WorldWideScience

Sample records for hayabusa spacecraft asteroid

  1. Characterization of the Surface Properties of MUSES-C/Hayabusa Spacecraft Target Asteroid 25143 Itokawa (1998 SF36)

    Science.gov (United States)

    Lederer, S. M.; Domingue, D. L.; Vilas, F.; Abe, M.; Farnham, T. L.; Jarvis, K. S.; Lowry, S. C.; Ohba, Y.; Weissman, P. R.; French, L. M.

    2004-01-01

    Several spacecraft missions have recently targeted asteroids to study their morphologies and physical properties (e.g. Galileo, NEAR Shoemaker), and more are planned. MUSES-C is a Japanese mission designed to rendezvous with a near-Earth asteroid (NEA). The MUSES-C spacecraft, Hayabusa, was launched successfully in May 2003. It will rendezvous with its target asteroid in 2005, and return samples to the Earth in 2007. Its target, 25143 Itokawa (1998 SF36), made a close approach to the Earth in 2001. We collected an extensive ground-based database of broadband photometry obtained during this time, which maximized the phase angle coverage, to characterize this target in preparation for the mission. Our project was designed to capitalize on the broadband UBVRI photometric observations taken with a series of telescopes, instrumentation, and observers. Photometry and spectrophotometry of Itokawa were acquired at Lowell, McDonald, Steward, Palomar, Table Mountain and Kiso Observatories. The photometric data sets were combined to calculate Hapke model parameters of the surface material of Itokawa, and examine the solar-corrected broadband color characteristics of the asteroid. Broadband photometry of an object can be used to: (1) determine its colors and thereby contribute to the understanding of its surface composition and taxonomic class, and (2) infer global physical surface properties of the target body. We present both colors from UBVRI observations of the MUSES-C target Itokawa, and physical properties derived by applying a Hapke model to the broadband BVRI photometry.

  2. Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations

    Science.gov (United States)

    Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2018-03-01

    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.

  3. Three dimensional modelling for the target asteroid of HAYABUSA

    Science.gov (United States)

    Demura, H.; Kobayashi, S.; Asada, N.; Hashimoto, T.; Saito, J.

    Hayabusa program is the first sample return mission of Japan. This was launched at May 9 2003, and will arrive at the target asteroid 25143 Itokawa on June 2005. The spacecraft has three optical navigation cameras, which are two wide angle ones and a telescopic one. The telescope with a filter wheel was named AMICA (Asteroid Multiband Imaging CAmera). We are going to model a shape of the target asteroid by this telescope; expected resolution: 1m/pixel at 10 km in distanc, field of view: 5.7 squared degrees, MPP-type CCD with 1024 x 1000 pixels. Because size of the Hayabusa is about 1x1x1 m, our goal is shape modeling with about 1m in precision on the basis of a camera system with scanning by rotation of the asteroid. This image-based modeling requires sequential images via AMICA and a history of distance between the asteroid and Hayabusa provided by a Laser Range Finder. We established a system of hierarchically recursive search with sub-pixel matching of Ground Control Points, which are picked up with Susan Operator. The matched dataset is restored with a restriction of epipolar geometry, and the obtained a group of three dimensional points are converted to a polygon model with Delaunay Triangulation. The current status of our development for the shape modeling is displayed.

  4. MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission

    Science.gov (United States)

    Ho, Tra-Mi; Baturkin, Volodymyr; Grimm, Christian; Grundmann, Jan Thimo; Hobbie, Catherin; Ksenik, Eugen; Lange, Caroline; Sasaki, Kaname; Schlotterer, Markus; Talapina, Maria; Termtanasombat, Nawarat; Wejmo, Elisabet; Witte, Lars; Wrasmann, Michael; Wübbels, Guido; Rößler, Johannes; Ziach, Christian; Findlay, Ross; Biele, Jens; Krause, Christian; Ulamec, Stephan; Lange, Michael; Mierheim, Olaf; Lichtenheldt, Roy; Maier, Maximilian; Reill, Josef; Sedlmayr, Hans-Jürgen; Bousquet, Pierre; Bellion, Anthony; Bompis, Olivier; Cenac-Morthe, Celine; Deleuze, Muriel; Fredon, Stephane; Jurado, Eric; Canalias, Elisabet; Jaumann, Ralf; Bibring, Jean-Pierre; Glassmeier, Karl Heinz; Hercik, David; Grott, Matthias; Celotti, Luca; Cordero, Federico; Hendrikse, Jeffrey; Okada, Tatsuaki

    2017-07-01

    On December 3rd, 2014, the Japanese Space Agency (JAXA) launched successfully the Hayabusa2 (HY2) spacecraft to its journey to Near Earth asteroid (162173) Ryugu. Aboard this spacecraft is a compact landing package, MASCOT (Mobile Asteroid surface SCOuT), which was developed by the German Aerospace Centre (DLR) in collaboration with the Centre National d'Etudes Spatiales (CNES). Similar to the famous predecessor mission Hayabusa, Hayabusa2, will also study an asteroid and return samples to Earth. This time, however, the target is a C-type asteroid which is considered to be more primitive than (25143) Itokawa and provide insight into an even earlier stage of our Solar System.

  5. Microwave Discharge Ion Engines onboard Hayabusa Asteroid Explorer

    International Nuclear Information System (INIS)

    Kuninaka, Hitoshi

    2008-01-01

    The Hayabusa spacecraft rendezvoused with the asteroid Itokawa in 2005 after the powered flight in the deep space by the μl0 cathode-less electron cyclotron resonance ion engines. Though the spacecraft was seriously damaged after the successful soft-landing and lift-off, the xenon cold gas jets from the ion engines rescued it. New attitude stabilization method using a single reaction wheel, the ion beam jets, and the photon pressure was established and enabled the homeward journey from April 2007 aiming the Earth return on 2010. The total accumulated operational time of the ion engines reaches 31,400 hours at the end of 2007. One of four thrusters achieved 13,400-hour space operation

  6. Hayabusa2 Sampler: Collection of Asteroidal Surface Material

    Science.gov (United States)

    Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki

    2017-07-01

    Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.

  7. Oxygen and Magnesium Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Yurimoto, H; Abe, M.; Ebihara, M.; Fujimura, A.; Hashizume, K.; Ireland, T. R.; Itoh, S.; Kawaguchi, K.; Kitajima, F.; Mukai, T.; hide

    2011-01-01

    The Hayabusa spacecraft made two touchdowns on the surface of Asteroid 25143 Itokawa on November 20th and 26th, 2005. The Asteroid 25143 Itokawa is classified as an S-type asteroid and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. Near-infrared spectroscopy by the Hayabusa spacecraft proposed that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering [2]. The spacecraft made the reentry into the Earth s atmosphere on June 12th, 2010 and the sample capsule was successfully recovered in Australia on June 13th, 2010. Although the sample collection processes on the Itokawa surface had not been made by the designed operations, more than 1,500 grains were identified as rocky particles in the sample curation facility of JAXA, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa on November 17th, 2010 [3]. Although their sizes are mostly less than 10 microns, some larger grains of about 100 microns or larger were also included. The mineral assembly is olivine, pyroxene, plagioclase, iron sulfide and iron metal. The mean mineral compositions are consistent with the results of near-infrared spectroscopy from Hayabusa spacecraft [2], but the variations suggest that the petrologic type may be smaller than the spectroscopic results. Several tens of grains of relatively large sizes among the 1,500 grains will be selected by the Hayabusa sample curation team for preliminary examination [4]. Each grain will be subjected to one set of preliminary examinations, i.e., micro-tomography, XRD, XRF, TEM, SEM, EPMA and SIMS in this sequence. The preliminary examination will start from the last week of January 2011. Therefore, samples for isotope analyses in this study will start from the last week of February 2011. By the time of the LPSC meeting we will have measured the oxygen and

  8. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  9. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  10. Preliminary Examination of Particles Recovered from the Surface of the Asteroid Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Tsuchiyama, A.; Ebihara, M.; Kimura, M.; Kitajima, F.; Kotsugi, M.; Ito, S.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; hide

    2011-01-01

    The Hayabusa spacecraft arrived at S-type Asteroid 25143 Itokawa in November 2006, and reveal astounding features of the small asteroid (535 x 294 x 209 m). Near-infrared spectral shape indicates that the surface of this body has an olivinerich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering. Based on the surface morphological features observed in high-resolution images of Itokawa s surface, two major types of boulders were distinguished: rounded and angular boulders. Rounded boulders seem to be breccias, while angular boulders seem to have severe impact origin. Although the sample collection did not be made by normal operations, it was considered that some amount of samples, probably small particles of regolith, was collected from MUSES-C regio on the Itokawa s surface. The sample capsule was successfully recovered on the earth on June 13, 2010, and was opened at curation facility of JAXA (Japan Aerospace Exploration Agency), Sagamihara, Japan. A large number of small particles were found in the sample container. Preliminary analysis with SEM/EDX at the curation facility showed that at least more than 1500 grains were identified as rocky particles, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa. Minerals (olivine, low-Ca pyroxene, high-Ca pyroxene, plagioclase, Fe sulfide, Fe-Ni metal, chromite, Ca phosphate), roughly estimated mode the minerals and rough measurement of the chemical compositions of the silicates show that these particles are roughly similar to LL chondrites. Although their size are mostly less than 10 m, some larger particles of about 100 m or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team and examined preliminary in Japan within one year after the sample recovery in prior to detailed analysis phase. Hayabusa Asteroidal Sample Preliminary

  11. Hayabusa2 NIRS3’s Investigation to Characterize and Select Sampling and Landing Sites on Asteroid (25143) Ryugu

    Science.gov (United States)

    Takir, Driss; Hibbitts, Charles A.; Le Corre, Lucille; Emery, Joshua P.; Kitazato, Kohei; Sugita, Seiji; Nakauchi, Yusuke

    2017-10-01

    Following the visit of the spacecraft Hayabusa to (25143) Itokawa in 2005, the Japanese Space Agency (JAXA) launched a second spacecraft, Hayabusa2, in 2014 to the near-Earth Apollo asteroid (162173) Ryugu, a C-complex asteroid. Hayabusa2 will arrive at Ryugu in 2018. Near-Earth asteroids (NEAs) are important objects to study because of their possible role in the delivery of water and complex organic molecules to early Earth, and their threats to impact the Earth at irregular and unpredictable periods in the future. Hayabusa2 mission will provide exceptional science with a primary objective to illuminate the origin, evolution, and distribution of volatiles and organics on the surface of Ryugu and in the Solar System. Here we present our Near Infrared Spectrometer(NIRS3)-related strategy and plan to help the science team to characterize and select sampling and landing sites to collect carbonaceous samples from Ryugu and bring them back to Earth in 2020. Our plan includes, (1) measuring spectra of various carbonaceous chondrites and end-member hydrated silicates under asteroid-like conditions (vacuum and elevated temperatures) to develop spectral parameters of minerals and chemical compounds that we expect to detect on Ryugu, particularly around 2.8 to 3.2 µm, and (2) thermally and photometrically correcting Ryugu’s spectra to create site-specific and global maps of the mineralogical and chemical relative abundances across Ryugu’s surface, in addition to creating various albedo maps, including the geometric and bolometric Bond albedo. Previous 3-µm spectroscopic studies were conducted in ambient terrestrial environments, and hence were contaminated by atmospheric water. In our work, however, chondrite reflectance and hydrated mineral spectra are measured under asteroid-like conditions to remove adsorbed water and accurately compute the spectral parameters that will be used for Ryugu’s mineralogical and chemical mapping.AcknowledgementsWe wish to thank the

  12. Initial inflight calibration for Hayabusa2 optical navigation camera (ONC) for science observations of asteroid Ryugu

    Science.gov (United States)

    Suzuki, H.; Yamada, M.; Kouyama, T.; Tatsumi, E.; Kameda, S.; Honda, R.; Sawada, H.; Ogawa, N.; Morota, T.; Honda, C.; Sakatani, N.; Hayakawa, M.; Yokota, Y.; Yamamoto, Y.; Sugita, S.

    2018-01-01

    Hayabusa2, the first sample return mission to a C-type asteroid was launched by the Japan Aerospace Exploration Agency (JAXA) on December 3, 2014 and will arrive at the asteroid in the middle of 2018 to collect samples from its surface, which may contain both hydrated minerals and organics. The optical navigation camera (ONC) system on board the Hayabusa2 consists of three individual framing CCD cameras, ONC-T for a telescopic nadir view, ONC-W1 for a wide-angle nadir view, and ONC-W2 for a wide-angle slant view will be used to observe the surface of Ryugu. The cameras will be used to measure the global asteroid shape, local morphologies, and visible spectroscopic properties. Thus, image data obtained by ONC will provide essential information to select landing (sampling) sites on the asteroid. This study reports the results of initial inflight calibration based on observations of Earth, Mars, Moon, and stars to verify and characterize the optical performance of the ONC, such as flat-field sensitivity, spectral sensitivity, point-spread function (PSF), distortion, and stray light of ONC-T, and distortion for ONC-W1 and W2. We found some potential problems that may influence our science observations. This includes changes in sensitivity of flat fields for all bands from those that were measured in the pre-flight calibration and existence of a stray light that arises under certain conditions of spacecraft attitude with respect to the sun. The countermeasures for these problems were evaluated by using data obtained during initial in-flight calibration. The results of our inflight calibration indicate that the error of spectroscopic measurements around 0.7 μm using 0.55, 0.70, and 0.86 μm bands of the ONC-T can be lower than 0.7% after these countermeasures and pixel binning. This result suggests that our ONC-T would be able to detect typical strength (∼3%) of the serpentine absorption band often found on CM chondrites and low albedo asteroids with ≥ 4

  13. Rotational Characterization of Hayabusa II Target Asteroid (162173) 1999 JU3

    OpenAIRE

    Moskovitz, Nicholas; Abe, Shinsuke; Pan, Kang-Shian; Osip, David; Pefkou, Dimitra; Melita, Mario; Elias, Mauro; Kitazato, Kohei; Bus, Schelte; DeMeo, Francesca; Binzel, Richard; Abell, Paul

    2013-01-01

    The Japanese Space Agency's Hayabusa II mission is scheduled to rendezvous with and return a sample from the near-Earth asteroid (162173) 1999 JU3. Previous visible-wavelength spectra of this object show significant variability across multiple epochs which could be the result of a compositionally heterogeneous surface. We present new visible and near-infrared spectra to demonstrate that thermally altered carbonaceous chondrites are plausible compositional analogs, however this is a tentative ...

  14. Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu

    Science.gov (United States)

    Okazaki, Ryuji; Sawada, Hirotaka; Yamanouchi, Shinji; Tachibana, Shogo; Miura, Yayoi N.; Sakamoto, Kanako; Takano, Yoshinori; Abe, Masanao; Itoh, Shoichi; Yamada, Keita; Yabuta, Hikaru; Okamoto, Chisato; Yano, Hajime; Noguchi, Takaaki; Nakamura, Tomoki; Nagao, Keisuke

    2017-07-01

    The spacecraft Hayabusa2 was launched on December 3, 2014, to collect and return samples from a C-type asteroid, 162173 Ryugu (provisional designation, 1999 JU3). It is expected that the samples collected contain organic matter and water-bearing minerals and have key information to elucidate the origin and history of the Solar System and the evolution of bio-related organics prior to delivery to the early Earth. In order to obtain samples with volatile species without terrestrial contamination, based on lessons learned from the Hayabusa mission, the sample catcher and container of Hayabusa2 were refined from those used in Hayabusa. The improvements include (1) a mirror finish of the inner wall surface of the sample catcher and the container, (2) adoption of an aluminum metal sealing system, and (3) addition of a gas-sampling interface for gas collection and evacuation. The former two improvements were made to limit contamination of the samples by terrestrial atmosphere below 1 Pa after the container is sealed. The gas-sampling interface will be used to promptly collect volatile species released from the samples in the sample container after sealing of the container. These improvements maintain the value of the returned samples.

  15. Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET) and the Astromaterial Curation Facility at JAXA/ISAS

    Science.gov (United States)

    Yano, H.; Fujiwara, A.

    After the successful launch in May 2003, the Hayabusa (MUSES-C) mission of JAXA/ISAS will collect surface materials (e.g., regolith) of several hundred mg to several g in total from the S-type near Earth asteroid (25143) Itokawa in late 2005 and bring them back to ground laboratories in the summer of 2007. The retrieved samples will be given initial analysis at the JAXA/ISAS astromaterial curation facility, which is currently in the preparation for its construction, by the Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). HASPET is consisted of the ISAS Hayabusa team, the international partners from NASA and Australia and all-Japan meteoritic scientists to be selected as outsourcing parts of the initial analyses. The initial analysis to characterize general aspects of returned samples can consume only 15 % of its total mass and must complete the whole analyses including the database building before international AO for detailed analyses within the maximum of 1 year. Confident exercise of non-destructive, micro-analyses whenever possible are thus vital for the HASPET analysis. In the purpose to survey what kinds and levels of micro-analysis techniques in respective fields, from major elements and mineralogy to trace and isotopic elements and organics, are available in Japan at present, ISAS has conducted the HASPET open competitions in 2000-01 and 2004. The initial evaluation was made by multiple domestic peer reviews. Applicants were then provided two kinds of unknown asteroid sample analogs in order to conduct proposed analysis with self-claimed amount of samples in self-claimed duration. After the completion of multiple, international peer reviews, the Selection Committee compiled evaluations and recommended the finalists of each round. The final members of the HASPET will be appointed about 2 years prior to the Earth return. Then they will conduct a test-run of the whole initial analysis procedures at the ISAS astromaterial curation facility and

  16. Preflight Calibration Test Results for Optical Navigation Camera Telescope (ONC-T) Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Kameda, S.; Suzuki, H.; Takamatsu, T.; Cho, Y.; Yasuda, T.; Yamada, M.; Sawada, H.; Honda, R.; Morota, T.; Honda, C.; Sato, M.; Okumura, Y.; Shibasaki, K.; Ikezawa, S.; Sugita, S.

    2017-07-01

    The optical navigation camera telescope (ONC-T) is a telescopic framing camera with seven colors onboard the Hayabusa2 spacecraft launched on December 3, 2014. The main objectives of this instrument are to optically navigate the spacecraft to asteroid Ryugu and to conduct multi-band mapping the asteroid. We conducted performance tests of the instrument before its installation on the spacecraft. We evaluated the dark current and bias level, obtained data on the dependency of the dark current on the temperature of the charge-coupled device (CCD). The bias level depends strongly on the temperature of the electronics package but only weakly on the CCD temperature. The dark-reference data, which is obtained simultaneously with observation data, can be used for estimation of the dark current and bias level. A long front hood is used for ONC-T to reduce the stray light at the expense of flatness in the peripheral area of the field of view (FOV). The central area in FOV has a flat sensitivity, and the limb darkening has been measured with an integrating sphere. The ONC-T has a wheel with seven bandpass filters and a panchromatic glass window. We measured the spectral sensitivity using an integrating sphere and obtained the sensitivity of all the pixels. We also measured the point-spread function using a star simulator. Measurement results indicate that the full width at half maximum is less than two pixels for all the bandpass filters and in the temperature range expected in the mission phase except for short periods of time during touchdowns.

  17. Performance of Hayabusa2 DCAM3-D Camera for Short-Range Imaging of SCI and Ejecta Curtain Generated from the Artificial Impact Crater Formed on Asteroid 162137 Ryugu (1999 JU3)

    Science.gov (United States)

    Ishibashi, K.; Shirai, K.; Ogawa, K.; Wada, K.; Honda, R.; Arakawa, M.; Sakatani, N.; Ikeda, Y.

    2017-07-01

    Deployable Camera 3-D (DCAM3-D) is a small high-resolution camera equipped on Deployable Camera 3 (DCAM3), one of the Hayabusa2 instruments. Hayabusa2 will explore asteroid 162137 Ryugu (1999 JU3) and conduct an impact experiment using a liner shooting device called Small Carry-on Impactor (SCI). DCAM3 will be detached from the Hayabusa2 spacecraft and observe the impact experiment. The purposes of the observation are to know the impact conditions, to estimate the surface structure of asteroid Ryugu, and to understand the physics of impact phenomena on low-gravity bodies. DCAM3-D requires high imaging performance because it has to image and detect multiple targets of different scale and radiance, i.e., the faint SCI before the shot from 1-km distance, the bright ejecta generated by the impact, and the asteroid. In this paper we report the evaluation of the performance of the CMOS imaging sensor and the optical system of DCAM3-D. We also describe the calibration of DCAM3-D. We confirmed that the imaging performance of DCAM3-D satisfies the required values to achieve the purposes of the observation.

  18. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2

    Science.gov (United States)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.

    2017-07-01

    The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales (103-10^{-3} m) and sample scales (10^{-3}-10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital observations

  19. Stability Analysis of Spacecraft Motion in the Vicinity of Asteroids

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of my proposal is to determine the stability of a spacecraft when in the vicinity of an asteroid. Orbiting an asteroid is a difficult task. The unique...

  20. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  1. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Harris, A. W.

    2006-01-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a

  2. Three Dimensional Structures of Particles Recovered from the Asteroid Itokawa by the Hayabusa Mission and a Role of X-Ray Microtomography in the Preliminary Examination

    Science.gov (United States)

    Tsuchiyama, A.; Uesugi, M.; Uesugi, K.; Nakano, T.; Nakamura, T.; Noguchi, T.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; hide

    2011-01-01

    Particles of regolith on S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (Japan Aerospace Exploration Agency). Near-infrared spectral study of Itokawa s surface indicates that these particles are materials similar to LL5 or LL6 chondrites. High-resolution images of Itokawa's surface suggest that they may be breccias and some impact products. At least more than 1500 particles were identified as Itokawa origin at curation facility of JAXA. Preliminary analysis with SEM/EDX at the curation facility shows that they are roughly similar to LL chondrites. Although most of them are less than 10 micron in size, some larger particles of about 100 micron or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team, and sequential examination will start from January 2011 by Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). In mainstream of the analytical flow, each particle will be examined by microtomography, XRD and XRF first as nondestructive analyses, and then the particle will be cut by an ultra-microtome and examined by TEM, SEM, EPMA, SIMS, PEEM/XANES, and TOF-SIMS sequentially. Three-dimensional structures of Itokawa particles will be obtained by microtomography sub-team of HASPET. The results together with XRD and XRF will be used for design of later destructive analyses, such as determination of cutting direction and depth, to obtain as much information as possible from small particles. Scientific results and a role of the microtomography in the preliminary examination will be presented.

  3. The Hayabusa Curation Facility at Johnson Space Center

    Science.gov (United States)

    Zolensky, M.; Bastien, R.; McCann, B.; Frank, D.; Gonzalez, C.; Rodriguez, M.

    2013-01-01

    The Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft made contact with the asteroid 25143 Itokawa and collected regolith dust from Muses Sea region of smooth terrain [1]. The spacecraft returned to Earth with more than 10,000 grains ranging in size from just over 300 µm to less than 10 µm [2, 3]. These grains represent the only collection of material returned from an asteroid by a spacecraft. As part of the joint agreement between JAXA and NASA for the mission, 10% of the Hayabusa grains are being transferred to NASA for parallel curation and allocation. In order to properly receive process and curate these samples, a new curation facility was established at Johnson Space Center (JSC). Since the Hayabusa samples within the JAXA curation facility have been stored free from exposure to terrestrial atmosphere and contamination [4], one of the goals of the new NASA curation facility was to continue this treatment. An existing lab space at JSC was transformed into a 120 sq.ft. ISO class 4 (equivalent to the original class 10 standard) clean room. Hayabusa samples are stored, observed, processed, and packaged for allocation inside a stainless steel glove box under dry N2. Construction of the clean laboratory was completed in 2012. Currently, 25 Itokawa particles are lodged in NASA's Hayabusa Lab. Special care has been taken during lab construction to remove or contain materials that may contribute contaminant particles in the same size range as the Hayabusa grains. Several witness plates of various materials are installed around the clean lab and within the glove box to permit characterization of local contaminants at regular intervals by SEM and mass spectrometry, and particle counts of the lab environment are frequently acquired. Of particular interest is anodized aluminum, which contains copious sub-mm grains of a multitude of different materials embedded in its upper surface. Unfortunately the use of anodized aluminum was necessary in the construction

  4. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Science.gov (United States)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  5. Touchless Despinning of Asteroids and Comets via Neutral Beam Emitting Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, build, and test a device that is capable of despinning an asteroid without the need for affixing the spacecraft to the surface. This...

  6. Neutron activation analysis of small particles brought back from the asteroid Itokawa by the space probe Hayabusa

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru

    2013-01-01

    The probe in the title launched in May 2003, landed on the asteroid 25143 (Itokawa) to collect the surface material, and returned to the desert of Australia in June 2010. The material carried in Japan Aerospace Exploration Agency (JAXA) was found to be >1,500 particles of extraterrestrial origin. This paper reports the results of activation analysis of a part of particles for the purpose of characterizing the elemental composition. The size of particles was mostly <100 mc-m and the mass, several 10s mc-g. The experiment was performed preliminarily on Kilabo meteorite using Kyoto University Research Reactor (KURR) as a neutron source, and then on 1 Itokawa particle named RA-QD02-0049, which was activated for 19 hr. The cooled particle was found to be split mainly in 2 parts (0049-1 and -2), which were subjected to analysis of gamma ray with Ge semiconductor detector in the KURR Institute and Kanazawa University. Analysis revealed that the 2 particles contained 8 elements of Na, Sc, Cr, Fe, Co, Ni, Zn and Ir, which were then quantitated with similarly neutron irradiated Allende meteorite, basalt JB-1 and highly purified Fe, and with previous findings by scanning electron microscope with energy dispersive X-ray spectrometer (SEM-EDX) showing the Itokawa particle was an olivine. Finally, 0049-1 and -2 were found to be of mass of 1.6 and 1.5 mc-g, respectively, based on which the calculated contents of the 8 elements revealed that they were homogeneously existed in the Itokawa particle. Comparison of elemental composition of the particle with those of various intra- and extra-terrestrial rocks and meteorites suggested that Itokawa had a feature of elements aggregated at the early stage after formation of the solar system 4.5 billion years ago. (T.T.)

  7. Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa

    Science.gov (United States)

    Jarvis, K. S.; Vilas, F.; Kelley, M. S.; Abell, P. A.

    2004-01-01

    The Japanese MUSES C mission launched the Hayabusa spacecraft last May 15, 2003, to encounter and study the near-Earth asteroid 25143 Itokawa. The spacecraft will obtain visible images through broadband filters similar to the ECAS filters, and near-infrared spectra from 0.85 - 2.1 microns. In preparation for this encounter, opportunities to study the asteroid with Earth-based telescopes have been fully leveraged. Visible and near-infrared spectral observations were made of asteroid 25143 Itokawa during several nights of March, 2001, around the last apparition. We report here on the results of extensive spectral observations made to address the questions of compositional variations across the surface of the asteroid (as determined by the rotational period and shape model); variations in phase angle (Sun-Itokawa-Earth angle) on spectral characteristics; and predictions of Itokawa observations by Hayabusa based on the spectral resolution and responsivity of the NIRS and AMICA instruments.

  8. Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model

    Science.gov (United States)

    dos Santos, Leonardo Barbosa Torres; de Almeida Prado, Antonio F. Bertachini; Sanchez, Diogo Merguizo

    2017-11-01

    Space missions allow us to expand our knowledge about the origin of the solar system. It is believed that asteroids and comets preserve the physical characteristics from the time that the solar system was created. For this reason, there was an increase of missions to asteroids in the past few years. To send spacecraft to asteroids or comets is challenging, since these objects have their own characteristics in several aspects, such as size, shape, physical properties, etc., which are often only discovered after the approach and even after the landing of the spacecraft. These missions must be developed with sufficient flexibility to adjust to these parameters, which are better determined only when the spacecraft reaches the system. Therefore, conducting a dynamic investigation of a spacecraft around a multiple asteroid system offers an extremely rich environment. Extracting accurate information through analytical approaches is quite challenging and requires a significant number of restrictive assumptions. For this reason, a numerical approach to the dynamics of a spacecraft in the vicinity of a binary asteroid system is offered in this paper. In the present work, the equations of the Restricted Synchronous Four-Body Problem (RSFBP) are used to model a binary asteroid system. The main objective of this work is to construct grids of initial conditions, which relates semi-major axis and eccentricity, in order to quantify the lifetime of a spacecraft when released close to the less massive body of the binary system (modeled as a rotating mass dipole). We performed an analysis of the lifetime of the spacecraft considering several mass ratios of a binary system of asteroids and investigating the behavior of a spacecraft in the vicinity of this system. We analyze direct and retrograde orbits. This study investigated orbits that survive for at least 500 orbital periods of the system (which is approximately one year), then not colliding or escaping from the system during this

  9. Advances in Small Particle Handling of Astromaterials in Preparation for OSIRIS-REx and Hayabusa2: Initial Developments

    Science.gov (United States)

    Snead, C. J.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.

    2018-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center has established an Advanced Curation program that is tasked with developing procedures, technologies, and data sets necessary for the curation of future astromaterials collections as envisioned by NASA exploration goals. One particular objective of the Advanced Curation program is the development of new methods for the collection, storage, handling and characterization of small (less than 100 micrometer) particles. Astromaterials Curation currently maintains four small particle collections: Cosmic Dust that has been collected in Earth's stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild 2 dust returned by NASA's Stardust spacecraft, interstellar dust that was returned by Stardust, and asteroid Itokawa particles that were returned by the JAXA's Hayabusa spacecraft. NASA Curation is currently preparing for the anticipated return of two new astromaterials collections - asteroid Ryugu regolith to be collected by Hayabusa2 spacecraft in 2021 (samples will be provided by JAXA as part of an international agreement), and asteroid Bennu regolith to be collected by the OSIRIS-REx spacecraft and returned in 2023. A substantial portion of these returned samples are expected to consist of small particle components, and mission requirements necessitate the development of new processing tools and methods in order to maximize the scientific yield from these valuable acquisitions. Here we describe initial progress towards the development of applicable sample handling methods for the successful curation of future small particle collections.

  10. Deriving global Olivine distribution on Hayabusa's target (25143) Itokawa using Near-Infrared Spectrometer data

    Science.gov (United States)

    Nardi, L.; Palomba, E.; Longobardo, A.; Galiano, A.; Dirri, F.

    2017-09-01

    In 2005 Hayabusa spacecraft visited asteroid Itokawa, bringing back surface samples to Earth in 2010. Near-Infrared data taken by NIRS and samples analysis confirmed hypothesis made through ground-based observations, in particular the one that sees Itokawa as an LL-chondrite like asteroid processed by space weathering. In this work, we apply spectral indices for olivine detection. In particular, we define the BAR* and relate it to the olivine abundance, by means of calibration on laboratory data. We present the distribution of BAR* calculated for nearly 38.000 spectra taken from an altitude of 3.5-7 km, defined as Home Position, which was the longest mission observation phase. In addition, a plot of olivine normalized content versus BAR* for RELAB compounds is given.

  11. The Nature of C Asteroid Regolith from Meteorite Observations

    Science.gov (United States)

    Zolensky, M.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Komatsu, M.; Jenniskens, P.; Le, L.; Yin, Q.-Z; Kebukawa, Y.; Fries, M.

    2013-01-01

    Regolith from C (and related) asteroid bodies are a focus of the current missions Dawn at Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as large as Ceres is expected to be covered by a mature regolith, and as Hayabusa demonstrated, flat and therefore engineeringly-safe ponded deposits will probably be the sampling sites for both Hayabusa 2 and OSIRIS REx. Here we examine what we have learned about the mineralogy of fine-grained asteroid regolith from recent meteorite studies and the examination of the samples harvested from asteroid Itokawa by Hayabusa.

  12. International CJMT-1 Workshop on Asteroidal Science

    Science.gov (United States)

    Ip, Wing-Huen

    2014-03-01

    An international workshop on asteroidal science was held between October 16 and 17, 2012, at the Macau University of Science and Technology gathering together experts on asteroidal study in China, Japan, Macao and Taiwan. For this reason, we have called it CJMT-1 Workshop. Though small in sizes, the asteroids orbiting mainly between the orbit of Mars and of Jupiter have important influence on the evolution of the planetary bodies. Topics ranging from killer asteroids to space resources are frequently mentioned in news reports with prominence similar to the search for water on Mars. This also means that the study of asteroids is very useful in exciting the imagination and interest in science of the general public. Several Asian countries have therefore developed long-term programs integrating ground-based observations and space exploration with Japan being the most advanced and ambitious as demonstrated by the very successful Hayabusa mission to asteroid 25143 Itokawa. In this volume we will find descriptions of the mission planning of Hayabusa II to the C-type near-Earth asteroid, 1999 JU3. Not to be outdone, China's Chang-E 2 spacecraft was re-routed to a flyby encounter with asteroid 4179 Toutatis in December 2012. It is planned that in the next CJMT workshop, we will have the opportunity to learn more about the in-depth data analysis of the Toutatis observations and the progress reports on the Hayabusa II mission which launch date is set to be July 2014. Last but not least, the presentations on the ground-based facilities as described in this volume will pave the way for coordinated observations of asteroidal families and Trojan asteroids - across Asia from Taiwan to Uzbekistan. Such international projects will serve as an important symbol of good will and peaceful cooperation among the key members of this group. Finally, I want to thank the Space Science Institute, Macao University of Science and Technology, for generous support, and its staff members

  13. The Small Carry-on Impactor (SCI) and the Hayabusa2 Impact Experiment

    Science.gov (United States)

    Saiki, T.; Imamura, H.; Arakawa, M.; Wada, K.; Takagi, Y.; Hayakawa, M.; Shirai, K.; Yano, H.; Okamoto, C.

    2017-07-01

    Hayabusa2 is a sample return mission of JAXA launched on 3 December 2014. Hayabusa2 is the successor of Hayabusa, which returned samples from the asteroid Itokawa to the Earth. Although the design of Hayabusa2 follows that of Hayabusa, the former is equipped with some new components. The small carry-on impactor (SCI) is one of those components. The SCI is a compact kinetic impactor designed to remove the asteroid surface regolith locally and create an artificial crater. One of the most important scientific objectives of Hayabusa2 is to investigate the chemical and physical properties of the internal materials and structures of the target body, asteroid Ryugu. Hayabusa2 will attempt to observe the resultant crater with some scientific instruments and to get samples from around the crater. High kinetic energy is required to create a meaningful crater, however, the impact system design needs to fit within strict constraints. Complicated functions, such as a guidance and control system, are not permitted. A special type of shaped charge is used for the acceleration of the impactor of the SCI in order to make system simpler. Using this explosion technique makes it possible to accelerate the impactor very quickly and to hit the asteroid without a guidance system. However, the impact operation will be complicated because the explosive is very powerful and it scatters high-speed debris at the detonation. This paper describes an overview of the SCI system, the results of the development testing and an outline of the impact experiment of the Hayabusa2 mission.

  14. Families of periodic orbits in Hill's problem with solar radiation pressure: application to Hayabusa 2

    Science.gov (United States)

    Giancotti, Marco; Campagnola, Stefano; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2014-11-01

    This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill's problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.

  15. Asteroids

    International Nuclear Information System (INIS)

    Bell, J.F.; Gaffey, M.J.

    1989-01-01

    During the past 15 yr much progress has been made in the study of the asteroids with optical, infrared, and radar telescopes. Simultaneously a vast body of petrologic, chemical and isotopic data has been acquired for meteorites, which are actual samples of asteroids. This work has demonstrated that asteroids vary widely in composition and thermal history in a systematic but complex way with orbital position and size. The authors report that it appears that these variations can be explained to first order by a simple model invoking three principal mechanisms: condensation of various known and unknown classes of chondritic material at radial locations in the nebula controlled by the temperature and composition; intense metamorphic heating after accretion which declined rapidly with both increasing solar distance and smaller planetesimal size, producing complete differentiation in some inner belt objects, incomplete differentiation in many more, and extensive metamorphism and aqueous alteration in middle-belt objects; and complex collisional fragmentation often controlled by internal strength gradients due to irregular distribution of metal

  16. Recovery, Transportation and Acceptance to the Curation Facility of the Hayabusa Re-Entry Capsule

    Science.gov (United States)

    Abe, M.; Fujimura, A.; Yano, H.; Okamoto, C.; Okada, T.; Yada, T.; Ishibashi, Y.; Shirai, K.; Nakamura, T.; Noguchi, T.; hide

    2011-01-01

    The "Hayabusa" re-entry capsule was safely carried into the clean room of Sagamihara Planetary Sample Curation Facility in JAXA on June 18, 2010. After executing computed tomographic (CT) scanning, removal of heat shield, and surface cleaning of sample container, the sample container was enclosed into the clean chamber. After opening the sample container and residual gas sampling in the clean chamber, optical observation, sample recovery, sample separation for initial analysis will be performed. This curation work is continuing for several manths with some selected member of Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). We report here on the 'Hayabusa' capsule recovery operation, and transportation and acceptance at the curation facility of the Hayabusa re-entry capsule.

  17. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  18. Numerical simulations of surface package landing on a low-gravity granular surface: application to the landing of MASCOT onboard HAYABUSA 2

    OpenAIRE

    Thuillet, F.; Maurel, C.; Michel, P.; Biele, Jens; Ballouz, Ronald; Richardson, D. C.

    2017-01-01

    The asteroid sample return mission, Hayabusa2 JAXA) was launched on December 3rd, 2014. It will reach the C-type near-Earth asteroid (162173) Ryugu in 2018 and bring back samples from its surface to Earth in 2020. Hayabusa2 will release the European (DLR/CNES) lander MASCOT (Mobile Asteroid SCOuT) on the asteroid surface to perform in-situ measurements [1]. Ryugu’s surface is expected to be composed of a gran- ular layer (regolith), whose physical properties are currently unknown. MASCOT’s...

  19. NASA's Asteroid Redirect Mission: The Boulder Capture Option

    Science.gov (United States)

    Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more

  20. Visible-IR and Raman micro-spectroscopic investigation of three Itokawa particles collected by Hayabusa

    Science.gov (United States)

    Brunetto, R.; Bonal, L.; Beck, P.; Dartois, E.; Dionnet, Z.; Djouadi, Z.; Füri, E.; Kakazu, Y.; Oudayer, P.; Quirico, E.; Engrand, C.

    2014-07-01

    HAYABUSA grains offer a unique perspective to better understand the link between asteroids and cosmomaterials available in the laboratory and to get an insight on the early stages of surface space weathering. The scientific objectives of our consortium are threefold: (i) the characterization of asteroidal surface processes (e.g., space weathering alteration); (ii) the assessment of parent-body alteration processes; (iii) the search for a possible association between S-type asteroids and micrometeorites. To this aim, our strategy is based on a combination of analytical techniques. Here we report a first series of results obtained through Visible-Infrared and Raman spectroscopy of three Itokawa particles (RA-QD02-0163, -0174, and -0213) collected by the Hayabusa spacecraft and provided by JAXA for our consortium. In a first step, our main objective was to collect maximum information without altering the particles. Reported results were thus obtained on the raw particles, both (i) in their original containers, and (ii) deposited on diamond windows. Raman and IR confocal spectra were acquired at the SMIS beamline of the French national synchrotron facility SOLEIL and at the Lyon Raman national facility using spots of 2 μ m for the Raman, and 10--20 μ m for the IR analyses. Point analyses and automatic mapping were performed. Analytical parameters (e.g., laser power on the sample) were optimized to prevent any damage. Diffuse reflectance spectra (i=45°, e=0°) in the visible and near-IR wavelengths were obtained with an IAS-CSNSM in-home system coupling a fiber spectrometer to an optical microscope, providing a 20-μ m spot on sample. In the case of particle -0163, Raman and IR results reveal a heterogeneous mixing of minerals, mostly olivine (Fo76), and Ca-rich (En50, Wo50) and Ca-poor (En85) pyroxenes. The modal distribution of these minerals is determined based on the spectral maps. The mineral compositions of -0163 are consistent with those previously reported on

  1. Novel Methodology for Control and Stabilization of Spacecraft with Captured Asteroid

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of novel spacecraft guidance control architectures and algorithms that work in conjunction with robot manipulator control for application to ARM mission...

  2. System Configuration and Operation Plan of Hayabusa2 DCAM3-D Camera System for Scientific Observation During SCI Impact Experiment

    Science.gov (United States)

    Ogawa, Kazunori; Shirai, Kei; Sawada, Hirotaka; Arakawa, Masahiko; Honda, Rie; Wada, Koji; Ishibashi, Ko; Iijima, Yu-ichi; Sakatani, Naoya; Nakazawa, Satoru; Hayakawa, Hajime

    2017-07-01

    An artificial impact experiment is scheduled for 2018-2019 in which an impactor will collide with asteroid 162137 Ryugu (1999 JU3) during the asteroid rendezvous phase of the Hayabusa2 spacecraft. The small carry-on impactor (SCI) will shoot a 2-kg projectile at 2 km/s to create a crater 1-10 m in diameter with an expected subsequent ejecta curtain of a 100-m scale on an ideal sandy surface. A miniaturized deployable camera (DCAM3) unit will separate from the spacecraft at about 1 km from impact, and simultaneously conduct optical observations of the experiment. We designed and developed a camera system (DCAM3-D) in the DCAM3, specialized for scientific observations of impact phenomenon, in order to clarify the subsurface structure, construct theories of impact applicable in a microgravity environment, and identify the impact point on the asteroid. The DCAM3-D system consists of a miniaturized camera with a wide-angle and high-focusing performance, high-speed radio communication devices, and control units with large data storage on both the DCAM3 unit and the spacecraft. These components were successfully developed under severe constraints of size, mass and power, and the whole DCAM3-D system has passed all tests verifying functions, performance, and environmental tolerance. Results indicated sufficient potential to conduct the scientific observations during the SCI impact experiment. An operation plan was carefully considered along with the configuration and a time schedule of the impact experiment, and pre-programed into the control unit before the launch. In this paper, we describe details of the system design concept, specifications, and the operating plan of the DCAM3-D system, focusing on the feasibility of scientific observations.

  3. Shaded Spacecraft Radiators to Be Used on the Daytime Surface of the Mercury Planet, the Moon, and Asteroids of the Solar System Inner Part

    Directory of Open Access Journals (Sweden)

    V. A. Igrickii

    2016-01-01

    Full Text Available During the daytime a surface of the Moon, Mercury planet, and asteroids of the Solar system inner part, significantly heats up, and infrared radiation of the local soil becomes essential. At the same time direct solar radiation and reflected from the surface solar radiation reach the maximum too. These radiation fluxes can significantly decrease the efficiency of spacecraft radiators in the daytime. This effect is especially strong on the Mercury surface where direct solar radiation is 10 times stronger than solar radiation near the Earth. As a result, on the daytime surface of the Mercury the conventional low-temperature radiators become completely disabled.The article describes the development of the special shaded spacecraft radiators to be used in daytime on the Mercury and other atmosphereless bodies of the Solar system inner part. To solve this task are used mirror shades. The shape of these shades is developed to improve operation conditions of the spacecraft radiator through the appropriate scheme of radiation reflection. The task is discussed in 2D and 3D cases. A new design of shaded spacecraft radiators is proposed, and reasonable proportions of radiators are determined. The performance capability of proposed radiators for environments of the Mercury and the Moon is estimated using the zonal method in view of partial mirror reflection. The calculations showed that the developed shaded spacecraft radiators are capable to work on the Mercury surface as the low-temperature radiators even during the daytime. New radiators provide minimum accepted operating temperature of 241К (-32°С, meanwhile radiators of common design have minimum operating temperature of 479К (206°С. Using such radiators on the Moon enables us to increase effectiveness of spacecraft radiators and to decrease their minimum operating temperature from 270К (-3°С to 137К (-136°С.

  4. 2015 Barcelona Asteroid Day

    CERN Document Server

    Gritsevich, Maria; Palme, Herbert

    2017-01-01

    This volume is a compilation of the research presented at the International Asteroid Day workshop which was celebrated at Barcelona on June 30th, 2015. The proceedings discuss the beginning of a new era in the study and exploration of the solar system’s minor bodies. International Asteroid Day commemorates the Tunguska event of June 30th, 1908. The workshop’s goal was to promote the importance of dealing proactively with impact hazards from space. Multidisciplinary experts contributed to this discussion by describing the nature of comets and asteroids along with their offspring, meteoroids. New missions to return material samples of asteroids back to Earth such as Osiris-REx and Hayabusa 2, as well as projects like AIM and DART which will test impact deflection techniques for Potentially Hazardous Asteroids encounters were also covered. The proceedings include both an outreach level to popularize impact hazards and a scientific character which covers the latest knowledge on these topics, as well as offeri...

  5. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    Science.gov (United States)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  6. Regolith Properties of Asteroid 21 Lutetia Constrained by Combined Data Sets of the MIRO and VIRTIS Instruments During the Rosetta Spacecraft Flyby

    Science.gov (United States)

    Keihm, S.; Tosi, F.; Kamp, L.; Capaccioni, F.; Grassi, D.; Gulkis, S.; Coradini, A.

    2011-01-01

    During the July 10, 2010 flyby of Asteroid 21 Lutetia by the Rosetta spacecraft, maps of surface and subsurface temperatures were derived from the VIRTIS and MIRO instruments respectively. Both data sets indicated a porous surface layer with an extremely low, lunar-like thermal inertia. However, comparisons of the VIRTIS-measured and MIRO-modelled surface temperatures revealed offsets of 10- 30 K, indicative of self-heating or "beaming" effects that were not taken into account in the MIRO thermal modeling. Inclusion of a model of hemispherical craters at all scales 1 cm and larger, covering 50% of the surface, removes most of the offsets in the VIRTIS, MIRO surface temperature determinations.

  7. The MicrOmega Investigation Onboard Hayabusa2

    Science.gov (United States)

    Bibring, J.-P.; Hamm, V.; Langevin, Y.; Pilorget, C.; Arondel, A.; Bouzit, M.; Chaigneau, M.; Crane, B.; Darié, A.; Evesque, C.; Hansotte, J.; Gardien, V.; Gonnod, L.; Leclech, J.-C.; Meslier, L.; Redon, T.; Tamiatto, C.; Tosti, S.; Thoores, N.

    2017-07-01

    MicrOmega is a near-IR hyperspectral microscope designed to characterize in situ the texture and composition of the surface materials of the Hayabusa2 target asteroid. MicrOmega is implemented within the MASCOT lander (Ho et al. in Space Sci. Rev., 2016, this issue, doi:10.1007/s11214-016-0251-6). The spectral range (0.99-3.65 μm) and the spectral sampling (20 cm^{-1}) of MicrOmega have been chosen to allow the identification of most potential constituent minerals, ices and organics, within each 25 μm pixel of the 3.2× 3.2 mm2 FOV. Such an unprecedented characterization will (1) enable the identification of most major and minor phases, including the potential organic phases, and ascribe their mineralogical context, as a critical set of clues to decipher the origin and evolution of this primitive body, and (2) provide the ground truth for the orbital measurements as well as a reference for the analyses later performed on returned samples.

  8. Multi-color lightcurve observation of the asteroid (163249) 2002 GT

    Science.gov (United States)

    Oshima, M.; Abe, S.

    2014-07-01

    NASA's Deep Impact/EPOXI spacecraft plans to encounter the asteroid (163249) 2002 GT, classified as a PHA (Potentially Hazardous Asteroid), on January 4, 2020. However, the taxonomic type and spin state of 2002 GT remain to be determined. We have carried out ground-based multi-color (B-V-R-I) lightcurve observations taking advantage of the 2002 GT Characterization Campaign by NASA. Multi-color lightcurve measurements allow us to estimate the rotation period and obtain strong constraints on the shape and pole orientation. Here we found that the rotation period of 2002 GT is estimated to be 3.7248 ± 0.1664 h. In mid-2013, 2002 GT passed at 0.015 au from the Earth, resulting an exceptional opportunity for ground-based characterization. Using the 0.81-m telescope of the Tenagra Observatory (110°52'44.8''W, +31°27'44.4''N, 1312 m) in Arizona, USA, and the Johnson-Cousins BVRI filters, we have found lightcurves of 2002 GT (Figure). The Tenagra II 0.81-m telescope is used for research of the Hayabusa2 target Asteroid (162173) 1999 JU_3. The lightcurves (relative magnitude) show that the rotation period of 2002 GT, the target of NASA's Deep Impact/EPOXI spacecraft, is estimated to be 3.7248 ± 0.1664 hr. On June 9, 2013, we had 7 hours of ground-based observations on 2002 GT from 4:00 to 11:00 UTC. The number of comparison stars for differential photometry was 34. Because of tracking the fast-moving asteroid, it was necessary to have the same comparison star among the fields of vision. We have also obtained absolute photometry of 2002 GT on June 13, 2013.

  9. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  10. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    Science.gov (United States)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter

    2011-01-01

    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  11. Potential applications of MMC and aluminum-lithium alloys in cameras for CRAF spacecraft. [Comet Rendezvous Asteroid Flyby Mission

    Science.gov (United States)

    Lane, Marc; Hsieh, Cheng; Adams, Lloyd

    1989-01-01

    In undertaking the design of a 2000-mm focal length camera for the Mariner Mark II series of spacecraft, JPL sought novel materials with the requisite dimensional and thermal stability, outgassing and corrosion resistance, low mass, high stiffness, and moderate cost. Metal-matrix composites and Al-Li alloys have, in addition to excellent mechanical properties and low density, a suitably low coefficient of thermal expansion, high specific stiffness, and good electrical conductivity. The greatest single obstacle to application of these materials to camera structure design is noted to have been the lack of information regarding long-term dimensional stability.

  12. AIDA: Asteroid Impact & Deflection Assessment

    Science.gov (United States)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  13. Optical properties of (162173) 1999 JU3: in preparation for the JAXA Hayabusa 2 sample return mission

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Hasegawa, Sunao; Abe, Masanao; Yoshikawa, Makoto [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Kim, Myung-Jin [Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Choi, Young-Jun [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Moskovitz, Nicholas [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Abe, Shinsuke [Department of Aerospace Engineering, Nihon University, 7-24-1 Narashinodai Funabashi, Chiba 274-8501 (Japan); Pan, Kang-Sian [Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 32001, Taiwan (China); Takahashi, Jun; Takagi, Yuhei; Arai, Akira [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); Tokimasa, Noritaka [Sayo Town Office, 2611-1 Sayo, Sayo-cho, Sayo, Hyogo 679-5380 (Japan); Hsieh, Henry H. [Academia Sinica Institute of Astronomy and Astrophysics, Roosevelt Road, Taipei 10617, Taiwan (China); Thomas-Osip, Joanna E.; Osip, David J. [The Observatories of the Carnegie Institute of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601, La Serena (Chile); Urakawa, Seitaro [Bisei Spaceguard Center, Japan Spaceguard Association, 1716-3 Okura, Bisei-cho, Ibara, Okayama 714-1411 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, 9 Hokumon, Asahikawa 070-8621 (Japan); and others

    2014-09-01

    We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the International Astronomical Union's H-G formalism but found that it fits less well using a single set of parameters. To improve the inadequate fit, we employed two photometric functions: the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (α = 5°-75°) and shows weak nonlinear opposition brightening at α < 5°, providing a more reliable absolute magnitude of H {sub V} = 19.25 ± 0.03. The phase slope (0.039 ± 0.001 mag deg{sup –1}) and opposition effect amplitude (parameterized by the ratio of intensity at α = 0.°3 to that at α = 5°, I(0.°3)/I(5°) = 1.31 ± 0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance map with the Hayabusa 2 onboard cameras. Although we could not constrain the full set of Hapke parameters, we obtained possible values, w = 0.041, g = –0.38, B {sub 0} = 1.43, and h = 0.050, assuming a surface roughness parameter θ-bar = 20°. By combining our photometric study with a thermal model of the asteroid, we obtained a geometric albedo of p {sub v} = 0.047 ± 0.003, phase integral q = 0.32 ± 0.03, and Bond albedo A {sub B} = 0.014 ± 0.002, which are commensurate with the values for common C-type asteroids.

  14. Optical properties of (162173) 1999 JU3: in preparation for the JAXA Hayabusa 2 sample return mission

    International Nuclear Information System (INIS)

    Ishiguro, Masateru; Kuroda, Daisuke; Hasegawa, Sunao; Abe, Masanao; Yoshikawa, Makoto; Kim, Myung-Jin; Choi, Young-Jun; Moskovitz, Nicholas; Abe, Shinsuke; Pan, Kang-Sian; Takahashi, Jun; Takagi, Yuhei; Arai, Akira; Tokimasa, Noritaka; Hsieh, Henry H.; Thomas-Osip, Joanna E.; Osip, David J.; Urakawa, Seitaro; Hanayama, Hidekazu; Sekiguchi, Tomohiko

    2014-01-01

    We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the International Astronomical Union's H-G formalism but found that it fits less well using a single set of parameters. To improve the inadequate fit, we employed two photometric functions: the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (α = 5°-75°) and shows weak nonlinear opposition brightening at α < 5°, providing a more reliable absolute magnitude of H V = 19.25 ± 0.03. The phase slope (0.039 ± 0.001 mag deg –1 ) and opposition effect amplitude (parameterized by the ratio of intensity at α = 0.°3 to that at α = 5°, I(0.°3)/I(5°) = 1.31 ± 0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance map with the Hayabusa 2 onboard cameras. Although we could not constrain the full set of Hapke parameters, we obtained possible values, w = 0.041, g = –0.38, B 0 = 1.43, and h = 0.050, assuming a surface roughness parameter θ-bar = 20°. By combining our photometric study with a thermal model of the asteroid, we obtained a geometric albedo of p v = 0.047 ± 0.003, phase integral q = 0.32 ± 0.03, and Bond albedo A B = 0.014 ± 0.002, which are commensurate with the values for common C-type asteroids.

  15. Asteroid team

    International Nuclear Information System (INIS)

    Matson, D.L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue

  16. Asteroid team

    Science.gov (United States)

    Matson, D. L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue.

  17. THE ORIGIN OF ASTEROID 162173 (1999 JU3)

    International Nuclear Information System (INIS)

    Campins, Humberto; De León, Julia; Morbidelli, Alessandro; Gayon-Markt, Julie; Delbo, Marco; Michel, Patrick; Licandro, Javier

    2013-01-01

    Near-Earth asteroid (162173) 1999 JU 3 (henceforth JU 3 ) is a potentially hazardous asteroid and the target of the Japanese Aerospace Exploration Agency's Hayabusa-2 sample return mission. JU 3 is also a backup target for two other sample return missions: NASA's OSIRIS-REx and the European Space Agency's Marco Polo-R. We use dynamical information to identify an inner-belt, low-inclination origin through the ν 6 resonance, more specifically, the region with 2.15 AU 3 is 0.07 ± 0.01, and this inner-belt region contains four well-defined low-albedo asteroid families (Clarissa, Erigone, Polana, and Sulamitis), plus a recently identified background population of low-albedo asteroids outside these families. Only two of these five groups, the background and the Polana family, deliver JU 3 -sized asteroids to the ν 6 resonance, and the background delivers significantly more JU 3 -sized asteroids. The available spectral evidence is also diagnostic; the visible and near-infrared spectra of JU 3 indicate it is a C-type asteroid, which is compatible with members of the background, but not with the Polana family because it contains primarily B-type asteroids. Hence, this background population of low-albedo asteroids is the most likely source of JU 3

  18. The Nature of C Asteroid Regolith Revealed from the Jbilet Winselwan CM Chondrite

    Science.gov (United States)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Chan, Queenie H. S.; Le, Loan; Kring, David; Cato, Michael; Fagan, Amy L.

    2016-01-01

    C-class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be asteroid 162173 Ryugu, the target of the Hayabusa 2 mission, although most spectra of Ryugu are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C-class asteroids - impact shock melting. Impact shock melting has been proposed to ex-plain some mineralogical characteristics of CB chondrites, but has rarely been considered a major process for hydrous carbonaceous chondrites.

  19. Osiris-Rex and Hayabusa2 Sample Cleanroom Design and Construction Planning at NASA-JSC

    Science.gov (United States)

    Righter, Kevin; Pace, Lisa F.; Messenger, Keiko

    2018-01-01

    Final Paper and not the abstract is attached. The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu September 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After confirma-tion of successful sample stowage, the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston. All curation-specific ex-amination and documentation activities related to Ben-nu samples will be conducted in the dedicated OSIRIS-REx sample cleanroom to be built at NASA-JSC.

  20. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  1. The origins of Asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure

    Science.gov (United States)

    Hazeli, Kavan; El Mir, Charles; Papanikolaou, Stefanos; Delbo, Marco; Ramesh, K. T.

    2018-04-01

    The distributions of size and chemical composition in regolith on airless bodies provide clues to the evolution of the solar system. Recently, the regolith on asteroid (25143) Itokawa, visited by the JAXA Hayabusa spacecraft, was observed to contain millimeter to centimeter sized particles. Itokawa boulders commonly display well-rounded profiles and surface textures that appear inconsistent with mechanical fragmentation during meteorite impact; the rounded profiles have been hypothesized to arise from rolling and movement on the surface as a consequence of seismic shaking. This investigation provides a possible explanation of these observations by exploring the primary crack propagation mechanism during thermal fatigue of a chondrite. Herein, we present the evolution of the full-field strains on the surface as a function of temperature and microstructure, and examine the crack growth during thermal cycling. Our experimental results demonstrate that thermal-fatigue-driven fracture occurs under these conditions. The results suggest that the primary fatigue crack path preferentially follows the interfaces between monominerals, leaving the minerals themselves intact after fragmentation. These observations are explained through a microstructure-based finite element model that is quantitatively compared with our experimental results. These results on the interactions of thermal fatigue cracking with the microstructure may ultimately allow us to distinguish between thermally induced fragments and impact products.

  2. Applications of granular-dynamics numerical simulations to asteroid surfaces

    Science.gov (United States)

    Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.

    2014-07-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters

  3. Asteroids: up close and personal

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Clark R. [Southwest Research Institute (United States)

    2001-06-01

    Think of our solar system. The Sun, the Moon and the nine planets come to mind first, followed by the moons of other planets and other small bodies like asteroids. In 1991, almost 30 years after planetary exploration began, an asteroid was visited by a passing spacecraft for the first time. Nearly another decade elapsed before the first dedicated asteroid mission went into orbit around Eros, a city-sized object some 34 km long. And earlier this year, the NEAR, Shoemaker spacecraft daringly descended to the surface of Eros and landed safely. Asteroids have been pushed to the tail-end of the itinerary of solar-system exploration because of their diminutive sizes. Indeed, the wealth of low-gravity phenomena associated with asteroids has captured the imagination of both researchers and the public alike. In the June issue of Physics World Clark R Chapman of the Southwest Research Institute, US, explains how the landing of a spacecraft on the asteroid Eros earlier this year has given space scientists the best view yet of small planetary bodies and has opened a new window on the solar system. (U.K.)

  4. Project RAMA: Reconstructing Asteroids Into Mechanical Automata

    Science.gov (United States)

    Dunn, Jason; Fagin, Max; Snyder, Michael; Joyce, Eric

    2017-01-01

    Many interesting ideas have been conceived for building space-based infrastructure in cislunar space. From O'Neill's space colonies, to solar power satellite farms, and even prospecting retrieved near earth asteroids. In all the scenarios, one thing remained fixed - the need for space resources at the outpost. To satisfy this need, O'Neill suggested an electromagnetic railgun to deliver resources from the lunar surface, while NASA's Asteroid Redirect Mission called for a solar electric tug to deliver asteroid materials from interplanetary space. At Made In Space, we propose an entirely new concept. One which is scalable, cost effective, and ensures that the abundant material wealth of the inner solar system becomes readily available to humankind in a nearly automated fashion. We propose the RAMA architecture, which turns asteroids into self-contained spacecraft capable of moving themselves back to cislunar space. The RAMA architecture is just as capable of transporting conventional-sized asteroids on the 10-meter length scale as transporting asteroids 100 meters or larger, making it the most versatile asteroid retrieval architecture in terms of retrieved-mass capability. This report describes the results of the Phase I study funded by the NASA NIAC program for Made In Space to establish the concept feasibility of using space manufacturing to convert asteroids into autonomous, mechanical spacecraft. Project RAMA, Reconstituting Asteroids into Mechanical Automata, is designed to leverage the future advances of additive manufacturing (AM), in-situ resource utilization (ISRU) and in-situ manufacturing (ISM) to realize enormous efficiencies in repeated asteroid redirect missions. A team of engineers at Made In Space performed the study work with consultation from the asteroid mining industry, academia, and NASA. Previous studies for asteroid retrieval have been constrained to studying only asteroids that are both large enough to be discovered, and small enough to be

  5. Asteroid Redirection Mission Evaluation Using Multiple Landers

    Science.gov (United States)

    Bazzocchi, Michael C. F.; Emami, M. Reza

    2018-01-01

    In this paper, a low-thrust tugboat redirection method is assessed using multiple spacecraft for a target range of small near-Earth asteroids. The benefits of a landed configuration of tugboat spacecraft in formation are examined for the redirection of a near-Earth asteroid. The tugboat method uses a gimballed thruster with a highly collimated ion beam to generate a thrust on the asteroid. The target asteroid range focuses on near-Earth asteroids smaller than 150 m in diameter, and carbonaceous (C-type) asteroids, due to the volatiles available for in-situ utilization. The assessment focuses primarily on the three key parameters, i.e., the asteroid mass redirected, the timeframe for redirection, and the overall system cost. An evaluation methodology for each parameter is discussed in detail, and the parameters are employed to determine the expected return and feasibility of the redirection mission. The number of spacecraft employed is optimized along with the electrical power needed for each spacecraft to ensure the highest possible return on investment. A discussion of the optimization results and the benefits of spacecraft formation for the tugboat method are presented.

  6. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    Science.gov (United States)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  7. Radar Observations of Asteroid 101955 Bennu and the OSIRIS-REx Sample Return Mission

    Science.gov (United States)

    Nolan, M. C.; Benner, L.; Giorgini, J. D.; Howell, E. S.; Kerr, R.; Lauretta, D. S.; Magri, C.; Margot, J. L.; Scheeres, D. J.

    2017-12-01

    On September 24, 2023, the OSIRIS-REx spacecraft will return a sample of asteroid (101955) Bennu to the Earth. We chose the target of this mission in part because of the work we did over more than a decade using the Arecibo and Goldstone planetary radars to observe this asteroid. We observed Bennu (then known as 1999 RQ36) at Arecibo and Goldstone in 1999 and 2005, and at Arecibo in 2011. Radar imaging from the first two observing epochs provided a shape and size for Bennu, which greatly simplified mission planning. We know that the spacecraft will encounter a roundish asteroid 500 m in diameter with a distinct equatorial ridge [Nolan et al., 2013]. Bennu does not have the dramatic concavities seen in Itokawa and comet 67P/Churyumov-Gerasimenko, the Hayabusa and Rosetta mission targets, respectively, which would have been obvious in radar imaging. Further radar ranging in 2011 provided a detection of the Yarkovsky effect, allowing us to constrain Bennu's mass and bulk density from radar measurement of non-gravitational forces acting on its orbit [Chesley et al., 2014]. The 2011 observations were particularly challenging, occurring during a management transition at the Arecibo Observatory, and would not have been possible without significant extra cooperation between the old and new managing organizations. As a result, we can predict Bennu's position to within a few km over the next 100 years, until its close encounter with the Earth in 2135. We know its shape to within ± 10 m (1σ) on the long and intermediate axes and ± 52 m on the polar diameter, and its pole orientation to within 5 degrees. The bulk density is 1260 ± 70 kg/m3 and the rotation is retrograde with a 4.297 ± 0.002 h period The OSIRIS-REx team is using these constraints to preplan the initial stages of proximity operations and dramatically reduce risk. The Figure shows the model and Arecibo radar images from 1999 (left), 2005 (center), and 2011 (right). Bennu is the faint dot near the center of

  8. Processes to Open the Container and the Sample Catcher of the Hayabusa Returned Capsule in the Planetary Material Sample Curation Facility of JAXA

    Science.gov (United States)

    Fujimura, A.; Abe, M.; Yada, T.; Nakamura, T.; Noguchi, T.; Okazaki, R.; Ishibashi, Y.; Shirai, K.; Okada, T.; Yano, H.; hide

    2011-01-01

    Japanese spacecraft Hayabusa, which returned from near-Earth-asteroid Itokawa, successfully returned its reentry capsule to the Earth, the Woomera Prohibited Area in Australia in Jun 13th, 2010, as detailed in another paper [1]. The capsule introduced into the Planetary Material Sample Curation Facility in the Sagamihara campus of JAXA in the early morning of June 18th. Hereafter, we describe a series of processes for the returned capsule and the container to recover gas and materials in there. A transportation box of the recovered capsule was cleaned up on its outer surface beforehand and introduced into the class 10,000 clean room of the facility. Then, the capsule was extracted from the box and its plastic bag was opened and checked and photographed the outer surface of the capsule. The capsule was composed of the container, a backside ablator, a side ablator, an electronic box and a supporting frame. The container consists of an outer lid, an inner lid, a frame for latches, a container and a sample catcher, which is composed of room A and B and a rotational cylinder. After the first check, the capsule was packed in a plastic bag with N2 again, and transferred to the Chofu campus in JAXA, where the X-ray CT instrument is situated. The first X-ray CT analysis was performed on the whole returned capsule for confirming the conditions of latches and O-ring seal of the container. The analysis showed that the latches of the container should have worked normally, and that the double Orings of the container seemed to be sealed its sample catcher with no problem. After the first X-ray CT, the capsule was sent back to Sagamihara and introduced in the clean room to exclude the electronic box and the side ablator from the container by hand tools. Then the container with the backside ablator was set firmly to special jigs to fix the lid of container tightly to the container and set to a milling machine. The backside ablator was drilled by the machine to expose heads of bolts

  9. Asteroid taxonomy

    International Nuclear Information System (INIS)

    Tholen, D.J.

    1989-01-01

    The spectral reflectivity of asteroid surfaces over the wavelength range of 0.3 to 1.1 μm can be used to classify these objects onto several broad groups with similar spectral characteristics. The three most recently developed taxonomies group the asteroids into 9, 11 or 14 different classes, depending on the technique used to perform the analysis. The distribution of the taxonomic classes shows that darker and redder objects become more dominant at larger heliocentric distances, while the rare asteroid types are found more frequently among the small objects of the planet-crossing population

  10. Asteroids IV

    Science.gov (United States)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    Asteroids are fascinating worlds. Considered the building blocks of our planets, many of the authors of this book have devoted their scientific careers to exploring them with the tools of our trade: ground- and spacebased observations, in situ space missions, and studies that run the gamut from theoretical modeling efforts to laboratory work. Like fossils for paleontologists, or DNA for geneticists, they allow us to construct a veritable time machine and provide us with tantalizing glimpses of the earliest nature of our solar system. By investigating them, we can probe what our home system was like before life or even the planets existed. The origin and evolution of life on our planet is also intertwined with asteroids in a different way. It is believed that impacts on the primordial Earth may have delivered the basic components for life, with biology favoring attributes that could more easily survive the aftermath of such energetic events. In this fashion, asteroids may have banished many probable avenues for life to relative obscurity. Similarly, they may have also prevented our biosphere from becoming more complex until more recent eras. The full tale of asteroid impacts on the history of our world, and how human life managed to emerge from myriad possibilities, has yet to be fully told. The hazard posed by asteroid impacts to our civilization is low but singular. The design of efficient mitigation strategies strongly relies on asteroid detection by our ground- and spacebased surveys as well as knowledge of their physical properties. A more positive motivation for asteroid discovery is that the proximity of some asteroids to Earth may allow future astronauts to harvest their water and rare mineral resources for use in exploration. A key goal of asteroid science is therefore to learn how humans and robotic probes can interact with asteroids (and extract their materials) in an efficient way. We expect that these adventures may be commonplace in the future

  11. Towing Asteroids with Gravity Tractors Enhanced by Tethers and Solar Sails

    Science.gov (United States)

    Shen, Haijun; Roithmayr, Carlos M.

    2015-01-01

    Material collected from an asteroid's surface can be used to increase gravitational attraction between the asteroid and a Gravity Tractor (GT); the spacecraft therefore operates more effectively and is referred to as an Enhanced Gravity Tractor (EGT). The use of tethers and solar sails to further improve effectiveness and simplify operations is investigated. By employing a tether, the asteroidal material can be placed close to the asteroid while the spacecraft is stationed farther away, resulting in a better safety margin and improved thruster efficiency. A solar sail on a spacecraft can naturally provide radial offset and inter-spacecraft separation required for multiple EGTs.

  12. Tumbling asteroids

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Harris, A. W.; Scheirich, Peter; Kušnirák, Peter; Kotková, Lenka; Hergenrother, C.; Mottola, S.; Hicks, M. D.; Masi, G.; Krugly, Yu. N.; Shevchenko, V. G.; Nolan, M. C.; Howell, E. S.; Kaasalainen, M.; Galád, Adrián; Brown, P.; DeGraff, D. R.; Lambert, J.V.; Cooney, W.R.; Foglia, S.

    2005-01-01

    Roč. 1, č. 173 (2005), s. 108-131 ISSN 0019-1035 R&D Projects: GA AV ČR IAA3003204 Keywords : near-Earth objects * fast-rotating asteroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.244, year: 2005

  13. Asteroids II

    International Nuclear Information System (INIS)

    Binzel, R.P.; Gehrels, T.; Matthews, M.S.

    1989-01-01

    This book presents an introduction to asteroids. A description of exploration techniques, details on their physical properties, discussions of their origin and evolution, an examination of their interrelations with meteorites and comets followed by an attempt at a big picture framework are given

  14. Optimized Bucket Wheel Design for Asteroid Excavation

    OpenAIRE

    Nallapu, Ravi Teja; Thoesen, Andrew; Garvie, Laurence; Asphaug, Erik; Thangavelautham, Jekanthan

    2017-01-01

    Current spacecraft need to launch with all of their required fuel for travel. This limits the system performance, payload capacity, and mission flexibility. One compelling alternative is to perform In-Situ Resource Utilization (ISRU) by extracting fuel from small bodies in local space such as asteroids or small satellites. Compared to the Moon or Mars, the microgravity on an asteroid demands a fraction of the energy for digging and accessing hydrated regolith just below the surface. Previous ...

  15. Asteroid mass estimation using Markov-chain Monte Carlo

    Science.gov (United States)

    Siltala, Lauri; Granvik, Mikael

    2017-11-01

    Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to an inverse problem in at least 13 dimensions where the aim is to derive the mass of the perturbing asteroid(s) and six orbital elements for both the perturbing asteroid(s) and the test asteroid(s) based on astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations: the very rough 'marching' approximation, in which the asteroids' orbital elements are not fitted, thereby reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-chain Monte Carlo (MCMC) approach. We describe each of these algorithms with particular focus on the MCMC algorithm, and present example results using both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans.

  16. NASA's Human Mission to a Near-Earth Asteroid: Landing on a Moving Target

    Science.gov (United States)

    Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.

    2011-01-01

    This paper describes a Bayesian approach for comparing the productivity and cost-risk tradeoffs of sending versus not sending one or more robotic surveyor missions prior to a human mission to land on an asteroid. The expected value of sample information based on productivity combined with parametric variations in the prior probability an asteroid might be found suitable for landing were used to assess the optimal number of spacecraft and asteroids to survey. The analysis supports the value of surveyor missions to asteroids and indicates one launch with two spacecraft going simultaneously to two independent asteroids appears optimal.

  17. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    Science.gov (United States)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can

  18. Cratering efficiency on coarse-grain targets: Implications for the dynamical evolution of asteroid 25143 Itokawa

    Science.gov (United States)

    Tatsumi, Eri; Sugita, Seiji

    2018-01-01

    Remote sensing observations made by the spacecraft Hayabusa provided the first direct evidence of a rubble-pile asteroid: 25143 Itokawa. Itokawa was found to have a surface structure very different from other explored asteroids; covered with coarse pebbles and boulders ranging at least from cm to meter size. The cumulative size distribution of small circular depressions on Itokawa, most of which may be of impact origin, has a significantly shallower slope than that on the Moon; small craters are highly depleted on Itokawa compared to the Moon. This deficiency of small circular depressions and other features, such as clustered fragments and pits on boulders, suggest that the boulders on Itokawa might behave like armor, preventing crater formation: the ;armoring effect;. This might contribute to the low number density of small crater candidates. In this study, the cratering efficiency reduction due to coarse-grained targets was investigated based on impact experiments at velocities ranging from ∼ 70 m/s to ∼ 6 km/s using two vertical gas gun ranges. We propose a scaling law extended for cratering on coarse-grained targets (i.e., target grain size ≳ projectile size). We have found that the crater efficiency reduction is caused by energy dissipation at the collision site where momentum is transferred from the impactor to the first-contact target grain, and that the armoring effect can be classified into three regimes: (1) gravity scaled regime, (2) reduced size crater regime, or (3) no apparent crater regime, depending on the ratio of the impactor size to the target grain size and the ratio of the impactor kinetic energy to the disruption energy of a target grain. We found that the shallow slope of the circular depressions on Itokawa cannot be accounted for by this new scaling law, suggesting that obliteration processes, such as regolith convection and migration, play a greater role in the depletion of circular depressions on Itokawa. Based on the new extended

  19. The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andy S.

    2014-01-01

    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.

  20. The comet rendezvous asteroid flyby mission

    International Nuclear Information System (INIS)

    Morrison, D.; Neugebauer, M.; Weissman, P.R.

    1989-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission is designed to answer the many questions raised by the Halley missions by exploring a cometary nucleus in detail, following it around its orbit and studying its changing activity as it moves closer to and then away from the Sun. In addition, on its way to rendezvous with the comet, CRAF will fly by a large, primitive class main belt asteroid and will return valuable data for comparison with the comet results. The selected asteroid is 449 Hamburga with a diameter of 88 km and a surface composition of carbonaceous chondrite meteorites. The expected flyby date is January, 1998. The CRAF spacecraft will continue to make measurements in orbit around the cometary nucleus as they both move closer to the Sun, until the dust and gas hazard becomes unsafe. At that point the spacecraft will move in and out between 50 and 2,500 kilometers to study the inner coma and the cometary ionosphere, and to collect dust and gas samples for onboard analysis. Following perihelion, the spacecraft will make a 50,000 km excursion down the comet's tail, further investigating the solar wind interaction with the cometary atmosphere. The spacecraft will return to the vicinity of the nucleus about four months after perihelion to observe the changes that have taken place. If the spacecraft remains healthy and adequate fuel is still onboard, an extended mission to follow the comet nucleus out to aphelion is anticipated

  1. Analytical dual-energy microtomography: A new method for obtaining three-dimensional mineral phase images and its application to Hayabusa samples

    Science.gov (United States)

    Tsuchiyama, A.; Nakano, T.; Uesugi, K.; Uesugi, M.; Takeuchi, A.; Suzuki, Y.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; Imai, Y.; Nakamura, T.; Ogami, T.; Noguchi, T.; Abe, M.; Yada, T.; Fujimura, A.

    2013-09-01

    We developed a novel technique called "analytical dual-energy microtomography" that uses the linear attenuation coefficients (LACs) of minerals at two different X-ray energies to nondestructively obtain three-dimensional (3D) images of mineral distribution in materials such as rock specimens. The two energies are above and below the absorption edge energy of an abundant element, which we call the "index element". The chemical compositions of minerals forming solid solution series can also be measured. The optimal size of a sample is of the order of the inverse of the LAC values at the X-ray energies used. We used synchrotron-based microtomography with an effective spatial resolution of >200 nm to apply this method to small particles (30-180 μm) collected from the surface of asteroid 25143 Itokawa by the Hayabusa mission of the Japan Aerospace Exploration Agency (JAXA). A 3D distribution of the minerals was successively obtained by imaging the samples at X-ray energies of 7 and 8 keV, using Fe as the index element (the K-absorption edge of Fe is 7.11 keV). The optimal sample size in this case is of the order of 50 μm. The chemical compositions of the minerals, including the Fe/Mg ratios of ferromagnesian minerals and the Na/Ca ratios of plagioclase, were measured. This new method is potentially applicable to other small samples such as cosmic dust, lunar regolith, cometary dust (recovered by the Stardust mission of the National Aeronautics and Space Administration [NASA]), and samples from extraterrestrial bodies (those from future sample return missions such as the JAXA Hayabusa2 mission and the NASA OSIRIS-REx mission), although limitations exist for unequilibrated samples. Further, this technique is generally suited for studying materials in multicomponent systems with multiple phases across several research fields.

  2. Classification of IRAS asteroids

    International Nuclear Information System (INIS)

    Tedesco, E.F.; Matson, D.L.; Veeder, G.J.

    1989-01-01

    Albedos and spectral reflectances are essential for classifying asteroids. For example, classes E, M and P are indistinguishable without albedo data. Colorometric data are available for about 1000 asteroids but, prior to IRAS, albedo data was available for only about 200. IRAS broke this bottleneck by providing albedo data on nearly 2000 asteroids. Hence, excepting absolute magnitudes, the albedo and size are now the most common asteroid physical parameters known. In this chapter the authors present the results of analyses of IRAS-derived asteroid albedos, discuss their application to asteroid classification, and mention several studies which might be done to exploit further this data set

  3. Volcanism on differentiated asteroids (Invited)

    Science.gov (United States)

    Wilson, L.

    2013-12-01

    The Dawn spacecraft's investigation of 4 Vesta, best-preserved of the early-forming differentiated asteroids, prompts a reappraisal of factors controlling igneous activity on such bodies. Analogy with melt transfer in zones of partial melting on Earth implies that silicate melts moved efficiently within asteroid mantles in complex networks of veins and dikes, so that only a few percent of the mantle consisted of melt at any one time. Thus even in cases where large amounts of mantle melting occurred, the melts did not remain in the mantle to form "magma oceans", but instead migrated to shallow depths. The link between magma flow rate and the stresses needed to keep fractures open and allow flow fast enough to avoid excessive cooling implies that only within asteroids with radii more than ~190-250 km would continuous magma flow from mantle to surface be possible. In all smaller asteroids (including Vesta) magma must have accumulated in sills at the base of the lithosphere (the conductively controlled ~10 km thick thermal boundary layer) or in crustal magma reservoirs near its base. Magma would then have erupted intermittently to the surface from these steadily replenished reservoirs. The average rates of eruption to the surface (or shallow intrusion) should balance the magma production rate, but since magma could accumulate and erupt intermittently from these reservoirs, the instantaneous eruption rates could be hundreds to thousands of cubic m/s, comparable to historic basaltic eruption rates on Earth and very much greater than the average mantle melting rate. The absence of asteroid atmospheres makes explosive eruptions likely even if magmas are volatile-poor. On asteroids with radii less than ~100 km, gases and sub-mm pyroclastic melt droplets would have had speeds exceeding the escape speed assuming a few hundred ppm volatiles, and only cm sized or larger clasts would have been retained. On larger bodies almost all pyroclasts will have returned to the surface

  4. Capture orbits around asteroids by hitting zero-velocity curves

    Science.gov (United States)

    Wang, Wei; Yang, Hongwei; Zhang, Wei; Ma, Guangfu

    2017-12-01

    The problem of capturing a spacecraft from a heliocentric orbit into a high parking orbit around binary asteroids is investigated in the current study. To reduce the braking Δ V, a new capture strategy takes advantage of the three-body gravity of the binary asteroid to lower the inertial energy before applying the Δ V. The framework of the circular restricted three-body problem (CR3BP) is employed for the binary asteroid system. The proposed capture strategy is based on the mechanism by which inertial energy can be decreased sharply near zero-velocity curves (ZVCs). The strategy has two steps, namely, hitting the target ZVC and raising the periapsis by a small Δ V at the apoapsis. By hitting the target ZVC, the positive inertial energy decreases and becomes negative. Using a small Δ V, the spacecraft inserts into a bounded orbit around the asteroid. In addition, a rotating mass dipole model is employed for elongated asteroids, which leads to dynamics similar to that of the CR3BP. With this approach, the proposed capture strategy can be applied to elongated asteroids. Numerical simulations validate that the proposed capture strategy is applicable for the binary asteroid 90 Antiope and the elongated asteroid 216 Kleopatra.

  5. The Double Asteroid Redirection Test (DART)

    Science.gov (United States)

    Rivkin, A.; Cheng, A. F.; Stickle, A. M.; Richardson, D. C.; Barnouin, O. S.; Thomas, C.; Fahnestock, E.

    2017-12-01

    The Double Asteroid Redirection Test (DART) will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. DART is currently in Preliminary Design Phase ("Phase B"), and is part of the Asteroid Impact and Deflection Assessment (AIDA), a joint ESA-NASA cooperative project. The AIDA target is the near-Earth binary asteroid 65803 Didymos, an S-class system that will make a close approach to Earth in fall 2022. The DART spacecraft is designed to impact the Didymos secondary at 6 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts. The DART impact on the Didymos secondary will change the orbital period of the binary by several minutes, which can be measured by Earth-based optical and radar observations. The baseline DART mission launches in late 2020 to impact the Didymos secondary in 2022 near the time of its close pass of Earth, which enables an array of ground- and space-based observatories to participate in gathering data. The AIDA project will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are characterized or constrained. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a

  6. On the cutting edge technology enabling the challenging missions to asteroids and comets, our primitive neighbors

    Science.gov (United States)

    Kawaguchi, J.

    2014-07-01

    The world's first sample-and-return mission from an object orbiting outside the sphere of influence of the Earth was successfully performed through Hayabusa in 2010, an engineering demonstration mission of JAXA. And it was followed by another technology demonstrator, Ikaros, the world's first solar-sail mission launched in 2010, the same year of the Hayabusa return. These two demonstrations represent the significance of the technology development that shall precede the real science missions that will follow. The space-exploration community focuses its attention on the use of asteroids and comets as one of the most immediate destinations. Humans will perform voyages to those objects sooner or later. And we will initiate a kind of research as scientific activity for those objects. The missions may include even sample-and-return missions to those bodies for assessing the chance of possible resource utilization in future. The first step for it is, needless to say, science. Combining the sample-and-return technology using the ultra-high-speed reentry for sample recovery with the new propulsion system using both electric and photon force will be the direct conclusion from Hayabusa and Ikaros. And key elements such as autonomy are also among the essential factors in making the sophisticated operation possible around asteroids and comets avoiding the communication difficulty. This presentation will comprehensively touch on what those technology skills are, and how they are applicable to the subsequent new missions, from the mission leader's point of view. They are probably real requisites for planning brand-new innovative challenges in the ACM community.

  7. Carbide-metal assemblages in a sample returned from asteroid 25143 Itokawa: Evidence for methane-rich fluids during metamorphism

    Science.gov (United States)

    Harries, Dennis; Langenhorst, Falko

    2018-02-01

    We found that the particle RA-QD02-0115 returned by the Hayabusa spacecraft from near-Earth asteroid 25143 Itokawa contains the iron carbide haxonite (Fe21.9-22.7Co0.2-0.3Ni0.2-0.8)C6 and several Fe,Ni alloys, including multi-domain tetrataenite and spinodally decomposed taenite. Ellipsoidal to nearly spherical voids occur throughout the particle and suggest the presence of a fluid phase during textural and chemical equilibration of the host rock within the parent asteroid of 25143 Itokawa. The calculated solubility of carbon in Fe,Ni metal indicates that the carbide formed at temperatures larger than 600 °C during thermal metamorphism of the LL-chondritic mineral assemblage. Haxonite formed metastably with respect to graphite and cohenite, probably due to its high degree of lattice match with neighboring taenite, a low cooling rate at peak metamorphic temperatures, and the hindered nucleation of graphite. Thermodynamic equilibrium calculations indicate that the fluid present was dry (H2O-poor) and dominated by methane. The reactive fluid most plausibly had an atomic H/C ratio of 4-5 and was derived from the reduction of macromolecular, insoluble organic matter (IOM) that initially co-accreted with water ice. The initial presence of water is a necessary assumption to provide sufficient hydrogen for the formation of methane from hydrolyzed IOM. Metallic iron was in turn partially oxidized and incorporated into the ferromagnesian silicates during the high-temperature stage of metamorphism. An exemplary bulk reaction from unequilibrated material on the left to an equilibrated assemblage on the right may be written as: 330 CH0.8O0.2(IOM) + 500 H2O(ice/g) + 681 Fe(in alloy) + 566 FeSiO3(in Opx) → 300 CH4(g) + 32 H2(g) + 5 Fe23C6(in Hx) + 566 Fe2SiO4(in Ol) (Opx = orthopyroxene, Hx = haxonite, Ol = olivine, g = fluid species). The best estimate of the fluid/rock ratio in the region of the LL parent body where RA-QD02-0115 formed is about 3 × 10-3 and corresponds to

  8. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  9. New candidates for active asteroids: Main-belt (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and near-Earth (162,173) Ryugu

    Science.gov (United States)

    Busarev, Vladimir V.; Makalkin, Andrei B.; Vilas, Faith; Barabanov, Sergey I.; Scherbina, Marina P.

    2018-04-01

    For the first time, spectral signs of subtle coma activity were observed for four main-belt primitive asteroids (145) Adeona, (704) Interamnia, (779) Nina, and (1474) Beira around their perihelion distances in September 2012, which were interpreted as manifestations of the sublimation of H2O ice in/under the surface matter (Busarev et al., 2015a, 2015b). We confirm the phenomenon for Nina when it approached perihelion in September 2016. At the same time, based on results of spectral observations of near-Earth asteroid (162,173) Ryugu (Vilas, 2008) being a target of Japan's Hayabusa 2 space mission, we suspected a periodic similar transient activity on the Cg-type asteroid. However, unlike the main-belt primitive asteroids demonstrating sublimation of ices close to their perihelion distances, the effect on Ryugu was apparently registered near aphelion. To explain the difference, we calculated the subsolar temperature depending on heliocentric distance of the asteroids, considered qualitative models of internal structure of main-belt and near-Earth primitive asteroids including ice and performed some analytical estimations. Presumed temporal sublimation/degassing activity of Ryugu is a sign of a residual frozen core in its interior. This could be an indication of a relatively recent transition of the asteroid from the main asteroid belt to the near-Earth area.

  10. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  11. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  12. Asteroid mass estimation with Markov-chain Monte Carlo

    Science.gov (United States)

    Siltala, Lauri; Granvik, Mikael

    2017-10-01

    Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to a 13-dimensional inverse problem at minimum where the aim is to derive the mass of the perturbing asteroid and six orbital elements for both the perturbing asteroid and the test asteroid by fitting their trajectories to their observed positions. The fitting has typically been carried out with linearized methods such as the least-squares method. These methods need to make certain assumptions regarding the shape of the probability distributions of the model parameters. This is problematic as these assumptions have not been validated. We have developed a new Markov-chain Monte Carlo method for mass estimation which does not require an assumption regarding the shape of the parameter distribution. Recently, we have implemented several upgrades to our MCMC method including improved schemes for handling observational errors and outlier data alongside the option to consider multiple perturbers and/or test asteroids simultaneously. These upgrades promise significantly improved results: based on two separate results for (19) Fortuna with different test asteroids we previously hypothesized that simultaneous use of both test asteroids would lead to an improved result similar to the average literature value for (19) Fortuna with substantially reduced uncertainties. Our upgraded algorithm indeed finds a result essentially equal to the literature value for this asteroid, confirming our previous hypothesis. Here we show these new results for (19) Fortuna and other example cases, and compare our results to previous estimates. Finally, we discuss our plans to improve our algorithm further, particularly in connection with Gaia.

  13. BAOBAB (Big And Outrageously Bold Asteroid Belt) Project

    Science.gov (United States)

    Mcfadden, L. A.; Thomas, C. A; Englander, J. A.; Ruesch, O.; Hosseini, S.; Goossens, S. J.; Mazarico, E. M.; Schmerr, N.

    2017-01-01

    One of the intriguing results of NASA's Dawn mission is the composition and structure of the Main Asteroid Belt's only known dwarf planet, Ceres [1]. It has a top layer of dehydrated clays and salts [2] and an icy-rocky mantle [3,4]. It is widely known that the asteroid belt failed to accrete as a planet by resonances between the Sun and Jupiter. About 20-30 asteroids >100 km diameter are probably differentiated protoplanets [5]. 1) how many more and which ones are fragments of protoplanets? 2) How many and which ones are primordial rubble piles left over from condensation of the solar nebula? 3) How would we go about gaining better and more complete characterization of the mass, interior structure and composition of the Main Belt asteroid population? 4) What is the relationship between asteroids and ocean worlds? Bulk parameters such as the mass, density, and porosity, are important to characterize the structure of any celestial body, and for asteroids in particular, they can shed light on the conditions in the early solar system. Asteroid density estimates exist but currently they are often based on assumed properties of taxonomic classes, or through astronomical survey data where interactions with asteroids are weak at best resulting in large measurement uncertainty. We only have direct density estimates from spacecraft encounters for a few asteroids at this time. Knowledge of the asteroids is significant not only to understand their role in solar system workings, but also to assess their potential as space resources, as impact hazards on Earth, or even as harboring life forms. And for the distant future, we want to know if the idea put forth in a contest sponsored by Physics Today, to surface the asteroids into highly reflecting, polished surfaces and use them as a massively segmented mirror for astrophysical exploration [6], is feasible.

  14. Do asteroids have satellites

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.; Paolicchi, P.; Zappala, V.

    1989-01-01

    A substantial body of indirect evidence suggests that some asteroids have satelities, although none has been detected unambiguously. Collisions between asteroids provide physically plausible mechanisms for the production of binaries, but these operate with low probability; only a small minority of asteroids are likely to have satellites. The abundance of binary asteroids can constrain the collisional history of the entire belt population. The allowed angular momentum of binaries and their rate of tidal evolution limit separations to no more than a few tens of the primary's radii. Their expected properties are consistent with failure to detect them by current imaging techniques

  15. CM and CO chondrites: A common parent body or asteroidal neighbors? Insights from chondrule silicates

    Science.gov (United States)

    Schrader, Devin L.; Davidson, Jemma

    2017-10-01

    By investigating the petrology and chemical composition of type II (FeO-rich) chondrules in the Mighei-like carbonaceous (CM) chondrites we constrain their thermal histories and relationship to the Ornans-like carbonaceous (CO) chondrites. We identified FeO-rich relict grains in type II chondrules by their Fe/Mn ratios; their presence indicates chondrule recycling among type II chondrules. The majority of relict grains in type II chondrules are FeO-poor olivine grains. Consistent with previous studies, chemical similarities between CM and CO chondrite chondrules indicate that they had similar formation conditions and that their parent bodies probably formed in a common region within the protoplanetary disk. However, important differences such as mean chondrule size and the lower abundance of FeO-poor relicts in CM chondrite type II chondrules than in CO chondrites suggest CM and CO chondrules did not form together and they likely originate from distinct parent asteroids. Despite being aqueously altered, many CM chondrites contain pre-accretionary anhydrous minerals (i.e., olivine) that are among the least thermally metamorphosed materials in chondrites according to the Cr2O3 content of their ferroan olivine. The presence of these minimally altered pre-accretionary chondrule silicates suggests that samples to be returned from aqueously altered asteroids by the Hayabusa2 and OSIRIS-REx asteroid sample return missions, even highly hydrated, may contain silicates that can provide information about the pre-accretionary histories and conditions of asteroids Ryugu and Bennu, respectively.

  16. Asteroids mass determination

    International Nuclear Information System (INIS)

    Hoffmann, M.

    1989-01-01

    Basic methods for asteroid mass determinations and their errors are discussed. New results and some current developments in the astrometric method are reviewed. New methods and techniques, such as electronic imaging, radar ranging and space probes are becoming important for asteroid mass determinations. Mass and density estimations on rotational properties and possible satelites are also discussed

  17. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    Science.gov (United States)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding

  18. Calculating the momentum enhancement factor for asteroid deflection studies

    International Nuclear Information System (INIS)

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine; Weaver, Robert

    2017-01-01

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate an approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.

  19. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    Science.gov (United States)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of

  20. Asteroid clusters similar to asteroid pairs

    Science.gov (United States)

    Pravec, P.; Fatka, P.; Vokrouhlický, D.; Scheeres, D. J.; Kušnirák, P.; Hornoch, K.; Galád, A.; Vraštil, J.; Pray, D. P.; Krugly, Yu. N.; Gaftonyuk, N. M.; Inasaridze, R. Ya.; Ayvazian, V. R.; Kvaratskhelia, O. I.; Zhuzhunadze, V. T.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Világi, J.; Kornoš, L.; Gajdoš, Š.; Burkhonov, O.; Ehgamberdiev, Sh. A.; Donchev, Z.; Borisov, G.; Bonev, T.; Rumyantsev, V. V.; Molotov, I. E.

    2018-04-01

    We studied the membership, size ratio and rotational properties of 13 asteroid clusters consisting of between 3 and 19 known members that are on similar heliocentric orbits. By backward integrations of their orbits, we confirmed their cluster membership and estimated times elapsed since separation of the secondaries (the smaller cluster members) from the primary (i.e., cluster age) that are between 105 and a few 106 years. We ran photometric observations for all the cluster primaries and a sample of secondaries and we derived their accurate absolute magnitudes and rotation periods. We found that 11 of the 13 clusters follow the same trend of primary rotation period vs mass ratio as asteroid pairs that was revealed by Pravec et al. (2010). We generalized the model of the post-fission system for asteroid pairs by Pravec et al. (2010) to a system of N components formed by rotational fission and we found excellent agreement between the data for the 11 asteroid clusters and the prediction from the theory of their formation by rotational fission. The two exceptions are the high-mass ratio (q > 0.7) clusters of (18777) Hobson and (22280) Mandragora for which a different formation mechanism is needed. Two candidate mechanisms for formation of more than one secondary by rotational fission were published: the secondary fission process proposed by Jacobson and Scheeres (2011) and a cratering collision event onto a nearly critically rotating primary proposed by Vokrouhlický et al. (2017). It will have to be revealed from future studies which of the clusters were formed by one or the other process. To that point, we found certain further interesting properties and features of the asteroid clusters that place constraints on the theories of their formation, among them the most intriguing being the possibility of a cascade disruption for some of the clusters.

  1. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, J.-E.; Andrews, D. J.

    2017-09-01

    We propose an ESA/M5 spacecraft mission to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×1019 kg of (16) Psyche make it one of the largest and densest of asteroids, 4.5 g cm-3, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. (16) Psyche orbits the Sun with semi-major axis 2.9 AU, 3º inclination, and is as yet unexplored in-situ.

  2. Asteroid taxonomic classifications

    International Nuclear Information System (INIS)

    Tholen, D.J.

    1989-01-01

    This paper reports on three taxonomic classification schemes developed and applied to the body of available color and albedo data. Asteroid taxonomic classifications according to two of these schemes are reproduced

  3. Distant asteroids and Chiron

    International Nuclear Information System (INIS)

    French, L.M.; Vilas, F.; Hartmann, W.K.; Tholen, D.J.

    1989-01-01

    Knowledge of the physical properties of distant asteroids (a>3.3 AU) has grown dramatically over the past five years, due to systematic compositional and lightcurve studies. Most of these objects have red, dark surfaces, and their spectra show a reddening in spectral slope with heliocentric distance implying a change in surface composition. Trojans for which near-opposition phase curve information is available appear to show little or no opposition effect, unlike any dark solar system objects. The lightcurve amplitudes of Trojan and Hilda asteroids imply significantly more elongated shapes for these groups than for main-belt asteroids of comparable size. These recent observations are reviewed in the context of their implications for the formation and subsequent evolution of the distant asteroids, and their interrelations with the main belt, Chiron and comets

  4. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  5. 24-COLOR ASTEROID SURVEY

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset is comprised of asteroid flux data measured in 26 filters using the McCord dual beam photometer, and covering the range 0.32 - 1.08 microns for 285...

  6. Near Earth Asteroid Scout

    Data.gov (United States)

    National Aeronautics and Space Administration — Near-Earth Asteroid Scout, or NEA Scout, is a 6U CubeSat developed jointly between NASA’s Marshall Space Flight Center and the Jet Propulsion Laboratory. NASA...

  7. 52-COLOR ASTEROID SURVEY

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains 52-color IR data of asteroids, taken using a double circularly variable filter. The short wavelength portion of the CVF covered the octave...

  8. Asteroids@Home

    Science.gov (United States)

    Durech, Josef; Hanus, J.; Vanco, R.

    2012-10-01

    We present a new project called Asteroids@home (http://asteroidsathome.net/boinc). It is a volunteer-computing project that uses an open-source BOINC (Berkeley Open Infrastructure for Network Computing) software to distribute tasks to volunteers, who provide their computing resources. The project was created at the Astronomical Institute, Charles University in Prague, in cooperation with the Czech National Team. The scientific aim of the project is to solve a time-consuming inverse problem of shape reconstruction of asteroids from sparse-in-time photometry. The time-demanding nature of the problem comes from the fact that with sparse-in-time photometry the rotation period of an asteroid is not apriori known and a huge parameter space must be densely scanned for the best solution. The nature of the problem makes it an ideal task to be solved by distributed computing - the period parameter space can be divided into small bins that can be scanned separately and then joined together to give the globally best solution. In the framework of the the project, we process asteroid photometric data from surveys together with asteroid lightcurves and we derive asteroid shapes and spin states. The algorithm is based on the lightcurve inversion method developed by Kaasalainen et al. (Icarus 153, 37, 2001). The enormous potential of distributed computing will enable us to effectively process also the data from future surveys (Large Synoptic Survey Telescope, Gaia mission, etc.). We also plan to process data of a synthetic asteroid population to reveal biases of the method. In our presentation, we will describe the project, show the first results (new models of asteroids), and discuss the possibilities of its further development. This work has been supported by the grant GACR P209/10/0537 of the Czech Science Foundation and by the Research Program MSM0021620860 of the Ministry of Education of the Czech Republic.

  9. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  10. Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu's blue slope?

    Science.gov (United States)

    Lantz, C.; Binzel, R. P.; DeMeo, F. E.

    2018-03-01

    We compare primitive near-Earth asteroid spectral properties to the irradiated carbonaceous chondrite samples of Lantz et al. (2017) in order to assess how space weathering processes might influence taxonomic classification. Using the same eigenvectors from the asteroid taxonomy by DeMeo et al. (2009), we calculate the principal components for fresh and irradiated meteorites and find that change in spectral slope (blueing or reddening) causes a corresponding shift in the two first principal components along the same line that the C- and X-complexes track. Using a sample of B-, C-, X-, and D-type NEOs with visible and near-infrared spectral data, we further investigated the correlation between prinicipal components and the spectral curvature for the primitive asteroids. We find that space weathering effects are not just slope and albedo, but also include spectral curvature. We show how, through space weathering, surfaces having an original "C-type" reflectance can thus turn into a redder P-type or a bluer B-type, and that space weathering can also decrease (and disguise) the D-type population. Finally we take a look at the case of OSIRIS-REx target (101955) Bennu and propose an explanation for the blue and possibly red spectra that were previously observed on different locations of its surface: parts of Bennu's surface could have become blue due to space weathering, while fresher areas are redder. No clear prediction can be made on Hayabusa-2 target (162173) Ryugu.

  11. Introduction to the Asteroids II data base

    International Nuclear Information System (INIS)

    Tedesco, E.F.

    1989-01-01

    The Asteroids II data base presented is a compilation of asteroid data. Included are asteroid names and discovery circumstances, proper elements and family identifications, asteroid lightcurve parameters, asteroid pole determinations, taxonomic classes, absolute magnitudes and slope parameters, UBV color indices, and albedos and diameters from the IRAS Asteroid and Comet Survey

  12. Asteroid Composite Tape

    Science.gov (United States)

    1998-07-01

    This is a composite tape showing 10 short segments primarily about asteroids. The segments have short introductory slides, which include brief descriptions about the shots. The segments are: (1) Radar movie of asteroid 1620 Geographos; (2) Animation of the trajectories of Toutatis and Earth (3) Animation of a landing on Toutatis; (4) Simulated encounter of an asteroid with Earth, includes a simulated impact trajectory; (5) An animated overview of the Manrover vehicle; (6) The Near Earth Asteroid Tracking project, includes a photograph of USAF Station in Hawaii, and animation of Earth approaching 4179 Toutatis and the asteroid Gaspara; (7) live video of the anchor tests of the Champoleon anchoring apparatus; (8) a second live video of the Champoleon anchor tests showing anchoring spikes, and collision rings; (9) An animated segment with narration about the Stardust mission with sound, which describes the mission to fly close to a comet, and capture cometary material for return to Earth; (10) live video of the drop test of a Stardust replica from a hot air balloon; this includes sound but is not narrated.

  13. Asteroids - NeoWs API

    Data.gov (United States)

    National Aeronautics and Space Administration — NeoWs (Near Earth Object Web Service) is a RESTful web service for near earth Asteroid information. With NeoWs a user can: search for Asteroids based on their...

  14. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  15. M-class Asteroids: Soft Rock, Heavy Metal, Or None Of That Jazz?

    Science.gov (United States)

    Rivkin, Andrew S.

    2008-09-01

    M-class asteroids in the Tholen taxonomy have featureless spectra in the 0.3-1.0 micrometer region and moderate albedos. Taxonomic studies using reflectance spectra have long associated M-class asteroids with iron meteorites. Dozens of parent bodies are required by cosmochemists in order to generate the diversity seen in the iron meteorite population, representing both the disrupted cores of differentiated parent bodies as well as objects with more exotic histories. Unfortunately, the featureless spectrum of iron-nickel metal in the visible and near-IR can be matched by other mineralogies unrelated to iron meteorites. For instance, the primitive enstatite chondrites are also matches to M asteroids (Burbine et al. 2002). The past 20 years have led to increased recognition that the M asteroid class includes a diverse set of objects. Polarimetric, spectral, and radar observations in the 1980s and 1990s showed that at least some M asteroids were not iron-meteorite-like. In particular, observations by Jones et al. (1990), Rivkin et al. (1995), and Rivkin et al. (2000) found several M asteroids with absorptions near 3 micrometers, interpreted as hydrated minerals. This led to the proposal to separate those asteroids with bands into a new W class. Since 2000, new observations have been made by various workers in the near and mid-IR from the ground and with Spitzer. An increase in the sample size of radar-detected asteroids has provided additional insight into M and W asteroids. New meteorite classes have been delimited and characterized, some of which are of direct relevance to the M asteroid population. Discoveries of binary M-class asteroids have allowed densities to be measured Finally, the Rosetta spacecraft will fly by the M (W) asteroid 21 Lutetia in 2010. I will discuss the M/W asteroid class in the context of all of these new data. Thanks to the NASA PAST and PGG programs.

  16. The stability of some asteroids

    International Nuclear Information System (INIS)

    Vicente, R.O.

    1983-01-01

    The utilization of two different stability criteria, namely, Hill's modified stability criterium and the method of surface of section, has been employed for asteroid orbits. The idea is to compute different criteria of stability for the same asteroids in order to compare the results and see the practical interest of the computations for researches about evolutionary trends of individual asteroids, groups and families of asteroids. (Auth.)

  17. Near Earth Asteroid redirect missions based on gravity assist maneuver

    Science.gov (United States)

    Ledkov, Anton; Shustov, Boris M.; Eismont, Natan; Boyarsky, Michael; Nazirov, Ravil; Fedyaev, Konstantin

    During last years several events attracted world community attention to the hazards of hitting the Earth by sky objects. One of these objects is Apophis asteroid what was expected with nonzero probability to hit the Earth in 2036. Luckily after more precise measurements this event is considered as practically improbable. But the other object has really reached the Earth, entered the atmosphere in the Chelyabinsk area and caused vast damages. After this the hazardous near Earth objects problem received practical confirmation of the necessity to find the methods of its resolution. The methods to prevent collision of the dangerous sky object with the Earth proposed up to now look not practical enough if one mentions such as gravitational tractor or changing the reflectivity of the asteroid surface. Even the method supposing the targeting of the spacecraft to the hazardous object in order to deflect it from initial trajectory by impact does not work because its low mass as compared with the mass of asteroid to be deflected. For example the mass of the Apophis is estimated to be about 40 million tons but the spacecraft which can be launched to intercept the asteroid using contemporary launchers has the mass not more than 5 tons. So the question arises where to find the heavier projectile which is possible to direct to the dangerous object? The answer proposed in our paper is very simple: to search it among small near Earth asteroids. As small ones we suppose those which have the cross section size not more than 12-15 meters and mass not exceeding 1500 -1700 tons. According to contemporary estimates the number of such asteroids is not less than 100000. The other question is how to redirect such asteroid to the dangerous one. In the paper the possibilities are studied to use for that purpose gravity assist maneuvers near Earth. It is shown that even among asteroids included in contemporary catalogue there are the ones which could be directed to the trajectory of the

  18. Geography of the asteroid belt

    Science.gov (United States)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  19. The Gas-Surface Interaction of a Human-Occupied Spacecraft with a Near-Earth Object

    Science.gov (United States)

    Farrell, W. M.; Hurley, D. M.; Poston, M. J.; Zimmerman, M. I.; Orlando, T. M.; Hibbitts, C. A.; Killen, R. M.

    2016-01-01

    NASA's asteroid redirect mission (ARM) will feature an encounter of the human-occupied Orion spacecraft with a portion of a near- Earth asteroid (NEA) previously placed in orbit about the Moon by a capture spacecraft. Applying a shuttle analog, we suggest that the Orion spacecraft should have a dominant local water exosphere, and that molecules from this exosphere can adsorb onto the NEA. The amount of adsorbed water is a function of the defect content of the NEA surface, with retention of shuttle-like water levels on the asteroid at 10(exp 15) H2O's/m2 for space weathered regolith at T approximately 300 K.

  20. Cratering statistics on asteroids: Methods and perspectives

    Science.gov (United States)

    Chapman, C.

    2014-07-01

    Crater size-frequency distributions (SFDs) on the surfaces of solid-surfaced bodies in the solar system have provided valuable insights about planetary surface processes and about impactor populations since the first spacecraft images were obtained in the 1960s. They can be used to determine relative age differences between surficial units, to obtain absolute model ages if the impactor flux and scaling laws are understood, to assess various endogenic planetary or asteroidal processes that degrade craters or resurface units, as well as assess changes in impactor populations across the solar system and/or with time. The first asteroid SFDs were measured from Galileo images of Gaspra and Ida (cf., Chapman 2002). Despite the superficial simplicity of these studies, they are fraught with many difficulties, including confusion by secondary and/or endogenic cratering and poorly understood aspects of varying target properties (including regoliths, ejecta blankets, and nearly-zero-g rubble piles), widely varying attributes of impactors, and a host of methodological problems including recognizability of degraded craters, which is affected by illumination angle and by the ''personal equations'' of analysts. Indeed, controlled studies (Robbins et al. 2014) demonstrate crater-density differences of a factor of two or more between experienced crater counters. These inherent difficulties have been especially apparent in divergent results for Vesta from different members of the Dawn Science Team (cf. Russell et al. 2013). Indeed, they have been exacerbated by misuse of a widely available tool (Craterstats: hrscview.fu- berlin.de/craterstats.html), which incorrectly computes error bars for proper interpretation of cumulative SFDs, resulting in derived model ages specified to three significant figures and interpretations of statistically insignificant kinks. They are further exacerbated, and for other small-body crater SFDs analyzed by the Berlin group, by stubbornly adopting

  1. Near-Earth Asteroid Rendezvous: mission overview

    Science.gov (United States)

    Cheng, A. F.; Santo, A. G.; Heeres, K. J.; Landshof, J. A.; Farquhar, R. W.; Gold, R. E.; Lee, S. C.

    1997-10-01

    The Near-Earth Asteroid Rendezvous (NEAR) mission, the first launch of NASA's Discovery Program, will be the first mission to orbit an asteroid. NEAR will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. NEAR launched successfully on February 17, 1996, aboard a Delta II-7925. It will orbit the 20-km-diameter near-Earth asteroid 433 Eros for about 1 year, at a minimum orbit radius of about 35 km from the center of the asteroid. The NEAR is a solar-powered, three-axis stabilized spacecraft with a launch mass including propellant of 805 kg. NEAR uses X band telemetry to the NASA Deep Space Network, with the data rates at Eros up to 8.8 kbits/s using a 34-m High Efficiency (HEF) dish, and up to 26.5 kbits/s using a 70-m dish. A solid-state recorder is accommodated with a memory capacity of 1.8 Gbytes. Attitude control is to 1.7 mrad, line-of-sight pointing stability is within 50 μrad over 1 s, and post processing attitude knowledge is within 50 μrad. NEAR accommodates 56 kg of instruments and provides them with 84 W. The instruments are a multispectral imager (MSI), a near-infrared spectrograph (NIS), an X ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science (RS) investigation uses the coherent X band transponder. NEAR will make a flyby of the C-type asteroid 253 Mathilde in June 1997 and will rendezvous with 433 Eros in February 1999. It will execute an initial slow flyby of Eros, with a flyby speed of 5 m/s and a closest approach distance of 500 km. Subsequently, its orbit will be lowered to 35 km. The NEAR Mission Operations Center and the Science Data Center are at the Johns Hopkins Applied Physics Laboratory. The Science Data Center will maintain the entire NEAR data set on-line, and data from all instruments can be accessed by every member of the NEAR Science Team. Data, including images, are released over

  2. Formation and Evolution of Binary Asteroids

    Science.gov (United States)

    Walsh, K. J.; Jacobson, S. A.

    Satellites of asteroids have been discovered in nearly every known small-body population, and a remarkable aspect of the known satellites is the diversity of their properties. They tell a story of vast differences in formation and evolution mechanisms that act as a function of size, distance from the Sun, and the properties of their nebular environment at the beginning of solar system history and their dynamical environment over the next 4.5 G.y. The mere existence of these systems provides a laboratory to study numerous types of physical processes acting on asteroids, and their dynamics provide a valuable probe of their physical properties otherwise possible only with spacecraft. Advances in understanding the formation and evolution of binary systems have been assisted by (1) the growing catalog of known systems, increasing from 33 to ~250 between the Merline et al. (2002) chapter in Asteroids III and now; (2) the detailed study and long-term monitoring of individual systems such as 1999 KW4 and 1996 FG3, (3) the discovery of new binary system morphologies and triple systems, (4) and the discovery of unbound systems that appear to be end-states of binary dynamical evolutionary paths. Specifically for small bodies (diameter smaller than 10 km), these observations and discoveries have motivated theoretical work finding that thermal forces can efficiently drive the rotational disruption of small asteroids. Long-term monitoring has allowed studies to constrain the system's dynamical evolution by the combination of tides, thermal forces, and rigid-body physics. The outliers and split pairs have pushed the theoretical work to explore a wide range of evolutionary end-states.

  3. LISA and asteroids

    International Nuclear Information System (INIS)

    Vinet, Jean-Yves

    2006-01-01

    LISA is a joint ESA-NASA mission aiming for cosmic gravitational wave detection and analysis. We address here the question of a special kind of signal caused by asteroid encounters. We present a short theory of the detection of such signals

  4. Asteroids, meteorites, and comets

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Asteroids, Comets, and Meteorites provides students, researchers, and general readers with the most up-to-date information on this fascinating field. From the days of the dinosaurs to our modern environment, this book explores all aspects of these cosmic invaders.

  5. Catastrophic Disruption of Asteroids: First Simulations with Explicit Formation of Spinning Rigid and Semi-rigid Aggregates

    Science.gov (United States)

    Michel, Patrick; Richardson, D. C.

    2007-10-01

    We have made major improvements in simulations of asteroid disruption by computing explicitly aggregate formations during the gravitational reaccumulation of small fragments, allowing us to obtain information on their spin and shape. First results will be presented taking as examples asteroid families that we reproduced successfully with previous less sophisticated simulations. In the last years, we have simulated successfully the formation of asteroid families using a SPH hydrocode to compute the fragmentation following the impact of a projectile on the parent body, and the N-body code pkdgrav to compute the mutual interactions of the fragments. We found that fragments generated by the disruption of a km-size asteroid can have large enough masses to be attracted by each other during their ejection. Consequently, many reaccumulations take place. Eventually most large fragments correspond to gravitational aggregates formed by reaccumulation of smaller ones. Moreover, formation of satellites occurs around the largest and other big remnants. In these previous simulations, when fragments reaccumulate, they merge into a single sphere whose mass is the sum of their masses. Thus, no information is obtained on the actual shape of the aggregates, their spin, ... For the first time, we have now simulated the disruption of a family parent body by computing explicitly the formation of aggregates, along with the above-mentioned properties. Once formed these aggregates can interact and/or collide with each other and break up during their evolution. We will present these first simulations and their possible implications on properties of asteroids generated by disruption. Results can for instance be compared with data provided by the Japanese space mission Hayabusa of the asteroid Itokawa, a body now understood to be a reaccumulated fragment from a larger parent body. Acknowledgments: PM and DCR acknowledge supports from the French Programme National de Planétologie and grants

  6. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  7. NEOWISE REACTIVATION MISSION YEAR TWO: ASTEROID DIAMETERS AND ALBEDOS

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R.; Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Bauer, J.; Kramer, E. A.; Masiero, J.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Wright, E. L., E-mail: cnugent@ipac.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2016-09-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±∼20% and ±∼40%, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.

  8. Interplanetary Trajectory Design for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    Science.gov (United States)

    Merrill, Raymond Gabriel; Qu, Min; Vavrina, Matthew A.; Englander, Jacob A.; Jones, Christopher A.

    2014-01-01

    This paper presents mission performance analysis methods and results for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger NEA. It details the optimization and design of heliocentric low-thrust trajectories to asteroid targets for the ARRM solar electric propulsion spacecraft. Extensive searches were conducted to determine asteroid targets with large pick-up mass potential and potential observation opportunities. Interplanetary trajectory approximations were developed in method based tools for Itokawa, Bennu, 1999 JU3, and 2008 EV5 and were validated by end-to-end integrated trajectories.

  9. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  10. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu

    Science.gov (United States)

    Lauretta, D. S.; Balram-Knutson, S. S.; Beshore, E.; Boynton, W. V.; Drouet d'Aubigny, C.; DellaGiustina, D. N.; Enos, H. L.; Golish, D. R.; Hergenrother, C. W.; Howell, E. S.; Bennett, C. A.; Morton, E. T.; Nolan, M. C.; Rizk, B.; Roper, H. L.; Bartels, A. E.; Bos, B. J.; Dworkin, J. P.; Highsmith, D. E.; Lorenz, D. A.; Lim, L. F.; Mink, R.; Moreau, M. C.; Nuth, J. A.; Reuter, D. C.; Simon, A. A.; Bierhaus, E. B.; Bryan, B. H.; Ballouz, R.; Barnouin, O. S.; Binzel, R. P.; Bottke, W. F.; Hamilton, V. E.; Walsh, K. J.; Chesley, S. R.; Christensen, P. R.; Clark, B. E.; Connolly, H. C.; Crombie, M. K.; Daly, M. G.; Emery, J. P.; McCoy, T. J.; McMahon, J. W.; Scheeres, D. J.; Messenger, S.; Nakamura-Messenger, K.; Righter, K.; Sandford, S. A.

    2017-10-01

    In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu's resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  11. ASTROMETRIC MASSES OF 26 ASTEROIDS AND OBSERVATIONS ON ASTEROID POROSITY

    International Nuclear Information System (INIS)

    Baer, James; Chesley, Steven R.; Matson, Robert D.

    2011-01-01

    As an application of our recent observational error model, we present the astrometric masses of 26 main-belt asteroids. We also present an integrated ephemeris of 300 large asteroids, which was used in the mass determination algorithm to model significant perturbations from the rest of the main belt. After combining our mass estimates with those of other authors, we study the bulk porosities of over 50 main-belt asteroids and observe that asteroids as large as 300 km in diameter may be loose aggregates. This finding may place specific constraints on models of main-belt collisional evolution. Additionally, we observe that C-group asteroids tend to have significantly higher macroporosity than S-group asteroids.

  12. Geographos asteroid flyby and autonomous navigation study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L.C.; Pines, D.J. [Lawrence Livermore National Lab., CA (United States); Patz, B.J.; Perron, D.C. [Coleman Research Corp., Orlando, FL (United States)

    1993-02-22

    Deep Space Program Science Experiment (DSPSE), also known as Clementine, is a collection of science experiments conducted in near-earth with the goal of demonstrating Strategic Defense Initiative Office (SDIO) developed technologies. The 785 lb (fully fueled) spacecraft will be launched into low Earth orbit in February 1994 together with a Star 37 solid kick motor and interstage. After orbit circulation using Clementine`s 110 lb Delta-V thruster, the Star 37 will execute a trans-lunar injection burn that will send the spacecraft toward lunar obit. The 110-lb will then be used in a sequence of burns to insert Clementine into a trimmed, polar orbit around the moon. After a two month moon mapping mission, Clementine will execute burns to leave lunar orbit, sling-shot around Earth, and flyby the moon on a 9.4 million km journey toward the asteroid Geographos. After about three months in transit, Clementine will attempt a flyby with a closest point of approach of 100 km from the asteroid on August 31, 1994. During its approach to Geographos, Clementine will be tracked by the Deep Space Network (DSN) and receive guidance updates. The last update and correction burn will occur about one day out of the flyby. Multiple experiments will be performed at key events during the mission that utilize Clementine`s SDIO-derived resources, including its Star Trackers, UV/Vis camera, infrared sensors (NWIR and LWIR), and high resolution laser radar (HIRes/LIDAR). In addition to the evaluation of SDIO algorithms and sensors, high resolution imagery will be obtained while the spacecraft is in Earth orbit, lunar obit and during the Geographos flyby. This paper describes the results of a study on the precision guidance, navigation, and intercept strategy for the flyby mission.

  13. The Main Asteroid Belt: The Crossroads of the Solar System

    Science.gov (United States)

    Michel, Patrick

    2015-08-01

    Orbiting the Sun between Mars and Jupiter, main belt asteroids are leftover planetary building blocks that never accreted enough material to become planets. They are therefore keys to understanding how the Solar System formed and evolved. They may also provide clues to the origin of life, as similar bodies may have delivered organics and water to the early Earth.Strong associations between asteroids and meteorites emerged thanks to multi-technique observations, modeling, in situ and sample return analyses. Spacecraft images revolutionized our knowledge of these small worlds. Asteroids are stunning in their diversity in terms of physical properties. Their gravity varies by more orders of magnitude than its variation among the terrestrial planets, including the Moon. Each rendezvous with an asteroid thus turned our geological understanding on its head as each asteroid is affected in different ways by a variety of processes such as landslides, faulting, and impact cratering. Composition also varies, from ice-rich to lunar-like to chondritic.Nearly every asteroid we see today, whether of primitive or evolved compositions, is the product of a complex history involving accretion and one or more episodes of catastrophic disruption that sometimes resulted in families of smaller asteroids that have distinct and indicative petrogenic relationships. These families provide the best data to study the impact disruption process at scales far larger than those accessible in laboratory. Tens, perhaps hundreds, of early asteroids grew large enough to thermally differentiate. Their traces are scattered pieces of their metal-rich cores and, more rarely, their mantles and crusts.Asteroids represent stages on the rocky road to planet formation. They have great stories to tell about the formation and evolution of our Solar System as well as other planetary systems: asteroid belts seem common around Sun-like stars. We will review our current knowledge on their properties, their link to

  14. Radar observations of asteroids

    International Nuclear Information System (INIS)

    Ostro, S.J.

    1989-01-01

    This paper describes echoes from 33 main-belt asteroids (MBAs) and 19 near-Earth asteroids (NEAs) have provided a wealth of new information about these objects such as sizes, shapes, spin vectors, and such surface characteristics as decimeter-scale morphology, topographic relief, regolith porosity and metal concentrations. On average, small NEAs are much rougher at decimeter scales than MBAs, comets or terrestrial planets. Some of the largest MBAs (e.g., 1 Ceres and 2 Pallas ) are smoother than the moon at decimeter scales but much rougher than the Moon at some much larger scale. There is at least a five-fold variation in the radar albedos of MBAs, implying substantial variations in the surface porosities or metal concentrations of these objects. The highest MBA albedo estimate, for 16 Psyche, is consistent with a metal concentration near unity and lunar porosities

  15. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  16. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  17. Speckle interferometry of asteroids

    International Nuclear Information System (INIS)

    Drummond, J.

    1988-01-01

    By studying the image two-dimensional power spectra or autocorrelations projected by an asteroid as it rotates, it is possible to locate its rotational pole and derive its three axes dimensions through speckle interferometry under certain assumptions of uniform, geometric scattering, and triaxial ellipsoid shape. However, in cases where images can be reconstructed, the need for making the assumptions is obviated. Furthermore, the ultimate goal for speckle interferometry of image reconstruction will lead to mapping albedo features (if they exist) as impact areas or geological units. The first glimpses of the surface of an asteroid were obtained from images of 4 Vesta reconstructed from speckle interferometric observations. These images reveal that Vesta is quite Moon-like in having large hemispheric-scale albedo features. All of its lightcurves can be produced from a simple model developed from the images. Although undoubtedly more intricate than the model, Vesta's lightcurves can be matched by a model with three dark and four bright spots. The dark areas so dominate one hemisphere that a lightcurve minimum occurs when the maximum cross-section area is visible. The triaxial ellipsoid shape derived for Vesta is not consistent with the notion that the asteroid has an equilibrium shape in spite of its having apparently been differentiated

  18. Asteroids, Comets, Meteors 2014

    Science.gov (United States)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  19. Comet or Asteroid?

    Science.gov (United States)

    1997-11-01

    When is a minor object in the solar system a comet? And when is it an asteroid? Until recently, there was little doubt. Any object that was found to display a tail or appeared diffuse was a comet of ice and dust grains, and any that didn't, was an asteroid of solid rock. Moreover, comets normally move in rather elongated orbits, while most asteroids follow near-circular orbits close to the main plane of the solar system in which the major planets move. However, astronomers have recently discovered some `intermediate' objects which seem to possess properties that are typical for both categories. For instance, a strange object (P/1996 N2 - Elst-Pizarro) was found last year at ESO ( ESO Press Photo 36/96 ) which showed a cometary tail, while moving in a typical asteroidal orbit. At about the same time, American scientists found another (1996 PW) that moved in a very elongated comet-type orbit but was completely devoid of a tail. Now, a group of European scientists, by means of observations carried out at the ESO La Silla observatory, have found yet another object that at first appeared to be one more comet/asteroid example. However, continued and more detailed observations aimed at revealing its true nature have shown that it is most probably a comet . Consequently, it has received the provisional cometary designation P/1997 T3 . The Uppsala-DLR Trojan Survey Some time ago, Claes-Ingvar Lagerkvist (Astronomical Observatory, Uppsala, Sweden), in collaboration with Gerhard Hahn, Stefano Mottola, Magnus Lundström and Uri Carsenty (DLR, Institute of Planetary Exploration, Berlin, Germany), started to study the distribution of asteroids near Jupiter. They were particularly interested in those that move in orbits similar to that of Jupiter and which are located `ahead' of Jupiter in the so-called `Jovian L4 Lagrangian point'. Together with those `behind' Jupiter, these asteroids have been given the names of Greek and Trojan Heroes who participated in the famous Trojan war

  20. An overview of the asteroids

    International Nuclear Information System (INIS)

    Binzel, R.P.

    1989-01-01

    An introduction and overview of the field of asteroid science is presented, highlighting the accomplishments of the 1980s. The development and application of many observational techniques and data from the Infrared Astronomical Satellite have greatly increased our knowledge of asteroid physical properties. New scenarios for understanding the chemical diversity and dynamical structure of asteroids have emerged. New insights have been gained toward understanding their origin and interrelations with meteorites and comets. Suggestions and speculations are offered on future research directions

  1. The first retrograde Trojan asteroid

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2018-04-01

    There are about six thousand asteroids which share Jupiter's orbit around the Sun. Called the 'Trojan asteroids', they co-exist easily with this giant planet because they travel in the same direction as it ('direct' or 'prograde' motion), and remain roughly 60 degrees ahead of or behind it in its orbit. Newly discovered asteroid 2015 BZ509 is on a retrograde orbit, but is nonetheless in a state dynamically analogous to that of the prograde Trojans. The discovery circumstances and the nature of the motion of this curious asteroid -the first of its kind- will be outlined.

  2. Asteroid results from the IRAS survey

    International Nuclear Information System (INIS)

    Veeder, G.J.; Tedesco, E.F.; Matson, D.L.

    1989-01-01

    This paper reports that the IRAS Asteroid and Comet Survey yield a data base of infrared flux densities for 1811 individual asteroids. Albedos and diameters for these have been derived via a standard thermal model. IRAS sampled a large number of small asteroids and detected many dark asteroids in the outer belt. High-albedo asteroids remain rare. Observations of the brighter asteroids at multiple wavelengths shows the expected range of color temperatures through the main belt

  3. Origin of the asteroid belt

    International Nuclear Information System (INIS)

    Wetherill, G.W.

    1989-01-01

    Earlier work and concepts relevant to the origin of the asteroid belt are reviewed and considered in the context of the more general question of solar system origin. Several aspects of asteroidal origin by accumulation of smaller bodies have been addressed by new dynamic studies. Numerical and analytical solutions of the dynamical theory of planetesimal accumulation are characterized by a bifurcation into runaway and nonrunaway solutions. The differences in time scales resulting from runaway and nonrunaway growth can be more important than conventional time scale differences determined by heliocentric distances. This introduces new possibilities, e.g., planetary accumulation may be more rapid at the distance of Jupiter than in the asteroid belt, thus permitting Jupiter to control asteroidal growth. Although alternatives must be seriously considered, the most promising approach to asteroidal origin is one in which the initial surface density of the solar nebula varied smoothly between the terrestrial and giant-planet region. In the absence of external perturbations, it is found that runaway growth of excessively large asteroids would then occur on <1 Myr, but fairly modest external perturbations by Jupiter, Saturn or other perturbers, resulting in eccentricities ∼0.01 may quench runaways, truncate asteroidal growth at their present size, and then initiate the necessary loss of asteroidal material by mutual fragmentation

  4. Distant retrograde orbits and the asteroid hazard

    Science.gov (United States)

    Perozzi, Ettore; Ceccaroni, Marta; Valsecchi, Giovanni B.; Rossi, Alessandro

    2017-08-01

    Distant Retrograde Orbits (DROs) gained a novel wave of fame in space mission design because of their numerous advantages within the framework of the US plans for bringing a large asteroid sample in the vicinity of the Earth as the next target for human exploration. DROs are stable solutions of the three-body problem that can be used whenever an object, whether of natural or artificial nature, is required to remain in the neighborhood of a celestial body without being gravitationally captured by it. As such, they represent an alternative option to Halo orbits around the collinear Lagrangian points L1 and L2. Also known under other names ( e.g., quasi-satellite orbits, cis-lunar orbits, family- f orbits) these orbital configurations found interesting applications in several mission profiles, like that of a spacecraft orbiting around the small irregularly shaped satellite of Mars Phobos or the large Jovian moon Europa. In this paper a basic explanation of the DRO dynamics is presented in order to clarify some geometrical properties that characterize them. Their accessibility is then discussed from the point of view of mission analysis under different assumptions. Finally, their relevance within the framework of the present asteroid hazard protection programs is shown, stressing the significant increase in warning time they would provide in the prediction of impactors coming from the direction of the Sun.

  5. Autonomous vision-based navigation for proximity operations around binary asteroids

    Science.gov (United States)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  6. Evolution of comets into asteroids

    International Nuclear Information System (INIS)

    Weissman, P.R.; A'hearn, M.F.; Rickman, H.; Mcfadden, L.A.

    1989-01-01

    This paper presents observational evidence, together with recent theoretical developments, supporting the hypothesis that at least some asteroids might be extinct or dormant cometary nuclei. The observations include the discovery of a number of apparent asteroids in chaotic Jupiter-crossing orbits; the IRAS discovery of 1983 TB, an asteroid in the same orbit as the Geminid meteor shower; the apparent low activity levels determined for several short-period comet nuclei including Comet Halley; and observations of possible cometary activity in some earth-crossing asteroids. Theoretical developments include explorations of dynamical mechanisms capable of delivering main-belt asteroids into earth-crossing orbits, and an understanding of possible processes which may affect comets during their long residence in the Oort cloud and lead to the formation of nonvolatile crusts before and after they enter the planetary system. 143 refs

  7. Thermal inertia of eclipsing binary asteroids : the role of component shape

    NARCIS (Netherlands)

    Mueller, Michael; van de Weijgaert, Marlies

    2015-01-01

    Thermal inertia controls the temperature distribution on asteroid surfaces. This is of crucial importance to the Yarkovsky effect and for the planning of spacecraft operations on or near the surface. Additionally, thermal inertia is a sensitive indicator for regolith structure.A uniquely direct way

  8. Compositional studies of primitive asteroids

    International Nuclear Information System (INIS)

    Vilas, F.

    1988-01-01

    The composition of primitive asteroids and their relationship to satellites in the solar system will be studied by analyzing existing narrowband charge coupled device (CCD) reflectance spectra, acquiring additional spectra of asteroids and small satellites in the 0.5 to 1.0 micrometer spectral range, and exploring possibilities for obtaining compositional information in the blue-UV spectral region. Comparison with laboratory spectra of terrestrial chlorites and serpentines (phyllosilicates) and the clay minerals found in carbonaceous chondrite meteorites will continue. During 1987, narrowband CCD reflectance spectra of 17 additional asteroids were acquired. These spectra and spectra of 34 other asteroids have been used primarily for two studies: weak absorption features similar to those due to Fe2(+) and Fe2(+) - Fe3(+) transitions in iron oxides f ound in terrestrial chlorites and serpentines and carbonaceous chondrites have been identified in some primitive asteroid spectra. There is a first indication that asteroids grouped by heliocentric distance show similar weak absorption features. Nonparametric statistics are being applied to test the hypothesis of discrete remnants of a gradation in composition of outer-belt asteroids

  9. Mine Planning for Asteroid Orebodies

    Science.gov (United States)

    Gertsch, L. S.; Gertsch, R. E.

    2000-01-01

    Given that an asteroid (or comet) has been determined to contain sufficient material of value to be potentially economic to exploit, a mining method must be selected and implemented. This paper discusses the engineering necessary to bring a mine online, and the opportunities and challenges inherent in asteroid mineral prospects. The very important step of orebody characterization is discussed elsewhere. The mining methods discussed here are based on enclosing the asteroid within a bag in some fashion, whether completely or partially. In general, asteroid mining methods based on bags will consist of the following steps. Not all will be required in every case, nor necessarily in this particular sequence. Some steps will be performed simultaneously. Their purpose is to extract the valuable material from the body of the asteroid in the most efficient, cost-effective manner possible. In approximate order of initiation, if not of conclusion, the steps are: 1. Tether anchoring to the asteroid. 2. Asteroid motion control. 3. Body/fragment restraint system placement. 4. Operations platform construction. 5. Bag construction. 6. Auxiliary and support equipment placement. 7. Mining operations. 8. Processing operations. 9. Product transport to markets.

  10. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  11. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  12. Asteroid named after CAS scientist

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ An asteroid has been named after CAS astronomy historian XI Zezong with the approval of the International Minor Planet Nomenclature Committee (IMPNC), announced China's National Astronomical Observatories at CAS (NAOC) on 17 August.

  13. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  14. Discovery of a Satellite around a Near-Earth Asteroid

    Science.gov (United States)

    1997-07-01

    In the course of the major observational programme of asteroids by the Institute of Planetary Exploration of the German Aerospace Research Establishment (DLR) [1] in Berlin, two of the staff astronomers, Stefano Mottola and Gerhard Hahn , have discovered a small satellite (moon) orbiting the asteroid (3671) Dionysus. The new measurements were obtained with the DLR CCD Camera attached at the 60-cm Bochum telescope at the ESO La Silla Observatory in Chile. This is only the second known case of an asteroid with a moon. Moons and planets Until recently, natural satellites were only known around the major planets . The Moon orbits the Earth, there are two tiny moons around Mars, each of the giant planets Jupiter, Saturn, Uranus and Neptune has many more, and even the smallest and outermost, Pluto, is accompanied by one [2]. However, the new discovery now strengthens the belief of many astronomers that some, perhaps even a substantial number of the many thousands of minor planets (asteroids) in the solar system may also possess their own moons. The first discovery of a satellite orbiting an asteroid was made by the NASA Galileo spacecraft, whose imagery, obtained during a fly-by of asteroid (253) Ida in August 1993, unveiled a small moon that has since been given the name Dactyl. (3671) Dionysus: an Earth-crossing asteroid In the framework of the DLR asteroid monitoring programme, image sequences are acquired to measure an asteroid's brightness variations caused by the changing amount of sunlight reflected from the asteroid's illuminated surface as it spins, due to its irregular shape. The brightness variations may be used to derive the asteroid's rotational properties, such as speed of rotation and spin axis orientation. Asteroid Dionysus [3] was put on the observing list because it belongs to a special class of asteroids, the members of which occasionally come very close to the Earth and have a small, but non-negligible chance of colliding with our planet. Most of

  15. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    Science.gov (United States)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  16. Special issue on asteroids - Introduction

    Science.gov (United States)

    Novaković, Bojan; Hsieh, Henry H.; Gronchi, Giovanni F.

    2018-04-01

    The articles in this special issue are devoted to asteroids, small solar system bodies that primarily populate a region between the orbits of Mars and Jupiter, known as the asteroid belt, but can also be found throughout the Solar System. Asteroids are considered to be a key to understanding the formation and evolution of our planetary system. Their properties allow us to test current theoretical models and develop new theoretical concepts pertaining to evolutionary processes in the Solar System. There have been major advances in asteroid science in the last decade, and that trend continues. Eighteen papers accepted for this special issue cover a wide range of asteroid-related subjects, pushing the boundaries of our understanding of these intriguing objects even further. Here we provide the reader with a brief overview of these thrilling papers, with an invitation for interested scientists to read each work in detail for a better understanding of these recent cutting edge results. As many topics in asteroid science remain open challenges, we hope that this special issue will be an important reference point for future research on this compelling topic.

  17. Spectral properties of eight near-Earth asteroids

    Science.gov (United States)

    Popescu, M.; Birlan, M.; Binzel, R.; Vernazza, P.; Barucci, A.; Nedelcu, D. A.; DeMeo, F.; Fulchignoni, M.

    2011-11-01

    Context. Near-Earth objects are among the most accessible bodies in the solar system in terms of the spacecraft propulsion requirements to reach them. The choice of targets and the planning of space missions are based on high quality ground-based science. Aims: The knowledge of the ensemble of physical parameters for these objects, including their composition, is a critical point in defining any mission scientific objectives. Determining the physical properties of near-Earth asteroids (NEAs) is also possible from the ground by analyzing spectroscopy at both visible and infrared wavelengths. Methods: We present spectra of eight NEAs (1917, 8567, 16960, 164400, 188452, 2001 SG286, and 2010 TD54) obtained using the NASA telescope IRTF equipped with the spectro-imager SpeX. The observations were performed in the 0.8-2.5 μm spectral region using the low resolution mode of the spectrograph. We completed the taxonomic classification using the Bus-DeMeo taxonomy. We analyzed the spectra by comparing them to meteorite spectra from the Relab database using a χ2 approach. For the S-type asteroids of our sample, the band centers and BAR were calculated. We also attempted to interpret our data using a space-weathering model. Results: The taxonomic classification of five objects was reviewed and we assigned a corresponding type to the other three asteroids that were not classified before. We found that (1917) Cuyo, (8567) 1996 HW1, (16960) 1998 QS52, (188452) 2004 HE62, and 2010 TD54 are in the S-complex. We achieved a good matching of our S-type asteroids with the spectra of ordinary chondrites meteorites. The asteroid (5620) Jasonwheeler was found to have a NIR spectrum similar to carbonaceous chondrite meteorites. Thus, our results confirm its primitive properties obtained in several other spectral intervals. Appendices A and B are available in electronic form at http://www.aanda.org

  18. Osiris-REx Spacecraft Current Status and Forward Plans

    Science.gov (United States)

    Messenger, Scott; Lauretta, Dante S.; Connolly, Harold C., Jr.

    2017-01-01

    The NASA New Frontiers OSIRIS-REx spacecraft executed a flawless launch on September 8, 2016 to begin its 23-month journey to near-Earth asteroid (101955). The primary objective of the OSIRIS-REx mission is to collect and return to Earth a pristine sample of regolith from the asteroid surface. The sampling event will occur after a two-year period of remote sensing that will ensure a high probability of successful sampling of a region on the asteroid surface having high science value and within well-defined geological context. The OSIRIS-REx instrument payload includes three high-resolution cameras (OCAMS), a visible and near-infrared spectrometer (OVIRS), a thermal imaging spectrometer (OTES), an X-ray imaging spectrometer (REXIS), and a laser altimeter (OLA). As the spacecraft follows its nominal outbound-cruise trajectory, the propulsion, power, communications, and science instruments have undergone basic functional tests, with no major issues. Outbound cruise science investigations include a search for Earth Trojan asteroids as the spacecraft approaches the Sun-Earth L4 Lagrangian point in February 2017. Additional instrument checkouts and calibrations will be carried out during the Earth gravity assist maneuver in September 2017. During the Earth-moon flyby, visual and spectral images will be acquired to validate instrument command sequences planned for Bennu remote sensing. The asteroid Bennu remote sensing campaign will yield high resolution maps of the temperature and thermal inertia, distributions of major minerals and concentrations of organic matter across the asteroid surface. A high resolution 3d shape model including local surface slopes and a high-resolution gravity field will also be determined. Together, these data will be used to generate four separate maps that will be used to select the sampling site(s). The Safety map will identify hazardous and safe operational regions on the asteroid surface. The Deliverability map will quantify the accuracy

  19. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  20. Cohesion of Mm- to Cm-Sized Asteroid Simulant Grains: An Experimental Study

    Science.gov (United States)

    Brisset, Julie; Colwell, Joshua E.; Dove, Adrienne; Jarmak, Stephanie; Anderson, Seamus

    2017-10-01

    The regolith covering the surfaces of asteroids and planetary satellites is very different from terrestrial soil particles and subject to environmental conditions very different from what is found on Earth. The loose, unconsolidated granular material has angular-shaped grains and a broad size distribution. On small and airless bodies (Earth surface gravity, the cohesion behavior of the regolith grains will dictate the asteroid’s surface morphology and its response to impact or spacecraft contact.Previous laboratory experiments on low-velocity impacts into regolith simulant with grain sizes landing missions to small bodies such as asteroids or Martian moons.

  1. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Bos, B. J.; Ravine, M. A.; Caplinger, M.; Schaffner, J. A.; Ladewig, J. V.; Olds, R. D.; Norman, C. D.; Huish, D.; Hughes, M.; Anderson, S. K.; Lorenz, D. A.; May, A.; Jackman, C. D.; Nelson, D.; Moreau, M.; Kubitschek, D.; Getzandanner, K.; Gordon, K. E.; Eberhardt, A.; Lauretta, D. S.

    2018-02-01

    NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400-700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a 2592 × 1944 pixel complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly 44° × 32° with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

  2. Developing an Asteroid Rotational Theory

    Science.gov (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald

    2018-01-01

    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  3. ASTEROID POLARIMETRIC DATABASE V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  4. ASTEROID PHOTOMETRIC CATALOG V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Photometric Catalog (3rd update), Lagerkvist, et.al., 1993 [LAGERKVISTETAL1993], is a compilation of all asteroid lightcurve photometry published up to...

  5. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near-Earth Asteroid Disruption

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent William

    2015-01-01

    Collisions from near-Earth asteroids (NEAs) have the potential to cause widespread harm to life on Earth. The hypervelocity nature of these collisions means that a relatively small asteroid (about a quartermile in diameter) could cause a global disaster. Proposed strategies for deflecting or disrupting such a threatening asteroid include detonation of a nuclear explosive device (NED) in close proximity to the asteroid, as well as intercepting the asteroid with a hypervelocity kinetic impactor. NEDs allow for the delivery of large amounts of energy to a NEA for a given mass launched from the Earth, but have not yet been developed or tested for use in deep space. They also present safety and political complications, and therefore may only be used when absolutely necessary. Kinetic impactors require a relatively simple spacecraft compared to NEDs, but also deliver a much lower energy for a given launch mass. To date, no demonstration mission has been conducted for either case, and such a demonstration mission must be conducted prior to the need to utilize them during an actual scenario to ensure that an established, proven system is available for planetary defense when the need arises. One method that has been proposed to deliver a kinetic impactor with impact energy approaching that of an NED is the "billiard-ball" approach. This approach would involve capturing an asteroid approximately ten meters in diameter with a relatively small spacecraft (compared to the launch mass of an equivalent direct kinetic impactor), and redirecting it into the path of an Earth-threatening asteroid. This would cause an impact which would disrupt the Earth-threatening asteroid or deflect it from its Earth-crossing trajectory. The BILLIARDS Project seeks to perform a demonstration of this mission concept in order to establish a protocol that can be used in the event of an impending Earth/asteroid collision. In order to accomplish this objective, the mission must (1) rendezvous with a

  6. Laboratory Study of Aliphatic Organic Spectral Signatures and Applications to Ceres and Primitive Asteroids

    Science.gov (United States)

    Kaplan, H. H.; Milliken, R.

    2017-12-01

    Aliphatic organics were recently discovered on the surface of Ceres with Dawn's Visible and InfraRed (VIR) mapping spectrometer, which has implications for prebiotic chemistry of Ceres and other asteroids. An absorption in the spectrum at 3.4 µm was used to identify and provide initial estimates of the amount of organic material. We have studied the 3.4 µm absorption in reflectance spectra of bulk rock and meteorite powders and isolated organic materials in the NASA RELAB facility at Brown University to determine how organic composition and abundance affects absorption strength. Reflectance spectra of insoluble organic matter (IOM) extracted from carbonaceous chondrites were measured from 0.35 - 25 µm. These IOM have known elemental (H, C, N, O) and isotopic compositions that were compared with spectral properties. Bulk meteorites were measured as chips and particulates over the same wavelength range. Despite overall low reflectance values (albedo IOM samples, specifically those with a H/C ratio greater than 0.4. The absorption strength (band depth) increases with increasing H/C ratio, which corroborates similar findings in our previous study of sedimentary rocks and isolated kerogens. The absorption strength in the bulk meteorites reflects both H/C of the IOM and the concentration of IOM in the inorganic (mineral) matrix. Overlapping absorptions from carbonates and phyllosilicates (OH/H2O) can also influence the aliphatic organic bands in bulk rocks and meteorites. This laboratory work provides a foundation that can be used to constrain the composition of Ceres' aliphatic organic matter using band depth as a proxy for H/C. Reflectance spectra collected for this work will also be used to model the Dawn VIR data and obtain abundance and H/C estimates assuming that the organic material on Ceres' surface is similar to carbonaceous chondrite IOM. These spectra and findings can aid interpretation of reflectance data from Ceres and other asteroid missions, such as

  7. Reflectance spectroscopy and asteroid surface mineralogy

    International Nuclear Information System (INIS)

    Gaffey, M.J.; Bell, J.F.; Cruikshank, D.P.

    1989-01-01

    Information available from reflectance spectroscopy on the surface mineralogy of asteroids is discussed. Current spectral interpretive procedures used in the investigations of asteroid mineralogy are described. Present understanding of the nature and history of asteroids is discussed together with some still unresolved issues such as the source of ordinary chondrites. 100 refs

  8. Investigating Trojan Asteroids at the L4/L5 Sun-Earth Lagrange Points

    Science.gov (United States)

    John, K. K.; Graham, L. D.; Abell, P. A.

    2015-01-01

    Investigations of Earth's Trojan asteroids will have benefits for science, exploration, and resource utilization. By sending a small spacecraft to the Sun-Earth L4 or L5 Lagrange points to investigate near-Earth objects, Earth's Trojan population can be better understood. This could lead to future missions for larger precursor spacecraft as well as human missions. The presence of objects in the Sun-Earth L4 and L5 Lagrange points has long been suspected, and in 2010 NASA's Wide-field Infrared Survey Explorer (WISE) detected a 300 m object. To investigate these Earth Trojan asteroid objects, it is both essential and feasible to send spacecraft to these regions. By exploring a wide field area, a small spacecraft equipped with an IR camera could hunt for Trojan asteroids and other Earth co-orbiting objects at the L4 or L5 Lagrange points in the near-term. By surveying the region, a zeroth-order approximation of the number of objects could be obtained with some rough constraints on their diameters, which may lead to the identification of potential candidates for further study. This would serve as a precursor for additional future robotic and human exploration targets. Depending on the inclination of these potential objects, they could be used as proving areas for future missions in the sense that the delta-V's to get to these targets are relatively low as compared to other rendezvous missions. They can serve as platforms for extended operations in deep space while interacting with a natural object in microgravity. Theoretically, such low inclination Earth Trojan asteroids exist. By sending a spacecraft to L4 or L5, these likely and potentially accessible targets could be identified.

  9. Study of the Asteroid Florence

    Science.gov (United States)

    Vodniza, Alberto; Pereira, Mario

    2018-06-01

    Asteroid Florence was discovered at Siding Spring Observatory in Australia (March 1981). Paul Chodas, manager of CNEOS-JPL said: “Florence is the largest asteroid to pass by our planet this close since the NASA program to detect and track near-Earth asteroids began” [1]. The asteroid passed 7.1 million kilometers away from the earth [2]. The GDSCC-NASA discovered that the asteroid has two small moons. The diameter of Florence is 4.5 kilometers, and the sizes of the two moons are probably between 100 – 300 meters across. The inner moon has a rotation period around Florence of about 8 hours, and the outer moon has a period of about 25 hours [3]. From our Observatory, located in Pasto-Colombia, we captured several pictures, videos and astrometry data during several hours during three days. Our data was published by the Minor Planet Center (MPC) and also appears at the web page of NEODyS [4]. The pictures were captured with the following equipment: CGE PRO 1400 CELESTRON and STL-1001 SBIG camera. Astrometry and photometry was carried out, and we calculated the orbital elements and the rotation period. Summary and conclusions: We obtained the following orbital parameters: eccentricity = 0.422548 +/- 0.000994, semi-major axis = 1.76675 +/- 0.00313 A.U, orbital inclination = 22.128 +/- 0.029 deg, longitude of the ascending node = 336.0960 +/- 0.0013 deg, argument of perihelion = 27.861 +/- 0.016, mean motion = 0.41970 +/- 0.00112 deg/d, perihelion distance = 1.0202151 +/- 5.27e-5 A.U, aphelion distance = 2.51329 +/- 0.00625 A.U, absolute magnitude = 14.4. The parameters were calculated based on 281 observations. Dates: 2017 September 01 to 05 with mean residual = 0.19 arcseconds. The asteroid has an orbital period of 2.35 years (857.74 days). The rotation period of the asteroid is 2.3 hours. Note: Spaceweather published our video on September 1-2017 [5].[1] https://www.nasa.gov/feature/jpl/large-asteroid-to-safely-pass-earth-on-sept-1[2] http

  10. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, Chao; Ma, Yue-hua; Zhao, Hai-bin; Lu, Xiao-ping

    2017-10-01

    With the increasing spectral and photometric data of asteroids, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations in the Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. In combination with the present taxonomies of Tholen, Bus, Lazzaro, and DeMeo, and the principal component analysis, we have classified 48642 asteroids according to their SDSS magnitudes at the g, r, i, and z wavebands. In this way, these asteroids are divided into 8 (C, X, S, B, D, K, L, and V) classes.

  11. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, C.; Ma, Y. H.; Zhao, H. B.; Lu, X. P.

    2016-09-01

    With the increasing asteroid spectral and photometric data, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations of Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. With the training data derived from the taxonomies of Tholen, Bus, Lazzaro, DeMeo, and Principal Component Analysis, we classify 48642 asteroids according to g, r, i, and z SDSS magnitudes. In this way, asteroids are divided into 8 spectral classes (C, X, S, B, D, K, L, and V).

  12. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Baer, James [Private address, 3210 Apache Road, Pittsburgh, PA 15241 (United States); Chesley, Steven R., E-mail: jimbaer1@earthlink.net [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-08-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia ) should conduct a thorough search for possible gravitational couplings and account for their effects.

  13. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    Science.gov (United States)

    Baer, James; Chesley, Steven R.

    2017-08-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia) should conduct a thorough search for possible gravitational couplings and account for their effects.

  14. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    International Nuclear Information System (INIS)

    Baer, James; Chesley, Steven R.

    2017-01-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia ) should conduct a thorough search for possible gravitational couplings and account for their effects.

  15. The Steward Observatory asteroid relational database

    Science.gov (United States)

    Sykes, Mark V.; Alvarezdelcastillo, Elizabeth M.

    1991-01-01

    The Steward Observatory Asteroid Relational Database (SOARD) was created as a flexible tool for undertaking studies of asteroid populations and sub-populations, to probe the biases intrinsic to asteroid databases, to ascertain the completeness of data pertaining to specific problems, to aid in the development of observational programs, and to develop pedagogical materials. To date, SOARD has compiled an extensive list of data available on asteroids and made it accessible through a single menu-driven database program. Users may obtain tailored lists of asteroid properties for any subset of asteroids or output files which are suitable for plotting spectral data on individual asteroids. The program has online help as well as user and programmer documentation manuals. The SOARD already has provided data to fulfill requests by members of the astronomical community. The SOARD continues to grow as data is added to the database and new features are added to the program.

  16. Shape and spin of asteroid 967 Helionape

    Science.gov (United States)

    Apostolovska, G.; Kostov, A.; Donchev, Z.; Bebekovska, E. Vchkova; Kuzmanovska, O.

    2018-04-01

    Knowledge of the spin and shape parameters of the asteroids is very important for understanding of the conditions during the creation of our planetary system and formation of asteroid populations. The main belt asteroid and Flora family member 967 Helionape was observed during five apparitions. The observations were made at the Bulgarian National Astronomical Observatory (BNAO) Rozhen, since March 2006 to March 2016. Lihtcurve inversion method (Kaasalainen et al. (2001)), applied on 12 relative lightcurves obtained at various geometric conditions of the asteroid, reveals the spin vector, the sense of rotation and the preliminary shape model of the asteroid. Our aim is to contribute in increasing the set of asteroids with known spin and shape parameters. This could be done with dense lightcurves, obtained during small number of apparitions, in combination with sparse data produced by photometric asteroid surveys such as the Gaia satellite (Hanush (2011)).

  17. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  18. Encounter of a different kind: Rosetta observes asteroid at close quarters

    Science.gov (United States)

    2008-09-01

    ESA's comet chaser, Rosetta, last night flew by a small body in the main asteroid belt, asteroid Steins, collecting a wealth of information about this rare type of minor Solar System body. At 20:58 CEST (18:58 UT) last night, ESA's Rosetta probe approached asteroid 2867 Steins, coming to within a distance of only 800 km from it. Steins is Rosetta's first nominal scientific target in its 11½ year mission to ultimately explore the nucleus of Comet 67P/Churyumov-Gerasimenko. The success of this 'close' encounter was confirmed at 22:14 CEST, when ESA's ground control team at the European Space Operations Centre (ESOC) in Darmstadt, Germany, received initial telemetry from the spacecraft. During the flyby operations, Rosetta was out of reach as regards communication links because its antenna had to be turned away from Earth. At a distance of about 2.41 AU (360 million kilometres) from our planet, the radio signal from the probe took 20 minutes to reach the ground. Steins is a small asteroid of irregular shape with a diameter of only 4.6 km. It belongs to the rare class of E-type asteroids, which had not been directly observed by an interplanetary spacecraft before. Such asteroids are quite small in size and orbit and are mostly found in the inner part of the main asteroid belt located between Mars and Jupiter. They probably originate from the mantle of larger asteroids destroyed in the early history of the Solar System, and are thought to be composed mainly of silicate minerals with little or no iron content. The data collected by Rosetta last night and which will be analysed over the coming days and weeks will finally unveil the true nature of Steins. Through the study of minor bodies such as asteroids, Rosetta is opening up a new window onto the early history of our Solar System. It will give us a better understanding of the origins and evolution of the planets, and also a key to better interpreting asteroid data collected from the ground. Under Rosetta's scope This

  19. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  20. Radiation effects in the Si-PIN detector on the Near Earth Asteroid Rendezvous mission

    CERN Document Server

    Starr, R; Evans, L G; Floyd, S R; McClanahan, T P; Trombka, J I; Goldsten, J O; Maurer, R H; McNutt, R L; Roth, D R

    1999-01-01

    A Si-PIN photodiode is being used as a solar X-ray monitor on the X-ray/gamma-ray spectrometer experiment which is flying on the Near Earth Asteroid Rendezvous spacecraft. Since its launch in February 1996 this photodiode has experienced several brief failures. These anomalies and other performance characteristics will be described. Efforts to reproduce these failures in ground tests with flight spare equipment will also be discussed.

  1. X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids

    Science.gov (United States)

    Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.

    2017-01-01

    X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.

  2. Photometry of faint asteroids and satellites

    International Nuclear Information System (INIS)

    Degewij, J.

    1978-01-01

    The smaller asteroids, having diameters of about 1 km, appear to rotate faster than do the larger asteroids (approximately 200 km diameter). Most of the bodies may be nearly spherical, probably due to a collisional erosion process in the Main Belt of asteroids. The distributions of diameter versus number were studied for low albedo (C, for carbonaceous) and high albedo (S, for silicaceous) type asteroids in the main belt, down to diameters of 25 km. Among the smaller bodies the S type asteroids are relatively more abundant, probably due to greater crushing strength for S type asteroids. This indicates that both optical types have also different properties in the interior of the body. Areas with slightly different reflectivity over the surface of an asteroid were detected; the rotational light variation of asteroid 4 (Vesta) was found to be caused by spots on its surface. Colorimetry and infrared radiometry of some Hilda asteroids, Trojans and the fainter satellites of Jupiter and Saturn, all having diameters between 100 and 200 km, show that a mixture of types exist. If some asteroids are nearly expended nuclei of comets that lost most of their volatile gaseous material, then their cometary activity is expected to be extinct or at least weak. (Auth.)

  3. Asteroids. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Bucharest Polytechnic Univ. (Romania). Candida Oancea Institute

    2013-11-01

    Recent research on Prospective Energy and Material Resources on Asteroids. Carefully edited book dedicated to Asteroids prospective energy and material resources. Written by leading experts in the field. The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation.

  4. Asteroid exploration and utilization: The Hawking explorer

    Science.gov (United States)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  5. Stability and evolution of orbits around the binary asteroid 175706 (1996 FG3): Implications for the MarcoPolo-R mission

    Science.gov (United States)

    Hussmann, Hauke; Oberst, Jürgen; Wickhusen, Kai; Shi, Xian; Damme, Friedrich; Lüdicke, Fabian; Lupovka, Valery; Bauer, Sven

    2012-09-01

    In support of the MarcoPolo-R mission, we have carried out numerical simulations of spacecraft trajectories about the binary asteroid 175706 (1996 FG3) under the influence of solar radiation pressure. We study the effects of (1) the asteroid's mass, shape, and rotational parameters, (2) the secondary's mass, shape, and orbit parameters, (3) the spacecraft's mass, surface area, and reflectivity, and (4) the time of arrival, and therefore the relative position to the sun and planets. We have considered distance regimes between 5 and 20 km, the typical range for a detailed characterization of the asteroids - primary and secondary - with imaging systems, spectrometers and by laser altimetry. With solar radiation pressure and gravity forces of the small asteroid competing, orbits are found to be unstable, in general. However, limited orbital stability can be found in the so-called Self-Stabilized Terminator Orbits (SSTO), where initial orbits are circular, orbital planes are oriented approximately perpendicular to the solar radiation pressure, and where the orbital plane of the spacecraft is shifted slightly (between 0.2 and 1 km) from the asteroid in the direction away from the sun. Under the effect of radiation pressure, the vector perpendicular to the orbit plane is observed to follow the sun direction. Shape and rotation parameters of the asteroid as well as gravitational perturbations by the secondary (not to mention sun and planets) were found not to affect the results. Such stable orbits may be suited for long radio tracking runs, which will allow for studying the gravity field. As the effect of the solar radiation pressure depends on the spacecraft mass, shape, and albedo, good knowledge of the spacecraft model and persistent monitoring of the spacecraft orientation are required.

  6. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  7. Mapping stable direct and retrograde orbits around the triple system of asteroids (45) Eugenia

    Science.gov (United States)

    Araujo, R. A. N.; Moraes, R. V.; Prado, A. F. B. A.; Winter, O. C.

    2017-12-01

    It is widely accepted that knowing the composition and the orbital evolution of asteroids might help us to understand the process of formation of the Solar system. It is also known that asteroids can represent a threat to our planet. Such an important role has made space missions to asteroids a very popular topic in current astrodynamics and astronomy studies. Taking into account the increasing interest in space missions to asteroids, especially to multiple systems, we present a study that aims to characterize the stable and unstable regions around the triple system of asteroids (45) Eugenia. The goal is to characterize the unstable and stable regions of this system and to make a comparison with the system 2001 SN263, which is the target of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) mission. A new concept was used for mapping orbits, by considering the disturbance received by the spacecraft from all perturbing forces individually. This method has also been applied to (45) Eugenia. We present the stable and unstable regions for particles with relative inclination between 0° and 180°. We found that (45) Eugenia presents larger stable regions for both prograde and retrograde cases. This is mainly because the satellites of this system are small when compared to the primary body, and because they are not close to each other. We also present a comparison between these two triple systems, and we discuss how these results can guide us in the planning of future missions.

  8. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  9. Design and validation of a GNC system for missions to asteroids: the AIM scenario

    Science.gov (United States)

    Pellacani, A.; Kicman, P.; Suatoni, M.; Casasco, M.; Gil, J.; Carnelli, I.

    2017-12-01

    Deep space missions, and in particular missions to asteroids, impose a certain level of autonomy that depends on the mission objectives. If the mission requires the spacecraft to perform close approaches to the target body (the extreme case being a landing scenario), the autonomy level must be increased to guarantee the fast and reactive response which is required in both nominal and contingency operations. The GNC system must be designed in accordance with the required level of autonomy. The GNC system designed and tested in the frame of ESA's Asteroid Impact Mission (AIM) system studies (Phase A/B1 and Consolidation Phase) is an example of an autonomous GNC system that meets the challenging objectives of AIM. The paper reports the design of such GNC system and its validation through a DDVV plan that includes Model-in-the-Loop and Hardware-in-the-Loop testing. Main focus is the translational navigation, which is able to provide online the relative state estimation with respect to the target body using exclusively cameras as relative navigation sensors. The relative navigation outputs are meant to be used for nominal spacecraft trajectory corrections as well as to estimate the collision risk with the asteroid and, if needed, to command the execution of a collision avoidance manoeuvre to guarantee spacecraft safety

  10. Mitigation-relevant science with Don Quijote - a European-led mission to a near-Earth asteroid

    Science.gov (United States)

    Harris, A. W.; Galvez, A.; Benz, W.; Fitzsimmons, A.; Green, S. F.; Michel, P.; Valsecchi, G.; Paetzold, M.; Haeusler, B.; Carnelli, I.

    The Don Quijote concept includes a rendezvous spacecraft and an impactor vehicle The main aim of the mission is to carry out an experiment to demonstrate the modification of a near-Earth asteroid s orbit in a controlled way as a first step in establishing mitigation measures against an eventual hazardous object In particular the spacecraft would study the physical properties of the target asteroid and the effects of a kinetic impact on its dynamical state It is also expected that some spacecraft resources will be available for more general solar-system science investigations The Don Quijote mission is currently at the phase-A stage during which a number of European consortia of industrial and scientific partners will study its technical feasibility and potential scientific return The basic mission concept current scientific issues and the possibilities for international participation in the mission will be discussed

  11. Colorimetry and magnitudes of asteroids

    Science.gov (United States)

    Bowell, E.; Lumme, K.

    1979-01-01

    In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.

  12. The asteroid 2014 JO25

    Science.gov (United States)

    Vodniza, Alberto; Pereira, Mario

    2017-10-01

    The asteroid 2014 JO25 was discovered by A. D. Grauer at the Mt. Lemmon Survey on May 2014, and Joe Masiero used observations from the NEOWISE in 2014 to estimate a diameter of 650 meters [1]. However, using the radio telescope at Arecibo-Puerto Rico, astronomers obtained radar images on April 17-2017 and Edgar Rivera Valentín (scientist at Arecibo) said: “We found 2014 JO25 is a contact binary asteroid, two space rocks that were originally separate bodies, and each segment is about 640 meters and 670 meters, for a total of about 1.3 km long. Its rotation is of 3.5 hours” [2]. This asteroid flew past Earth on April 19 at a distance of about 4.6 lunar distances from the Earth. This was the closest approach by an asteroid since 4179 Toutatis. Toutatis flew past Earth on September 2004 at a distance of about 4 lunar distances from the Earth [3]. In April 12-2020 the asteroid will be at a minimum possible distance of 0.1617280 A.U from Earth [4]. From our observatory, located in Pasto-Colombia, we obtained a lot of pictures. Our data was published by the Minor Planet Center [5] and also appears at the web page of NEODyS [6]. Astrometry and photometry were carried out, and we calculated the orbital elements. We obtained the following orbital parameters: eccentricity=0.88454+/-0.00152, semi-major axis= 2.0573+/- 0.0216 A.U, orbital inclination=25.22+/-0.10 deg, longitude of the ascending node =30.6530+/-0.0032 deg, argument of perihelion=49.586+/-0.012 deg, mean motion = 0.33402+/-0.00527 deg/d, perihelion distance=0.237524+/-0.000644 A.U, aphelion distance=3.8770+/-0.0449 A.U, absolute magnitude =18.1. The parameters were calculated based on 164 observations. Dates: 2017 April: 22 to 24 with mean residual=0.22 arcseconds.The asteroid has an orbital period of 2.95 years.[1] https://echo.jpl.nasa.gov/asteroids/2014JO25/2014JO25_planning.html[2] http://earthsky.org/astronomy-essentials/large-asteroid-2014-jo25-close-april-19-2017-how-to-see[3] https

  13. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  14. Asteroids prospective energy and material resources

    CERN Document Server

    2013-01-01

    The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power.   Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth.   Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space.   This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions t...

  15. Radiation effects on the proportional counter X-ray detectors on board the NEAR spacecraft

    International Nuclear Information System (INIS)

    Floyd, S.R.; Trombka, J.I.; Leidecker, H.W.; Clark, P.E.; Starr, R.; Goldsten, J.O.; Roth, D.R.

    1999-01-01

    The X-ray proportional counters on board the Near Earth Asteroid Rendezvous (NEAR) spacecraft have exhibited a resolution degradation and recovery phenomenon several times during the long cruise phase of the mission. The resolution is checked periodically by commanding an 55 Fe source into the window area. The degradation is seen as a low energy tailing of the 5.9 keV photopeak. Two events have occurred which provided good spectral data for better understanding the degradation phenomenon. In November 1997 a large solar particle event occurred that degraded the resolution and excited copper in the collimator. Eventually the detectors returned to normal. In January 1998 the spacecraft performed an Earth swingby gravity assist maneuver. The near Earth environment excited the magnesium and aluminum in the filter elements. The copper line was also produced. The NEAR spacecraft was launched in February 1996 and will rendezvous and orbit the asteroid 433 Eros in early 1999

  16. Physical studies of asteroids. XXXII. Rotation periods and UBVRI-colours for selected asteroids

    Science.gov (United States)

    Piironen, J.; Lagerkvist, C.-I.; Erikson, A.; Oja, T.; Magnusson, P.; Festin, L.; Nathues, A.; Gaul, M.; Velichko, F.

    1998-03-01

    We present lightcurves of selected asteroids. Most of the asteroids were included to obtain refined spin periods. Enhanced periods were determined for 11 Parthenope, 306 Unitas and 372 Palma. We confirmed the spin periods of 8 Flora, 13 Egeria, 71 Niobe, 233 Asterope, 291 Alice, 409 Aspasia, 435 Ella and 512 Taurinensis. We determined also BV-colours for most of the included asteroids and UBVRI-colours for a total of 22 asteroids.

  17. Asteroid families, dynamics and astrometry

    International Nuclear Information System (INIS)

    Williams, J.G.; Gibson, J.

    1987-01-01

    The proper elements and family assignments for the 1227 Palomar-Leiden Survey asteroids of high quality were tabulated. In addition to the large table, there are also auxiliary tables of Mars crossers and commensurate objects, histograms of the proper element distributions, and a discussion. Probably the most important part of the discussion describes the Mars crossing boundary, how the closest distances of approach to Mars and Jupiter are calculated, and why the observed population of Mars crossers should bombard that planet episodically rather than uniformly. Analytical work was done to derive velocity distributions of family forming events from proper element distributions subject to assumptions which may be appropriate for cratering events. Software was developed for a microcomputer to permit plotting of the proper elements. Three orthogonal views are generated and stereo pairs can be printed when desired. This program was created for the study of asteroid families. The astrometry task is directed toward measuring and reducing positions on faint comets and the minor planets with less common orbits. The observational material is CCD frames taken with the Palomar 1.5 m telescope. Positions of 10 comets and 16 different asteroids were published on the Minor Planet Circulars

  18. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission

    Science.gov (United States)

    Lauretta, D.

    2014-07-01

    , photometric, spectroscopic, thermal, regolith, and asteroid environmental properties. We have captured this information in a mission configuration-controlled document called the Design Reference Asteroid. This information is used across the project to establish the environmental requirements for the flight system and for overall mission design. Maintaining a Pristine Sample: OSIRIS-REx is driven by the top-level science objective to return >60 g of pristine, carbonaceous regolith from asteroid Bennu. We define a "pristine sample" to mean that no foreign material introduced into the sample hampers our scientific analysis. Basically, we know that some contamination will take place --- we just have to document it so that we can subtract it from our analysis of the returned sample. Engineering contamination requirements specify cleanliness in terms of particle counts and thin- films residues --- scientists define it in terms of bulk elemental and organic abundances. After initial discussions with our Contamination Engineers, we agreed on known, albeit challenging, particle and thin-film contamination levels for the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) and the Sample Return Capsule. These levels are achieved using established cleaning procedures while minimizing interferences for sample analysis. Selecting a Sample Site: The Sample Site Selection decision is based on four key data products: Deliverability, Safety, Sampleability, and Science Value Maps. Deliverability quantifies the probability that the Flight Dynamics team can deliver the spacecraft to the desired location on the asteroid surface. Safety maps assess candidate sites against the capabilities of the spacecraft. Sampleability requires an assessment of the asteroid surface properties vs. TAGSAM capabilities. Scientific value maximizes the probability that the collected sample contains organics and volatiles and can be placed in a geological context definitive enough to determine sample history. Science

  19. Asteroid family dynamics in the inner main belt

    Science.gov (United States)

    Dykhuis, Melissa Joy

    The inner main asteroid belt is an important source of near-Earth objects and terrestrial planet impactors; however, the dynamics and history of this region are challenging to understand, due to its high population density and the presence of multiple orbital resonances. This dissertation explores the properties of two of the most populous inner main belt family groups --- the Flora family and the Nysa-Polana complex --- investigating their memberships, ages, spin properties, collision dynamics, and range in orbital and reflectance parameters. Though diffuse, the family associated with asteroid (8) Flora dominates the inner main belt in terms of the extent of its members in orbital parameter space, resulting in its significant overlap with multiple neighboring families. This dissertation introduces a new method for membership determination (the core sample method) which enables the distinction of the Flora family from the background, permitting its further analysis. The Flora family is shown to have a signature in plots of semimajor axis vs. size consistent with that expected for a collisional family dispersed as a result of the Yarkovsky radiation effect. The family's age is determined from the Yarkovsky dispersion to be 950 My. Furthermore, a survey of the spin sense of 21 Flora-region asteroids, accomplished via a time-efficient modification of the epoch method for spin sense determination, confirms the single-collision Yarkovsky-dispersed model for the family's origin. The neighboring Nysa-Polana complex is the likely source region for many of the carbonaceous near-Earth asteroids, several of which are important targets for spacecraft reconnaissance and sample return missions. Family identification in the Nysa-Polana complex via the core sample method reveals two families associated with asteroid (135) Hertha, both with distinct age and reflectance properties. The larger of these two families demonstrates a correlation in semimajor axis and eccentricity

  20. UV Spectrophotometry of the Galilean Satellites, Saturnian Satellites & Selected Asteroids

    Science.gov (United States)

    Nelson, Robert M.

    We propose a series of ultraviolet spectral observations of solid surfaces of selected solar system objects, specifically the Galilean satellites of Jupiter, several atmosphereless satellites of Saturn, and the asteroids, 5 Astraea, 18 Melpomene, 532 Herculina, 68 Leto, 31 Euphmsyne, 80 Sappho, 3 Juno, and 39 Laetitia. Historically such spectral observations have allowed for the Identification of spectrally active solid state materials on planetary surfaces. Furthermore, because the rotational properties are known for all the objects proposed for study, this technique will provide a longitude map of such materials on the objects' surfaces. The study of asteroid surface mineralogy is an important method of constraining solar system formation models. The asteroid spectra we have previously acquired with IUE have created unique subdivisions within the existent asteroid types. The new spectra will provide more sophisticated mineralogical characterizations of asteroid surface materials. Our other accomplishments with IUE include mapping of the distribution of condensed S02 on Io, identification of a longitudinal asymmetry on Europa associated with magnetospheric particle bombardment of the surface, and establishing the ultraviolet geometric albedo variation as a function of longitude for all the Galilean satellites. Because Io is the most volcanically active body In the solar system, and short tern variations in selected regions of the Jovian magnetosphere are known to occur, it is important to periodically check for temporal variations in the spectra of the Galilean satellites that may be due to variations n Io tectonic/volcanic activity, or magnetosphere changes. These proposed UV observations are critical to the design and operation of several instruments on Project Galileo, NASA's Jupiter Orbiter and Probe Mission. Spectra of Iapetus, Rhea and Dione have been acquired during the previous year; however, only at orbital locations near elongation. In addition, the dark

  1. Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters

    Science.gov (United States)

    1989-01-01

    Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.

  2. Geotechnical Tests on Asteroid Simulant Orgueil

    Science.gov (United States)

    Garcia, Alexander D'marco

    2017-01-01

    In the last 100 years, the global population has more than quadrupled to over seven billion people. At the same time, the demand for food and standard of living has been increasing which has amplified the global water use by nearly eight times from approximately 500 to 4000 cu km per yr from 1900 to 2010. With the increasing concern to sustain the growing population on Earth it is necessary to seek other approaches to ensure that our planet will have resources for generations to come. In recent years, the advancement of space travel and technology has allowed the idea of mining asteroids with resources closer to becoming a reality. During the duration of the internship at NASA Kennedy Space Center, several geotechnical tests were conducted on BP-1 lunar simulant and asteroid simulant Orgueil. The tests that were conducted on BP-1 was to practice utilizing the equipment that will be used on the asteroid simulant and the data from those tests will be omitted from report. Understanding the soil mechanics of asteroid simulant Orgueil will help provide basis for future technological advances and prepare scientists for the conditions they may encounter when mining asteroids becomes reality in the distant future. Distinct tests were conducted to determine grain size distribution, unconsolidated density, and maximum density. Once the basic properties are known, the asteroid simulant will be altered to different levels of compaction using a vibrator table to see how compaction affects the density. After different intervals of vibration compaction, a miniature vane shear test will be conducted. Laboratory vane shear testing is a reliable tool to investigate strength anisotropy in the vertical and horizontal directions of a very soft to stiff saturated fine-grained clayey soil. This test will provide us with a rapid determination of the shear strength on the undisturbed compacted regolith. The results of these tests will shed light on how much torque is necessary to drill

  3. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    Science.gov (United States)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    used in February of 2001. The initial attitude and spin rate of Eros, as well as estimates of reference landmark locations, are obtained from images of the asteroid. These initial estimates are used as a priori values for a more precise refinement of these parameters by the orbit determination software which combines optical measurements with Doppler tracking data to obtain solutions for the required parameters. As the spacecraft is maneuvered; closer to the asteroid, estimates of spacecraft state, asteroid attitude, solar pressure, landmark locations and Eros physical parameters including mass, moments of inertia and gravity harmonics are determined with increasing precision. The determination of the elements of the inertia tensor of the asteroid is critical to spacecraft orbit determination and prediction of the asteroid attitude. The moments of inertia about the principal axes are also of scientific interest since they provide some insight into the internal mass distribution. Determination of the principal axes moments of inertia will depend on observing free precession in the asteroid's attitude dynamics. Gravity harmonics are in themselves of interest to science. When compared with the asteroid shape, some insight may be obtained into Eros' internal structure. The location of the center of mass derived from the first degree harmonic coefficients give a direct indication of overall mass distribution. The second degree harmonic coefficients relate to the radial distribution of mass. Higher degree harmonics may be compared with surface features to gain additional insight into mass distribution. In this paper, estimates of Eros physical parameters obtained from the December 23,1998 flyby will be presented. This new knowledge will be applied to simplification of Eros orbital operations in February of 2001. The resulting revision to the orbit determination strategy will also be discussed.

  4. Update on an Interstellar Asteroid

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    Whats the news coming from the research world on the interstellar asteroid visitor, asteroid 1I/Oumuamua? Read on for an update from a few of the latest studies.What is Oumuamua?In lateOctober2017, the discovery of minor planet 1I/Oumuamua was announced. This body which researchers first labeled asa comet and later revised to an asteroid had just zipped around the Sun and was already in the process of speeding away whenwe trained our telescopes on it. Its trajectory, however, marked it as being a visitor from outside our solar system: the first knownvisitorof its kind.Since Oumuamuasdiscovery, scientists have been gathering as many observations of this bodyas possible before it vanishes into the distance. Simultaneously, theorists have leapt at the opportunity to explain its presence and the implications its passage has on our understanding of our surroundings. Here we present just a few of the latest studies that have been published on this first detected interstellar asteroid including several timelystudies published in our new journal, Research Notes of the AAS.The galactic velocity of Oumuamua does not coincide with any of the nearest stars to us. [Mamajek 2018]Where Did Oumuamua Come From?Are we sure Oumuamua didnt originate in our solar system andget scattered into a weird orbit? Jason Wright (The Pennsylvania State University) demonstrates via a series of calculations that no known solar system body could have scattered Oumuamua onto its current orbit nor could any stillunknown object bound to our solar system.Eric Mamajek (Caltech and University of Rochester) showsthat thekinematics of Oumuamua areconsistent with what we might expect of interstellar field objects, though he argues that its kinematics suggest its unlikely to have originated from many of the neareststellar systems.What AreOumuamuas Properties?Oumuamuas light curve. [Bannister et al. 2017]A team of University of Maryland scientists led by Matthew Knight captured a light curve of Oumuamua using

  5. Asteroid size distributions for the main belt and for asteroid families

    Science.gov (United States)

    Kazantzev, A.; Kazantzeva, L.

    2017-12-01

    The asteroid-size distribution for he Eos family was constructed. The WISE database containing the albedo p and the size D of over 80,000 asteroids was used. The b parameter of the power-law dependence has a minimum at some average values of the asteroid size of the family. A similar dependence b(D) exists for the whole asteroid belt. An assumption on the possible similarity of the formation mechanisms of the asteroid belt as a whole and separate families is made.

  6. Preliminary design of an asteroid hopping mission

    Science.gov (United States)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  7. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  8. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  9. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  10. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  11. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  12. The Origin of Asteroid 101955 (1999 RQ36)

    Science.gov (United States)

    Campins, Humberto; Morbidelli, A.; de León, J.; Tsiganis, K.; Licandro, J.

    2010-10-01

    Near-Earth asteroid 101955 (1999 RQ36; henceforth RQ36) is particularly interesting. It's especially accessible to spacecraft and is the primary target of NASA's OSIRIS-REx sample return mission; it's also a potentially hazardous asteroid (Milani et al. 2009). We combine dynamical and spectral information to identify the most likely main-belt origin of RQ36 and conclude that it is the Polana family, located at a semi-major axis of about 2.42 AU (our approach is similar to that used by de León et al. (2010) to link 3200 Phaethon, parent body of the Geminids, to 2 Pallas). Our conclusion is based on the following results. a) Dynamical evidence favors strongly an inner-belt, low-inclination (2.15 AU families (families are favored over single objects because small fragments have already been produced). c) The Polana family is characterized by low albedos and B-class spectra or colors (Bus and Binzel 2002), which is the same spectral class, and albedo, as RQ36. d) The SDSS colors show that the Polana family is the branch of the Nysa-Polana complex that extends toward the ν6 resonance; furthermore, Polana has delivered objects the size of RQ36 and larger into the ν6 resonance. e) RQ36 is retrograde, consistent with the Yarkovsky effect having moved it inward from Polana into the ν6. f) A quantitative comparison of visible and near-infrared spectra does not yield a unique match for RQ36; however, it is consistent with a compositional link between RQ36 and the Polana family. Finally, the Polana Family is likely the most important inner-belt source of low albedo Near-Earth asteroids. This work was supported by NASA and NSF.

  13. Photometry of the bright and dark terrains of Vesta and Lutetia with comparison to other asteroids

    Science.gov (United States)

    Longobardo, A.; Palomba, E.; Capaccioni, F.; De Sanctis, M.; Tosi, F.; Schroder, S.; Li, J.; Capria, M.; Ammannito, E.; Raymond, C.; Russell, C.

    2014-07-01

    The reflectance of a planetary surface as measured at different phase angles can provide useful information about several properties, both optical (importance of multiple and single scattering, regolith shadowing) and physical (roughness and regolith grain size). In particular, disk-resolved observations allow one to monitor photometric properties variations across a planetary surface. In this work, we retrieved disk-resolved phase functions of asteroids Vesta and Lutetia, by means of hyperspectral images returned by the Visible and InfraRed (VIR) mapping spectrometer onboard NASA's Dawn spacecraft, and the Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS), onboard ESA's Rosetta spacecraft, respectively. Then we compared their photometric properties with those obtained of other asteroids closely explored by space missions (Gaspra, Ida, Eros, Annefrank, Steins, Mathilde). The trend of reflectance as a function of phase angle has been obtained by undertaking a statistical analysis, based on the empirical definition of reflectance families. For each family, the relation between reflectance and phase has been then calculated. On Vesta, we find steeper phase functions in dark material units, which become flatter with increasing albedo. This has been ascribed to a relevant role of multiple scattering in bright regions. As opposed to Vesta, Lutetia is a more homogeneous body. Hence we can consider a unique phase function for the whole asteroid surface. We chose two parameters useful to describe the photometric behavior of these asteroids: the reflectance which would be observed at a 30° phase, tagged R30, and the ''phase slope'' or the reflectance percent decrease between 20° and 60° phase, tagged PS. These two parameters have been calculated also on disk-resolved phase functions of other asteroids available in literature. We find that all S-type asteroids place in the same region of the R30-PS scatterplot, due to their similar photometric properties. C

  14. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  15. The Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS)

    Science.gov (United States)

    Rivkin, A.; Cohen, B. A.; Barnouin, O. S.; Chabot, N. L.; Ernst, C. M.; Klima, R. L.; Helbert, J.; Sternovsky, Z.

    2015-12-01

    The asteroids preserve information from the earliest times in solar system history, with compositions in the population reflecting the material in the solar nebula and experiencing a wide range of temperatures. Today they experience ongoing processes, some of which are shared with larger bodies but some of which are unique to their size regime. They are critical to humanity's future as potential threats, resource sites, and targets for human visitation. However, over twenty years since the first spacecraft encounters with asteroids, they remain poorly understood. The mission we propose here, the Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS), explores the diversity of asteroids to understand our solar system's past history, its present processes, and future opportunities and hazards. MANTIS addresses many of NASA's highest priorities as laid out in its 2014 Science Plan and provides additional benefit to the Planetary Defense and Human Exploration communities via a low-risk, cost-effective tour of the near-Earth and inner asteroid belt. MANTIS visits the materials that witnessed solar system formation and its earliest history, addressing the NASA goal of exploring and observing the objects in the solar system to understand how they formed and evolve. MANTIS measures OH, water, and organic materials via several complementary techniques, visiting and sampling objects known to have hydrated minerals and addressing the NASA goal of improving our understanding of the origin and evolution of life on Earth. MANTIS studies the geology and geophysics of nine diverse asteroids, with compositions ranging from water-rich to metallic, representatives of both binary and non-binary asteroids, and sizes covering over two orders of magnitude, providing unique information about the chemical and physical processes shaping the asteroids, addressing the NASA goal of advancing the understanding of how the chemical and physical processes in our solar system

  16. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    Czech Academy of Sciences Publication Activity Database

    Cheng, A.F.; Michel, R.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, Petr; Richardson, D.C.

    2016-01-01

    Roč. 121, February (2016), s. 25-37 ISSN 0032-0633 Institutional support: RVO:67985815 Keywords : planetary defense * near- Earth asteroids * asteroid impact hazards Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.892, year: 2016

  17. Binary asteroid population. 1. Angular momentum content

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Harris, A. W.

    2007-01-01

    Roč. 190, č. 1 (2007), s. 250-259 ISSN 0019-1035 R&D Projects: GA ČR(CZ) GA205/05/0604 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * satellites of asteroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.869, year: 2007

  18. Spectroscopy of near-Earth asteroids

    DEFF Research Database (Denmark)

    Michelsen, René; Nathues, Andreas; Lagerkvist, Claes-Ingvar

    2006-01-01

    We present spectra and taxonomic classifications of 12 Near-Earth Asteroids (NEAs) and 2 inner Main Belt asteroids. The observations were carried out with the ESO 3.5 m NTT and the Danish 1.54 m telescope at La Silla, Chile. Eleven of the investigated NEAs belong to the S class while only one C-t...

  19. NASA Double Asteroid Redirection Test (DART) Trajectory Validation and Robutness

    Science.gov (United States)

    Sarli, Bruno V.; Ozimek, Martin T.; Atchison, Justin A.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    The Double Asteroid Redirection Test (DART) mission will be the first to test the concept of a kinetic impactor. Several studies have been made on asteroid redirection and impact mitigation, however, to this date no mission tested the proposed concepts. An impact study on a representative body allows the measurement of the effects on the target's orbit and physical structure. With this goal, DART's objective is to verify the effectiveness of the kinetic impact concept for planetary defense. The spacecraft uses solar electric propulsion to escape Earth, fly by (138971) 2001 CB21 for impact rehearsal, and impact Didymos-B, the secondary body of the binary (65803) Didymos system. This work focuses on the heliocentric transfer design part of the mission with the validation of the baseline trajectory, performance comparison to other mission objectives, and assessment of the baseline robustness to missed thrust events. Results show a good performance of the selected trajectory for different mission objectives: latest possible escape date, maximum kinetic energy on impact, shortest possible time of flight, and use of an Earth swing-by. The baseline trajectory was shown to be robust to a missed thrust with 1% of fuel margin being enough to recover the mission for failures of more than 14 days.

  20. THE ORIGIN OF ASTEROID 101955 (1999 RQ36)

    International Nuclear Information System (INIS)

    Campins, Humberto; Morbidelli, Alessandro; Tsiganis, Kleomenis; De Leon, Julia; Licandro, Javier; Lauretta, Dante

    2010-01-01

    Near-Earth asteroid (NEA) 101955 (1999 RQ 36 ; henceforth RQ36) is especially accessible to spacecraft and is the primary target of NASA's OSIRIS-REx sample return mission; it is also a potentially hazardous asteroid. We combine dynamical and spectral information to identify the most likely main-belt origin of RQ36 and we conclude that it is the Polana family, located at a semimajor axis of about 2.42 AU. We also conclude that the Polana family may be the most important inner-belt source of low-albedo NEAs. These conclusions are based on the following results. (1) Dynamical evidence strongly favors an inner-belt, low-inclination (2.15 AU 0 ) origin, suggesting the ν 6 resonance as the preferred (95% probability) delivery route. (2) This region is dominated by the Nysa and Polana families. (3) The Polana family is characterized by low albedos and B-class spectra or colors, the same albedo and spectral class as RQ36. (4) The Sloan Digital Sky Survey colors show that the Polana family is the branch of the Nysa-Polana complex that extends toward the ν 6 resonance; furthermore, the Polana family has delivered objects of the size of RQ36 and larger into the ν 6 resonance. (5) A quantitative comparison of visible and near-infrared spectra does not yield a unique match for RQ36; however, it is consistent with a compositional link between RQ36 and the Polana family.

  1. Lightcurve Photometry of Six Asteroids

    Science.gov (United States)

    Ferrero, Andrea

    2012-07-01

    Observations from 2012 January to March lead to the determination of the rotation periods for six main-belt asteroids: 33 Polyhymnia, P = 18.604 ± 0.004 h; 467 Laura, P = 37.4 ± 0.1 h; 825 Tanina, P = 6.940 ± 0.001 h; 1421 Esperanto, P = 21.982 ± 0.005 h; 3481 Xianglupeak, P = 5.137 ± 0.003 h; and 4350 Shibecha, which had two possible solutions, P = 2.890 ± 0.001 h and P = 5.778 ± 0.002 h.

  2. Absence of satellites of asteroids

    International Nuclear Information System (INIS)

    Gehrels, T.; Drummond, J.D.; Levenson, N.A.

    1987-01-01

    The absence of satellites within 0.1-7.0 arcmin of minor planets noted in the present CCD imaging survey is judged consistent with previous theoretical studies of collisions in which it is held that satellites would have to be larger than about 30 km in order to be collisionally stable. In view of tidal stability, the only main belt asteroid satellites which could conceivably possess stability over eons are near-contact binaries. Any recent collisional debris would be chaotic and collisionally unstable. 15 references

  3. Science Experiments of a Jupiter Trojan asteroid in the Solar Power Sail Mission

    Science.gov (United States)

    Okada, T.; Kebukawa, Y.; Aoki, J.; Kawai, Y.; Ito, M.; Yano, H.; Okamoto, C.; Matsumoto, J.; Bibring, J. P.; Ulamec, S.; Jaumann, R.; Iwata, T.; Mori, O.; Kawaguchi, J.

    2017-12-01

    A Jupiter Trojan asteroid mission using a large area solar power sail (SPS) is under study in JAXA in collaboration with DLR and CNES. The asteroid will be investigated through remote sensing, followed by in situ in-depth observations on the asteroid with a lander. A sample-return is also studied as an option. LUCY has been selected as the NASA's future Discovery class mission which aims at understanding the diversity of Jupiter Trojans by multiple flybys, complementally to the SPS mission. The SPS is a candidate of the next medium class space science mission in Japan. The 1.4-ton spacecraft will carry a 100-kg class lander and 20-kg mission payloads on it. Its launch is expected in mid 2020s, and will take at least 11 years to visit a Jupiter Trojan asteroid. During the cruise phase, science experiments will be performed such as an infrared astronomy, a very long baseline gamma ray interferometry, and dust and magnetic field measurements. A classical static model of solar system suggests that the Jupiter Trojans were formed around the Jupiter region, while a dynamical model such as Nice model indicates that they formed at the far end of the solar system and then scattered inward due to a dynamical migration of giant planets. The physical, mineralogical, organics and isotopic distribution in the heliocentric distance could solve their origin and evolution of the solar system. A global mapping of the asteroid from the mothership will be conducted such as high-resolved imaging, NIR and TIR imaging spectrometry, and radar soundings. The lander will characterize the asteroid with geological, mineralogical, and geophysical observations using a panoramic camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. These samples will be measured by a high resolved mass spectrometer (HRMS) to investigate isotopic ratios of hydrogen, nitrogen, oxygen, as well as organic species.

  4. UV Spectroscopy of Metallic Asteroid (16) Psyche

    Science.gov (United States)

    Cunningham, N. J.; Becker, T. M.; Retherford, K. D.; Roth, L.; Feaga, L. M.; Wahlund, J.-E.; Elkins-Tanton, L. T.

    2017-09-01

    Asteroid (16) Psyche is the largest M-type asteroid, and the planned destination of the NASA Discovery mission Psyche and the proposed ESA M5 mission Heavy Metal. Psyche is considered to be the exposed core of a differentiated asteroid, whose mantle has been stripped by collisions; but other histories have been proposed. We observed Psyche with the Space Telescope Imaging Spectrograph (STIS) and Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope, to obtain a full ultraviolet (UV) spectrum of both of Psyche's hemispheres. We seek to test three possible scenarios for Psyche's origin: Is Psyche the exposed core of a differentiated asteroid? Is it an asteroid with high olivine content that has been space-weathered? Or did Psyche accrete as-is in a highly-reducing environment early in the history of the solar system? We will present the UV spectra and their implications for Psyche's history.

  5. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  6. Working Group Reports and Presentations: Asteroids

    Science.gov (United States)

    Lewis, John

    2006-01-01

    The study and utilization of asteroids will be an economical way to enable exploration of the solar system and extend human presence in space. There are thousands of near-earth objects (NEOs) that we will be able to reach. They offer resources, transportation, and exploration platforms, but also present a potential threat to civilization. Asteroids play a catastrophic role in the history of the Earth. Geological records indicate a regular history of massive impacts, which astronomical observations confirm is likely to continue with potentially devastating consequences. However, study and exploration of near earth asteroids can significantly increase advanced warning of an Earth impact, and potentially lead to the technology necessary to avert such a collision. Efforts to detect and prevent cataclysmic events would tend to foster and likely require international cooperation toward a unified goal of self-preservation. Exploration of asteroids will help us to understand our history and perhaps save our future. Besides the obvious and compelling scientific and security drivers for asteroid research and exploration, there are numerous engineering and industrial applications for near-term asteroid exploration. We have strong evidence that some asteroids are metal rich. Some are water and organic rich. They can be reached with a very low fuel cost compared to other solar system destinations. Once we reach them, there are efficient, simple extraction technologies available that would facilitate utilization. In addition, the costs of returning extracted resources from asteroids will be a fraction of the cost to return similar resources from the moon to Low Earth Orbit (LEO). These raw materials, extracted and shipped at relatively low cost, can be used to manufacture structures, fuel, and products which could be used to foster mankind s further exploration of the solar system. Asteroids also have the potential to offer transport to several destinations in the solar system

  7. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  8. Spectral analysis and compositing techniques for the Near Earth Asteroid Rendezvous (NEAR Shoemaker), X-ray and Gamma-Ray Spectrometers (XGRS)

    CERN Document Server

    McClanahan, T P; Nittler, L R; Boynton, W V; Bruckner, J; Squyres, S W; Evans, L G; Bhangoo, J S; Clark, P E; Floyd, S R; McCartney, E; Mikheeva, I; Starr, R D

    2001-01-01

    An X-ray and Gamma-Ray Spectrometer (XGRS) is on board the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433 Eros. The Eros asteroid is highly oblate and irregular in shape. As a result, analysis methodologies are in many ways a divergence from comparable techniques. Complex temporal, spatial and instrument performance relationships must be accounted for during the analysis process. Field of view and asteroid surface geometry measurements must be modeled and then combined with real measurements of solar, spectral and instrument calibration information to derive scientific results. NEAR is currently orbiting 433 Eros and is in the initial phases of its primary data integration and mapping phases. Initial results have been obtained and bulk chemistry assessments have been obtained through specialized background assessment and data reduction techniques.

  9. A Delta-V map of the known Main Belt Asteroids

    Science.gov (United States)

    Taylor, Anthony; McDowell, Jonathan C.; Elvis, Martin

    2018-05-01

    With the lowered costs of rocket technology and the commercialization of the space industry, asteroid mining is becoming both feasible and potentially profitable. Although the first targets for mining will be the most accessible near Earth objects (NEOs), the Main Belt contains 106 times more material by mass. The large scale expansion of this new asteroid mining industry is contingent on being able to rendezvous with Main Belt asteroids (MBAs), and so on the velocity change required of mining spacecraft (delta-v). This paper develops two different flight burn schemes, both starting from Low Earth Orbit (LEO) and ending with a successful MBA rendezvous. These methods are then applied to the ∼700,000 asteroids in the Minor Planet Center (MPC) database with well-determined orbits to find low delta-v mining targets among the MBAs. There are 3986 potential MBA targets with a delta-v < 8 km s-1 , but the distribution is steep and reduces to just 4 with delta-v < 7 km s-1. The two burn methods are compared and the orbital parameters of low delta-v MBAs are explored.

  10. Measurement requirements for a Near-Earth Asteroid impact mitigation demonstration mission

    Science.gov (United States)

    Wolters, Stephen D.; Ball, Andrew J.; Wells, Nigel; Saunders, Christopher; McBride, Neil

    2011-10-01

    A concept for an Impact Mitigation Preparation Mission, called Don Quijote, is to send two spacecrafts to a Near-Earth Asteroid (NEA): an Orbiter and an Impactor. The Impactor collides with the asteroid while the Orbiter measures the resulting change in the asteroid's orbit, by means of a Radio Science Experiment (RSE) carried out before and after the impact. Three parallel Phase A studies on Don Quijote were carried out for the European Space Agency: the research presented here reflects the outcomes of the study by QinetiQ. We discuss the mission objectives with regard to the prioritisation of payload instruments, with emphasis on the interpretation of the impact. The Radio Science Experiment is described and it is examined how solar radiation pressure may increase the uncertainty in measuring the orbit of the target asteroid. It is determined that to measure the change in orbit accurately a thermal IR spectrometer is mandatory, to measure the Yarkovsky effect. The advantages of having a laser altimeter are discussed. The advantages of a dedicated wide-angle impact camera are discussed and the field-of-view is initially sized through a simple model of the impact.

  11. Compositional Investigation of Binary Near-Earth Asteroid 66063 (1998 RO1): A Potentially Undifferentiated Assemblage

    Science.gov (United States)

    Abell, P. A.; Gaffey, M. J.; Landis, R. R.; Jarvis, K. S.

    2005-01-01

    It is now thought that approximately 16% of all asteroids among the near-Earth population may be binary objects. Several independent lines of evidence, such as the presence of doublet craters on the Earth and Moon [1, 2], complex lightcurves of near-Earth objects exhibiting mutual events [3], and radar images of near-Earth asteroids revealing distinct primary and secondary objects, have supported this conclusion [4]. To date at least 23 near-Earth objects have been discovered as binary systems with expectations that many more have yet to be identified or recognized. Little is known about the physical characteristics of binary objects except that they seem to have fairly rapid rotation rates, generally have primaries in the approx. 1 km diameter range with smaller secondaries on the order of a few hundred meters, and apart from a few exceptions, are in synchronous orbits [4, 5]. Previously only two of these binary near-Earth asteroids (1998 ST27 and 2003 YT1) have been characterized in terms of detailed mineralogical investigations [6, 7]. Such investigations are required to fully understand the formation mechanisms of these binary objects and their possible source regions. In addition, detailed knowledge of these objects may play an important role for planning future spacecraft missions and for the development of impact mitigation strategies. The work presented here represents a continued effort to characterize this particular sub-group of the near- Earth asteroid population.

  12. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  13. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  14. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  15. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  16. Prospects for asteroid mass determination from close encounters between asteroids: ESA's Gaia space mission and beyond

    Science.gov (United States)

    Ivantsov, Anatoliy; Hestroffer, Daniel; Eggl, Siegfried

    2018-04-01

    We present a catalog of potential candidates for asteroid mass determination based on mutual close encounters of numbered asteroids with massive perturbers (D>20 km). Using a novel geometric approach tuned to optimize observability, we predict optimal epochs for mass determination observations. In contrast to previous studies that often used simplified dynamical models, we have numerically propagated the trajectories of all numbered asteroids over the time interval from 2013 to 2023 using relativistic equations of motion including planetary perturbations, J2 of the Sun, the 16 major asteroid perturbers and the perturbations due to non-sphericities of the planets. We compiled a catalog of close encounters between asteroids where the observable perturbation of the sky plane trajectory is greater than 0.5 mas so that astrometric measurements of the perturbed asteroids in the Gaia data can be leveraged. The catalog v1.0 is available at ftp://dosya.akdeniz.edu.tr/ivantsov.

  17. Infrared spectral reflectances of asteroid surfaces

    Science.gov (United States)

    Larson, H. P.; Veeder, G. J.

    1979-01-01

    This review compares the types of compositional information produced by three complementary techniques used in infrared observations of asteroid surfaces: broadband JHKL photometry, narrow band photometry, and multiplex spectroscopy. The high information content of these infrared observations permits definitive interpretations of asteroid surface compositions in terms of the major meteoritic minerals (olivine, pyroxene, plagioclase feldspar, hydrous silicates, and metallic Ni-Fe). These studies emphasize the individuality of asteroid surface compositions, the inadequacy of simple comparisons with spectra of meteorites, and the need to coordinate spectral measurements of all types to optimize diagnostic capabilities.

  18. Asteroid Spectroscopy: A Declaration of Independence

    Science.gov (United States)

    Bell, J. F.

    1995-09-01

    One of the shibboleths of asteroid spectroscopy for the past 25 years has been that a detailed knowledge of meteoritics is essential for proper interpretation of asteroid spectra. In fact, several recent spectroscopic discoveries have overturned long-standing models based on popular interpretations of meteorite data. A case can be made that spectroscopists could have made much faster progress if they had worked in total isolation from meteoritics. Consider the first three spectral classes identified in the 1970s: Vesta: The very first asteroid spectrum was unambigously basaltic, yet some meteoriticists have persistently resisted the obvious conclusion that the HED clan comes from Vesta, because A) Vesta is "impossibly" far from the known dynamical escape hatches; and B) the HED O-isotope data "establishes" a lirlk with pallasites and IIIAB irons, suggesting that their parent was some other completely disrupted asteroid. The discovery of a "dynamically impossible" extended family of basaltic fragments extending from Vesta to the 3:1 resonance [1] makes it clear that HEDs must originate on Vesta, and that dynamical, physical and isotopic arguments all led in the wrong direction. Stony: In the early 1970s meteorite fall statistics led to an expectation that many of the larger asteroids would be ordinary chondrites. When the most common class of asteroids proved to have silicate absorption bands, many concluded that these objects were the expected ordinary chondrite parent asteroids. The later discovery that S-type spectra do not actually resemble OCs was rationalized with imaginary "space weathering" processes (which have never been observed or simulated despite 20 years of wasted effort). Now that the real weathering trends in S asteroids have been resolved [2] and asteroids which actually do look like OCs discovered [3], it is clear that the eDhre controversy over S asteroid composition was a blind alley that could have been avoided by taking the spectra at face

  19. Hybrid Guidance Control for a Hypervelocity Small Size Asteroid Interceptor Vehicle

    Science.gov (United States)

    Zebenay, Melak M.; Lyzhoft, Joshua R.; Barbee, Brent W.

    2017-01-01

    Near-Earth Objects (NEOs) are comets and/or asteroids that have orbits in proximity with Earth's own orbit. NEOs have collided with the Earth in the past, which can be seen at such places as Chicxulub crater, Barringer crater, and Manson crater, and will continue in the future with potentially significant and devastating results. Fortunately such NEO collisions with Earth are infrequent, but can happen at any time. Therefore it is necessary to develop and validate techniques as well as technologies necessary to prevent them. One approach to mitigate future NEO impacts is the concept of high-speed interceptor. This concept is to alter the NEO's trajectory via momentum exchange by using kinetic impactors as well as nuclear penetration devices. The interceptor has to hit a target NEO at relative velocity which imparts a sufficient change in NEO velocity. NASA's Deep Impact mission has demonstrated this scenario by intercepting Comet Temple 1, 5 km in diameter, with an impact relative speed of approximately 10 km/s. This paper focuses on the development of hybrid guidance navigation and control (GNC) algorithms for precision hypervelocity intercept of small sized NEOs. The spacecraft's hypervelocity and the NEO's small size are critical challenges for a successful mission as the NEO will not fill the field of view until a few seconds before intercept. The investigation needs to consider the error sources modeled in the navigation simulation such as spacecraft initial state uncertainties in position and velocity. Furthermore, the paper presents three selected spacecraft guidance algorithms for asteroid intercept and rendezvous missions. The selected algorithms are classical Proportional Navigation (PN) based guidance that use a first order difference to compute the derivatives, Three Plane Proportional Navigation (TPPN), and the Kinematic Impulse (KI). A manipulated Bennu orbit that has been changed to impact Earth will be used as a demonstrative example to compare the

  20. Controlled Ascent From the Surface of an Asteroid

    Science.gov (United States)

    Shen, Haijun; Roithmayr, Carlos M.; Cornelius, David M.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently investigating a conceptual robotic mission to collect a small boulder up to 4 m in diameter resting on the surface of a large Near Earth Asteroid (NEA). Because most NEAs are not well characterized, a great range of uncertainties in boulder mass properties and NEA surface characteristics must be considered in the design of this mission. These uncertainties are especially significant when the spacecraft ascends with the boulder in tow. The most important requirement during ascent is to keep the spacecraft in an upright posture to maintain healthy ground clearances for the two large solar arrays. This paper focuses on the initial stage (the first 50 m) of ascent from the surface. Specifically, it presents a sensitivity study of the solar array ground clearance, control authority, and accelerations at the array tips in the presence of a variety of uncertainties including various boulder sizes, densities, shapes and orientations, locations of the true center of mass, and push-off force distributions. Results are presented, and appropriate operations are recommended in the event some of the off-nominal cases occur.

  1. PROPERTIES OF NEAR-SUN ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David, E-mail: jewitt@ucla.edu [Department of Earth and Space Sciences and Department of Physics and Astronomy, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States)

    2013-05-15

    Asteroids near the Sun can attain equilibrium temperatures sufficient to induce surface modification from thermal fracture, desiccation, and decomposition of hydrated silicates. We present optical observations of nine asteroids with perihelia <0.25 AU (sub-solar temperatures {>=}800 K) taken to search for evidence of thermal modification. We find that the broadband colors of these objects are diverse but statistically indistinguishable from those of planet-crossing asteroids having perihelia near 1 AU. Furthermore, images of these bodies taken away from perihelion show no evidence for on-going mass-loss (model-dependent limits {approx}<1 kg s{sup -1}) that might result from thermal disintegration of the surface. We conclude that, while thermal modification may be an important process in the decay of near-Sun asteroids and in the production of debris, our new data provide no evidence for it.

  2. Chelyabinsk: Portrait of an asteroid airburst

    Energy Technology Data Exchange (ETDEWEB)

    Kring, David A.; Boslough, Mark

    2014-09-01

    Video and audio from hundreds of smartphones and dashboard cameras combined with seismic, acoustic, and satellite measurements provide the first precise documentation of a 10 000-ton asteroid explosion.

  3. Shaping asteroid models using genetic evolution (SAGE)

    Science.gov (United States)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  4. Chelyabinsk: Portrait of an asteroid airburst

    International Nuclear Information System (INIS)

    Kring, David A.; Boslough, Mark

    2014-01-01

    Video and audio from hundreds of smartphones and dashboard cameras combined with seismic, acoustic, and satellite measurements provide the first precise documentation of a 10 000-ton asteroid explosion

  5. SAWYER ASTEROID SPECTRA V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Partial spectral data for the plots presented in S. Sawyer's PhD Thesis, 'A High Resolution Spectroscopic Survey of Low Albedo Main Belt Asteroids', 1991.

  6. Asteroid rotation excitation by subcatastrophic impacts

    Czech Academy of Sciences Publication Activity Database

    Henych, T.; Pravec, Petr

    2013-01-01

    Roč. 432, č. 2 (2013), s. 1623-1631 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : numerical methods * minor planets * general asteroids Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 5.226, year: 2013

  7. Families Among High-Inclination Asteroids

    Science.gov (United States)

    Novakovic, B.; Cellino, A.; Knezevic, Z.

    2012-05-01

    We review briefly the most important results of the classification of high-inclination asteroids into families performed by Novakovic et al.(Icarus, 2011,216) and present some new results about a very interesting (5438) Lorre cluster.

  8. ASTEROID SPIN VECTORS V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a tabulation of determinations of asteroid pole orientations gathered from the literature from 1932 through 1995. It is an updated (Dec. 1995) version of the...

  9. MASCOT2, a Lander to Characterize the Target of an Asteroid Kinetic Impactor Deflection Test (AIM) Mission

    Science.gov (United States)

    Biele, J.; Ulamec, S.; Krause, C.; Cozzoni, B.; Lange, C.; Grundmann, J. T.; Grimm, C.; Ho, T.-M.; Herique, A.; Plettemeier, D.; Grott, M.; Auster, H.-U.; Hercik, D.; Carnelli, I.; Galvez, A.; Philippe, C.; Küppers, M.; Grieger, B.; Gil Fernandez, J.; Grygorczuk, J.

    2017-09-01

    In the course of the AIDA/AIM mission studies [1,2] a lander, MASCOT2, has been studied to be deployed on the moon of the binary Near-Earth Asteroid system, (65803) Didymos. The AIDA technology demonstration mission, composed of a kinetic impactor, DART, and an observing spacecraft, AIM, has been designed to deliver vital data to determine the momentum transfer efficiency of the kinetic impact and key physical properties of the target asteroid. This will enable derivation of the impact response of the object as a function of its physical properties, a crucial quantitative point besides the qualitative proof that the asteroid has been deflected at all. A landed asset on the target asteroid greatly supports analyzing its dynamical state, mass, geophysical properties, surface and subsurface structure. The lander's main instrument is a bistatic, low frequency radar (LFR) [3a,b] to sound the interior structure of the asteroid. It is supported by a camera (MasCAM) [4], a radiometer (MARA)[5], an accelerometer (DACC [9]), and, optionally regarding the science case, also a magnetometer (MasMAG)[6].

  10. Asteroids Lightcurves Analysis: 2016 November - 2017 June

    Science.gov (United States)

    Carbognani, Albino; Bacci, Paolo; Buzzi, Luca

    2018-01-01

    Twelve near-Earth asteroids were observed from 2016 November through 2017 June to find the synodic rotation period and lightcurve amplitudes for each asteroid. Results are reported for 2329 Orthos, (138846) 2000 VJ61, (326683) 2002 WP, (489337) 2006 UM, (494706) 2005 GL9, 2005 TF, 2017 BJ30, 2017 BQ6, 2017 CS, 2017 DC36, 2017 GK4, and 2017 JA2.

  11. Dynamical properties of the Watsonia asteroid family

    Science.gov (United States)

    Tsirvoulis, G.; Novakovic, B.; Knezevic, Z.; Cellino, A.

    2014-07-01

    Introduction: In recent years, a rare class of asteroids has been discovered [1], with its distinguishing characteristic being the anomalous polarimetric properties of its members. Named Barbarians, after (234) Barbara, the prototype of the class, these asteroids show negative polarization at unusually high phase-angles compared to normal asteroids. Motivated by the fact that some of the few discovered Barbarians seemed to be related to the Watsonia asteroid family, Cellino et al. [2] performed a search for more Barbarians among its members. A positive result of this search led to the conclusion that Watsonia is indeed an important repository of Barbarian asteroids. Based on these findings, we decided to analyze this family in detail. Basic information: According to available data, Watsonia is an L-type asteroid family, located in the middle of the main asteroid belt (2.68 < a_{p} < 2.82 au), with low to moderate orbital eccentricities (0.1 < e_{p} < 0.15) and relatively high inclinations (16.5^{o} < i_{p} < 18^{o}). Methodology: The first step in our study is to derive a reliable list of Watsonia family members. To that purpose, we first calculate the synthetic proper elements [3] of an extended catalogue including numbered, as well as multi and single opposition asteroids, in a wide region around the family. To this catalogue we apply the Hierarchical Clustering Method (HCM)[4] to determine the membership of the family, coinciding with the requirement that all confirmed neighboring Barbarians are included (see figure). To detect potential interlopers and refine the membership list, additional data such as the SDSS colors and WISE albedos are used. Moreover, we identify all relevant resonances and analyze the dynamical characteristics of the region occupied by the family. Then we estimate the age of the family, and finally, we perform numerical integrations of test particles to investigate possible dynamical links to other known Barbarians and to the near

  12. Spectral investigation of two asteroidal fireballs

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jiří

    2006-01-01

    Roč. 97, 3-4 (2006), s. 279-293 ISSN 0167-9295. [Asteroids, Comets, Meteors 2005. Búzios, 07.08.2005-12.08.2005] R&D Projects: GA ČR GA205/05/0543; GA ČR GA205/03/1404 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * meteors * spectroscopy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.252, year: 2006

  13. Flight Plasma Diagnostics for High-Power, Solar-Electric Deep-Space Spacecraft

    Science.gov (United States)

    Johnson, Lee; De Soria-Santacruz Pich, Maria; Conroy, David; Lobbia, Robert; Huang, Wensheng; Choi, Maria; Sekerak, Michael J.

    2018-01-01

    NASA's Asteroid Redirect Robotic Mission (ARRM) project plans included a set of plasma and space environment instruments, the Plasma Diagnostic Package (PDP), to fulfill ARRM requirements for technology extensibility to future missions. The PDP objectives were divided into the classes of 1) Plasma thruster dynamics, 2) Solar array-specific environmental effects, 3) Plasma environmental spacecraft effects, and 4) Energetic particle spacecraft environment. A reference design approach and interface requirements for ARRM's PDP was generated by the PDP team at JPL and GRC. The reference design consisted of redundant single-string avionics located on the ARRM spacecraft bus as well as solar array, driving and processing signals from multiple copies of several types of plasma, effects, and environments sensors distributed over the spacecraft and array. The reference design sensor types were derived in part from sensors previously developed for USAF Research Laboratory (AFRL) plasma effects campaigns such as those aboard TacSat-2 in 2007 and AEHF-2 in 2012.

  14. Asteroid 'Bites the Dust' Around Dead Star

    Science.gov (United States)

    2009-01-01

    NASA's Spitzer Space Telescope set its infrared eyes upon the dusty remains of shredded asteroids around several dead stars. This artist's concept illustrates one such dead star, or 'white dwarf,' surrounded by the bits and pieces of a disintegrating asteroid. These observations help astronomers better understand what rocky planets are made of around other stars. Asteroids are leftover scraps of planetary material. They form early on in a star's history when planets are forming out of collisions between rocky bodies. When a star like our sun dies, shrinking down to a skeleton of its former self called a white dwarf, its asteroids get jostled about. If one of these asteroids gets too close to the white dwarf, the white dwarf's gravity will chew the asteroid up, leaving a cloud of dust. Spitzer's infrared detectors can see these dusty clouds and their various constituents. So far, the telescope has identified silicate minerals in the clouds polluting eight white dwarfs. Because silicates are common in our Earth's crust, the results suggest that planets similar to ours might be common around other stars.

  15. Abodes for life in carbonaceous asteroids?

    Science.gov (United States)

    Abramov, Oleg; Mojzsis, Stephen J.

    2011-05-01

    Thermal evolution models for carbonaceous asteroids that use new data for permeability, pore volume, and water circulation as input parameters provide a window into what are arguably the earliest habitable environments in the Solar System. Plausible models of the Murchison meteorite (CM) parent body show that to first-order, conditions suitable for the stability of liquid water, and thus pre- or post-biotic chemistry, could have persisted within these asteroids for tens of Myr. In particular, our modeling results indicate that a 200-km carbonaceous asteroid with a 40% initial ice content takes almost 60 Myr to cool completely, with habitable temperatures being maintained for ˜24 Myr in the center. Yet, there are a number of indications that even with the requisite liquid water, thermal energy sources to drive chemical gradients, and abundant organic "building blocks" deemed necessary criteria for life, carbonaceous asteroids were intrinsically unfavorable sites for biopoesis. These controls include different degrees of exothermal mineral hydration reactions that boost internal warming but effectively remove liquid water from the system, rapid (1-10 mm yr -1) inward migration of internal habitable volumes in most models, and limitations imposed by low permeabilities and small pore sizes in primitive undifferentiated carbonaceous asteroids. Our results do not preclude the existence of habitable conditions on larger, possibly differentiated objects such as Ceres and the Themis family asteroids due to presumed longer, more intense heating and possible long-lived water reservoirs.

  16. An ISU study of asteroid mining

    Science.gov (United States)

    Burke, J. D.

    During the 1990 summer session of the International Space University, 59 graduate students from 16 countries carried out a design project on using the resources of near-earth asteroids. The results of the project, whose full report is now available from ISU, are summarized. The student team included people in these fields: architecture, business and management, engineering, life sciences, physical sciences, policy and law, resources and manufacturing, and satellite applications. They designed a project for transporting equipment and personnel to a near-earth asteroid, setting up a mining base there, and hauling products back for use in cislunar space. In addition, they outlined the needed precursor steps, beginning with expansion of present ground-based programs for finding and characterizing near-earth asteroids and continuing with automated flight missions to candidate bodies. (To limit the summer project's scope the actual design of these flight-mission precursors was excluded.) The main conclusions were that asteroid mining may provide an important complement to the future use of lunar resources, with the potential to provide large amounts of water and carbonaceous materials for use off earth. However, the recovery of such materials from presently known asteroids did not show an economic gain under the study assumptions; therefore, asteroid mining cannot yet be considered a prospective business.

  17. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    Science.gov (United States)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  18. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  19. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Science.gov (United States)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  20. Sensitivity of Asteroid Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Dotson, Jessie L.; NASA Asteroid Threat Assessment Project

    2017-10-01

    A central challenge in assessing the threat posed by asteroids striking Earth is the large amount of uncertainty inherent throughout all aspects of the problem. Many asteroid properties are not well characterized and can range widely from strong, dense, monolithic irons to loosely bound, highly porous rubble piles. Even for an object of known properties, the specific entry velocity, angle, and impact location can swing the potential consequence from no damage to causing millions of casualties. Due to the extreme rarity of large asteroid strikes, there are also large uncertainties in how different types of asteroids will interact with the atmosphere during entry, how readily they may break up or ablate, and how much surface damage will be caused by the resulting airbursts or impacts.In this work, we use our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to uncertainties in key asteroid properties, entry parameters, or modeling assumptions. The PAIR model combines physics-based analytic models of asteroid entry and damage in a probabilistic Monte Carlo framework to assess the risk posed by a wide range of potential impacts. The model samples from uncertainty distributions of asteroid properties and entry parameters to generate millions of specific impact cases, and models the atmospheric entry and damage for each case, including blast overpressure, thermal radiation, tsunami inundation, and global effects. To assess the risk sensitivity, we alternately fix and vary the different input parameters and compare the effect on the resulting range of damage produced. The goal of these studies is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk.

  1. Electric solar-wind sail for asteroid touring missions and planetary protection

    Science.gov (United States)

    Janhunen, P.

    2014-07-01

    The electric solar-wind sail (electric sail, E-sail [1,2]) is a relatively new concept for moving around in the solar system without consuming propellant and by using the thrust provided by the natural solar wind to produce propulsion. The E-sail is based on deploying, using the centrifugal force, a set of long, thin metallic tethers and charging them to high positive voltage by actively removing negative charge from the system by an electron gun. To make the tethers resistant towards inevitable wire cuts by micrometeoroids, they must be made by bonding from multiple (typically 4) thin (25--50 μ m) aluminium wires. Production of the tethers was a technical challenge which was recently overcome. According to present numerical estimates, the E-sail could produce up to 1 N of propellantless thrust out of less than 200 kg package which is enough to give characteristic acceleration of 1 mm/s^2 to a spacecraft weighing 1 tonne, thus producing 30 km/s of delta-v per year. The thrust scales as ˜ 1/r where r is the solar distance. There are ways to control and vector the thrust enough to enable inward and outward spiralling missions in the solar system. The E-sail working principle has been indirectly measured in a laboratory, and ESTCube-1 CubeSat experiment is underway in orbit (in late March 2014 it was waiting to be started) to measure the E-sail thrust acting on a short 10-m long tether. A full-scale mission requires ˜ 1000 km of tether altogether (weighing ˜10 kg). The production of a 1-km piece of tether has been demonstrated in laboratory [3]. If the E-sail holds up its present promise, it would be ideally suited for asteroid missions because it enables production of similar level of thrust than ion engines, but needs only a small fraction of the electric power and never runs out of propellant because it does not use any (the ''propellant'' being the natural solar-wind plasma flow). Here we consider especially a mission which would tour the asteroid belt for a

  2. Asteroid 4 Vesta: A Fully Differentiated Dwarf Planet

    Science.gov (United States)

    Mittlefehldt, David

    2014-01-01

    One conclusion derived from the study of meteorites is that some of them - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where metallic cores and basaltic crusts were formed. Telescopic observations show that there remains only one large asteroid with a basaltic crust, 4 Vesta; present day mean radius 263 km. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are cumulate gabbros, diabases and basalts from the upper crust. Howardites are impact-engendered breccias of diogenites and eucrites. A strong case can be made that HEDs are derived from Vesta. The NASA Dawn spacecraft orbited Vesta for 14 months returning data allowing geological, mineralogical, compositional and geophysical interpretations of Vesta's surface and structure. Combined with geochemical and petrological observations of HED meteorites, differentiation models for Vesta can be developed. Proto-Vesta probably consisted of primitive chondritic materials. Compositional evidence, primarily from basaltic eucrites, indicates that Vesta was melted to high degree (>=50%) which facilitated homogenization of the silicate phase and separation of immiscible Fe,Ni metal plus Fe sulphide into a core. Geophysical models based on Dawn data support a core of 110 km radius. The silicate melt vigorously convected and initially followed a path of equilibrium crystallization forming a harzburgitic mantle, possibly overlying a dunitic restite. Once the fraction of crystals was sufficient to cause convective lockup, the remaining melt collected between the mantle and the cool thermal boundary layer. This melt undergoes fractional crystallization to form a dominantly orthopyroxenite (diogenite) lower crust. The initial thermal boundary layer of primitive chondritic material is gradually replaced by a

  3. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    The Electric Solar Wind Sail (E-sail) can produce 0.5-1 N of inexhaustible and controllable propellantless thrust [1]. The E-sail is based on electrostatic Coulomb interaction between charged thin tethers and solar wind ions. It was invented in 2006, was developed to TRL 4-5 in 2011-2013 with ESAIL FP7 project (http://www.electric-sailing.fi/fp7) and a CubeSat small-scale flight test is in course (ESTCube-1). The E-sail provides a flexible and efficient way of moving 0-2 tonne sized cargo payloads in the solar system without consuming propellant. Given the E-sail, one could use it to make manned exploration of the solar system more affordable by combining it with asteroid water mining. One first sends a miner spacecraft to an asteroid or asteroids, either by E-sail or traditional means. Many asteroids are known to contain water and liberating it only requires heating the material one piece at a time in a leak tight container. About 2 tonne miner can produce 50 tonnes of water per year which is sufficient to sustain continuous manned traffic between Earth and Mars. If the ice-bearing asteroid resides roughly at Mars distance, it takes 3 years for a 0.7 N E-sailer to transport a 10 tonne water/ice payload to Mars orbit or Earth C3 orbit. Thus one needs a fleet of 15 E-sail transport spacecraft plus replacements to ferry 50 tonnes of water yearly to Earth C3 (1/3) and Mars orbit (2/3). The mass of one transporter is 300 kg [2]. One needs to launch max 1.5 tonne mass of new E-sail transporters per year and in practice much less since it is simple to reuse them. This infrastructure is enough to supply 17 tonnes of water yearly at Earth C3 and 33 tonnes in Mars orbit. Orbital water can be used by manned exploration in three ways: (1) for potable water and for making oxygen, (2) for radiation shielding, (3) for LH2/LOX propellant. Up to 75 % of the wet mass of the manned module could be water (50 % propellant and 25 % radiation shield water). On top of this the total mass

  4. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  5. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  6. Matched Filter Processing for Asteroid Detection

    Science.gov (United States)

    Gural, Peter S.; Larsen, Jeffrey A.; Gleason, Arianna E.

    2005-10-01

    Matched filter (MF) processing has been shown to provide significant performance gains when processing stellar imagery used for asteroid detection, recovery, and tracking. This includes extending detection ranges to fainter magnitudes at the noise limit of the imagery and operating in dense cluttered star fields as encountered at low Galactic latitudes. The MF software has been shown to detect 40% more asteroids in high-quality Spacewatch imagery relative to the currently implemented approaches, which are based on moving target indicator (MTI) algorithms. In addition, MF detections were made in dense star fields and in situations in which the asteroid was collocated with a star in an image frame, cases in which the MTI algorithms failed. Thus, using legacy sensors and optics, improved detection sensitivity is achievable by simply upgrading the image-processing stream. This in turn permits surveys of the near-Earth asteroid (NEA) population farther from opposition, for smaller sizes, and in directions previously inaccessible to current NEA search programs. A software package has been developed and made available on the NASA data services Web site that can be used for asteroid detection and recovery operations utilizing the enhanced performance capabilities of MF processing.

  7. Spectroscopy and Photometry of CAI-rich asteroids

    Science.gov (United States)

    Tanga, P.; Devogele, M.; Bendjoya, Ph.; Cellino, A.; Surdej, J.

    2017-09-01

    Asteroids with an anomalous amount of primitive elements, formed in ancient times in the solar nebula, exist. Our study confirms their nature and provides hints to the interpretation of the ancient evolution of asteroids.

  8. SMALL MAIN-BELT ASTEROID SPECTROSCOPIC SURVEY, PHASE II

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains visible-wavelength (0.435-0.925 micron) spectra for 1341 main-belt asteroids observed during the second phase of the Small Main-belt Asteroid...

  9. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  10. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  11. Rock legends the asteroids and their discoverers

    CERN Document Server

    Murdin, Paul

    2016-01-01

    This book relates the history of asteroid discoveries and christenings, from those of the early pioneering giants of Hersehel and Piazzi to modern-day amateurs. Moving from history and anecdotal information to science, the book's structure is provided by the names of the asteroids, including one named after the author. Free from a need to conform to scientific naming conventions, the names evidence hero-worship, sycophancy, avarice, vanity, whimsy, erudition and wit, revealing the human side of astronomers, especially where controversy has followed the christening. Murdin draws from extensive historical records to explore the debate over these names. Each age reveals its own biases and preferences in the naming process. < Originally regarded as “vermin of the skies,” asteroids are minor planets, rocky scraps left over from the formation of the larger planets, or broken fragments of worlds that have collided. Their scientific classification as “minor” planets makes them seem unimportant, but over th...

  12. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    Science.gov (United States)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  13. The flyby of Rosetta at asteroid Šteins - mission and science operations

    Science.gov (United States)

    Accomazzo, Andrea; Wirth, Kristin R.; Lodiot, Sylvain; Küppers, Michael; Schwehm, Gerhard

    2010-07-01

    The international Rosetta mission, a cornerstone mission of the european space agency scientific Programme, was launched on 2nd March 2004 on its 10 years journey towards a rendezvous with comet Churyumov-Gerasimenko ( Gardini et al., 1999). During its interplanetary flight towards its target Rosetta crosses the asteroid belt twice with the opportunity to observe at close quarters two asteroids: (2867)-Šteins in 2008 and (21)-Lutetia in 2010. The spacecraft design was such that these opportunities could be fully exploited to deliver valuable data to the scientific community. The mission trajectory was controlled such that Rosetta would fly next to asteroid Šteins on the 5th of September 2008 with a relative speed of 8.6 km/s at a minimum distance of 800 km. Mission operations have been carefully planned to achieve the best possible flyby scenario and scientific outcome. The flyby scenario, the optical navigation campaign, and the planning of the scientific observations had to be adapted by the Mission and the Science Operations Centres to the demanding requirements expressed by the scientific community. The flyby was conducted as planned with a large number of successful observations.

  14. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    Science.gov (United States)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  15. Solar Wind Plasma Interaction with Asteroid 16 Psyche: Implication for Formation Theories

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.

    2018-01-01

    The asteroid 16 Psyche is a primitive metal-rich asteroid that has not yet been visited by spacecraft. Based on remote observations, Psyche is most likely composed of iron and nickel metal; however, the history of its formation and solidification is still unknown. If Psyche is a remnant core of a differentiated planetesimal exposed by collisions, it opens a unique window toward understanding the cores of the terrestrial bodies, including the Earth and Mercury. If not, it is perhaps a reaccreted rubble pile that has never melted. In the former case, Psyche may have a remanent, dipolar magnetic field; in the latter case, Psyche may have no intrinsic field, but nevertheless would be a conductive object in the solar wind. We use Advanced Modeling Infrastructure in Space Simulation (AMITIS), a three-dimensional GPU-based hybrid model of plasma that self-consistently couples the interior electromagnetic response of Psyche (i.e., magnetic diffusion) to its ambient plasma environment in order to quantify the different interactions under these two cases. The model results provide estimates for the electromagnetic environment of Psyche, showing that the magnetized case and the conductive case present very different signatures in the solar wind. These results have implications for an accurate interpretation of magnetic field observations by NASA's Discovery mission (Psyche mission) to the asteroid 16 Psyche.

  16. SAFARI: Searching Asteroids For Activity Revealing Indicators

    Science.gov (United States)

    Curtis, Anthony; Chandler, Colin Orion; Mommert, Michael; Sheppard, Scott; Trujillo, Chadwick A.

    2018-06-01

    We present results on one of the deepest and widest systematic searches for active asteroids, objects in the main-belt which behave dynamically like asteroids but display comet-like comae. This activity comes from a variety of sources, such as the sublimation of ices or rotational breakup, the former of which offers an opportunity to study a family of protoplanetary ices different than those seen in comets and Kuiper Belt objects. Indications of activity may be detected through visual or spectroscopic evidence of gas or dust emissions. However, these objects are still poorly understood, with only about 25 identified to date. We looked for activity indicators with a pipeline that examined ~35,000 deep images taken with the Dark Energy Camera (DECam) mounted on the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. Our pipeline was configured to perform astrometry on DECam images and produce thumbnail images of known asteroids in the field to be examined by eye for signs of activity. We detected three previously identified active asteroids, one of which has shown repeated signs of activity in these data. Our proof of concept demonstrates 1) our novel informatics approach can locate active asteroids 2) DECam data are well suited to search for active asteroids. We will discuss the design structure of our pipeline, adjustments that had to be made for the specific dataset to improve performance, and the the significance of detecting activity in the main-belt. The authors acknowledge funding for this project through NSF grant number AST-1461200.

  17. The DLR AsteroidFinder for NEOs

    Science.gov (United States)

    Mottola, Stefano; Kuehrt, Ekkehard; Michaelis, Harald; Hoffmann, Harald; Spietz, Peter; Jansen, Frank; Thimo Grundmann, Jan; Hahn, Gerhard; Montenegro, Sergio; Findlay, Ross; Boerner, Anko; Messina, Gabriele; Behnke, Thomas; Tschentscher, Matthias; Scheibe, Karsten; Mertens, Volker; Heidecke, Ansgar

    Potential Earth-impacting asteroids that spend most of their time interior to Earth's orbit are extremely difficult to be observed from the ground and remain largely undetected. Firstly, they are mostly located at small solar elongations, where the sky brightness and their faintness due to the large phase angle prevents their discovery. Secondly, these objects tend to have very long synodic orbital periods, which makes observation opportunities rare and impact warning times short. Because of these limitations, even the advent of next generation ground-based asteroid surveys is not likely to radically improve the situation (Veres et al. Icarus 203, p472, 2009). On the other hand, a small satellite with a suitable design can observe close to the Sun and detect these objects efficiently against a dark sky background. For this reason, DLR, the German Aerospace Center, has selected AsteroidFinder as the first experiment to be launched under its new compact satellite national program. The primary goal of the mission is to detect and characterize Near Earth Objects (NEOs), with a particular focus on the population of objects completely contained within Earth's orbit (IEOs or Inner Earth Objects). Current dynamical models predict the existence of more than 1000 such objects down to a size of 100m, of which, due to the abovementioned observation difficulties, only 10 have been discovered to date. Benefitting from the vantage point of a Low Earth Orbit (LEO), AsteroidFinder makes use of a small optical telescope to scan those regions of the sky that are close to the Sun, and therefore beyond the reach of ground based observatories. By estimating the population, the size and the orbital distribution of IEOs, AsteroidFinder will contribute to our knowledge of the inner Solar System, and to the assessment of the impact hazard for the Earth. A secondary goal of the mission is to demonstrate techniques that enable the space-based detection of space debris in the cm size range

  18. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  19. Asteroid families - Physical properties and evolution

    International Nuclear Information System (INIS)

    Chapman, C.R.; Paolicchi, P.; Zappala, V.; Binzel, R.P.; Bell, J.F.

    1989-01-01

    Asteroid families are considered to be fragments from collisional destruction of precursor bodies. However, results available on the inferred mineralogy, size distributions, and spins of family members do not confirm the expectations of the traditional model. Only a handful of nearly 100 proposed families, most of them populous, have distributions of inferred mineralogies consistent with simple cosmochemical models for parent bodies. It is suggested that most catastrophic collisions may not result in observable families, but rather in a spray of smaller particles, thus accounting for the small number of confirmed and consistent families, despite evidence for extensive collisional evolution of asteroids. 52 refs

  20. Veritas Asteroid Family Still Holds Secrets?

    Science.gov (United States)

    Novakovic, B.

    2012-12-01

    Veritas asteroid family has been studied for about two decades. These studies have revealed many secrets, and a respectable knowledge about this family had been collected. Here I will present many of these results and review the current knowledge about the family. However, despite being extensively studied, Veritas family is still a mystery. This will be illustrated through the presentation of the most interesting open problems. Was there a secondary collision within this family? Does asteroid (490) Veritas belong to the family named after it? How large was the parent body of the family? Finally, some possible directions for future studies that aims to address these questions are discussed as well.

  1. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  2. Investigating the Source of Water and/or Hydroxyl on Asteroid (16) Psyche

    Science.gov (United States)

    Takir, D.; Reddy, V.; Sanchez, J. A.; Shepard, M. K.; Emery, J. P.

    2017-12-01

    Asteroid (16) Psyche will be visited by the Psyche mission, which was selected by NASA and will be launched in 2022 as the 14th Discovery mission. Psyche is thought to be one of the most massive exposed metallic core in the asteroid belt. The high radar albedos, thermal inertia, and density of Psyche revealed that this asteroid is composed of almost entirely of Fe-Ni metal. Psyche is also characterized by moderately red spectra and the presence of weak features (attributed to silicates) in the visible and near-infrared (NIR) region (0.3-2.5 µm). Recent NIR observations also showed rotational spectral variations indicating a possible change in the metal/silicate ratio on the surface of this asteroid. Additionally, we observed Psyche in the 3-µm spectral region using the long-wavelength cross-dispersed (LXD: 1.9-4.2 µm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). Our observations revealed that Psyche exhibits a 3-µm feature, more likely attributed to water- and/or hydroxyl molecules. While the source of water and/or hydroxyl on Psyche remains unclear, we proposed a few possible mechanisms for their formation: (1) the water/hydroxyl-rich materials detected on Psyche might have been delivered to its surface by carbonaceous impactors (like on Vesta), (2) Psyche may not be entirely exposed metallic, instead, its surface has a core-mantle boundary of a differentiated body that was disrupted by impacts (e.g., Pallasite-like), or (3) the water/hydroxyl-rich materials detected on Psyche is produced by Solar wind implantation (like on the Moon). In this talk we will discuss these three possible mechanisms and hypotheses and how they can be tested prior to the launch of the Psyche spacecraft using predictive laboratory measurements and modeling, and during the spacecraft encounter with the asteroid using the mission main instruments that will include the multispectral imagers, the gamma-ray and neutron spectrometer, and the dual

  3. Spectral reflectance "deconstruction" of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids

    Science.gov (United States)

    Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu

    2018-05-01

    Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope

  4. Deep Interior: Radio Reflection Tomographic Imaging of Earth-Crossing Asteroids

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Safaeinili, A.; Klaasen, K.; Ostro, S.; Yeomans, D.; Plaut, J.

    2004-12-01

    Near-Earth Objects (NEOs) present an important scientific question and an intriguing space hazard. They are scrutinized by a number of large, dedicated groundbased telescopes, and their diverse compositions are represented by thousands of well-studied meteorites. A successful program of NEO spacecraft exploration has begun, and we are proposing Deep Interior as the next logical step. Our mission objective is to image the deep interior structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Asteroid Interiors. Our mission's RRT technique is like a CAT scan from orbit. Closely sampled radar echoes yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. Exteriors. We use color imaging to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Diversity. We first visit a common, primitive, S-type asteroid. We next visit an asteroid that was perhaps blasted from the surface of a differentiated asteroid. We attain an up-close and inside look at two taxonomic archetypes spanning an important range of NEO mass and spin rate. Scientific focus is achieved by keeping our payload simple: Radar. A 30-m (tip-to-tip) cross-dipole antenna system operates at 5 and 15-MHz, with electronics heritage from JPL's MARSIS contribution to Mars Express, and antenna heritage from IMAGE and LACE. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few 100 m or more. They bracket the diversity of solar system materials that we are likely to

  5. Trajectory design for a rendezvous mission to Earth's Trojan asteroid 2010 TK7

    Science.gov (United States)

    Lei, Hanlun; Xu, Bo; Zhang, Lei

    2017-12-01

    In this paper a rendezvous mission to the Earth's Trojan asteroid 2010 TK7 is proposed, and preliminary transfer trajectories are designed. Due to the high inclination (∼ 20.9°) of the target asteroid relative to the ecliptic plane, direct transfers usually require large amounts of fuel consumption, which is beyond the capacity of current technology. As gravity assist technique could effectively change the inclination of spacecraft's trajectory, it is adopted to reduce the launch energy and rendezvous velocity maneuver. In practical computation, impulsive and low-thrust, gravity-assisted trajectories are considered. Among all the trajectories computed, the low-thrust gravity-assisted trajectory with Venus-Earth-Venus (V-E-V) swingby sequence performs the best in terms of propellant mass. For a spacecraft with initial mass of 800 kg , propellant mass of the best trajectory is 36.74 kg . Numerical results indicate that both the impulsive and low-thrust, gravity-assisted trajectories corresponding to V-E-V sequence could satisfy mission constraints, and can be applied to practical rendezvous mission.

  6. A Novel Hybrid Ultramicrotomy/FIB-SEM Technique: Preparation of Serial Electron-Transparent Thin Sections of a Hayabusa Grain

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2014-01-01

    The Japanese space agency's (JAXA) Hayabusa mission returned the first particulate samples (typically grain surfaces and interiors. Using this method, we increase the number of FIB-prepared sections that can be recovered from a particle with dimensions on the order of tens of microns. These sections can be subsequently analyzed using a variety of analytical techniques. Particle RA-QD02-0211 is a approx. 40×40×20 micron particle from Itokawa containing olivine and Fe sulfides. It was embedded in low viscosity epoxy and partly sectioned to a depth of approx 10 micron; sections are placed on Cu grids with thin amorphous films for transmission electron microscope (TEM) analyses. With the sample surface partly exposed, the epoxy bullet is trimmed to a height of approx. 5mm to accommodate the allowable dimensions for FIB work (FEI Quanta 600 3D dual beam FIB-SEM). Using a diamond trim knife, the epoxy surrounding the grain is removed on 3 sides (to within a few microns of the grain); the depth of material removed extends well below the bottom of the particle. The sample is attached to an SEM pin mount, the epoxy coated with conductive paint, and the entire assembly coated with approx. 40nm of carbon to eliminate sample charging during FIB work. A protective carbon cap is placed according to the plan for the 15 FIB sections. The central 'spine' of the cap runs perpendicular to the front of the sample, and the 'ribs' protruding from either side run parallel. Each rib indicates the location of a planned FIB section, and the spine contains the final two planned sections. We use a cap with a 4 micron-wide spine and 2micron-wide ribs that have ?3.5 micron of space between them (narrower cuts result in too much re-deposition of material inside the trenches). Using a 30kV, 3nA ion-beam we expose the front surface of the grain and commence milling trenches between sections. Rather than using the typical C-cut to prepare the sample for lift-out, an L-cut is used instead, leaving

  7. Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2017-07-01

    The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several

  8. MASCOT, the small mobile package on its piggyback journey to 1999JU3: pre-launch and post-launch activities

    OpenAIRE

    Ziach, C.; Baturkin, V.; Ho, T. M.; Grimm, Ch.; Grundmann, J. T.; Lange, C.; Termantanasombat, N.; Weimo, E.; Findlay, R.; Reiil, J.; Lange, M.; Mierheim, O.; Biele, J.; Krause, C.; Ulamec, S.

    2015-01-01

    Since December 2014 the Japanese spacecraft Hayabusa2 is on its journey to asteroid (162173) 1999 JU3. Like its famous predecessor it is expected to study and return samples from its target body. This time, the mother spacecraft has several small passengers. One of them is a compact landing package called MASCOT (Mobile Asteroid surface SCOuT), which has been developed by the German Aerospace Centre (DLR) and the Centre National d'Etudes Spatiales (CNES). Once having been released from its mo...

  9. The Development and first Cruise Activity of the MASCOT Lander onboard the Hayabuse 2 mission

    OpenAIRE

    Ho, T.-M.; Lange, C.; Ziach, Ch.; Baturkin, V.; Grimm, Ch.; Grundmann, J. T.; Auster, H-U.; Bibring, J.P.; Biele, J.; Borgs, B.; Deleuze, M.; Grott, M.; Jaumann, R.; Lange, M.; Lichtenheldt, R.

    2015-01-01

    Since December 2014 the Japanese spacecraft Hayabusa-II is on its journey to asteroid 1999 JU3. Like its famous predecessor it is foreseen to study and return samples from its target body. This time, the mother spacecraft has several small passengers. One of them is a compact landing package called MASCOT (Mobile Asteroid surface SCOuT), which has been developed by the German Aerospace Centre (DLR) and the Centre National d'Etudes Spatiales (CNES). Once having been released from its mothe...

  10. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite

  11. Twenty-one Asteroid Lightcurves at Asteroids Observers (OBAS) - MPPD: Nov 2016 - May 2017

    Science.gov (United States)

    Mas, Vicente; Fornas, G.; Lozano, Juan; Rodrigo, Onofre; Fornas, A.; Carreño, A.; Arce, Enrique; Brines, Pedro; Herrero, David

    2018-01-01

    We report on the analysis of photometric observations of 21 main-belt asteroids (MBA) done by Asteroids Observers (OBAS). This work is part of the Minor Planet Photometric Database task that was initiated by a group of Spanish amateur astronomers. We have managed to obtain a number of accurate and complete lightcurves as well as some additional incomplete lightcurves to help analysis at future oppositions.

  12. Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results

    Science.gov (United States)

    Clark, Beth Ellen; Shepard, M.; Bus, S. J.; Vilas, F.; Rivkin, A. S.; Lim, L.; Lederer, S.; Jarvis, K.; Shah, S.; McConnochie, T.

    2004-01-01

    The August 2003 apparition of asteroid 2100 Ra-Shalom brought together a collaboration of observers with the goal of obtaining rotationally resolved multiwavelength spectra at each of 5 facilities: infrared spectra at the NASA Infrared Telescope Facility (Clark and Shepard), radar images at Arecibo (Shepard and Clark), thermal infrared spectra at Palomar (Lim, McConnochie and Bell), visible spectra at McDonald Observatory (Vilas, Lederer and Jarvis), and visible lightcurves at Ondrojev Observatory (Pravec). The radar data was to be used to develop a high spatial resolution physical model to be used in conjunction with spectral data to investigate compositional and textural properties on the near surface of Ra Shalom as a function of rotation phase. This was the first coordinated multi-wavelength investigation of any Aten asteroid. There are many reasons to study near-Earth asteroid (NEA) 2100 Ra-Shalom: 1) It has a controversial classification (is it a C- or K-type object)? 2) There would be interesting dynamical ramifications if Ra-Shalom is a K-type because most K-types come from the Eos family and there are no known dynamical pathways from Eos to the Aten population. 3) The best available spectra obtained previously may indicate a heterogeneous surface (most asteroids appear to be fairly homogeneous). 4) Ra-Shalom thermal observations obtained previously indicated a lack of regolith, minimizing the worry of space weathering effects in the spectra. 5) Radar observations obtained previously hinted at interesting surface structures. 6) Ra-Shalom is one of the largest Aten objects. And 7) Ra-Shalom is on a short list of proposed NEAs for spacecraft encounters and possible sample returns. Preliminary results from the visible, infrared, and thermal spectroscopy measurements will be presented here.

  13. Asteroid-Generated Tsunami and Impact Risk

    Science.gov (United States)

    Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.

    2016-12-01

    The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  14. The infrared spectrum of asteroid 433 Eros

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R. R.; Gautier, T. N., III

    1976-01-01

    The mineralogical composition of asteroid Eros has been determined from its infrared spectrum (0.9-2.7 micrometers; 28/cm resolution). Major minerals include metallic Ni-Fe and pyroxene; no spectroscopic evidence for olivine or plagioclase feldspar was found. The IR spectrum of Eros is most consistent with a stony-iron composition.

  15. Direct Detection of the Asteroidal YORP Effect

    Czech Academy of Sciences Publication Activity Database

    Lowry, S.C.; Fitzsimmons, A.; Pravec, Petr; Vokrouhlický, D.; Boehnhardt, H.; Taylor, P.A.; Margot, J. L.; Galád, Adrián; Irwin, M.; Irwin, J.; Kušnirák, Peter

    2007-01-01

    Roč. 316, č. 5822 (2007), s. 272-274 ISSN 0036-8075 R&D Projects: GA AV ČR IAA3003204 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids rotation * near- Earth objects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 26.372, year: 2007

  16. Photometric survey of asynchronous binary asteroids

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Kotková, Lenka; Mottola, S.; Hahn, G.; Brown, P.; Esquerdo, G.; Kaiser, K.; Krzeminski, Z.; Pray, D. P.; Warner, B. D.; Harris, A. W.; Nolan, M. C.; Howell, E. S.; Benner, L. A. M.; Margot, J. L.; Galád, Adrián; Holliday, W.; Hicks, M. D.; Krugly, Yu. N.; Tholen, D.; Whiteley, R.; Marchis, F.; DeGraff, D. R.; Grauer, A.; Larson, S. M.; Velichko, F. P.; Cooney, W.R.; Stephens, R.; Zhu, J.; Kirsch, K.; Dyvig, R.; Snyder, L.; Reddy, V.; Moore, S.; Gajdoš, Š.; Világi, J.; Masi, G.; Higgins, D.; Funkhouser, G. M.; Knight, B.; Slivan, S. M.; Behrend, R.; Grenon, M.; Burki, G.; Roy, R.; Demeautis, C.; Matter, D.; Waelchli, N.; Revaz, Y.; Klotz, A.; Rieugné, M.; Thieri, P.; Cotrez, V.; Brunetto, L.; Kober, G.

    2006-01-01

    Roč. 181, č. 1 (2006), s. 63-93 ISSN 0019-1035 R&D Projects: GA ČR GA205/05/0604; GA AV ČR IAA3003204 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * binary * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.151, year: 2006

  17. Slowly rotating asteroid 1999 GU3

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Kotková, Lenka; Benner, L. A. M.; Ostro, S. J.; Hicks, M. D.; Jurgens, R. F.; Giorgini, I. D.; Slade, M. A.; Yeomans, D. K.; Rabinowitz, D. L.; Krugly, Yu. N.; Wolf, M.

    2000-01-01

    Roč. 148, č. 1 (2000), s. 589-593 ISSN 0019-1035 R&D Projects: GA AV ČR IAA3003708; GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : asteroids * rotation * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.651, year: 2000

  18. Asteroids Dynamic Site-AstDyS

    Science.gov (United States)

    Knezevic, Zoran; Milani, Andrea

    2012-08-01

    The AstDyS online information service (http://hamilton.dm.unipi.it/astdys/) contains data on numbered and multi - opposition asteroids, including orbital elements, their uncertainty, proper elements, ephemerides with uncertainty, and more. AstDyS also provides additional scientific output computed from the raw observational data. This value added currently includes: more accurate orbits computed with advanced dynamical and observational error model s; their uncertainty, as expressed by the covariance matrix formalism; ephemerides computed on request for each observer, with uncertainty; mean and proper orbital elements (for this output, AstDyS is the primary source worldwide); statistical quality control, providing a rigorous observational error model. All this is available with a sophisticated web interface, providing multiple search functions and online computations as well as complete orbital and residual files. There are several ways in which the A stDyS service could be expanded and improved in the next future, like the explicit classification of asteroids into asteroid families, the classification of resonant asteroids, and an updated self - consistent population model (to be used, e.g., for survey simulations). The IAU Division I endorsed the proposal for AstDyS to become an IAU (permanent) service, which would include the IAU supervision of the AstDyS system, keeping under control the quality of the work and the continuous update under conditions of scientific competition.

  19. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  20. Study of the Asteroid 2009 DL46

    Science.gov (United States)

    Vodniza, Alberto Quijano

    2017-06-01

    2009 DL46 was discovered by the Catalina Sky Survey on 2009-February 28. This asteroid has a diameter of about 194 meters (119 to 268 meters) [1], and Brian Warner has obtained a rotation period of at least 10 hours [2]. The asteroid 2009 DL46 flew past Earth on May 24/2016 at a distance of about 6.2 lunar distances (0.0158293668567628 A.U) [3]. The NEOWISE mission had a great likelihood to observing this asteroid in early May. Radiotelescopes of Goldstone and Arecibo had planned to make observations of 2009 DL46. “Using the Goldstone facility, we had planned to make radar observations of 2009 DL46” said Landis, Rob R. (HQ-DG000). This asteroid is on list for possible human mission targets. From our Observatory, located in Pasto-Colombia, we captured several pictures, videos and astrometry data during several hours during three days. Our data was published by the Minor Planet Center (MPC) and also appears at the web page of NEODyS [4]. The pictures and data of the asteroid were captured with the following equipment: CGE PRO 1400 CELESTRON (f/11 Schmidt-Cassegrain Telescope) and STL-1001 SBIG camera.. Astrometry was carried out, and we calculated the orbital elements. Summary and conclusions: We obtained the following orbital parameters: eccentricity = 0.30731 +/- 0.00025, semi-major axis = 1.460279 +/- 0.000532 A.U, orbital inclination = 7.9503 +/- 0.0048 deg, longitude of the ascending node = 63.45053 +/- 0.00034 deg, argument of perihelion = 159.8804 +/- 0.0024 deg, mean motion = 0.558535 +/- 0.000305 deg/d, perihelion distance = 1.01151363 +/- 3.39e-6 A.U, aphelion distance = 1.90904 +/- 0.00106 A.U, absolute magnitude = 22.5. The parameters were calculated based on 83 observations. Dates: 2016 May: 18 to 21 with mean residual = 0.29 arcseconds. The asteroid has an orbital period of 1.76 years (644.53 days).[1] http://newton.dm.unipi.it/neodys/index.php?pc=1.1.9&n=2009DL46.[2] http://echo.jpl.nasa.gov/asteroids/2009DL46/2009DL46_planning.html[3] http

  1. 3-µm Spectroscopy of Asteroid 16 Psyche

    Science.gov (United States)

    Takir, Driss; Reddy, Vishnu; Sanchez, Juan; Shepard, Michael K.

    2016-10-01

    Asteroid 16 Psyche, an M-type asteroid, is thought to be one of the most massive exposed iron metal object in the asteroid belt. The high radar albedos of Psyche suggest that this differentiated asteroid is dominantly composed of metal. Psyche was previously found to be featureless in the 3-µm spectral region. However, in our study we found that this asteroid exhibits a 3-µm absorption feature, possibly indicating the presence of hydrated silicates.We have observed Psyche in the 3-µm spectral region, using the long-wavelength cross-dispersed (LXD:1.9-4.2 µm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). For data reduction, we used the IDL (Interactive Data Language)-based spectral reduction tool Spextool (v4.1). Psyche was observed over the course of three nights with an apparent visual magnitude of ~9.50: 8 December 2015 (3 sets), 9 December 2015 (1 set), and 10 March 2016 (1 set). These observations have revealed that Psyche may exhibit a 3-µm absorption feature, similar to the sharp group in the 2.9-3.3-µm spectral range. Psyche also exhibits an absorption feature similar to the one in Ceres and Ceres-like group in the spectral 3.3-4.0-µm range. These 3-µm observational results revealed that Psyche may not be as featureless as once thought in the 3-µm spectral region.Evidence for the 3-µm band was found on the surfaces of many M-type asteroids and a number of plausible alternative interpretations for the presence of this 3-µm band were previously suggested. These interpretations include the presence of anhydrous silicates containing structural OH, the presence of fluid inclusions, the presence of xenolithic hydrous meteorite components on asteroid surfaces from impacts, solar wind-implanted H, or the presence of troilite. The detection of the Ceres-like feature in the 3.3-4.0-µm spectral range, however, would rule out some of these alternative interpretations, especially the solar wind-implanted H.

  2. Asteroids from a Martian Mega Impact

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    Like evidence left at a crime scene, the mineral olivine may be the clue that helps scientists piece together Marss possibly violent history. Could a long-ago giant impact have flung pieces of Mars throughout our inner solar system? Two researchers from the Tokyo Institute of Technology in Japan are on the case.A Telltale MineralOlivine, a mineral that is common in Earths subsurface but weathers quickly on the surface. Olivine is a major component of Marss upper mantle. [Wilson44691]Olivine is a major component of the Martian upper mantle, making up 60% of this region by weight. Intriguingly, olivine turns up in other places in our solar system too for instance, in seven out of the nine known Mars Trojans (a group of asteroids of unknown origin that share Marss orbit), and in the rare A-type asteroids orbiting in the main asteroid belt.How did these asteroids form, and why are they so olivine-rich? An interesting explanation has been postulated: perhaps this olivine all came from the same place Mars as the result of a mega impact billions of years ago.Evidence for ImpactMars bears plenty of signs pointing to a giant impact in its past. The northern and sourthern hemispheres of Mars look very different, a phenomenon referred to as the Mars hemisphere dichotomy. The impact of a Pluto-sized body could explain the smooth Borealis Basin that covers the northern 40% of Marss surface.This high-resolution topographic map of Mars reveals the dichotomy between its northern and sourthern hemispheres. The smooth region in the northern hemisphere, the Borealis basin, may have been formed when a giant object impacted Mars billions of years ago. [NASA/JPL/USGS]Other evidence piles up: Marss orbit location, its rotation speed, the presence of its two moons all could be neatly explained by a large impact around 4 billion years ago. Could such an impact have also strewn debris from Marss mantle across the solar system?To test this theory, we need to determine if a mega impact is

  3. Geologic History of Asteroid 4 Vesta

    Science.gov (United States)

    Mittlefehldt, David W.

    2014-01-01

    Some types of meteorites - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where magmatism occurred within a very few million years of the formation of the earliest solids in the solar system. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid]. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are basalts, diabases and cumulate gabbros from the upper crust. Howardites are impact-engendered breccias mostly of diogenites and eucrites. There remains only one large asteroid with a basaltic crust, 4 Vesta, which is thought to be the source of the HED clan. Differentiation models for Vesta are based on HED compositions. Proto-Vesta consisted of chondritic materials containing Al-26, a potent, short-lived heat source. Inferences from compositional data are that Vesta was melted to high degree (=50%) allowing homogenization of the silicate phase and separation of a metallic core. Convection of the silicate magma ocean allowed equilibrium crystallization, forming a harzburgitic mantle. After convective lockup occurred, melt collected between the mantle and the cool thermal boundary layer and underwent fractional crystallization forming an orthopyroxene-rich (diogenite) lower crust. The initial thermal boundary layer of chondritic material was replaced by a mafic upper crust through impact disruption and foundering. The mafic crust thickened over time as additional residual magma intrudes and penetrates the mafic crust forming plutons, dikes, sills and flows of cumulate and basaltic eucrite composition. This magmatic history may have taken only 2-3 Myr. This magma ocean scenario is at odds with a model of heat and magma transport that indicates that small degrees of melt would be rapidly expelled from source regions, precluding development of a magma ocean. Constraints from radiogenic Mg-26 distibutions

  4. Asteroid families from cratering: Detection and models

    Science.gov (United States)

    Milani, A.; Cellino, A.; Knežević, Z.; Novaković, B.; Spoto, F.; Paolicchi, P.

    2014-07-01

    A new asteroid families classification, more efficient in the inclusion of smaller family members, shows how relevant the cratering impacts are on large asteroids. These do not disrupt the target, but just form families with the ejecta from large craters. Of the 12 largest asteroids, 8 have cratering families: number (2), (4), (5), (10), (87), (15), (3), and (31). At least another 7 cratering families can be identified. Of the cratering families identified so far, 7 have >1000 members. This imposes a remarkable change from the focus on fragmentation families of previous classifications. Such a large dataset of asteroids believed to be crater ejecta opens a new challenge: to model the crater and family forming event(s) generating them. The first problem is to identify which cratering families, found by the similarity of proper elements, can be formed at once, with a single collision. We have identified as a likely outcome of multiple collisions the families of (4), (10), (15), and (20). Of the ejecta generated by cratering, only a fraction reaches the escape velocity from the surviving parent body. The distribution of velocities at infinity, giving to the resulting family an initial position and shape in the proper elements space, is highly asymmetric with respect to the parent body. This shape is deformed by the Yarkovsky effect and by the interaction with resonances. All the largest asteroids have been subjected to large cratering events, thus the lack of a family needs to be interpreted. The most interesting case is (1) Ceres, which is not the parent body of the nearby family of (93). Two possible interpretations of the low family forming efficiency are based on either the composition of Ceres with a significant fraction of ice, protected by a thin crust, or with the larger escape velocity of ~500 m/s.

  5. On the concept of material strength and first simulations of asteroid disruption with explicit formation of spinning aggregates in the gravity regime

    Science.gov (United States)

    Michel, P.; Richardson, D. C.

    2007-08-01

    During their evolutions, the small bodies of our Solar System are affected by several mechanisms which can modify their properties. While dynamical mechanisms are at the origin of their orbital variations, there are other mechanisms which can change their shape, spin, and even their size when their strength threshold is reached, resulting in their disruption. Such mechanisms have been identified and studied, both by analytical and numerical tools. The main mechanisms that can result in the disruption of a small body are collisional events, tidal perturbations, and spin-ups. However, the efficiency of these mechanisms depends on the strength of the material constituing the small body, which also plays a role in its possible equilibrium shape. We will present several important aspects of material strength that are believed to be adapted to Solar System small bodies and briefly review the most recent studies of the different mechanisms that can be at the origin of the disruption of these bodies. In particular, we have recently made a major improvement in the simulations of asteroid disruption by computing explicitly the formation of aggregates during the gravitational reaccumulation of small fragments, allowing us to obtain information on their spin, the number of boulders composing them or lying on their surface, and their shape.We will present the first and preliminary results of this process taking as examples some asteroid families that we reproduced successfully with our previous simulations (Michel et al. 2001, 2002, 2003, 2004a,b), and their possible implications on the properties of asteroids generated by a disruption. Such information can for instance be compared with data provided by the Japanese space mission Hayabusa of the asteroid Itokawa, a body now understood to be a fragment of a larger parent body. It is also clear that future space missions to small bodies devoted to precise in-situ analysis and sample return will allow us to improve our

  6. Free-Flying Unmanned Robotic Spacecraft for Asteroid Resource Prospecting and Characterization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 2 we will develop a fully integrated, autonomous free-flying robotic system based on a commercial SkyJib quadcopter, and demonstrate flying straight and...

  7. ExploreNEOs. III. PHYSICAL CHARACTERIZATION OF 65 POTENTIAL SPACECRAFT TARGET ASTEROIDS

    International Nuclear Information System (INIS)

    Mueller, Michael; Delbo', M.; Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.; Trilling, D. E.; Thomas, C. A.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Mainzer, A.; Emery, J. P.; Harris, A. W.; Mommert, M.; Penprase, B.; Stansberry, J. A.

    2011-01-01

    Space missions to near-Earth objects (NEOs) are being planned at all major space agencies, and recently a manned mission to an NEO was announced as a NASA goal. Efforts to find and select suitable targets (plus backup targets) are severely hampered by our lack of knowledge of the physical properties of dynamically favorable NEOs. In particular, current mission scenarios tend to favor primitive low-albedo objects. For the vast majority of NEOs, the albedo is unknown. Here we report new constraints on the size and albedo of 65 NEOs with rendezvous Δv -1 . Our results are based on thermal-IR flux data obtained in the framework of our ongoing (2009-2011) ExploreNEOs survey using NASA's 'Warm-Spitzer' space telescope. As of 2010 July 14, we have results for 293 objects in hand (including the 65 low-Δv NEOs presented here); before the end of 2011, we expect to have measured the size and albedo of ∼700 NEOs (including probably ∼160 low-Δv NEOs). While there are reasons to believe that primitive volatile-rich materials are universally low in albedo, the converse need not be true: the orbital evolution of some dark objects likely has caused them to lose their volatiles by coming too close to the Sun. For all our targets, we give the closest perihelion distance they are likely to have reached (using orbital integrations from Marchi et al. 2009) and corresponding upper limits on the past surface temperature. Low-Δv objects for which both albedo and thermal history may suggest a primitive composition include (162998) 2001 SK162, (68372) 2001 PM9, and (100085) 1992 UY4.

  8. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  9. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  10. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  11. Magnetic Evidence for a Partially Differentiated Carbonaceous Chondrite Parent Body and Possible Implications for Asteroid 21 Lutetia

    Science.gov (United States)

    Weiss, Benjamin; Carporzen, L.; Elkins-Tanton, L.; Shuster, D. L.; Ebel, D. S.; Gattacceca, J.; Binzel, R. P.

    2010-10-01

    The origin of remanent magnetization in the CV carbonaceous chondrite Allende has been a longstanding mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Here we report that Allende's magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a > 20 microtesla field 8-9 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been the generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos (Weiss et al. 2010), suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core (Elkins-Tanton et al. 2010). This suggests that asteroids with differentiated interiors could be present today but masked under chondritic surfaces. In fact, CV chondrites are spectrally similar to many members of the Eos asteroid family whose spectral diversity has been interpreted as evidence for a partially differentiated parent asteroid (Mothe-Diniz et al. 2008). CV chondrite spectral and polarimetric data also resemble those of asteroid 21 Lutetia (e.g., Belskaya et al. 2010), recently encountered by the Rosetta spacecraft. Ground-based measurements of Lutetia indicate a high density of 2.4-5.1 g cm-3 (Drummond et al. 2010), while radar data seem to rule out a metallic surface composition (Shepard et al. 2008). If Rosetta spacecraft measurements confirm a high density and a CV-like surface composition for Lutetia, then we propose Lutetia may be an example of a partially differentiated carbonaceous chondrite parent body. Regardless, the very existence of primitive achondrites, which contain evidence of both relict chondrules and partial melting, are prima facie evidence for the formation of partially differentiated bodies.

  12. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    Science.gov (United States)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  13. Solar Torque Management for the Near Earth Asteroid Scout CubeSat Using Center of Mass Position Control

    Science.gov (United States)

    Orphee, Juan; Heaton, Andrew; Diedrich, Ben; Stiltner, Brandon C.

    2018-01-01

    A novel mechanism, the Active Mass Translator (AMT), has been developed for the NASA Near Earth Asteroid (NEA) Scout mission to autonomously manage the spacecraft momentum. The NEA Scout CubeSat will launch as a secondary payload onboard Exploration Mission 1 of the Space Launch System. To accomplish its mission, the CubeSat will be propelled by an 86 square-meter solar sail during its two-year journey to reach asteroid 1991VG. NEA Scout's primary attitude control system uses reaction wheels for holding attitude and performing slew maneuvers, while a cold gas reaction control system performs the initial detumble and early trajectory correction maneuvers. The AMT control system requirements, feedback architecture, and control performance will be presented. The AMT reduces the amount of reaction control propellant needed for momentum management and allows for smaller capacity reaction wheels suitable for the limited 6U spacecraft volume. The reduced spacecraft mass allows higher in-space solar sail acceleration, thus reducing time-of-flight. The reduced time-of-flight opens the range of possible missions, which is limited by the lifetime of typical non-radiation tolerant CubeSat avionics exposed to the deep-space environment.

  14. Tracing meteorite source regions through asteroid spectroscopy

    Science.gov (United States)

    Thomas, Cristina Ana

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original solar system formation locations for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these meteorite classes. Our NEO- meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. An apparent (significant at the 2.1-sigma level) source region signature is found for the H chondrites to be preferentially delivered to the inner solar system through the 3:1 mean motion resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites. The spectroscopy of asteroids is subject to several sources of inherent error. The source region model used a variety of S-type spectra without

  15. Reverse Asteroids: Searching for an Effective Tool to Combat Asteroid Belt Misconceptions

    Science.gov (United States)

    Summers, F.; Eisenhamer, B.

    2014-12-01

    The public 'knows' that asteroid belts are densely packed and dangerous for spaceships to cross. Visuals from "Star Wars" to, unfortunately, the recent "Cosmos" TV series have firmly established this astronomical misconception. However, even scientifically correct graphics, such as the Minor Planet Center's plot of the inner solar system, reinforces that view. Each pixel in the image is more than a million kilometers in width, making an accurate representation of the object density impossible.To address this widespread misconception, we are investigating an educational exercise built around a computer interactive that we call "Reverse Asteroids". In the arcade classic video game, the asteroids came to the player's spaceship. For our reverse implementation, we consider an inquiry-based activity in which the spaceship must go hunting for the asteroids, using a database of real objects in our solar system. Both 3D data visualization and basic statistical analysis play crucial roles in bringing out the true space density within the asteroid belt, and perhaps a reconciliation between imagination and reality. We also emphasize that a partnership of scientists and educators is fundamental to the success of such projects.

  16. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  17. Application of photometric models to asteroids

    International Nuclear Information System (INIS)

    Bowell, E.; Dominque, D.; Hapke, B.

    1989-01-01

    The way an asteroid or other atmosphereless solar system body varies in brightness in response to changing illumination and viewing geometry depends in a very complicated way on the physical and optical properties of its surface and on its overall shape. The authors summarize the formulation and application of recent photometric models by Hapke and by Lumme and Bowell. In both models, the brightness of a rough and porous surface is parametrized in terms of the optical properties of individual particles, by shadowing between particles, and by the way in which light scattered among collections of particles. Both models succeed in their goal of fitting the observed photometric behavior of a wide variety of bodies, but neither has led to a very complete understanding of the properties of asteroid regoliths, primarily because in most cases the parameters in the present models cannot be adequately constrained by observations of integral brightness alone over a restricted range of phase angles

  18. The Bering small vehicle asteroid mission concept

    DEFF Research Database (Denmark)

    Michelsen, Rene; Andersen, Anja; Haack, Henning

    2004-01-01

    targets. The dilemma obviously being the resolution versus distance and the statistics versus DeltaV requirements. Using advanced instrumentation and onboard autonomy, we have developed a space mission concept whose goal is to map the flux, size, and taxonomy distributions of asteroids. The main focus....... Although the telescope based research offers precise orbital information, it is limited to the brighter, larger objects, and taxonomy as well as morphology resolution is limited. Conversely, dedicated missions offer detailed surface mapping in radar, visual, and prompt gamma, but only for a few selected......The study of asteroids is traditionally performed by means of large Earth based telescopes, by means of which orbital elements and spectral properties are acquired. Space borne research, has so far been limited to a few occasional flybys and a couple of dedicated flights to a single selected target...

  19. Computation of Asteroid Proper Elements: Recent Advances

    Science.gov (United States)

    Knežević, Z.

    2017-12-01

    The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.

  20. Asteroids - the modern challenge of celestial dynamics

    Science.gov (United States)

    Dikova, Smiliana

    2002-11-01

    Among the most powerful statements in Science are those that mark absolute limits to knowledge. For example, Relativity and Quantum Theory touched the limits of speed and accuracy. Deterministic Chaos - the new scientific paradigma of our days, also falls in this class theories. Chaos means complexity in space and unpredictability in time. It shows the limit of our basic counting system and leads to a limited predictability of the long time dynamical evolution. Perhaps for that reason, in 1986 Sir James Lighthill remarked for all physicists: "We collectively wish to apologize for having misled the general educated public by spreading ideas about the determinism of systems satisfying Newton's laws of motion that, after 1960, were proved incorrect." Our main thesis is that Asteroid Dynamics is the arena where the drama Chaos versus predictability is initiated and developed. The aim of the present research is to show the way in which Deterministic Chaos restricts the long term dynamical predictability of asteroid motions.

  1. Evidence for ground-ice occurrence on asteroid Vesta using Dawn bistatic radar observations

    Science.gov (United States)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.

    2017-12-01

    From 2011 to 2012, the Dawn spacecraft orbited asteroid Vesta, the first of its two targets in the asteroid belt, and conducted the first bistatic radar (BSR) experiment at a small-body, during which Dawn's high-gain communications antenna is used to transmit radar waves that scatter from Vesta's surface toward Earth at high incidence angles just before and after occultation of the spacecraft behind the asteroid. Among the 14 observed mid-latitude forward-scatter reflections, the radar cross section ranges from 84 ± 8 km2 (near Saturnalia Fossae) to 3,588 ± 200 km2 (northwest of Caparronia crater), implying substantial spatial variation in centimeter- to decimeter-scale surface roughness. The compared distributions of surface roughness and subsurface hydrogen concentration [H]—measured using data from Dawn's BSR experiment and Gamma Ray and Neutron Spectrometer (GRaND), respectively—reveal the occurrence of heightened subsurface [H] with smoother terrains that cover tens of square kilometers. Furthermore, unlike on the Moon, we observe no correlation between surface roughness and surface ages on Vesta—whether the latter is derived from lunar or asteroid-flux chronology [Williams et al., 2014]—suggesting that cratering processes alone are insufficient to explain Vesta's surface texture at centimeter-to-decimeter scales. Dawn's BSR observations support the hypothesis of transient melting, runoff and recrystallization of potential ground-ice deposits, which are postulated to flow along fractures after an impact, and provide a mechanism for the smoothing of otherwise rough, fragmented impact ejecta. Potential ground-ice presence within Vesta's subsurface was first proposed by Scully et al. [2014], who identified geomorphological evidence for transient water flow along several of Vesta's crater walls using Dawn Framing Camera images. While airless, differentiated bodies such as Vesta and the Moon are thought to have depleted their initial volatile content

  2. Consequences of Predicted or Actual Asteroid Impacts

    Science.gov (United States)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  3. Formation of asteroid pairs by rotational fission

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Vokrouhlický, D.; Polishook, D.; Scheeres, D.J.; Harris, A. W.; Galád, Adrián; Vaduvescu, O.; Pozo, F.; Barr, A.; Longa, P.; Vachier, F.; Colas, F.; Pray, D. P.; Pollock, J.; Reichart, D. E.; Ivarsen, K.M.; Haislip, J.B.; LaCluyze, A.; Kušnirák, Peter; Henych, Tomáš; Marchis, F.; Macomber, B.; Jacobson, S.A.; Krugly, Yu. N.; Sergeev, A.V.; Leroy, A.

    2010-01-01

    Roč. 466, č. 7310 (2010), s. 1085-1088 ISSN 0028-0836 R&D Projects: GA ČR GA205/09/1107; GA ČR GD205/08/H005 Institutional research plan: CEZ:AV0Z10030501 Keywords : full 2-body problem * binary asteroids * stability Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 36.101, year: 2010

  4. Dynamical portrait of the Hoffmeister asteroid family

    Science.gov (United States)

    Novakovic, Bojan; Maurel, Clara; Tsirvoulis, Georgios; Knezevic, Zoran; Radovic, Viktor

    2015-08-01

    The (1726) Hoffmeister asteroid family is located in the middle of the Main Belt, between 2.75 and 2.82 AU. It draws our attention due to its unusual shape when projected to the semi-major axis vs. inclination plane. Actually, the distribution of family members as seen in this plane clearly suggests different dynamical evolution for the two parts of the family delimited in terms of semi-major axis.Therefore, we investigate here the dynamics of the family members aiming primarily to explain the observed unusual shape, but we also reconstruct the evolution of the whole family in time, and estimated its age.The Hoffmeister family is close to the fourth degree secular resonance z1=g-g6+s-s6, and in the neighborhood of the most massive asteroid (1) Ceres, each of these possibly being responsible for the strange shape of the family. To identify which ones, if any, among the different possible dynamical mechanisms are actually at work here, we performed a set of numerical integrations. We integrate the orbits of test particles over 300 Myr, as the age of the Hoffmeister family was previously roughly estimated to be 300 ± 200 Myr. Moreover, in order to identify and isolate the main perturber(s), we repeat four times the integrations using each time a different dynamical model, taking or not into account the Yarkovsky effect and dwarf planet Ceres as a perturbing body.Our results reveal the significant role of a so far overlooked dynamical aspect, namely a secular resonance between the dwarf planet Ceres and other asteroids. In particular, we show that the post-impact evolution of the Hoffmeister asteroid family is a direct consequence of the nodal secular resonance with Ceres.

  5. Alien Asteroid Belt Compared to our Own

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.

  6. ASTEROID SIZING BY RADIOGALAXY OCCULTATION AT 5 GHZ

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.; Muinonen, K.; Poutanen, M. [Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430 Masala (Finland); Bach, U. [Max-Planck-Institut für Radioastronomie, Radioobservatorium Effelsberg, Max-Planck-Str. 28, D-53902 Bad Münstereifel-Effelsberg (Germany); Petrov, L., E-mail: kimmo.lehtinen@nls.fi [Astrogeo Center, Falls Church, VA 22043 (United States)

    2016-05-10

    Stellar occultations by asteroids observed at visual wavelengths have been an important tool for studying the size and shape of asteroids and for revising the orbital parameters of asteroids. At radio frequencies, a shadow of an asteroid on the Earth is dominated by diffraction effects. Here, we show, for the first time, that a single observation of an occultation of a compact radio source at a frequency of 5 GHz can be used to derive the effective size of the occulting object and to derive the distance between the observer and the center of the occultation path on the Earth. The derived diameter of the occulting object, asteroid (115) Thyra, is 75 ± 6 km. The observed occultation profile shows features that cannot be explained by diffraction of a single asteroid.

  7. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  8. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  9. Progress in clinical research of asteroid hyalosis

    Directory of Open Access Journals (Sweden)

    Xiao-Xue Liu

    2017-08-01

    Full Text Available Asteroid Hyalosis(AHis a common clinical disease, which has been considered a benign disorder as it rarely impairs visual acuity. It was often discovered when the patient was treated for other eye diseases. The mechanism was unclear. Its characteristic B-ultrasound property makes the B-ultrasound a very helpful diagnostic technique. In the case of the patients with other fundus diseases associated with AH, optical coherence tomography(OCTand fluorescein angiography(FAmay be used to reduce the interference from asteroid bodies, therefore improve the fundus visibility. Recent studies have shown that AH can incorporate with many other eye diseases. For example, in patients with cataracts, asteroid hyalosis can cause surface calcification of silicone plate intraocular lenses, which in most cases may lead to the need for explantation of the calcified intraocular lenses. The efficacy of pars plana vitrectomy(PPV, the removal of some, or all, of the eye's vitreous humor for AH remains controversial. In this paper, we provide a review of the recent literature on AH disease: the etiology, diagnosis and treatment. We hope to thus improve the awareness and outcomes of AH disease.

  10. A Probabilistic Asteroid Impact Risk Model

    Science.gov (United States)

    Mathias, Donovan L.; Wheeler, Lorien F.; Dotson, Jessie L.

    2016-01-01

    Asteroid threat assessment requires the quantification of both the impact likelihood and resulting consequence across the range of possible events. This paper presents a probabilistic asteroid impact risk (PAIR) assessment model developed for this purpose. The model incorporates published impact frequency rates with state-of-the-art consequence assessment tools, applied within a Monte Carlo framework that generates sets of impact scenarios from uncertain parameter distributions. Explicit treatment of atmospheric entry is included to produce energy deposition rates that account for the effects of thermal ablation and object fragmentation. These energy deposition rates are used to model the resulting ground damage, and affected populations are computed for the sampled impact locations. The results for each scenario are aggregated into a distribution of potential outcomes that reflect the range of uncertain impact parameters, population densities, and strike probabilities. As an illustration of the utility of the PAIR model, the results are used to address the question of what minimum size asteroid constitutes a threat to the population. To answer this question, complete distributions of results are combined with a hypothetical risk tolerance posture to provide the minimum size, given sets of initial assumptions. Model outputs demonstrate how such questions can be answered and provide a means for interpreting the effect that input assumptions and uncertainty can have on final risk-based decisions. Model results can be used to prioritize investments to gain knowledge in critical areas or, conversely, to identify areas where additional data has little effect on the metrics of interest.

  11. Asteroids in the High Cadence Transient Survey

    Science.gov (United States)

    Peña, J.; Fuentes, C.; Förster, F.; Maureira, J. C.; San Martín, J.; Littín, J.; Huijse, P.; Cabrera-Vives, G.; Estévez, P. A.; Galbany, L.; González-Gaitán, S.; Martínez, J.; de Jaeger, Th.; Hamuy, M.

    2018-03-01

    We report on the serendipitous observations of solar system objects imaged during the High cadence Transient Survey 2014 observation campaign. Data from this high-cadence wide-field survey was originally analyzed for finding variable static sources using machine learning to select the most-likely candidates. In this work, we search for moving transients consistent with solar system objects and derive their orbital parameters. We use a simple, custom motion detection algorithm to link trajectories and assume Keplerian motion to derive the asteroid’s orbital parameters. We use known asteroids from the Minor Planet Center database to assess the detection efficiency of the survey and our search algorithm. Trajectories have an average of nine detections spread over two days, and our fit yields typical errors of {σ }a∼ 0.07 {au}, σ e ∼ 0.07 and σ i ∼ 0.°5 in semimajor axis, eccentricity, and inclination, respectively, for known asteroids in our sample. We extract 7700 orbits from our trajectories, identifying 19 near-Earth objects, 6687 asteroids, 14 Centaurs, and 15 trans-Neptunian objects. This highlights the complementarity of supernova wide-field surveys for solar system research and the significance of machine learning to clean data of false detections. It is a good example of the data-driven science that Large Synoptic Survey Telescope will deliver.

  12. DISINTEGRATING ASTEROID P/2013 R3

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David; Li, Jing [Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Agarwal, Jessica [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: jewitt@ucla.edu [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 85721-0092 (United States)

    2014-03-20

    Splitting of the nuclei of comets into multiple components has been frequently observed but, to date, no main-belt asteroid has been observed to break up. Using the Hubble Space Telescope, we find that main-belt asteroid P/2013 R3 consists of 10 or more distinct components, the largest up to 200 m in radius (assumed geometric albedo of 0.05) each of which produces a coma and comet-like dust tail. A diffuse debris cloud with total mass ∼2 × 10{sup 8} kg further envelopes the entire system. The velocity dispersion among the components, ΔV ∼ 0.2-0.5 m s{sup –1}, is comparable to the gravitational escape speeds of the largest members, while their extrapolated plane-of-sky motions suggest a break up between 2013 February and September. The broadband optical colors are those of a C-type asteroid. We find no spectral evidence for gaseous emission, placing model-dependent upper limits to the water production rate ≤1 kg s{sup –1}. Breakup may be due to a rotationally induced structural failure of the precursor body.

  13. Naming asteroids for the popularisation of astronomy

    Science.gov (United States)

    Naranjo, O. A.

    2008-06-01

    We give a detailed description of how the naming of asteroids was used as a prize in competitions run by educational institutions and museums. There were two events, one in Venezuela and one in Brazil, which used this as an attractive alternative method for the popularisation of astronomy. The first competition, named Bautizo Espacial (Space Baptism), consisted of scientific stories written by high school students. The second, called Grande Desafio (Big Challenge), was a competition where teams of students were challenged to design and build prototype equipment to fight forest fires. Nationally, both events received wide publicity through newspapers, radio, TV and web pages, reaching many people in both countries. As part of both the events, several activities promoting the public knowledge of astronomy were held. The asteroids that were named in these competitions are just some of the many discovered in a search programme developed by the Group of Theoretical Astrophysics of University of Los Andes in Mérida, Venezuela (Grupo de Astrofisica Teórica de la Universidad de Los Andes) as a mainstream research programme. Finally, Asteroids for the Popularisation of Astronomy has been formally proposed to the IAU as a worldwide programme during the celebration of the International Year of Astronomy in 2009 (IYA2009).

  14. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  15. A concept for providing warning of earth impacts by small asteroids

    Science.gov (United States)

    Dunham, D. W.; Reitsema, H. J.; Lu, E.; Arentz, R.; Linfield, R.; Chapman, C.; Farquhar, R.; Ledkov, A. A.; Eismont, N. A.; Chumachenko, E.

    2013-07-01

    Earth towards the Sun, to find most asteroids larger than about 5 meters that approach the Earth from the solar direction. The spacecraft would scan 165 square degrees of the sky around the Earth every hour, finding asteroids when they are brightest (small phase angle) as they approach Earth. We will undertake Monte Carlo studies to see what fraction of asteroids 5 m and larger approaching from the Sun might be found by such a mission, and how much warning time might typically be expected. Also, we will check the overall coverage for all Earth-approaching NEO's, including ground-based observations and observations by the recently-launched NEOSSat, which may best fill any gaps in coverage between that provided by an SE-L1 telescope and ground-based surveys. Many of the objects as large as 50 m, like the one that created Meteor Crater in Arizona, will not be found by current NEO surveys, while they would usually be seen by this possible mission even if they approached from the direction of the Sun. We should give better warning for future "Bolts out of the blue."

  16. Asteroid Lightcurves from Xingming Observatory: 2017 - 2017 June

    Science.gov (United States)

    Tan, Hanjie; Yeh, Tingshuo; Li, Bin; Gao, Xing

    2018-01-01

    The lightcurves of main-belt asteroids 963, 1025, 2019, and 17814 and near-Earth asteroids (NEAs) 459872, 2014 JO25, and 2017 BS32 were obtained using Xingming Observatory (Code C42) from 2016 March to 2017 March. The absolute magnitudes of these asteroids range from H = 11.6 to 27.3, corresponding to a diameter range of 14 m to 14 km. The derived synodic rotation periods range between 0.1 to 10 h.

  17. Methods of determination of periods in the motion of asteroids

    Science.gov (United States)

    Bien, R.; Schubart, J.

    Numerical techniques for the analysis of fundamental periods in asteroidal motion are evaluated. The specific techniques evaluated were: the periodogram analysis procedure of Wundt (1980); Stumpff's (1937) system of algebraic transformations; and Labrouste's procedure. It is shown that the Labrouste procedure permitted sufficient isolation of single oscillations from the quasi-periodic process of asteroidal motion. The procedure was applied to the analysis of resonance in the motion of Trojan-type and Hilda-type asteroids, and some preliminary results are discussed.

  18. Example Solar Electric Propulsion System asteroid tours using variational calculus

    Science.gov (United States)

    Burrows, R. R.

    1985-01-01

    Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.

  19. Antimatter applied for Earth protection from asteroid collision

    Science.gov (United States)

    Satori, Shin; Kuninaka, Hitoshi; Kuriki, Kyoichi

    1990-01-01

    An Earth protection system against asteroids and meteorites in colliding orbit is proposed. The system consists of detection and deorbiting systems. Analyses are given for the resolution of microwave optics, the detectability of radar, the orbital plan of intercepting operation, and the antimatter mass require for totally or partially blasting the asteroid. Antimatter of 1 kg is required for deorbiting an asteroid 200 m in diameter. An experimental simulation of antimatter cooling and storage is planned. The facility under construction is discussed.

  20. A CubeSat Asteroid Mission: Design Study and Trade-Offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa; Hepp, Aloysius; Stegeman, James; Bur, Mike; Burke, Laura; Martini, Michael; Fittje, James E.; Kohout, Lisa; hide

    2014-01-01

    There is considerable interest in expanding the applicability of cubesat spacecraft into lightweight, low cost missions beyond Low Earth Orbit. A conceptual design was done for a 6-U cubesat for a technology demonstration to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective was a mission to be launched on the SLS test launch EM-1 to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0. Targeting asteroids that fly close to earth minimizes the propulsion required for fly-by/rendezvous. Due to mass constraints, high specific impulse is required, and volume constraints mean the propellant density was also of great importance to the ability to achieve the required deltaV. This improves the relative usefulness of the electrospray salt, with higher propellant density. In order to minimize high pressure tanks and volatiles, the salt electrospray and iodine ion propulsion systems were the optimum designs for the fly-by and rendezvous missions respectively combined with a thruster gimbal and wheel system For the candidate fly-by mission, with a mission deltaV of about 400 m/s, the mission objectives could be accomplished with a 800s electrospray propulsion system, incorporating a propellant-less cathode and a bellows salt tank. This propulsion system is planned for demonstration on 2015 LEO and 2016 GEO DARPA flights. For the rendezvous mission, at a ?V of 2000 m/s, the mission could be accomplished with a 50W miniature ion propulsion system running iodine propellant. This propulsion system is not yet demonstrated in space. The conceptual design shows that an asteroid mission is possible using a cubesat

  1. Anchoring a lander on an asteroid using foam stabilization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has proposed several missions to land a craft on an asteroid and potentially to return samples from it. While large asteroids in the asteroid belt can exhibit a...

  2. SUBMILLIMETER LIGHTCURVES OF ASTEROIDS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Submillimeter lightcurves of large asteroids Ceres, Davida, Io, Juno, Pallas, Vesta, and Victoria, observed at the Heinrich-Hertz Submillimeter Telescope from...

  3. Photometric geodesy of main-belt asteroids. III. Additional lightcurves

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.; Chapman, C.R.; Davis, D.R.; Greenberg, R.; Levy, D.H.

    1990-01-01

    A total of 107 complete or partial lightcurves are presented for 59 different asteroids over the 1982-1989 period. Unusual lightcurves with unequal minima and maxima at large amplitudes are preferentially seen for M-type asteroids. Some asteroids, such as 16 Psyche and 201 Penelope, exhibit lightcurves combining large amplitude with very unequal brightness for both maxima and both minima, even at small phase angles. An M-type asteroid is believed to consist of a metal core of a differentiated parent body that has had its rocky mantle completely removed by one or more large impacts. 39 refs

  4. Capturing asteroids into bound orbits around the earth: Massive early return on an asteroid terminal defense system

    International Nuclear Information System (INIS)

    Hills, J.G.

    1992-01-01

    Nuclear explosives may be used to capture small asteroids (e.g., 20--50 meters in diameter) into bound orbits around the earth. The captured objects could be used for construction material for manned and unmanned activity in Earth orbit. Asteroids with small approach velocities, which are the ones most likely to have close approaches to the Earth, require the least energy for capture. They are particularly easy to capture if they pass within one Earth radius of the surface of the Earth. They could be intercepted with intercontinental missiles if the latter were retrofit with a more flexible guiding and homing capability. This asteroid capture-defense system could be implemented in a few years at low cost by using decommissioned ICMs. The economic value of even one captured asteroid is many times the initial investment. The asteroid capture system would be an essential part of the learning curve for dealing with larger asteroids that can hit the earth

  5. Discovering the cosmos with small spacecraft the American explorer program

    CERN Document Server

    Harvey, Brian

    2018-01-01

    Explorer was the original American space program and Explorer 1 its first satellite, launched in 1958. Sixty years later, it is the longest continuously running space program in the world, demonstrating to the world how we can explore the cosmos with small spacecraft. Almost a hundred Explorers have already been launched.  Explorers have made some of the fundamental discoveries of the Space Age.Explorer 1 discovered Earth’s radiation belts. Later Explorers surveyed the Sun, the X-ray and ultraviolet universes, black holes, magnetars and gamma ray bursts. An Explorer found the remnant of the Big Bang. One Explorer chased and was the first to intercept a comet. The program went through a period of few launches during the crisis of funding for space science in the 1980s. However, with the era of ‘faster, cheaper, better,’ the program was reinvented, and new exiting missions began to take shape, like Swift and the asteroid hunter WISE.  Discovering the Cosmos with Small Spacecraft gives an account of ...

  6. The Rosetta Mission - Where no Spacecraft has gone before

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    This Talk will provide an overview on the Scientific Highlights of the Rosetta Mission. After travelling through the Solar System for nearly 10 years Rosetta arrived at its main target, Comet 67/P Churyumov-Gerasimenko, in August 2014. Following an initial characterisation of the Comet, the lander unit Philae touched down on the partly active Nucleus on November 12 of the same year. The data acquired from the numerous instruments onboard the Spacecraft provides a unique insight into the properties of the Comets. While most of the measurements and processing of the data are still ongoing, the results from the Mission provide continuous surprises to the scientific community. While the Lander has been reactivated with some difficulties after a few months of inactivity due to low insolation levels, the Orbiter is pursuing its main mission objectives until the end of its extended Mission in Autumn 2016. During the long journey, the Spacecraft had encountered Earth, Mars and two Asteroids ( 2867 Šteins and 21 Lu...

  7. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  8. Comets, Asteroids, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide

  9. Resurfacing asteroids from YORP spin-up and failure

    Science.gov (United States)

    Graves, Kevin J.; Minton, David A.; Hirabayashi, Masatoshi; DeMeo, Francesca E.; Carry, Benoit

    2018-04-01

    The spectral properties of S and Q-type asteroids can change over time due to interaction with the solar wind and micrometeorite impacts in a process known as 'space weathering.' Space weathering raises the spectral slope and decreases the 1 μm absorption band depth in the spectra of S and Q-type asteroids. Over time, Q-type asteroids, which have very similar spectra to ordinary chondrite meteorites, will change into S-type asteroids. Because there are a significant number of Q-type asteroids, there must be some process which is resurfacing S-type asteroids into Q-types. In this study, we use asteroid data from the Sloan Digital Sky Survey to show a trend between the slope through the g‧, r‧, and i‧ filters, called the gri-slope, and size that holds for all populations of S and Q-type asteroids in the inner solar system, regardless of orbit. We model the evolution of a suite of asteroids in a Monte Carlo YORP rotational evolution and space weathering model. We show that spin-up and failure from YORP is one of the key resurfacing mechanisms that creates the observed weathering trends with size. By varying the non-dimensional YORP coefficient and running time of the present model over the range 475-1425 Myr, we find a range of values for the space weathering timescale, τSW ≈ 19-80 Myr at 2.2 AU. We also estimate the time to weather a newly resurfaced Q-type asteroid into an S-complex asteroid at 1 AU, τQ → S(1AU) ≈ 2-7 Myr.

  10. Bayesian modeling of the mass and density of asteroids

    Science.gov (United States)

    Dotson, Jessie L.; Mathias, Donovan

    2017-10-01

    Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.

  11. Imaging Asteroid 4 Vesta Using the Framing Camera

    Science.gov (United States)

    Keller, H. Uwe; Nathues, Andreas; Coradini, Angioletta; Jaumann, Ralf; Jorda, Laurent; Li, Jian-Yang; Mittlefehldt, David W.; Mottola, Stefano; Raymond, C. A.; Schroeder, Stefan E.

    2011-01-01

    The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters. Vesta will be observed from 3 orbit stages with image scales of 227, 63, and 17 m/px, respectively. The mapping of Vesta s surface with medium resolution will be only completed during the exit phase when the north pole will be illuminated. A detailed pointing strategy will cover the surface at least twice at similar phase angles to provide stereo views for reconstruction of the topography. During approach the phase function of Vesta was determined over a range of angles not accessible from earth. This is the first step in deriving the photometric function of the surface. Combining the topography based on stereo tie points with the photometry in an iterative procedure will disclose details of the surface morphology at considerably smaller scales than the pixel scale. The 7 color filters are well positioned to provide information on the spectral slope in the visible, the depth of the strong pyroxene absorption band, and their variability over the surface. Cross calibration with the VIR spectrometer that extends into the near IR will provide detailed maps of Vesta s surface mineralogy and physical properties. Georeferencing all these observation will result in a coherent and unique data set. During Dawn s approach and capture FC has already demonstrated its performance. The strong variation observed by the Hubble Space Telescope can now be correlated with surface units and features. We will report on results obtained from images taken during survey mode covering the whole illuminated surface. Vesta is a planet-like differentiated body, but its surface

  12. Deep Interior Mission: Imaging the Interior of Near-Earth Asteroids Using Radio Reflection Tomography

    Science.gov (United States)

    Safaeinili, A.; Asphaug, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.

    2004-12-01

    Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth in the future. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Our mission's RRT technique is analogous to doing a ``CAT scan" of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use a redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Deep interior has two targets (S-type 1999 ND43 and V-type Nyx ) whose composition bracket the diversity of solar system materials that we are likely to encounter, and are richly complementary.

  13. DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions

    Science.gov (United States)

    Giorgini, Jon D.; Chamberlin, Alan B.

    2014-11-01

    A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.

  14. Seven Asteroids Studied from Modra Observatory in the Course of Binary Asteroid Photometric Campaign

    Czech Academy of Sciences Publication Activity Database

    Galád, Adrián; Pravec, Petr; Kornoš, L.; Gajdoš, Š.; Világi, J.

    2007-01-01

    Roč. 101, 1-2 (2007), s. 17-25 ISSN 0167-9295 R&D Projects: GA ČR(CZ) GA205/05/0604 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.558, year: 2007

  15. Investigating the origin of the asteroids and early findings on Vesta historical studies in asteroid research

    CERN Document Server

    Cunningham, Clifford J

    2017-01-01

    This book assesses the origin of asteroids by analyzing the discovery of Vesta in 1807. Wilhelm Olbers, who discovered Vesta, suggested that the asteroids were the result of a primordial planet’s explosion. Cunningham studies that idea in detail through the writings of Sir David Brewster in Scotland, the era's most prolific writer about the asteroids. He also examines the link between meteorites and asteroids, revealing a synergy between Ernst Chladni, Romantic symbolism, and the music of the spheres. Vesta was a lightning rod for controversy throughout the nineteenth century with observers arguing over its size and color, and the astounding notion that it was self-luminous. It was also a major force for change, as new methods in the field of celestial mechanics were developed to study the orbital perturbations it is subject to. A large selection of private correspondence and scientific papers complete the first comprehensive historical study of Vesta ever published. With a synoptic look at the four astero...

  16. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  17. A SEARCH FOR ASTEROIDS, MOONS, AND RINGS ORBITING WHITE DWARFS

    International Nuclear Information System (INIS)

    Di Stefano, Rosanne; Howell, Steve B.; Kawaler, Steven D.

    2010-01-01

    Do white dwarfs host asteroid systems? Although several lines of argument suggest that white dwarfs may be orbited by large populations of asteroids, transits would provide the most direct evidence. We demonstrate that the Kepler mission has the capability to detect transits of white dwarfs by asteroids. Because white-dwarf asteroid systems, if they exist, are likely to contain many asteroids orbiting in a spatially extended distribution, discoveries of asteroid transits can be made by monitoring only a small number of white dwarfs, compatible with Kepler's primary mission, which is to monitor stars with potentially habitable planets. Possible future missions that survey 10 times as many stars with similar sensitivity and minute-cadence monitoring can establish the characteristics of asteroid systems around white dwarfs, such as the distribution of asteroid sizes and semimajor axes. Transits by planets would be more dramatic, but the probability that they will occur is lower. Ensembles of planetary moons and/or the presence of rings around planets can also produce transits detectable by Kepler. The presence of moons and rings can significantly increase the probability that Kepler will discover planets orbiting white dwarfs, even while monitoring only a small number of them.

  18. Determination of pole orientations and shapes of asteroids

    International Nuclear Information System (INIS)

    Magnusson, P.; Barucci, M.A.; Drummond, J.D.; Lumme, K.; Surdej, J.

    1989-01-01

    The principles of asteroid lightcurve inversion and the information available from photometry are reviewed. General tools as well as specific techniques for shape and pole determinations are summarized and their advantages and shortcomings are discussed. The authors present the results obtained so far in this very active field and discuss their significance in the general context of asteroid research and planetary formation

  19. Earth-approaching asteroids: Populations, origin, and compositional types

    Science.gov (United States)

    Shoemaker, E. M.; Helin, E. F.

    1978-01-01

    Origin, physical properties, and discovery history of smaller asteroids are reviewed. They appear to link the main belt objects, namely the comets and meteorites. Physical observations suggest that a wide variety of compositional types are represented among the near-earth asteroids; the apparent rarity of carbonaceous objects is stated.

  20. Forging Asteroid-Meteorite Relationships Through Reflectance Spectroscopy

    Science.gov (United States)

    Burbine, T. H.; Binzel, R. P.; Bus, S. J.; Buchanan, P. C.; Hinrichs, J. L.; Meibom, A.; Hiroi, T.; Sunshine, J. M.

    2000-01-01

    Near-infrared spectra were obtained for 196 asteroids as part of SMASSIR. SMASSIR focused on observing asteroids assumed to be one of the following: (1) olivine-rich, (2) objects with "Vesta-like spectra" (the "Vestoids"), and (3) postulated meteorite parent bodies.

  1. Modeling Asteroid Dynamics using AMUSE: First Test Cases

    NARCIS (Netherlands)

    Frantseva, Kateryna; Mueller, Michael; van der Tak, Floris; Helmich, Frank P.

    2015-01-01

    We are creating a dynamic model of the current asteroid population. The goal is to reproduce measured impact rates in the current Solar System, from which we'll derive delivery rates of water and organic material by tracing low-albedo C-class asteroids (using the measured albedo distribution from

  2. Delivery of organics to Mars through asteroid and comet impacts

    NARCIS (Netherlands)

    Frantseva, K.; Mueller, M.; van der Tak, F. F. S.; ten Kate, I. L.; Greenstreet, S.

    2017-01-01

    Preliminary results show that the asteroid-borne organic flux on Mars is comparable to the IPD rate; asteroids certainly cannot be neglected. Comets, on the other hand, contribute only 0.01% of the IDP-borne rate and can be neglected in the process of organic delivery to Mars.

  3. Mothe-Diniz Asteroid Dynamical Families V1.0

    Science.gov (United States)

    Mothe-Diniz, T.; Roig, F.; Carvano, J. M.

    2006-03-01

    This dataset contains an updated compilation of asteroid families and clusters, resulting from the application of the Hierarchical Clustering Method (HCM) on a set of around 120,000 asteroids with available proper elements. Whenever available, the classification in the Bus taxonomy is provided for family members, based on spectra from the SMASS, SMASS2 and S3OS2 spectroscopic surveys.

  4. Differentiation of Asteroid 4 Vesta: Core Formation by Iron Rain in a Silicate Magma Ocean

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft while orbiting asteroid 4 Vesta, suggest that Vesta resembles H chondrites in bulk chemical composition, possible with about 25 percent of a CM-chondrite like composition added in. For this model, the core is 15 percent by mass (or 8 percent by volume) of the asteroid, with a composition of 73.7 percent by weight Fe, 16.0 percent by weight S, and 10.3 percent by weight Ni. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. The combination of the melting phase relationships for the silicate and metal phases, together with the moderately siderophile element concentrations together require that complete melting of the metal phase occurred (temperature is greater than1350 degrees Centigrade), along with substantial (greater than 40 percent) melting of the silicate material. Thus, core formation on Vesta occurs as iron rain sinking through a silicate magma ocean.

  5. Spin rate distribution of small asteroids

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Harris, A. W.; Vokrouhlický, D.; Warner, B. D.; Kušnirák, Peter; Hornoch, Kamil; Pray, D. P.; Higgins, D.; Oey, J.; Galád, Adrián; Gajdoš, Š.; Kornoš, L.; Világi, J.; Husárik, M.; Krugly, Yu. N.; Shevchenko, V. G.; Chiorny, V. G.; Gaftonyuk, N. M.; Cooney jr., W. R.; Gross, J.; Terrell, D.; Stephens, R.; Dyvig, R.; Reddy, V.; Ries, J.G.; Colas, F.; Lecacheux, J.; Durkee, R.; Masi, G.; Koff, R.; Goncalves, R.

    2008-01-01

    Roč. 197, č. 2 (2008), s. 497-504 ISSN 0019-1035 R&D Projects: GA ČR(CZ) GA205/05/0604 Grant - others: NASA (US) NAG5-13244; NASA (US) NNG06GI32G; VEGA(SK) 1/3074/06; VEGA(SK) 1/3067/06; VEGA(SK) 2/7009/27 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids rotation * photometry * near-Earth objects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.268, year: 2008

  6. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  7. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  8. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    Science.gov (United States)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  9. Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission

    Czech Academy of Sciences Publication Activity Database

    Michel, P.; Cheng, A.; Kueppers, M.; Pravec, Petr; Blum, J.; Delbó, M.; Green, S.; Rosenblatt, P.; Tsiganis, K.; Vincent, J.B.; Biele, J.; Ciarletti, V.; Herique, A.; Ulamec, S.; Carnelli, I.; Galvez, A.; Benner, L. A. M.; Naidu, S.P.; Barnouin, O.; Richardson, D.C.; Rivkin, A. S.; Scheirich, Peter; Moskovitz, N.; Thirouin, A.; Schwartz, S.R.; Campo Bagatin, A.; Yu, Y.

    2016-01-01

    Roč. 57, č. 12 (2016), s. 2529-2547 ISSN 0273-1177 R&D Projects: GA ČR GA15-07193S Institutional support: RVO:67985815 Keywords : planetary defense * near- Earth asteroids * asteroid impact hazards Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  10. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  11. Can Asteroid Airbursts Cause Dangerous Tsunami?.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    I have performed a series of high-resolution hydrocode simulations to generate “source functions” for tsunami simulations as part of a proof-of-principle effort to determine whether or not the downward momentum from an asteroid airburst can couple energy into a dangerous tsunami in deep water. My new CTH simulations show enhanced momentum multiplication relative to a nuclear explosion of the same yield. Extensive sensitivity and convergence analyses demonstrate that results are robust and repeatable for simulations with sufficiently high resolution using adaptive mesh refinement. I have provided surface overpressure and wind velocity fields to tsunami modelers to use as time-dependent boundary conditions and to test the hypothesis that this mechanism can enhance the strength of the resulting shallow-water wave. The enhanced momentum result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast alone, but not necessarily due to the originally-proposed mechanism. This result has significant implications for asteroid impact risk assessment and airburst-generated tsunami will be the focus of a NASA-sponsored workshop at the Ames Research Center next summer, with follow-on funding expected.

  12. Galileo photometry of asteroid 243 Ida

    Science.gov (United States)

    Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Klaasen, K.; Johnson, T.V.; Fanale, F.; Granahan, J.; McEwen, A.S.; Belton, M.; Chapman, C.

    1996-01-01

    Galileo imaging observations over phase angles 19.5?? to 109.8?? are combined with near-opposition Earth-based data to derive the photometric properties of Ida. To first order these properties are uniform over the surface and well modeled at ?? = 0.55 ??m by Hapke parameters ????0 = 0.22, h = 0.020, B0 = 1.5, g = -0.33, and ?? = 18?? with corresponding geometric albedo p = 0.21??0.030.01 and Bond albedo AB = 0.081??0.0170.008. Ida's photometric properties are more similar to those of "average S-asteroids" (P. Helfenstein and J. Veverka 1989, Asteroids II, Univ. of Arizona Press, Tucson) than are those of 951 Gaspra. Two primary color units are identified on Ida: Terrain A exhibits a spectrum with relatively shallower 1-??m absorption and a relatively steeper red spectral slope than average Ida, while Terrain B has a deeper 1-??m absorption and a less steep red slope. The average photometric properties of Ida and Terrain A are similar while those of Terrain B differ mostly in having a slightly higher value of ????0 (0.22 versus 0.21), suggesting that Terrain B consists of slightly brighter, more transparent regolith particles. Galileo observations of Ida's satellite Dactyl over phase angles 19.5?? to 47.6?? suggest photometric characteristics similar to those of Ida, the major difference being Dactyl's slightly lower albedo (0.20 compared to 0.21). ?? 1990 Academic Press, Inc.

  13. RGB Colors of the Jovian Trojan Asteroids

    Science.gov (United States)

    Chen, Haoyuan; Zhang, Xiaofei; University of Western Australia, Youth Astronomy Teachers' Link

    2017-10-01

    We use SPIRIT I&II telescopes which has 43cm diameter, to observe around 50 Jovian Trojan asteroids. Due to the limiting magnitude of our equipment, We only choose some bright asteriods as our targets.To testify the feasibility of using RGB Bayer filter system for research project, we use the RGB Bayer filter system instead of the Johnson-Cousins BVR filters system. Once proved, the photometry data will be significantly enlarged. More collected data can be used on scientific researches and more scholars can do relevant researches by using the RGB Bayer filter system. What we did is using a software called Astrometrica to measure the magnitude of the asteroids under RGB filter. Then we transform the RGB data to BVR data. Later on we calculate the color index by using those BVR data from our calculations. The final step to do the statistic work and make graphs, and compare it with the former research data. We are aim to find same result as the research before, or why there are differnt result.We are still in the process of handling the data, so the final result will be released at the conference. This project is based on data acquired using the SPIRIT robotic telescopes at The University of Western Australia. We gratefully acknowledge the assistance of Paul Luckas, SPIRIT Program Manager.The project is supported by The University of Western Australia, Youth Astronomy Teachers' Link.

  14. The Probable Ages of Asteroid Families

    Science.gov (United States)

    Harris, A. W.

    1993-01-01

    There has been considerable debate recently over the ages of the Hirayama families, and in particular if some of the families are very oung(u) It is a straightforward task to estimate the characteristic time of a collision between a body of a given diameter, d_o, by another body of diameter greater of equal to d_1. What is less straightforward is to estimate the critical diameter ratio, d_1/d_o, above which catastrophic disruption occurs, from which one could infer probable ages of the Hirayama families, by knowing the diameter of the parent body, d_o. One can gain some insight into the probable value of d_1/d_o, and of the likely ages of existing families, from the plot below. I have computed the characteristic time between collisions in the asteroid belt of a size ratio greater of equal to d_1/d_o, for 4 sizes of target asteroids, d_o. The solid curves to the lower right are the characteristic times for a single object...

  15. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  16. An initial perspective of S-asteroid subtypes within asteroid families

    Science.gov (United States)

    Kelley, M. S.; Gaffey, M. J.

    1993-01-01

    Many main belt asteroids cluster around certain values of semi-major axis (a), inclination (i), and eccentricity (e). Hirayama was the first to notice these concentrations which he interpreted as evidence of disruptions of larger parent bodies. He called these clusters 'asteroid families'. The term 'families' is increasingly reserved for genetic associations to distinguish them from clusters of unknown or purely dynamical origin (e.g. the Phocaea cluster). Members of a genetic asteroid family represent fragments derived from various depths within the original parent planetesimal. Thus, family members offer the potential for direct examination of the interiors of parent bodies which have undergone metamorphism and differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The condition that genetic family members represent the fragments of a parent object provides a critical test of whether an association (cluster in proper element space) is a genetic family. Compositions (types and relative abundances of materials) of family members must permit the reconstruction of a compositionally plausible parent body. The compositions of proposed family members can be utilized to test the genetic reality of the family and to determine the type and degree of internal differentiation within the parent planetesimal. The interpretation of the S-class mineralogy provides a preliminary evaluation of family memberships. Detailed mineralogical and petrological analysis was done based on the reflectance spectra of 39 S-type asteroids. The result is a division of the S-asteroid class into seven subtypes based on compositional differences. These subtypes, designated S(I) to S(VII), correspond to surface silicate assemblages ranging from monomineralic olivine (dunites) through olivine-pyroxene mixtures to pure pyroxene or pyroxene-feldspar mixtures

  17. A Study Regarding the Possibility of True Polar Wander on the Asteroid Vesta

    Science.gov (United States)

    Karimi, M.; Dombard, A. J.

    2014-12-01

    The asteroid 4 Vesta, with an average diameter of ~525 km, is the second most massive asteroid in the solar system. Most of our knowledge about this differentiated asteroid comes from the Howardite-Eucrite-Diogenite class of meteorites that originated from Vesta, images provided by Hubble Space Telescope, and data from the Dawn spacecraft that orbited Vesta from July 2011 to September 2012. Notably, these close-range data confirmed what Hubble images suggested: a highly oblate shape in which the equatorial radius is ~60 km greater than the polar radius, a shape consistent with Vesta's short rotational period of ~5.3 hr. These images also revealed the presence of two large impact craters near the asteroid's south pole. Rheasilvia, the younger and larger crater at ~500 km in diameter, is superimposed over Veneneia, ~400 km in diameter. The occurrence of two large impacts near a pole, which possesses a relatively small area (less than 30% of the surface), is highly improbable. Thus, we investigate the possibility of True Polar Wander. We hypothesize that the integrated mass deficit of these two basins applied a torque to the lithosphere to reorient the surface relative to the spin axis and thereby placing these basins near the pole. In order for this phenomenon to occur, however, the lithosphere needs to be pliable enough to allow relaxation of the ancient rotational bulge and concurrent development of the current bulge. We have previously explored whether the lithosphere of Vesta could support the large-scale (~20 vertical km) topography of the basins (short answer: it can). Here, we explore whether this lithosphere could also permit True Polar Wander. We use the Finite Element Method and a viscoelastic rheology to simulate the relaxation of an oblate Vesta under a range of plausible thermal scenarios consistent with Vesta's expected budget of long-lived radiogenic nuclides. Our results indicate that under reasonable thermal conditions, the relaxation of the

  18. BILLIARDS: Baseline Instrumented Lithology Lander, Inspector and Asteroid Redirection Demonstration System

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent

    2015-01-01

    BILLIARDS Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System Proposed demonstration mission for Billiard-Ball concept Select asteroid pair with natural close approach to minimize cost and complexity Primary Objectives Rendezvous with a small (10m), near Earth (alpha) asteroid Maneuver the alpha asteroid to a collision with a 100m (beta) asteroid Produce a detectable deflection or disruption of the beta asteroid Secondary objectives Contribute knowledge of asteroid composition and characteristics Contribute knowledge of small-body formation Opportunity for international collaboration

  19. Trojan Asteroid Lightcurves: Probing Internal Structure and the Origins

    Science.gov (United States)

    Ryan, E. L.

    2017-12-01

    Studies of the small bodies of the solar system reveal important clues about the condensation and formation of planetesimal bodies, and ultimately planets in planetary systems. Dynamics of small bodies have been utilized to model giant planet migration within our solar system, colors have been used to explore compositional gradients within the protoplanetary disk, & studies of the size-frequency distribution of main belt asteroids may reveal compositional dependences on planetesimal strength limiting models of planetary growth from collisional aggregration. Studies of the optical lightcurves of asteroids also yield important information on shape and potential binarity of asteroidal bodies. The K2 mission has allowed for the unprecedented collection of Trojan asteroid lightcurves on a 30 minute cadence for baselines of 10 days, in both the L4 and L5 Trojan clouds. Preliminary results from the K2 mission suggest that Trojan asteroids have bulk densities of 1 g/cc and a binary fraction ≤ 33 percent (Ryan et al., 2017, Astronomical Journal, 153, 116), however Trojan lightcurve data is actively being collected via the continued K2 mission. We will present updated results of bulk density and binary fraction of the Trojan asteroids and compare these results to other small body populations, including Hilda asteroids, transNeptunian objects and comet nuclei to test dynamical models of the origins of these populations.

  20. Generalized Calibration of the Polarimetric Albedo Scale of Asteroids

    Science.gov (United States)

    Lupishko, D. F.

    2018-03-01

    Six different calibrations of the polarimetric albedo scale of asteroids have been published so far. Each of them contains its particular random and systematic errors and yields its values of geometric albedo. On the one hand, this complicates their analysis and comparison; on the other hand, it becomes more and more difficult to decide which of the proposed calibrations should be used. Moreover, in recent years, new databases on the albedo of asteroids obtained from the radiometric surveys of the sky with the orbital space facilities (the InfraRed Astronomical Satellite (IRAS), the Japanese astronomical satellite AKARI (which means "light"), the Wide-field Infrared Survey Explorer (WISE), and the Near-Earth Object Wide-field Survey Explorer (NEOWISE)) have appeared; and the database on the diameters and albedos of asteroids obtained from their occultations of stars has substantially increased. Here, we critically review the currently available calibrations and propose a new generalized calibration derived from the interrelations between the slope h and the albedo and between P min and the albedo. This calibration is based on all of the available series of the asteroid albedos and the most complete data on the polarization parameters of asteroids. The generalized calibration yields the values of the polarimetric albedo of asteroids in the system unified with the radiometric albedos and the albedos obtained from occultations of stars by asteroids. This, in turn, removes the difficulties in their comparison, joint analysis, etc.

  1. Size distributions of member asteroids in seven Hirayama families

    International Nuclear Information System (INIS)

    Mikami, Takao; Ishida, Keiichi.

    1990-01-01

    The size distributions of asteroids in the seven Hirayama families are studied for newly assigned member asteroids in the diameter range of about 10 to 100 km. The size distributions for the different families are expressed by the power-law functions with distinctly different power-law indices. The power-law indices for families with small mean orbital inclinations are about 2.5 to 3.0. On the other hand, the power-law indices for families with large mean orbital inclinations are significantly smaller than 2.5. This indicates that the smaller asteroids were removed preferentially from these families after their formation. It is thought that the smaller asteroids left behind the families were dispersed into the main belt. It is consistent with the fact that the power-law index for the size distribution of asteroids with diameters smaller than 25 km in the main belt is larger than the power-law indices for the size distributions of asteroids in the families. This segregation due to the asteroid size can be caused by a drag force caused by the ambient matter deposited on the invariable place of the solar system during the early evolutionary stage. (author)

  2. Redox effects in ordinary chondrites and implications for asteroid spectrophotometry

    Science.gov (United States)

    Mcsween, Harry Y., Jr.

    1992-01-01

    The sensitivity of reflectance spectra to mean ferrous iron content and olivine and pyroxene proportion enhancements in the course of metamorphic oxidation is presently used to examine whether metamorphically-induced ranges in mineralogy, and corresponding spectral parameters, may explain the observed variations in S-asteroid rotational spectra. The predicted spectral variations within any one chondrite class are, however, insufficient to account for S-asteroid rotational spectra, and predicted spectral-range slopes have a sign opposite to the rotational measurements. Metamorphic oxidation is found unable to account for S-asteroid rotational spectra.

  3. Reanalysis of Asteroid Families Structure Through Visible Spectroscopy

    Science.gov (United States)

    Mothé-Diniz, T.; Carvano, J.; Roig, F.; Lazzaro, D.

    In this work we re-analyse the presence of interlopers in asteroid families based on a larger spectral database and on a family determination which makes use of a larger set of proper elements. The asteroid families were defined using the HCM method (Zappalà et al. 1995) on the set of proper elements for 110,000 asteroids available at the Asteroid Dynamic Site (AstDyS http://hamilton.dm.unipi.it/astdys )). The spectroscopic analysis is performed using spectra on the 0.44-0.92 μ m range observed by the SMASS Xu et al. 1995, SMASSII (Bus and Binzel, 2002) and 3OS2 (Lazzaro et al. 2002) surveys, which together total around 2140 asteroids with observed spectra. The asteroid taxonomy used is the Bus taxonomy (Bus et al. 2000). A total of 22 two families were analysed . The families of Vesta, Eunomia, Hoffmeister, Dora, Merxia, Agnia, and Koronis were found to be spectrally homogeneous, which confirms previous studies. The Veritas family, on the other hand, which is quoted in the literature as an heterogeneous family was found to be quite homogeneous in the present work. The Eos family is noteworthy for being at one time spectrally heterogeneous and quite different from the background population. References Bus, S. J., and R. P. Binzel 2002. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey - The Observations. Icarus 158, 106-145. Bus, S. J., R. P. Binzel, and T. H. Burbine 2000. A New Generation of Asteroid Taxonomy. Meteoritics and Planetary Science, vol. 35, Supplement, p.A36 35, 36 +. Lazzaro, D., C. A. Angeli, T. Mothe-Diniz, J. M. Carvano, R. Duffard, and M. Florczak 2002. The superficial characterization of a large sample of asteroids: the S3OS2. Bulletin of the American Astronomical Society 34, 859 +. Xu, S., R. P. Binzel, T. H. Burbine, and S. J. Bus 1995. Small main-belt asteroid spectroscopic survey: Initial results. Icarus 115, 1-35. Zappala, V., P. Bendjoya, A. Cellino, P. Farinella, and C. Froeschle 1995. Asteroid families: Search of a 12

  4. NEOWISE REACTIVATION MISSION YEAR ONE: PRELIMINARY ASTEROID DIAMETERS AND ALBEDOS

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R.; Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S.; Stevenson, R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Wright, E. L., E-mail: cnugent@ipac.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2015-12-01

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  5. Photometry and shape modeling of Mars crosser asteroid (1011 Laodamia

    Directory of Open Access Journals (Sweden)

    Apostolovska G.

    2014-01-01

    Full Text Available An analysis of photometric observations of Mars crosser asteroid 1011 Laodamia conducted at Bulgarian National Astronomical Observatory Rozhen over a twelve year interval (2002, 2003, 2004, 2006, 2007, 2008, 2011, 2012 and 2013 is made. Based on the obtained lightcurves the spin vector, sense of rotation, and preliminary shape model of (1011 Laodamia have been determined using the lightcurve inversion method. The aim of this investigation is to increase the set of asteroids with known spin and shape parameters and to contribute in improving the model in combination with other techniques and sparse data produced by photometric asteroid surveys such as Pan-STARRS or GAIA.

  6. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  7. A deep space inventory tour of the main asteroid belt

    DEFF Research Database (Denmark)

    Gibbings, Alison; Bowles, Neil; Snodgrass, Colin

    2016-01-01

    a key tracer to understanding the dynamic evolution of the solar system, offer an insight into its early history and the origins of life forming material. Furthermore, by combing visible, near-infrared and thermal spectroscopy, the mission will unlock information on the major rock forming minerals...... a Vega-C (or Ariane 6) launch vehicle. The mission and system design is currently being developed through an ongoing mission study. Analysis is performed by a consortium of OHB System AG, Cranfield University and an association of scientists from different institutes and organisations. Concurrent......, and more importantly, place the returned samples from the up-and-coming Hayabusa-2 (JAXA) and OSIRIS-REx (NASA) missions in a wider geological context. The mission will provide an accurate description of the present day MAB population, and further refinements of the origins and evolution models of Near...

  8. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  9. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  10. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  11. Identification of families among highly inclined asteroids

    Science.gov (United States)

    Gil-Hutton, R.

    2006-07-01

    A dataset of 3652 high-inclination numbered asteroids was analyzed to search for dynamical families. A fully automated multivariate data analysis technique was applied to identify the groupings. Thirteen dynamical families and twenty-two clumps were found. When taxonomic information is available, the families show cosmochemical consistency and support an interpretation based on a common origin from a single parent body. Four families and three clumps found in this work show a size distribution which is compatible with a formation due to a cratering event on the largest member of the family, and also three families have B- or related taxonomic types members, which represents a 14% of the B-types classified by Bus and Binzel [2002. Icarus 158, 146-177].

  12. Asteroid orbital error analysis: Theory and application

    Science.gov (United States)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  13. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  14. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  15. Compositional characterization of asteroid (16) Psyche

    Science.gov (United States)

    Sanchez, Juan; Reddy, Vishnu; Shepard, Michael K.; Thomas, Cristina; Cloutis, Edward

    2016-10-01

    We present near-infrared spectra (0.7-2.5 microns) of asteroid (16) Psyche obtained with the NASA Infrared Telescope Facility. Rotationally-resolved spectra were obtained during three nights between December 2015 and February 2016. These data have been combined with three-dimensional shape models of Psyche generated with the SHAPE software package (Magri et al. 2007). From each spectrum, the band center, band depth and spectral slope were measured. We found that the band center varies from 0.92 to 0.94 microns with rotation phase, with an average value of 0.932±0.006 microns. The band depth was found to vary from 1.0 to 1.5±0.1%. Spectral slope values range from 0.25 to 0.35±0.01 microns-1, with rotation phase. We observed a possible anti-correlation between band depth and radar albedo. Using the band depth along with a new laboratory spectral calibration we estimated that Psyche has an average orthopyroxene abundance of 6±1%. The mass-deficit region of Psyche (longitudes ~ 0°-40°), characterized by having the highest radar albedo of the asteroid, also shows the highest value for the spectral slope and the minimum band depth, while the antipode of this region (longitudes ~ 180°-230°), where the radar albedo reaches its lowest value, shows a maximum in band depth and less steep spectral slopes. These results could suggest that the metal-poor antipode region has thicker regolith rich in pyroxene compared to the mass-deficit region.

  16. GRASPING THE NATURE OF POTENTIALLY HAZARDOUS ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Perna, D.; Barucci, M. A.; Fornasier, S.; Deshapriya, J. D. P. [LESIA—Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Dotto, E.; Ieva, S.; Epifani, E. Mazzotta [INAF—Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone (Roma) (Italy); Bernardi, F. [SpaceDyS, via Mario Giuntini 63, I-56023 Cascina (Pisa) (Italy); Luise, F. De [INAF—Osservatorio Astronomico di Teramo, via Mentore Maggini snd, I-64100 Teramo (Italy); Perozzi, E. [Deimos Space, Strada Buchesti 75-77, Bucharest (Romania); Rossi, A. [IFAC—CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Firenze) (Italy); Micheli, M., E-mail: davide.perna@obspm.fr [ESA—NEOCC, ESRIN, via Galileo Galilei 64, I-00044 Frascati (Rome) (Italy)

    2016-01-15

    Through their delivery of water and organics, near-Earth objects (NEOs) played an important role in the emergence of life on our planet.  However, they also pose a hazard to the Earth, as asteroid impacts could significantly affect our civilization. Potentially hazardous asteroids (PHAs) are those that, in principle, could possibly impact the Earth within the next century, producing major damage. About 1600 PHAs are currently known, from an estimated population of 4700 ± 1450. However, a comprehensive characterization of the PHA physical properties is still missing. Here we present spectroscopic observations of 14 PHAs, which we have used to derive their taxonomy, meteorite analogs, and mineralogy. Combining our results with the literature, we investigated how PHAs are distributed as a function of their dynamical and physical properties. In general, the “carbonaceous” PHAs seem to be particularly threatening, because of their high porosity (limiting the effectiveness of the main deflection techniques that could be used in space) and low inclination and minimum orbit intersection distance (MOID) with the Earth (favoring more frequent close approaches). V-type PHAs also present low MOID values, which can produce frequent close approaches (as confirmed by the recent discovery of a limited space weathering on their surfaces). We also identified those specific objects that deserve particular attention because of their extreme rotational properties, internal strength, or possible cometary nature. For PHAs and NEOs in general, we identified a possible anti-correlation between the elongation and the rotational period, in the range of P{sub rot} ≈ 5–80 hr. This would be compatible with the behavior of gravity-dominated aggregates in rotational equilibrium. For periods ≳80–90 hr, such a trend stops, possibly under the influence of the YORP effect and collisions. However, the statistics is very low, and further observational and theoretical work is required

  17. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  18. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  19. Benefits of a Single-Person Spacecraft for Weightless Operations

    Science.gov (United States)

    Griffin, Brand Norman

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work. For planetary operations space suits are still the logical choice; however for safe and rapid access to the weightless environment, spacecraft offer compelling advantages. FlexCraft, a concept for a single-person spacecraft, enables any-time access to space for short or long excursions by different astronauts. For the International Space Station (ISS), going outside is time-consuming, requiring pre-breathing, donning a fitted space suit, and pumping down an airlock. For each ISS EVA this is between 12.5 and 16 hours. FlexCraft provides immediate access to space because it operates with the same cabin atmosphere as its host. Furthermore, compared to the space suit pure oxygen environment, a mixed gas atmosphere lowers the fire risk and allows use of conventional materials and systems. For getting to the worksite, integral propulsion replaces hand-over-hand translation or having another crew member operate the robotic arm. This means less physical exertion and more time at the work site. Possibly more important, in case of an emergency, FlexCraft can return from the most distant point on ISS in less than a minute. The one-size-fits-all FlexCraft means no on-orbit inventory of parts or crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used, there is no suit trauma and because the work is not strenuous, no rest days are required. Furthermore, there is no need to collect hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job. FlexCraft is an efficient solution for asteroid exploration allowing all crew to use one vehicle with no risk of contamination. And, because FlexCraft is a vehicle, its design offers better radiation and micro-meteoroid protection than space suits.

  20. Business analysis: The commercial mission of the International Asteroid Mission

    Science.gov (United States)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  1. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    Science.gov (United States)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  2. Asteroid collisional history - Effects on sizes and spins

    International Nuclear Information System (INIS)

    Davis, D.R.; Weidenschilling, S.J.; Farinella, P.; Paolicchi, P.; Binzel, R.P.

    1989-01-01

    The effects of asteroid collisional history on sizes and spins of present-day objects are discussed. Collisional evolution studies indicate that collisions have altered the spin-rates of small bodies, but that the largest asteroids may have retained their primordial rotation rates. Most asteroids larger than 100 km diam have probably been shattered, but have gravitationally recaptured their fragments to form a rubble-pile structure. Large angular momentum asteroids appear to have Maclaurian spheroidal or Jacobi-ellipsoid-like shapes; some of them may have fissioned into binaries. An integrated size and spin collisional evolution model is presented, with two critical parameters: one which determines the spin rates for small fragments resulting from a shattering collision, and the other determines the fraction of impact angular momentum that is retained by the target. 36 refs

  3. NEAR EARTH ASTEROID TRACKING V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Near-Earth Asteroid Tracking (NEAT) project began as a collaborative effort with the United States Air Force (USAF) in December 1995. It concentrated on the...

  4. The principle of equivalence and the Trojan asteroids

    International Nuclear Information System (INIS)

    Orellana, R.; Vucetich, H.

    1986-05-01

    An analysis of the Trojan asteroids motion has been carried out in order to set limits to possible violations to the principle of equivalence. Preliminary results, in agreement with general relativity, are reported. (author)

  5. Task-Specific Asteroid Simulants for Ground Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will produce at least four asteroid simulants at high fidelity for mineral content and particle size, created through standardized inputs and documented...

  6. Carbonaceous Asteroid Volatile Recovery (CAVoR) system, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbonaceous Asteroid Volatile Recovery (CAVoR) system produces water and hydrogen-rich syngas for propellant production, life support consumables, and...

  7. HARDERSEN IRTF ASTEROID NIR REFLECTANCE SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes average near-infrared (NIR) reflectance spectra for 68 main-belt asteroids that were observed at the NASA Infrared Telescope Facility (IRTF),...

  8. EARTH ASTEROID DBP 24COLOR SURVEY V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Photometric spectra covering the range 0.32 - 1.08 micrometers for 285 numbered asteroids, as published in Chapman & Gaffey (1979b) and McFadden, et al. (1984).

  9. The CASLEO Polarimetric Survey of Main Belt Asteroids: Updated results

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Cañada-Assandri, M.

    2011-10-01

    We present updated results of the polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina, using the 2.15 m telescope and the Torino and CASPROF polarimeters. The goals of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. The survey began in 2003, and data for a sample of more than 170 asteroids have been obtained, most of them having been polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for several taxonomic classes.

  10. Physical Mechanism of Comet (and Asteroid) Outbursts: The Movie

    Science.gov (United States)

    Hartmann, W. K.

    2015-07-01

    A film made during impact experiments at NASA Ames illustrates a mechanism in which regolith can become gas charged and then erupt to create outbursts as observed on comets (and "asteroids" such as 2060 Chiron).

  11. Physical characterization of asteroid surfaces from photometric analysis

    International Nuclear Information System (INIS)

    Helfenstein, P.; Veverka, J.

    1989-01-01

    Rigorous photometric models, like Hapke's equation, can be applied to the analysis of disk-integrated phase curves in order to estimate a variety of regolith physical properties (average particle single-scattering albedo, particle transparency, soil compaction and large-scale roughness). Unfortunately, unambiguous interpretation is difficult due to uncertainties introduced by the irregular shapes of many asteroids and because Earth-based observations are often restricted to small phase angles (<30 degrees). In this chapter, the authors explore in detail how incomplete phase-angle coverage and nonsphericity of asteroids limits the reliable determination of Hapke's photometric parameters from asteroid phase curves. From obtainable Earth-based observations, it is possible to derive useful relative comparisons of single-scattering albedos, opposition-surge amplitudes, and regolith compaction states for different asteroids

  12. REDDY MAIN BELT ASTEROID SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains low-resolution (R~150) near-infrared (0.7-2.5 microns) spectra of 90 main belt asteroids observed with the SpeX instrument on the NASA...

  13. The size distribution of the earth-approaching asteroids

    Science.gov (United States)

    Rabinowitz, D. L.

    1993-01-01

    The discovery circumstances of the first asteroids ever observed outside the earth's atmosphere but within the neighborhood of the earth-moon system are described. Four natural objects with diameters in the range 5-50 m were detected during a search for earth-approaching asteroids conducted each month at the 0.91-m Spacewatch Telescope at Kitt Peak. An additional 19 earth approachers with sizes in the range 50 m to 5 km were discovered. These obervations determine the cumulative flux of asteroids near earth as a function of absolute magnitude. For asteroids larger than about 100 m, a power-law dependence with exponent of about 0.9 is observed, consistent with their evolution from the main-belt population. At about 10 m, the flux is more than two orders of magnitude greater than this power-law extrapolation.

  14. Spectral properties of near-Earth asteroids on cometary orbits

    Science.gov (United States)

    Popescu, M.; Vaduvescu, O.; de Leon, J.; Boaca, I. L.; Gherase, R. M.; Nedelcu, D. A.; INT students, I. N. G.

    2017-09-01

    We studied the spectral distributions of near-Earth asteroids on cometary orbits (NEACOs) in order to identify potential dormant or extinct comets among these objects. We present the spectral observations for 19 NEACOs obtained with Isaac Newton Telescope and Infrared Telescope Facility (IRTF). Although initially classified as asteroid, one of our targets - 2007 VA85 was confirmed to be active comet 333P/LINEAR on its 2016 appearance. We found that the NEACOs population is a mixing of different compositional classes.

  15. A radar survey of M- and X-class asteroids

    Czech Academy of Sciences Publication Activity Database

    Shepard, M.K.; Clark, B. E.; Nolan, M. C.; Howell, E. S.; Magri, C.; Giorgini, J. D.; Benner, L. A. M.; Ostro, S. J.; Harris, A. W.; Warner, B. D.; Pray, D. P.; Pravec, Petr; Fauerbach, M.; Bennett, T.; Klotz, A.; Behrend, R.; Correia, H.; Coloma, J.M.; Casulli, S.; Rivkin, A. S.

    2008-01-01

    Roč. 195, č. 1 (2008), s. 184-205 ISSN 0019-1035 R&D Projects: GA ČR(CZ) GA205/05/0604 Grant - others:NSF(US) AST-0605903; NSF(US) AST-0606704; NSF(US) AST-0607505; NASA (US) NNG06GI32G Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * asteroids composition * surfaces Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.268, year: 2008

  16. On the maximum amplitude of harmonics of an asteroid lightcurve

    Czech Academy of Sciences Publication Activity Database

    Harris, A. W.; Pravec, Petr; Galád, Adrián; Skiff, B.A.; Warner, B. D.; Világi, J.; Gajdoš, Š.; Carbognani, A.; Hornoch, Kamil; Kušnirák, Peter; Cooney jr., W. R.; Gross, J.; Terrell, D.; Higgins, D.; Bowell, E.; Koehn, B.W.

    2014-01-01

    Roč. 235, June (2014), s. 55-59 ISSN 0019-1035 R&D Projects: GA ČR GAP209/12/0229 Grant - others:SAV(SK) Vega 1/0670/13; NASA (US) NNX13AP56G Institutional support: RVO:67985815 Keywords : asteroids * asteroids rotation * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.038, year: 2014

  17. Monoclonal antibodies to Nocardia asteroides and Nocardia brasiliensis antigens.

    OpenAIRE

    Jiménez, T; Díaz, A M; Zlotnik, H

    1990-01-01

    Nocardia asteroides and Nocardia brasiliensis whole-cell extracts were used as antigens to generate monoclonal antibodies (MAbs). Six stable hybrid cell lines secreting anti-Nocardia spp. MAbs were obtained. These were characterized by enzyme-linked immunosorbent assay, Western blot (immunoblot), and immunofluorescence assay. Although all the MAbs exhibited different degrees of cross-reactivity with N. asteroides and N. brasiliensis antigens as well as with culture-filtrate antigens from Myco...

  18. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  19. Benefits of a Single-Person Spacecraft for Weightless Operations. [(Stop Walking and Start Flying)

    Science.gov (United States)

    Griffin, Brand N.

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work.1 A single-person spacecraft with 90 percent efficiency provides productive new capabilities for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. With suits, going outside to inspect, service or repair a spacecraft is time-consuming, requiring pre-breathe time, donning a fitted space suit, and pumping down an airlock. For ISS, this is between 12.5 and 16 hours for each EVA, not including translation and work-site set up. The work is physically demanding requiring a day of rest between EVAs and often results in suit-induced trauma with frequent injury to astronauts fingers2. For maximum mobility, suits use a low pressure, pure oxygen atmosphere. This represents a fire hazard and requires pre-breathing to reduce the risk of decompression sickness (bends). With virtually no gravity, humans exploring asteroids cannot use legs for walking. The Manned Maneuvering Unit offers a propulsive alternative however it is no longer in NASA s flight inventory. FlexCraft is a single person spacecraft operating at the same cabin atmosphere as its host so there is no risk of the bends and no pre-breathing. This allows rapid, any-time access to space for repeated short or long EVAs by different astronauts. Integrated propulsion eliminates hand-over-hand translation or having another crew member operate the robotic arm. The one-size-fits-all FlexCraft interior eliminates the suit part inventory and crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used and because the work is not strenuous no rest days are required. Furthermore, there is no need for hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job.

  20. LONG-TERM STABLE EQUILIBRIA FOR SYNCHRONOUS BINARY ASTEROIDS

    International Nuclear Information System (INIS)

    Jacobson, Seth A.; Scheeres, Daniel J.

    2011-01-01

    Synchronous binary asteroids may exist in a long-term stable equilibrium, where the opposing torques from mutual body tides and the binary YORP (BYORP) effect cancel. Interior of this equilibrium, mutual body tides are stronger than the BYORP effect and the mutual orbit semimajor axis expands to the equilibrium; outside of the equilibrium, the BYORP effect dominates the evolution and the system semimajor axis will contract to the equilibrium. If the observed population of small (0.1-10 km diameter) synchronous binaries are in static configurations that are no longer evolving, then this would be confirmed by a null result in the observational tests for the BYORP effect. The confirmed existence of this equilibrium combined with a shape model of the secondary of the system enables the direct study of asteroid geophysics through the tidal theory. The observed synchronous asteroid population cannot exist in this equilibrium if described by the canonical 'monolithic' geophysical model. The 'rubble pile' geophysical model proposed by Goldreich and Sari is sufficient, however it predicts a tidal Love number directly proportional to the radius of the asteroid, while the best fit to the data predicts a tidal Love number inversely proportional to the radius. This deviation from the canonical and Goldreich and Sari models motivates future study of asteroid geophysics. Ongoing BYORP detection campaigns will determine whether these systems are in an equilibrium, and future determination of secondary shapes will allow direct determination of asteroid geophysical parameters.

  1. Software Development for Asteroid and Variable Star Research

    Science.gov (United States)

    Sweckard, Teaghen; Clason, Timothy; Kenney, Jessica; Wuerker, Wolfgang; Palser, Sage; Giles, Tucker; Linder, Tyler; Sanchez, Richard

    2018-01-01

    The process of collecting and analyzing light curves from variable stars and asteroids is almost identical. In 2016 a collaboration was created to develop a simple fundamental way to study both asteroids and variable stars using methods that would allow the process to be repeated by middle school and high school students.Using robotic telescopes at Cerro Tololo (Chile), Yerkes Observatory (US), and Stone Edge Observatory (US) data were collected on RV Del and three asteroids. It was discovered that the only available software program which could be easily installed on lab computers was MPO Canopus. However, after six months it was determined that MPO Canopus was not an acceptable option because of the steep learning curve, lack of documentation and technical support.Therefore, the project decided that the best option was to design our own python based software. Using python and python libraries we developed code that can be used for photometry and can be easily changed to the user's needs. We accomplished this by meeting with our mentor astronomer, Tyler Linder, and in the beginning wrote two different programs, one for asteroids and one for variable stars. In the end, though, we chose to combine codes so that the program would be capable of performing photometry for both moving and static objects.The software performs differential photometry by comparing the magnitude of known reference stars to the object being studied. For asteroids, the image timestamps are used to obtain ephemeris of the asteroid from JPL Horizons automatically.

  2. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  3. A Combined Study Investigating the Insoluble and Soluble Organic Compounds in Category 3 Carbonaceous Itokawa Particles Recovered by the Hayabusa Mission

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M.; Burton, A.; Clemett, S.; Fries, M.; Kebukawa, Y.

    2015-01-01

    At the 3rd International Announcement of Opportunity (AO), we have been approved for five Category 3 carbonaceous Itokawa particles (RA-QD02-0012, RA-QD02-0078, RB-CV-0029, RB-CV-0080 and RB-QD04-0052) recovered by the first Hayabusa mission of JAXA. In this investigation, we aim to provide a comprehensive study to characterize and account for the presence of carbon-bearing phases as suggested by the initial Scanning Electron Microscopy (SEM) analysis carried out by JAXA at the curation facility, and to describe the mineralogical components of the particles. The insoluble organic content of Itokawa particle has been investigated with the use of micro-Raman spectroscopy by Kitajima and co-workers [1]. The Raman spectra of Itokawa particles show broad G- and D-bands typical of low temperature material which offers an interesting contrast to the high metamorphic grade (LL4-6) of the Itokawa parent body. Amino acid analysis has been conducted by Naraoka et al. [2] to study the soluble organic component of Itokawa particles, but since it was a preliminary study and thus did not have the opportunity to target on Category 3 carbonaceous particles, only terrestrial contaminants were identified. The investigation will be carried out in the following order prioritized according to the progressive damage the analytical techniques can induce: (1) micro-Raman spectrometry, (2) two-step laser mass spectrometry (micro-L2MS), (3) ultra-high performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS), and optimally if we can recover the particles after wet chemistry analysis, we will mount the samples and perform (4) electron beam microscopy (SEM, electron back-scattered diffraction [EBSD]) and (5) carbon X-ray absorption near edge structure spectroscopy (C-XANES). We will begin the analytical procedures upon receiving the samples in September/October. This work will provide us with an understanding of the variety and origins of

  4. AsteroidFinder - the space-borne telescope to search for NEO Asteroids

    Science.gov (United States)

    Hartl, M.; Mosebach, H.; Schubert, J.; Michaelis, H.; Mottola, S.; Kührt, E.; Schindler, K.

    2017-11-01

    This paper presents the mission profile as well as the optical configuration of the space-borne AsteroidFinder telescope. Its main objective is to retrieve asteroids with orbits interior to the earth's orbit. The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5mag (V-Band) and astrometric accuracy of 1arcsec (1σ). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak > 90%) and very low noise, which is only limited by zodiacal background. The telescope will observe the sky between 30° and 60° in solar elongation. The telescope optics is based on a Cook type TMA. An effective 2°×2° field of view (FOV) is achieved by a fast F/3.4 telescope with near diffraction-limited performance. The absence of centre obscuration or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. Design drivers for the telescope are the required point spread function (PSF) values, an extremely efficient stray light suppression (due to the magnitude requirement mentioned above), the detector performance, and the overall optical and mechanical stability for all orientations of the satellite. To accommodate the passive thermal stabilization scheme and the necessary structural stability, the materials selection for the telescope main structure and the mirrors are of vital importance. A focal plane with four EMCCD detectors is envisaged. The EMCCD technology features shorter integration times, which is in favor regarding the pointing performance of the satellite. The launch of the mission is foreseen for the year 2013 with a subsequent mission lifetime of at least 1 year.

  5. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  6. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  7. Association between meteor showers and asteroids using multivariate criteria

    Science.gov (United States)

    Dumitru, B. A.; Birlan, M.; Popescu, M.; Nedelcu, D. A.

    2017-10-01

    Context. Meteoroid streams are fragments of matter produced by comets or asteroids which intersects the orbit of Earth. Meteor showers are produced when Earth intersects these streams of matter. The discoveries of active asteroids and extinct comets open a new view of the relation between these objects as possible parent bodies at the origin of meteor showers. Aims: The aim of this work is to identify the asteroids that can produce or re-populate meteoroid streams by determining the similarity of their orbits and orbital evolution over 10 000 yr. Methods: The identification was carried out by evaluating several well known D-criteria metrics, the orbits being taken from the IAU Meteor Data Center database and from IAU Minor Planet Center. Finally, we analyzed the physical properties and the orbital stability (in the Lyapunov time sense) of the candidates as well as their possible relationship with meteorites. Results: 206 near-Earth asteroids (NEAs) were associated as possible parent bodies with 28 meteor showers, according to at least two of the criterion used. 50 of them satisfied all the criteria. Notable finds are: binary asteroid 2000UG11 associated with Andromedids (AND), while the tumbling asteroid (4179)Toutatis could be associated with October Capricornids (OCC). Other possible good candidates are 2004TG10, 2008EY5, 2010CF55, 2010TU149 and 2014OY1. These objects have low albedo, therefore can be primitive objects. Asteroid 2007LW19 which is a fast rotator and most probably has monolithic structure and so its physical characteristic does not support the association found based on the dynamical criteria.

  8. HIGH ECLIPTIC LATITUDE SURVEY FOR SMALL MAIN-BELT ASTEROIDS

    International Nuclear Information System (INIS)

    Terai, Tsuyoshi; Takahashi, Jun; Itoh, Yoichi

    2013-01-01

    Main-belt asteroids have been continuously colliding with one another since they were formed. Their size distribution is primarily determined by the size dependence of asteroid strength against catastrophic impacts. The strength scaling law as a function of body size could depend on collision velocity, but the relationship remains unknown, especially under hypervelocity collisions comparable to 10 km s –1 . We present a wide-field imaging survey at an ecliptic latitude of about 25° for investigating the size distribution of small main-belt asteroids that have highly inclined orbits. The analysis technique allowing for efficient asteroid detections and high-accuracy photometric measurements provides sufficient sample data to estimate the size distribution of sub-kilometer asteroids with inclinations larger than 14°. The best-fit power-law slopes of the cumulative size distribution are 1.25 ± 0.03 in the diameter range of 0.6-1.0 km and 1.84 ± 0.27 in 1.0-3.0 km. We provide a simple size distribution model that takes into consideration the oscillations of the power-law slope due to the transition from the gravity-scaled regime to the strength-scaled regime. We find that the high-inclination population has a shallow slope of the primary components of the size distribution compared to the low-inclination populations. The asteroid population exposed to hypervelocity impacts undergoes collisional processes where large bodies have a higher disruptive strength and longer lifespan relative to tiny bodies than the ecliptic asteroids

  9. The Chelyabinsk superbolide: a fragment of asteroid 2011 EO40?

    Science.gov (United States)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2013-11-01

    Bright fireballs or bolides are caused by meteoroids entering the Earth's atmosphere at high speed. Some have a cometary origin, a few may have originated within the Venus-Earth-Mars region as a result of massive impacts in the remote past but a relevant fraction is likely the result of the break-up of asteroids. Disrupted asteroids produce clusters of fragments or asteroid families and meteoroid streams. Linking a bolide to a certain asteroid family may help to understand its origin and pre-impact dynamical evolution. On 2013 February 15, a superbolide was observed in the skies near Chelyabinsk, Russia. Such a meteor could be the result of the decay of an asteroid and here we explore this possibility applying a multistep approach. First, we use available data and Monte Carlo optimization (validated using 2008 TC3 as template) to obtain a robust solution for the pre-impact orbit of the Chelyabinsk impactor (a = 1.62 au, e = 0.53, i = 3.82°, Ω = 326.41° and ω = 109.44°). Then, we use this most probable orbit and numerical analysis to single out candidates for membership in, what we call, the Chelyabinsk asteroid family. Finally, we perform N-body simulations to either confirm or reject any dynamical connection between candidates and impactor. We find reliable statistical evidence on the existence of the Chelyabinsk cluster. It appears to include multiple small asteroids and two relatively large members: 2007 BD7 and 2011 EO40. The most probable parent body for the Chelyabinsk superbolide is 2011 EO40. The orbits of these objects are quite perturbed as they experience close encounters not only with the Earth-Moon system but also with Venus, Mars and Ceres. Under such conditions, the cluster cannot be older than about 20-40 kyr.

  10. UV Reflectance of Jupiter's Moon Europa and Asteroid (16) Psyche

    Science.gov (United States)

    Becker, T. M.; Retherford, K. D.; Roth, L.; Hendrix, A.; McGrath, M. A.; Cunningham, N.; Feaga, L. M.; Saur, J.; Elkins-Tanton, L. T.; Walhund, J. E.; Molyneux, P.

    2017-12-01

    Surface reflectance observations of solar system objects in the UV are not only complimentary to longer wavelength observations for identifying surface composition, but can also reveal new and meaningful information about the surfaces of those bodies. On Europa, far-UV (FUV) spectral observations made by the Hubble Space Telescope (HST) show that the surface lacks a strong water ice absorption edge near 165 nm, which is intriguing because such a band has been detected on most icy satellites. This may suggest that radiolytic processing by Jupiter's magnetosphere has altered the surface, causing absorption at wavelengths longward of the H2O edge, masking this feature. Additionally, the FUV spectra are blue (increasing albedo with shorter wavelengths), and regions that are observed to be dark in the visible appear bright in the FUV. This spectral inversion, also observed on the Moon and some asteroids, may provide insight into the properties of the surface material and how they are processed.We also explore the UV reflectance spectra of the main belt asteroid (16) Psyche. This asteroid is believed to be the metallic remnant core of a differentiated asteroid, stripped of its mantle through collisions. However, there is speculation that the asteroid could have formed as-is from highly reduced metal-rich material near the Sun early in the formation of the solar system. Further, spectral observations in the infrared have revealed pyroxene and hydroxyl on the asteroid's surface, complicating the interpretation that (16) Psyche is a pure metallic object. Laboratory studies indicate that there are diagnostic spectral features in the UV that could be useful for determining the surface composition. We obtained HST observations of Psyche from 160 - 300 nm. Preliminary results show a featureless, red-sloped spectrum, inconsistent with significant amounts of pyroxene on the surface. We will present the spectra of Europa and the asteroid (16) Psyche and discuss the unique details

  11. Stability Limits for Rubble Pile Asteroid Shapes

    Science.gov (United States)

    Scheeres, Daniel

    2018-04-01

    The stability of rubble pile asteroids are explored analytically, using simple models for their constituent components. Specifically, we look at the stability of spherical components resting and potentially rolling on each other as a function of their relative sizes, configuration and number. This talk will present some recent results in this problem. Of specific interest is a 5:1 limit on the elongation of a rubble pile body for stability, which is interestingly the same extreme elongation found for the first interstellar object. This limit is for a rubble pile consisting of stacked spheres, resting on each other in a straight line. If there are 5 or less bodies resting on each other in this configuration, there is an interval of spin rates for which the configuration is stable. If there are 6 or more bodies stacked as such, the spin rate for it to stabilize is beyond the spin rate at which it fissions. The talk will also explore additional results for different configurations of bodies resting on each other.

  12. Un asteroide proveniente de la Luna

    Science.gov (United States)

    Tancredi, G.

    El descubrimiento de un débil objeto en movimiento por el telescopio Spacewatch (un instrumento dedicado a la búsqueda de Asteroides Cercanos a la Tierra) en 1991, ha generado una gran controversia en la comunidad planetaria. El objeto, denominado 1991 VG, tiene elementos orbitales llamativamente similares a los de la Tierra, lo que ha llevado a B. G. Marsden a aventurar:``El objeto podría ser una nave espacial en retorno (IAUC 5387)". Luego de analizar las características dinámicas de 1991 VG y las diferentes hipótesis sobre su origen, favorecemos la alternativa de que el objeto es un gran fragmento de material eyectado de la Luna durante un reciente impacto (en las últimas decenas de miles de años). El hallazgo en 1983 en la Antártida de meteoritos con composición tipo lunar, confirma la posibilidad de que material de la superficie del satélite puede ser eyectado a velocidades superiores a la de escape del sistema Tierra-Luna y alcance órbitas heliocéntricas. Los elementos orbitales de 1991 VG corresponden a los valores alcanzados por partículas que apenas escapan de la gravedad lunar y entran en órbitas heliocéntricas a través del punto Lagrangiano exterior del sistema Tierra-Sol.

  13. A direct observation the asteroid's structure from deep interior to regolith: why and how do it?

    Science.gov (United States)

    Herique, A.; Kofman, W. W.

    2013-12-01

    The internal structure of asteroids is still poorly known and has never been measured directly. Our knowledge is relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. Is the body a monolithic piece of rock or a rubble-pile, an aggregate of boulders held together by gravity and how much porosity it contains, both in the form of micro-scale or macro-scale porosity? What is the typical size of the constituent blocs? Are these blocs homogeneous or heterogeneous? Is the body a defunct or dormant comet and such MBC can become active? The body is covered by a regolith from whose properties remains largely unknown in term of depth, size distribution and spatial variation. Is resulting from fine particles re-accretion or from thermal fracturing? What are its coherent forces? How to model is thermal conductivity while this parameter is so important to estimate Yarkowsky and Yorp effects? Knowing asteroid deep interior and regolith structure is a key point for a better understanding of the asteroid accretion and dynamical evolution. There is no way to determine this from ground-based observation. Radar operating from a spacecraft is the only technique capable of achieving this science objective of characterizing the internal structure and heterogeneity from submetric to global scale for the science benefit as well as for the planetary defence and human exploration. The deep interior structure tomography requires low-frequency radar to penetrate throughout the complete body. The radar wave propagation delay and the received power are related to the complex dielectric permittivity (i.e to the composition and microporosity) and the small scale heterogeneities (scattering losses) while the spatial variation of the signal and the multiple paths provide information on the presence of heterogeneities (variations in composition or porosity), layers, ice lens. A partial coverage will provide "cuts" of the body when a dense coverage

  14. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  15. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  16. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  17. Scenario-Based Case Study Analysis of Asteroid Mitigation in the Short Response Time Regime

    Science.gov (United States)

    Seery, B.; Greenaugh, K. C.

    2017-12-01

    Asteroid impact on Earth is a rare but inevitable occurrence, with potentially cataclysmic consequences. If a pending impact is discovered, mitigation options include civil-defense preparations as well as missions to deflect the asteroid and/or robustly disrupt and disperse it to an extent that only a negligible fraction remains on a threatening path (National Research Council's "Defending the Planet," 2010). If discovered with sufficient warning time, a kinetic impactor can deflect smaller objects, but response delays can rule out the option. If a body is too large to deflect by kinetic impactor, or the time for response is insufficient, deflection or disruption can be achieved with a nuclear device. The use of nuclear ablation is considered within the context of current capabilities, requiring no need for nuclear testing. Existing, well-understood devices are sufficient for the largest known Potentially Hazardous Objects (PHOs). The National Aeronautics and Space Administration/Goddard Space Flight Center and the Department of Energy/National Nuclear Security Administration are collaborating to determine the critical characterization issues that define the boundaries for the asteroid-deflection options. Drawing from such work, we examine the timeline for a deflection mission, and how to provide the best opportunity for an impactor to suffice by minimizing the response time. This integrated problem considers the physical process of the deflection method (impact or ablation), along with the spacecraft, launch capability, risk analysis, and the available intercept flight trajectories. Our joint DOE/NASA team has conducted case study analysis of three distinctly different PHOs, on a hypothetical earth impacting trajectory. The size of the design reference bodies ranges from 100 - 500 meters in diameter, with varying physical parameters such as composition, spin state, and metallicity, to name a few. We assemble the design reference of the small body in question using

  18. Sample Curation in Support of the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Righter, Kevin; Nakamura-Messenger, Keiko

    2017-01-01

    The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu Sept. 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After sample is stowed and confirmed the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah [2] and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston [3]. The materials curated for the mission are described here. a) Materials Archive and Witness Plate Collection: The SRC and TAGSAM were built between March 2014 and Summer of 2015, and instruments (OTES,OVIRS, OLA, OCAMS, REXIS) were integrated from Summer 2015 until May 2016. A total of 395 items were received for the materials archive at NASA-JSC, with archiving finishing 30 days after launch (with the final archived items being related to launch operations)[4]. The materials fall into several general categories including metals (stainless steel, aluminum, titanium alloys, brass and BeCu alloy), epoxies, paints, polymers, lubricants, non-volatile-residue samples (NVR), sapphire, and various miscellaneous materials. All through the ATLO process (from March 2015 until late August 2016) contamination knowledge witness plates (Si wafer and Al foil) were deployed in the various cleanrooms in Denver and KSC to provide an additional record of particle counts and volatiles that is archived for current and future scientific studies. These plates were deployed in roughly monthly increments with each unit containing 4 Si wafers and 4 Al foils. We archived 128 individual witness plates (64 Si wafers and 64 Al foils); one of each witness plate (Si and Al) was analyzed immediately by the science team after archiving, while the remaining 3 of each are archived indefinitely. Information about each material archived is stored in an extensive database at NASA-JSC, and key

  19. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  20. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    Science.gov (United States)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  1. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  2. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  3. Automated Classification of Asteroids into Families at Work

    Science.gov (United States)

    Knežević, Zoran; Milani, Andrea; Cellino, Alberto; Novaković, Bojan; Spoto, Federica; Paolicchi, Paolo

    2014-07-01

    We have recently proposed a new approach to the asteroid family classification by combining the classical HCM method with an automated procedure to add newly discovered members to existing families. This approach is specifically intended to cope with ever increasing asteroid data sets, and consists of several steps to segment the problem and handle the very large amount of data in an efficient and accurate manner. We briefly present all these steps and show the results from three subsequent updates making use of only the automated step of attributing the newly numbered asteroids to the known families. We describe the changes of the individual families membership, as well as the evolution of the classification due to the newly added intersections between the families, resolved candidate family mergers, and emergence of the new candidates for the mergers. We thus demonstrate how by the new approach the asteroid family classification becomes stable in general terms (converging towards a permanent list of confirmed families), and in the same time evolving in details (to account for the newly discovered asteroids) at each update.

  4. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ 509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ 509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ 509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  5. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    International Nuclear Information System (INIS)

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-01-01

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that ∼0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for ∼0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  6. Dust arcs in the region of Jupiter's Trojan asteroids

    Science.gov (United States)

    Liu, Xiaodong; Schmidt, Jürgen

    2018-01-01

    Aims: The surfaces of the Trojan asteroids are steadily bombarded by interplanetary micrometeoroids, which releases ejecta of small dust particles. These particles form the faint dust arcs that are associated with asteroid clouds. Here we analyze the particle dynamics and structure of the arc in the region of the L4 Trojan asteroids. Methods: We calculate the total cross section of the L4 Trojan asteroids and the production rate of dust particles. The motion of the particles is perturbed by a variety of forces. We simulate the dynamical evolution of the dust particles, and explore the overall features of the Trojan dust arc. Results: The simulations show that the arc is mainly composed of grains in the size range 4-10 microns. Compared to the L4 Trojan asteroids, the dust arc is distributed more widely in the azimuthal direction, extending to a range of [30, 120] degrees relative to Jupiter. The peak number density does not develop at L4. There exist two peaks that are azimuthally displaced from L4.

  7. Candidate Binary Trojan and Hilda Asteroids from Rotational Light Curves

    Science.gov (United States)

    Sonnett, Sarah M.; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph R.; Bauer, James M.; Kramer, Emily A.

    2017-10-01

    Jovian Trojans (hereafter, Trojans) are asteroids in stable orbits at Jupiter's L4 and L5 Lagrange points, and Hilda asteroids are inwards of the Trojans in 3:2 mean-motion resonance with Jupiter. Due to their special dynamical properties, observationally constraining the formation location and dynamical histories of Trojans and HIldas offers key input for giant planet migration models. A fundamental parameter in assessing formation location is the bulk density - with low-density objects associated with an ice-rich formation environment in the outer solar system and high-density objects typically linked to the warmer inner solar system. Bulk density can only be directly measured during a close fly-by or by determining the mutual orbits of binary asteroid systems. With the aim of determining densities for a statistically significant sample of Trojans and Hildas, we are undertaking an observational campaign to confirm and characterize candidate binary asteroids published in Sonnett et al. (2015). These objects were flagged as binary candidates because their large NEOWISE brightness variations imply shapes so elongated that they are not likely explained by a singular equilibrium rubble pile and instead may be two elongated, gravitationally bound asteroids. We are obtaining densely sampled rotational light curves of these possible binaries to search for light curve features diagnostic of binarity and to determine the orbital properties of any confirmed binary systems by modeling the light curve. We compare the We present an update on this follow-up campaign and comment on future steps.

  8. Human spaceflight and an asteroid redirect mission: Why?

    Science.gov (United States)

    Burchell, M. J.

    2014-08-01

    The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.

  9. Observing the variation of asteroid thermal inertia with heliocentric distance

    Science.gov (United States)

    Rozitis, B.; Green, S. F.; MacLennan, E.; Emery, J. P.

    2018-06-01

    Thermal inertia is a useful property to characterize a planetary surface, since it can be used as a qualitative measure of the regolith grain size. It is expected to vary with heliocentric distance because of its dependence on temperature. However, no previous investigation has conclusively observed a change in thermal inertia for any given planetary body. We have addressed this by using NEOWISE data and the Advanced Thermophysical Model to study the thermophysical properties of the near-Earth asteroids (1036) Ganymed, (1580) Betulia, and (276 049) 2002 CE26 as they moved around their highly eccentric orbits. We confirm that the thermal inertia values of Ganymed and 2002 CE26 do vary with heliocentric distance, although the degree of variation observed depends on the spectral emissivity assumed in the thermophysical modelling. We also confirm that the thermal inertia of Betulia did not change for three different observations obtained at the same heliocentric distance. Depending on the spectral emissivity, the variations for Ganymed and 2002 CE26 are potentially more extreme than that implied by theoretical models of heat transfer within asteroidal regoliths, which might be explained by asteroids having thermal properties that also vary with depth. Accounting for this variation reduces a previously observed trend of decreasing asteroid thermal inertia with increasing size, and suggests that the surfaces of small and large asteroids could be much more similar than previously thought. Furthermore, this variation can affect Yarkovsky orbital drift predictions by a few tens of per cent.

  10. Asteroid Origins Satellite (AOSAT): Science in a CubeSat Centrifuge

    Science.gov (United States)

    Perera, V.; Cotto-Figueroa, D.; Noviello, J.; Asphaug, E.; Morris, M.

    2015-01-01

    Both the study of primary accretion and the surface properties of asteroids are important for the field of planetary science. The Asteroid Origins Satellite (AOSAT) will help study these subjects by creating a long duration microgravity laboratory.

  11. Orbits of the Asteroids Discovered at the Molėtai Observatory in 2000–2004

    Directory of Open Access Journals (Sweden)

    Černis K.

    2014-12-01

    Full Text Available The paper presents statistics of the asteroids observed and discovered at the Molėtai Observatory, Lithuania in 2000–2004 within the project for astrometric observations of the near-Earth objects (NEOs, the main belt asteroids and comets. CCD observations of asteroids were obtained with the 35/51 cm Maksutov-type meniscus telescope and the 1.65 m Ritchey-Chretien reflector. In the Minor Planet Circulars and the Minor Planet Electronic Circulars (2000–2004 we published 6629 astrometric positions of 1114 asteroids. Among them 78 were newly discovered asteroids at Molėtai, a few NEOs were found by our team independently. For the 67 asteroids discovered at Molėtai the precise orbits were calculated. Because of small number of observations, a few asteroids have low-precision orbits and some asteroids have been lost. For seven objects we present their ephemerides for 2015.

  12. Rotational rates of very small asteroids - 123 Brunhild, 376 Geometria, 437 Rhodia and 1224 Fantasia

    Science.gov (United States)

    Barucci, M. A.; di Martino, M.

    1984-07-01

    This paper presents observations of four small main belt asteroids (D Geometria, an accurate rotational period was determined. For the other two asteroids, 437 Rhodia and 1224 Fantasia, only tentative periods are suggested.

  13. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2016-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  14. Galileo Photometry of Asteroid 951 Gaspra

    Science.gov (United States)

    Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Lee, P.; Klaasen, K.; Johnson, T.V.; Breneman, H.; Head, J.W.; Murchie, S.; Fanale, F.; Robinson, M.; Clark, B.; Granahan, J.; Garbeil, H.; McEwen, A.S.; Kirk, R.L.; Davies, M.; Neukum, G.; Mottola, S.; Wagner, R.; Belton, M.; Chapman, C.; Pilcher, C.

    1994-01-01

    Galileo images of Gaspra make it possible for the first time to determine a main-belt asteroid's photometric properties accurately by providing surface-resolved coverage over a wide range of incidence and emission angles and by extending the phase angle coverage to phases not observable from Earth. We combine Earth-based telescopic photometry over phase angles 2?? ??? ?? ??? 25?? with Galileo whole-disk and disk-resolved data at 33?? ??? ?? ??? 51?? to derive average global photometric properties in terms of Hapke's photometric model. The microscopic texture and particle phase-function behavior of Gaspra's surface are remarkably like those of other airless rocky bodies such as the Moon. The macroscopic surface roughness parameter, ??̄ = 29??, is slightly larger than that reported for typical lunar materials. The particle single scattering albedo, ??́0 = 0.36 ?? 0.07, is significantly larger than for lunar materials, and the opposition surge amplitude, B0 = 1.63 ?? 0.07, is correspondingly smaller. We determine a visual geometric albedo pv = 0.22 ?? 0.06 for Gaspra, in close agreement with pv = 0.22 ?? 0.03 estimated from Earth-based observations. Gaspra's phase integral is 0.47, and the bolometric Bond albedo is estimated to be 0.12 ?? 0.03. An albedo map derived by correcting Galileo images with our average global photometric function reveals subdued albedo contrasts of ??10% or less over Gaspra's northern hemisphere. Several independent classification algorithms confirm the subtle spectral heterogeneity reported earlier (S. Mottola, M. DiMartino, M. Gonano-Beurer, H. Hoffman, and G. Neukum, 1993, Asteroids, Comets, Meteors, pp. 421-424; M. J. S. Belton et al., 1992, Science 257, 1647-1652). Whole-disk colors (0.41 ??? ?? ??? 0.99 ??m) vary systematically with longitude by about ??5%, but color differences as large as 30% occur locally. Colors vary continuously between end-member materials whose areal distribution correlates with regional topography. Infrared

  15. Design, Assembly, Integration, and Testing of a Power Processing Unit for a Cylindrical Hall Thruster, the NORSAT-2 Flatsat, and the Vector Gravimeter for Asteroids Instrument Computer

    Science.gov (United States)

    Svatos, Adam Ladislav

    This thesis describes the author's contributions to three separate projects. The bus of the NORSAT-2 satellite was developed by the Space Flight Laboratory (SFL) for the Norwegian Space Centre (NSC) and Space Norway. The author's contributions to the mission were performing unit tests for the components of all the spacecraft subsystems as well as designing and assembling the flatsat from flight spares. Gedex's Vector Gravimeter for Asteroids (VEGA) is an accelerometer for spacecraft. The author's contributions to this payload were modifying the instrument computer board schematic, designing the printed circuit board, developing and applying test software, and performing thermal acceptance testing of two instrument computer boards. The SFL's cylindrical Hall effect thruster combines the cylindrical configuration for a Hall thruster and uses permanent magnets to achieve miniaturization and low power consumption, respectively. The author's contributions were to design, build, and test an engineering model power processing unit.

  16. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    Science.gov (United States)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  17. Trojan and Hilda asteroid lightcurves. I - Anomalously elongated shapes among Trojans (and Hildas?)

    Science.gov (United States)

    Hartmann, William K.; Binzel, Richard P.; Tholen, David J.; Cruikshank, Dale P.; Goguen, Jay

    1988-01-01

    A comparison of the available sample of lightcurves for 26 Trojan and Hilda asteroids with belt asteroid lightcurves shows the former to be distinguished by a higher incidence of high amplitudes rgan belt asteroids of comparable size, suggesting more elongated shapes; they currently have, moreover, only a few percent of the main-belt asteroids' collision frequency. A more modest collisional evolution that may have affected the relative degree of fragmentation of these bodies, and thus their shapes, is inferred.

  18. An Investigation of the Ranges of Validity of Asteroid Thermal Models for Near-Earth Asteroid Observations

    Science.gov (United States)

    Mommert, M.; Jedicke, R.; Trilling, D. E.

    2018-02-01

    The majority of known asteroid diameters are derived from thermal-infrared observations. Diameters are derived using asteroid thermal models that approximate their surface temperature distributions and compare the measured thermal-infrared flux with model-dependent predictions. The most commonly used thermal model is the Near-Earth Asteroid Thermal Model (NEATM), which is usually perceived as superior to other models like the Fast-Rotating Model (FRM). We investigate the applicability of the NEATM and the FRM to thermal-infrared observations of Near-Earth Objects using synthetic asteroids with properties based on the real Near-Earth Asteroid (NEA) population. We find the NEATM to provide more accurate diameters and albedos than the FRM in most cases, with a few exceptions. The modeling results are barely affected by the physical properties of the objects, but we find a large impact of the solar phase angle on the modeling results. We conclude that the NEATM provides statistically more robust diameter estimates for NEAs observed at solar phase angles less than ∼65°, while the FRM provides more robust diameter estimates for solar phase angles greater than ∼65°. We estimate that <5% of all NEA diameters and albedos derived up to date are affected by systematic effects that are of the same order of magnitude as the typical thermal model uncertainties. We provide statistical correction functions for diameters and albedos derived using the NEATM and FRM as a function of solar phase angle.

  19. Lessons for Interstellar Travel from the Guidance and Control Design of the Near Earth Asteroid Scout Solar Sail Mission

    Science.gov (United States)

    Diedrich, Benjamin; Heaton, Andrew

    2017-01-01

    NASA is developing the Near Earth Asteroid (NEA) Scout mission that will use a solar sail to travel to an asteroid where it will perform a slow flyby to acquire science imagery. A guidance and control system was developed to meet the science and trajectory requirements. The NEA Scout design process can be applied to an interstellar or precursor mission that uses a beam propelled sail. The scientific objectives are met by accurately targeting the destination trajectory position and velocity. The destination is targeted by understanding the force on the sail from the beam (or sunlight in the case of NEA Scout) over the duration of the thrust maneuver. The propulsive maneuver is maintained by accurate understanding of the torque on the sail, which is a function of sail shape, optical properties, and mass properties, all of which apply to NEA Scout and beam propelled sails. NEA Scout uses active control of the sail attitude while trimming the solar torque, which could be used on a beamed propulsion sail if necessary. The biggest difference is that NEA Scout can correct for uncertainties in sail thrust modeling, spacecraft orbit, and target orbit throughout the flight to the target, while beamed propulsion needs accurate operation for the short duration of the beamed propulsion maneuver, making accurate understanding of the sail thrust and orbits much more critical.

  20. Results of the 2017 Mexican Asteroid Photometry Campaign - Part 1

    Science.gov (United States)

    Sada, Pedro; Loera-Gonzalez, Pablo; Olguin, Lorenzo; Saucedo-Morales, Julio C.; Ayala-Gómez, Sandra A.; Garza, Jaime R.

    2018-04-01

    We report the results for the first semester of the 2017 Mexican Asteroid Photometry Campaign. Asteroid 1218 Aster (synodic period of 3.1581 ± 0.0002 h and amplitude of 0.35 mag) was well observed and showed slight variations of its lightcurve at the end of the seven week observing window. An uncertain, but long, period of 93.23 ± 0.02 h and amplitude of 0.36 mag were estimated for 2733 Hamina from sparse data. Asteroid 8443 Svecica was also well observed and yielded a period of 20.9905 ± 0.0015 h and amplitude of 0.65 mag. Observations of NEA (143404) 2003 BD44 also resulted in an uncertain and long period of 78.617 ± 0.009 h and amplitude of 0.66 mag with a sparsely covered lightcurve.

  1. Asteroid Observations with NCSFCT’s AZT-8 Telescope

    Directory of Open Access Journals (Sweden)

    Kozhukhov, O.M.

    2017-01-01

    Full Text Available The asteroid observations of the small Solar System bodies were carried out with the AZT-8 telescope (D=0.7 m, f/4 of the National Center of Space Facilities Control and Testing (NCSFCT during 2010-2013. The telescope is located near Yevpatoria, the observatory code according IAU is B17. The observational program included perturbed main belt asteroids and NEO’s for the GAIA FUN-SSO Company. The MPC database contains more than 4500 asteroids positions and magnitudes obtained during this period at AZT-8 telescope. The article presents analysis of the positional accuracy of B17 observations obtained from the comparison with the JPL HORIZONS ephemeris, and data from AstDyS-2 and NEODyS-2 web services.

  2. A New Equilibrium State for Singly Synchronous Binary Asteroids

    Science.gov (United States)

    Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.

    2018-04-01

    The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.

  3. Near-field effects of asteroid impacts in deep water

    Energy Technology Data Exchange (ETDEWEB)

    Gisler, Galen R [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Gittings, Michael L [Los Alamos National Laboratory

    2009-06-11

    Our previous work has shown that ocean impacts of asteroids below 500 m in diameter do not produce devastating long-distance tsunamis. Nevertheless, a significant portion of the ocean lies close enough to land that near-field effects may prove to be the greatest danger from asteroid impacts in the ocean. Crown splashes and central jets that rise up many kilometres into the atmosphere can produce, upon their collapse, highly non-linear breaking waves that could devastate shorelines within a hundred kilometres of the impact site. We present illustrative calculations, in two and three dimensions, of such impacts for a range of asteroid sizes and impact angles. We find that, as for land impacts, the greatest dangers from oceanic impacts are the short-term near-field, and long-term atmospheric effects.

  4. Asteroid body-fixed hovering using nonideal solar sails

    International Nuclear Information System (INIS)

    Zeng, Xiang-Yuan; Jiang, Fang-Hua; Li, Jun-Feng

    2015-01-01

    The problem of body-fixed hovering over an asteroid using a compact form of nonideal solar sails with a controllable area is investigated. Nonlinear dynamic equations describing the hovering problem are constructed for a spherically symmetric asteroid. Numerical solutions of the feasible region for body-fixed hovering are obtained. Different sail models, including the cases of ideal, optical, parametric and solar photon thrust, on the feasible region is studied through numerical simulations. The influence of the asteroid spinning rate and the sail area-to-mass ratio on the feasible region is discussed. The required orientations for the sail and their corresponding variable lightness numbers are given for different hovering radii to identify the feasible region of the body-fixed hovering. An attractive scenario for a mission is introduced to take advantage of solar sail hovering. (paper)

  5. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  6. Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites

    Science.gov (United States)

    Zolensky, M. E.; Lee, R.; Le, L.

    2004-01-01

    One of the many unexpected observations of asteroid 433 Eros by the Near Earth Asteroid Rendezvous (NEAR) mission was the many ponds of fine-grained materials [1-3]. The ponds have smooth surfaces, and define equipotential surfaces up to 10's of meters in diameter [4]. The ponds have a uniformly sub-cm grain size and appear to be cohesive or indurated to some degree, as revealed by slumping. The ponds appear to be concentrated within 30 degrees of the equator of Eros, where gravity is lowest. There is some insight into the mineralogy and composition of the ponds surfaces from NEAR spectroscopy [2,4,5,6]. Compared to the bulk asteroid, ponds: (1) are distinctly bluer (high 550/760 nm ratio), (2) have a deeper 1um mafic band, (3) have reflectance elevated by 5%.

  7. A Cubesat Asteroid Mission: Propulsion Trade-offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  8. Lightcurve Analysis for Near-Earth Asteroid (143404) 2003 BD44

    Science.gov (United States)

    Polakis, Tom; Warner, Brian D.; Skiff, Brian A.

    2018-01-01

    The synodic rotation period has been determined for the near-Earth asteroid (NEA) (143404) 2003 BD44. The asteroid was observed during three intervals with a rotation period on the order of 79 h determined in each case. The lightcurve exhibited rapidly changing morphology as the asteroid approached. Data have submitted to the ALCDEF database.

  9. Thermal Inertia of near-Earth Asteroids and Strength of the Yarkovsky Effect

    NARCIS (Netherlands)

    Delbo, Marco; Dell'Oro, A.; Harris, A. W.; Mottola, S.; Mueller, M.

    2006-01-01

    Thermal inertia is the physical parameter that controls the temperature distribution over the surface of an asteroid. It affects the strength of the Yarkovsky effect, which causes orbital drift of km-sized asteroids and is invoked to explain the delivery of near-Earth asteroids (NEAs) from the main

  10. Surface Properties of Asteroids from Mid-Infrared Observations and Thermophysical Modeling

    NARCIS (Netherlands)

    Mueller, Michael

    The subject of this work is the physical characterization of asteroids, focusing on the thermal inertia of near-Earth asteroids (NEAs). Thermal inertia governs the Yarkovsky effect, a non-gravitational force which significantly alters the orbits of asteroids up to \\sim 20 km in diameter. Yet, very

  11. Exploring the collisional evolution of the asteroid belt

    Science.gov (United States)

    Bottke, W.; Broz, M.; O'Brien, D.; Campo Bagatin, A.; Morbidelli, A.

    2014-07-01

    The asteroid belt is a remnant of planet-formation processes. By modeling its collisional and dynamical history, and linking the results to constraints, we can probe how the planets and small bodies formed and evolved. Some key model constraints are: (i) The wavy shape of the main-belt size distribution (SFD), with inflection points near 100-km, 10--20-km, 1 to a few km, and ˜0.1-km diameter; (ii) The number of asteroid families created by the catastrophic breakup of large asteroid bodies over the last ˜ 4 Gy, with the number of disrupted D > 100 km bodies as small as ˜20 or as large as 60; (iii) the flux of small asteroids derived from the main belt that have struck the Moon over the last 3.5 Ga --- crater SFDs on lunar terrains with known ages suggest the D 100 km bodies have been significantly battered, but only a fraction have been catastrophically disrupted. Conversely, most small asteroids today are byproducts of fragmentation events. These results are consistent with growing evidence that most of the prominent meteorite classes were produced by young asteroid families. The big question is how to use what we know to determine the main belt's original size and state. This work is ongoing, but dynamical models hint at many possibilities, including both the late arrival and late removal of material from the main belt. In addition, no model has yet properly accounted for the bombardment of the primordial main belt by leftover planetesimals in the terrestrial planet region. It is also possible to use additional constraints, such as the apparent paucity of Vesta-like or V-type objects in the outer main belt, to argue that the primordial main belt at best only 3--4 its current mass at its start. In our talk, we will review what is known, what has been predicted, and some intriguing directions for the future.

  12. Asteroid retrieval missions enabled by invariant manifold dynamics

    Science.gov (United States)

    Sánchez, Joan Pau; García Yárnoz, Daniel

    2016-10-01

    Near Earth Asteroids are attractive targets for new space missions; firstly, because of their scientific importance, but also because of their impact threat and prospective resources. The asteroid retrieval mission concept has thus arisen as a synergistic approach to tackle these three facets of interest in one single mission. This paper reviews the methodology used by the authors (2013) in a previous search for objects that could be transported from accessible heliocentric orbits into the Earth's neighbourhood at affordable costs (or Easily Retrievable Objects, a.k.a. EROs). This methodology consisted of a heuristic pruning and an impulsive manoeuvre trajectory optimisation. Low thrust propulsion on the other hand clearly enables the transportation of much larger objects due to its higher specific impulse. Hence, in this paper, low thrust retrieval transfers are sought using impulsive trajectories as first guesses to solve the optimal control problem. GPOPS-II is used to transcribe the continuous-time optimal control problem to a nonlinear programming problem (NLP). The latter is solved by IPOPT, an open source software package for large-scale NLPs. Finally, a natural continuation procedure that increases the asteroid mass allows to find out the largest objects that could be retrieved from a given asteroid orbit. If this retrievable mass is larger than the actual mass of the asteroid, the asteroid retrieval mission for this particular object is said to be feasible. The paper concludes with an updated list of 17 EROs, as of April 2016, with their maximum retrievable masses by means of low thrust propulsion. This ranges from 2000 tons for the easiest object to be retrieved to 300 tons for the least accessible of them.

  13. Spin states of asteroids in the Eos collisional family

    Science.gov (United States)

    Hanuš, J.; Delbo', M.; Alí-Lagoa, V.; Bolin, B.; Jedicke, R.; Ďurech, J.; Cibulková, H.; Pravec, P.; Kušnirák, P.; Behrend, R.; Marchis, F.; Antonini, P.; Arnold, L.; Audejean, M.; Bachschmidt, M.; Bernasconi, L.; Brunetto, L.; Casulli, S.; Dymock, R.; Esseiva, N.; Esteban, M.; Gerteis, O.; de Groot, H.; Gully, H.; Hamanowa, Hiroko; Hamanowa, Hiromi; Krafft, P.; Lehký, M.; Manzini, F.; Michelet, J.; Morelle, E.; Oey, J.; Pilcher, F.; Reignier, F.; Roy, R.; Salom, P. A.; Warner, B. D.

    2018-01-01

    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ∼ 20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.

  14. EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID

    International Nuclear Information System (INIS)

    Xu, S.; Jura, M.; Zuckerman, B.; Dufour, P.

    2016-01-01

    We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s −1 from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid

  15. Volume and mass distribution in selected families of asteroids

    Science.gov (United States)

    Wlodarczyk, I.; Leliwa-Kopystynski, J.

    2014-07-01

    Members of five asteroid families (Vesta, Eos, Eunomia, Koronis, and Themis) were identified using the Hierarchical Clustering Method (HCM) for a data set containing 292,003 numbered asteroids. The influence of the choice of the best value of the parameter v_{cut} that controls the distances of asteroids in the proper elements space a, e, i was investigated with a step as small as 1 m/s. Results are given in a set of figures showing the families on the planes (a, e), (a, i), (e, i). Another form for the presentation of results is related to the secular resonances in the asteroids' motion with the giant planets, mostly with Saturn. Relations among asteroid radius, albedo, and absolute magnitude allow us to calculate the volumes of individual members of an asteroid family. After summation, the volumes of the parent bodies of the families were found. This paper presents the possibility and the first results of using a combined method for asteroid family identifications based on the following items: (i) Parameter v_{cut} is established with precision as high as 1 m/s; (ii) the albedo (if available) of the potential members is considered for approving or rejecting the family membership; (iii) a color classification is used for the same purpose as well. Searching for the most reliable parameter values for the family populations was performed by means of a consecutive application of the HCM with increasing parameter v_{cut}. The results are illustrated in the figure. Increasing v_{cut} in steps as small as 1 m/s allowed to observe the computational strength of the HCM: the critical value of the parameter v_{cut} (see the breaking-points of the plots in the figure) separates the assemblage of potential family members from 'an ocean' of background asteroids that are not related to the family. The critical values of v_{cut} vary from 57 m/s for the Vesta family to 92 m/s for the Eos family. If the parameter v_{cut} surpasses its critical value, the number of HCM

  16. EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany); Jura, M.; Zuckerman, B. [Department of Physics and Astronomy, University of California, Los Angeles CA 90095-1562 (United States); Dufour, P., E-mail: sxu@eso.org, E-mail: jura@astro.ucla.edu, E-mail: ben@astro.ucla.edu, E-mail: dufourpa@astro.umontreal.ca [Institut de Recherche sur les Exoplanètes (iREx), Université de Montréal, Montréal, QC H3C 3J7 (Canada)

    2016-01-10

    We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s{sup −1} from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid.

  17. Trojan, Hilda, and Cybele asteroids - New lightcurve observations and analysis

    Science.gov (United States)

    Binzel, Richard P.; Sauter, Linda M.

    1992-01-01

    Lightcurve observations of 23 Trojan, Hilda, and Cybele asteroids are presently subjected to a correction procedure for multiple-aspect lightcurves, followed by a quantitative, bias-corrected analysis of lightcurve amplitude distributions for all published data on these asteroids. While the largest Trojans are found to have a higher mean-lightcurve amplitude than their low-albedo, main-belt counterparts, the smaller Trojans and all Hildas and Cybeles display lightcurve properties resembling main-belt objects. Only the largest Trojans have retained their initial forms after subsequent collisional evolution; 90 km may accordingly represent a transitional magnitude between primordial objects and collision fragments.

  18. Guide to the universe asteroids, comets, and dwarf planets

    CERN Document Server

    Rivkin, Andrew

    2009-01-01

    This volume in the Greenwood Guides to the Universe series covers asteroids, comets, and dwarf planets-those small bodies that revolve the Sun-and provides readers with the most up-to-date understanding of the current state of scientific knowledge about them. Scientifically sound, but written with the student in mind, Asteroids, Comets, and Dwarf Planets is an excellent first step for researching the exciting scientific discoveries of the smallest celestial bodies in the solar system.||The book will introduce students to all of the areas of research surrounding the subject, answering many intr

  19. The AKARI IRC asteroid flux catalogue: updated diameters and albedos

    Science.gov (United States)

    Alí-Lagoa, V.; Müller, T. G.; Usui, F.; Hasegawa, S.

    2018-05-01

    The AKARI IRC all-sky survey provided more than twenty thousand thermal infrared observations of over five thousand asteroids. Diameters and albedos were obtained by fitting an empirically calibrated version of the standard thermal model to these data. After the publication of the flux catalogue in October 2016, our aim here is to present the AKARI IRC all-sky survey data and discuss valuable scientific applications in the field of small body physical properties studies. As an example, we update the catalogue of asteroid diameters and albedos based on AKARI using the near-Earth asteroid thermal model (NEATM). We fit the NEATM to derive asteroid diameters and, whenever possible, infrared beaming parameters. We fit groups of observations taken for the same object at different epochs of the survey separately, so we compute more than one diameter for approximately half of the catalogue. We obtained a total of 8097 diameters and albedos for 5170 asteroids, and we fitted the beaming parameter for almost two thousand of them. When it was not possible to fit the beaming parameter, we used a straight line fit to our sample's beaming parameter-versus-phase angle plot to set the default value for each fit individually instead of using a single average value. Our diameters agree with stellar-occultation-based diameters well within the accuracy expected for the model. They also match the previous AKARI-based catalogue at phase angles lower than 50°, but we find a systematic deviation at higher phase angles, at which near-Earth and Mars-crossing asteroids were observed. The AKARI IRC All-sky survey is an essential source of information about asteroids, especially the large ones, since, it provides observations at different observation geometries, rotational coverages and aspect angles. For example, by comparing in more detail a few asteroids for which dimensions were derived from occultations, we discuss how the multiple observations per object may already provide three

  20. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  1. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  2. Evolution of asteroid (4) Vesta in the light of Dawn

    Science.gov (United States)

    Thangjam, Guneshwar; Mengel, Kurt; Nathues, Andreas; Schmidt, Kai H.; Hoffmann, Martin

    2016-04-01

    Asteroid (4) Vesta has been visited by the NASA Dawn spacecraft in 2011/12. The combination of compositional/elemental information from the three onboard instruments with mineralogical information from the howardite-eucrite-diogenite (HED) clan of stony achondrites has shed new light on the surface lithologic heterogeneity and the early evolution. Although petrologic/chemical models have tried to unravel the evolutionary processes, inconsistencies exist for some chemical major element/phase [e.g., 1, 2]. A revised evolutionary model is presented here [3]. The three oxygen isotope signature of HEDs and, thus, of proto-Vesta is best met by a mixture of 80% ordinary plus 20 % CV chondrites. Assuming a 27Al-triggered magma ocean within the first MA after accretion and taking into account the reliable major element data of the silicate fraction of the chondritic mixture results a crystallization sequence that differs from the earlier models [1, 2, 3]. The crystallized phase obtained by 'MELTS' software [4] starts with olivine and continues with minor olivine plus orthopyroxene until the liquid reaches a Kd value (partition coefficient) of 0.31 where the fractionated melt is in equilibrium with the residual liquid [5]. The abundance of minerals and rocks formed in this model are converted in volume proportions assuming a spherical shape of early Vesta (262 km radius) with a core (FeNi, FeNiS) radius of 110 km [6]. Two scenarios are considered to describe the early bulk silicate Vesta. First, the early-crystallized olivine accumulated at the base of the silicate shell is accounted for a dunitic lower mantle having a thickness of 46 km while the later crystallized phases form an orthopyroxenitic upper mantle and a crust of thickness 84 and 22 km, respectively. Second, an olivine-rich lower mantle that gradually changes to orthopyroxene-rich upper mantle is expected having an overall shell thickness of 137 km, with a 15 km thick crust. An important result is that the deep

  3. The Geology of the Marcia Quadrangle of Asteroid 4Vesta: An Integrated Mapping Study Using Dawn Spacecraft Data

    Science.gov (United States)

    Williams, David A.; Denevi, B. W.; Mittlefehldt, D. W.; Mest, S. C.; Schenk, P. M.; Jaumann, R.; DeSanctis, M. C.; Buczkowski, D. L.; Ammannito, E.; Prettyman, T. H.; hide

    2012-01-01

    We used geologic mapping applied to Dawn data as a tool to understand the geologic history of the Marcia quadrangle of Vesta. This region hosts a set of relatively fresh craters and surrounding ejecta field, an unusual dark hill named Arisia Tholus, and a orange (false color) diffuse material surrounding the crater Octavia. Stratigraphically, from oldest to youngest, three increasingly larger impact craters named Minucia, Calpurnia, and Marcia make up a snowmanlike feature, which is surrounded by a zone of dark material interpreted to consist of impact ejecta and possibly impact melts. The floor of Marcia contains a pitted terrain thought to be related to release of volatiles (1). The dark ejecta field has an enhanced signature of H, possibly derived from carbonaceous chondritic material that accumulated in Vesta s crust (2,3). The dark ejecta has a spectrally distinctive behavior with shallow pyroxenes band depths. Outside the ejecta field this quadrangle contains various cratered terrains, with increasing crater abundance moving south to north away from the Rheasilvia basin. Arisia Tholus, originally suggested as an ancient volcano, appears to be an impact-sculpted basin rim fragment with a superposed darkrayed impact crater. There remains no unequivocal evidence of volcanic features on Vesta s surface, likely because basaltic material of the HED meteorite suite demonstrates magmatism ended very early on Vesta (4). Ongoing work includes application of crater statistical techniques to obtain model ages of surface units, and more detailed estimates of the compositional variations among the surface units.

  4. Asteroid Redirect Robotic Mission: Robotic Boulder Capture Option Overview

    Science.gov (United States)

    Mazanek, Daniel D.; Merrill, Raymond G.; Belbin, Scott P.; Reeves, David M.; Earle, Kevin D.; Naasz, Bo J.; Abell, Paul A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying an option for the Asteroid Redirect Robotic Mission (ARRM) that would capture a multi-ton boulder (typically 2-4 meters in size) from the surface of a large (is approximately 100+ meter) Near-Earth Asteroid (NEA) and return it to cislunar space for subsequent human and robotic exploration. This alternative mission approach, designated the Robotic Boulder Capture Option (Option B), has been investigated to determine the mission feasibility and identify potential differences from the initial ARRM concept of capturing an entire small NEA (4-10 meters in size), which has been designated the Small Asteroid Capture Option (Option A). Compared to the initial ARRM concept, Option B allows for centimeter-level characterization over an entire large NEA, the certainty of target NEA composition type, the ability to select the boulder that is captured, numerous opportunities for mission enhancements to support science objectives, additional experience operating at a low-gravity planetary body including extended surface contact, and the ability to demonstrate future planetary defense strategies on a hazardous-size NEA. Option B can leverage precursor missions and existing Agency capabilities to help ensure mission success by targeting wellcharacterized asteroids and can accommodate uncertain programmatic schedules by tailoring the return mass.

  5. Gravity Defied From Potato Asteroids to Magnetised Neutron Stars

    Indian Academy of Sciences (India)

    Gravity Defied. From Potato Asteroids to Magnetised Neutron Stars. 2. ... objects that just missed being stars in this particular install- ment. 1. .... However, the total energy that can be made .... trial metals in which the electrons form a degenerate Fermi gas. ... In deuterium fusion, a deuterium nucleus and a proton combine to.

  6. Asteroid proper elements from an analytical second order theory

    International Nuclear Information System (INIS)

    Knezevic, Z.; Milani, A.

    1989-01-01

    The authors have computed by a fully analytical method a new set of proper elements for 3322 numbered main-belt asteroids. They are presented in the following format: asteroid number, proper semimajor axis (AU), proper eccentricity, sine of proper inclination and quality code (see below). This new set is significantly more accurate than all the previous ones at low to moderate eccentricities and inclinations, and especially near the main mean-motion resonances (e.g., the Themis region). This is because the short periodic perturbations are rigorously removed, and the main effects of the second-order (containing the square of the ratio [the mass of Jupiter/mass of the Sun]) are accounted for. Effects arising from the terms in the Hamiltonian of degree up to four in the eccentricity and inclination of both the asteroid and Jupiter are taken into account, and the fundamental frequencies g (for the perihelion) and s(for the node) of the asteroid are computed with a interative algorithm consistent with the basic results of modern dynamics (e.g., Kolmogorov-Arnold-Moser theory)

  7. The Cool Surfaces of Binaries Near-Earth Asteroids

    NARCIS (Netherlands)

    Delbo, Marco; Walsh, K.; Mueller, M.

    2008-01-01

    We present results from thermal-infrared observations of binary near-Earth asteroids (NEAs). These objects, in general, have surface temperatures cooler than the average values for non-binary NEAs. We discuss how this may be evidence of higher-than-average surface thermal inertia. The comparison of

  8. FIRST VLTI-MIDI DIRECT DETERMINATIONS OF ASTEROID SIZES

    International Nuclear Information System (INIS)

    Delbo, M.; Ligori, S.; Cellino, A.; Matter, A.; Berthier, J.

    2009-01-01

    We have obtained the first successful interferometric measurements of asteroid sizes and shapes by means of the Very Large Telescope Interferometer-Mid-Infrared Interferometric Instrument (VLTI-MIDI). The VLTI can spatially resolve asteroids in a range of sizes and heliocentric distances that are not accessible to other techniques such as adaptive optics and radar. We have observed, as a typical bench mark, the asteroid (951) Gaspra, visited in the past by the Galileo space probe, and we derive a size in good agreement with the ground truth coming from the in situ measurements by the Galileo mission. Moreover, we have also observed the asteroid (234) Barbara, known to exhibit unusual polarimetric properties, and we found evidence of a potential binary nature. In particular, our data are best fit by a system of two bodies of 37 and 21 km in diameter, separated by a center-to-center distance of ∼24 km (projected along the direction of the baseline at the epoch of our observations).

  9. Photometry and models of eight near-Earth asteroids

    Czech Academy of Sciences Publication Activity Database

    Kaasalainen, M.; Pravec, Petr; Krugly, Yu. N.; Kotková, Lenka; Torppa, J.; Virtanen, J.; Kaasalainen, S.; Erikson, A.; Nathues, A.; Ďurech, J.; Wolf, M.; Lagerros, J. S. V.; Lindgren, M.; Lagerkvist, C.-I.; Koff, R.; Davies, J.; Mann, R.; Kušnirák, Peter; Gaftonyuk, N. M.; Shevchenko, V. G.; Chiorny, V. G.; Belskaya, I. N.

    2004-01-01

    Roč. 167, č. 1 (2004), s. 178-196 ISSN 0019-1035 R&D Projects: GA AV ČR IAA3003204; GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : asteroids * rotation * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.074, year: 2004

  10. Disaggregation of small, cohesive rubble pile asteroids due to YORP

    Science.gov (United States)

    Scheeres, D. J.

    2018-04-01

    The implication of small amounts of cohesion within relatively small rubble pile asteroids is investigated with regard to their evolution under the persistent presence of the YORP effect. We find that below a characteristic size, which is a function of cohesive strength, density and other properties, rubble pile asteroids can enter a "disaggregation phase" in which they are subject to repeated fissions after which the formation of a stabilizing binary system is not possible. Once this threshold is passed rubble pile asteroids may be disaggregated into their constituent components within a finite time span. These constituent components will have their own spin limits - albeit potentially at a much higher spin rate due to the greater strength of a monolithic body. The implications of this prediction are discussed and include modification of size distributions, prevalence of monolithic bodies among meteoroids and the lifetime of small rubble pile bodies in the solar system. The theory is then used to place constraints on the strength of binary asteroids characterized as a function of their type.

  11. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    Science.gov (United States)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  12. A Martian origin for the Mars Trojan asteroids

    Science.gov (United States)

    Polishook, D.; Jacobson, S. A.; Morbidelli, A.; Aharonson, O.

    2017-08-01

    Seven of the nine known Mars Trojan asteroids belong to an orbital cluster1,2 named after its largest member, (5261) Eureka. Eureka is probably the progenitor of the whole cluster, which formed at least 1 Gyr ago3. It has been suggested3 that the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect spun up Eureka, resulting in fragments being ejected by the rotational-fission mechanism. Eureka's spectrum exhibits a broad and deep absorption band around 1 μm, indicating an olivine-rich composition4. Here we show evidence that the Trojan Eureka cluster progenitor could have originated as impact debris excavated from the Martian mantle. We present new near-infrared observations of two Trojans ((311999) 2007 NS2 and (385250) 2001 DH47) and find that both exhibit an olivine-rich reflectance spectrum similar to Eureka's. These measurements confirm that the progenitor of the cluster has an achondritic composition4. Olivine-rich reflectance spectra are rare amongst asteroids5 but are seen around the largest basins on Mars6. They are also consistent with some Martian meteorites (for example, Chassigny7) and with the material comprising much of the Martian mantle8,9. Using numerical simulations, we show that the Mars Trojans are more likely to be impact ejecta from Mars than captured olivine-rich asteroids transported from the main belt. This result directly links specific asteroids to debris from the forming planets.

  13. 78 FR 64253 - NASA Asteroid Initiative Idea Synthesis Workshop

    Science.gov (United States)

    2013-10-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-124] NASA Asteroid Initiative Idea.... SUMMARY: The National Aeronautics and Space Administration announces that the agency will resume the NASA... INFORMATION CONTACT: Michele Gates, Senior Technical Advisor, NASA Human Exploration and Operations Mission...

  14. Multi-wavelength observations of Asteroid 2100 Ra-Shalom

    Czech Academy of Sciences Publication Activity Database

    Shepard, M.K.; Clark, B. E.; Nolan, M. C.; Benner, L. A. M.; Ostro, S. J.; Giorgini, J. D.; Vilas, F.; Jarvis, K.; Lederer, S.; Lim, L.F.; McConnochie, T.; Bell, J.; Margot, J. L.; Rivkin, A. S.; Magrik, C.; Scheeres, D.J.; Pravec, Petr

    2008-01-01

    Roč. 193, č. 1 (2008), s. 20-38 ISSN 0019-1035 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids composition * radar observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.268, year: 2008

  15. Physical modeling of near-Earth Asteroid (29075) 1950 DA

    Czech Academy of Sciences Publication Activity Database

    Busch, M.W.; Giorgini, J. D.; Ostro, S. J.; Benner, L. A. M.; Jurgens, R. F.; Rose, R.; Hicks, M. D.; Pravec, Petr; Kušnirák, Peter; Ireland, M.J.; Scheeres, D.J.; Broschart, S.B.; Magri, C.; Nolan, M. C.; Hine, A. A.; Margot, J. L.

    2007-01-01

    Roč. 190, č. 2 (2007), s. 608-621 ISSN 0019-1035 Grant - others:GA ČR(CZ) GA208/99/0255 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * composition * dynamics * rotation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.869, year: 2007

  16. Thermal infrared observations of asteroid (99942) Apophis with Herschel

    Czech Academy of Sciences Publication Activity Database

    Müller, T. G.; Kiss, C.; Scheirich, Peter; Pravec, Petr; O'Rourke, L.; Vilenius, E.; Altieri, B.

    2014-01-01

    Roč. 566, June (2014), A22/1-A22/10 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0229; GA MŠk LG12001 Institutional support: RVO:67985815 Keywords : minor planets * asteroids: individual * radiation mechanisms Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  17. Photometric observations of Earth-impacting asteroid 2008 TC(3)

    Czech Academy of Sciences Publication Activity Database

    Kozubal, M.; Gasdia, F.W.; Dantowitz, R.; Scheirich, Peter; Harris, A. W.

    2011-01-01

    Roč. 46, č. 4 (2011), s. 534-542 ISSN 1086-9379 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroid * photometric observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.719, year: 2011

  18. New findings on asteroid spin-vector distributions

    Czech Academy of Sciences Publication Activity Database

    Kryszczynska, A.; La Spina, A.; Paolicchi, P.; Harris, A. W.; Breiter, S.; Pravec, Petr

    2007-01-01

    Roč. 192, č. 1 (2007), s. 223-237 ISSN 0019-1035 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * rotation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.869, year: 2007

  19. The trajectory, structure and origin of the Chelyabinsk asteroidal impactor

    Science.gov (United States)

    Borovička, Jiří; Spurný, Pavel; Brown, Peter; Wiegert, Paul; Kalenda, Pavel; Clark, David; Shrbený, Lukáš

    2013-11-01

    Earth is continuously colliding with fragments of asteroids and comets of various sizes. The largest encounter in historical times occurred over the Tunguska river in Siberia in 1908, producing an airburst of energy equivalent to 5-15 megatons of trinitrotoluene (1 kiloton of trinitrotoluene represents an energy of 4.185 × 1012 joules). Until recently, the next most energetic airburst events occurred over Indonesia in 2009 and near the Marshall Islands in 1994, both with energies of several tens of kilotons. Here we report an analysis of selected video records of the Chelyabinsk superbolide of 15 February 2013, with energy equivalent to 500 kilotons of trinitrotoluene, and details of its atmospheric passage. We found that its orbit was similar to the orbit of the two-kilometre-diameter asteroid 86039 (1999 NC43), to a degree of statistical significance sufficient to suggest that the two were once part of the same object. The bulk strength--the ability to resist breakage--of the Chelyabinsk asteroid, of about one megapascal, was similar to that of smaller meteoroids and corresponds to a heavily fractured single stone. The asteroid broke into small pieces between the altitudes of 45 and 30 kilometres, preventing more-serious damage on the ground. The total mass of surviving fragments larger than 100 grams was lower than expected.

  20. Binary asteroid population. 3. Secondary rotations and elongations

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián; Naidu, S.P.; Pray, D. P.; Világi, J.; Gajdoš, Š.; Kornoš, L.

    2016-01-01

    Roč. 267, March (2016), s. 267-295 ISSN 0019-1035 R&D Projects: GA ČR GAP209/12/0229; GA ČR GA15-07193S Institutional support: RVO:67985815 Keywords : asteroids * rotation * dynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.131, year: 2016