Vican, Laura; Bryden, Geoff; Melis, Carl; Zuckerman, B; Rhee, Joseph; Song, Inseok


    We present results from two Herschel observing programs using the Photodetector Array Camera and Spectrometer. During three separate campaigns, we obtained Herschel data for 24 stars at 70, 100, and 160 microns. We chose stars that were already known or suspected to have circumstellar dust based on excess infrared emission previously measured with IRAS or Spitzer, and used Herschel to examine long-wavelength properties of the dust. Fifteen stars were found to be uncontaminated by background sources, and possess infrared emission most likely due to a circumstellar debris disk. We analyzed the properties of these debris disks to better understand the physical mechanisms responsible for dust production and removal. Seven targets were spatially resolved in the Herschel images. Based on fits to their spectral energy distributions, nine disks appear to have two temperature components. Of these nine, in three cases, the warmer dust component is likely the result of a transient process rather than a steady state coll...

  9. Debris Dispersion Model Using Java 3D

    Thirumalainambi, Rajkumar; Bardina, Jorge


    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  10. Proportional loss functions for debris flow events

    C. M. Rheinberger


    Full Text Available Quantitative risk assessments of debris flows and other hydrogeological hazards require the analyst to predict damage potentials. A common way to do so is by use of proportional loss functions. In this paper, we analyze a uniquely rich dataset of 132 buildings that were damaged in one of five large debris flow events in Switzerland. Using the double generalized linear model, we estimate proportional loss functions that may be used for various prediction purposes including hazard mapping, landscape planning, and insurance pricing. Unlike earlier analyses, we control for confounding effects of building characteristics, site specifics, and process intensities as well as for overdispersion in the data. Our results suggest that process intensity parameters are the most meaningful predictors of proportional loss sizes. Cross-validation tests suggest that the mean absolute prediction errors of our models are in the range of 11%, underpinning the accurateness of the approach.

  11. Relative motion in a debris cloud

    Kebe, Fatoumata


    After an explosion or collision in space, a hundred or thousands of debris are generated. To be able to study a debris cloud it's necessary to develop new analysis tools. In that sense, we have studied several representations of the relative motion with the parent body's orbit as the reference. Thus, in the case of an explosion the original spacecraft has a circular orbit which will be the reference one in the relative motion's equations while, in the case of a collision, we will take one of the spacecraft's orbit as the reference. We mainly focus on the relative motion method that used the differential elements instead of the Cartesian coordinates as it allows to take into account the main perturbation.

  12. Proportional loss functions for debris flow events

    Rheinberger, C. M.; Romang, H. E.; Bründl, M.


    Quantitative risk assessments of debris flows and other hydrogeological hazards require the analyst to predict damage potentials. A common way to do so is by use of proportional loss functions. In this paper, we analyze a uniquely rich dataset of 132 buildings that were damaged in one of five large debris flow events in Switzerland. Using the double generalized linear model, we estimate proportional loss functions that may be used for various prediction purposes including hazard mapping, landscape planning, and insurance pricing. Unlike earlier analyses, we control for confounding effects of building characteristics, site specifics, and process intensities as well as for overdispersion in the data. Our results suggest that process intensity parameters are the most meaningful predictors of proportional loss sizes. Cross-validation tests suggest that the mean absolute prediction errors of our models are in the range of 11%, underpinning the accurateness of the approach.

  13. Fullerene-doped porous glasses

    Joshi, M. P.; Kukreja, L. M.; Rustagi, K. C.

    We report the doping of C60 in porous glass by diffusion in solution phase at room temperature. The presence of C60 in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials.

  14. Fullerene-doped porous glasses

    Joshi, M.P. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Kukreja, L.M. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Rustagi, K.C. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group


    We report the doping of C{sub 60} in porous glass by diffusion in solution phase at room temperature. The presence of C{sub 60} in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials. (orig.)

  15. Moisture Sorption in Porous Materials

    Nielsen, Lauge Fuglsang


    Abstract: Information on pore geometry is very important in any study of the mechanical and physical behavior of porous materials. Unfortunately pores are not very accessible for direct measurements. Indirect methods have to be used which involve impregnation (sorption) experiments from which...... in the subject considered this software is available on request to the author. Keywords: Porous materials, moisture, adsorption, desorption, BET-parameters....

  16. Aerosol dynamics in porous media

    Ghazaryan, Lilya


    In this thesis, a computational model was developed for the simulation of aerosol formation through nucleation, followed by condensation and evaporation and filtration by porous material. Understanding aerosol dynamics in porous media can help improving engineering models that are used in various in

  17. Analysis of the Mobilization of Debris Flows


    as lateral ridges pestered along the canyon walls. The debris flow mobilized in a grass-covered swale surrounded by a moderately dense growth of...water apparently rushes out of the channels much as water from a firehose and strikes the talus. The erosive power of water issuing from a firehose...normal floods. The typical mudspate-track does not, however, readily associate itself with the ravine of a permanent or powerful mountain stream, for

  18. Visible Light Spectroscopy of GEO Debris

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.


    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  19. Europium-155 in Debris from Nuclear Weapons

    Aarkrog, Asker; Lippert, Jørgen Emil


    The lithium-drifted germanium detector enables determination of europium-155 on a routine basis in environmental samples contaminated with debris from nuclear weapons. From measurements of europium-155, cesium-144, and strontium-90 in air filters collected between 1961 and 1966, the yield...... of europium-155 from weapons was estimated at 1400 atoms per 10$^{6}$ fissions, which is close to the yield of europium-155 from fast fission of uranium-238....

  20. Orbital Debris: Past, Present, and Future

    Stansbery, Gene; Johnson, Nicholas


    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  1. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.


    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  2. Tidal Debris as a Dark Matter Probe

    Johnston, Kathryn V


    Tidal debris streams from galaxy satellites can provide insight into the dark matter distribution in halos. This is because we have more information about stars in a debris structure than about a purely random population of stars: we know that in the past they were all bound to the same dwarf galaxy; and we know that they form a dynamically cold population moving on similar orbits. They also probe a different region of the matter distribution in a galaxy than many other methods of mass determination, as their orbits take them far beyond the typical extent of those for the bulk of stars. Although conclusive results from this information have yet to be obtained, significant progress has been made in developing the methodologies for determining both the global mass distribution of the Milky Way's dark matter halo and the amount of dark matter substructure within it. Methods for measuring the halo shape are divided into "predictive methods," which predict the tidal debris properties from the progenitor satellite'...

  3. Observations, Modeling and Theory of Debris Disks

    Matthews, Brenda C; Wyatt, Mark C; Bryden, Geoff; Eiroa, Carlos


    Main sequence stars, like the Sun, are often found to be orbited by circumstellar material that can be categorized into two groups, planets and debris. The latter is made up of asteroids and comets, as well as the dust and gas derived from them, which makes debris disks observable in thermal emission or scattered light. These disks may persist over Gyrs through steady-state evolution and/or may also experience sporadic stirring and major collisional breakups, rendering them atypically bright for brief periods of time. Most interestingly, they provide direct evidence that the physical processes (whatever they may be) that act to build large oligarchs from micron-sized dust grains in protoplanetary disks have been successful in a given system, at least to the extent of building up a significant planetesimal population comparable to that seen in the Solar System's asteroid and Kuiper belts. Such systems are prime candidates to host even larger planetary bodies as well. The recent growth in interest in debris dis...

  4. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    Nesvold, Erika R; Vican, Laura; Farr, Will M


    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles' eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare t...

  5. Plastic debris in the open ocean

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.


    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  6. Hack's law of debris-flow basins

    LI Yong; YUE Z.Q.; LEE C.F.; BEIGHLEY R.E.; CHEN Xiao-Qing; HU Kai-Heng; CUI Peng


    Hack's law was originally derived from basin statistics for varied spatial scales and regions.The exponent value of the law has been shown to vary between 0.47 and 0.70,causing uncertainty in its application.This paper focuses on the emergence of Hack's law from debris-flow basins in China.Over 5,000 debris-flow basins in different regions of China with drainage areas less than 100km2 are included in this study.Basins in the different regions are found to present similar distributions.Hack's law is derived fi'om maximum probability and conditional distributions,suggesting that the law should describe some critical state of basin evolution.Results suggest the exponent value is approximately 0.5.Further analysis indicates that Hack's law is related to other scaling laws underlying the evolution of a basin and that the exponent is not dependent on basin shape but rather on the evolutionary stage.A case study of a well known debris-flow basin further confirms Hack's law and its implications in basin evolution.

  7. Plastic debris in the open ocean.

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M


    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  8. Plastic debris in the open ocean

    Cozar, Andres


    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  9. COTELS project (4) : structural investigation of solidified debris in MCCI

    Zhdanov, V.; Vasilyev, Y.; Kolodeshnikov, A.; Cherepnin, Y. [National Nuclear Center, Kurchatov (Kazakhstan). Inst. of Atomic Energy; Sakaki, Isao; Nagasaka, Hideo [Nuclear Power Engineering Corp., Tokyo (Japan). Systems Safety Dept.


    Cross section of concrete trap along with solidified debris tested in COTELS test B/C, in which the interaction among core melt, water and concrete was simulated, were structurally investigated. In 6 tests out of 10 tests, particulate debris bed was formed above continuous ingot debris. The size distribution of the particulate debris was well correlated by Rosin-Rammler equation. Large amount of smallest diameter particles was obtained due to the entrainment of molten corium, decomposed concrete and oxidation of metallic components in corium associated with molten core concrete interaction (MCCI) generated gas. The upper region of the solidified debris included more concrete compositions. The concrete erosion depth, concrete degradation condition and the structure of solidified debris were evaluated to clarify the basic difference between COTELS and former tests results. Concrete erosion depth was less than that observed in MACE, WETCOR, SWISS tests. The major differences of COTELS results compared with the former test results were: 1) absence of strong adhesion of crust to melt trap side wall: 2) water penetration into debris through both eroded side wall and channels inside ingot debris: 3) absence of large void inside ingot debris: and 4) formation of pebble bed below ingot debris. All of these promoted the suppression of MCCI. (orig.)

  10. Averaging hydraulic head, pressure head, and gravitational head in subsurface hydrology, and implications for averaged fluxes, and hydraulic conductivity

    G. H. de Rooij


    Full Text Available Current theories for water flow in porous media are valid for scales much smaller than those at which problem of public interest manifest themselves. This provides a drive for upscaled flow equations with their associated upscaled parameters. Upscaling is often achieved through volume averaging, but the solution to the resulting closure problem imposes severe restrictions to the flow conditions that limit the practical applicability. Here, the derivation of a closed expression of the effective hydraulic conductivity is forfeited to circumvent the closure problem. Thus, more limited but practical results can be derived. At the Representative Elementary Volume scale and larger scales, the gravitational potential and fluid pressure are treated as additive potentials. The necessary requirement that the superposition be maintained across scales is combined with conservation of energy during volume integration to establish consistent upscaling equations for the various heads. The power of these upscaling equations is demonstrated by the derivation of upscaled water content-matric head relationships and the resolution of an apparent paradox reported in the literature that is shown to have arisen from a violation of the superposition principle. Applying the upscaling procedure to Darcy's Law leads to the general definition of an upscaled hydraulic conductivity. By examining this definition in detail for porous media with different degrees of heterogeneity, a series of criteria is derived that must be satisfied for Darcy's Law to remain valid at a larger scale.

  11. Debris-flow generation from recently burned watersheds

    Cannon, S.H.


    Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.

  12. Modelling debris flows down general channels

    S. P. Pudasaini


    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  13. Debris flow hazard mapping, Hobart, Tasmania, Australia

    Mazengarb, Colin; Rigby, Ted; Stevenson, Michael


    Our mapping on the many dolerite capped mountains in Tasmania indicates that debris flows are a significant geomorphic process operating there. Hobart, the largest city in the State, lies at the foot of one of these mountains and our work is focussed on identifying areas that are susceptible to these events and estimating hazard in the valley systems where residential developments have been established. Geomorphic mapping with the benefit of recent LiDAR and GIS enabled stereo-imagery has allowed us to add to and refine a landslide inventory in our study area. In addition, a dominant geomorphic model has been recognised involving headward gully retreat in colluvial materials associated with rainstorms explains why many past events have occurred and where they may occur in future. In this paper we will review the landslide inventory including a large event (~200 000m3) in 1872 that affected a lightly populated area but since heavily urbanised. From this inventory we have attempted volume-mobility relationships, magnitude-frequency curves and likelihood estimates. The estimation of volume has been challenging to determine given that the area of depletion for each debris flow feature is typically difficult to distinguish from the total affected area. However, where LiDAR data exists, this uncertainty is substantially reduced and we develop width-length relationships (area of depletion) and area-volume relationships to estimate volume for the whole dataset exceeding 300 features. The volume-mobility relationship determined is comparable to international studies and in the absence of reliable eye-witness accounts, suggests that most of the features can be explained as single event debris flows, without requiring more complex mechanisms (such as those that form temporary debris dams that subsequently fail) as proposed by others previously. Likelihood estimates have also been challenging to derive given that almost all of the events have not been witnessed, some are

  14. Characterizing Debris in the Infrared with UKIRT

    Lederer, S. M.; Jah, M.; Kendrick, R.; Buckalew, B.; Frith, J. M.; Cowardin, H. M.; Bold, M.


    The United Kingdom Infrared Telescope (UKIRT) has been a major asset for the NASA Orbital Debris Program Office (OPDO) since March, 2014. With the UKIRT current contract coming to an end at the finish of FY15, there is a golden opportunity for this community to fund and gain access to UKIRT as an SSA asset through HCAR (Hawaii Center for Astronautics Research). UKIRT is the only telescope on Mauna Kea dedicated to infrared bands. Spectral coverage ranges from the near- (0.8-5µm) to the mid- to far-infrared (8-25 micrometer) regime. To date, debris observations have been collected with three instruments. Near-Infrared photometry with ZYJHK filters has been obtained with the Wide Field Camera (WFCam). Near-Infrared (1-2.5 micrometer) spectra are the focus of observations taken with the UKIRT Imager SpecTrometer (UIST). And Michelle (Mid Infrared escCHELLE) is a thermal imager-spectrometer designed for the 8-25 micrometer regime. With 35% of the telescope time allocated to ODPO, a very steady stream of data has been collected on a variety of debris targets using all the above instrumentation. Initial results from WFCam were discussed at AMOS and NISOI including analyses on IDCSPs, the MSG cooler and baffle covers. The cylindrical HS-376 buses were the focus of recent WFCam runs. Summary analyses of these works will be presented. Focus will be given to initial results of the data collected with the Cassegrain instruments, UIST and Michelle. UIST spectra were collected in September 2014, March and April 2015. Targets included a suite of HS-376 buses, well suited to investigate the signatures of blue solar panels; several dead satellites with solar array wings; Titan 3C transtage debris; the CTA Array cover, and others. In addition, Michelle mid-IR photometry was collected on a select few objects during the April 2015 run. Using WFCam, UIST and Michelle the Lockheed Martin has been observing operational satellites in the near- mid and far-infrared regime in an attempt

  15. New advances for modelling the debris avalanches

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio


    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  16. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses ... of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical ...

  17. Sources of debris flow material in burned areas

    Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.


    The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are

  18. LEGEND, a LEO-to-GEO Environment Debris Model

    Liou, Jer Chyi; Hall, Doyle T.


    LEGEND (LEO-to-GEO Environment Debris model) is a three-dimensional orbital debris evolutionary model that is capable of simulating the historical and future debris populations in the near-Earth environment. The historical component in LEGEND adopts a deterministic approach to mimic the known historical populations. Launched rocket bodies, spacecraft, and mission-related debris (rings, bolts, etc.) are added to the simulated environment. Known historical breakup events are reproduced, and fragments down to 1 mm in size are created. The LEGEND future projection component adopts a Monte Carlo approach and uses an innovative pair-wise collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations. This algorithm is based on a new "random sampling in time" approach that preserves characteristics of the traditional approach and captures the rapidly changing nature of the orbital debris environment. LEGEND is a Fortran 90-based numerical simulation program. It operates in a UNIX/Linux environment.

  19. Debris-flow susceptibility of watersheds recently burned by wildfire

    Cannon, S.H.


    Evaluation of the erosional response of 95 recently burned watersheds in Colorado, New Mexico, and southern California to storm rainfall established the factors that best differentiate between debris-flow producing basins and those that produced other flow responses. These factors are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated debris flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occurred. Debris flows containing large material were more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand and gravel-dominated debris flows depended on the presence of water repellent soils. Copyright 2004 ASCE.

  20. Experiments for the Validation of Debris and Shrapnel Calculations

    Koniges, A E; Andrew, J; Eder, D; Kalantar, D; Masters, N; Fisher, A; Anderson, R; Gunney, B; Brown, B; Sain, K; Tobin, A M; Debonnel, C; Gielle, A; Combis, P; Jadaud, J P; Meyers, M; Jarmakani, H


    The debris and shrapnel generated by laser targets are important factors in the operation of a large laser facility such as NIF, LMJ, and Orion. Past experience has shown that it is possible for such target debris to render diagnostics inoperable and also to penetrate or damage optical protection (debris) shields. We are developing the tools to allow evaluation of target configurations in order to better mitigate the generation and impact of debris, including development of dedicated modeling codes. In order to validate these predictive simulations, we briefly describe a series of experiments aimed at determining the amount of debris and/or shrapnel produced in controlled situations. We use glass and aerogel to capture generated debris/shrapnel. The experimental targets include hohlraums (halfraums) and thin foils in a variety of geometries. Post-shot analysis includes scanning electron microscopy and x-ray tomography. We show the results of some of these experiments and discuss modeling efforts.

  1. Dynamics of unusual debris flows on Martian sand dunes

    Bourke, Mary


    PUBLISHED Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10 2 Pa s and the yiel...

  2. Classification of debris flow phenomena in the Faroe Islands

    Dahl, Mads-Peter Jakob; E. Mortensen, Lis; Jensen, Niels H.


    Landslides and debris flow phenomena in particular constitute a threat to human activities in the Faroe Islands. As a contribution to ongoing landslide risk management research, this paper proposes a classification scheme for debris flow phenomena in the Faroe Islands. The scheme, produced through...... with international landslide classification systems, significantly increases the knowledge of debris flow phenomena and promotes a consistent terminology of these within the Faroe Islands....

  3. Mapping debris-flow hazard in Honolulu using a DEM

    Ellen, Stephen D.; Mark, Robert K.; ,


    A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.

  4. Improvements to Filter Debris Analysis in Aviation Propulsion Systems


    filter patch containing the ferromagnetic debris is typically of most interest as critical oil- wetted components are typically made from ferrous alloys ...are typically manufactured using special steels with specific alloying elements. Elemental analysis using a Scanning electron Microscope (SEM) with...debris patch (left) and extracted ferrous debris patch (right) 2.2.1 Results A total of 48 filters were analysed during the trial from all four

  5. Multiphase flow in porous media using CFD

    Hemmingsen, Casper Schytte; Walther, Jens Honore

    We present results from a new Navier-Stokes model for multiphase flow in porous media implemented in Ansys Fluent 16.2 [1]. The model includes the Darcy-Forchheimer source terms in the momentum equations and proper account for relative permeability and capillary pressure in the porous media...... to model both the non-porous and porous media using the same formulation....

  6. Biogenic Cracks in Porous Rock

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.


    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  7. Optimized manufacturable porous materials

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  8. Superhydrophobic Porous Silicon Surfaces

    Paolo NENZI


    Full Text Available In this paper, we present an inexpensive technique to produce superhydrophobic surfaces from porous silicon. Superhydrophobic surfaces are a key technology for their ability to reduce friction losses in microchannels and their self cleaning properties. The morphology of a p-type silicon wafer is modified by a electrochemical wet etch to produce pores with controlled size and distribution and coated with a silane hydrophobic layer. Surface morphology is characterized by means of scanning electron microscope images. Large contact angles are observed on such surfaces and the results are compared with classical wetting models (Cassie and Wenzel suggesting a mixed Wenzel-Cassie behavior. The presented technique represents a cost-effective means for friction reduction in microfluidic applications, such as lab-on-a-chip.

  9. Filtration in Porous Media

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  10. Convection in porous media

    Nield, Donald A


    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  11. Porous media geometry and transports

    Adler, Pierre


    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  12. Regeneratively Cooled Porous Media Jacket

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)


    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  13. Cleaning space debris with a space-based laser system

    Shen Shuangyan; Jin Xing; Chang Hao


    High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1-10 cm. Under laser irradiation, part of the debris material is ablated and provides an impulse to the debris particle. Proper direction of the impulse vector either deflects the object trajectory or forces the debris on a trajectory through the upper atmosphere, where it burns up. Most research concentrates on ground-based laser systems but pays little attention to space-based laser systems. There are drawbacks of a ground-based laser system in cleaning space debris. Therefore the placement of a laser system in space is proposed and investigated. Under assumed conditions, the elimination process of space debris is analyzed. Several factors such as laser repetition frequency, relative movement between the laser and debris, and inclination of debris particles which may exercise influence to the elimination effects are discussed. A project of a space-based laser system is proposed according to the numerical results of a computer study. The proposed laser system can eliminate debris of 1-10 cm and succeed in protecting a space station.

  14. Orbital Debris Quarterly News. Volume 13; No. 1

    Liou, J.-C. (Editor); Shoots, Debi (Editor)


    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  15. Debris disks and the search for life in the universe

    Cataldi, Gianni


    Circumstellar debris disks are the extrasolar analogues of the asteroid belt and the Kuiper belt. They consist of comets and leftover planetesimals that continuously collide and produce circumstellar dust that can be observed as infrared excess or in resolved imaging. As an obvious outcome of the planet formation process, debris disks can help us constrain planet formation theories and learn about the history of our own solar system. This thesis presents observational studies of secondary gas in debris disks. It also discusses the astrobiological potential of debris disks created during impact events onto exoplanets.

  16. Radar Measurements of Small Debris from HUSIR and HAX

    Hamilton J.; Blackwell, C.; McSheehy, R.; Juarez, Q.; Anz-Meador, P.


    For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.

  17. Debris Flow Hazard Assessment Based on Support Vector Machine

    YUAN Lifeng; ZHANG Youshui


    Seven factors, including the maximum volume of once flow , occurrence frequency of debris flow , watershed area , main channel length , watershed relative height difference , valley incision density and the length ratio of sediment supplement are chosen as evaluation factors of debris flow hazard degree. Using support vector machine (SVM) theory, we selected 259 basic data of 37 debris flow channels in Yunnan Province as learning samples in this study. We create a debris flow hazard assessment model based on SVM. The model was validated though instance applications and showed encouraging results.

  18. Calculation of the debris flow concentration based on clay content

    CHEN Ningsheng; CUI Peng; LIU Zhonggang; WEI Fangqiang


    The debris flow clay content has very tremendous influence on its concentration (γC). It is reported that the concentration can be calculated by applying the relative polynomial based on the clay content. Here one polynomial model and one logarithm model to calculate the concentration based on the clay content for both the ordinary debris flow and viscous debris flow are obtained. The result derives from the statistics and analysis of the relationship between the debris flow concentrations and clay content in 45 debris flow sites located in the southwest of China. The models can be applied for the concentration calculation to those debris flows that are impossible to observe. The models are available to calculate the debris flow concentration, the principles of which are in the clay content affecting on the debris flow formation, movement and suspending particle diameter. The mechanism of the relationship of the clay content and concentration is clear and reliable. The debris flow is usually of micro-viscous when the clay content is low (<3%), by analyzing the developing tendency on the basics of the relationship between the clay content and debris flow concentration. Indeed, the less the clay content, the less the concentration for most debris flows. The debris flow tends to become the water rock flow or the hyperconcentrated flow with the clay content decrease. Through statistics it is apt to transform the soil into the viscous debris flow when the clay content of ranges is in 3%-18%. Its concentration increases with the increasing of the clay content when the clay content is between 5% and 10%. But the value decreases with the increasing of the clay content when the clay content is between 10% and 18%. It is apt to transform the soil into the mudflow, when the clay content exceeds 18%. The concentration of the mudflow usually decreases with the increase of the clay content, and this developing tendency reverses to that of the micro-viscous debris flow. There is

  19. Radar Measurements of Small Debris from HUSIR and HAX

    Hamilton, Joseph; Blackwell, Chris; McSheehy, Richard; Juarez, Quanette


    For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.

  20. The Research of Space debris Based on AHP

    Wu Mengxiang; Dong Xue; Gao Long


    Space debris is called the image of space junk. In this paper, the deifnition and classiifcation of space debris are studied. The processing methods of space debris and the earnings of the company are analyzed. In view of the above problems, proposed algorithm based on analytic hierarchy process (AHP) ifnally, use MATLAB programming to obtain the simulation results, and verify the true results are correct. The innovation of this paper is to propose the method of analytic hierarchy process to solve the problem of space debris.

  1. Wear Debris Identification Using Feature Extraction and Neural Network

    王伟华; 马艳艳; 殷勇辉; 王成焘


    A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical parameters combined by its shape, color and surface texture features through a computer vision system. Those features were used as input vector of artificial neural network for wear debris identification. A radius basis function (RBF) network based model suitable for wear debris recognition was established,and its algorithm was presented in detail. Compared with traditional recognition methods, the RBF network model is faster in convergence, and higher in accuracy.

  2. Strategy for mitigation of marine debris: analysis of sources and composition of marine debris in northern Taiwan.

    Kuo, Fan-Jun; Huang, Hsiang-Wen


    Six sites (two sites for each of rocky shores, sandy beaches, and fishing ports) in northern Taiwan were selected to investigate the amount and density of marine debris in each of the four seasons and after spring and neap tides from 2012 to 2013. The results indicate that marine debris was higher on rocky shores than sandy beaches and fishing ports. There is no significant difference between season and tide. The dominant debris was plastic-type, followed by polystyrene. The majority of debris originated from recreational activities, followed from ocean/waterway activities. The results suggest that the following actions are needed: (1) continue and reinforce the plastic-limit policy; (2) increase the cleaning frequency at rocky shores; (3) promote marine environmental education, with a goal of debris-free coasts; (4) recycle fishing gear and to turn that gear into energy; and (5) coordinate between agencies to establish a mechanism to monitor debris.

  3. Space debris: Assessing risk and responsibility

    Bradley, Andrew M.; Wein, Lawrence M.


    We model the orbital debris environment by a set of differential equations with parameter values that capture many of the complexities of existing three-dimensional simulation models. We compute the probability that a spacecraft gets destroyed in a collision during its operational lifetime, and then define the sustainable risk level as the maximum of this probability over all future time. Focusing on the 900- to 1000-km altitude region, which is the most congested portion of low Earth orbit, we find that - despite the initial rise in the level of fragments - the sustainable risk remains below 10-3 if there is high (>98%) compliance to the existing 25-year postmission deorbiting guideline. We quantify the damage (via the number of future destroyed operational spacecraft) generated by past and future space activities. We estimate that the 2007 FengYun 1C antisatellite weapon test represents ≈1% of the legacy damage due to space objects having a characteristic size of ⩾10 cm, and causes the same damage as failing to deorbit 2.6 spacecraft after their operational life. Although the political and economic issues are daunting, these damage estimates can be used to help determine one-time legacy fees and fees on future activities (including deorbit noncompliance), which can deter future debris generation, compensate operational spacecraft that are destroyed in future collisions, and partially fund research and development into space debris mitigation technologies. Our results need to be confirmed with a high-fidelity three-dimensional model before they can provide the basis for any major decisions made by the space community.

  4. The Population of Optically Faint GEO Debris

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.


    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  5. Observations of Titan IIIC Transtage Fragmentation Debris

    Cowardin, Heather; Seitzer, P.; Abercromby, K.; Barker, E.; Buckalew, B.; Cardona, T.; Krisko, P.; Lederer, S.


    The fragmentation of a Titan IIIC Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the U. S. Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6-m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper presents a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots are also shown using historical models for small fragmentation debris (down to 10 cm) thought to be associated with the Titan Transtage break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9-m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN 25001, 33509, and 33510) and the parent rocket body (SSN 3432). Color index data are used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In order to better characterize the break-up fragments, spectral measurements were acquired on three Titan fragments (one fragment observed over two different time periods) using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra of SSN 25000 (May 2012 and January 2013), SSN 38690, and SSN 38699 are compared with laboratory acquired spectra of materials (e.g., aluminum and various paints) to determine the surface material.

  6. A Parametric Study on Using Active Debris Removal to Stabilize the Future LEO Debris Environment

    Liou, J.C.


    Recent analyses of the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resources, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of the effectiveness of ADR must be conducted. The goal is to demonstrate the feasibility of using ADR to preserve the future environment and to guide its implementation to maximize the benefit-cost ratio. This paper describes a comprehensive sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term, orbital debris evolutionary model, LEGEND, is used to quantify the effects of many key parameters. These parameters include (1) the starting epoch of ADR implementation, (2) various target selection criteria, (3) the benefits of collision avoidance maneuvers, (4) the consequence of targeting specific inclination or altitude regimes, (5) the consequence of targeting specific classes of vehicles, and (6) the timescale of removal. Additional analyses on the importance of postmission disposal and how future launches might affect the requirements to stabilize the environment are also included.

  7. Engagement of Metal Debris into Gear Mesh

    handschuh, Robert F.; Krantz, Timothy L.


    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  8. Live Worms Found Amid STS-107 Debris


    NASA Project Manager Fred Ahmay holds a Biological Research in Canisters (BRIC) container in which C. elegans nemotodes (round worms) were found. The container was part of a middeck experiment that was among Columbia's debris recovered in East Texas. The worms were found alive after flying on Columbia's last mission, STS-107. The experiment was designed to verify a new synthetic nutrient solution for an International Space Station 'model' specimen planned to be used extensively for ISS gene expression studies and was sponsored by the NASA Ames Research Center. For more information on STS-107, please see GRIN Columbia General Explanation

  9. Explorations of Dusty Debris Disk Geometry

    Dennihy, E; Clemens, J C


    As the sample of white dwarfs with signatures of planetary systems has grown, statistical studies have begun to suggest our picture of compact debris disk formation from disrupted planetary bodies is incomplete. Here we present the results of an effort to extend the preferred dust disk model introduced by \\citet{jur03} to include elliptical geometries. We apply this model the observed distribution of fractional infrared luminosities, and explore the difference in preferred parameter spaces for a circular and highly elliptical model on a well-studied dusty white dwarf.

  10. Missing Mass in Collisional Debris from Galaxies

    Bournaud, F; Brinks, E; Boquien, M; Amram, P; Lisenfeld, U; Koribalski, B S; Walter, F; Charmandaris, V


    Recycled dwarf galaxies can form in the collisional debris of massive galaxies. Theoretical models predict that, contrary to classical galaxies, they should be free of non-baryonic Dark Matter. Analyzing the observed gas kinematics of such recycled galaxies with the help of a numerical model, we demonstrate that they do contain a massive dark component amounting to about twice the visible matter. Staying within the standard cosmological framework, this result most likely indicates the presence of large amounts of unseen, presumably cold, molecular gas. This additional mass should be present in the disks of their progenitor spiral galaxies, accounting for a significant part of the so-called missing baryons.

  11. Dust and Polycyclic Aromatic Hydrocarbon in the HD 34700 Debris Disk

    Seok, Ji Yeon


    The debris disk around the Vega-type star HD 34700 is detected in dust thermal emission from the near infrared (IR) to millimeter (mm) and submm wavelength range. Also detected is a distinct set of emission features at 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7 $\\mu$m, which are commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules. We model the observed dust IR spectral energy distribution (SED) and PAH emission features of the HD 34700 disk in terms of porous dust and astronomical-PAHs. Porous dust together with a mixture of neutral and ionized PAHs closely explains the dust IR SED and PAH emission features observed in the HD 34700 disk. Due to the stellar radiation pressure and Poynting-Robertson drag together with the photodissociation of PAHs, substantial removal of dust and PAHs has occurred in the disk, and continuous replenishment of these materials is required to maintain their current abundances. This implies that these materials are not primitive but secondary products probably originating ...

  12. Transport phenomena in porous media

    Ingham, Derek B


    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  13. Porous substrates filled with nanomaterials

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael


    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  14. Diffusion in porous crystalline materials

    Krishna, R.


    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso-

  15. Head and Neck

    Højgaard, Liselotte; Berthelsen, Anne Kiil; Loft, Annika


    Positron emission tomography (PET)/computed tomography with FDG of the head and neck region is mainly used for the diagnosis of head and neck cancer, for staging, treatment evaluation, relapse, and planning of surgery and radio therapy. This article is a practical guide of imaging techniques......, including a detailed protocol for FDG PET in head and neck imaging, physiologic findings, and pitfalls in selected case stories....

  16. Investigation of Orbital Debris: Mitigation, Removal, and Modeling the Debris Population

    Slotten, Joel

    The population of objects in orbit around Earth has grown since the late 1950s. Today there are over 21,000 objects over 10 cm in length in orbit, and an estimated 500,000 more between 1 and 10 cm. Only a small fraction of these objects are operational satellites. The rest are debris: old derelict spacecraft or rocket bodies, fragments created as the result of explosions or collisions, discarded objects, slag from solid rockets, or even flaked off paint. Traveling at up to 7 km/s, a collision with even a 1 cm piece of debris could severely damage or destroy a satellite. This dissertation examines three aspects of orbital debris. First, the concept of a self-consuming satellite is explored. This nanosatellite would use its own external structure as propellant to execute a deorbit maneuver at the end of its operational life, thus allowing it to meet current debris mitigation standards. Results from lab experiments examining potential materials for this concept have shown favorable results. Second, Particle in Cell techniques are modified and used to model the plasma plume from a micro-cathode arc thruster. This model is then applied to the concept of an ion beam shepherd satellite. This satellite would use its plasma plume to deorbit another derelict satellite. Results from these simulations indicate the micro-cathode arc thruster could potentially deorbit a derelict CubeSat in a matter of a few weeks. Finally, the orbital debris population at geosynchronous orbit is examined, focusing on variations in the density of the population as a function of longitude. New insights are revealed demonstrating that the variation in population density is slightly less than previously reported.

  17. Electrically Conductive Porous Membrane

    Burke, Kenneth Alan (Inventor)


    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  18. Porosity of porous Al alloys


    Two porosity models of porous Al alloys with different pore types (ball and polygon shape) were established. The experimental results coincide well with theoretical computations. The porosity of Al alloys (Prc) consists of three parts, porosity caused by preform particles (Prp), additional porosity (Pra), and porosity caused by solidification shrinkage (Prs). Prp is the main part of Prc while Pra is the key for fabricating porous Al alloys successfully in spite of its little contribution to Prc.

  19. Concept of porous wire anemometer

    Afgan, N.H.; Pereira, J.C. [Inst. Superior Tecnico, Lisbon (Portugal); Leontiev, A.I.; Puzach, S.V. [Moscow Technical Univ. (Russian Federation)


    The paper presents a new scheme of the anemometer sensing element for the gas mean and fluctuation velocity measurement. The sensing element is a porous tube with gas suction through porous tube wall. The outside surface of the porous tube is at the gas temperature. The analysis, based on the heat balance at steady and unsteady state is performed in order to define the sensitivity and time constant of the porous sensing element. Two cases are considered, namely, the constant current and constant temperature anemometer. Comparison is made with the solid wire anemometer and shown that the proposed porous sensing element can have sensitivity four times higher than the standard hot wire anemometer with the same geometrical dimensions. With the respective selection of the physical properties of the sensing element, it could be possible to obtain higher frequency range of the measurement. Particular attention is devoted to the low gas velocity measurement. It is recognized that the minimum gas velocity to be measured with the solid hot wire anemometer is determined by the local heat transfer coefficient. For the low gas velocity, it was proved that the minimum is around .20 cm/sec. The proposed concept of the sensing element can be used for the very low velocity measurement due to the higher sensitivity obtained by the porous sensing element.

  20. Debris disks in main sequence binary systems

    Trilling, D E; Stapelfeldt, K R; Rieke, G H; Su, K Y L; Gray, R O; Corbally, C J; Bryden, G; Chen, C H; Boden, A; Beichman, C A


    We observed 69 A3-F8 main sequence binary star systems using the Multiband Imaging Photometer for Spitzer onboard the Spitzer Space Telescope. We find emission significantly in excess of predicted photospheric flux levels for 9(+4/-3)% and 40(+7/-6)% of these systems at 24 and 70 microns, respectively. Twenty two systems total have excess emission, including four systems that show excess emission at both wavelengths. A very large fraction (nearly 60%) of observed binary systems with small (<3 AU) separations have excess thermal mission. We interpret the observed infrared excesses as thermal emission from dust produced by collisions in planetesimal belts. The incidence of debris disks around main sequence A3-F8 binaries is marginally higher than that for single old AFGK stars. Whatever combination of nature (birth conditions of binary systems) and nurture (interactions between the two stars) drives the evolution of debris disks in binary systems, it is clear that planetesimal formation is not inhibited to a...

  1. Debris Discs: Modeling/theory review

    Thébault, P.


    An impressive amount of photometric, spectroscopic and imaging observations of circumstellar debris discs has been accumulated over the past 3 decades, revealing that they come in all shapes and flavours, from young post-planet-formation systems like Beta-Pic to much older ones like Vega. What we see in these systems are small grains, which are probably only the tip of the iceberg of a vast population of larger (undetectable) collisionally-eroding bodies, leftover from the planet-formation process. Understanding the spatial structure, physical properties, origin and evolution of this dust is of crucial importance, as it is our only window into what is going on in these systems. Dust can be used as a tracer of the distribution of their collisional progenitors and of possible hidden massive pertubers, but can also allow to derive valuable information about the disc's total mass, size distribution or chemical composition. I will review the state of the art in numerical models of debris disc, and present some important issues that are explored by current modelling efforts: planet-disc interactions, link between cold (i.e. Herschel-observed) and hot discs, effect of binarity, transient versus continuous processes, etc. I will finally present some possible perspectives for the development of future models.

  2. Early deterioration of coarse woody debris.

    Tainter, Frank, H.; McMinn, James, W.


    Tainter, F.H., and J.W. McMinn. 1999. Early deterioration of coarse woody debris. In: Proc. Tenth Bien. South. Silv. Res. Conf. Shreveport, LA, February 16-18, 1999. Pp. 232-237 Abstract - Coarse woody debris (CWD) is an important structural component of southern forest ecosystems. CWD loading may be affected by different decomposition rates on sites of varying quality. Bolts of red oak and loblolly pine were placed on plots at each of three (hydric, mesic. and xerlc) sites at the Savannah River Site and sampled over a I6-week period. Major changes were in moisture content and nonstructural carbohydrate content (total carbohydrates, reducing sugars, and starch) of sapwood. Early changes in nonstructural carbohydrate levels following placement of the bolts were likely due to reallocation of these materials by sapwood parenchyma cells. These carbohydrates later formed pools increasingly metabolized by bacteria and invading fungi. Most prevalent fungi in sapwood were Ceratocysfis spp. in pine and Hypoxy/on spp. in oak. Although pine sapwood became blue stained and oak sapwood exhibited yellow soft decay with black zone lines, estimators of decay (specific gravity, sodium hydroxide solubility, and holocellulose content) were unchanged during the 16-week study period. A small effect of site was detected for starch content of sapwood of both species. Fungal biomass in sapwood of both species, as measured by ergosterol content, was detectable at week zero, increased somewhat by week three and increased significantly by week 16.

  3. A Primer on Unifying Debris Disk Morphologies

    Lee, Eve J.; Chiang, Eugene


    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  4. Active Polarimetry for Orbital Debris Identification

    Pasqual, M.; Cahoy, C.

    We present the results of polarimetric measurements that may help remotely identify orbital debris fragments, thereby extending current space surveillance capabilities. A bench-top polarimeter (wavelength 1064 nm) was used to experimentally determine the polarimetric Bidirectional Reflectance Distribution Function (BRDF) of several common spacecraft materials and coatings, including glossy white paint, matte black paint, black Kapton®, silver Teflon®, aluminum, and titanium. Analysis of these measurements allowed us to estimate each material's Mueller matrix and associated polarimetric properties as a function of the incident angle and (bistatic) in-plane scatter angle. Results revealed notable trends in the materials' polarimetric signatures. Specifically, the materials exhibited mostly weak diattenuation (D 0.5 in the forward scatter direction). In terms of retardance (R), silver Teflon® exhibited a finite range of values (R = 30 to 120º) in all directions, while the other materials acted as mirrors (R = 180º) in the back scatter direction and had the full range of behavior (R = 0 to 180º) in the forward scatter direction. Finally, in terms of depolarization power (Delta), glossy white paint was a nearly perfect depolarizer (Delta = 1) in the back scatter direction, but sharply lost depolarization power (Delta = 0) at specular reflection. All other materials were mostly weak depolarizers (Delta < 0.5) in all scatter directions. These experimental findings may be used to develop requirements for a polarimetric laser radar that can interrogate debris fragments, identify their constituent materials, and infer their masses and other characteristics of interest.

  5. Abundances in Stars with Debris Disks

    Ritchey, Adam M; Stone, Myra; Wallerstein, George


    We present preliminary results of a detailed chemical abundance analysis for a sample of solar-type stars known to exhibit excess infrared emission associated with dusty debris disks. Our sample of 28 stars was selected based on results from the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy Program, for the purpose of investigating whether the stellar atmospheres have been polluted with planetary material, which could indicate that the metallicity enhancement in stars with planets is due to metal-rich infall in the later stages of star and planet formation. The preliminary results presented here consist of precise abundances for 15 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Co, and Ni) for half of the stars in our sample. We find that none of the stars investigated so far exhibit the expected trend of increasing elemental abundance with increasing condensation temperature, which would result from the stars having accreted planetary debris. Rather, the slopes of linear least...

  6. The Edgeworth-Kuiper debris disk

    Vitense, Christian; Löhne, Torsten


    (Abridged) The Edgeworth-Kuiper belt with its presumed dusty debris is a natural reference for extrsolar debris disks. We employ a new algorithm to eliminate the inclination and the distance selection effects in the known TNO populations to derive expected parameters of the "true" EKB. Its estimated mass is M_EKB=0.12 M_earth, which is by a factor of \\sim 15 larger than the mass of the EKB objects detected so far. About a half of the total EKB mass is in classical and resonant objects and another half is in scattered ones. Treating the debiased populations of EKB objects as dust parent bodies, we then "generate" their dust disk with our collisional code. Apart from accurate handling of collisions and direct radiation pressure, we include the Poynting-Robertson (P-R) drag, which cannot be ignored for the EKB dust disk. Outside the classical EKB, the radial profile of the optical depth approximately follows tau \\sim r^-2 which is roughly intermediate between the slope predicted analytically for collision-domina...

  7. The Population of Optically Faint GEO Debris

    Seitzer, P.; Barker, E.; Buckalew, B.; Burkhardt, A.; Cowardin, H.; Frith, J.; Kaleida, C.; Lederer, S.; Lee, C.


    The 6.5-m Magellan telescope, 'Walter Baade', at the Las Campanas Observatory in Chile has been used for spot surveys of the geosynchronous Earth orbit (GEO) regime to study the population of optically faint GEO debris. The goal is to estimate the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude has been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The detections have a wide range of characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections that vary in brightness ("flashers") during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected product of size * albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm.

  8. Dendrochronological dating of large woody debris on the example of Morávka River and Černá Opava River

    Michal Rybníček


    Full Text Available Woody debris is an inseparable part of natural river channels. In a river ecosystem it affects the hydraulic, hydrological and morphological properties of the channel, and it is also of a biological significance. However, besides the positive effects, the woody debris can also have a negative impact, e.g. the reduction of the flow profile capacity or the destruction of waterside buildings. With the de­ve­lop­ment of log floating and timber trade, the woody debris started to be removed from the channels. Currently, within the process of stream revitalization, woody debris is being artificially placed into ri­vers. This paper deals with the possible dendrochronological dating of large woody debris (LWD and wood jams in the river channel and the riparian zone. Two sites have been chosen for the research, the Morávka River and the Černá Opava River. These sites have been chosen because of two dif­fe­rent types of riparian stands. The banks of the Morávka River are a soft wood floodplain forest (350 m ASL; the Černá Opava River has stands with nearly a hundred percent proportion of spruce (600 m ASL. The results of the research show that the species with diffuse-porous wood structure are very hard to date on the basis of Pressler borer cores. On the other hand, the sites with softwood species are easi­ly datable, especially if the trunks contain more than 40 tree-rings. At these sites it is possible to use the dendrochronological dating for the establishment of the temporal dynamics of the woody debris input in the river ecosystem.

  9. Space Debris Alert System for Aviation

    Sgobba, Tommaso


    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  10. Ballistic Performance of Porous Ceramic Thermal Protection Systems at 9 km/s

    Miller, Joshua E.; Bohl, W. E.; Foreman, C. D.; Christiansen, Eric L.; Davis, B. A.


    Porous-ceramic, thermal-protection-systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components and sensitive electronic components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s on ceramic tiles similar to those used on the Orbiter. These tiles have a porous-batting of nominally 8 lb/cubic ft alumina-fiber-enhanced-thermal-barrier (AETB8) insulating material coated with a damage-resistant, toughened-unipiece-fibrous-insulation (TUFI) layer.

  11. Semi-automatic recognition of marine debris on beaches

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji


    An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments.

  12. Predicting Debris-Slide Locations in Northwestern California

    Mark E. Reid; Stephen D. Ellen; Dianne L. Brien; Juan de la Fuente; James N. Falls; Billie G. Hicks; Eric C. Johnson


    We tested four topographic models for predicting locations of debris-slide sources: 1) slope; 2) proximity to stream; 3) SHALSTAB with "standard" parameters; and 4) debris-slide-prone landforms, which delineates areas similar to "inner gorge" and "headwall swale" using experience-based rules. These approaches were compared in three diverse...

  13. Rapid Assessment of Tree Debris Following Urban Forest Ice Storms

    Richard J. Hauer; Angela J. Hauer; Dudley R. Hartel; Jill R. Johnson


    This paper presents a rapid assessment method to estimate urban tree debris following an ice storm. Data were collected from 60 communities to quantify tree debris volumes, mostly from public rights-of-way, following ice storms based on community infrastructure, weather parameters, and urban forest structure. Ice thickness, area of a community, and street distance are...

  14. A Support System to Tie Apron Strings to Debris Flow


    @@ Scientists from the Chengdubased CAS Institute of Mountain Hazards and Environment (IMHE) recently worked out a decision-making support system for disaster mitigation on debris fans in mountainous regions.As a domestic vanguard, the system plays a key role in the fight against debris flow and helping to reduce casualties.

  15. Linking effects of anthropogenic debris to ecological impacts.

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A


    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris.

  16. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    Gee, Ken; Lawrence, Scott


    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  17. Linking effects of anthropogenic debris to ecological impacts

    Browne, M.A.; Underwood, A.J.; Chapman, M.G.; Williams, R.; Thompson, R.C.; Franeker, van J.A.


    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that li

  18. Linking effects of anthropogenic debris to ecological impacts

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.


    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  19. 14 CFR 417.225 - Debris risk analysis.


    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A flight safety analysis must demonstrate that the risk to the public potentially exposed to inert and explosive debris hazards from any one flight of a launch vehicle satisfies the public risk criterion of...

  20. Mechanical and frictional behaviour of nano-porous anodised aluminium

    Tsyntsaru, N., E-mail: [Institute of Applied Physics of ASM, 5 Academy str., Chisinau, MD 2028 (Moldova, Republic of); Kavas, B., E-mail: [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469 Maslak (Turkey); Ford Otomotiv San A.S., Istanbul (Turkey); Sort, J., E-mail: [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Urgen, M., E-mail: [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469 Maslak (Turkey); Celis, J.-P., E-mail: [KU Leuven, Dept. MTM, Kasteelpark Arenberg 44, B-3001 (Belgium)


    The porous structure of anodic aluminium oxide (AAO) can be used in versatile applications such as a lubricant reservoir in self-lubricating systems. Such systems are subjected to biaxial loading, which can induce crack formation and propagation, ultimately leading to catastrophic mechanical failure. In this study, the mechanical and tribological behaviour of AAO, prepared from two different types of electrolytes (sulphuric and oxalic acids), are studied in detail. The electrolytic conditions are adjusted to render highly tuneable average pore diameters (between 16 and 75 nm), with porosity levels ranging from 9% to 65%. Well-ordered porous AAO are produced by two-step anodization at rather low temperatures. Mechanical properties, mainly hardness and Young's modulus, are investigated using nanoindentation. Both the porosity degree and the composition of the electrolytic baths used to prepare the AAO have an influence on the mechanical properties. Ball-on-flat configuration was used to estimate the tribological behaviour under dry conditions. No major cracks were observed by scanning electron microscopy, neither after indentation or fretting tests. In the running-in period of tribology experiments the pores were filled with debris. This was followed by the formation of a highly adherent tribolayer – a third body consisting of fine worn particles originated from both the sample and the counterbody. Pore diameter and porosity percentage are found to strongly affect hardness and Young's modulus, but they do not have a major effect on the frictional behaviour. - Highlights: • Well-ordered porous AAO with pore diameters between 16 and 75 nm were produced. • Porosity and composition of electrolytic baths influence the mechanical properties. • Ball-on-flat configuration was used in tribological testing under dry conditions. • Adherent tribolayer consisting of fine worn particles prevents AAO from cracking. • Testing parameters are moreover essential


    Swisdak, M.; Drake, J. F. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Opher, M., E-mail:, E-mail:, E-mail: [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)


    The picture of the heliopause (HP)-the boundary between the domains of the Sun and the local interstellar medium (LISM)-as a pristine interface with a large rotation in the magnetic field fails to describe recent Voyager 1 (V1) data. Magnetohydrodynamic (MHD) simulations of the global heliosphere reveal that the rotation angle of the magnetic field across the HP at V1 is small. Particle-in-cell simulations, based on cuts through the MHD model at V1's location, suggest that the sectored region of the heliosheath (HS) produces large-scale magnetic islands that reconnect with the interstellar magnetic field while mixing LISM and HS plasma. Cuts across the simulation reveal multiple, anti-correlated jumps in the number densities of LISM and HS particles, similar to those observed, at the magnetic separatrices. A model is presented, based on both the observations and simulations, of the HP as a porous, multi-layered structure threaded by magnetic fields. This model further suggests that contrary to the conclusions of recent papers, V1 has already crossed the HP.

  2. Biobjective planning of an active debris removal mission

    Madakat, Dalal; Morio, Jérôme; Vanderpooten, Daniel


    The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.

  3. Constitutive Models for Debris-bearing Ice Layers

    Moore, P. L.


    Rock debris is incorporated within many glaciers and ice sheets, particularly in basal ice layers and englacial debris bands. Field observations and laboratory experiments have shown that debris inclusions can both strengthen and weaken ice by as much as two orders of magnitude compared to debris-free ice under the same conditions. Nevertheless, models of glacier flow usually neglect any effect of debris-bearing layers. Where debris-bearing ice is present, proper treatment of its deformation could profoundly impact model results. A three-phase mechanical model is presented that reproduces many of the key observations of debris-bearing ice rheology. First order variables in the model are limited to debris concentration, particle size, solute concentration and temperature. At low debris concentrations (less than about 40% by volume), the mixture is treated under the framework of a dispersion-strengthened metal alloy but with a fluidity that is enhanced by premelted water at ice-debris interfaces. While debris strengthens the ice by interfering with the motion of dislocations, thermally-activated detachment can reduce the effect at temperatures close to melting. At these warm temperatures, recovery aided by unfrozen interfacial water acts to weaken the mixture, an effect that is further ehnanced by the presence of solutes at particle surfaces. Whether the debris-bearing ice is stronger or weaker than debris-free ice in the model depends strongly on the specific surface area of the debris and on a parameter that describes the thermal detachment of dislocations. As debris concentrations exceed about 40%, dispersion-strengthened ice flow still governs bulk deformation but the effective viscosity is further increased by enhanced strain rates in the ice "matrix" as the average inter-particle distance declines. At still higher concentrations (greater than about 52% by volume for sand), deformation is primarily frictional. The mixture is thus treated as a dilatant Coulomb

  4. Ice and debris in the fretted terrain, Mars

    Lucchitta, B. K.


    Viking moderate and high resolution images along the northern highland margin have been monoscopically and stereoscopically examined in order to study the development of fretted terrain. Young debris aprons around mesas and debris in tributary channels create typical fretted morphologies identical to ancient fretted morphologies. This suggests that the debris-apron process operating relatively recently also shaped the fretted terrain of the past. The debris aprons were lubricated by interstitial ice derived from ground ice. Abundant collapse features suggest that ground ice existed and may have flowed in places. The fretting process has been active for a long period and may be active today. The location of debris aprons in two latitudinal belts may be controlled by atmospheric conditions that permit ice in the region to remain in the ground below depths of about one meter and temperatures warm enough for ice to flow.

  5. Methods applied in studies of benthic marine debris.

    Spengler, Angela; Costa, Monica F


    The ocean floor is one of the main accumulation sites of marine debris. The study of this kind of debris still lags behind that of shorelines. It is necessary to identify the methods used to evaluate this debris and how the results are presented and interpreted. From the available literature on benthic marine debris (26 studies), six sampling methods were registered: bottom trawl net, sonar, submersible, snorkeling, scuba diving and manta tow. The most frequent method used was bottom trawl net, followed by the three methods of diving. The majority of the debris was classified according to their former use and the results usually expressed as items per unity of area. To facilitate comparisons of the contamination levels among sites and regions some standardization requirements are suggested.

  6. On North Pacific circulation and associated marine debris concentration.

    Howell, Evan A; Bograd, Steven J; Morishige, Carey; Seki, Michael P; Polovina, Jeffrey J


    Marine debris in the oceanic realm is an ecological concern, and many forms of marine debris negatively affect marine life. Previous observations and modeling results suggest that marine debris occurs in greater concentrations within specific regions in the North Pacific Ocean, such as the Subtropical Convergence Zone and eastern and western "Garbage Patches". Here we review the major circulation patterns and oceanographic convergence zones in the North Pacific, and discuss logical mechanisms for regional marine debris concentration, transport, and retention. We also present examples of meso- and large-scale spatial variability in the North Pacific, and discuss their relationship to marine debris concentration. These include mesoscale features such as eddy fields in the Subtropical Frontal Zone and the Kuroshio Extension Recirculation Gyre, and interannual to decadal climate events such as El Niño and the Pacific Decadal Oscillation/North Pacific Gyre Oscillation. Published by Elsevier Ltd.

  7. Head Injuries in Children

    Pennington, Nicole


    School nurses play a crucial role in injury prevention and initial treatment when injuries occur at school. The role of school nurses includes being knowledgeable about the management of head injuries, including assessment and initial treatment. The school nurse must be familiar with the outcomes of a head injury and know when further evaluation…

  8. NOAA-USGS Debris-Flow Warning System - Final Report



    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  9. Pore Water Pressure Contribution to Debris Flow Mobility

    Chiara Deangeli


    Full Text Available Problem statement: Debris flows are very to extremely rapid flows of saturated granular soils. Two main types of debris flow are generally recognized: Open slope debris flows and channelized debris flows. The former is the results of some form of slope failures, the latter can develop along preexisting stream courses by the mobilization of previously deposited debris blanket. The problem to be addressed is the influence of the mode of initiation on the subsequent mechanism of propagation. In particular the role of pore water pressure on debris flow mobility in both types was debated. Approach: Laboratory flume experiments were set up in order to analyze the behavior of debris flows generated by model sand slope failures. Failures were induced in sand slopes by raising the water level by seepage from a drain located at the top end of the flume, and by rainfall supplied by a set of pierced plastic pipes placed above the flume. Video recordings of the tests were performed to analyze debris flow characteristics. Results: In all the tests the sand water mixture flows were unsteady and non uniform and sand deposition along the channel bed was a relevant phenomenon. The flows were characterized by a behavioral stratification of the sand water mixture along the flow depth. Back analyzed pore water pressure were just in excess to the hydrostatic condition. The reliability of the experimental results was checked by comparison with other flume experiment data. Conclusion: Debris flow behavior was influenced by the mode of initiation, the inclination of the channel and grain size of the soils. These factors affected the attained velocities and the pore water pressure values. The mobility of debris flows was not always enhanced by high excess pore water pressure values.

  10. Debris and Shrapnel Mitigation Procedure for NIF Experiments

    Eder, D; Koniges, A; Landen, O; Masters, N; Fisher, A; Jones, O; Suratwala, T; Suter, L


    All experiments at the National Ignition Facility (NIF) will produce debris and shrapnel from vaporized, melted, or fragmented target/diagnostics components. For some experiments mitigation is needed to reduce the impact of debris and shrapnel on optics and diagnostics. The final optics, e.g., wedge focus lens, are protected by two layers of debris shields. There are 192 relatively thin (1-3 mm) disposable debris shields (DDS's) located in front of an equal number of thicker (10 mm) main debris shields (MDS's). The rate of deposition of debris on DDS's affects their replacement rate and hence has an impact on operations. Shrapnel (molten and solid) can have an impact on both types of debris shields. There is a benefit to better understanding these impacts and appropriate mitigation. Our experiments on the Omega laser showed that shrapnel from Ta pinhole foils could be redirected by tilting the foils. Other mitigation steps include changing location or material of the component identified as the shrapnel source. Decisions on the best method to reduce the impact of debris and shrapnel are based on results from a number of advanced simulation codes. These codes are validated by a series of dedicated experiments. One of the 3D codes, NIF's ALE-AMR, is being developed with the primary focus being a predictive capability for debris/shrapnel generation. Target experiments are planned next year on NIF using 96 beams. Evaluations of debris and shrapnel for hohlraum and capsule campaigns are presented.

  11. Corrosion at the head-neck interface of current designs of modular femoral components: essential questions and answers relating to corrosion in modular head-neck junctions.

    Osman, K; Panagiotidou, A P; Khan, M; Blunn, G; Haddad, F S


    There is increasing global awareness of adverse reactions to metal debris and elevated serum metal ion concentrations following the use of second generation metal-on-metal total hip arthroplasties. The high incidence of these complications can be largely attributed to corrosion at the head-neck interface. Severe corrosion of the taper is identified most commonly in association with larger diameter femoral heads. However, there is emerging evidence of varying levels of corrosion observed in retrieved components with smaller diameter femoral heads. This same mechanism of galvanic and mechanically-assisted crevice corrosion has been observed in metal-on-polyethylene and ceramic components, suggesting an inherent biomechanical problem with current designs of the head-neck interface. We provide a review of the fundamental questions and answers clinicians and researchers must understand regarding corrosion of the taper, and its relevance to current orthopaedic practice. Cite this article: Bone Joint J 2016;98-B:579-84.

  12. Post-test calculation of the QUENCH-17 bundle experiment with debris formation and bottom water reflood using thermal hydraulic and severe fuel damage code SOCRAT/V3

    Vasiliev, A., E-mail: [Nuclear Safety Institute (IBRAE), B. Tulskaya 52, 115191 Moscow (Russian Federation); Stuckert, J., E-mail: [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)


    Highlights: • Modeling of processes in porous debris regions. • Analysis of coolability of massive debris bed. • Complexity of simulation of flow regime near boiling curve. - Abstract: The thermal hydraulic and SFD (Severe Fuel Damage) best estimate computer modeling code SOCRAT/V3 was used for the post-test analysis of the QUENCH-17 experiment performed at KIT on January 2013. The objective of this test was to examine the formation of a debris bed inside the completely oxidized region of the bundle without melt formation and to investigate the coolability behavior during the reflood. The test bundle for QUENCH-17 test was intentionally changed in comparison to basic QUENCH bundles (usually 21 heated rod simulators) with the emphasis to investigate debris behavior phenomena. Only 12 periphery fuel rod simulators were heated by centerline tungsten heaters. 9 unheated fuel rod simulators were located in the inner part of the test bundle. This is why the massive porous debris formation in the inner part of the bundle was not influenced by the presence of tungsten heaters. The QUENCH-17 test conditions simulated a hypothetical scenario of nuclear power plant severe accident sequence with debris bed formation in which the overheated up to 1800 K core would be flooded from the bottom by ECCS (Emergency Core Cooling System). The QUENCH-17 test included the following phases: (1) heat-up phase (heat-up rate up to 0.25 K/s); (2) oxidation phase (the cladding temperature about 1800 K in hottest region, steam mass flow rate 2 g/s); (3) bottom flood phase (characteristic cooling time about 600 s, water mass flow rate 10 g/s). SOCRAT/V3 computer modeling code was used for calculation of basic thermal hydraulic, oxidation and thermal mechanical behavior during all phases of the experiment. The calculated results are in a good agreement with experimental data which justifies the adequacy of modeling capabilities of SOCRAT code system.

  13. Resolving debris discs in the far-infrared: early highlights from the DEBRIS survey

    Matthews, Brenda; Kennedy, Grant; Phillips, Neil; Churcher, Laura; Duchêne, Gaspard; Greaves, Jane; Lestrade, Jean-Francois; Moro-Martin, Amaya; Wyatt, Mark; Bastien, Pierre; Biggs, Andy; Bouvier, Jerome; Butner, Harold; Dent, Bill; Di Francesco, James; Eislöffel, Jochen; Graham, James; Harvey, Paul; Hauschildt, Peter; Holland, Wayne; Horner, Jonti; Ibar, Eduardo; Ivison, Rob; Johnstone, Doug; Kalas, Paul; Kavelaars, JJ; Rodriguez, David; Udry, Stephane; van der Werf, Paul; Wilner, David; Zuckerman, Ben


    We present results from the earliest observations of DEBRIS, a Herschel Key Programme to conduct a volume- and flux-limited survey for debris discs in A-type through M-type stars. PACS images (from chop/nod or scan-mode observations) at 100 and 160 micron are presented toward two A-type stars and one F-type star: beta Leo, beta UMa and eta Corvi. All three stars are known disc hosts. Herschel spatially resolves the dust emission around all three stars (marginally, in the case of beta UMa), providing new information about discs as close as 11 pc with sizes comparable to that of the Solar System. We have combined these data with existing flux density measurements of the discs to refine the SEDs and derive estimates of the fractional luminosities, temperatures and radii of the discs.

  14. A real two-phase submarine debris flow and tsunami

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)


    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  15. Systems and Sensors for Debris-flow Monitoring and Warning.

    Arattano, Massimo; Marchi, Lorenzo


    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells

  16. Systems and Sensors for Debris-flow Monitoring and Warning

    Lorenzo Marchi


    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  17. Origins and Interpretation of Tidal Debris

    Johnston, Kathryn V


    The stellar debris structures that have been discovered around the Milky Way and other galaxies are thought to be formed from the disruption of satellite stellar systems --- dwarf galaxies or globular clusters --- by galactic tidal fields. The total stellar mass in these structures is typically tiny compared to the galaxy around which they are found, and it is hence easy to dismiss them as inconsequential. However, they are remarkably useful as probes of a galaxy's history (as described in this chapter) and mass distribution (covered in a companion chapter in this volume). This power is actually a consequence of their apparent insignificance: their low contribution to the overall mass makes the physics that describes them both elegant and simple and this means that their observed properties are relatively easy to understand and interpret.

  18. High Energy Laser for Space Debris Removal

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A


    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and

  19. The debris disc around HIP 17439

    Schüppler, Christian; Löhne, Torsten; Krivov, Alexander


    In the framework of the Herschel Open Time Key Programme DUNES the debris disc around the K2 V star HIP 17439 was observed. In PACS images the disc emission is spatially clearly extended. A simultaneous analysis of photometric observations and radial brightness profiles from the resolved images provides valuable hints for the disc structure. In an analytical model we adopted power laws for the size and radial distribution of the circumstellar dust and tested two different scenarios: (1) a broad dust ring with a radial extent of about 200AU, (2) two independent dust rings separated by a gap of several tens of AU. Both models fit the spectral energy distribution and the radial profiles quite well. In case (1) the parameters found are consistent with dust stemming from an outer planetesimal belt at ~140AU and strong transport mechanisms that drag the particles inward. Model (2) would imply two planetesimal belts, producing a narrow inner and wider outer distribution of dust.

  20. Drag sails for space debris mitigation

    Visagie, Lourens; Lappas, Vaios; Erb, Sven


    The prudence for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Drag augmentation is a potentially passive method for de-orbiting in LEO but its collision risk mitigation efficiency is sometimes underestimated by not taking all the relevant factors into account. This paper shows that using drag augmentation from a deployable drag-sail to de-orbit a satellite in LEO will lead to a reduction in collision risk. In order to support this finding, the models that are needed in order to evaluate the collision risk of a decaying object under drag conditions are presented. A comparison is performed between the simpler Area-Time-Product (ATP) and more precise collision risk analysis, and the effects that are overlooked in the simple ATP calculation are explained.

  1. Simulation of long-term debris flow sediment transport based on a slope stability and a debris flow routing model

    Müller, T.; Hoffmann, T.


    Debris flows play a crucial role in the coupling of hillslope-sediment sources and channels in mountain environments. In most landscape evolution models (LEMs), the sediment transport by debris flows is (if at all) often represented by simple empirical rules. This generally results from the mismatch of the coarse resolution of the LEMs and the small scale impacts of debris flow processes. To extend the accuracy and predictive power of LEMs, either a higher resolution of LEMs in combination with process-based debris flow models or a better parametrisation of subpixel scale debris flow processes is necessary. Furthermore, the simulation of sediment transport by debris flows is complicated by their episodic nature and unknown factors controlling the frequency and magnitude of events. Here, we present first results using a slope stability model (SINMAP) and an event-based debris flow routing model (SCIDDICA-S4c) to simulate the effects of debris flows in LEMs. The model was implemented in the XULU modelling platform developed by the Department of Computer Science at the University of Bonn. The combination of the slope stability model and the event-based routing and mass balance model enables us to simulate the triggering and routing of debris flow material through the iteration of single events over several thousand years. Although a detailed calibration and validation remains to be done, the resulting debris flow-affected areas in a test elevation model correspond well with data gained from a geomorphological mapping of the corresponding area, justifying our approach. The increased computation speed allows to run high resolution LEM in convenient short time at relatively low cost. This should encourage the development of more detailed LEMs, in which process-based models should be incorporated.

  2. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive ... of page What are some common uses of the procedure? MR imaging of the head is performed ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive ... of page What are some common uses of the procedure? MR imaging of the head is performed ...

  4. Ulnar head replacement.

    Herbert, Timothy J; van Schoonhoven, Joerg


    Recent years have seen an increasing awareness of the anatomical and biomechanical significance of the distal radioulnar joint (DRUJ). With this has come a more critical approach to surgical management of DRUJ disorders and a realization that all forms of "excision arthroplasty" can only restore forearm rotation at the expense of forearm stability. This, in turn, has led to renewed interest in prosthetic replacement of the ulnar head, a procedure that had previously fallen into disrepute because of material failures with early implants, in particular, the Swanson silicone ulnar head replacement. In response to these early failures, a new prosthesis was developed in the early 1990s, using materials designed to withstand the loads across the DRUJ associated with normal functional use of the upper limb. Released onto the market in 1995 (Herbert ulnar head prosthesis), clinical experience during the last 10 years has shown that this prosthesis is able to restore forearm function after ulnar head excision and that the materials (ceramic head and noncemented titanium stem), even with normal use of the limb, are showing no signs of failure in the medium to long term. As experience with the use of an ulnar head prosthesis grows, so does its acceptance as a viable and attractive alternative to more traditional operations, such as the Darrach and Sauve-Kapandji procedures. This article discusses the current indications and contraindications for ulnar head replacement and details the surgical procedure, rehabilitation, and likely outcomes.

  5. Marine debris in five national parks in Alaska.

    Polasek, L; Bering, J; Kim, H; Neitlich, P; Pister, B; Terwilliger, M; Nicolato, K; Turner, C; Jones, T


    Marine debris is a management issue with ecological and recreational impacts for agencies, especially on remote beaches not accessible by road. This project was implemented to remove and document marine debris from five coastal National Park Service units in Alaska. Approximately 80km of coastline were cleaned with over 10,000kg of debris collected. Marine debris was found at all 28 beaches surveyed. Hard plastics were found on every beach and foam was found at every beach except one. Rope/netting was the next most commonly found category, present at 23 beaches. Overall, plastic contributed to 60% of the total weight of debris. Rope/netting (14.6%) was a greater proportion of the weight from all beaches than foam (13.3%). Non-ferrous metal contributed the smallest amount of debris by weight (1.7%). The work forms a reference condition dataset of debris surveyed in the Western Arctic and the Gulf of Alaska within one season.

  6. Acoustic module of the Acquabona (Italy debris flow monitoring system

    A. Galgaro


    Full Text Available Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys.

  7. Orbital debris hazard insights from spacecraft anomalies studies

    McKnight, Darren S.


    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  8. The effects of large beach debris on nesting sea turtles

    Fujisaki, Ikuko; Lamont, Margaret M.


    A field experiment was conducted to understand the effects of large beach debris on sea turtle nesting behavior as well as the effectiveness of large debris removal for habitat restoration. Large natural and anthropogenic debris were removed from one of three sections of a sea turtle nesting beach and distributions of nests and false crawls (non-nesting crawls) in pre- (2011–2012) and post- (2013–2014) removal years in the three sections were compared. The number of nests increased 200% and the number of false crawls increased 55% in the experimental section, whereas a corresponding increase in number of nests and false crawls was not observed in the other two sections where debris removal was not conducted. The proportion of nest and false crawl abundance in all three beach sections was significantly different between pre- and post-removal years. The nesting success, the percent of successful nests in total nesting attempts (number of nests + false crawls), also increased from 24% to 38%; however the magnitude of the increase was comparably small because both the number of nests and false crawls increased, and thus the proportion of the nesting success in the experimental beach in pre- and post-removal years was not significantly different. The substantial increase in sea turtle nesting activities after the removal of large debris indicates that large debris may have an adverse impact on sea turtle nesting behavior. Removal of large debris could be an effective restoration strategy to improve sea turtle nesting.

  9. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    Krisko, Paula H.; Flegel, S.


    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.


    LIU Xi-lin


    Techniques of gully-specific debris flow hazard assessment developed in four periods since the end of the1980s have been discussed in the present paper. The improvement for the empirical assessment method is the sectional-ized function transformation for the factor value, rather than the classified logical transformation. The theoretical equationof the gully-specific debris flow hazard is expressed as the definite integral of an exponential function and its numericalsolution is expressed by the Poisson Limit Equation. Current methods for assessment of debris flow hazard in China arestill valid and practical. The further work should be put on the study of the reliability (or unc ertainty) of the techniques.For the future, we should give a high priority to the relationship between debris flow magnitude and its frequency of occur-rence, make more developments of prediction model on debris flow magnitude, so as to finally reach the goal of assessingthe hazard of debris flow by theoretical model, and realize both actuality assessment and prediction appraisal of debris flow.

  11. Porous microsphere and its applications

    Cai Y


    Full Text Available Yunpeng Cai,1,2* Yinghui Chen,3* Xiaoyun Hong,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 2School of Pharmacy, Shanghai JiaoTong University, 3Department of Neurology Jinshan Hospital, Fudan University, Shanghai, People's Republic of China *These authors contributed equally to this workAbstract: Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies.Keywords: pore, porosity, porogen, suspension polymerization, seed swelling, pulmonary drug delivery, tissue regeneration

  12. Formation of porous gas hydrates

    Salamatin, Andrey N


    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  13. Nonequilibrium Thermodynamics of Porous Electrodes

    Ferguson, Todd R


    We review classical porous electrode theory and extend it to non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model...

  14. On strength of porous material

    Nielsen, Lauge Fuglsang


    quality without damaging or destroying the material or the building component considered. The efficiency of MOE-MOR relations for this purpose depends very much on the homogeneity of porous material considered. For building materials like wood and concrete of normal or lower quality with a number......The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...... of irregularities only scattered MOE-MOR relations (clouds) can be established from which no really results can be read.For homogeneously produced porous materials, however, like modern ceramics and high performance concretes MOE-MOR relations can be presented which are reliable. The present paper contributes...

  15. Acoustic Absorption in Porous Materials

    Kuczmarski, Maria A.; Johnston, James C.


    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  16. Maneuvering impact boring head

    Zollinger, W. Thor; Reutzel, Edward W.


    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure.

  17. Enhancing debris flow modeling parameters integrating Bayesian networks

    Graf, C.; Stoffel, M.; Grêt-Regamey, A.


    Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk

  18. Description to wear debris boundaries by radar graph fractal method

    LIU HongTao; GE ShiRong


    In this paper, radar graph fractal method is introduced to describe wear debris boundaries.Research results show that it is a nice way to describe wear debris boundaries.Since the longest axis is selected as the first coordinate axis, its center point selected as the center point of the radar graph, and the coordinate value of wear debris boundary selected as the measure parameter, the limitations existing in Yard fractal measure method can be avoided.For any wear debris, its radar graph fractal dimension value is one and only, and as the wear debris shape changes from round to strip, the radar graph fractal dimension value also changes from low to high, showing strong uniqueness and independence.Due to the fact that the researched wear debris is gotten in different wear states, the results also prove that radar graph fractal dimension value is correlated with frictional pairs work condition and wear state.Radar graph fractal method is compared with Yard fractal measure methods, and results show that radar graph fractal dimension values gotten from different wear debris have enough value grads to avoid effect of errors, and provide higher sensitivity for wear debris shape.This paper also discusses the influencing factors for radar graph fractal method.With the increase of the decomposing degree value, the radar graph fractal dimension tends to keep stable at one certain value, showing the typical characteristic of the fractal theory.All this proves that radar graph fractal method is an effective description method for wear debris boundaries.

  19. Hydroplaning of subaqueous debris flows and glide blocks: Analytical solutions and discussion

    Harbitz, Carl B.; Parker, Gary; ElverhøI, Anders; Marr, Jeffrey G.; Mohrig, David; Harff, Peter A.


    Subaqueous debris flows often attain significantly higher velocities and longer run-out distances than their subaerial counterparts in spite of increased viscous drag and reduced effective gravity due to buoyancy. Recent experimental research suggests that a basal lubricating layer of water associated with hydroplaning decouples the sediments from the bed, resulting in a dramatic reduction of the basal shear stress. Hydroplaning thus provides an explanation for these observations. The conditions for onset of hydroplaning are discussed in terms of critical densimetric Froude number. The stress reduction due to a lubricating layer of water or mud slurry is studied via equilibrium solutions for a two-layer Couette flow. The calculations reveal that the stresses in both the low-viscosity lubricating layer and the high-viscosity deforming deposits below it are substantially reduced. The principles of laminar boundary layers are used to develop an equilibrium solution for the steady motion of a hydroplaning debris glide block. This adjusted version of lubrication theory properly accounts for hydroplaning associated with a dynamic pressure generated at the head of the block. Example calculations at both laboratory and field scale support the experimental results of reduced bed friction, limited erosion, sediment rheology independence, and high velocities. The results also reveal the possibility for a net up-slope discharge in the lubricating layer.

  20. Investigating controls on debris-flow initiation and surge frequency at Chalk Cliffs, USA: initial results from monitoring and modeling

    Kean, J. W.; McCoy, S. W.; Tucker, G. E.; Staley, D. M.; Coe, J. A.


    Recent monitoring of a small (0.3 km2) bedrock-dominated catchment in central Colorado, USA, has revealed distinct differences in debris-flow surge dynamics relative to rainfall intensity. Moderate bursts of rainfall (15-40 mm/hr) typically trigger a set of coarse-grained surges with depths that can exceed 1.0 m. High-intensity bursts of rainfall (40-150 mm/hr), in contrast, often generate only a single moderate-amplitude coarse-grained surge (> 0.5 m depth), followed by several minutes of water-rich flow having comparable or greater peak depth. In both cases, debris flows are observed within minutes of rain bursts due to the rapid concentration of runoff from bedrock cliffs to channels loaded with sediment from dry ravel and rockfall. Video observations have shown that the runoff can initiate debris flows both at a steep (~40 degree) bedrock-colluvium interface, and in a lower gradient (~15 degree) section of channel. This latter style of initiation, which has only been observed at moderate rainfall intensity, involves the formation and failure of a highly porous sediment dam created by bedload transport. We speculate that this process may be responsible for the creation of the consistent surge patterns we observe with moderate intensity rainfall, and may explain the relative lack of granular surges with high-intensity rainfall. To investigate this possibility, we have developed a simple one-dimensional morphodynamic model of the formation and failure of sediment dams in an undulating bedrock channel filled with loose bed sediment. The model consists of a coupled surface-subsurface water flow model, which is used to drive bed-sediment topographic adjustments based on the mathematical divergence of the sediment transport rate. Under certain topographic and water-flow conditions, the shear stress in a section of the channel can fall below the critical shear stress, resulting in local deposition of sediment. Consistent with field observations, the modeled deposit

  1. Effects of Porous Throat on Transonic Diffuser

    屋我, 実; 永井, 實; 富田, 教夫; 芳賀, 剛; 宮良, 透; Yaga, Minoru; Nagai, Minoru; Tomita, Norio; Haga, Tsuyoshi; Miyara, Tooru


    The effects of the porous throat on a transonic diffuser were investigated experimentally by wall static pressure measurements and by schlieren optical observations. The porous throat consists of a wall with 126 holes and a cavity underneath it so that the flow around the shock wave can circulate through the porous wall. The results show that no shock wave was observed at 80% of the porous region from the throat and that the pressure fluctuations in the transonic diffuser were greatly reduced...

  2. Luminescence decay of porous silicon

    Chen, X.; Uttamchandani, D.; Sander, D.; O'Donnell, K. P.


    The luminescence decay pattern of porous silicon samples prepared by electrochemical etching is characterised experimentally by a non-exponential profile, a strong dependence on temperature and an absence of spectral diffusion. We describe this luminescence as carrier-dopping-assisted recombination. Following the correlation function approach to non-dispersive transport developed by Scher and co-workers [Physics Today 41 (1991) 26], we suggest a simple derivation of analytical functions which accurately describes the anomalous luminescence decay of porous silicon, and show that this model includes exponential and Kohlrausch [Pogg. Ann. Phys. 119 (1863) 352] (stretched-exponential) relaxations as special cases.

  3. Porous Materials - Structure and Properties

    Nielsen, Anders


    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete and the p......The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  4. Estimating the avalanche contribution to the mass balance of debris covered glaciers

    A. Banerjee


    Full Text Available Avalanche from high head walls dominates the net accumulation in many debris covered glaciers in the Himalaya. These avalanche contributions are difficult to directly measure and may cause a systematic bias in glaciological mass balance measurements. In this paper we develop a method to estimate the avalanche contribution using available data, within the context of an idealised flowline model of the glacier. We focus on Hamtah glacier in Western Himalaya and estimate the magnitude of the avalanche accumulation to its specific mass balance profile. Our estimate explains the reported discrepancy between values of recent glaciological and geodetic net mass balance for this glacier. Model estimate of accumulation area ratio (AAR for this glacier is small (0.1 even at a steady state. This shows that empirical mass balance–AAR relationships derived from glaciers which do not have a significant avalanche contribution will not apply to a large region containing a significant fraction avalanche fed ones.

  5. Object Recognition Method of Space Debris Tracking Image Sequence

    Chen, Zhang; Yi-ding, Ping


    In order to strengthen the capability of space debris detection, the automated optical observation becomes more and more popular. Thus, the fully unattended automatic object recognition is urgently needed to study. As the open-loop tracking, which guides the telescope only with the historical orbital elements, is a simple and robust way to track space debris, based on the analysis on the point distribution characteristics of object's open-loop tracking image sequence in the pixel space, this paper has proposed to use the cluster identification method for the automatic space debris recognition, and made a comparison on the three kinds of different algorithms.

  6. ASTM standards for fire debris analysis: a review.

    Stauffer, Eric; Lentini, John J


    The American Society for Testing and Materials (ASTM) recently updated its standards E 1387 and E 1618 for the analysis of fire debris. The changes in the classification of ignitable liquids are presented in this review. Furthermore, a new standard on extraction of fire debris with solid phase microextraction (SPME) was released. Advantages and drawbacks of this technique are presented and discussed. Also, the standard on cleanup by acid stripping has not been reapproved. Fire debris analysts that use the standards should be aware of these changes.

  7. DEBIE - first standard in-situ debris monitoring instrument

    Kuitunen, J.; Drolshagen, G.; McDonnell, J. A. M.; Svedhem, H.; Leese, M.; Mannermaa, H.; Kaipiainen, M.; Sipinen, V.


    Objects larger than a few centimetres can be tracked with radar or with optical telescopes. The population of smaller particles can only be investigated by the analysis of retrieved spacecraft and passive detectors or by in-situ monitors in orbit. Patria Finavitec together with UniSpace Kent have developed the DEBIE (DEBris In-orbit Evaluator) instrument to determine the parameters of sub-millimetre sized space debris and micrometeoroids in-situ by their impact with a detecting surface. The main goal has been to develop an economical and low-resource instrument, easy to integrate into any spacecraft, while providing reliable real-time data for space debris modelling.

  8. Anthropogenic effect on avalanche and debris flow activity

    S. A. Sokratov


    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  9. EISCAT Space Debris during the IPY- A 5000-Hour Campaign

    Markkanen, J.; Jehn, R.; Krag, H.


    During the International Polar Year (IPY) in 2007-2009, EISCAT measured space debris at its Svalbard radar (ESR, latitude 78.2°N), simultaneously with the standard ionospheric measurement. From the 239 000 events which were recorded in 5060 hours only a "Quality Set" (QS) was extracted for further analysis. The QS essentially consists of 101 complete 24-hour beam park debris measurements, between 13 Mar 2007 and 10 Feb 2008, and contains about 95 000 events. The data provide a relatively dense sampling of the debris environment above ESR in the first year following the Chinese ASAT event, in January 2007. The QS is freely available in the web.

  10. Orbital debris policy issues: Battelle involvement and some personal observations

    Edgecombe, D. S.


    The possible hazards presented by orbital debris have been a matter of concern since the early 1960s. The area of initial concern was the potential hazard of the Earth from reentering debris. In the very early days of the space program, it was believed that only specially protected objects would survive reentry. Subsequent events showed this to be incorrect. The recognition of the potential hazard of orbital debris to orbiting objects did not occur until the late 1970s. Concern over this potential hazard has increased, and has also given rise to a number of policy issues. These issues are, at present, largely unresolved.

  11. Early Head Start Evaluation

    U.S. Department of Health & Human Services — Longitudinal information from an evaluation where children were randomly assigned to Early Head Start or community services as usual;direct assessments and...

  12. Computed Tomography (CT) -- Head

    Full Text Available ... you! Do you have a personal story about radiology? Share your patient story here Images × Image Gallery ... Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to ...

  13. Head and face reconstruction

    ... work together. Head and neck surgeons also perform craniofacial reconstruction operations. The surgery is done while you are deep asleep and pain-free (under general anesthesia ). The surgery may take ...

  14. Computed Tomography (CT) -- Head

    Full Text Available ... headaches, dizziness, and other symptoms of aneurysm, bleeding, stroke and brain tumors. It also helps your doctor ... scanning provides more detailed information on head injuries, stroke , brain tumors and other brain diseases than regular ...

  15. Computed Tomography (CT) -- Head

    Full Text Available ... a stroke, especially with a new technique called Perfusion CT. brain tumors. enlarged brain cavities (ventricles) in ... X-Ray and CT Exams Blood Clots CT Perfusion of the Head CT Angiography (CTA) Stroke Brain ...

  16. Computed Tomography (CT) -- Head

    Full Text Available ... traditional x-rays, particularly of soft tissues and blood vessels. CT scanning provides more detailed information on head injuries, stroke , brain tumors and other brain diseases than ...

  17. Computed Tomography (CT) -- Head

    Full Text Available ... special x-ray equipment to help assess head injuries, severe headaches, dizziness, and other symptoms of aneurysm, ... cancer. In emergency cases, it can reveal internal injuries and bleeding quickly enough to help save lives. ...

  18. Computed Tomography (CT) -- Head

    Full Text Available ... headaches, dizziness, and other symptoms of aneurysm, bleeding, stroke and brain tumors. It also helps your doctor ... scanning provides more detailed information on head injuries, stroke , brain tumors and other brain diseases than regular ...

  19. Computed Tomography (CT) -- Head

    Full Text Available ... images of internal organs, bones, soft tissue and blood vessels provide greater detail than traditional x-rays, particularly of soft tissues and blood vessels. CT scanning provides more detailed information on head ...

  20. Head CT scan

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... hold your breath for short periods. A complete scan usually take only 30 seconds to a few ...

  1. Head Start Impact Study

    U.S. Department of Health & Human Services — Nationally representative, longitudinal information from an evaluation where children were randomly assigned to Head Start or community services as usual;direct...

  2. Computed Tomography (CT) -- Head

    Full Text Available ... special x-ray equipment to help assess head injuries, severe headaches, dizziness, and other symptoms of aneurysm, ... cancer. In emergency cases, it can reveal internal injuries and bleeding quickly enough to help save lives. ...

  3. A Comparison of the SOCIT and DebriSat Experiments

    Ausay, Erick; Blake, Brandon; Boyle, Colleen; Cornejo, Alex; Horn, Alexa; Palma, Kirsten; Pistella, Frank; Sato, Taishi; Todd, Naromi; Zimmerman, Jeffrey; Fitz-Coy, Norman; Liou, J.-C.; Sorge, Marlon; Huynh, Thomas; Opiela, John; Krisko, Paula H.; Cowardin, Heather


    This paper explores the differences between, and shares the lessons learned from, two hypervelocity impact experiments critical to the update of orbital debris environment models. The procedures and processes of the fourth Satellite Orbital Debris Characterization Impact Test (SOCIT) were analyzed and related to the ongoing DebriSat experiment. SOCIT was the first hypervelocity impact test designed specifically for satellites in Low Earth Orbit (LEO). It targeted a 1960's U.S. Navy satellite, from which data was obtained to update pre-existing NASA and DOD breakup models. DebriSat is a comprehensive update to these satellite breakup models- necessary since the material composition and design of satellites have evolved from the time of SOCIT. Specifically, DebriSat utilized carbon fiber, a composite not commonly used in satellites during the construction of the US Navy Transit satellite used in SOCIT. Although DebriSat is an ongoing activity, multiple points of difference are drawn between the two projects. Significantly, the hypervelocity tests were conducted with two distinct satellite models and test configurations, including projectile and chamber layout. While both hypervelocity tests utilized soft catch systems to minimize fragment damage to its post-impact shape, SOCIT only covered 65% of the projected area surrounding the satellite, whereas, DebriSat was completely surrounded cross-range and downrange by the foam panels to more completely collect fragments. Furthermore, utilizing lessons learned from SOCIT, DebriSat's post-impact processing varies in methodology (i.e., fragment collection, measurement, and characterization). For example, fragment sizes were manually determined during the SOCIT experiment, while DebriSat utilizes automated imaging systems for measuring fragments, maximizing repeatability while minimizing the potential for human error. In addition to exploring these variations in methodologies and processes, this paper also presents the

  4. Transformation of dilative and contractive landslide debris into debris flows-An example from marin County, California

    Fleming, R.W.; Ellen, S.D.; Algus, M.A.


    The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow. The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium. Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes. Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide. ?? 1989.

  5. Volcanic debris flows in developing countries - The extreme need for public education and awareness of debris-flow hazards

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,


    In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.

  6. Head and neck teratomas

    Shah, Ajaz; Latoo, Suhail; Ahmed, Irshad; Malik, Altaf H


    Teratomas are complex lesions composed of diverse tissues from all 3 germinal cell layers and may exhibit variable levels of maturity. Head and neck teratomas are most commonly cervical with the oropharynx (epignathus) being the second commonest location. In this article, clinical presentation, behaviour and associated significance of head and neck teratomas have been highlightened. Because of their obscure origin, bizarre microscopic appearance, unpredictable behaviour and often dramatic cli...

  7. Star Surface Polluted by Planetary Debris


    Looking at the chemical composition of stars that host planets, astronomers have found that while dwarf stars often show iron enrichment on their surface, giant stars do not. The astronomers think that the planetary debris falling onto the outer layer of the star produces a detectable effect in a dwarf star, but this pollution is diluted by the giant star and mixed into its interior. "It is a little bit like a Tiramisu or a Capuccino," says Luca Pasquini from ESO, lead-author of the paper reporting the results. "There is cocoa powder only on the top!' ESO PR Photo 29/07 ESO PR Photo 29/07 The Structure of Stars Just a few years after the discovery of the first exoplanet it became evident that planets are preferentially found around stars that are enriched in iron. Planet-hosting stars are on average almost twice as rich in metals than their counterparts with no planetary system. The immediate question is whether this richness in metals enhances planet formation, or whether it is caused by the presence of planets. The classic chicken and egg problem. In the first case, the stars would be metal-rich down to their centre. In the second case, debris from the planetary system would have polluted the star and only the external layers would be affected by this pollution. When observing stars and taking spectra, astronomers indeed only see the outer layers and can't make sure the whole star has the same composition. When planetary debris fall onto a star, the material will stay in the outer parts, polluting it and leaving traces in the spectra taken. A team of astronomers has decided to tackle this question by looking at a different kind of stars: red giants. These are stars that, as will the Sun in several billion years, have exhausted the hydrogen in their core. As a result, they have puffed up, becoming much larger and cooler. Looking at the distribution of metals in fourteen planet-hosting giants, the astronomers found that their distribution was rather different from


    Gaspar, Andras; Rieke, George H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Balog, Zoltan, E-mail:, E-mail:, E-mail: [Max-Plank Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)


    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {proportional_to}t {sup -0.35} at its fastest point (where t is time) for our reference model, while the dust mass and its proxy-the infrared excess emission-fades significantly faster ({proportional_to}t {sup -0.8}). These later level off to a decay rate of M{sub tot}(t){proportional_to}t {sup -0.08} and M{sub dust}(t) or L{sub ir}(t){proportional_to}t {sup -0.6}. This is slower than the {proportional_to}t {sup -1} decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 {mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 {mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100 {mu}m) at certain age regimes. We show general agreement at 24 {mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration

  9. Debris Detector Verification by Hvi-Tests

    Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin

    Information regarding Space Debris (SD) or Micrometeoroids (MM) impacting on spacecraft (S/C) or payloads (P/L) can be obtained by using environmental models e.g. MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured or orbital observed data. The latter is utilised for large particles and can be obtained from ground based or space based radars or telescopes. Data regarding very small but abundant particles can also be gained by analysis of retrieved hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are brought from orbit back to Earth. Furthermore, in-situ impact detectors are an essential source for information on small size meteoroids and space debris. These kind of detectors are placed in orbit and collect impact data regarding SD and MM, sending data near real time via telemetry. Compared to the impact data which is gained by analysis of retrieved surfaces, the detected data comprise additional information regarding exact impact time and, depending on the type of detector, on the orbit and particles composition. Nevertheless, existing detectors have limitations. Since the detection area is small, statistically meaningful number of impacts are obtained for very small particles only. Measurements of particles in the size range of hundreds of microns to mm which are potentially damaging to S/C require larger sensor areas. To make use of the advantages of in-situ impact detectors and to increase the amount of impact data an innovative impact detector concept is currently under development at DLR in Bremen. Different to all previous impact detectors the Solar Generator based Impact Detector (SOLID) is not an add-on component on the S/C. SOLID makes use of existing subsystems of the S/C and adopts them for impact detection purposes. Since the number of impacts on a target in space depends linearly on the exposed area, the S/C solar panels offer a unique opportunity to use them for

  10. Restructuring of porous nickel electrodes

    Lenhart, S.J.; Macdonald, D.D.; Pound, B.G.


    A transmission line model for the electrochemical impedance of porous electrodes was used to study the degradation of nickel battery plates throughout their cycle life. The model was shown to successfully account for changes in the observed electrode properties in terms of simultaneous restructuring of the active mass and rupture of particleparticle ohmic contacts.

  11. Additively manufactured porous tantalum implants

    Wauthle, Ruben; Van Der Stok, Johan; Yavari, Saber Amin; Van Humbeeck, Jan; Kruth, Jean Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan


    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of it

  12. A multi-spacecraft formation approach to space debris surveillance

    Felicetti, Leonard; Emami, M. Reza


    This paper proposes a new mission concept devoted to the identification and tracking of space debris through observations made by multiple spacecraft. Specifically, a formation of spacecraft has been designed taking into account the characteristics and requirements of the utilized optical sensors as well as the constraints imposed by sun illumination and visibility conditions. The debris observations are then shared among the team of spacecraft, and processed onboard of a "hosting leader" to estimate the debris motion by means of Kalman filtering techniques. The primary contribution of this paper resides on the application of a distributed coordination architecture, which provides an autonomous and robust ability to dynamically form spacecraft teams once the target has been detected, and to dynamically build a processing network for the orbit determination of space debris. The team performance, in terms of accuracy, readiness and number of the detected objects, is discussed through numerical simulations.

  13. Attitude coordination of multiple spacecraft for space debris surveillance

    Felicetti, Leonard; Emami, M. Reza


    This paper discusses the attitude coordination of a formation of multiple spacecraft for space debris surveillance. Off-the-shelf optical sensors and reaction wheels, with limited field of view and control torque, respectively, are considered to be used onboard the spacecraft for performing the required attitude maneuvers to detect and track space debris. The sequence of attitude commands are planned by a proposed algorithm, which allows for a dynamic team formation, as well as performing suitable maneuvers to eventually point towards the same debris. A control scheme based on the nonlinear state dependent Riccati equation is designed and applied to the space debris surveillance mission scenario, and its performance is compared with those of the classic linear quadratic regulator and quaternion feedback proportional derivative controllers. The viability and performance of the coordination algorithm and the controllers are validated through numerical simulations.

  14. Space debris and other threats from outer space

    Pelton, Joseph N


    The mounting problem of space debris in low earth orbit and its threat to the operation of application satellites has been increasingly recognized as space activities increase. The efforts of the Inter Agency Space Debris Coordinating Committee (IADC) and UN COPUS have now led to international guidelines to mitigate the creation of new debris. This book discusses the technical studies being developed for active removal processes and otherwise mitigating problems of space debris, particularly in low earth orbit. This book also considers threats to space systems and the Earth that comes from natural causes such as asteroids, coronal mass ejections, and radiation. After more than half a century of space applications and explorations, the time has come to consider ways to provide sustainability for long-term space activities. 

  15. Interpreting debris from satellite disruption in external galaxies

    Johnston, KV; Sackett, PD; Bullock, JS


    We examine the detectability and interpretation of debris trails caused by satellite disruption in external galaxies using semianalytic approximations for the dependence of streamer length, width, and surface brightness on satellite and primary galaxy characteristics. The semianalytic method is test

  16. 40 CFR 268.45 - Treatment standards for hazardous debris.


    .... Thermal Extraction a. High Temperature Metals Recovery: Application of sufficient heat, residence time... contact after placement (leachate, other waste, microbes) None. 2. Microencapsulation: Stabilization of the debris with the following reagents (or waste reagents) such that the leachability of the...

  17. Feasibility of transit photometry of nearby debris discs

    Zeegers, S T; Kalas, P


    Dust in debris discs is constantly replenished by collisions between larger objects. In this paper, we investigate a method to detect these collisions. We generate models based on recent results on the Fomalhaut debris disc, where we simulate a background star transiting behind the disc, due to the proper motion of Fomalhaut. By simulating the expanding dust clouds caused by the collisions in the debris disc, we investigate whether it is possible to observe changes in the brightness of the background star. We conclude that in the case of the Fomalhaut debris disc, changes in the optical depth can be observed, with values of the optical depth ranging from $10^{-0.5}$ for the densest dust clouds to $10^{-8}$ for the most diffuse clouds with respect to the background optical depth of $\\sim1.2\\times10^{-3}$.

  18. Ion Beam Shepherd for Contactless Space Debris Removal

    Bombardelli, C


    A novel concept for contactless active removal of large space debris is proposed exploiting the use of a high-speed targeted ion beam. The ion beam shepherd spacecraft (IBS) is equipped with an electric propulsion system generating a quasi-neutral plasma pointed against the space debris to remotely modify its orbit without physical contact with the latter. The beam shepherd must be equipped with a secondary propulsion system which counteracts the reaction force exerted by the ion beam hence keeping the distance between the space debris constant throughout the deorbit (or reorbit) process. A preliminary analysis of the concept is provided highlighting the expected performance and the main technologicals challenges. The concept has the potential of making large debris removal operations possible in the near future.

  19. Space Debris in the neighborhood of the ISS

    Sampaio, Jarbas; Vilhena de Moraes, Rodolpho; Celestino, Claudia C.; Fiorilo de Melo, Cristiano


    The International Space Station (ISS) is a great opportunity to use a research platform in space. An international partnership of space agencies provides the operation of the ISS since 2000. The ISS is in Low Earth Orbits, in the same region of most of the space debris orbiting the planet. In this way, several studies are important to preserve the operability of the space station and operational artificial satellites, considering the increasing number of distinct objects in the space environment offering collision risks. In this work, the orbital dynamics of space debris are studied in the neighborhood of the ISS - International Space Station. The results show that the collision risk of space debris with the ISS is high and purposes to avoid these events are necessary. Solutions for the space debris mitigation are considered.

  20. Recent advances in modeling landslides and debris flows


    Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows,, REVENUES (Numerical Analysis of Slopes with V...

  1. Plasma debris sputter resistant x-ray mirror.

    Amano, Sho; Inoue, Tomoaki; Harada, Tetsuo


    A diamond-like carbon (DLC) mirror, used as a grazing incident mirror in a plasma x-ray source, exhibits a high resistance to plasma debris sputtering. Good mirror reflectivity at a wavelength of 13.5 nm was confirmed using synchrotron radiation at the NewSUBARU facility. The erosion rate due to plasma debris sputtered at the incident debris angle of 20° was measured using a laser-produced Xe plasma source developed by the authors. The results indicate that the DLC film has a 5- and 15-fold higher sputtering resistance compared to films made of the traditional mirror materials Ru and Au, respectively. Because the DLC mirror retains a high sputtering resistance to Sn ions, it may be effective in Sn plasma source applications. We conclude that a grazing incident x-ray mirror coated with DLC can be of use as a plasma debris sputtering resistant mirror.

  2. Space Debris - Evaluation of risk perception and countermeasures

    Belviso, L.

    The problem of Space Debris not only belongs to purely technical domain Although the main effort is to establish legal background to handle with possible accident caused by space debris as well as finding countermeasures another relevant problem is the perception of risk by both general public and space operators The main objective of this paper concerns the analysis and comparison of real and perceived risk related to space debris in order to gives useful outputs for decision makers in both public and private sector of space operators A correct evaluation of the real risk deriving from space debris will be particularly useful in the next years to correctly evaluate launch and operational phases of commercial satellites as well as possible countermeasures to avoid or limitate damages In the public sector a correct evaluation of risk will represents an extremely useful tool to handle crisis management and promote correct information on space

  3. Target debris collection studies for inertial confinement fusion (ICF) experiments

    Grim, G. P.; Archuleta, T. N.; Bradley, P. A.; Fowler, M. M.; Hayes, A. C.; Jungman, G.; Obst, A. W.; Rundberg, R. S.; Vieira, D. J.; Wang, Y. Q.; Wilhelmy, J. B.


    At the recently completed National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the initial set of diagnostics to be deployed are focused on measuring neutrons and γ's generated by d(t,n)α reactions in the imploded capsule. Although valuable for understanding pre-ignition experiments, this abbreviated diagnostic suite provides an incomplete picture of the plasma conditions obtained. Prompt radiochemical techniques, based on induced neutron and charged particle reactions within the imploded target, provide a novel and interesting new perspective. To enable these techniques requires the collection and assay of activated target material. In Nov. 2008, experiments were performed using the Omega Laser at the University of Rochester to study the efficiency of collecting debris from directly driven targets. Results from these experiments indicate that target debris was successfully collected, and the debris thermalization and transport scheme enhanced the debris collection up to 347% over direct collection.

  4. Target debris collection studies for inertial confinement fusion (ICF) experiments

    Grim, G P; Archuleta, T N; Bradley, P A; Fowler, M M; Hayes, A C; Jungman, G; Obst, A W; Rundberg, R S; Vieira, D J; Wang, Y Q; Wilhelmy, J B, E-mail: gpgrim@lanl.go [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)


    At the recently completed National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the initial set of diagnostics to be deployed are focused on measuring neutrons and {gamma}'s generated by d(t,n){alpha} reactions in the imploded capsule. Although valuable for understanding pre-ignition experiments, this abbreviated diagnostic suite provides an incomplete picture of the plasma conditions obtained. Prompt radiochemical techniques, based on induced neutron and charged particle reactions within the imploded target, provide a novel and interesting new perspective. To enable these techniques requires the collection and assay of activated target material. In Nov. 2008, experiments were performed using the Omega Laser at the University of Rochester to study the efficiency of collecting debris from directly driven targets. Results from these experiments indicate that target debris was successfully collected, and the debris thermalization and transport scheme enhanced the debris collection up to 347% over direct collection.

  5. Assessment of debris flow hazards using a Bayesian Network

    Liang, Wan-jie; Zhuang, Da-fang; Jiang, Dong; Pan, Jian-jun; Ren, Hong-yan


    Comprehensive assessment of debris flow hazard risk is challenging due to the complexity and uncertainties of various related factors. A reasonable and reliable assessment should be based on sufficient data and realistic approaches. This study presents a novel approach for assessing debris flow hazard risk using BN (Bayesian Network) and domain knowledge. Based on the records of debris flow hazards and geomorphological/environmental data for the Chinese mainland, approaches based on BN, SVM (Support Vector Machine) and ANN (Artificial Neural Network) were compared. BN provided the highest values of hazard detection probability, precision, and AUC (area under the receiver operating characteristic curve). The BN model is useful for mapping and assessing debris flow hazard risk on a national scale.

  6. Are planets and debris correlated? Herschel imaging of 61 Vir.

    Wyatt, M.; Kennedy, G. M.; Moro-Martín, A.


    Debris disk studies with Spitzer found no evidence of a correlation between (giant) exoplanets and circumsteallar dust. Since these studies were carried out, a new parameter space of fainter and colder debris disks has been opened up by the Herschel Space Observatory -- improving our knowledge of the disk frequency, in particular around cooler stars -- and simultaneously higher precision doppler surveys have allowed the detection of lower-mass planets, the frequency of which can now be characterized.Ê Here, we revisit the planet-debris disk correlation using Herschel data from the DEBRIS and DUNES surveys. We assess whether the frequency and properties of disks around stars with high-mass and low-mass planets are any different from a control sample, and if these differences can be used to shed light on planet formation mechanisms and to ÒpredictÓ the presence of planets around stars with certain disk characteristics.

  7. Comprehensive Census and Complete Characterization of Nearby Debris Disk Stars

    Cotten, Tara


    Debris disks are intimately linked to planetary system evolution since the rocky material surrounding the host stars is due to secondary generation from the collisions of planetesimals. With the conclusion and lack of future large scale infrared excess survey missions, it is time to summarize the history of using excess emission in the infrared as a tracer of debris. We have compiled a catalog of infrared excess stars from peer reviewed articles and performed an extensive search for new debris disks by cross correlating the Tycho 2 and AllWISE catalogs. This study will examine each debris disk stars parameters obtained through high resolution spectroscopy at various facilities. We will maintain a webpage devoted to these infrared excess sources and provide various resources related to our catalog creation, SED fitting, and data reduction.

  8. Post-Main Sequence Evolution of Debris Discs

    Bonsor, Amy


    The population of debris discs on the main sequence is well constrained, however very little is known about debris discs around evolved stars. In this work we provide a theoretical framework that considers the effects of stellar evolution on debris discs; firstly considering the evolution of an individual disc from the main sequence through to the white dwarf phase, then extending this to the known population of debris discs around main sequence A stars. It is found that discs around evolved stars are harder to detect than on the main sequence. In the context of our models discs should be detectable with Herschel or Alma on the giant branch, subject to the uncertain effect of sublimation on the discs. The best chances are for hot young white dwarfs, fitting nicely with the observations e.g the helix nebula (Su et al. 2007) and 9 systems presented by Chu & Bilikova.

  9. Spiders (Araneae of stony debris in North Bohemia

    Růžička, Vlastimil


    Full Text Available The arachnofauna was studied at five stony debris sites in northern Bohemia. In Central Europe, the northern and montane species inhabiting cold places live not only on mountain tops and peat bogs but also on the lower edges of boulder debris, where air streaming through the system of inner compartments gives rise to an exceedingly cold microclimate. At such cold sites, spiders can live either on bare stones (Bathyphantes simillimus, Wubanoides uralensis, or in the rich layers of moss and lichen (Diplocentria bidentata. Kratochviliella bicapitata exhibits a diplostenoecious occurence in stony debris and on the tree bark. Latithorax faustus and Theonoe minutissima display diplostenoecious occurence in stony debris and on peat bogs. The occurence of the species Scotina celans in the Czech Republic was documented for the first time.

  10. Functional Ag porous films prepared by electrospinning

    Dong, Guoping; Xiao, Xiudi; Liu, Xiaofeng; Qian, Bin; Liao, Yang; Wang, Chen; Chen, Danping; Qiu, Jianrong


    Face-centered cubic Ag porous films have been prepared directly from the heat treatment of AgNO 3-doped poly(vinyl alcohol) (PVA) electrospun nanofibers. Using Rhodamine B (RB) as the probing molecule, the surface-enhanced Raman scattering (SERS) effect of Ag porous films was demonstrated. The antibacterial activity of Ag porous films was also studied in this work. The propagation and biological activity of yeast cells were effectively inhibited by Ag porous films. These functional Ag porous films were expected to be applied in many fields, such as catalysis, diagnostics, sensors and antibacterial, etc.

  11. Ground-Based Observing Campaign of Briz-M Debris

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.


    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  12. Modelling runoff from a Himalayan debris-covered glacier

    K. Fujita


    Full Text Available Although the processes by which glacial debris-mantles alter the melting of glacier ice have been well studied, the mass balance and runoff patterns of Himalayan debris-covered glaciers and the response of these factors to climate change are not well understood. Many previous studies have addressed mechanisms of ice melt under debris mantles by applying multiplicative parameters derived from field experiments, and other studies have calculated the details of heat conduction through the debris layer. However, those approaches cannot be applied at catchment scales because debris distributions are heterogeneous and difficult to measure. Here, we establish a runoff model for a Himalayan debris-covered glacier in which the spatial distribution of the thermal properties of the debris mantle is estimated from remotely sensed multi-temporal data. We validated the model for the Tsho Rolpa Glacial Lake–Trambau Glacier basin in the Nepal Himalaya, using hydro-meteorological observations obtained for a 3.5 yr period (1993–1996. We calculated long-term averages of runoff components for the period 1980–2007 using gridded reanalysis datasets. Our calculations suggest that excess meltwater from the debris-covered area contributes significantly to the total runoff, mainly because of its location at lower elevations. Uncertainties in runoff values due to estimations of the thermal properties and albedo of the debris-covered surface were assessed to be approximately 8% of the runoff from the debris-covered area. We evaluated the sensitivities of runoff components to changes in air temperature and precipitation. As expected, warmer air temperatures increase the total runoff by increasing the melting rate; however, increased precipitation slightly reduces the total runoff, as ice melting is suppressed by the increased snow cover and associated high albedo. The response of total runoff to changing precipitation is complex because of the different responses of

  13. Predicting sediment delivery from debris flows after wildfire

    Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.


    Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the

  14. Debris flow hazards and risks on Cheekye Fan, British Columbia

    Jakob, M.


    Natural hazard and risk assessments hinge fundamentally on a detailed understanding of the relationship between frequency and magnitude of the hazardous process under investigation. When information is sought from the deep past (i.e. several thousand years), continuous event records do not exist and the researcher has to rely on proxy data to develop the F-M model. Such work is often prohibitively expensive and few well researched examples for mass movement are available worldwide. Cheekye fan is a desirable location for land development and has a depth and breadth of previous research unprecedented on any debris flow fan in Canada. We pursued two principal strains of research to formulate a reliable frequency-magnitude relationship. The first focuses on stratigraphic analyses combined with radiometric dating and dendrochronology to reconstruct a comprehensive picture of Holocene debris flow activity. The second approach examines hydrological limitations of rock avalanche evolution into debris flows through either entrainment of saturated sediments or by failure of a landslide-generated dam and upstream impoundment. We thus hypothesize that debris flows from Cheekye River can be separated into two quasi homogenous populations: those that are typically triggered by relatively small debris avalanches, slumps or rock falls or simply by progressive bulking of in-stream erodible sediments; and those that are thought to result from transformation of rock avalanches. Our work suggests that debris flows exceeding some 3 million cubic metres in volume are unlikely to reach Cheekye fan due to limited water available to fully fluidize a rock avalanche. This analysis has also demonstrated that in order to arrive at reasonable estimates for the frequency and magnitude of debris flows on a complex alluvial fan, significant multidisciplinary efforts are required. As a second step in the analysis, we model the design debris flow using a two-dimensional debris flow runout model

  15. Early to Late Pleistocene history of debris-flow fan evolution in western Death Valley (California) using cosmogenic 10Be and 26Al

    Dühnforth, Miriam; Densmore, Alexander L.; Ivy-Ochs, Susan; Allen, Philip; Kubik, Peter W.


    Debris-flow fans with depositional records over several 105 years may be useful archives for the understanding of fan construction by debris flows and post-depositional surface modification over long timescales. Reading these archives, however, requires that we establish the temporal and spatial pattern of debris-flow activity over time. We used a combination of geomorphic mapping of fan surface characteristics, digital topographic analysis, and cosmogenic radionuclide dating using 10Be and 26Al to study the evolution of the Warm Springs fan on the west side of southern Death Valley, California. The 10Be concentrations yield dates that vary from 989 ± 43 to 595 ± 17 ka on the proximal fan and between 369 ± 13 and 125 ± 5 ka on distal fan surfaces. The interpretation of these results as true depositional ages though is complicated by high inheritance with a minimum of 65 ka measured at the catchment outlet and of at least 125 ka at the distal fan. Results from the 26Al measurements suggest that most sample locations on the fan surfaces underwent simple exposure and were not affected by complex histories of burial and re-exposure. This implies that Warm Springs fan is a relatively stable landform that underwent several 105 years of fan aggradation before fan head incision caused abandonment of the proximal and central fan surfaces and deposition continued on a younger unit at the distal fan. We show that the primary depositional debris-flow morphology is eliminated over a time scale of less than 105 years, which prevents the delineation of individual debris flows as well as the precise reconstruction of lateral shifts in deposition as we find it on younger debris-flow fans. Secondary post-depositional processes control subsequent evolution of surface morphology with the dissection of planar surfaces while smoothing of convex-up interfluves between incised channels continues through time.

  16. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  17. Missouri: Early Head Start Initiative

    Center for Law and Social Policy, Inc. (CLASP), 2012


    Missouri's Early Head Start/Child Care Partnership Project expands access to Early Head Start (EHS) services for children birth to age 3 by developing partnerships between federal Head Start, EHS contractors, and child care providers. Head Start and EHS contractors that participate in the initiative provide services through community child care…

  18. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  19. Characterization of wear debris in total elbow arthroplasty.

    Day, Judd S; Baxter, Ryan M; Ramsey, Matthew L; Morrey, Bernard F; Connor, Patrick M; Kurtz, Steven M; Steinbeck, Marla J


    The purpose of this study was to evaluate wear debris in periprosthetic tissues at the time of revision total elbow arthroplasty. Polyethylene, metallic, and bone cement debris were characterized, and the tissue response was quantified. Capsular and medullary tissue samples were collected during revision surgery. Polyethylene debris was characterized by scanning electron microscopy after tissue digestion. The concentrations of metal and cement debris were quantified by inductively coupled plasma mass spectrometry. Tissue response was graded with a semiquantitative histologic method. Polyethylene particle size varied from the submicron range to over 100 μm. The mean diameter ranged from 0.6 μm to about 1 μm. Particles in the synovial tissues were larger and less abundant than those in tissues from the medullary canal. Cement, titanium alloy, and low levels of cobalt-chrome debris were also present, with cement predominating over metal debris. Histiocyte response was associated with small polyethylene particles (0.5-2 μm), and giant cells were associated with large polyethylene particles (>2 μm). Histiocyte scores positively correlated with the polyethylene particle number and the presence of metal. We have shown that periprosthetic tissues of total elbow patients who have undergone revision for loosening and osteolysis contain polyethylene, cement, and metal debris. Although the polyethylene particles were of a size and shape that have been previously shown to result in activation of phagocytic cells, osteolysis after total elbow arthroplasty is a multimodal process. Because of the presence of multiple wear particle sources, a cause-and-effect relationship between polyethylene debris and osteolysis cannot be established with certainty. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  20. Investigation of debris bed formation, spreading and coolability

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)


    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  1. Experiments on the dryout behavior of stratified debris beds

    Leininger, Simon; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)


    In case of a severe accident with loss of coolant and core meltdown a particle bed (debris) can be formed. The removal of decay heat from the debris bed is of prime importance for the bed's long-term coolability to guarantee the integrity of the RPV. In contrast to previous experiments, the focus is on stratified beds. The experiments have pointed out that the bed's coolability is significantly affected.

  2. Debris removal during disaster response phase : a case for Turkey


    Ankara : The Department of Industrial Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 88-93. In this study, a methodology to provide emergency relief supplies to the disaster affected regions is developed. As a result of destructive effects of disasters, debris, which is the ruin and wreckage of the structures, occurs. Proper removal of debris h...

  3. Scaling and design of landslide and debris-flow experiments

    Iverson, Richard M.


    Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.

  4. Debris disks as seen by Herschel: statistics and modeling

    Lebreton, J.; Marshall, J. P.; Augereau, J. C.; Eiroa, C.


    As leftovers of planet formation, debris disks represent an essential component of planetary systems. We first introduce the latest statistics obtained by the DUNES consortium, who are taking a census of extrasolar analogues to the Edgeworth-Kuiper Belt using the Herschel Space Observatory. Then we present a detailed study of the much younger debris disk surrounding the F5.5 star HD 181327. We derive strong constraints on the properties of its dust and we discuss its possible gaseous counterpart.

  5. On a possible mechanism of Alpine debris flows



    Full Text Available The phenomenology and previous mechanical theories of Alpine debris flows are reviewed. A new model for the mechanics of such debris flows is proposed which is based on the notion of dispersive pressure occurring in shear flows introduced by Bagnold. It is shown that the values of the dynamical variables required by this model are of the order of magnitude of those observed in nature.

  6. European code of conduct for space debris mitigation

    Alby, Fernand; Alwes, Detlef; Anselmo, Luciano


    Towards the end of the third decade of the space age, it became apparent that a new particulate environment was beginning to dominate the background meteoroid environment in all but the millimetre size regime. This man-made, orbital debris population was growing rapidly, the direct consequence of launching and operating space systems during the previous 3 decades. Man-made orbital debris poses a significantly increased collision hazard to man-made satellites, and as we become more dependent u...

  7. Vulnerability Assessment of Rainfall-Induced Debris Flow

    Lu, G. Y.; Wong, D. W.; Chiu, L. S.


    Debris flow is a common hazard triggered by large amount of rainfall over mountainous areas. A debris flow event results from a complex interaction between rainfall and topographical properties of watersheds. Heavy rainfall facilitates this process by increasing pore water pressure, seepage force and reducing effective stress of soils (normal stress carried by soil particles at the points of contact). Since debris flow events are closely related to topography and rainfall, the goal of this research is to assess debris flow vulnerability related to these two factors. Objectives of this research are to: (1) examine new spatial interpolation techniques to estimate high spatial rainfall data relevant to debris flows. (2) develop topographical factors using Geography Information System (GIS) and remote sensing (RS) approaches and (3) combine the estimated rainfall and topographical factors to assess the vulnerability of debris flow. We examined three spatial interpolation techniques: adaptive inversed distance weight (AIDW), simple kriging and spatial disaggregation using wind induced-topographic effect that incorporates gauge measurements, satellite remote sensing data (TRMM). The topographical factors are derived from high resolution digital elevation model (DEM), and adopt fuzzy-based topographical models proposed by Tseng (2004). Estimated rainfall and topographical factors are processed by self-organizing maps (SOM) to provide vulnerability assessment. To demonstrate our technique, rainfall data collected by 39 rain gauges in the central part of Taiwan during the passage of Typhoon Tori-Ji around July 29, 2001 were used. Results indicate that the proposed spatial interpolation methods outperform existing methods (i.e. kriging, inverse distance weight, and co-kriging methods). The vulnerability assessment of 187 debris flows watersheds in the study area will be presented. Keyword: Debris flow, spatial interpolation, adaptive inverse distance weight, TRMM, self

  8. Development and Flight Demonstration of Space Debris Monitor (SDM)

    Kitazawa, Yukihito; Hanada, Toshiya; Matsumoto, Haruhisa; Kobayashi, Masanori; Sakurai, Akira; Yasaka, Tetsuo; Funakoshi, Kunihiro; Hasegawa, Sunao; Akahoshi, Yasuhiro; Kimoto, Yugo; Okudaira, Osamu; Kamiya, Koki; Nakamura, Maki


    The space debris monitor (SDM) is a large-area impact sensor for in situ measurements of micro-meteoroids and space debris of the sub-millimeter to millimeter size in the near-Earth space environment. These meteoroid and debris particles are very small to be detected by ground-based observations (radars and optical telescopes) but are sufficiently large to cause serious damage to spacecraft equipment in the low Earth orbit region. The nominal detection area of the SDM is 0.1 m^2 (0.35 m × 0.3 m), but its dimensions can be easily modified to accommodate different SDM constraints. The SDM is made from a flexible printed circuit, which is produced from a thin film of a nonconductive material (such as polyimide) on which thin conductive stripes are formed in parallel. The stripe width is approximately 50 μm, and the spatial separation is approximately 100 μm, as shown in Figure 1. When a micro-debris particle with an effective diameter near to or larger than the spatial separation of the stripes (here approximately 100 μm) collides with the sensor film at a velocity sufficient to penetrate it, one or more of the stripes are cut and become nonconductive. Debris impacts can thus be detected by monitoring the electrical conductivity (resistivity) of the stripes. This sensor system can measure the size of the incident micro-debris particles by detecting the number of severed stripes. The measurement concept is registered as a patent in many countries. The first SDM was launched with HTV-5 on August 19, 2015 and represented the world's first micro-debris measurement demonstration experiment to be conducted on the ISS using the concept of conductive (resistive) strip lines for real-time debris detection.

  9. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    Chen, H. X.; Zhang, L. M.


    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion–Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during ...

  10. Economics of head injuries

    Singh Manmohan


    Full Text Available Summary: Head injuries account for significant proportion of neurosurgical admissions and bed occupancy. Patients with head injuries also consume significant proportions of neurosurgical resources. A prospective 6-month study has been carried out to evaluate the expenditure incurred on head injury patients in a modern neurosurgical center equipped with state of the art infrastructure. Costing areas included wages / salaries of health care personnel, cost of medicines / surgical items / crystalloids, general store items, stationary, all investigation charges, equipment cost, overhead building cost, maintenance cost, electricity and water charges and cost of medical gases, air conditioning and operation theatre expenses. Expenditure in each area was calculated and apportioned to each bed. The statistical analysis was done using X2 test. The cost of stay in ward was found to be Rs. 1062 / bed / day and in neurosurgical ICU Rs. 3082 / bed / day. The operation theatre cost for each surgery was Rs. 11948. The cost of hospital stay per day for minor, moderate and severe head injury group was found to be Rs. 1921, Rs. 2569 and Rs. 2713 respectively. The patients who developed complications, the cost of stay per day in the hospital were Rs. 2867. In the operative group, the cost of hospital stay per day was Rs. 3804. The total expenditure in minor head injury was Rs. 7800 per patient, in moderate head injury was Rs. 22172 per patient, whereas in severe head injury, it was found to be Rs. 32852 per patient. Patients who underwent surgery, the total cost incurred was Rs. 33100 per operated patient.

  11. Unsteady void measurements within debris beds using high speed X-ray tomography

    Laurien, E., E-mail:; Stürzel, T., E-mail:; Zhou, M., E-mail:


    Highlights: • A high speed X-ray tomography facility has been built for the investigation on two-phase flow. • The two-phase flow through beds of packed plastic spheres has been investigated in the facility. • 3D-reconstructions from the measurements show the fluxes in the two-phase flow. • The gas fraction has been calculated from the reconstruction and used for validation of the modeling. • A new bed with closest regular spheres arrangement has been manufactured by 3D-plotter and used in the measurement. - Abstract: Two-phase flow and boiling within debris beds representing a destroyed reactor core after a severe accident with core fragmentation can be simulated by using the porous media approach. In this approach, a local pressure drop and the heat transfer between the solid debris particles and the two-phase flow is modelled with the help flow-pattern maps, in which the boundaries between bubbly, slug, and annular flow are assumed. In order to support further understanding of these flows we have developed a very fast X-ray measurement device to visualize the 3D-void distribution within particle beds or porous media, which are otherwise un-accessible internally. The experimental setup uses a scanned electron beam directed in circles on a tungsten target to generate the X-rays. The particle bed, which has a diameter of 70 mm, is located between this target and a field of 256 X-ray detectors, which are arranged on a circle concentric to the target. The void distribution is reconstructed numerically from the attenuation of signals, which penetrates the particle bed and the two-phase flow inside. A 3D frame rate of up to 1000 Hz can be reached. The spatial resolution is such that bubbles with a diameter > 1.7 mm can be detected. We have investigated two-phase flows air/water through beds of packed plastic spheres (diameter between 3 and 15 mm) as well as through plastic beds, which were manufactured using a ‘3D-plotter’. Flow patterns can be

  12. Space Group Debris Imaging Based on Sparse Sample

    Zhu Jiang


    Full Text Available Space group debris imaging is difficult with sparse data in low Pulse Repetition Frequency (PRF spaceborne radar. To solve this problem in the narrow band system, we propose a method for space group debris imaging based on sparse samples. Due to the diversity of mass, density, and other factors, space group debris typically rotates at a high speed in different ways. We can obtain angular velocity through the autocorrelation function based on the diversity in the angular velocity. The scattering field usually presents strong sparsity, so we can utilize the corresponding measurement matrix to extract the data of different debris and then combine it using the sparse method to reconstruct the image. Furthermore, we can solve the Doppler ambiguity with the measurement matrix in low PRF systems and suppress some energy of other debris. Theoretical analysis confirms the validity of this methodology. Our simulation results demonstrate that the proposed method can achieve high-resolution Inverse Synthetic Aperture Radar (ISAR images of space group debris in low PRF systems.


    WANG Xie-kang; HUANG Er; CUI Peng


    Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural haz-ard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting de-bris flow have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and use-ful in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time se-ries of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collect-ed in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, however, further studies are needed.

  14. Experiments for the validation of debris and shrapnel calculations

    Koniges, A E; Eder, D; Kalantar, D; Masters, N; Fisher, A; Anderson, R; Gunney, B; Brown, B; Sain, K [LLNL Livermore, CA (United States); Debonnel, C S; Bonneau, F; Bourgade, J-L; Combis, P; Jadaud, J-P; Maroni; Ulmer, J-L [CEA/DIF (France); Andrew, J [AWE (United Kingdom); Chevalier, J-M; Geille, A; Raffestin, D [CEA/CESTA (France)], E-mail: (and others)


    The debris and shrapnel generated by laser targets will play an increasingly major role in the operation of large laser facilities such as NIF, LMJ, and Orion. Past experience has shown that it is possible for such target debris/shrapnel to render diagnostics inoperable and also to penetrate or damage optical protection (debris) shields. We are developing the tools to evaluate target configurations, in order to better mitigate the generation and impact of debris/shrapnel, including development of dedicated modelling codes. In order to validate these predictive simulations, we briefly describe a series of experiments aimed at determining the amount of debris and/or shrapnel produced in controlled situations. We use glass plates and aerogel to capture generated debris/shrapnel. The experimental targets include hohlraums, halfraums, and thin foils in a variety of geometries. Post-shot analysis includes scanning electron microscopy and x-ray tomography. We show results from a few of these experiments and discuss related modelling efforts.

  15. [Relations of landslide and debris flow hazards to environmental factors].

    Zhang, Guo-ping; Xu, Jing; Bi, Bao-gui


    To clarify the relations of landslide and debris flow hazards to environmental factors is of significance to the prediction and evaluation of landslide and debris flow hazards. Base on the latitudinal and longitudinal information of 18431 landslide and debris flow hazards in China, and the 1 km x 1 km grid data of elevation, elevation difference, slope, slope aspect, vegetation type, and vegetation coverage, this paper analyzed the relations of landslide and debris flow hazards in this country to above-mentioned environmental factors by the analysis method of frequency ratio. The results showed that the landslide and debris flow hazards in China more occurred in lower elevation areas of the first and second transitional zones. When the elevation difference within a 1 km x 1 km grid cell was about 300 m and the slope was around 30 degree, there was the greatest possibility of the occurrence of landslide and debris hazards. Mountain forest land and slope cropland were the two land types the hazards most easily occurred. The occurrence frequency of the hazards was the highest when the vegetation coverage was about 80%-90%.

  16. Grain Composition and Erosive Equilibrium of Debris Flows

    LI Yong; LIU Jingjing; CHEN Xiaoqing; WEI Fangqiang


    Debris flows consist of grains of various sizes ranging from 10-6 m ~ 1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution.The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a naterial-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.


    Bin YU


    The paper presents experimental study of debris flows. The equilibrium concentration of solid particle in the flow is a function of the energy slope, density of solid particle and kinetic friction angle of particles. The kinetic friction angle is a function of internal friction angle, the concentration of solid particles and the maximum possible concentration. To determine the function between the kinetic friction angle and internal friction angle is the aim of this research. Flume experiments of equilibrium concentration about particles in water and slurry were conducted. The large density slurry made the coarse particles be able to move in small slope. The function between the kinetic friction angle and internal friction angle was found from these experiments. The coarse particles and fine particles are well mixed. D50 demarcation line was suggested in this paper to demarcate the coarse particle and fine particle of debris flows. The equilibrium concentration of debris flows was calculated by using Ds0 demarcation for the debris flows in field. The equilibrium concentration of debris flows calculated by the function between the kinetic friction angle and internal friction angle was close to the equilibrium concentration data of debris flows in field.

  18. Debris entrainment and landform genesis during tidewater glacier surges

    Lovell, Harold; Fleming, Edward J.; Benn, Douglas I.; Hubbard, Bryn; Lukas, Sven; Rea, Brice R.; Noormets, Riko; Flink, Anne E.


    The englacial entrainment of basal debris during surges presents an opportunity to investigate processes acting at the glacier bed. The subsequent melt-out of debris-rich englacial structures during the quiescent phase produces geometrical ridge networks on glacier forelands that are diagnostic of surge activity. We investigate the link between debris entrainment and proglacial geomorphology by analyzing basal ice, englacial structures, and ridge networks exposed at the margins of Tunabreen, a tidewater surge-type glacier in Svalbard. The basal ice facies display clear evidence for brittle and ductile tectonic deformation, resulting in overall thickening of the basal ice sequence. The formation of debris-poor dispersed facies ice is the result of strain-induced metamorphism of meteoric ice near the bed. Debris-rich englacial structures display a variety of characteristics and morphologies and are interpreted to represent the incorporation and elevation of subglacial till via the squeezing of till into basal crevasses and hydrofracture exploitation of thrust faults, reoriented crevasse squeezes, and preexisting fractures. These structures are observed to melt-out and form embryonic geometrical ridge networks at the base of a terrestrially grounded ice cliff. Ridge networks are also located at the terrestrial margins of Tunabreen, neighboring Von Postbreen, and in a submarine position within Tempelfjorden. Analysis of network characteristics allows these ridges to be linked to different formational mechanisms of their parent debris-rich englacial structures. This in turn provides an insight into variations in the dominant tectonic stress regimes acting across the glacier during surges.

  19. Improving satellite vulnerability assessment to untrackable orbital debris

    Welty, Nathan; Schaefer, Frank; Rudolph, Martin; Destefanis, Roberto; Grassi, Lilith


    The projected growth in the untrackable orbital debris population will place an increased emphasis on satellite vulnerability assessments during both design and mission operations. This study presents an enhanced method for assessing satellite vulnerability to untrackable orbital debris that expands on traditional practices. By looking beyond structural penetration of the spacecraft, the method predicts the survivability of individual components and the associated degradation of system functionality resulting from untrackable debris impacts. A new risk assessment tool, the Particle Impact Risk and Vulnerability Assessment Tool (PIRAT), has been developed based on this method and is also presented here. It interfaces with both the NASA ORDEM2000 and ESA MASTER-2009 debris models and has been validated against the benchmark test cases from the Inter-Agency Space Debris Coordination Committee (IADC). This study concludes with an example vulnerability assessment using PIRAT for a generic Earth observation satellite in a Sun-synchronous low-Earth orbit. The results illustrate the additional insight provided by this method that can be used to improve the robustness of future satellite designs and mitigate the overall mission risk posed by untrackable orbital debris.

  20. A Primer on Unifying Debris Disk Morphologies

    Lee, Eve J


    A "minimum model" for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: "rings," "needles," "ships-and-wakes," "bars," and "moths (a.k.a. fans)," depending on the viewing geometry. Moths can also sport "double wings." We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intui...

  1. Exoplanets and debris disk imaging with JWST

    Pueyo, Laurent; Soummer, Remi; Perrin, Marshall D.


    Dramatic progress in exoplanetary systems imaging has occurred since the first generation of space coronagraphs on HST (NICMOS, STIS, ACS). While HST remains at forefront of both exoplanetary and circumstellar disk science, ground-based instruments have improved by three orders of magnitudes over the past decade. JWST will extend the current state of the art with a larger set of superior coronagraphs and greater sensitivity across more than a factor of 10 in wavelength, making it extraordinarily capable for detailed imaging characterization of planets and disks. We will address specific questions about nearby exoplanetary systems, while also optimizing observing strategies across the breadth of JWST’s high-contrast imaging modes, as follows: (a) Deep, multi-wavelength observations of selected nearby stars hosting known debris disks & planets. We will use the NIRCam and MIRI coronagraphs across the full range of JWST wavelengths, and perhaps MIRI MRS spatially resolved spectroscopy. Each comprehensive dataset will support a variety of investigations addressing both disk characterization and exoplanet detection & characterization. (b) Characterization of Planetary Systems around Cool M Stars. We will observe young and dusty M dwarfs, to complement observations of the closer but older M dwarf samples under consideration by other GTO groups. JWST observations will dramatically exceed HST images in their ability to address questions about the properties of dust rings, while the more favorable contrast ratios of planets relative to M dwarf hosts will enable sensitivity to relatively low mass planetary companions.

  2. Gravitational Stirring in Planetary Debris Disks

    Kenyon, S J; Kenyon, Scott J.; Bromley, Benjamin C.


    We describe gravitational stirring models of planetary debris disks using a new multi-annulus planetesimal evolution code. The current code includes gravitational stirring and dynamical friction; future studies will include coagulation, fragmentation, Poynting-Robertson drag, and other physical processes. We use the results of our calculations to investigate the physical conditions required for small bodies in a planetesimal disk to reach the shattering velocity and begin a collisional cascade. Our results demonstrate that disks composed primarily of bodies with a single size will not undergo a collisional cascade which produces small dust grains at 30-150 AU on timescales of 1 Gyr or smaller. Disks with a size distribution of bodies reach conditions necessary for a collisional cascade in 10 Myr to 1 Gyr if the disk is at least as massive as a minimum mass solar nebula and if the disk contains objects with radii of 500 km or larger. The estimated 500 Myr survival time for these disks is close to the median ag...

  3. Using Flume Experiments to Model Large Woody Debris Transport Dynamics

    Braudrick, C. A.; Grant, G. E.


    In the last decade there has been increasing interest in quantifying the transport dynamics of large woody debris in a variety of stream types. We used flume experiments to test theoretical models of wood entrainment, transport, and deposition in streams. Because wood moves infrequently during high flows where direct measurement and observation can be difficult and dangerous. Flume experiments provide an excellent setting to study wood dynamics because channel types, flow, log size, and other parameters can be varied relatively easily and extensive data can be collected over a short time period. Our flume experiments verified theoretical model predictions that piece movement is dependent on the diameter of the log and its orientation in large rivers (where piece length is less than channel width). Piece length, often reported as the most important factor in determining piece movement in field studies, was not a factor in these simulated large channels. This is likely due to the importance of banks and vegetation on inhibiting log movement in the field, particularly for pieces longer than channel width. Logs are often at least partially lodged on the banks sometimes upstream of vegetation or other logs which anchors the piece, and increases the force required for entrainment. Rootwads also increased the flow depth required to move individual logs. By raising logs off the channel bed, rootwads decrease the buoyant and drag forces acting on the log. We also developed a theoretical model of wood transport and deposition based upon the ratios of the piece length to channel width, piece length to the radius of curvature of the channel, and piece diameter to water depth. In these experiments we noted that individual logs tend to move down the channel parallel to the channel margin, and deposited on the outside of bends, heads of shallow and exposed bars, and bar crossovers. Our theoretical model was not borne out by the experiments, likely because there were few potential

  4. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy


    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  5. Experimental and numerical study on the design of a deposition basin outlet structure at a mountain debris cone

    B. Gems


    Full Text Available Mountain debris cones in the Alpine region often provide space for dense population and cultivation. Hence, a great number of buildings are exposed to torrential hazards. In order to protect the settlement areas against flooding and overbank sedimentation, torrent defence structures are implemented directly at the debris cones. In many cases, these protection measures include a deposition basin at the head of the debris cone and/or a confined channel that passes or tracks through the settlement. The work presented within this paper deals with the effect of specific outlet structure layouts, situated at the lower end of a selected deposition basin, on bed-load transport processes and flood protection. A case study analysis was accomplished comprising of a 3-D-numerical model (FLOW-3D and a physical scale model test (1:30. The subject of investigation was the deposition basin of the Larsennbach torrent in the Austrian Northern Limestone Alps. The basin is situated on a large debris cone and opens out into a paved channel. Since the basin is undersized and the accumulation of sediment in the outlet section reduces the available cross section during floods, adjoining settlements are considerably endangered of lateral overtopping of both clear water and sediment. Aiming for an upgrade in flood protection, certain layouts for a "closing-off structure" at the outlet were tested within this project. For the most efficient design layout, its effect on flood protection, a continuous bed-load output from the basin and the best possible use of the retention volume are pointed out. The simple design of the structure and the key aspects, that have to be taken into consideration for implementation, are highlighted.

  6. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris. Final report

    Zigler, G.; Brideau, J.; Rao, D.V.; Shaffer, C.; Souto, F.; Thomas, W. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)


    This report documents a plant-specific study for a BWR/4 with a Mark I containment that evaluated the potential for LOCA generated debris and the probability of losing long term recirculation capability due ECCS pump suction strainer blockage. The major elements of this study were: (1) acquisition of detailed piping layouts and installed insulation details for a reference BWR; (2) analysis of plant specific piping weld failure probabilities to estimate the LOCA frequency; (3) development of an insulation and other debris generation and drywell transport models for the reference BWR; (4) modeling of debris transport in the suppression pool; (5) development of strainer blockage head loss models for estimating loss of NPSH margin; (6) estimation of core damage frequency attributable to loss of ECCS recirculation capability following a LOCA. Elements 2 through 5 were combined into a computer code, BLOCKAGE 2.3. A point estimate of overall DEGB pipe break frequency (per Rx-year) of 1.59E-04 was calculated for the reference plant, with a corresponding overall ECCS loss of NPSH frequency (per Rx-year) of 1.58E-04. The calculated point estimate of core damage frequency (per Rx-year) due to blockage related accident sequences for the reference BWR ranged from 4.2E-06 to 2.5E-05. The results of this study show that unacceptable strainer blockage and loss of NPSH margin can occur within the first few minutes after ECCS pumps achieve maximum flows when the ECCS strainers are exposed to LOCA generated fibrous debris in the presence of particulates (sludge, paint chips, concrete dust). Generic or unconditional extrapolation of these reference plant calculated results should not be undertaken.

  7. Short-term curative effects of porous bioceramics rod treatment in earli-stage avascular necrosis of the femoral head%多孔生物陶瓷棒置入术治疗早期股骨头缺血性坏死的近期疗效分析

    汪冉; 钱金黔; 叶有晨


    目的:探讨多孔生物陶瓷棒置入术治疗早期股骨头坏死的近期临床疗效。方法2011年10月至2013年6月对13例(14髋)早期股骨头缺血性坏死患者应用多孔生物陶瓷棒置入术治疗。按Steinberg分期标准:Ⅰ期5例6髋,Ⅱa期5例,Ⅱb期3例。采用Harris髋关节评分系统评估置入前后髋关节功能改善情况。根据Steinberg分期系统进行影像学评价。结果13例患者均进行随访,随访时间6~22个月,平均16.8个月。Harris评分由术前(69.23±7.90)分提高到术后(85.30±9.80)分,优良率92.9%,治疗前后比较差异有统计学意义(P<0.05)。随访摄片髋关节影像学表现稳定,近期股骨头无明显坏死进展。结论采用生物陶瓷棒置入术治疗早期股骨头坏死,手术操作简便,手术时间短,可阻止影像学进展,缓解症状,近期疗效满意。%Objective To explore the curative effect of treatment in early-stage avascular necrosis with porous bioceramics rod. Methods There were 13 patients of early-stage ANFH (14 hips) who were treated with porous bioceramics rod from October 2011 to June 2013. According to the Steinberg assessment, the study included 5 patients in Ⅰ term, 5 patients in Ⅱa term and 3 patients in Ⅱb term. The curative effects were evaluated according to Harris scoring system as well as the radiography grading system of Steinberg. Results All the 13 patients were followed up for 6-22 months, average 16.8 months. Harris scoring was up to 85.30±9.80 from 69.23±7.90 after operation, excellent rate reached to 92.9%. There existed a significant difference between the two group (P<0.05). Conclusion Treating early-stage ANFH with porous bioceramics rod is easy to operate and the operation time is short. It can prevent the radiographic progression, alleviate the symptom, achieve curative effect satisfaction.

  8. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    Chaieb, Sahraoui


    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  9. Pediatric head injury.

    Tulipan, N


    Pediatric head injury is a public health problem that exacts a high price from patients, their families and society alike. While much of the brain damage in head-injured patients occurs at the moment of impact, secondary injuries can be prevented by aggressive medical and surgical intervention. Modern imaging devices have simplified the task of diagnosing intracranial injuries. Recent advances in monitoring technology have made it easier to assess the effectiveness of medical therapy. These include intracranial pressure monitoring devices that are accurate and safe, and jugular bulb monitoring which provides a continuous, qualitative measure of cerebral blood flow. The cornerstones of treatment remain hyperventilation and osmotherapy. Despite maximal treatment, however, the mortality and morbidity associated with pediatric head injury remains high. Reduction of this mortality and morbidity will likely depend upon prevention rather than treatment.

  10. Integrated Debris Flow Disaster Mitigation -A Comprehensive Method for Debris Flow Disaster Mitigation


    Integrated disaster mitigation needs interpreting torrent catchment areas as complex landscape systems. The history of valley-evolution shows the influence of climate and vegetation on the valley-evolution. The energy-concept (energy dissipation concept including the idea of the energy-line) is used for a simple explanation of debris flow. Examples of heavy debris flow disasters in controlled torrents in the Alps and Pyrenees give hints, which expanding the time scale can show that side-effects restrict or counteract the mitigation measures. A pallet of different mitigation measures to avoid or to reduce some of the side-effects is shown. The comprehensive method of disaster mitigation also includes the effect of vegetation. The pallet includes: avoiding hazards (hazard mapping, warning and alarming), appropriate land use and avoiding disaster-enhancing measures in the landscape and technical measures, which take into account their side-effects. The energy line is used as simple design theory. The Jiu-Jitsu Principle is explained too. With this comprehensive method a more sustainable reduction of disasters seems possible.

  11. Large head metal-on-metal cementless total hip arthroplasty versus 28mm metal-on-polyethylene cementless total hip arthroplasty : design of a randomized controlled trial

    Zijlstra, Wierd P.; Bos, Nanne; van Raaij, Jos J. A. M.


    Background: Osteoarthritis of the hip is successfully treated by total hip arthroplasty with metal-on-polyethylene articulation. Polyethylene wear debris can however lead to osteolysis, aseptic loosening and failure of the implant. Large head metal-on-metal total hip arthroplasty may overcome polyet

  12. Head First Statistics

    Griffiths, Dawn


    Wouldn't it be great if there were a statistics book that made histograms, probability distributions, and chi square analysis more enjoyable than going to the dentist? Head First Statistics brings this typically dry subject to life, teaching you everything you want and need to know about statistics through engaging, interactive, and thought-provoking material, full of puzzles, stories, quizzes, visual aids, and real-world examples. Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics

  13. Head first Ajax

    Riordan, Rebecca M


    Ajax is no longer an experimental approach to website development, but the key to building browser-based applications that form the cornerstone of Web 2.0. Head First Ajax gives you an up-to-date perspective that lets you see exactly what you can do -- and has been done -- with Ajax. With it, you get a highly practical, in-depth, and mature view of what is now a mature development approach. Using the unique and highly effective visual format that has turned Head First titles into runaway bestsellers, this book offers a big picture overview to introduce Ajax, and then explores the use of ind

  14. Rocket injector head

    Green, C. W., Jr. (Inventor)


    A high number of liquid oxygen and gaseous hydrogen orifices per unit area are provided in an injector head designed to give intimate mixing and more thorough combustion. The injector head comprises a main body portion, a cooperating plate member as a flow chamber for one propellant, a cooperating manifold portion for the second propellant, and an annular end plate for enclosing an annular propellant groove formed around the outer edge of the body. All the openings for one propellant are located at the same angle with respect to a radial plane to permit a short combustion chamber.

  15. Debris-flow observations in the Zermatt Valley

    Graf, Christoph


    In the Alps, a multitude of unstable slopes is located at altitudes of ~2700 m asl, where sediment transfers typically happen outside the range of humans or their infrastructure. The situation is slightly different in the Zermatt Valley, a high-elevation, north-south oriented glacial valley in the Swiss Alps, where the detachment of melting permafrost results in rock falls on steep slopes and debris flows in high-gradient gullies through which till is transferred directly to the inhabited valley floor at elevations between 1100 (N) and 1600 m asl (S). As a result of the excellent database on past disasters in the valley, recent developments and measurements in the local rock glacier bodies and current torrential events, I show data from some debris-flow torrents to document impacts of past, ongoing and possible future changes of debris flows originating from periglacial environments. Debris flows are typically initiated by the abrupt input of considerable quantities of water. The water-saturated masses of fragmented rock and soil slump down mountainsides into gullies which in turn mobilize stored sediment in the channels. In addition to triggering by extreme rainstorms, debris flows have also been reported to be released by rapid snowmelt, rain-on-snow storms, or the sudden emptying of glacier water bodies or through the rupture of landslide dams. More frequently, debris flows occur as a result of high-intensity, convective rainstorms of short duration or low-intensity advective precipitation events over several days. Displacement rates and instability of rock glaciers have increased further recently to show movement rates without historical precedents. At Grabengufer (Dorfbach) e.g., increasing air and ice temperatures have favoured the development of annual displacement rates from just a few decimetres in the past decades to 80 m in 2010. Similar behaviour was observed in catchments nearby. As a consequence of the enhanced movement of these permafrost bodies and

  16. Current Situation and Tendencies of Debris Flow Initiation Mechanism%泥石流起动机理研究现状及趋势

    贺拿; 陈宁生; 曾超


    The current research situation of debris flow initiation mechanism ( experimental study and theory research) is summarized. On the basis of induction and summarization on the previous achievements, shortcomings of the previous researches are analyzed and the future research directions of debris flow initiation mechanism are proposed. Founded on soil mechanics, hydraulics and porous flow mechanics, etc. , the study in the future should reveal the dynamic process of debris flow from static to dynamic, from single factor to multi-factor, from qualitative research to quantitative research, and finally combining with the damage process and water condition to establish the initiation model of debris flow. Research on debris flow initiation mechanism can provide scientific basis for debris flow prediction, and promote the development of debris flow discipline at the same time.%概述了国内外泥石流起动机理研究(实验研究及理论研究)的现状,在归纳总结前人研究成果的同时,分析其研究的不足,同时提出泥石流起动机理未来的研究方向.未来的研究应该以土力学及水力学、渗流力学等学科为基础,揭示泥石流土体的动态变化过程,从静态向动态、从单因素向多因素、从定性向定量方向转化,并结合土体的动态破坏过程及需水条件构建泥石流起动的模型.泥石流起动机理的研究不仅可以为泥石流的预测预报提供科学依据,同时又可以推动泥石流学科的发展.

  17. Spatial Density Maps from a Debris Cloud

    Healy, L.; Kindl, S.; Binz, C.


    A debris cloud from a fragmentation on orbit may be modeled by transformation of variables from the instantaneous velocity distribution at the fragmentation time to the spatial distribution at some elapsed time later. There are no Gaussian distributions assumed and the evolution map is quite nonlinear, being derived from the solution of the Lambert, two-point boundary value, problem and the state transition matrix for unperturbed propagation, so the traditional tools of analysis that assume these qualities fail dramatically. The transformation of variables technique does not suffer from any such assumptions, and unlike the Monte Carlo method, is not subject to sampling errors or approximations. Structures and features are evident in the density maps, and these structures show promise for simplified approximation of the density map. Most prominent of the structures is the well-known pinch point at the fragmentation location in inertial space. The anti-pinch line, or wedge, is also observed. Bands on the opposite side of the fragmentation are very noticeable, and their existence may be motivated from simple orbit dynamics. These bands make the anti-pinch line actually more of a set of anti-pinch line segments. By computing these density maps over time, the evolution may be studied. There is a density generator, a density band at roughly the same altitude as the pinch point, that cycles around the earth and appears a source of the bands, with newly created bands moving radially outward and diminishing in density. Although the initial velocity distribution affects the final spatial distribution, the Lambert solutions, which are the most time consuming to compute, need only be computed once. Therefore, different initial distributions may be changed and the results recomputed with relative speed. A comparison of the effects of initial distributions is shown in this paper.

  18. Traking of Laboratory Debris Flow Fronts with Image Analysis

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Fischer, Jan-Thomas; Scheidl, Christian; Pudasaini, Shiva P.


    Image analysis technique is applied to track the time evolution of rapid debris flow fronts and their velocities in laboratory experiments. These experiments are parts of the project that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural slopes. The laboratory model consists of a large rectangular channel 1.4m wide and 10m long, with adjustable inclination and other flow configurations. The setup allows investigate different two phase material compositions including large fluid fractions. The large size enables to transfer the results to large-scale natural events providing increased measurement accuracy. The images are captured by a high speed camera, a standard digital camera. The fronts are tracked by the camera to obtain data in debris flow experiments. The reflectance analysis detects the debris front in every image frame; its presence changes the reflectance at a certain pixel location during the flow. The accuracy of the measurements was improved with a camera calibration procedure. As one of the great problems in imaging and analysis, the systematic distortions of the camera lens are contained in terms of radial and tangential parameters. The calibration procedure estimates the optimal values for these parameters. This allows us to obtain physically correct and undistorted image pixels. Then, we map the images onto a physical model geometry, which is the projective photogrammetry, in which the image coordinates are connected with the object space coordinates of the flow. Finally, the physical model geometry is rewritten in the direct linear transformation form, which allows for the conversion from one to another coordinate system. With our approach, the debris front position can then be estimated by combining the reflectance, calibration and the linear transformation. The consecutive debris front

  19. Forecasting Inundation from Debris Flows That Grow By Entraining Sediment

    Reid, M. E.; Coe, J. A.; Brien, D. L.


    Destructive debris flows often grow, and extend their runouts, by entraining sediment as they travel. However, incorporating varied entrainment processes into physics-based flow routing models is challenging. As an alternative, we developed a relatively simple, automated method for forecasting the inundation hazards posed by debris flows that entrain sediment and coalesce from multiple flows. Within a drainage network, we amalgamate the effects of many possible debris flows with each flow volume proportional to an entrainment rate scaled by the upslope contributing area, and then use these volumes in the USGS GIS-based inundation model LAHARZ. Our approach only requires estimates of two parameters: spatial entrainment rate & maximum entrainment area or maximum volume. Our procedure readily integrates various sediment sources and it can portray different inundation hazard levels on a GIS-based map by varying our two parameters. We applied this approach to part of the Coast Range, southern Oregon, USA. Using aerial photography, we mapped debris flows triggered by a large 1996 rain event on a LiDAR-derived topographic base, and identified initiation locations, travel paths, and areas of channel erosion and deposition. Many catchments experienced multiple debris flows that coalesced downstream and about 95% of the debris flows entrained sediment as they traveled. Flows typically stopped entraining sediment before the upslope contributing area reached ~500,000 m2. We used pre- and post-debris-flow stereo photos to estimate spatial entrainment rates in four clear-cut catchments having both channel erosion and coalescence of flows; these rates varied from 0.12 to 0.2 m3/m2. GIS-based inundation maps, using our automated methods, are quite similar to the mapped flow paths and deposits. Given appropriate parameters, our approach could be applied to a variety of steep, channelized environments where entrainment is important, such as alpine and post-wildfire slopes.

  20. Engineered porous metals for implants

    Vamsi Krishna, B.; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit


    Interest is significant in patient-specific implants with the possibility of guided tissue regeneration, particularly for load-bearing implants. For such implants to succeed, novel design approaches and fabrication technologies that can achieve balanced mechanical and functional performance in the implants are necessary. This article is focused on porous load-bearing implants with tailored micro-as well as macrostructures using laser-engineered net shaping (LENS™), a solid freeform fabrication or rapid prototyping technique that can be used to manufacture patient-specific implants. This review provides an insight into LENS, some properties of porous metals, and the potential applications of this process to fabricate unitized structures which can eliminate longstanding challenges in load-bearing implants to increase their in-vivo lifetime, such as in a total hip prosthesis.

  1. Scattering characteristics from porous silicon

    R. Sabet-Dariani


    Full Text Available   Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet.   In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.

  2. Porous glasses for optical sensors

    Dorosz, Dominik; Procyk, Bernadeta


    Microporous glasses from the Na II0-B II0 3-Si0 II system can be obtained by appropriate thermal and chemical treatment. During the thermal treatment the separation of the borate phase from the silicon skeleton has been occurred. The borates are in the form small drops joined to each other. In the course of chemical treatment the borates become leached in water, water solutions of acids or basis and the glass becomes porous. Microporous glasses may find application in many branches of science and engineering. The applications depend on the internal arrangement, size and shape of pores. These parameters may be in a wide range modified by a change of the chemical composition. The received porous glass was used as an element in optical fibre NO II sensor. The specific coloration reaction between organic reagents and NO II in the pores was occurred. It is possible to detection of 10-50 ppm NO II level.

  3. Gas transport in porous media

    Ho, Clifford K


    This book presents a compilation of state-of-the art studies on gas and vapor transport processes in porous and fractured media. A broad set of models and processes are presented, including advection/diffusion, the Dusty Gas Model, enhanced vapor diffusion, phase change, coupled processes, solid/vapor sorption, and vapor-pressure lowering. Numerous applications are also presented that illustrate these processes and models in current problems facing the scientific community. This book fills a gap in the general area of transport in porous and fractured media; an area that has historically been dominated by studies of liquid-phase flow and transport. This book identifies gas and vapor transport processes that may be important or dominant in various applications, and it exploits recent advances in computational modeling and experimental methods to present studies that distinguish the relative importance of various mechanisms of transport in complex media.


    Sexton, W.


    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to &apos

  5. On strength of porous material

    Nielsen, Lauge Fuglsang


    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...... to the theoretical research on non-destructive testing of such materials relating strength to stiffness and pore geometry.It is demonstrated that solutions for stiffness, tensile strength, and pore strength (damaging pore pressure, frost, fire) for some ideal porous materials can be determined theoretically only...... from knowing about pore geometry, solid phase stiffness, and zero-porosity strength. Pore geometry is the very important common denominator which controls both both stiffness and strength.The accurate results obtained are finally used to suggest generalizations with respect to strength in general...

  6. Test Methodology of Reproducing Fuel Rod Failure by Debris Fretting Wear

    Kwon, Oh Joon; Park, Nam Gyu; Kim, Jae Ik [KEPCO NF, Daejeon (Korea, Republic of)


    A test was conducted with simple debris to reproduce debris fretting wear. 68% of fuel rod cladding thickness is worn out by Inconel debris in 75 hours. The test result shows that a simple link system is useful to accommodate debris oscillation, and mid grid mixing vanes could be a source of debris forcing. Additional tests will be conducted with various debris such as wire brush, metal chip, etc which are suspected to generate actual debris fretting wear in future works. Debris fretting is one of the most common cause of the nuclear fuel rod failure. Even the most of the nuclear fuels has debris protection system, debris still cause fuel rod failure. From 1994 to 2006, debris fretting failure is around 11% of the total fuel failure. In 2006-2010, the portion of debris rises to over 13%. The total number of fuel rods failure is decreasing, but the portion of the debris fretting wear is growing with time. Therefore reproducing and identifying the mechanism of fuel rod failure by debris fretting wear is needed to improve reliability of the nuclear fuel.

  7. Volume calculations of coarse woody debris; evaluation of coarse woody debris volume calculations and consequences for coarse woody debris volume estimates in forest reserves

    Wijdeven, S.M.J.; Vaessen, O.H.B.; Hees, van A.F.M.; Olsthoorn, A.F.M.


    Dead wood is recognized as one of the key indicators for sustainable forest management and biodiversity. Accurate assessments of dead wood volume are thus necessary. In this study New volume models were designed based on actual volume measurements of coarse woody debris. The New generic model accura

  8. Porous squeeze-film flow

    Knox, D. J.


    © 2013 © The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. The squeeze-film flow of a thin layer of Newtonian fluid filling the gap between a flat impermeable surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch, for a porous bed contact occurs in a finite contact time. Using a lubrication approximation, an implicit expression for the fluid layer thickness and an explicit expression for the contact time are obtained and analysed. In addition, the fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In particular, the behaviour in the asymptotic limit of small permeability, in which the contact time is large but finite, is investigated. Finally, the results are interpreted in the context of lubrication in the human knee joint, and some conclusions are drawn about the contact time of the cartilage-coated femoral condyles and tibial plateau and the penetration of nutrients into the cartilage.

  9. Direct foaming porous alumina ceramics

    Salvini, V.R.; Sandurkov, B.A.; Klein-Gunnewiek, R.F.; Pandolfelli, V.C. [Federal Univ. of Sao Carlos, Materials Engineering Dept., FIRE Associate Lab., Sao Carlos, SP (Brazil)


    This paper presents the work carried out in order to improve the properties of these porous alumina ceramics, concerning their application as thermal insulating. Changes in solid content of ceramic suspension, variations of pore forming agents and other additives were carried out and their effects on the green and the sintered mechanical strength are also shown. According to the literature, several starch types seem to be attractive pore forming agents as well as binders for porous ceramics. Most of them consist of a mixture of two polysaccharide types, amylose (linear) and amylopectin (highly branched). Corn, potato and rice starches were used in the present study because of their difference in size and shape. In order to increase the mechanical strength of the sintered porous ceramics a part of the Al{sub 2}O{sub 3} in the composition was replaced by Al(OH){sub 3}. Due to the changes of the composition and additives, porosities up to 81% and a mechanical strength of 15 MPa were obtained. (orig.)

  10. Diffusion in porous crystalline materials.

    Krishna, Rajamani


    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  11. Heading in soccer: dangerous play?

    Spiotta, Alejandro M; Bartsch, Adam J; Benzel, Edward C


    Soccer is the world's most popular sport and unique in that players use their unprotected heads to intentionally deflect, stop, or redirect the ball for both offensive and defensive strategies. Headed balls travel at high velocity pre- and postimpact. Players, coaches, parents, and physicians are justifiably concerned with soccer heading injury risk. Furthermore, risk of long-term neurocognitive and motor deficits caused by repetitively heading a soccer ball remains unknown. We review the theoretical concerns, the results of biomechanical laboratory experiments, and the available clinical data regarding the effects of chronic, subconcussive head injury during heading in soccer.

  12. Computed Tomography (CT) -- Head

    Full Text Available ... are present in the paranasal sinuses. plan radiation therapy for cancer of the brain or other tissues. guide the ... Radiation Therapy for Brain Tumors Radiation Therapy for Head and Neck Cancer Others American Stroke Association National Stroke Association top ...

  13. Head space analysis

    Stekelenburg, G.J. van; Koorevaar, G.

    Additional analytical information is given about the method of head space analysis. From the data presented it can be concluded that this technique may be advantageous for enzyme kinetic studies in turbid solutions, provided a volatile organic substance is involved in the chemical reaction. Also

  14. Sculpting Ceramic Heads.

    Sapiro, Maurice


    Clay sculpture is difficult to produce because of the requirements of kiln firing. The problems can be overcome by modeling the original manikin head and making a plaster mold, pressing molding slabs of clay into the plaster mold to form the hollow clay armature, and sculpting on the armature. (IS)

  15. Lubricating the swordfish head

    Videler, John J.; Haydar, Deniz; Snoek, Roelant; Hoving, Henk-Jan T.; Szabo, Ben G.


    The swordfish is reputedly the fastest swimmer on Earth. The concave head and iconic sword are unique characteristics, but how they contribute to its speed is still unknown. Recent computed tomography scans revealed a poorly mineralised area near the base of the rostrum. Here we report, using magnet

  16. Prognosis in head injury.

    Jane, J A; Rimel, R W


    The prognosis of head injury when viewed from the perspective of the Glasgow Coma Scale confirms the utility of this measure. In particular, decrease in mortality is associated with an increase in GCS. In addition, the motor score portion of the GCS was of predictive value when taken alone. The outcome of patients in coma (GCS less than 8) was closely related to three preventable or treatable factors, namely, hypoxia, shock, and increased intracranial pressure. These three factors, when considered in combination, powerfully predicted mortality. Of considerable interest was the finding that moderate head injury (GCS 9-12) was associated with a small but perhaps preventable mortality. The morbidity was intermediate between that of severe and minor and was surprisingly high. Minor head injury, while not associated with significant mortality, also resulted in considerable morbidity. Neuropsychological evaluation of the patients and an experimental study suggests that an organic component may be involved even in this group. To deal with head injury, distinctions must be made between grades of severity. The Glasgow Coma Scale is suited for this task. Nonetheless, the recognition of this basic continuity should elicit the further recognition that different health providers may be involved in the case of, say, severe, as opposed to mild, injury, and that different outcome measures are suitable for one group but not another.

  17. Head injuries, heading, and the use of headgear in soccer.

    Niedfeldt, Mark W


    Soccer has more than 265 million players around the world and is the only contact sport with purposeful use of the head for controlling and advancing the ball. Head contact in soccer has the potential to cause acute traumatic brain injury including concussion or, potentially, a pattern of chronic brain injury. Although early retrospective research on the effects of soccer heading seemed to suggest that purposeful heading may contribute to long-term cognitive impairment, prospective controlled studies do not support this and, in fact, suggest that purposeful heading may not be a risk factor for cognitive impairment. Headgear has not been shown to be effective in reducing ball impact but may be helpful in reducing the force of non-ball-related impacts to the head. There are concerns that universal use of headgear may cause more aggressive heading and head challenges, leading to increased risk of injury.

  18. Charging of space debris in the LEO and GEO regions

    Sen, Abhijit; Tiwari, Sanat Kumar

    The near exponential rise of space debris at the satellite orbital altitudes (particularly in the low earth orbit (LEO) region) and the risk they pose for space assets is a source of major concern for all nations engaged in space activities. Considerable efforts are therefore being expended into accurate modeling and tracking of these objects and various ideas for the safe removal of these debris are being explored. The debris objects are likely to acquire a large amount of charge since they are typically found in a plasma environment - such as the earth’s ionospheric plasma in the LEO region (100 kms to 1000 kms) and the radiation belts in the geosynchronous orbit (GEO) region. The consequent flow of electron and ion currents on them lead to the accumulation of a large amount of surface charge and the development of a surface potential on these objects. The influence of the plasma environment on the dynamics and charging of the debris is a relatively unexplored area of Space Situational Awareness (SSA) and Space Debris (SD) research and can be potentially important for the accurate prediction of the long-term evolution of debris orbits and their collision probabilities with other space objects. In this paper we will report on the charging of space debris under a variety of orbital conditions in the LEO and GEO regions using both analytic and particle-in-cell (PIC) modeling. The analytic estimates are obtained using refined Orbit Motion Limited (OML) modeling while the simulation studies are carried out using the SPIS code [1]. In the GEO region account is taken of charging due to photoemission processes as well as energetic beam charging. The PIC approach enables us to study charging of irregularly shaped debris objects as well as differential charging on objects that are composed of patches of conducting and insulated regions. The dynamical consequences of the debris charging on their orbital trajectories and rotational characteristics will be discussed. [1] J

  19. Rainfall Generated Debris flows on Mount Shasta: July 21, 2015

    Mikulovsky, R. P.; De La Fuente, J. A.; Courtney, A.; Bachmann, S.; Rodriguez, H.; Rust, B.; Schneider, F.; Veich, D.


    Convective storms on the evening of July 21, 2015 generated a number of debris flows on the SE flank of Mount Shasta Volcano, Shasta-Trinity National Forest. Widespread rilling, gullying and sheet erosion occurred throughout the affected area. These storms damaged roads by scouring drainage ditches, blocking culverts, eroding road prisms, and depositing debris where streams emerged from their incised channels and flowed over their alluvial fans. Effects were limited geographically to a narrow band about 6 miles wide trending in a northeasterly direction. Debris flows were identified at Pilgrim Creek and nearby channels, and Mud Creek appears to have experienced sediment laden flows rather than debris flows. Doppler radar data reveal that the storm cells remained nearly stationary for two hours before moving in a northeasterly direction. Debris flows triggered by convective storms occur often at Mount Shasta, with a similar event recorded in 2003 and a larger one in 1935, which also involved glacial melt. The 1935 debris flow at Whitney Creek buried Highway 97 north of Weed, CA, and took out the railroad above the highway. In September, 2014, a large debris flow occurred in Mud Creek, but it was associated solely with glacial melt and was not accompanied by rain. The 2014 event at Mud Creek filled the channel and parts of the floodplain with debris. This debris was in turn reworked and eroded by sediment laden flows on July 21, 2015. This study was initiated in August, 2015, and began with field inventories to identify storm effects. Lidar data will be used to identify possible avulsion points that could result in unexpected flash flooding outside of the main Mud Creek channel and on adjacent streams. The results of this study will provide critical information that can be used to assess flash flood risk and better understand how to manage those risks. Finally, some conclusions may be drawn on the kinds of warning systems that may be appropriate for possible flash

  20. Hazards of falling debris to people, aircraft, and watercraft

    Cole, J.K.; Young, L.W.; Jordan-Culler, T.


    This report is a collection of studies performed at Sandia National Laboratories in support of Phase One (inert debris) for the Risk and Lethality Commonality Team. This team was created by the Range Safety Group of the Range Commander`s Council to evaluate the safety issues for debris generated during flight tests and to develop debris safety criteria that can be adopted by the national ranges. Physiological data on the effects of debris impacts on people are presented. Log-normal curves are developed to relate the impact kinetic energy of fragments to the probability of fatality for people exposed in standing, sitting, or prone positions. Debris hazards to aircraft resulting from engine ingestion or penetration of a structure or windshield are discussed. The smallest mass fragments of aluminum, steel, and tungsten that may be hazardous to current aircraft are defined. Fragment penetration of the deck of a small ship or a pleasure craft is also considered. The smallest mass fragments of aluminum, steel, or tungsten that can penetrate decks are calculated.