Gain of harmonic generation in high gain free electron laser
DENG Hai-Xiao; DAI Zhi-Min
2008-01-01
In a planar undulator employed free electron laser(FEL),each harmonic radiation starts from linear amplification and ends with nonlinear harmonic interactions of the lower nonlinear harmonics and the fundamental radiation.In this paper,we investigate the harmonic generation based on the dispersion relation driven from the coupled Maxwell-Vlasov equations,taking into account the effects due to energy spread,emittance,betatron oscillation of electron beam as well as diffraction guiding of the radiation field.A 3D universal scaling function for gain of the linear harmonic generation and a 1D universal scaling function for gain of the nonlinear harmonic generation are presented,which promise rapid computation in FEL design and optimization.The analytical approaches have been validated by 3D simulation results in large range.
Optical klystron and harmonic generation free electron laser
Qika Jia
2005-06-01
Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.
Studies of harmonic generation in free electron lasers
Goldammer, K.
2007-11-12
Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It
Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC
2012-02-15
Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.
Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers
Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.
2007-05-15
CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)
Analytic model of bunched beams for harmonic generation in thelow-gain free electron laser regime
Penn, G.; Reinsch, M.; Wurtele, J.S.
2006-02-20
One scheme for harmonic generation employs free electron lasers (FELs) with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beamline in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast X-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.
High gain harmonic generation free electron lasers enhanced by pseudoenergy bands
Takashi Tanaka
2017-08-01
Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.
Generation of high harmonic free electron laser with phase-merging effect
Li, Heting; Jia, Qika; Zhao, Zhouyu
2017-03-01
An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.
High gain harmonic generation free electron lasers enhanced by pseudoenergy bands
Tanaka, Takashi; Kinjo, Ryota
2017-08-01
We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs), which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.
First lasing of a high-gain harmonic generation free- electron laser experiment
Yu, L H; Ben-Zvi, I; Di Mauro, Louis F; Doyuran, A; Graves, W; Johnson, E; Krinsky, S; Malone, R; Pogorelsky, I V; Skaritka, J; Rakowsky, G; Solomon, L; Wang, X J; Woodle, M; Yakimenko, V; Biedron, S G; Galayda, J N; Gluskin, E; Jagger, J; Sajaev, Vadim; Vasserman, I
2000-01-01
We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2x10 sup 7 times larger than the spontaneous radiation. In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance (approx 2 m) through the same wiggler. This means the HGHG signal is 2x10 sup 6 times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).
Phononic High Harmonic Generation
Ganesan, Adarsh; Seshia, Ashwin A
2016-01-01
This paper reports the first experimental evidence for phononic low-order to high-order harmonic conversion leading to high harmonic generation. Similar to parametric resonance, phononic high harmonic generation is also mediated by a threshold dependent instability of a driven phonon mode. Once the threshold for instability is met, a cascade of harmonic generation processes is triggered. Firstly, the up-conversion of first harmonic phonons into second harmonic phonons is established. Subsequently, the down-conversion of second harmonic phonons into first harmonic phonons and conversion of first and second harmonic phonons into third harmonic phonons occur. On the similar lines, an eventual conversion of third harmonic phonons to high orders is also observed to commence. This surprising physical pathway for phononic low-order to high-order harmonic conversion may find general relevance to other physical systems.
Third harmonic generation imaging for fast, label-free pathology of human brain tumors.
Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L
2016-05-01
In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.
Zheng, Liqin; Zhuo, Shuangmu; Chen, Gang; Zhu, Xiaoqin; Jiang, Xingshan; Yan, Jun; Chen, Jianxin; Xie, Shusen
2011-01-01
Early detection of fibroadenoma (FA) is critical for preventing subsequent breast cancer. In this work, we show that label-free second harmonic generation (SHG) imaging is feasible and effective in quantitatively differentiating the fibroadenomal tissue from normal breast tissue. With the advent of the clinical portability of miniature SHG microscopy, we believe that the technique has great potential in offering a noninvasive in vivo imaging tool for early detection of FA and monitoring the treatment responses of FA in clinics. Copyright © 2011 Wiley Periodicals, Inc.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)
2014-09-08
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Third harmonic generation imaging for fast, label-free pathology of human brain tumors
Kuzmin, N. V.; Wesseling, P.; Hamer, P. C. de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.
2016-01-01
In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies. PMID:27231629
吴家骏; 尉鹏飞
2012-01-01
We investigate the focus conditioning effects on molecular field-free alignment observed with high-order harmonic generation (HHG) from CO2 molecules.We also experimentally demonstrate that both the spectral shape and alignment signal of HHG significantly vary with changing focus position.A maximal alignment signal is achieved at a given focus position because of the optimal intensity of the driving laser.This intensity is related to the ionization potential of the molecules.These results indicate that a unique focus position provides an optimal alignment signal for practical applications.
Start-to-end simulations for a seeded harmonic generation free electron laser
S. Thorin
2007-11-01
Full Text Available This paper shows how the MAX linac injector and transport system can be efficiently retuned to suit free electron laser (FEL performance. In a collaboration between MAX-lab and BESSY, a seeded harmonic generation free electron laser is being constructed at MAX-lab. The setup uses the existing MAX-lab facility upgraded with a new low emittance photocathode gun, a Ti∶Sa 266 nm laser system used for both the gun and seeding and an FEL undulator system. To produce the high quality electron beam needed, it is shown how the magnet optics in an achromatic dogleg can be tuned to create an optimum bunch compression and how a good quality beam can be maintained through the beam transport and delivered to the FEL undulators. In extensive start-to-end simulations from the cathode of the gun to the generation of photons in the undulators, FEL performance and stability has been calculated using simulation tools like ASTRA, ELEGANT, and GENESIS. This has been done for both the third and fifth harmonic of the seed laser. The results from the calculation are 30 fs light pulses with a power of 11 MW at 88 nm and 1.4 MW at 53 nm.
Misconceptions regarding Second Harmonic Generation in X-Ray Free-Electron Lasers
Geloni, G; Schneidmiller, E; Yurkov, M V
2005-01-01
Nonlinear generation of coherent harmonic radiation is an important option in the operation of a X-ray FEL facility since it broadens the spectral range of the facility itself, thus allowing for a wider scope of experimental applications. We found that up-to-date theoretical understanding of second harmonic generation is incorrect. Derivation of correct radiation characteristics will follow our criticism.
Second harmonic generation at the probe tip for background-free near-field optical imaging.
Dong, Zhaogang; Soh, Yeng Chai
2012-08-13
Second harmonic generation (SHG) has been applied to reduce background signals in near-field optical imaging, but this technique is usually limited to samples with strong second-order nonlinear susceptibilities. To overcome this limitation, in this paper, we present a versatile background-free SHG configuration, where it utilizes the second-order nonlinear susceptibility of the probe which essentially functions as a near-field polarizer capable of filtering out the background signal component. In the theoretical analysis, we first model the probe-sample optical interactions at both the fundamental frequency and the second harmonic frequency by using the coupled dipole method. The theoretical model reveals that the proposed versatile background-free SHG configuration requires two conditions. The first condition is that the incident optical field must be s-polarized. The second condition is that the probe must be made of crystals from symmetry class 222, symmetry class 622, symmetry class 422, symmetry class 42m, symmetry class 43m or symmetry class 23. To demonstrate the effectiveness of the proposed versatile background-free SHG configuration, a probe made of deuterated potassium dideuterium phosphate (DKDP) crystal from symmetry class 42m is analyzed numerically. It is shown that when imaging samples with negligible second-order nonlinear susceptibilities, the proposed background-free SHG configuration improves the imaging contrast by more than one-order of magnitude as compared to all other imaging configurations. Moreover, we also investigate the dependence of its performance on other parameters, such as the probe-sample distance, the relative size between probe and sample, and the tilt angle of probe crystal. It is believed that the proposed configuration could be widely used to achieve high contrast near-field optical imaging.
Steffen Dietzel
Full Text Available Determination of blood flow velocity and related hemodynamic parameters is an important aspect of physiological studies which in many settings requires fluorescent labeling. Here we show that Third Harmonic Generation (THG microscopy is a suitable tool for label-free intravital investigations of the microcirculation in widely-used physiological model systems. THG microscopy is a non-fluorescent multi-photon scanning technique combining the advantages of label-free imaging with restriction of signal generation to a focal spot. Blood flow was visualized and its velocity was measured in adult mouse cremaster muscle vessels, non-invasively in mouse ear vessels and in Xenopus tadpoles. In arterioles, THG line scanning allowed determination of the flow pulse velocity curve and hence the heart rate. By relocating the scan line we obtained velocity profiles through vessel diameters, allowing shear rate calculations. The cell free layer containing the glycocalyx was also visualized. Comparison of the current microscopic resolution with theoretical, diffraction limited resolution let us conclude that an about sixty-fold THG signal intensity increase may be possible with future improved optics, optimized for 1200-1300 nm excitation. THG microscopy is compatible with simultaneous two-photon excited fluorescence detection. It thus also provides the opportunity to determine important hemodynamic parameters in parallel to common fluorescent observations without additional label.
A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC
Pernet, Pierre-Louis [Swiss Federal Institute of Technology, Lausanne (Switzerland)
2010-06-24
With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.
Label-free live brain imaging and targeted patching with third-harmonic generation microscopy
Witte, Stefan; Negrean, Adrian; Lodder, Johannes C.; de Kock, Christiaan P. J.; Testa Silva, Guilherme; Mansvelder, Huibert D.; Louise Groot, Marie
2011-01-01
The ability to visualize neurons inside living brain tissue is a fundamental requirement in neuroscience and neurosurgery. Especially the development of a noninvasive probe of brain morphology with micrometer-scale resolution is highly desirable, as it would provide a noninvasive approach to optical biopsies in diagnostic medicine. Two-photon laser-scanning microscopy (2PLSM) is a powerful tool in this regard, and has become the standard for minimally invasive high-resolution imaging of living biological samples. However, while 2PLSM-based optical methods provide sufficient resolution, they have been hampered by the requirement for fluorescent dyes to provide image contrast. Here we demonstrate high-contrast imaging of live brain tissue at cellular resolution, without the need for fluorescent probes, using optical third-harmonic generation (THG). We exploit the specific geometry and lipid content of brain tissue at the cellular level to achieve partial phase matching of THG, providing an alternative contrast mechanism to fluorescence. We find that THG brain imaging allows rapid, noninvasive label-free imaging of neurons, white-matter structures, and blood vessels simultaneously. Furthermore, we exploit THG-based imaging to guide micropipettes towards designated neurons inside live tissue. This work is a major step towards label-free microscopic live brain imaging, and opens up possibilities for the development of laser-guided microsurgery techniques in the living brain. PMID:21444784
Feng, Chao; Wang, Guanglei; Wang, Dong; Xiang, Dao; Zhao, Zhentang
2013-01-01
Free-electron lasers (FELs) seeded with external lasers hold great promise for generating high power radiation with nearly transform-limited bandwidth in soft x-ray region. However, it has been pointed out that the initial seed laser noise will be amplified by the frequency up-conversion process, which may degrade the quality of the output radiation produced by a harmonic generation scheme. In this paper, theoretical and simulation studies for laser phase error amplification in seeded FEL schemes with slippage effect taken into account are presented. It is found that, the seed laser imperfection experienced by the electron beam can be significantly smoothed by the slippage effect in the modulator when the slippage length is comparable to the laser pulse length. This smoothing effect allows one to preserve the excellent temporal coherence of seeded FELs in presence of large laser phase errors. For ultra-short UV seed lasers with FWHM around 16 fs, the slippage length in a modulator with ~30 undulator periods i...
Generation of ultrahigh harmonics with a two-stage free electron laser and a seed laser
Goloviznin, V. V.; van Amersfoort, P. W.
1997-01-01
We consider the possibility to premodulate an ultrarelativistic electron beam on the nanometer length scale, so that it can produce coherent spontaneous radiation in the x-ray range. The scheme that uses the same basic elements as the high gain harmonic generation (HGHG) scheme, two wigglers and a c
Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime
G. Penn
2006-06-01
Full Text Available One scheme for harmonic generation employs free electron lasers (FELs with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica® package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.
Second harmonic generation imaging
2013-01-01
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...
Next generation data harmonization
Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg
2015-05-01
Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.
Second harmonic generation microscopy
Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens
2010-01-01
Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua
2017-02-01
Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.
Ranjit, Suman; Dobrinskikh, Evgenia; Montford, John; Dvornikov, Alexander; Lehman, Allison; Orlicky, David J; Nemenoff, Raphael; Gratton, Enrico; Levi, Moshe; Furgeson, Seth
2016-11-01
All forms of progressive renal diseases develop a final pathway of tubulointerstitial fibrosis and glomerulosclerosis. Renal fibrosis is usually quantified using histological staining, a process that is time-consuming and pathologist dependent. Here we develop a fast and operator-independent method to measure fibrosis utilizing the murine unilateral ureteral obstruction model which manifests a time-dependent fibrotic increase in obstructed kidneys while the contralateral kidneys are used as controls. After ureteral obstruction, kidneys were analyzed at 7, 14, and 21 days. Fibrosis was quantified using fluorescence lifetime imaging (FLIM) and second harmonic generation (SHG) in a Deep Imaging via Enhanced photon Recovery deep tissue imaging microscope. This microscope was developed for deep tissue along with second and third harmonic generation imaging and has extraordinary sensitivity toward harmonic generation. SHG data suggest the presence of more fibrillar collagen in the obstructed kidneys. The combination of short-wavelength FLIM and SHG analysis results in a robust assessment procedure independent of observer interpretation and let us create criteria to quantify the extent of fibrosis directly from the image. Thus, the FLIM-SHG technique shows remarkable improvement in quantification of renal fibrosis compared to standard histological techniques. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Harmonic generation with multiple wiggler schemes
Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)
1995-02-01
In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.
Yao, Yuhong; Knox, Wayne H.
2015-03-01
We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.
Zhuo, Shuangmu; Yan, Jun; Chen, Gang; Shi, Hong; Zhu, Xiaoqin; Lu, Jianping; Chen, Jianxin; Xie, Shusen
2012-01-01
Since changes in the basement membranes are the critical indicators for differentiating normal, precancerous, and cancerous colonic tissues, direct visualization of these warning signs is essential for the early diagnosis and treatment of colonic cancer. Here, we present that second harmonic generation (SHG) microscopy can probe the changes of basement membranes in different colonic cancer stages. Our results also show the capability of using the quantitative analyses of images for quantifying these changes in different cancer stages. These results suggest that SHG microscopy has the potential in label-freely imaging the changes of basement membranes for effectively distinguishing between normal, precancerous, and cancerous colonic tissues. To our knowledge, this is the first demonstration of the dynamics of basement membrane changes in different colonic cancer stages using entirely intrinsic source of contrast.
Chunqiang Li
2016-01-01
Full Text Available Atherosclerosis has been recognized as a chronic inflammation disease, in which many types of cells participate in this process, including lymphocytes, macrophages, dendritic cells (DCs, mast cells, vascular smooth muscle cells (SMCs. Developments in imaging technology provide the capability to observe cellular and tissue components and their interactions. The knowledge of the functions of immune cells and their interactions with other cell and tissue components will facilitate our discovery of biomarkers in atherosclerosis and prediction of the risk factor of rupture-prone plaques. Nonlinear optical microscopy based on two-photon excited autofluorescence and second harmonic generation (SHG were developed to image mast cells, SMCs and collagen in plaque ex vivo using endogenous optical signals. Mast cells were imaged with two-photon tryptophan autofluorescence, SMCs were imaged with two-photon NADH autofluorescence, and collagen were imaged with SHG. This development paves the way for further study of mast cell degranulation, and the effects of mast cell derived mediators such as induced synthesis and activation of matrix metalloproteinases (MMPs which participate in the degradation of collagen.
Role of Excited States In High-order Harmonic Generation
Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.
2016-11-01
We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.
On harmonic operation of Shanghai deep UV free electron laser
无
2008-01-01
By choosing parameters in the modulator,the dispersive section and the seed laser,the spatial bunching of the electron beam can be correlated to then-th harmonic of ther adiator radiation,instead of the fundamental radiation in conventional high-gain harmonic generation(HGHG).Thus,the radiator undulator is operated at high harmonic mode.In this paper,the possibility of harmonic operation of Shanghai deep ultraviolet(SDUV)free electron laser (FEL)is studied.Discussions on the principle of harmonic operation,the simulation code development,the simulation results.and the proposed experimental procedure for verification of harmonic operation at the SDUV FEL are also presented.
H.Tomizawa; T.Sato; K.Ogawa; K.Togawa; T.Tanaka; T.Hara; M.Yabashi; H.Tanaka; T.Ishikawa; T.Togashi; S.Matsubara; Y.Okayasu; T.Watanabe; E.J.Takahashi; K.Midorikawa; M.Aoyama; K.Yamakawa; S.Owada; A.Iwasaki; K.Yamanouchi
2015-01-01
A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.
Wu, J
2004-09-01
In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.
Weng, Wei-Hung; Liao, Yi-Hua; Tsai, Ming-Rung; Wei, Ming-Liang; Huang, Hsin-Yi; Sun, Chi-Kuang
2016-07-01
Morphology and distribution of melanocytes are critical imaging information for the diagnosis of melanocytic lesions. However, how to image intratumoral melanocytes noninvasively in pigmented skin tumors is seldom investigated. Third-harmonic generation (THG) is shown to be enhanced by melanin, whereas high accuracy has been demonstrated using THG microscopy for in vivo differential diagnosis of nonmelanocytic pigmented skin tumors. It is thus desirable to investigate if label-free THG microscopy was capable to in vivo identify intratumoral melanocytes. In this study, histopathological correlations of label-free THG images with the immunohistochemical images stained with human melanoma black (HMB)-45 and cluster of differentiation 1a (CD1a) were made. The correlation results indicated that the intratumoral THG-bright dendritic-cell-like signals were endogenously derived from melanocytes rather than Langerhans cells (LCs). The consistency between THG-bright dendritic-cell-like signals and HMB-45 melanocyte staining showed a kappa coefficient of 0.807, 84.6% sensitivity, and 95% specificity. In contrast, a kappa coefficient of -0.37, 21.7% sensitivity, and 30% specificity were noted between the THG-bright dendritic-cell-like signals and CD1a staining for LCs. Our study indicates the capability of noninvasive label-free THG microscopy to differentiate intratumoral melanocytes from LCs, which is not feasible in previous in vivo label-free clinical-imaging modalities.
Markus Rehberg
Full Text Available Second and Third Harmonic Generation (SHG and THG microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy.
High Orbital Angular Momentum Harmonic Generation
Vieira, J.; Trines, R. M. G. M.; Alves, E. P.; Fonseca, R. A.; Mendonça, J. T.; Bingham, R.; Norreys, P.; Silva, L. O.
2016-12-01
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.
High orbital angular momentum harmonic generation
Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O
2016-01-01
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realised in any nonlinear optical Kerr media supporting three-wave interactions.
Nonlinear harmonics in the high-gain harmonic generation (HGHG) experiment
Biedron, S G; Milton, S V; Yu, L H; Wang, X J
2001-01-01
We have previously performed rigorous analyses of the nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) using a 3D simulation code. To date, we have presented only preliminary results of these higher harmonics resulting in the high-gain harmonic generation (HGHG) process. A single-pass, high-gain FEL experiment based on the HGHG theory is underway at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Using the above experiment's design parameters, the specific case of the harmonic output from the HGHG experiment will be examined using a 3D simulation code. The sensitivity of nonlinear harmonic output for this HGHG experiment as functions of emittance, energy spread, and peak current in both cases, and for the dispersive section strength and input seed power in the HGHG case, will be presented.
High order harmonic generation in rare gases
Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)
1994-05-01
The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10^{13}-10^{14} W/cm^{2}) is focused into a dense (~10^{17} particles/cm^{3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.
Cavity-Enhanced Third Harmonic Generation
YANG Xiao-Xue; WU Ying
2005-01-01
We derive the analytical expression of microcavity-enhanced factor for third harmonic generation in terms of detunings, linewidths, and the Purcell factors of the relevant microcavity modes. It is suitable for microcavities with any dimensions and arbitrary geometric shapes.
Lee, Eung Jang; Kim, Boram; Ahn, Hong-Gyu; Park, Seung-Han; Cheong, Eunji; Lee, Sangyoup
2015-02-01
A video-rate multimodal microscope, which can obtain second- and third- harmonic generation (SHG and THG) images simultaneously, is developed for investigating cellular and tissue structures in mouse ear skin. By utilizing in-vivo video-rate epi-detected SHG and THG microscopy, we successfully demonstrate that combined images of subcutaneous cellular components and peripheral nerve fibers, together with the collagen fiber, in the mouse ear pinna can be obtained without employing fluorescent probes. We also show that the flow of red blood cells and the diameter change of arteriole-like blood vessels can be visualized with femtosecond laser pulses with a wavelength of 1036 nm. In particular, the epi-THG contrast images of the blood-vessel walls display clearly the difference between the arteriole-like and the venule capillary-like blood-vessel types. We should emphasize that our newly-developed microscope system has a unique feature in that it can produce simultaneous in-vivo label-free SHG and THG images in contrast to the conventional confocal and two-photon microscopes.
Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu
2017-10-01
Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.
Second and Third Harmonic Generation in Metal-Based Nanostructures
2010-01-01
free and bound charges that give rise to second and third harmonic generation in metallic nanostructures. Eqs.(29) are also applicable to dielectrics...arbitrary frequencies", Rev. Mexicana de Fisica 49, 231 (2003). [53] E. L. Linder, "Effect of electron pressure on plasma electron oscillations", Phys
Spatial mode discrimination using second harmonic generation
Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David
2007-01-01
Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...
Spatial mode discrimination using second harmonic generation
Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David
2007-01-01
Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...
Does high harmonic generation conserve angular momentum?
Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren
2013-01-01
High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...
High-order harmonic generation in Ar and Ne with a 45fs intense laser field
徐至展; 王迎松; 翟侃; 李学信; 刘亚青; 杨晓东; 张正泉; 李儒新; 张文琦
1999-01-01
Experimental results of high-order harmonic generation (HHG) in Ar and Ne gas driven with a 45fs Ti: sapphire laser are presented. The shortest-wavelength harmonic emission corresponding to the 91st order harmonic (8.63nm) is observed in argon. In neon, the harmonics up to order 131 (5.99nm) is also observed. The effects of gas density, laser intensity, free electron and the focusing geometry parameters of the laser beam on the process of harmonic generation are investigated. The direct experimental evidence that an increased electron density causes a degenerated harmonic radiation is obtained.
Generation of high harmonics from silicon
Vampa, Giulio; Thiré, Nicolas; Schmidt, Bruno E; Légaré, Francois; Klug, Dennis D; Corkum, Paul B
2016-01-01
We generate high-order harmonics of a mid-infrared laser from a silicon single crystal and find their origin in the recollision of coherently accelerated electrons with their holes, analogously to the atomic and molecular case, and to ZnO [Vampa et al., Nature 522, 462-464 (2015)], a direct bandgap material. Therefore indirect bandgap materials are shown to sustain the recollision process as well as direct bandgap materials. Furthermore, we find that the generation is perturbed with electric fields as low as 30 V/$\\mu$m, equal to the DC damage threshold. Our results extend high-harmonic spectroscopy to the most technologically relevant material, and open the possibility to integrate high harmonics with conventional electronics.
Zhou, Kaishang; Feng, Chao; Wang, Dong
2016-10-01
The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.
Coherent control of High-harmonic generation
Barreaux, J.L.P.
2012-01-01
High-harmonic generation (HHG) is a non-linear optical process that can convert laser light with standard wavelengths, such as infrared light, into coherent radiation at much shorter wavelengths in the XUV (extreme ultraviolet) or soft X-ray regime. As opposed to low-order nonlinear frequency
Super/subradiant second harmonic generation
Koganov, Gennady A.; Shuker, Reuben
2017-04-01
A scheme for active second harmonics generation is suggested. The system comprises N three-level atoms in ladder configuration, situated into a resonant cavity. The system generates the field whose frequency is twice the frequency of the pumping laser, and the field phase is locked to the phase of the pumping field. It is found that the system can lase in either superradiant or subradiant regime, depending on the number of atoms N. When N passes some critical value the transition from the super to subradiance occurs in a phase-transition-like manner. Stability study of the steady state supports this conclusion. For experimental realization of the super/subradiant second harmonics generation we propose semiconductor quantum well structures, superconducting quantum circuits, and evanescently coupled waveguides in which equally spaced levels relevant to this study exist.
Coulomb time delays in high harmonic generation
Smirnova, Olga
2016-01-01
Measuring the time it takes to remove an electron from an atom or molecule during photoionization using newly developed attosecond spectroscopies has been a focus of many recent experiments. However, the outcome of such measurement depends on measurement protocols and specific observables available in each particular experiment. One of such protocols relies on high harmonic generation. First, we derive rigorous and general expressions for ionization and recombination times in high harmonic generation experiments. We show that these times are different from, but related to ionization times measured in photo-electron spectroscopy, i.e. using attosecond streak camera, RABBITT and atto-clock methods. Second, we use the Analytical R-Matrix theory (ARM) to calculate these times and compare them with experimental values.
Coulomb time delays in high harmonic generation
Torlina, Lisa; Smirnova, Olga
2017-02-01
Measuring the time it takes to remove an electron from an atom or molecule during photoionization has been the focus of a number of recent experiments using newly developed attosecond spectroscopies. The interpretation of such measurements, however, depends critically on the measurement protocol and the specific observables available in each experiment. One such protocol relies on high harmonic generation. In this paper, we derive rigorous and general expressions for ionisation and recombination times in high harmonic generation experiments. We show that these times are different from, but related to, ionisation times measured in photoelectron spectroscopy: that is, those obtained using the attosecond streak camera, RABBITT and attoclock methods. We then proceed to use the analytical R-matrix theory to calculate these times and compare them with experimental values.
Harmonic analysis of Doubly Fed Induction Generators
Lindholm, Morten; Rasmussen, Tonny Wederberg
2003-01-01
This paper gives an overview of the frequency spectrum of the stator and rotor currents in a doubly fed induction generator (DFIG) used in wind power applications. The paper also presents a method to eliminate higher harmonics and interharmonics in the DFIG stator current. The method is implemented...... on a 40 kW laboratory model connected to the utility-grid, where the DFIG is supplied by a back-to-back 3-level NPC-converter....
Second-Harmonic and Third-Harmonic Generations in the Thue-Morse Dielectric Superlattice
蔡祥宝
2002-01-01
Theoretical work on the optical properties of the one-dimensional dielectric superlattice is extended. 3Byv means of a transfer matrix method, the second-harmonic and third-harmonic generations in a one-dimensional tinite Thue Morse dielectric superlattice are analysed. The electric field amplitude variables of the second-harmonic and third-harmonic can be expressed by the formula of matrices. Taking advantage of numerical procedure, we discuss the dependence of the second-harmonic and third-harmonic on the fundamental wavelength and the field amplitude variables of the fundamental wave. High conversion efficiency of the third-harmonic can be obtained at some special fundamental wavelength.
Double-Undulator Fel for Governing by the Harmonics Generation
Tulupov, A. V.
1993-01-01
Generation of harmonics in the double-undulator FEL based on the additional cyclotron resonance is considered. It is shown that efficient control of harmonics generation is feasible. Only one selected harmonic is generated while the others are suppressed. This effect takes place under a small value
Glass devices for efficient second harmonic generation
Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin
2005-01-01
We show here that quasi-phase matched (QPM) planar nonlinear devices of high quality can be fabricated by means of periodic poling of the glass. The devices, used for second-harmonic generation (SHG), have accurately-controlled centre wavelengths, and the normalised conversion efficiencies...... are approximately one order of magnitude higher than what has previously been reported for periodically poled glass. In conclusion, we have demonstrated that high-quality nonlinear QPM devices can be fabricated in glass-on-silicon. The technology is easily adaptable to any desired wavelength (e.g. 1550 nm) and can...
Cascaded third harmonic generation in hybrid graphene-semiconductor waveguides
Smirnova, Daria A
2015-01-01
We study cascaded harmonic generation of hybrid surface plasmons in integrated planar waveguides composed of a graphene layer and a doped-semiconductor slab. We derive a comprehensive model of cascaded third harmonic generation through phase-matched nonlinear interaction of fundamental, second harmonic and third harmonic plasmonic modes supported by the structure. We show that hybrid graphene-semiconductor waveguides can simultaneously phase-match these three interacting harmonics, increasing the total third-harmonic output by a factor of 5 compared to the non-cascaded regime.
Strong nonlinear harmonic generation in a PZT/Aluminum resonator
Parenthoine, D; Haumesser, L; Meulen, F Vander; Tran-Huu-Hue, L-P, E-mail: parenthoine@univ-tours.f [University Francois Rabelais of Tours, U 930 Imagerie et Cerveau, CNRS 2448, ENIVL, rue de la Chocolaterie, BP 3410, 41034 Blois (France)
2009-11-01
In this work, the extentional vibration mode of a coupled PZT/ Aluminum rod resonator is studied experimentally. Geometrical characteristics of the PZT are its 27 mm length and its 4x4 mm{sup 2} cross section area. The excitation voltage consists in sinusoidal bursts in the frequency range (20-80 kHz). Velocity measurements are performed at both ends of this system, using a laser probe. Strong harmonic distortions in the mechanical response (up to -20 dB with respect to the primary wave amplitude) have been observed. The corresponding input levels are far lower than those which are necessary to observe quadratic second harmonic generation in a free PZT resonator. The strong nonlinear effect can be explained as a super-harmonic resonance of the system due to a specific ratio between the eigen frequencies of the two parts of the resonator. Evolution of fundamental and harmonic responses are observed as a function of input levels, highlighting hysteretic behavior.
Second-Harmonic Generation of Bessel Beams in Lossy Media
丁德胜; 许坚毅; 王耀俊
2002-01-01
We present a further analysis for the second-harmonic generation of Bessel beams in lossy media. The emphasis is put on the effect of absorption to the radial pattern of the second-harmonic beam. It is shown that within the absorption length of the second harmonic, the Bessel second-harmonic beam approaches limited diffraction in the radial direction and behaves as in the case of lossless media.
Second-harmonic generation imaging of cancer.
Keikhosravi, Adib; Bredfeldt, Jeremy S; Sagar, Abdul Kader; Eliceiri, Kevin W
2014-01-01
The last 30 years has seen great advances in optical microscopy with the introduction of sophisticated fluorescence-based imaging methods such as confocal and multiphoton laser scanning microscopy. There is increasing interest in using these methods to quantitatively examine sources of intrinsic biological contrast including autofluorescent endogenous proteins and light interactions such as second-harmonic generation (SHG) in collagen. In particular, SHG-based microscopy has become a widely used quantitative modality for imaging noncentrosymmetric proteins such as collagen in a diverse range of tissues. Due to the underlying physical origin of the SHG signal, it is highly sensitive to collagen fibril/fiber structure and, importantly, to collagen-associated changes that occur in diseases such as cancer, fibrosis, and connective tissue disorders. An overview of SHG physics background and technologies is presented with a focused review on applications of SHG primarily as applied to cancer. © 2014 Elsevier Inc. All rights reserved.
The echo-enabled harmonic generation options for FLASH II
Deng, Haixiao; Faatz, Bart
2011-01-01
FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed.
STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator
M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser
2007-08-01
BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.
Goos-Hänchen shifts in harmonic generation from metals.
Yallapragada, V J; Gopal, Achanta Venu; Agarwal, G S
2013-05-06
We present the first calculation of the Goos-Hänchen shifts in the context of the nonlinear generation of fields. We specifically concentrate on shifts of second harmonic generated at metallic surfaces. At metallic surfaces the second harmonic primarily arises from discontinuities of the field at surfaces which not only result in large harmonic generation but also in significant Goos-Hänchen shifts of the generated second harmonic. Our results can be extended to other shifts like angular shifts and Fedorov-Imbert shifts.
High-order harmonic generation from eld-distorted orbitals
Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer
We investigate the eect on high-order harmonic generation of the distortion of molecular orbitals by the driving laser eld. Calculations for high-order harmonic generation including orbital distortion are performed for N2 (high polarizability). Our results allow us to suggest that field-distortio......We investigate the eect on high-order harmonic generation of the distortion of molecular orbitals by the driving laser eld. Calculations for high-order harmonic generation including orbital distortion are performed for N2 (high polarizability). Our results allow us to suggest that field...
High-order harmonic generation from the dressed autoionizing states
Fareed, M. A.; Strelkov, V. V.; Thiré, N.; Mondal, S.; Schmidt, B. E.; Légaré, F.; Ozaki, T.
2017-07-01
In high-order harmonic generation, resonant harmonics (RH) are sources of intense, coherent extreme-ultraviolet radiation. However, intensity enhancement of RH only occurs for a single harmonic order, making it challenging to generate short attosecond pulses. Moreover, the mechanism involved behind such RH was circumstantial, because of the lack of direct experimental proofs. Here, we demonstrate the exact quantum paths that electron follows for RH generation using tin, showing that it involves not only the autoionizing state, but also a harmonic generation from dressed-AIS that appears as two coherent satellite harmonics at frequencies +/-2Ω from the RH (Ω represents laser frequency). Our observations of harmonic emission from dressed states open the possibilities of generating intense and broadband attosecond pulses, thus contributing to future applications in attosecond science, as well as the perspective of studying the femtosecond and attosecond dynamics of autoionizing states.
Intense harmonics generation with customized photon frequency and optical vortex
Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki
2016-08-01
An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre-Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.
Interpretation of Plateau in High-Harmonic Generation
程太旺; 李晓峰; 敖淑艳; 傅盘铭
2003-01-01
The plateau in high-harmonic generation is investigated in the frequency domain. Probability density of an electron in an electromagnetic field is obtained through analysing the quantized-field Volkov state. The plateau of high-harmonic generation reflects the spectral density of the electron at the location of nucleus after abovethreshold ionization.
Harmonic Generation with Single-Cycle Light Pulses
Sukhorukov A.A.
2013-03-01
Full Text Available We study theoretically spatiotemporal pulse dynamics in cubic nonlinear media with instant response, nonresonant absorption and normal group velocity dispersion and reveal new features of harmonic generation when the pulse duration is reduced, including the suppression of third-harmonic generation for single-cycle light pulses.
High-order-harmonic generation from field-distorted orbitals
Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer
2013-01-01
We investigate the effect on high-order-harmonic generation of the distortion of molecular orbitals by the driving laser field. Calculations for high-order-harmonic generation including orbital distortion are performed for N2. Our results allow us to suggest that field distortion is the reason why...
High Harmonic Inverse Free Electron Laser Interaction at 800 nm
Sears, C
2005-03-08
We demonstrate for the first time an inverse free electron laser (IFEL) operating at 800 nm and observe multiple resonances of the IFEL interaction. The IFEL is tested at half its fundamental resonance electron energy and scanned through multiple harmonics by adjusting the undulator field strength. We obtain a peak modulation of {approx}50 keV FWHM and observe the 4th through 6th harmonics of the IFEL resonance.
Enhanced Second Harmonic Generation from Coupled Asymmetric Plasmonic Metal Nanostructures
Yildiz, Bilge Can; Abak, Musa Kurtulus; Coskun, Sahin; Unalan, Husnu Emrah; Bek, Alpan
2014-01-01
We show that second harmonic generation can be enhanced by Fano resonant coupling of asymmetric plasmonic metal nanostructures. We develop a theoretical model examining the effects of electromagnetic interaction between two metal nanostructures on the second harmonic generation. We compare the second harmonic generation efficiency of a single plasmonic metal nanostructure with that of two coupled ones. We show that second harmonic generation from a single metal nanostructure can be enhanced about 30 times by attaching a second metal nanostructure with a 10 times higher quality factor than that of the first one. The origin of this enhancement is Fano resonant coupling of the two metal nanostructures. We support our findings on Fano enhancement of second harmonic generation by an experimental study of a coupled plasmonic system composed of a silver nanoparticle and a silver nanowire on glass surface in which the ratio of the quality factors are also estimated to be around 10 times.
Symmetry selective third harmonic generation from plasmonic metacrystals
Chen, Shumei; Zeuner, Franziska; Wong, Wing Han; Pun, Edwin Yue Bun; Zentgraf, Thomas; Cheah, Kok Wai; Zhang, Shuang
2014-01-01
Nonlinear processes are often governed by selection rules imposed by the symmetries of the molecular configurations. The most well-known examples include the role of mirror symmetry breaking for the generation of even harmonics, and the selection rule related to the rotation symmetry in harmonic generation for fundamental beams with circular polarizations. While the role of mirror symmetry breaking in second harmonic generation has been extensively studied in plasmonic systems, the investigation on selection rules pertaining to circular polarization states of harmonic generation has been limited to crystals, i.e. symmetries at the atomic level. Here we demonstrate the rotational symmetry dependent third harmonic generation from nonlinear plasmonic metacrystals. We show that the selection rule can be imposed by the rotational symmetry of meta-crystals embedded into an isotropic organic nonlinear thin film. The results presented here may open new avenues for designing symmetry-dependent nonlinear optical respon...
Second harmonic generation in human ovarian neoplasias
Lamonier, L.; Bottcher-Luiz, F.; Pietro, L.; Andrade, L. A. L. A.; de Thomaz, A. A.; Machado, C. L.; Cesar, C. L.
2010-02-01
Metastasis is the main cause of death in cancer patients; it requires a complex process of tumor cell dissemination, extra cellular matrix (ECM) remodeling, cell invasion and tumor-host interactions. Collagen is the major component of ECM; its fiber polymerization or degradation evolves in parallel with the evolution of the cancerous lesions. This study aimed to identify the collagen content, spatial distribution and fiber organization in biopsies of benign and malignant human ovarian tissues. Biopsies were prepared in slides without dyes and were exposed to 800nm Ti:Sapphire laser (Spectra Physics, 100 fs pulse duration, 800mW average power, 80MHz repetition rate). The obtained images were recorded at triplets, corresponding to clear field, multiphoton and second harmonic generation (SHG) mycroscopy. Data showed considerable anisotropy in malignant tissues, with regions of dense collagen arranged as individual fibers or in combination with immature segmental filaments. Radial fiber alignment or regions with minimal signal were observed in the high clinical grade tumors, suggesting degradation of original fibers or altered polymerization state of them. These findings allow us to assume that the collagen signature will be a reliable and a promising marker for diagnosis and prognosis in human ovarian cancers.
Second-harmonic generation with Bessel beams
Shatrovoy, Oleg
We present the results of a numerical simulation tool for modeling the second-harmonic generation (SHG) interaction experienced by a diffracting beam. This code is used to study the simultaneous frequency and spatial profile conversion of a truncated Bessel beam that closely resembles a higher-order mode (HOM) of an optical fiber. SHG with Bessel beams has been investigated in the past and was determined have limited value because it is less efficient than SHG with a Gaussian beam in the undepleted pump regime. This thesis considers, for the first time to the best of our knowledge, whether most of the power from a Bessel-like beam could be converted into a second-harmonic beam (full depletion), as is the case with a Gaussian beam. We study this problem because using HOMs for fiber lasers and amplifiers allows reduced optical intensities, which mitigates nonlinearities, and is one possible way to increase the available output powers of fiber laser systems. The chief disadvantage of using HOM fiber amplifiers is the spatial profile of the output, but this can be transformed as part of the SHG interaction, most notably to a quasi-Gaussian profile when the phase mismatch meets the noncollinear criteria. We predict, based on numerical simulation, that noncollinear SHG (NC-SHG) can simultaneously perform highly efficient (90%) wavelength conversion from 1064 nm to 532 nm, as well as concurrent mode transformation from a truncated Bessel beam to a Gaussian-like beam (94% overlap with a Gaussian) at modest input powers (250 W, peak power or continuous-wave operation). These simulated results reveal two attractive features -- the feasibility of efficiently converting HOMs of fibers into Gaussian-like beams, and the ability to simultaneously perform frequency conversion. Combining the high powers that are possible with HOM fiber amplifiers with access to non-traditional wavelengths may offer significant advantages over the state of the art for many important applications
High-harmonic generation: Ultrafast lasers yield X-rays
McKinnie, Iain; Kapteyn, Henry
2010-01-01
Table-top sources that generate both extreme ultraviolet light and soft X-rays through high-harmonic generation of ultrafast infrared laser pulses look set to perform tasks previously accessible using only large-scale synchrotrons.
Second Harmonic Generation in Scanning Probe Microscopy for Edge Localization
HU Xiao-Gen; LI Yu-He; LIN Hao-Shan; WANG Dong-Sheng; QI Xin
2011-01-01
We present an approach of second harmonic generation for edge localization of nano-scale defects measurement,based on the impact of the oscillating tip on the sample that induces higher harmonics of the excitation frequency.The harmonic signals of tip motion are measured by the heterodyne interferornetry. The edge amplitude ratio for the edge characterization can be calculated by a mechanics model and the threshold of edge localization is experimentally determined by second harmonic profiles. This approach has been successfully utilized to measure the pitch of a standard sample. The results show that the second harmonic is sensitive to locating the edge of nano-scale defects with high accuracy.%@@ We present an approach of second harmonic generation for edge localization of nano-scale defects measurement,based on the impact of the oscillating tip on the sample that induces higher harmonics of the excitation frequency.The harmonic signals of tip motion are measured by the heterodyne interferometry.The edge amplitude ratio for the edge characterization can be calculated by a mechanics model and the threshold of edge localization is experimentally determined by second harmonic profiles.This approach has been successfully utilized to measure the pitch of a standard sample.The results show that the second harmonic is sensitive to locating the edge of nano-scale defects with high accuracy.
SEVENTH HARMONIC 20 GHz CO-GENERATOR
Hirshfield, Jay L
2014-04-08
To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.
Automated cardiac sarcomere analysis from second harmonic generation images
Garcia-Canadilla, Patricia; Gonzalez-Tendero, Anna; Iruretagoyena, Igor; Crispi, Fatima; Torre, Iratxe; Amat-Roldan, Ivan; Bijnens, Bart H.; Gratacos, Eduard
2014-05-01
Automatic quantification of cardiac muscle properties in tissue sections might provide important information related to different types of diseases. Second harmonic generation (SHG) imaging provides a stain-free microscopy approach to image cardiac fibers that, combined with our methodology of the automated measurement of the ultrastructure of muscle fibers, computes a reliable set of quantitative image features (sarcomere length, A-band length, thick-thin interaction length, and fiber orientation). We evaluated the performance of our methodology in computer-generated muscle fibers modeling some artifacts that are present during the image acquisition. Then, we also evaluated it by comparing it to manual measurements in SHG images from cardiac tissue of fetal and adult rabbits. The results showed a good performance of our methodology at high signal-to-noise ratio of 20 dB. We conclude that our automated measurements enable reliable characterization of cardiac fiber tissues to systematically study cardiac tissue in a wide range of conditions.
Relativistic surface-plasmon enhanced harmonic generation from gratings
Fedeli, Luca; Cantono, Giada; Macchi, Andrea
2016-01-01
The role of relativistic surface plasmons (SPs) in high order harmonic emission from laser-irradiated grating targets has been investigated by means of particle-in-cell simulations. SP excitation drives a strong enhancement of the intensity of harmonics, particularly in the direction close to the surface tangent. The SP-driven enhancement overlaps with the angular separation of harmonics generated by the grating, which is beneficial for applications requiring monochromatic XUV pulses.
High-Order Harmonic Generation in the Ionization Process
CHEN Jing; CHEN Shi-Gang; LIU Jie
2000-01-01
Based on the nonperturbative quantum electrodynamics scattering theory for multiphoton ionization developed recently, high-order harmonic generated in the ionization process is discussed. The influence of the Coulomb potential is treated as a perturbation in the expansion of the transition matrix. It is deduced that the harmonic photons are emitted in the resonant process during ionization and the width of the harmonic peaks is just the ionization rate of the atom.
Third harmonic generation microscopy of cells and tissue organization.
Weigelin, Bettina; Bakker, Gert-Jan; Friedl, Peter
2016-01-15
The interaction of cells within their microenvironmental niche is fundamental to cell migration, positioning, growth and differentiation in order to form and maintain complex tissue organization and function. Third harmonic generation (THG) microscopy is a label-free scatter process that is elicited by water-lipid and water-protein interfaces, including intra- and extracellular membranes, and extracellular matrix structures. In applied life sciences, THG delivers a versatile contrast modality to complement multi-parameter fluorescence, second harmonic generation and fluorescence lifetime microscopy, which allows detection of cellular and molecular cell functions in three-dimensional tissue culture and small animals. In this Commentary, we review the physical and technical basis of THG, and provide considerations for optimal excitation, detection and interpretation of THG signals. We further provide an overview on how THG has versatile applications in cell and tissue research, with a particular focus on analyzing tissue morphogenesis and homeostasis, immune cell function and cancer research, as well as the emerging applicability of THG in clinical practice. © 2016. Published by The Company of Biologists Ltd.
Single-shot fluctuations in waveguided high-harmonic generation
Goh, S.J.; Tao, Y.; Slot, van der P.J.M.; Bastiaens, H.J.M.; Herek, J.L.; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, K-J.
2015-01-01
For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic
Surface structure enhanced second harmonic generation in organic nanofibers
Fiutowski, Jacek; Maibohm, Christian; Kostiucenko, Oksana;
Second-harmonic generation upon femto-second laser irradiation of nonlinearly optically active nanofibers grown from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules is investigated. Following growth on mica templates, the nanofibers have been transferred onto lithography-d......-defined regular arrays of gold square nanostructures. These nanostructure arrays induce local field enhancement, which significantly lowers the threshold for second harmonic generation in the nanofibers.......Second-harmonic generation upon femto-second laser irradiation of nonlinearly optically active nanofibers grown from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules is investigated. Following growth on mica templates, the nanofibers have been transferred onto lithography...
Free Fall and Harmonic Oscillations: Analyzing Trampoline Jumps
Pendrill, Ann-Marie; Eager, David
2015-01-01
Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is…
Imaging Cytometry of Human Leukocytes with Third Harmonic Generation Microscopy
Wu, Cheng-Ham; Wang, Tzung-Dau; Hsieh, Chia-Hung; Huang, Shih-Hung; Lin, Jong-Wei; Hsu, Szu-Chun; Wu, Hau-Tieng; Wu, Yao-Ming; Liu, Tzu-Ming
2016-11-01
Based on third-harmonic-generation (THG) microscopy and a k-means clustering algorithm, we developed a label-free imaging cytometry method to differentiate and determine the types of human leukocytes. According to the size and average intensity of cells in THG images, in a two-dimensional scatter plot, the neutrophils, monocytes, and lymphocytes in peripheral blood samples from healthy volunteers were clustered into three differentiable groups. Using these features in THG images, we could count the number of each of the three leukocyte types both in vitro and in vivo. The THG imaging-based counting results agreed well with conventional blood count results. In the future, we believe that the combination of this THG microscopy-based imaging cytometry approach with advanced texture analysis of sub-cellular features can differentiate and count more types of blood cells with smaller quantities of blood.
Role of Rydberg States In High-order Harmonic Generation
Beaulieu, Samuel; Comby, Antoine; Wanie, Vincent; Petit, Stéphane; Légaré, François; Catoire, Fabrice; Mairesse, Yann
2016-01-01
The role of Rydberg states in strong field physics has known a renewed interest in the past few years with the study of resonant high-order harmonic generation. In addition to its fundamental in- terest, this process could create bright sources of coherent vacuum and extreme ultraviolet radiation with controlled polarization state. We investigate the spectral, spatial and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. The intensity-dependence of the emission shows that two different pathways interfere to populate the Rydberg states. Furthermore, we show that the population of Rydberg states can lead to different emission mecanisms: either direct emission through XUV Free Induction Decay, or sequentially with absorption of additional photons, in processes similar to resonance-enhanced multiphoton above- threshold ionization. Last, using the attosecond lighthouse technique we show that the resonant emission from Rydberg states is not temporal...
Third-harmonic generation imaging of breast tissue biopsies.
Lee, Woowon; Kabir, Mohammad M; Emmadi, Rajyasree; Toussaint, Kimani C
2016-11-01
We demonstrate for the first time the imaging of unstained breast tissue biopsies using third-harmonic generation (THG) microscopy. As a label-free imaging technique, THG microscopy is compared to phase contrast and polarized light microscopy which are standard imaging methods for breast tissues. A simple feature detection algorithm is applied to detect tumour-associated lymphocyte rich regions in unstained breast biopsy tissue and compared with corresponding regions identified by a pathologist from bright-field images of hematoxylin and eosin stained breast tissue. Our results suggest that THG imaging holds potential as a complementary technique for analysing breast tissue biopsies. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Squeezed light from second-harmonic generation: experiment versus theory.
Ralph, T C; Taubman, M S; White, A G; McClelland, D E; Bachor, H A
1995-06-01
We report excellent quantitative agreement between theoretical predictions and experimental observation of squeezing from a singly resonant second-harmonic-generating crystal. Limitations in the noise suppression imposed by the pump laser are explicitly modeled and confirmed by our measurements.
Wide-bandgap III-Nitride based Second Harmonic Generation
2014-10-02
Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: Wide-bandgap III - Nitride based Second Harmonic Generation The views...Report: Wide-bandgap III - Nitride based Second Harmonic Generation Report Title It was demonstrated that GaN, AlGaN and AlN lateral polar structures can...research have been socialized to the III - Nitride Optoelectronics Center of Excellence (ARL SEDD) and to the 2013 ARO Staff Research Symposium and at
Experimental observation of second-harmonic generation and diffusion inside random media
Faez, Sanli; Johnson, P. M.; Mazurenko, D. A.; Lagendijk, Ad
2009-01-01
We have experimentally measured the distribution of the second-harmonic intensity that is generated inside a highly-scattering slab of porous gallium phosphide. Two complementary techniques for determining the distribution are used. First, the spatial distribution of second-harmonic light intensity at the side of a cleaved slab has been recorded. Second, the total second-harmonic radiation at each side of the slab has been measured for several samples at various wavelengths. By combining these measurements with a diffusion model for second-harmonic generation that incorporates extrapolated boundary conditions, we present a consistent picture of the distribution of the second-harmonic intensity inside the slab. We find that the ratio $\\ell_{2\\omega}/L_c$ of the mean free path at the second-harmonic frequency to the coherence length, which was suggested by some earlier calculations, cannot describe the second-harmonic yield in our samples. For describing the total second-harmonic yield, our experiments show that the scattering parameter at the fundamental frequency $\\k_{1\\omega}\\ell_{1\\omega}$ is the most relevant parameter in our type of samples.
Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)
2016-09-08
We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 10^{21} Wcm^{-2}, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.
Generation of GW-Level, Sub-Angstrom Radiation in the LCLS Using a Second-Harmonic Radiator
Huang, Z
2004-09-14
Electron beams are strongly microbunched near the high-gain free-electron laser (FEL) saturation with a rich harmonic content in the beam current. While the coherent harmonic emission is possible in a planar undulator, the third-harmonic radiation typically dominates with about 1% of the fundamental power at saturation. In this paper, we discuss the second-harmonic radiation in the Linac Coherent Light Source. We show that by a suitable design of an second-stage undulator with its fundamental frequency tuned to the second harmonic of the first undulator, coherent second-harmonic radiation much more intense than the third-harmonic is emitted. Numerical simulations predict that GW-level, sub-Angstrom x-ray pulses can be generated in a relatively short second-harmonic radiator.
Spin-Squeezing Entanglement of Second-Harmonic Generation
Shu, Jian
2016-10-01
An experimentally feasible scheme for generating spin-squeezing entanglement via second-harmonic generation was presented. Its shown that spin-squeezing entanglement can be generated rapidly in the dynamical process by adjusting coupling constant, detuning, the total number of particles and the evolution time.
Harmonic sums and polylogarithms generated by cyclotomic polynomials
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2011-05-15
The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)
E. L. Saldin
2006-03-01
Full Text Available Recent theoretical and experimental studies have shown that the self-amplified spontaneous emission free-electron laser (SASE FEL with a planar undulator holds a potential for generation of relatively strong coherent radiation at the third harmonic of the fundamental frequency. Here we present a detailed study of the nonlinear harmonic generation in the SASE FEL obtained with a time-dependent FEL simulation code. Using similarity techniques we present universal dependencies for temporal, spectral, and statistical properties of the odd harmonics of the radiation from SASE FEL. In particular, we derived universal formulas for radiation power of the odd harmonics at saturation. It was also found that coherence time at saturation falls inversely proportional to the harmonic number, and relative spectrum bandwidth remains constant with the harmonic number.
Optical fiber tip for field-enhanced second harmonic generation.
Pal, Sudipta Sarkar; Mondal, Samir K; Bajpai, Phun Phun; Kapur, Pawan
2012-10-01
We propose a simple optical fiber tip for field-enhanced second harmonic generation (SHG). The tip shows nonlinear phenomena of SHG over a wide range of sources, at least from 630 to 830 nm. The optical field corresponding to the second harmonic appears as a nondiffracting bottle beam with voids due to the surface curvature of the tip. The field-enhanced second harmonic can also induce surface plasmons, converting the tip to a plasmonic probe with reduced background signal. The tip can be useful in nanophotonics characterization. As an example, we demonstrate the tip's response as a surface-enhanced Raman spectroscopy probe.
Noble Gas Clusters and Nanoplasmas in High Harmonic Generation
Aladi, M; Rácz, P; Földes, I B
2015-01-01
We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certain value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.
Harmonic morphisms, conformal foliations and shear-free ray congruences
Baird, P
1996-01-01
Equivalences between conformal foliations on Euclidean $3$-space, Hermitian structures on Euclidean $4$-space, shear-free ray congruences on Minkowski $4$-space, and holomorphic foliations on complex $4$-space are explained geometrically and twistorially; these are used to show that 1) any real-analytic complex-valued harmonic morphism without critical points defined on an open subset of Minkowski space is conformally equivalent to the direction vector field of a shear-free ray congruence, 2) the boundary values at infinity of a complex-valued harmonic morphism on hyperbolic $4$-space define a real-analytic conformal foliation by curves of an open subset of Euclidean $3$-space and all such foliations arise this way. This gives an explicit method of finding such foliations; some examples are given.
Double-peak Splitting in High-order Harmonics Generation
WANG Yingsong; LIU Yaqing; YANG Xiaodong; XU Zhizhan
2000-01-01
When the intensity of the driving pulse is much higher than the saturation intensity of the media involved, the double-peak splitting in frequency domain emerges in the generated high-order harmonic spectra. The possible origins of this splitting are carefully investigated. The ionization of the gas media and the propagation effect of harmonic field are the main reason for the double-peak splitting observed.
Induced Diffraction in Phase-Mismatched Second-Harmonic Generation
SU Wen-Hua; QIAN Lie-Jia; FU Xi-Quan; YANG Hua; ZHU He-Yuan
2007-01-01
We show analytically that in phase-mismatched second-harmonic generation,an effective diffraction is induced at the second-harmonic (SH) frequency.Numerical simulation results agree with the analytical predictions.Compared to the case of linear propagation,the effect of the overall diffraction at the SH frequency becomes doubled due to the induced diffraction,which causes an interesting result that the SH beam width will be larger than that of the fundamental field.
High-order harmonic generation in laser plasma plumes
Ganeev, Rashid A
2013-01-01
This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...
Dynamic investigation of Drosophila myocytes with second harmonic generation microscopy
Greenhalgh, Catherine; Stewart, Bryan; Cisek, Richard; Prent, Nicole; Major, Arkady; Barzda, Virginijus
2006-09-01
The functional dynamics and structure of both larval and adult Drosophila melanogaster muscle were investigated with a nonlinear multimodal microscope. Imaging was carried out using a home built microscope capable of recording the multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation signals simultaneously at a scanning rate of up to ~12 frames/sec. The sample was excited by a home built femtosecond Ti:Sapphire laser at 840 nm, or by a Yb-ion doped potassium gadolinium tungstate (Yb:KGW) crystal based oscillator at 1042 nm. There was no observable damage detected in the myocyte after prolonged scanning with either of the lasers. Microscopic second harmonic generation (SHG) appears particularly strong in the myocytes. This allows the fast contraction dynamics of the myocytes to be followed. The larger sarcomere size observed in the larvae myocytes is especially well suited for studying the contraction dynamics. Microscopic imaging of muscle contractions showed different relaxation and contraction rates. The SHG intensities were significantly higher in the relaxed state of the myocyte compared to the contracted state. The imaging also revealed disappearance of SHG signal in highly stretched sarcomeres, indicating that SHG diminishes in the disordered structures. The study illustrates that SHG microscopy, combined with other nonlinear contrast mechanisms, can help to elucidate physiological mechanisms of contraction. This study also provides further insight into the mechanisms of harmonic generation in biological tissue and shows that crystalline arrangement of macromolecules has a determining factor for the high efficiency second harmonic generation from the bulk structures.
Dispersive waves in fs cascaded second-harmonic generation
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2009-01-01
Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....
Recent progress of below-threshold harmonic generation
Xiong, Wei-Hao; Peng, Liang-You; Gong, Qihuang
2017-02-01
The harmonics generated from the interaction of a strong laser field with atoms and molecules in the gas phase can be applied as coherent light sources and detecting techniques for structures and dynamics in matter. In the last three decades, the most prevailing experimental and theoretical studies have been focused on the high-order harmonic generation due to its applications in attosecond science. However, low-order harmonics near the ionization threshold of the target have been less explored, partially because the spectrum in this region is more complicated from both the theoretical and experimental point of view. After several pioneering investigations in the mid 1990s, near threshold harmonics (NTHs) begun to draw a great attention again because of the development of high repetition rate cavity enhanced harmonics about 10 years ago. Very recently, NTHs have attracted a lot of experimental and theoretical studies due to their potential applications as light sources and complicated mechanisms. In this topical review, we will summarize the progress of NTHs, including the early and recent experimental measurements in atoms and molecules, as well as the relevant theoretical explorations of these harmonics.
Bernstein wave aided laser third harmonic generation in a plasma
Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok
2016-09-01
The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.
Plasma effect on the phase matching of high harmonic generation
Hui Lu; Candong Liu; Shitong Zhao; Peng Liu
2011-01-01
By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.%@@ By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.
Harmonic Generation in a Traveling-Wave Tube
Wong, Patrick; Zhang, Peng; Lau, Y. Y.; Greening, Geoffrey; Gilgenbach, Ronald; Chernin, David; Simon, David; Hoff, Brad
2016-10-01
Crowding of electron orbits in a traveling-wave tube (TWT) may lead to significant harmonic contents in the beam current, even in the linear regime. Here, we consider a wideband TWT that exhibits gain at the second harmonic. We analytically formulate equations governing the evolution of the generation of second harmonic, including axial variations of the Pierce parameters. The second harmonic output is phase-controlled by the input signal which consists only of a fundamental frequency. Several test cases are performed and compared with simulation using the CHRISTINE code. Reasonable agreement between theory and simulation is found. Work supported by AFOSR FA9550-15-1-0097, ONR N00014-16-1-2353, and L-3 Communications Electron Device Division.
Multielectron High Harmonic Generation: simple man on a complex plane
Smirnova, Olga
2013-01-01
From the famous classical "simple man" model to the recent multichannel model for polyatomic molecules, this tutorial will guide you through the several landmarks in our understanding of high harmonic generation and high harmonic spectroscopy. Our goal was to provide recipes and insights for modelling the harmonic response in various regimes, from the single active electron regime typical for noble gas atoms to the laser-driven attosecond hole dynamics in polyatomics. We have tried to pay particular attention to both simple recipes and their limitations, including the connection of real-valued classical and complex-valued quantum times and velocities. In addition to physical pictures, general approaches and their practical realizations, we have also tried to discuss some of the sticky technical issues, such as the possibility to factorize high harmonic response into the three steps of ionization, propagation and recombination and practical ways to treat strong field ionization, search for the saddle points of...
Multi-order nonlinear diffraction in second harmonic generation
Saltiel, S. M.; Neshev, D.; Krolikowski, Wieslaw
We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes.......We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes....
Theory of high gain harmonic generation an analytical estimate
Yu Li Hua
2002-01-01
We discuss the theory of the High Gain Harmonic Generation (HGHG). First, we describe an analytical estimate using the HGHG parameters in the DUVFEL project at BNL as an example. We show that the effective energy spread in a chicane dispersion section is found to be very small, and the effect of finite emittance can be neglected during the calculation of coherent harmonic generation. Then we discuss some issues such as the intensity stability, and how to use HGHG to obtain information about local energy spread. We compare these issues with recent experimental results in the infrared. We discuss some of the key issues in the cascading HGHG scheme and its possible limitations.
Second harmonic generation in thin optical fibers via cladding modes.
Elzahaby, Eman A; Kandas, Ishac; Aly, Moustafa H
2016-05-30
Since silica goes under the category of amorphous materials, it is difficult to investigate important processes such as second harmonic generation (SHG) in silica-based fibers. In this paper, we proposed a method for SHG relaying on cladding modes as pump modes. Cladding modes are introduced in optical fibers through tilted long period grating (T-LPG), where power of core mode is transferred into cladding modes. By functionalizing T-LPG with nonlinear coating, the interaction occurs between cladding modes and the coating material, consequently second harmonic signal (SHS) is generated with efficiency up to 0.14%.
Confocal Imaging of Biological Tissues Using Second Harmonic Generation
Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.
2000-03-06
A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.
High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy
Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han
2015-07-01
Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.
Enhancing narrowband high order harmonic generation by Fano resonances
Rothhardt, Jan; Demmler, Stefan; Krebs, Manuel; Fritzsche, Stephan; Limpert, Jens; Tünnermann, Andreas
2014-01-01
Resonances in the photo-absorption spectrum of the generating medium can modify the spectrum of high order harmonics. In particular, window-type Fano resonances can reduce photo-absorption within a narrow spectral region and, consequently, lead to an enhanced emission of high-order harmonics in absorption-limited generation conditions. For high harmonic generation in argon it is shown that the 3s3p6 np 1P1 window resonances (n=4,5,6) give rise to enhanced photon yield. In particular, the 3s3p6 4p 1P1 resonance at 26.6 eV allows a relative enhancement up to a factor of 30 compared to the characteristic photon emission of the neighboring harmonic order. This enhanced, spectrally isolated and coherent photon emission line has a relative energy bandwidth of only {\\Delta}E/E=3*10-3. Therefore, it might be directly applied for precision spectroscopy or coherent diffractive imaging without the need of additional spectral filtering. The presented mechanism can be employed for tailoring and controlling the high harmon...
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverters in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective harmonic load current feedforward loop ba...
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverter in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective load harmonic current feedforward loop bas...
Harmonic and subharmonic acoustic wave generation in finite structures.
Alippi, A; Bettucci, A; Germano, M; Passeri, D
2006-12-22
The generation of harmonic and subharmonic vibrations is considered in a finite monodimensional structure, as it is produced by the nonlinear acoustic characteristics of the medium. The equation of motion is considered, where a general function of the displacement and its derivatives acts as the forcing term for (sub)harmonic generation and a series of 'selection rules' is found, depending on the sample constrains. The localization of the nonlinear term is also considered that mimics the presence of defects or cracks in the structure, together with the spatial distribution of subharmonic modes. Experimental evidence is given relative to the power law dependence of the harmonic modes vs. the fundamental mode displacement amplitude, and subharmonic mode distribution with hysteretic effects is also reported in a cylindrical sample of piezoelectric material.
Cluster size dependence of high-order harmonic generation
Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K.-J.
2017-08-01
We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3×1016 to 3 × 1018 {{cm}}-3) at two different reservoir temperatures (303 and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 100 for very small average cluster size (∼200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighboring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (∼200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.
Even-harmonic generation due to spatially asymmetric emission
Ahmadi, H; Maghari, A
2016-01-01
Generation of even-order harmonics due to spatial symmetry breaking in high-order harmonic generation investigated by numerically solving one-dimensional electronic time-dependent Schr\\"{o}dinger equation beyond the Born-Oppenheimer approximation. The simple molecular ions H$_2^+$ and T$_2^+$ is chosen under a 14-cycle trapezoidal laser pulse at 800 nm wavelength and $I=$3 $\\times 10^{14}$ Wcm$^{-2}$ intensity. For an isotope (H$_2^+$) that has not a significant HHG at the laser falling edge, only odd harmonic orders are observed. Whereas, for one (T$_2^+$) with considerable HHG at the falling part of the laser pulse, frequency redshift occurs for odd-order harmonics and also even harmonic orders appear as a result of spatial symmetry breaking. To clarify further, spatial distribution of HHG and resolving HHG into different components are demonstrated. The contribution of different electronic states to the complexities in terms of internuclear distance is also demonstrated. The results also help to understand...
Even harmonic generation in isotropic media of dissociating homonuclear molecules
Silva, R E F; Morales, F; Smirnova, O; Ivanov, M; Martín, F
2016-01-01
Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schr\\"odinger equation for $H$$_2$$^+$ and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are pro...
harmonics: generation and suppression in ac system networks
2012-11-03
Nov 3, 2012 ... HARMONICS: GENERATION AND SUPPRESSION IN AC. SYSTEM NETWORKS .... If Vs = 295V; Z = (8 + j6)Ω and δ = 2π/3, the output voltage, Vo and ... tor current assume the characteristics shown in figure. 8. The output ...
Surface structure enhanced second harmonic generation in organic nanofibers
Fiutowski, Jacek; Maibohm, Christian; Kostiucenko, Oksana;
Second-harmonic generation upon femto-second laser irradiation of nonlinearly optically active nanofibers grown from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules is investigated. Following growth on mica templates, the nanofibers have been transferred onto lithography-d...
Einstein-Podolsky-Rosen correlations in second-harmonic generation
Lodahl, P.
2003-01-01
A quantum model for singly resonant second-harmonic generation in a cavity with transverse degrees of freedom is analyzed. An instability threshold for pattern formation exists in this system. Below threshold, a strong modulation of the noise is demonstrated in the transverse structure of the far fi
Imaging collagen orientation using polarization-modulated second harmonic generation
Stoller, Patrick C.; Celliers, Peter M.; Reiser, Karen M.; Rubenchik, Alexander M.
2002-06-01
We use polarization-modulated second harmonic generation to image fiber orientation in collagen tissues, with an axial resolution of about 10 micrometers and a transverse resolution of up to 1 micrometers . A linearly polarized ultra-short pulse (200 fs) Ti:Sapphire laser beam is modulated using an electro-optic modulator and quarter-wave plate combination and focused onto a translation stage mounted sample using a microscope objective. The generated second harmonic light is collected using a photomultiplier tube and demodulated using phase sensitive detection to obtain signal intensity and fiber orientation information. In order to obtain second harmonic generation images of different types of collagen organization, we analyze several different tissues, including rat-tail tendon, mouse aorta, mouse fibrotic liver, and porcine skin. We can use our technique to image fibrotic tissue in histological sections of damaged liver and to identify burned tissue in porcine skin to a depth of a few hundred microns. Polarization-modulated second harmonic generation potentially could be a useful clinical technique for diagnosing collagen related disease or damage, especially in the skin.
Imaging Collagen Orientation Using Polarization-Modulated Second Harmonic Generation
Stoller, P; Celliers, P M; Reiser, K M; Rubenchik, A M
2002-01-10
We use polarization-modulated second harmonic generation to image fiber orientation in collagen tissues, with an axial resolution of about 10 {micro}m and a transverse resolution of up to 1 {micro}m. A linearly polarized ultra-short pulse (200 fs) Ti:Sapphire laser beam is modulated using an electro-optic modulator and quarter-wave plate combination and focused onto a translation stage mounted sample using a microscope objective. The generated second harmonic light is collected using a photomultiplier tube and demodulated using phase sensitive detection to obtain signal intensity and fiber orientation information. In order to obtain second harmonic generation images of different types of collagen organization, we analyze several different tissues, including rat-tail tendon, mouse aorta, mouse fibrotic liver, and porcine skin. We can use our technique to image fibrotic tissue in histological sections of damaged liver and to identify burned tissue in porcine skin to a depth of a few hundred microns. Polarization-modulated second harmonic generation potentially could be a useful clinical technique for diagnosing collagen related disease or damage, especially in the skin.
Second harmonic generation from photonic structured GaN nanowalls
Soya, Takahiro; Inose, Yuta; Kunugita, Hideyuki; Ema, Kazuhiro; Yamano, Kouji; Kikuchi, Akihiko; Kishino, Katsumi, E-mail: t-soya@sophia.ac.j [Department of Engineering and Applied Sciences, Sophia University 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)
2009-11-15
We observed large enhancement of reflected second harmonic generation (SHG) using the one-dimensional photonic effect in regularly arranged InGaN/GaN single-quantum-well nanowalls. Using the effect when both fundamental and SH resonate with the photonic mode, we obtained enhancement of about 40 times compared with conditions far from resonance.
Imaging parameters on third harmonic transmit phasing for tissue harmonic generation.
Shen, Che-Chou; Wang, Yu-Chun; Yeh, Chih-Kuang
2008-06-01
In third harmonic (3f0) transmit phasing, transmit waveforms comprising fundamental (f0) signal and 3f0 signal are used to generate both frequency-sum and frequency-difference components for manipulation of tissue harmonic amplitude. Nevertheless, the acoustic propagation of 3f0 transmit signal suffers from more severe attenuation and phase aberration than the f0 signal and hence degrades the performance of 3f0 transmit phasing. Besides, 3f0 transmit parameters such as aperture size and signal bandwidth are also influential in 3f0 transmit phasing. In this study, extensive simulations were performed to investigate the effects of these imaging parameters. Results indicate that the harmonic enhancement and suppression in 3f0 transmit phasing are compromised when the magnitude of frequency-difference component decreases in the presence of tissue attenuation and phase aberration. To compensate for the reduced frequency-difference component, a higher 3f0 transmit amplitude can be used. When the transmit parameters are concerned, a smaller 3f0 transmit aperture can provide more axially uniform harmonic enhancement and more effective suppression of harmonic amplitude. In addition, the spectral leakage signal also interferes with tissue harmonics and degrades the efficacy of 3f0 transmit phasing. Our results suggest that, in the method of 3f0 transmit phasing, the transmit amplitude, phase and aperture size of 3f0 signal should remain adjustable for optimization of clinical performance. Besides, multipulse sequences such as pulse inversion are also favorable for leakage removal in 3f0 transmit phasing.
Effect of Structural Modification on Second Harmonic Generation in Collagen
Stoller, P C; Reiser, K M; Celliers, P M; Rubenchik, A M
2003-04-04
The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.
Effect of structural modification on second harmonic generation in collagen
Stoller, Patrick C.; Reiser, Karen M.; Celliers, Peter M.; Rubenchik, Alexander M.
2003-07-01
The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.
Near-field second-harmonic generation from gold nanoellipsoids
Celebrano, M.; Zavelani-Rossi, M.; Polli, D.; Cerullo, G. [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P.; Finazzi, M.; Duo, L. [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M.; Allegrini, M. [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J.; Adam, P.M.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)
2008-07-01
Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Generation of Intense High-Order Vortex Harmonics
Zhang, Xiaomei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan
2014-01-01
This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmitted light beams include high-order harmonics of the Laguerre-Gaussian (LG) mode when a linearly polarized LG laser pulse impinges on a solid foil. The mode of the generated LG harmonic scales with its order, in good agreement with our theoretical analysis. The intensity of the generated high-order vortex harmonics is close to the relativistic region, and the pulse duration can be in attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. Thus, the obtained intense vortex beam may have extraordinarily promising applications for high-capacity quantum information and for high-resolution dete...
High-intensity molecular harmonic generation without ionization
Wang Jun; Chen Gao; Guo Fu-Ming; Li Su-Yu; Chen Ji-Gen; Yang Yu-Jun
2013-01-01
We theoretically investigate high-order harmonic generation from H2+ in an infrared laser field.Our numerical simulations show that a highly efficient plateau structure exists in the molecular harmonic spectrum.Under the action of the infrared laser pulse,the bound electronic wave packet in a potential well has enough time to tunnel through the effective potential barrier,which is formed by the molecular potential and the infrared laser field,and then recombine with the neighboring nucleus emitting a harmonic photon.During the entire dynamic process,because the wave packet is mainly located in the effective potential,the diffusion effect is of no significance,and thus a highly efficient harmonic plateau can be achieved.Specifically,the cut-off frequency of the plateau is linearly scaled with the peak amplitude of the infrared laser electric field,which may open another route to examine the internuclear distance of the molecule.Furthermore,one may detect the molecular bond lengths using the harmonic plateau.
Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy
TANG; Zhilie; XING; Da; LIU; Songhao
2004-01-01
The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.
All-Optical Field-Induced Second-Harmonic Generation
Davidson, Roderick B; Ziegler, Jed I; Avanesyan, Sergey M; Lawrie, Ben J; Haglund, Richard F
2015-01-01
Efficient frequency modulation techniques are crucial to the development of plasmonic metasurfaces for information processing and energy conversion. Nanoscale electric-field confinement in optically pumped plasmonic structures enables stronger nonlinear susceptibilities than are attainable in bulk materials. The interaction of three distinct electric fields in (chi)^3 optical processes allows for all-optical modulation of nonlinear signals. Here we demonstrate effcient third-order second harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients within a dielectric material. We utilize an ultrafast optical pump to control the plasmonically induced electric-fields and to generate bandwidth-limited ultrafast second-harmonic pulses driven by the control pulses. The combination of plasmonic metasurfaces with all-optical control and the freedom to choose the dielectric allow multiple generalizations of this concept and geometry to other four-wave mixing process...
Cluster size dependence of high-order harmonic generation
Tao, Y; Bastiaens, H M J; van der Slot, P J M; Biedron, S G; Milton, S V; Boller, K -J
2016-01-01
We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3x10^{16} cm^{-3} to 3x10^{18} cm^{-3}) at two different reservoir temperatures (303 K and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. Based on measurements with a thin jet where significant variations in reabsorption and the phase matching conditions can be neglected, we conclude that atoms in the form of small clusters (average cluster size < 1000 atoms) provide the same higher-order nonlinear response as single-atoms. This implies that HHG in ...
Harmonic Generation and Mitigation by Full-Scale Converter Wind Turbines:
Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth
2011-01-01
on representative harmonic measurements of the wind turbine generators at Avedøre Holme. The nature of generation and mitigation of harmonic components in the wind turbine generators are clearly presented and explained. The mechanism of harmonic generation, some dynamic behaviour aspects and interaction...
Enhanced Harmonic Generation via Breaking of Phase-Matching Symmetry
Sergan, Ekaterina; Gibson, George
2016-05-01
We discuss experimental results of third harmonic generation (THG) with a focused Gaussian beam in the semi-infinite limit, using two methods. The first method involves placing a metal septum at the waist such that the laser drills a small pinhole, which in turn disrupts the beam after the waist. The second method uses a very thin septum as a separator for two gasses: one with a large third order susceptibility (before the focus), and the other with a small susceptibility (after the focus). Both methods inhibit harmonic generation immediately after the beam waist, leading to increased conversion efficiency and better mode quality. Our work involves studies of conversion efficiency with varying septum thickness and gas pressure, and the results are compared to computer simulations. We would like to acknowledge support from the NSF under Grant No. PHY-1306845.
High-order harmonic generation from polar molecules
Etches, Adam
When a molecule is submitted to a very intense laser pulse it emits coherent bursts of light in each optical half-cycle of the laser field. This process is known as high-order harmonic generation because the spectrum consists of many peaks at energies corresponding to an integer amount of laser p....... Surprisingly, the dominating first-order Stark phase turns out to be nearly independent of the laser intensity.......When a molecule is submitted to a very intense laser pulse it emits coherent bursts of light in each optical half-cycle of the laser field. This process is known as high-order harmonic generation because the spectrum consists of many peaks at energies corresponding to an integer amount of laser...
Frequency shift in high order harmonic generation from isotopic molecules
He, Lixin; Zhai, Chunyang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Zhu, Xiaosong; Lu, Peixiang
2016-01-01
We report the first experimental observation of frequency shift in high order harmonic generation (HHG) from isotopic molecules H2 and D2 . It is found that harmonics generated from the isotopic molecules exhibit obvious spectral red shift with respect to those from Ar atom. The red shift is further demonstrated to arise from the laser-driven nuclear motion in isotopic molecules. By utilizing the red shift observed in experiment, we successfully retrieve the nuclear vibrations in H2 and D2, which agree well with the theoretical calculations from the time-dependent Schrodinger equation (TDSE) with Non-Born-Oppenheimer approximation. Moreover, we demonstrate that the frequency shift can be manipulated by changing the laser chirp.
High-order harmonic generation from inhomogeneous fields
Ciappina, M F; Quidant, R; Lewenstein, M
2011-01-01
We present theoretical studies of high-order harmonic generation (HHG) produced by non-homogeneous fields as resulting from the illumination of plasmonic nanostructures with a short laser pulse. We show that the inhomogeneity of the local fields plays an important role in the HHG process and lead to the generation of even harmonics and a significantly increased cutoff, more pronounced for the longer wavelengths cases studied. In order to understand and characterize the new HHG features we employ two different approaches: the numerical solution of the time dependent Schr\\"odinger equation (TDSE) and the semiclassical approach known as Strong Field Approximation (SFA). Both approaches predict comparable results and show the new features, but using the semiclassical arguments behind the SFA, we are able to fully understand the reasons of the cutoff extension.
Continuous third harmonic generation in a terahertz driven modulated nanowire
Hamilton, Kathleen E., E-mail: kathleen.hamilton@email.ucr.edu; De, Amrit; Pryadko, Leonid P. [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Kovalev, Alexey A. [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)
2015-06-07
We consider the possibility of observing continuous third-harmonic generation using a strongly driven, single-band one-dimensional metal. In the absence of scattering, the quantum efficiency of frequency tripling for such a system can be as high as 93%. Combining the Floquet quasi-energy spectrum with the Keldysh Green's function technique, we derive a semiclassical master equation for a one-dimensional band of strongly and rapidly driven electrons in the presence of weak scattering by phonons. The power absorbed from the driving field is continuously dissipated by phonon modes, leading to a quasi-equilibrium in the electron distribution. We use the Kronig-Penney model with varying effective mass to establish the growth parameters of an InAs/InP nanowire near optimal for third harmonic generation at terahertz frequency range.
Continuous third harmonic generation in a terahertz driven modulated nanowire
Hamilton, Kathleen E.; Kovalev, Alexey A.; De, Amrit; Pryadko, Leonid P.
2015-06-01
We consider the possibility of observing continuous third-harmonic generation using a strongly driven, single-band one-dimensional metal. In the absence of scattering, the quantum efficiency of frequency tripling for such a system can be as high as 93%. Combining the Floquet quasi-energy spectrum with the Keldysh Green's function technique, we derive a semiclassical master equation for a one-dimensional band of strongly and rapidly driven electrons in the presence of weak scattering by phonons. The power absorbed from the driving field is continuously dissipated by phonon modes, leading to a quasi-equilibrium in the electron distribution. We use the Kronig-Penney model with varying effective mass to establish the growth parameters of an InAs/InP nanowire near optimal for third harmonic generation at terahertz frequency range.
Spectral Shifts of Nonadiabatic High-Order Harmonic Generation
André D. Bandrauk
2013-03-01
Full Text Available High-order harmonic generation (HHG is a nonlinear nonperturbative process in ultrashort intense laser-matter interaction. It is the main source of coherent attosecond (1 as = 10−18 s laser pulses to investigate ultrafast electron dynamics. HHG has become an important table-top source covering a spectral range from infrared to extreme ultraviolet (XUV. One way to extend the cutoff energy of HHG is to increase the intensity of the laser pulses. A consequence of HHG in such intense short laser fields is the characteristic nonadiabatic red and blue shifts of the spectrum, which are reviewed in the present work. An example of this nonperturbative light-matter interaction is presented for the one-electron nonsymmetric molecular ion HeH2+, as molecular systems allow for the study of the laser-molecule orientation dependence of such new effects including a four-step model of MHOHG (Molecular High-order Harmonic Generation.
High-order-harmonic generation in atomic and molecular systems
Suárez, Noslen; Chacón, Alexis; Pérez-Hernández, Jose A.; Biegert, Jens; Lewenstein, Maciej; Ciappina, Marcelo F.
2017-03-01
High-order-harmonic generation (HHG) results from the interaction of ultrashort laser pulses with matter. It configures an invaluable tool to produce attosecond pulses, moreover, to extract electron structural and dynamical information of the target, i.e., atoms, molecules, and solids. In this contribution, we introduce an analytical description of atomic and molecular HHG, that extends the well-established theoretical strong-field approximation (SFA). Our approach involves two innovative aspects: (i) First, the bound-continuum and rescattering matrix elements can be analytically computed for both atomic and multicenter molecular systems, using a nonlocal short range model, but separable, potential. When compared with the standard models, these analytical derivations make possible to directly examine how the HHG spectra depend on the driven media and laser-pulse features. Furthermore, we can turn on and off contributions having distinct physical origins or corresponding to different mechanisms. This allows us to quantify their importance in the various regions of the HHG spectra. (ii) Second, as reported recently [N. Suárez et al., Phys. Rev. A 94, 043423 (2016), 10.1103/PhysRevA.94.043423], the multicenter matrix elements in our theory are free from nonphysical gauge- and coordinate-system-dependent terms; this is accomplished by adapting the coordinate system to the center from which the corresponding time-dependent wave function originates. Our SFA results are contrasted, when possible, with the direct numerical integration of the time-dependent Schrödinger equation in reduced and full dimensionality. Very good agreement is found for single and multielectronic atomic systems, modeled under the single active electron approximation, and for simple diatomic molecular systems. Interference features, ubiquitously present in every strong-field phenomenon involving a multicenter target, are also captured by our model.
Influence of circular aperture on high-order harmonic generation
Tingting Liu(刘婷婷); Weixin Lu(陆伟新); Dawei Wang(王大威); Hong Yang(杨宏); Qihuang Gong(龚旗煌)
2003-01-01
The influence of circular aperture on the intensity of high-order harmonic generation (HHG) with intense femtosecond laser pulse was studied both experimentally and theoretically. The intensity variety of HHG with the diameter of circular aperture was observed in pulsed Ar gas. The result was discussed and interpreted in terms of the theory of Hankel transform. It is found that using the Gaussian beam truncated by an aperture could enhance the conversion efficiency of HHG at certain conditions.
Dynamical mean field theory of optical third harmonic generation
Jafari, S. A.; Tohyama, T.; Maekawa, S.
2006-01-01
We formulate the third harmonic generation (THG) within the dynamical mean field theory (DMFT) approximation of the Hubbard model. In the limit of large dimensions, where DMFT becomes exact, the vertex corrections to current vertices are identically zero, and hence the calculation of the THG spectrum reduces to a time-ordered convolution, followd by appropriate analytic continuuation. We present the typical THG spectrum of the Hubbard model obtained by this method. Within our DMFT calculation...
Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas
Heiko Linnenbank; Yevgen Grynko; Jens F(o)rstner; Stefan Linden
2016-01-01
Plasmonic nanoantennas provide unprecedented opportunities to concentrate light fields in subwavelength-sized volumes.By placing a nonlinear dielectric nanoparticle in such a hot spot,one can hope to take advantage of beth the field enhancement provided by nanoantennas and the large,nonlinear optical susceptibility of dielectric nanoparticles.To test this concept,we combine gold gap nanoantennas with second-order,nonlinear zinc sulfide nanoparticles,and perform second harmonic generation (SHG) spectroscopy onthe combined hybrid dielectric/plasmonic nanoantennas as well as on the individual constituents.We find that SHG from the bare gold nanoantennas,even though it should be forbidden due to symmetry reasons,is several orders of magnitude larger than that of the bare zinc sulfide nanoparticles.Even stronger second harmonic signals are generated by the hybrid dielectric/plasmonic nanoantennas.Control experiments with nanoantennas containing linear lanthanum fluoride nanoparticles reveal;however,that the increased SHG efficiency of the hybrid dielectric/plasmonic nanoantennas does not depend on the nonlinear optical susceptibility of the dielectric nanoparticles but is an effect of the modification of the dielectric environment.The combination of a hybrid dielectric/plasmonic nanoantenna,which is only resonant for the incoming pump light field,with a second nanoantenna,which is resonant for the generated second harmonic light,allows for a further increase in the efficiency of SHG.As the second nanoantenna mediates the coupling of the second harmonic light to the far field,this double-resonant approach also provides us with control over the polarization of the generated light.
Vacuum high harmonic generation in the shock regime
Böhl, P; Ruhl, H
2015-01-01
Electrodynamics becomes nonlinear and permits the self-interaction of fields when the quantised nature of vacuum states is taken into account. The effect on a plane probe pulse propagating through a stronger constant crossed background is calculated using numerical simulation and by analytically solving the corresponding wave equation. The electromagnetic shock resulting from vacuum high harmonic generation is investigated and a nonlinear shock parameter identified.
Second harmonic generation of shear waves in crystals.
Jiang, Wenhua; Cao, Wenwu
2004-02-01
Nonlinear self-interaction of shear waves in electro-elastic crystals is investigated based on the rotationally invariant state function. Theoretical analyses are conducted for cubic, hexagonal, and trigonal crystals. The calculations show that nonlinear self-interaction of shear waves has some characteristics distinctly different from that of longitudinal waves. First, the process of self-interaction to generate its own second harmonic wave is permitted only in some special wave propagation directions for a shear wave. Second, the geometrical nonlinearity originated from finite strain does not contribute to the second harmonic generation (SHG) of shear waves. Therefore, unlike the case of longitudinal wave, the second-order elastic constants do not involve in the nonlinear parameter of the second harmonic generation of shear waves. Third, unlike the nonlinearity parameter of the longitudinal waves, the nonlinear parameter of the shear wave exhibits strong anisotropy, which is directly related to the symmetry of the crystal. In the calculations, the electromechanical coupling nonlinearity is considered for the 6 mm and 3 m symmetry crystals. Complement to the SHG of longitudinal waves already in use, the SHG of shear waves provides more measurements for the determination of third-order elastic constants of solids. The method is applied to a Z-cut lithium niobate (LiNbO3) crystal, and its third-order elastic constant c444 is determined.
Efficient Forward Second-Harmonic Generation from Planar Archimedean Nanospirals
Davidson, Roderick B; Vargas, Guillermo; Avanesyan, Sergey M; Haglund, Richard F
2015-01-01
The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulse from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6*10-9, 8*10-9 and 1.3*10-8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 uW per nanoparticle. The nanospirals also exhibit a selective conversion between polarization states. These exp...
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation.
Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; De Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco
2015-05-01
Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ∼5 × 10(-10) W(-1), enabling a second harmonic photon yield higher than 3 × 10(6) photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation
Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco
2015-05-01
Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.
Generation of higher order Gauss-Laguerre modes in single-pass 2nd harmonic generation
Buchhave, Preben; Tidemand-Lichtenberg, Peter
2008-01-01
We present a realistic method for dynamic simulation of the development of higher order modes in second harmonic generation. The deformation of the wave fronts due to the nonlinear interaction is expressed by expansion in higher order Gauss-Laguerre modes.......We present a realistic method for dynamic simulation of the development of higher order modes in second harmonic generation. The deformation of the wave fronts due to the nonlinear interaction is expressed by expansion in higher order Gauss-Laguerre modes....
Control of high-order harmonic generation with two-colour laser field
Dai Jun; Zeng Zhi-Nan; Li Ru-Xin; Xu Zhi-Zhan
2010-01-01
We numerically investigate the high-order harmonic generation with two-colour optical field,taking into consideration the propagation effects.Some harmonics can be dramatically enhanced at a certain delay between the fundamental pulse and its second harmonics.Choice of the enhanced harmonics can be realised by changing the time delay between the two laser pulses.
High harmonic generation from impulsively aligned SO2
Devin, Julien; Wang, Song; Kaldun, Andreas; Bucksbaum, Phil
2016-05-01
Previous work in high harmonics generation (HHG) in aligned molecular gases has mainly focused on rotational dynamics in order to determine the contributions of different orbitals to the ionization step. In our experiment, we focus on the shorter timescale of vibrational dynamics. We generate high harmonics from impulsively aligned SO2 molecules in a gas jet and record the emitted attosecond pulse trains in a home-built high resolution vacuum ultra violet (VUV) spectrometer. Using the high temporal resolution of our setup, we are able to map out the effects of vibrational wavepackets with a sub-femtosecond resolution. The target molecule, SO2 gas, is impulsively aligned by a near-infrared laser pulse and has accessible vibrations on the timescale of the short laser pulse used. We present first experimental results for the response to this excitation in high-harmonics. We observe both fast oscillations in the time domain as well as shifts of the VUV photon energy outside of the pulse overlaps. Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division and by the National Science Foundation Graduate Research Fellowship.
Single-shot fluctuations in waveguided high-harmonic generation
Goh, S J; van der Slot, P J M; Bastiaens, H J M; Herek, J; Biedron, S G; Danailov, M B; Milton, S V; Boller, K -J
2015-01-01
For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot dr...
Quantitative second-harmonic generation microscopy in collagen
Stoller, Patrick; Celliers, Peter M.; Reiser, Karen M.; Rubenchik, Alexander M.
2003-09-01
The second-harmonic signal in collagen, even in highly organized samples such as rat tail tendon fascicles, varies significantly with position. Previous studies suggest that this variability may be due to the parallel and antiparallel orientation of neighboring collagen fibrils. We applied high-resolution second-harmonic generation microscopy to confirm this hypothesis. Studies in which the focal spot diameter was varied from ~1 to ~6 μm strongly suggest that regions in which collagen fibrils have the same orientation in rat tail tendon are likely to be less than ~1 μm in diameter. These measurements required accurate determination of the focal spot size achieved by use of different microscope objectives; we developed a technique that uses second-harmonic generation in a quartz reference to measure the focal spot diameter directly. We also used the quartz reference to determine a lower limit (dXXX > 0.4 pm/V) for the magnitude of the second-order nonlinear susceptibility in collagen.
Plasmon-assisted high-harmonic generation in graphene
Cox, Joel D; de Abajo, F Javier García
2016-01-01
High-harmonic generation (HHG) in condensed-matter systems is both a source of fundamental insight into quantum electron motion and a promising candidate to realize compact ultraviolet and ultrafast light sources. Here we argue that the large light intensity required for this phenomenon to occur can be reached by exploiting localized plasmons in conducting nanostructures. In particular, we demonstrate that doped graphene nanostructures combine a strong plasmonic near-field enhancement and a pronounced intrinsic nonlinearity that result in efficient broadband HHG within a single material platform. We extract this conclusion from time-domain simulations using two complementary nonperturbative approaches based on atomistic one-electron density-matrix and massless Dirac-fermion Bloch-equation pictures. High harmonics are predicted to be emitted with unprecedentedly large intensity by tuning the incident light to the localized plasmons of ribbons and finite islands. In contrast to atomic systems, we observe no cut...
Semiclassical-wave-function perspective on high-harmonic generation
Mauger, François; Abanador, Paul M.; Lopata, Kenneth; Schafer, Kenneth J.; Gaarde, Mette B.
2016-04-01
We introduce a semiclassical-wave-function (SCWF) model for strong-field physics and attosecond science. When applied to high-harmonic generation (HHG), this formalism allows one to show that the natural time-domain separation of the contribution of ionization, propagation, and recollisions to the HHG process leads to a frequency-domain factorization of the harmonic yield into these same contributions, for any choice of atomic or molecular potential. We first derive the factorization from the natural expression of the dipole signal in the temporal domain by using a reference system, as in the quantitative rescattering (QRS) formalism [J. Phys. B 43, 122001 (2010), 10.1088/0953-4075/43/12/122001]. Alternatively, we show how the trajectory component of the SCWF can be used to express the factorization, which also allows one to attribute individual contributions to the spectrum to the underlying trajectories.
Semi-Classical Wavefunction Perspective to High-Harmonic Generation
Mauger, Francois; Lopata, Kenneth; Schafer, Kenneth J; Gaarde, Mette B
2015-01-01
We introduce a semi-classical wavefunction (SCWF) model for strong-field physics and attosecond science. When applied to high harmonic generation (HHG), this formalism allows one to show that the natural time-domain separation of the contribution of ionization, propagation and recollisions to the HHG process leads to a frequency-domain factorization of the harmonic yield into these same contributions, for any choice of atomic or molecular potential. We first derive the factorization from the natural expression of the dipole signal in the temporal domain by using a reference system, as in the quantitative rescattering (QRS) formalism [J. Phys. B. 43, 122001 (2010)]. Alternatively, we show how the trajectory component of the SCWF can be used to express the factorization, which also allows one to attribute individual contributions to the spectrum to the underlying trajectories.
Pulse-mode measurement of harmonic generation in rock
Johnson, P.A.; Meegan, G.D.; McCall, K.R.; Shankland, T.J. (Los Alamos National Lab., NM (United States)); Guyer, R.A. (Massachusetts Univ., Amherst, MA (United States). Dept. of Physics); Bonner, B.P. (Lawrence Livermore National Lab., CA (United States))
1993-01-01
One goal in our research is to quantify frequency content modification caused by nonlinear elasticity that may take place during seismic wave propagation. To this end, we have conducted ultrasonic experiments in rock, analogous to those conducted in gas, for study of spectral changes from harmonic generation that take place along the wave path. For a material with cubic anharmonicity, the amplitude of the 2[omega] harmonic is shown to be proportional to xk[sup 2]U[sup 2], where [omega] is the angular frequency, x is the propagation distance, k is the wave vector, and U is the displacement amplitude at [omega]. Experiments in sandstone focused on confirming this result showed that U[sub 2[omega
Broadband second harmonic generation in whispering gallery mode resonators
Lin, Guoping; Strekalov, Dmitry V; Yu, Nan
2013-01-01
Optical frequency conversion processes in nonlinear materials are limited in wavelength by the accessible phase matching and the required high pump powers. In this letter, we report a novel broadband phase matching (PM) technique in high quality factor (Q) whispering gallery mode (WGM) resonators made of birefringent crystalline materials. This technique relies on two interacting WGMs, one with constant and the other with spatially oscillating phase velocity. Thus, phase matching occurs cyclically. The technique can be implemented with a WGM resonator with its disk plane parallel to the optic axis of the crystal. With a single beta barium borate (BBO) resonator in that configuration, we experimentally demonstrated efficient second harmonic generation (SHG) to harmonic wavelengths from 780 nm in the near infrared to 317 nm in the ultraviolet (UV). The observed SHG conversion efficiency is as high as 4.6% (mW)-1. This broadband PM technique opens a new way for nonlinear optics applications in WGM resonators. Th...
Generating function formula of heat transfer in harmonic networks
Saito, Keiji; Dhar, Abhishek
2011-04-01
We consider heat transfer across an arbitrary classical harmonic network connected to two heat baths at different temperatures. The network has N positional degrees of freedom, of which NL are connected to a bath at temperature TL and NR are connected to a bath at temperature TR. We derive an exact formula for the cumulant generating function for heat transfer between the two baths. The formula is valid even for NL≠NR and satisfies the Gallavotti-Cohen fluctuation symmetry. Since harmonic crystals in three dimensions are known to exhibit different regimes of transport such as ballistic, anomalous, and diffusive, our result implies validity of the fluctuation theorem in all regimes. Our exact formula provides a powerful tool to study other properties of nonequilibrium current fluctuations.
Quasi-phase-matched high-order harmonic generation using tunable pulse trains.
O'Keeffe, Kevin; Lloyd, David T; Hooker, Simon M
2014-04-07
A simple technique for generating trains of ultrafast pulses is demonstrated in which the linear separation between pulses can be varied continuously over a wide range. These pulse trains are used to achieve tunable quasi-phase-matching of high harmonic generation over a range of harmonic orders up to the harmonic cut-off, resulting in enhancements of the harmonic intensity in excess of an order of magnitude. The peak enhancement of the harmonics is clearly shown to depend on the separation between pulses, as well as the number of pulses in the train, representing an easily tunable source of quasi-phase-matched high harmonic generation.
Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation
Bache, Morten; Bang, Ole; Zhou, Binbin
2010-01-01
the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength radiation that can occur during soliton compression. We discuss the conditions that lead......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near...
Vacuum high-harmonic generation and electromagnetic shock
Böhl, P.; King, B.; Ruhl, H.
2016-04-01
> When one takes into account the presence of virtual charged states in the quantum vacuum, a nonlinear self-interaction can arise in the propagation of electromagnetic fields. This self-interaction is often referred to as `real photon-photon scattering'. When the centre-of-mass energy of colliding photons is much lower than the rest energy of an electron-positron pair, this quantum effect can be included in the classical field equations of motion as a vacuum current and charge density using the Heisenberg-Euler Lagrangian. Using analytical and numerical methods for subcritical fields, the intrinsic solution to Maxwell's equations has been found for counterpropagating probe and pump plane waves in the presence of vacuum four- and six-wave mixing. In the corresponding all-order solution for the scattered probe, a route to vacuum high-harmonic generation is identified in which a long phase length can compensate for the weakness of interacting fields. The resulting shocks in the probe carrier wave and envelope are studied for different parameter regimes and polarisation set-ups. In this special issue, we study two additional set-ups: that of a slowly varying single-cycle background to highlight the effect of an oscillating background on the probe harmonic spectrum, and that of a few-cycle probe to highlight the smoothing of the harmonic peaks produced by a wider spectrum of probe photons. We also correct sign errors in an earlier publication.
Pulse-mode measurement of harmonic generation in rock
Johnson, P.A.; Meegan, G.D.; McCall, K.R.; Shankland, T.J. [Los Alamos National Lab., NM (United States); Guyer, R.A. [Massachusetts Univ., Amherst, MA (United States). Dept. of Physics; Bonner, B.P. [Lawrence Livermore National Lab., CA (United States)
1993-04-01
One goal in our research is to quantify frequency content modification caused by nonlinear elasticity that may take place during seismic wave propagation. To this end, we have conducted ultrasonic experiments in rock, analogous to those conducted in gas, for study of spectral changes from harmonic generation that take place along the wave path. For a material with cubic anharmonicity, the amplitude of the 2{omega} harmonic is shown to be proportional to xk{sup 2}U{sup 2}, where {omega} is the angular frequency, x is the propagation distance, k is the wave vector, and U is the displacement amplitude at {omega}. Experiments in sandstone focused on confirming this result showed that U{sub 2{omega}} was linearly proportional to distance x. At fixed x, the amplitude of {omega} scaled as frequency squared (k{sup 2}) and as sourceamplitude squared (U{sup 2}). Thus the fundamental prediction of the 2{omega} harmonic in rock with cubic anharmonicity was confirmed. The compressional nonlinear modulus {Beta} was measured to be {minus}7{times}10{sup 3}+/{minus}23%.
Stokes vector formalism based second harmonic generation microscopy
Qiu, Jianjun; Mazumder, Nirmal; Tsai, Han-Ruei; Hu, Chih-Wei; Kao, Fu-Jen
2012-02-01
In this study, we have developed a four-channel Stokes vector formalism based second harmonic generation (SHG) microscopy to map and analyze SHG signal. A four-channel Stokesmeter setup is calibrated and integrated into a laser scanning microscope to measure and characterize the SH's corresponding Stokes parameters. We are demonstrating the use of SH and its Stokes parameters to visualize the birefringence and crystalline orientation of KDP and collagen. We believe the developed method can reveal unprecedented information for biomedical and biomaterial studies.
Layer Tunable Third-Harmonic Generation in Multilayer Black Phosphorus
Youngblood, Nathan; Nemilentsau, Andrei; Low, Tony; Li, Mo
2016-01-01
Black phosphorus has been the subject of growing interest due to its unique band structure that is both layer dependent and anisotropic. While many have studied the linear optical response of black phosphorus, the nonlinear response has remained relatively unexplored. Here we report on the observation of third-harmonic generation in black phosphorus using an ultrafast near-IR laser and measure chi(3) experimentally for the first time. It was found that chi(3) is highly dependent on both the incident polarization and the number of layers present.
Second Harmonic Generation from Co Magnetic Thin Films
卢永雄; 叶骏; 金庆原
2003-01-01
The magnetization-induced second harmonic generation (MSHG) in the sputtered and epitaxial-grown Co thin films was studied. The magnetic contrast of the MSHG intensity could be clearly distinguished for the cobalt films prepared by both the methods, but the signal measured in air for sputtered films was not smoother than that for the in-situ measurement of epitaxial films. Compared with the magneto-optical Kerr effect, the MSHG shows some new behaviour indicating that more information could be obtained if these two methods are combined. The MSHG reveals a giant nonlinear Kerr rotation in orders of magnitude larger than its linear one.
Multicolour second harmonic generation by strontium barium niobate nanoparticles
Rodriguez, E Martin; Jaque, D; Sole, J Garcia [Departamento de Fisica de Materiales, C-IV, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Speghini, A [DiSTeMeV, Universita di Verona and INSTM, UdR Verona, Via della Pieve 70, I-37029 San Floriano (Italy); Piccinelli, F; Nodari, L; Bettinelli, M [Dipartimento Scientifico e Tecnologico, Universita di Verona and INSTM, UdR Verona, Ca Vignal, Strada Le Grazie 15, I-37134 Verona (Italy)
2009-05-21
Infrared to visible second harmonic generation (SHG) has been demonstrated from 40 nm Sr{sub 0.6}Ba{sub 0.4}Nb{sub 2}O{sub 6} nanoparticles in a broad spectral range of infrared fundamental wave excitation (800-1200 nm). The efficiency for SHG is compared with that obtained from powdered samples of larger crystallite sizes so that the mechanism leading to optical frequency conversion is discussed. The obtained results point out the possibility of using nonlinear nanoparticles for multifrequency optical imaging. (fast track communication)
Reconstruction of complementary images in second harmonic generation microscopy
Gao, Liang; Jin, Lei; Xue, Ping; Xu, Jun; Wang, Yi; Ma, Hui; Chen, Dieyan
2006-05-01
Second harmonic generation microscopy(SHGM) has become widely used to image biological samples. Due to the complexity of biological samples, more and more effort has been put on polarization imaging in SHGM technology to uncover their structures. In this work, we put forward a novel stitching method based on careful mathematical calculation, and accomplish it by rotating laser polarization. We first show its validity in imaging a perfectly synthesized bio-origin polymer poly (3-hyroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Then, we test its power by getting a true image of fibrillar collagen structure of rat-tail tendon.
Second harmonic generation spectroscopy on Si surfaces and interfaces
Pedersen, Kjeld
2010-01-01
Optical second harmonic generation (SHG) spectroscopy studies of Si(111) surfaces and interfaces are reviewed for two types of systems: (1) clean 7 x 7 and root 3 x root 3-Ag reconstructed surfaces prepared under ultra-high vacuum conditions where surface states are excited and (2) interfaces......-like interband transitions that can be referred to excitations of dangling bond surface states. Adsorption of oxygen leads to formation of a new surface resonance. Such resonances appearing in the region between the bulk critical points E-1 and E-2 are also shown to be important for Si/oxide interfaces in SOI...
Near infrared few-cycle pulses for high harmonic generation
Driever, Steffen; Delagnes, Jean-Christophe; Fedorov, Nikita; Arnold, Martin; Bigourd, Damien; Cormier, Eric; Guichard, Roland; Constant, Eric; Zair, Amelle
2014-01-01
We report on the development of tunable few-cycle pulses with central wavelengths from 1.6 um to 2 um. Theses pulses were used as a proof of principle for high harmonic generation in atomic and molecular targets. In order to generate such pulses we produced a filament in a 4 bar krypton cell. Spectral broadening by a factor of 2 to 3 of a 40 fs near infrared input pulse was achieved. The spectrally broadened output pulses were then compressed by fused silica plates down to the few-cycle regime close to the Fourier limit. The auto-correlation of these pulses revealed durations of about 3 cycles for all investigated central wavelengths. Pulses with a central wavelength of 1.7 um and up to 430 uJ energy per pulse were employed to generate high order harmonics in Xe, Ar and N2. Moving to near infrared few-cycle pulses opens the possibility to operate deeply in the non-perturbative regime with a Keldysh parameter smaller than 1. Hence, this source is suitable for the study of the non-adiabatic tunneling regime in ...
Ozawa, Akira; Zhao, Zhigang; Kuwata-Gonokami, Makoto; Kobayashi, Yohei
2015-06-15
Intracavity high harmonic generation was utilized to generate high average-power coherent radiation at vacuum ultraviolet (vuv) wavelengths. A ytterbium-doped fiber-laser based master-oscillator power-amplifier (MOPA) system with a 10 MHz repetition frequency was developed and used as a driving laser for an external cavity. A series of odd-order harmonic radiations was generated extending down to ∼ 30 nm (41 eV in photon energy). The 7th harmonic radiation generated was centered at 149 nm and had an average output power of up to 0.5 mW. In this way, we developed a sub-mW coherent vuv-laser with a 10 MHz repetition frequency, which, if used as an excitation laser source for photo-electron spectroscopy, could improve the signal count-rate without deterioration of the spectral-resolution caused by space-charge effects.
Correlated Terahertz and High Harmonic Generation from Aligned Nitrogen Molecules
Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lv, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu
2016-05-01
When laser beams are focused on atoms and molecules, wide spectral range of photons can be radiated from the source. In the region of high energy, high harmonic generation (HHG), covering tens to hundreds electron volts, emit within the attosecond timescale. In the low energy region, terahertz wave generation (TWG) can also be generated. Synchronizing TWG with HHG is to take snapshot of the electronic dynamics with time-scale spanning over 6 orders of magnitudes. In this abstract, we report the joint measurements on TWG and HHG from pre-aligned molecules. By calibrating the angular ionization rates with the alignment dependent TWG, we reconstruct the photoionization cross section (PICS) of nitrogen in one run of experiment. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures (Yindong Huang et al., Phys. Rev. Lett. 115, 123002, 2015).
Fittinghoff, D N; der Au, J A; Squier, J A
2004-08-09
We show that a simple plane wave analysis can be used even under tight focusing conditions to predict the dependence of third-harmonic generation on the polarization state of the incident beam. Exploiting this fact, we then show that circularly polarized beams may be used to spatially characterize the beam focus and temporally characterize ultrashort pulses in high numerical aperture systems by experimentally demonstrating, for the first time, novel collinear, background-free, third-harmonic intensity autocorrelations in time and space in a high numerical aperture microscope. We also discuss the possibility of using third harmonic generation with circularly polarized beams for background-free collinear frequency resolved optical gating.
Fifth-Order Harmonic Generation using a Coherent Controlled Two-Pulsed Optical Field
刘婷婷; 王大威; 陆伟新; 孙泉; 杨宏; 蒋红兵; 龚旗煌
2002-01-01
We have experimentally studied the characteristics of fifth-order harmonic radiation produced by two coherent femtosecond laser pulses with a changeable relative phase. The intensities of harmonic generation are found to increase vith the coherent degree. In one optical period, the temporal variation of harmonics exhibits an asymmetric characteristic, vhich is interpreted in terms of ionization theory and the deformation of the wave packets of fundamental field contribution to harmonic generation.
PI Liang-Wen; SHI Ting-Yun; QIAO Hao-Xue
2006-01-01
We investigate high-order harmonic generation (HUG) in a linearly polarized bichromatic field composed of a fundamental laser Geld with frequencyωand an additional laser field with frequency 3ω. The numerical results show that it is possible to enhance the intensity of most high harmonics in orders of magnitude. A most striking feature in the enhancement is that the intensity of several special high harmonics is practically impaired as compared with that in the monochromatic case. The qualitative explanation to the great enhancement is that the additional high-frequency field can provide new transition paths for electrons to reach the continuum. The relative phase between the fundamental field and its third harmonic field also affects the intensity of high-order harmonics near the cutoff efficiently.
Electron acceleration and high harmonic generation by relativistic surface plasmons
Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team
2016-10-01
Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.
Second-harmonic generation investigation of collagen thermal denaturation
Chen, Wei-Liang; Sun, Yen; Lin, Sung-Jan; Jee, Shiou-Hwa; Chen, Yang-Fang; Lin, Ling-Chih; So, Peter T. C.; Dong, Chen-Yuan
2007-02-01
Using the technique of second-harmonic generation (SHG) microscopy we obtained large area image of type I collagen from rat tail tendon as it is heated from 40°C to 70°C for 0 to 180 minutes. The high resolution images allowed us to investigate the collagen structural change. We observed that heating the tendon below the temperature of 54°C does not produce any change in the averaged SHG intensity. At the heating temperature of 54°C and above, we find that increasing the heating temperature and time leads to decreasing SHG intensity. As the tendon is heated above 54°C, a decrease in the SHG signal occurs uniformly throughout the tendon, but the regions where the SHG signal vanishes form a tiger-tail like pattern. By comparing the relative SHG intensities in small and large areas, we found that the denaturation process responsible for forming the tiger-tail like pattern occurs at a higher rate than the global denaturation process occurring throughout the tendon. Our results show that second-harmonic generation microscopy is effective in monitoring the thermal damage to collagen and has potential applications in biomedicine.
Harmonic Scalpel versus electrocautery and surgical clips in head and neck free-flap harvesting.
Dean, Nichole R; Rosenthal, Eben L; Morgan, Bruce A; Magnuson, J Scott; Carroll, William R
2014-06-01
We sought to determine the safety and utility of Harmonic Scalpel-assisted free-flap harvesting as an alternative to a combined electrocautery and surgical clip technique. The medical records of 103 patients undergoing radial forearm free-flap reconstruction (105 free flaps) for head and neck surgical defects between 2006 and 2008 were reviewed. The use of bipolar electrocautery and surgical clips for division of small perforating vessels (n = 53) was compared to ultrasonic energy (Harmonic Scalpel; Ethicon Endo-Surgery, Inc., Cincinnati, Ohio) (n = 52) free-tissue harvesting techniques. Flap-harvesting time was reduced with the use of the Harmonic Scalpel when compared with electrocautery and surgical clip harvest (31.4 vs. 36.9 minutes, respectively; p = 0.06). Two patients who underwent flap harvest with electrocautery and surgical clips developed postoperative donor site hematomas, whereas no donor site complications were noted in the Harmonic Scalpel group. Recipient site complication rates for infection, fistula, and hematoma were similar for both harvesting techniques (p = 0.77). Two flap failures occurred in the clip-assisted radial forearm free-flap harvest group, and none in the Harmonic Scalpel group. Median length of hospitalization was significantly reduced for patients who underwent free-flap harvest with the Harmonic Scalpel when compared with the other technique (7 vs. 8 days; p = 0.01). The Harmonic Scalpel is safe, and its use is feasible for radial forearm free-flap harvest.
Controlling third harmonic generation with gammadion-shaped chiral metamaterials
Chi Zhang
2016-12-01
Full Text Available We theoretically investigated third harmonic generation (THG from planar chiral metamaterials consisting of a square array of gammadion-shaped metal-insulator-metal multilayered nanostructures. We show that there exists strong circular dichroism (CD for THG on the proposed chiral metamaterials. We also demonstrate that geometrically mirroring the gammadion -shaped meta-atoms can result in reversal of the THG-CD effect. Based on these CD effects in the optical nonlinear regime, we propose a design of a Fresnel zone plate (FZP for intense focusing of the THG signals, in which adjacent zones of the FZP consist of gammadions with mirror symmetry and generate circularly polarized THG with opposite handedness. Furthermore, we demonstrate that the relative phase of the THG can be continuously changed by rotating the gammadion around its rotational axis, which could be used in the FZP to control the polarization of the output THG signals.
Avalanche effect and gain saturation in high harmonic generation
Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian
2015-01-01
Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...
Radially polarized annular beam generated through a second-harmonic-generation process.
Sato, Shunichi; Kozawa, Yuichi
2009-10-15
A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius.
Campione, Salvatore, E-mail: sncampi@sandia.gov [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92697 (United States); Benz, Alexander; Brener, Igal, E-mail: ibrener@sandia.gov [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Sinclair, Michael B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92697 (United States)
2014-03-31
We theoretically analyze the second harmonic generation capacity of two-dimensional periodic metamaterials comprising sub-wavelength resonators strongly coupled to intersubband transitions in quantum wells (QWs) at mid-infrared frequencies. The metamaterial is designed to support a fundamental resonance at ∼30 THz and an orthogonally polarized resonance at the second harmonic frequency (∼60 THz), while the asymmetric quantum well structure is designed to provide a large second order susceptibility. Upon continuous wave illumination at the fundamental frequency we observe second harmonic signals in both the forward and backward directions, with the forward efficiency being larger. We calculate the overall second harmonic conversion efficiency of the forward wave to be ∼1.3 × 10{sup −2} W/W{sup 2}—a remarkably large value, given the deep sub-wavelength dimensions of the QW structure (about 1/15th of the free space wavelength of 10 μm). The results shown in this Letter provide a strategy for designing easily fabricated sources across the entire infrared spectrum through proper choice of QW and resonator designs.
Second harmonic generation of chiral-modified silver nanoparticles
Tao, Yue
Chiral molecules, which exist under enantiomers with non-mirror-symmetrical structures, have been the subject of intense research for their linear and nonlinear optical activities. Cysteine is such a chiral amino acid found as a building block of proteins throughout human bodies. Second harmonic generation (SHG) has been considered to investigate chiral molecules. SHG from metallic nanoparticles is promising for nanoplasmonics and photonic nanodevice applications. Therefore, it's desirable to combine and study nonlinear properties due to both chirality and metallic nanoparticles, and help developing an alternatively optical diagnostic of chiral molecules. Our experiments are carried out with the FemtoFiber Scientific FFS laser system. SHG of silver nanoparticles (Ag NPs) modified by either L-Cysteine (L-C) or D-Cysteine (D-C) is observed, where L-Cysteine and D-Cysteine are a pair of enantiomers. Ag NPs are deposited through Vacuum Thermal Evaporation, controlled under different deposition thicknesses. UV-Vis/IR spectra and AFM are used to characterize Ag NPs under different conditions. Transmitted SHG measurements dependent on incidence are recorded with standard lock-in techniques. Deposition thickness of vacuum thermal evaporation plays an important role in forming diverse Ag NPs, which strongly imparts the intensity of SHG. Second harmonic intensity as a function of the incident angle presents similar results for Ag NPs with or without L-Cysteine or D-Cysteine modification, in the output of p- and s-polarization. However, we monitor reversed rotation difference in second harmonic intensities at linearly +45° and -45° polarization for L-C/Ag NPs and D-C/Ag NPs, while there's no difference at linearly +45° and -45° polarization for Ag NPs alone. This optical rotation difference in SHG is termed as SHG-ORD. Also, for second harmonic light fixed at p-polarization, L-C/Ag NPs and D-C/Ag NPs exhibit a reversely net difference for SHG excited by right and left
Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles
Nayfeh, M. H.; Akcakir, O.; Belomoin, G.; Barry, N.; Therrien, J.; Gratton, E.
2000-12-18
We dispersed crystalline Si into a colloid of ultrasmall nano particles ({approx}1 nm), and reconstituted it into microcrystallites films on device-quality Si. The film is excited by near-infrared femtosecond two-photon process in the range 765--835 nm, with incident average power in the range 15--70 mW, focused to {approx}1 {mu}m. We have observed strong radiation at half the wavelength of the incident beam. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry. Ionic vibration of or/and excitonic self-trapping on novel radiative Si--Si dimer phase, found only in ultrasmall nanoparticles, are suggested as a basic mechanism for inducing anharmonicity that breaks the centrosymmetry.
High-harmonic generation enhanced by dynamical electron correlation
Tikhomirov, Iliya; Ishikawa, Kenichi L
2016-01-01
We theoretically study multielectron effects in high-harmonic generation (HHG), using all-electron first-principles simulations for a one-dimensional (1D) model atom. In addition to usual plateau and cutoff (from a cation in the present case, since the neutral is immediately ionized), we find a prominent resonance peak far above the plateau and a second plateau extended beyond the first cutoff. These features originate from the dication response enhanced by orders of magnitude due to the action of the Coulomb force from the rescattering electron, and, hence, are a clear manifestation of electron correlation. Although the present simulations are done in 1D, the physical mechanism underlying the dramatic enhancement is expected to hold also for three-dimensional real systems. This will provide new possibilities to explore dynamical electron correlation in intense laser fields using HHG, which is usually considered to be of single-electron nature in most cases.
Thermal optimization of second harmonic generation at high pump powers.
Sahm, Alexander; Uebernickel, Mirko; Paschke, Katrin; Erbert, Götz; Tränkle, Günther
2011-11-07
We measure the temperature distribution of a 3 cm long periodically poled LiNbO₃ crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved.
Mechanism of High-Order Harmonic Generation from Periodic Potentials
Du, Tao-Yuan
2016-01-01
We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce a quasi-classical model in the \\emph{k} space combined with the energy band structure to understand the high-order harmonic generation (HHG) process occurring in a subcycle timescale. This model interprets the multiple plateau structure in HHG spectra well and the linear dependence of cutoff energies on the amplitude of vector potential of the laser fields. It also predicts the emission time of HHG, which agrees well with the results by solving the time-dependent Schr\\"{o}dinger equation (TDSE). It provides a scheme to reconstruct the energy dispersion relations in Brillouin zone and to control the trajectories of HHG by varying the shape of laser pulses. This model is instructive for experimental measurements.
Role of the Ionic Potential in High Harmonic Generation
Shafir, D; Higuet, J; Soifer, H; Dagan, M; Descamps, D; Mevel, E; Petit, S; Worner, H J; Pons, B; Dudovich, N; Mairesse, Y
2013-01-01
Recollision processes provide direct insight into the structure and dynamics of electronic wave functions. However, the strength of the process sets its basic limitations - the interaction couples numerous degrees of freedom. In this Letter we decouple the basic steps of the process and resolve the role of the ionic potential which is at the heart of a broad range of strong field phenomena. Specifically, we measure high harmonic generation from argon atoms. By manipulating the polarization of the laser field we resolve the vectorial properties of the interaction. Our study shows that the ionic core plays a significant role in all steps of the interaction. In particular, Coulomb focusing induces an angular deflection of the electrons before recombination. A complete spatiospectral analysis reveals the influence of the potential on the spatiotemporal properties of the emitted light.
Second harmonic generation and crystal growth of new chalcone derivatives
Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.
2007-05-01
We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.
Two-Color Laser High-Harmonic Generation in Cavitated Plasma Wakefields
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2016-10-03
A method is proposed for producing coherent x-rays via high-harmonic generation using a laser interacting with highly-stripped ions in cavitated plasma wakefields. Two laser pulses of different colors are employed: a long-wavelength pulse for cavitation and a short-wavelength pulse for harmonic generation. This method enables efficient laser harmonic generation in the sub-nm wavelength regime.
Polarization-Modulated Second Harmonic Generation Microscopy in Collagen
Stoller, P C
2002-09-30
Collagen is a key structural protein in the body; several pathological conditions lead to changes in collagen. Among imaging modalities that can be used in vivo, second harmonic generation (SHG) microscopy has a key advantage: it provides {approx}1 {micro}m resolution information about collagen structure as a function of depth. A new technique--polarization-modulated SHG--is presented: it permits simultaneous measurement of collagen orientation, of a lower bound on the magnitude of the second order nonlinear susceptibility tensor, and of the ratio of the two independent elements in this tensor. It is applied to characterizing SHG in collagen and to determining effects of biologically relevant changes in collagen structure. The magnitude of the second harmonic signal in two dimensional images varies with position even in structurally homogeneous tissue; this phenomenon is due to interference between second harmonic light generated by neighboring fibrils, which are randomly oriented parallel or anti-parallel to each other. Studies in which focal spot size was varied indicated that regions where fibrils are co-oriented are less than {approx}1.5 {micro}m in diameter. A quartz reference was used to determine the spot size as well as a lower limit (d{sub xxx} > 0.3 pm/V) for the magnitude of the second order nonlinear susceptibility. The ratio of the two independent tensor elements ranged between d{sub XYY}/d{sub XXX} = 0.60 and 0.75. SHG magnitude alone was not useful for identifying structural anomalies in collagenous tissue. Instead, changes in the polarization dependence of SHG were used to analyze biologically relevant perturbations in collagen structure. Changes in polarization dependence were observed in dehydrated samples, but not in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable SHG signal. Collagen orientation was measured in thin
Static third-harmonic lines in widely variable fiber continuum generation
Tu, Haohua; Zhao, Youbo; Liu, Yuan; Boppart, Stephen A.
2014-01-01
An intriguing phenomenon of third-harmonic generation under fiber continuum generation is the emission of an anharmonic signal. One popular interpretation of this effect has developed into a general theory of fiber third-harmonic generation. Here we produce "static" third-harmonic lines dictated fully by fiber properties independent of pump parameters, in contrast to the signals of all known phase-matched nonlinear optical processes that vary dynamically with these parameters. We argue that the anharmonic signal is an illusion of the continuum generation, that it is in fact harmonic, and that this theory should be reevaluated.
A highly efficient method for second and third harmonic generation from magnetic metamaterials
Sajedian, Iman; Zakery, Abdolnasser; Rho, Junsuk
2016-01-01
Second and third harmonic signals have been usually generated by using nonlinear crystals, but that method suffers from the low efficiency in small thicknesses. Metamaterials can be used to generate harmonic signals in small thicknesses. Here, we introduce a new method for amplifying second and third harmonic generation from magnetic metamaterials. We show that by using a grating structure under the metamaterial, the grating and the metamaterial form a resonator, and amplify the resonant behavior of the metamaterial. Therefore, we can generate second and third harmonic signals with high efficiency from this metamaterial-based nonlinear media.
Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Stanciu, George A
2017-09-01
Imaging tissue samples by polarization-resolved second harmonic generation microscopy provides both qualitative and quantitative insights into collagen organization in a label-free manner. Polarization-resolved second harmonic generation microscopy goes beyond simple intensity-based imaging by adding the laser beam polarization component and applying different quantitative metrics such as the anisotropy factor. It thus provides valuable information on collagen arrangement not available with intensity measurements alone. Current established approaches are limited to calculating the anisotropy factor for only a particular laser beam polarization and no general guidelines on how to select the best laser beam polarization have yet been defined. Here, we introduce a novel methodology for selecting the optimal laser beam polarization for characterizing tissues using the anisotropy in the purpose of identifying cancer signatures. We show that the anisotropy factor exhibits a similar laser beam polarization dependence to the second harmonic intensity and we combine it with the collagen orientation index computed by Fast Fourier Transform analysis of the recorded images to establish a framework for choosing the laser beam polarization that is optimal for an accurate interpretation of polarization-resolved second harmonic generation microscopy images and anisotropy maps, and hence a better differentiation between healthy and dysplastic areas. SHG image of skin tissue (a) and a selected area of interest for which we compute the SHG intensity (b) and anisotropy factor (c) dependence on the laser beam polarization and also the FFT spectrum (d) to evaluate the collagen orientation index. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser second harmonic generation in a magnetoplasma assisted by an electrostatic wave
Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav
2017-04-01
A laser produced plasma, and an electrostatic wave, helps to generate a strong harmonic radiation. The electrostatic wave assists k matching and contributes to non-linear coupling. In the case of the Bernstein wave assisted second harmonic, the frequency of the second harmonic is shifted from the laser second harmonic by electron cyclotron frequency. The lower hybrid wave (LHW) assisted second harmonic has frequency slightly shifted from the laser second harmonic. The upper hybrid wave (UHW) assisted second harmonic has frequency shifted by an amount ω that lies between max( ω c , ω p ) and ω U H . At a 0 = 0.1 and n ω , k → / n0 0 = 0.1, the normalized amplitude value the of electrostatic wave assisted second harmonic is quite high near the upper hybrid resonance. The effect of increasing ω c / ω p increases the max value of normalized amplitude.
Second harmonic generation from an individual amorphous selenium nanosphere
Ma, C. R.; Yan, J. H.; Wei, Y. M.; Yang, G. W.
2016-10-01
Among the numerous nonlinear optics effects, second harmonic generation (SHG) is always a hotspot and it is extensively used for optical frequency conversion, biomedical imaging, etc. However, SHG is forbidden in a medium with inversion symmetry under the electric-dipole approximation. Here, we demonstrated SHG from a single amorphous selenium (a-Se) nanosphere under near-infrared femtosecond pulse excitation. It was found that SH spectra are tunable with the size of a-Se nanospheres and the SHG efficiency of a single a-Se sphere with a diameter over 300 nm is estimated at 10-8. We also established two physical mechanisms of SHG from the amorphous nanospheres. There is an electric-dipole contribution to the second-order nonlinearity in view of the inevitable structural discontinuity at the surface. The discontinuity of the normal component of the electric field strength leads to the quadrupole-type contributions arising from the large electric field gradient. The SHG process can be enhanced by resonance near the fundamental wavelength, giving rise to the detectable second harmonic (SH) spectra of a single a-Se nanosphere (d > 300 nm) or two small a-Se nanospheres (d = 200 nm) aggregated into a dimer, while the single nanosphere with smaller size (d > 300 nm) is undetectable. As an essential trace element for animals, a-Se features unique biological compatibility and has specific properties of optical nonlinearity within the optical window in biological tissue. This discovery makes a-Se nanospheres promising both in nonlinear optics and biomedicine.
Illuminating Molecular Symmetries with Bicircular High-Order-Harmonic Generation
Reich, Daniel M
2016-01-01
We present a complete theory of bicircular high-order-harmonic emission from N-fold rotationally symmetric molecules. Using a rotating frame of reference we predict the complete structure of the high-order-harmonic spectra for arbitrary driving frequency ratios and show how molecular symmetries can be directly identified from the harmonic signal. Our findings reveal that a characteristic fingerprint of rotational molecular symmetries can be universally observed in the ultrafast response of molecules to strong bicircular fields.
High harmonic generation with fully tunable polarization by train of linearly polarized pulses
Neufeld, Ofer; Bordo, Eliyahu; Fleischer, Avner; Cohen, Oren
2017-02-01
We propose and demonstrate, analytically and numerically, a scheme for generation of high-order harmonics with fully tunable polarization, from circular through elliptic to linear, while barely changing the other properties of the high harmonic radiation and where the ellipticity values of all the harmonic orders essentially coincide. The high harmonics are driven by a train of quasi-monochromatic linearly polarized pulses that are identical except for their polarization angles, which is the tuning knob. This system gives rise to full control over the polarization of the harmonics while largely preserving the single-cycle, single-atom and macroscopic physics of ‘ordinary’ high harmonic generation, where both the driver and high harmonics are linearly polarized.
Single-pass high harmonic generation at high repetition rate and photon flux
Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Demmler, Stefan; Klenke, Arno; Tünnermann, Andreas; Limpert, Jens
2016-09-01
Sources of short wavelength radiation with femtosecond to attosecond pulse durations, such as synchrotrons or free electron lasers, have already made possible numerous, and will facilitate more, seminal studies aimed at understanding atomic and molecular processes on fundamental length and time scales. Table-top sources of coherent extreme ultraviolet to soft x-ray radiation enabled by high harmonic generation (HHG) of ultrashort pulse lasers have also gained significant attention in the last few years due to their enormous potential for addressing a plethora of applications, therefore constituting a complementary source to large-scale facilities (synchrotrons and free electron lasers). Ti:sapphire based laser systems have been the workhorses for HHG for decades, but are limited in repetition rate and average power. On the other hand, it has been widely recognized that fostering applications in fields such as photoelectron spectroscopy and microscopy, coincidence detection, coherent diffractive imaging and frequency metrology requires a high repetition rate and high photon flux HHG sources. In this article we will review recent developments in realizing the demanding requirement of producing a high photon flux and repetition rate at the same time. Particular emphasis will be put on suitable ultrashort pulse and high average power lasers, which directly drive harmonic generation without the need for external enhancement cavities. To this end we describe two complementary schemes that have been successfully employed for high power fiber lasers, i.e. optical parametric chirped pulse amplifiers and nonlinear pulse compression. Moreover, the issue of phase-matching in tight focusing geometries will be discussed and connected to recent experiments. We will highlight the latest results in fiber laser driven high harmonic generation that currently produce the highest photon flux of all existing sources. In addition, we demonstrate the first promising applications and
Higher Harmonics Generation in Tapping Mode Atomic Force Microscope
LI Yuan; QIAN Jian-Qiang
2009-01-01
The contribution of higher harmonics to the movement of a micro rectangular cantilever in tapping mode AFM is investigated. The dependence between the phase lag of the higher harmonic components and tip-sample separation are found to be an order of magnitude higher than the base one, reflecting an increasing sensitivity to local variations of surface properties compared to the normal phase signal.The strong correlation between the higher harmonic amplitude and average sample deformation implies that the higher harmonic amplitude can be taken to monitor the tapping force or as feedback variable to fulfill a constant repulsive force mode.
A femtosecond Raman generator for long wavelength two-photon and third harmonic generation imaging
Trägârdh, J.; Schniete, J.; Parsons, M.; McConnell, G.
2016-12-01
We demonstrate a femtosecond single pass Raman generator based on an YVO4 crystal pumped by a high energy fiber laser at a wavelength of 1064 nm and a repetition rate of 1 MHz. The Raman generator shifts the pump wavelength to 1175 nm, in a broadband spectrum, making it suitable for multi-photon microscopy. We use the Raman generator for third harmonic generation imaging of live plant specimens as well as for two-photon fluorescence imaging of red fluorescent protein expressing HeLa cells. We demonstrate that the photo-damage to a live specimen is low.
Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W
2014-03-01
Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is
The role of current loop in harmonic generation from magnetic metamaterials in two polarizations
Sajedian, Iman; Kim, Inki; Zakery, Abdolnasser; Rho, Junsuk
2017-10-01
In this paper, we investigate the role of current loop in the generation of second and third harmonic signals from magnetic metamaterials and we are clarifying why two polarized harmonics are generated from magnetic metamaterials. We show that the current loop formed in the magnetic resonant frequency acts as a source for nonlinear effects. The current loop that has a circular shape can be divided into two orthogonal parts, where each of these parts acts as a source for generating a harmonic signal parallel to itself. The type of harmonic signal is determined by the metamaterial's inversion symmetry in that direction. This claim is also supported by the experimental results of another group.
Phase-matched relativistic second harmonic generation in clusters with density ripple
Vij, Shivani; Aggarwal, Munish; Kant, Niti
2017-01-01
An intense short-pulse laser obliquely incident on a clustered gas quickly converts the atomic clusters into hot plasma balls. The laser beam produces a second harmonic due to nonlinear response of cluster and plasma electrons. For enhancement of efficiency of second harmonic generation, there should be appropriate phase-matching between the incident laser beam and the generated harmonic. To achieve the required phase-matching, the ripple in cluster density and plasma electron density outside the cluster is introduced. The efficiency of second harmonic generation is sensitive to the angle between ripple wave vector k→o and the direction of the incident laser beam.
Quantum, classical and semiclassical analyses of photon statistics in harmonic generation
Bajer, J; Bajer, Jiri; Miranowicz, Adam
2001-01-01
In this review, we compare different descriptions of photon-number statistics in harmonic generation processes within quantum, classical and semiclassical approaches. First, we study the exact quantum evolution of the harmonic generation by applying numerical methods including those of Hamiltonian diagonalization and global characteristics. We show explicitly that the harmonic generations can indeed serve as a source of nonclassical light. Then, we demonstrate that the quasi-stationary sub-Poissonian light can be generated in these quantum processes under conditions corresponding to the so-called no-energy-transfer regime known in classical nonlinear optics. By applying method of classical trajectories, we demonstrate that the analytical predictions of the Fano factors are in good agreement with the quantum results. On comparing second and higher harmonic generations in the no-energy-transfer regime, we show that the highest noise reduction is achieved in third-harmonic generation with the Fano-factor of the ...
Xiang, Yanxun; Zhu, Wujun; Deng, Mingxi; Xuan, Fu-Zhen; Liu, Chang-Jun
2016-11-01
The generation of second-harmonic Lamb waves in a homogeneous, isotropic, stress-free elastic plate is analytically and experimentally investigated. The numerical analyses show that whether the matching condition of the group velocity is satisfied or not, the integrated amplitude of a second-harmonic Lamb wave accumulates with the propagation distance when both the finite duration of the primary Lamb wave tone burst and the phase velocity matching are given. The theoretical analyses are validated by experimental measurements of an aluminium plate. Our conclusions are different from those of the previous works that reported that the group velocity matching is required for the generation of the cumulative second-harmonic Lamb waves with the finite duration of tone bursts.
Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy.
Cui, Liyang; Tokarz, Danielle; Cisek, Richard; Ng, Kenneth K; Wang, Fan; Chen, Juan; Barzda, Virginijus; Zheng, Gang
2015-11-16
Nonlinear optical microscopy has become a powerful tool for high-resolution imaging of cellular and subcellular composition, morphology, and interactions because of its high spatial resolution, deep penetration, and low photo-damage to tissue. Developing specific harmonic probes is essential for exploiting nonlinear microscopic imaging for biomedical applications. We report an organized aggregate of porphyrins (OAP) that formed within lipidic nanoparticles showing fingerprint spectroscopic properties, structure-associated second harmonic generation, and superradiant third harmonic generation. The OAP facilitated harmonic microscopic imaging of living cells with significantly enhanced contrast. The structure-dependent switch between harmonic (OAP-intact) and fluorescence (OAP-disrupted) generation enabled real-time multi-modality imaging of the cellular fate of nanoparticles. Robustly produced under various conditions and easily incorporated into pre-formed lipid nanovesicles, OAP provides a biocompatible nanoplatform for harmonic imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LI Chao-Hong; DUAN Yi-Wu; Wing-Ki Liu; Jian-Min Yuan
2001-01-01
Within Born-Oppenheimer approximation, by using the classical trajectory theory, a description for the high order harmonic generation of the hydrogen molecular ion interacting with ultrashort laser pulses has been pre sented. The Coulomb singularities have been remedied by the regularization. The action-angle variables have been used to generate the initial inversion symmetry microcanonical distribution. Within a proper intensity range, a harmonic plateau with only odd harmonics appears. For a larger intensity, because of the existence of chaos, the harmonic spectra become noisier. For a large enough intensity, the ionization takes place and the harmonics disappear. So the chaos causes the noises, the ionization suppresses the harmonic generation, and the onset of the ionization follows the onset of chaos.
Tsogbayar, Ts
2014-01-01
We present Floquet calculations of high harmonic generation (HHG) for the lowest two electronic states of the $\\mbox{H}_2^+$ ion by strong continuous-wave laser fields. We solve the non-Hermitian matrix problem to get accurate solutions to the periodic time-dependent Schr\\"odinger equation (TDSE) by applying a pseudospectral representation combined with a complex absorbing potential method. This represents an alternative approach to direct TDSE solutions to obtain the harmonic spectra for the ion. We compare our HHG rates for the lower and upper states of $\\mbox{H}^{+}_{2}$, which correspond to the gerade and ungerade ground states in the field-free case, with previously obtained results in the literature. We show that the enhancement of the ionization rates at the critical internuclear separation $R_{c}\\approx 8\\,au$ plays some role in the appearance of very strong harmonic orders $n=5-11$ at $\\lambda = 1064\\,nm$ and $n=5-9$ at $\\lambda = 800\\,nm$ and intensity $I=10^{14}\\,W/cm^{2}$.
Contribution of longitudinal electric field of a gaussian beam to second harmonic generation
Mishra, S. R.; Rustagi, K. C.
1990-01-01
A laser beam with a nonuniform transverse intensity profile necessarily has a longitudinal component of the electric field. We show that a detectable second harmonic can be generated due to coupling of this longitudinal component with the transverse field of a gaussian beam in a configuration in which second harmonic generation is forbidden for plane wave interaction.
The role of current loop in harmonic generation from magnetic metamaterials in two polarizations
Sajedian, Iman; Zakery, Abdolnasser; Rho, Junsuk
2016-01-01
In this paper, we investigate the role of the current loop in the generation of second and third harmonic signals from magnetic metamaterials. We will show that the fact that the current loop in the magnetic resonance acts as a source for nonlinear effects and it consists of two orthogonal parts, leads to the generation of two harmonic signals in two orthogonal polarizations.
Concept for power scaling second harmonic generation using a cascade of nonlinear crystals
Hansen, Anders Kragh; Tawfieq, Mahmoud; Jensen, Ole Bjarlin;
2015-01-01
Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept...
Squeezing and entanglement in doubly resonant, type II, second-harmonic generation
Andersen, Ulrik Lund; Buchhave, Preben
2003-01-01
We investigate, theoretically, the generation of bright and vacuum-squeezed light as well as entanglement in intracavity, type II, phase-matched second-harmonic generation. The cavity in which the crystal is embedded is resonant at the fundamental frequency but not at the second-harmonic frequenc...
A Proof-Of-Principle Echo-Enabled Harmonic Generation Experiment at SLAC
Dunning, Michael; /SLAC; Colby, Eric; /SLAC; Ding, Yuantao; /SLAC; Frederico, Joel; /SLAC; Gilevich, Sasha; /SLAC; Hast, Carsten; /SLAC; Jobe, R.; /SLAC; McCormick, Douglas; /SLAC; Nelson, Janice; /SLAC; Raubenheimer, Tor; /SLAC; Soong, Ken; /SLAC; Stupakov, Gennady; /SLAC; Szalata, Zenon; /SLAC; Walz, Dieter; /SLAC; Weathersby, Stephen; /SLAC; Woodley, Mark; /SLAC; Xiang, Dao; /SLAC; Corlett, John; /LBL, Berkeley; Penn, Gregory; /LBL, Berkeley; Prestemon, Soren; /LBL, Berkeley; Qiang, Ji; /LBL, Berkeley /LBL, Berkeley /LBL, Berkeley /LBL, Berkeley /LPHE, Lausanne
2011-05-20
In this paper we describe the technical design of an ongoing proof-of-principle echo-enabled harmonic generation (EEHG) experiment at the Next Linear Collider Test Accelerator (NLCTA) at SLAC.We present the design considerations and the technical details of the experiment. Recently a new method, entitled echo-enabled harmonic generation, was proposed for generation of high harmonics using the beam echo effect. In an EEHG free electron laser (FEL), an electron beam is energy modulated in a modulator and then sent through a dispersive section with a high dispersion strength. After this first stage, the modulation obtained in the modulator is macroscopically washed out, while simultaneously introducing complicated fine structure (separated energy bands) into the phase space of the beam. A second laser is used to further modulate the beam energy in a second modulator. After passing through a second dispersive section, the separated energy bands will be converted into current modulation and the echo signal then occurs as a recoherence effect caused by the mixing of the correlations between the modulation in the second modulator and the fine structures in the beam. The EEHG scheme has a remarkable up-frequency conversion efficiency; it has been shown that the EEHG FEL scheme may allow generation of soft x-rays directly from a UV seed laser in a single stage. In order to confirm the physics behind the EEHG technique and benchmark the theory, a proof-of-principleEEHG experimentwas planned at SLAC. The experiment is now in a commissioning stage and the preliminary results are reported in a separate paper of these proceedings. In this paper we present the design considerations and the details of the experiment setup.
High efficiency second and third harmonic generation from magnetic metamaterials by using a grating
Sajedian, Iman; Zakery, Abdolnasser; Rho, Junsuk
2017-08-01
Metamaterials can be used to generate harmonic signals in small thicknesses, but they suffer from low efficiency. Here, we introduce a new method for amplifying second and third harmonic generation from magnetic metamaterials. We show numerically that by using a grating structure under the metamaterial, the grating and the metamaterial form a resonator which leads to a higher absorption in the metamaterial. By this method we could increase the absorption of the structure in the magnetic resonance up to 25% of the initial value. This leads to the generation of second and third harmonic signals with a higher efficiency from this metamaterial-based nonlinear media. We confirmed this idea in the nanostrip metamaterials and saw the amplitude of the second harmonic generation was doubled and the amplitude of the third harmonic generation increased by a factor of 4 in comparison to the same structure without grating.
Second harmonic generation spectroscopy on Si surfaces and interfaces
Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, 9220 Aalborg Oest (Denmark)
2010-08-15
Optical second harmonic generation (SHG) spectroscopy studies of Si(111) surfaces and interfaces are reviewed for two types of systems: (1) clean 7 x 7 and {radical}(3) x {radical}(3)-Ag reconstructed surfaces prepared under ultra-high vacuum conditions where surface states are excited and (2) interfaces in silicon-on-insulator (SOI) structures and thin metal films on Si surfaces where several interfaces contribute to the SHG. In all the systems resonances are seen at interband transitions near the bulk critical points E{sub 1} and E{sub 2}. On the clean surfaces a number of resonances appear below the onset of bulk-like interband transitions that can be referred to excitations of dangling bond surface states. Adsorption of oxygen leads to formation of a new surface resonance. Such resonances appearing in the region between the bulk critical points E{sub 1} and E{sub 2} are also shown to be important for Si/oxide interfaces in SOI structures. Finally, examples of spectroscopy on layers buried below thin Ag and Au films are given. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Planar light bullets under conditions of second-harmonic generation
Sazonov, Sergey V.; Mamaikin, Mikhail S.; Komissarova, Maria V.; Zakharova, Irina G.
2017-08-01
We study solutions to second-harmonic-generation equations in two-dimensional media with anomalous dispersion. The analytical solution is obtained in an approximate form of the planar spatiotemporal two-component soliton by means of the averaged Lagrangian method. It is shown that a decrease in the amplitudes of both soliton components and an increase in the value of the transverse coordinate are accompanied by an increase in their temporal duration. Within this variational approach, we have managed to find a stability criterion for the light bullet and a period of oscillations of soliton parameters. Then, we use the obtained form as an initial configuration to carry out the direct numerical simulation of soliton dynamics. We demonstrate stable propagation of spatiotemporal solitons undergoing small oscillations predicted analytically for a long distance. The formation of a two-component light bullet is shown when we launch a pulse only at the fundamental frequency. In addition, we investigate the phase and group-velocity mismatch effects on the propagation of pulses.
Research of second harmonic generation images based on texture analysis
Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan
2014-09-01
Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.
Second harmonic generation imaging in tissue engineering and cartilage pathologies
Lilledahl, Magnus; Olderøy, Magnus; Finnøy, Andreas; Olstad, Kristin; Brinchman, Jan E.
2015-03-01
The second harmonic generation from collagen is highly sensitive to what extent collagen molecules are ordered into fibrils as the SHG signal is approximately proportional to the square of the fibril thickness. This can be problematic when interpreting SHG images as thick fibers are much brighter than thinner fibers such that quantification of the amount of collagen present is difficult. On the other hand SHG is therefore also a very sensitive probe to determine whether collagen have assembled into fibrils or are still dissolved as individual collagen molecules. This information is not available from standard histology or immunohistochemical techniques. The degree for fibrillation is an essential component for proper tissue function. We will present the usefulness of SHG imaging in tissue engineering of cartilage as well as cartilage related pathologies. When engineering cartilage it is essential to have the appropriate culturing conditions which cause the collagen molecules to assemble into fibrils. By employing SHG imaging we have studied how cell seeding densities affect the fibrillation of collagen molecules. Furthermore we have used SHG to study pathologies in developing cartilage in a porcine model. In both cases SHG reveals information which is not visible in conventional histology or immunohistochemistry
Harmonic detection an AC excited generation system based on in-phase correlation filtering
无
2002-01-01
The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper. Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.
Harmonic detection an AC excited generation system based on in-phase correlation filtering
贺益康; 孙丹; 王文举; 石赟
2002-01-01
The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper.Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.
Application of High Intensity THz Pulses for Gas High Harmonic Generation
Balogh, Emeric; Hebling, János; Dombi, Péter; Farkas, Győző; Varjú, Katalin
2013-01-01
The main effects of an intense THz pulse on gas high harmonic generation are studied via trajectory analysis on the single atom level. Spectral and temporal modifications to the generated radiation are highlighted.
Studies of surfaces using optical second-harmonic generation
Tom, H.W.K.
1984-04-01
The experiments reported in this thesis demonstrate the use of second-harmonic generation (SHG) and sum-frequency generation (SFG) in reflection from surfaces to study various surface properties. The experiments firmly establish SHG as a viable new surface probe that complements existing surface probes in ultrahigh vacuum environments and is in many ways unique for studying interfaces between dense media. Surface structural symmetry can be revealed through the anisotropy in the SH signal from the surface as the sample is rotated about its normal. The form of this anisotropy is derived in theory and verified with an experiment on the Si(100) and (111) surfaces. The SHG and SFG signals from molecules adsorbed on noninteracting substrates have a direct relationship to the number, average orientation, and spectroscopic properties of the molecules. The SH intensity was used to measure the isotherm for adsorption of p-nitrobenzoic acid from ethanolic solution to fused silica. Experiments performed on a strongly-interacting well-characterized Rh(111) surface in ultrahigh vacuum establish the sensitivity of the SH probe in corroboration with other surface probes. For the first time, the SH coverage-dependence was fit by theory in a quantitative way for the case of O-atom adsorption. The sensitivity of SH to adsorption at different sites was established for CO on top- and bridge-sites. SHG was shown to be surface specific in that the SHG from alkali metal surfaces originates from the first two monolayers. SH sensitivity to the adsorption of catalytically-important hydrocarbons and to chemical processes such as benzene dehydrogenation was also demonstrated. 122 references, 27 figures, 2 tables.
Phase-dependent quantum interference between different pathways in bichromatic harmonic generation
Cai Jun; Wang Li-Ming; Qiao Hao-Xue
2009-01-01
This paper studies the harmonic generation of the hydrogen atom subjected to a collinear bichromatic laser field by numerically solving the time-dependent Schr(o)dinger equation using the split-operator pseudo-spectral method.By adding a frequency variation to the additional field,the contributions of different pathways to particular order harmonic generation can be isolated.The quantum interference pattern between harmonic pathways,which influences the harmonic intensity,is found to be either constructive or destructive with respect to different relative phase of the two field components.Detailed description of up to the 35th-order harmonics and the harmonic pathways for a wide range of field parameters is presented.
Characterization of muscle contraction with second harmonic generation microscopy
Prent, Nicole
Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no
Steuernagel, Ole
2014-06-01
In quantum physics the free particle and the harmonically trapped particle are arguably the most important systems a physicist needs to know about. It is little known that, mathematically, they are one and the same. This knowledge helps us to understand either from the viewpoint of the other. Here we show that all general time-dependent solutions of the free-particle Schrödinger equation can be mapped to solutions of the Schrödinger equation for harmonic potentials, both the trapping oscillator and the inverted "oscillator". This map is fully invertible and therefore induces an isomorphism between both types of system, they are equivalent. A composition of the map and its inverse allows us to map from one harmonic oscillator to another with a different spring constant and different center position. The map is independent of the state of the system, consisting only of a coordinate transformation and multiplication by a form factor, and can be chosen such that the state is identical in both systems at one point in time. This transition point in time can be chosen freely, the wave function of the particle evolving in time in one system before the transition point can therefore be linked up smoothly with the wave function for the other system and its future evolution after the transition point. Such a cut-and-paste procedure allows us to describe the instantaneous changes of the environment a particle finds itself in. Transitions from free to trapped systems, between harmonic traps of different spring constants or center positions, or, from harmonic binding to repulsive harmonic potentials are straightforwardly modelled. This includes some time-dependent harmonic potentials. The mappings introduced here are computationally more efficient than either state-projection or harmonic oscillator propagator techniques conventionally employed when describing instantaneous (non-adiabatic) changes of a quantum particle's environment.
Studies of interfaces and vapors with Optical Second Harmonic Generation
Mullin, Christopher Shane [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Physics
1993-12-01
Optical Second Harmonic Generation (SHG) has been applied to the study of soap-like molecules adsorbed to the water-air interface. By calibrating the signal from a soluble monolayer with that of an insoluble homolog, absolute measurements of the surface density could be obtained and related to the bulk concentration and surface tension. We could then demonstrate that the soluble surfactant forms a single monolayer at the interface. Furthermore, it deviates significantly from the ideal case in that its activity coefficients are far from 1, yet those coefficients remain constant over a broad range of surface pressures. We present evidence of a first-order phase transition taking place during the adsorption of this soluble monolayer. We consider the effects of the non-ideal behavior and the phase transition on the microscopic model of adsorption, and formulate an alternative to the Langmuir picture of adsorption which is just as simple, yet it can more easily allow for non-ideal behavior. The second half of this thesis considers the problem of SHG in bulk metal vapors. The symmetry of the vapor forbids SHG, yet it has been observed. We consider several models whereby the symmetry of the vapor is broken by the presence of the laser and compare their predictions to new observations we have made using a few-picosecond laser pulse. The two-lobed output beam profile shows that it is the vapor-plus-beam combination whose symmetry is important. The dependence on vapor pressure demonstrates the coherent nature of the radiation, while the dependence on buffer gas pressure hints at a change of the symmetry in time. The time-dependence is measured directly with a preliminary pump-probe measurement. The magnitude and intensity dependence of the signal are also measured. All but one of the models are eliminated by this comparison.
Multiphoton fluorescence and second harmonic generation microscopy for imaging keratoconus
Sun, Yen; Lo, Wen; Lin, Sung-Jan; Lin, Wei-Chou; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan
2006-02-01
The purpose of this study is to assess the possible application of multiphoton fluorescence and second harmonic generation (SHG) microscopy for imaging the structural features of keratoconus cornea and to evaluate its potential as being a clinical in vivo monitoring technique. Using the near-infrared excitation source from a titanium-sapphire laser pumped by a diode-pumped, solid state (DPSS) laser system, we can induce and simultaneously acquire multiphoton autofluorescence and SHG signals from the cornea specimens with keratoconus. A home-modified commercial microscope system with specified optical components is used for optimal signal detection. Keratoconus cornea button from patient with typical clinical presentation of keratoconus was obtained at the time of penetrating keratoplasty. The specimen was also sent for the histological examination as comparison. In all samples of keratoconus, destruction of lamellar structure with altered collagen fiber orientation was observed within whole layer of the diseased stromal area. In addition, the orientation of the altered collagen fibers within the cone area shows a trend directing toward the apex of the cone, which might implicate the biomechanical response of the keratoconus stroma to the intraocular pressure. Moreover, increased autofluorescent cells were also found in the cone area, with increased density as one approaches the apical area. In conclusion, multiphoton autofluorescence and SHG microscopy non-invasively demonstrated the morphological features of keratoconus cornea, especially the structural alternations of the stromal lamellae. We believe that in the future the multiphoton microscopy can be applied in vivo as an effective, non-invasive diagnostic and monitoring technique for keratoconus.
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.
Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto
2017-02-08
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.
Electron dynamics from low-order harmonics generated by short laser pulses
Xiong, Wei-Hao; Gong, Qihuang; Peng, Liang-You
2017-08-01
Recently, low-order harmonics have gained much attention due to their applications as coherent light sources with a high repetition rate. In addition, the generation process is highly related to the bound electrons and can thus be applied to detect the dynamics of these electrons. In this work, we theoretically investigate the low-order harmonics below the first excited state, produced by a single-cycle optical pulse. We numerically solve the three-dimensional time-dependent Schrödinger equation (TDSE) to calculate the harmonic spectrum. With the help of a perturbation model, we can transparently understand the generation process of the spectrum. The results indicate that the harmonic spectrum can be sensitively influenced by the frequency component of the driving field. We find that the carrier envelope phase (CEP) dependence of low-order-harmonic generation originates from the interference of different harmonic orders. For these harmonics, the CEP effects can only be observed when the spectrum of the driving laser is extremely wide, which corresponds to the very short driving pulse. From the CEP-dependent interference structure, the phase relation of the third and the fifth harmonic can be extracted. The extracted information indicates that the atomic response induces a positive chirp for the emitted low-order harmonics. In addition, we investigated the harmonic phase calculated from the TDSE results. The harmonic phase is different from the phase predicted by the adiabatic model, and this phase difference can be related to the time delay of the electronic response. We extract the time delay from the harmonic phase and explore the CEP and intensity dependence of this time delay.
The Use of Harmonic Scalpel for Free Flap Dissection in Head and Neck Reconstructive Surgery
Sebastien Albert
2012-01-01
Full Text Available Surgeons conventionally use electrocautery dissection and surgical clip appliers to harvest free flaps. The ultrasonic Harmonic Scalpel is a new surgical instrument that provides high-quality dissection and hemostasis and minimizes tissue injury. The aim of this study was to evaluate the effectiveness and advantages of the ultrasonic Harmonic Scalpel compared to conventional surgical instruments in free flap surgery. This prospective study included 20 patients who underwent head and neck reconstructive surgery between March 2009 and May 2010. A forearm free flap was used for reconstruction in 12 patients, and a fibular flap was used in 8 patients. In half of the patients, electrocautery and surgical clips were used for free flap harvesting (the EC group, and in the other half of the patients, ultrasonic dissection was performed using the Harmonic Scalpel (the HS group. The following parameters were significantly lower in the HS group compared to the EC group: the operative time of flap dissection (35% lower in the HS group, blood loss, number of surgical clips and cost of surgical materials. This study demonstrated the effectiveness of the Harmonic Scalpel in forearm and fibular free flap dissections that may be extended to other free flaps.
The use of harmonic scalpel for free flap dissection in head and neck reconstructive surgery.
Albert, Sebastien; Guedon, Charles; Halimi, Caroline; Cristofari, Jean Pierre; Barry, Beatrix
2012-01-01
Surgeons conventionally use electrocautery dissection and surgical clip appliers to harvest free flaps. The ultrasonic Harmonic Scalpel is a new surgical instrument that provides high-quality dissection and hemostasis and minimizes tissue injury. The aim of this study was to evaluate the effectiveness and advantages of the ultrasonic Harmonic Scalpel compared to conventional surgical instruments in free flap surgery. This prospective study included 20 patients who underwent head and neck reconstructive surgery between March 2009 and May 2010. A forearm free flap was used for reconstruction in 12 patients, and a fibular flap was used in 8 patients. In half of the patients, electrocautery and surgical clips were used for free flap harvesting (the EC group), and in the other half of the patients, ultrasonic dissection was performed using the Harmonic Scalpel (the HS group). The following parameters were significantly lower in the HS group compared to the EC group: the operative time of flap dissection (35% lower in the HS group), blood loss, number of surgical clips and cost of surgical materials. This study demonstrated the effectiveness of the Harmonic Scalpel in forearm and fibular free flap dissections that may be extended to other free flaps.
High-order harmonic generation with a two-color laser pulse
Luo Lao-Yong; Du Hong-Chuan; Hu Bi-Tao
2012-01-01
We theoretically investigate the electron dynamics of the high-order harmonics generation process by combining a near-infrared 800 nm driving pulse with a mid-infrared 2000 nm control field.We also investigate the emission time of harmonics using time-frequency analysis to illustrate the physical mechanisms of high-order harmonic generation.We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variations in harmonic intensity for different control field strengths and delays.We find that the width of the harmonic plateau can be extended when the control electric field is added,and a supercontinuum from 198 to 435 eV is generated,from which an isolated 61-as pulse can be directly obtained.
Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy
Lee, Wen-Jeng; Lee, Chia-Fone; Chen, Szu-Yu; Chen, Yuh-Shyang; Sun, Chi-Kuang
2010-07-01
Multiharmonic optical microscopy has been widely applied in biomedical research due to its unique capability to perform noninvasive studies of biomaterials. In this study, virtual biopsy based on back-propagating multiple optical harmonics, combining second and third harmonics, is applied in unfixed rat tympanic membrane. We show that third harmonic generation can provide morphologic information on the epithelial layers of rat tympanic membrane as well as radial collagen fibers in middle fibrous layers, and that second harmonic generation can provide information on both radial and circular collagen fibers in middle fibrous layers. Through third harmonic generation, the capillary and red blood cells in the middle fibrous layer are also noted. Additionally, the 3-D relationship to adjacent bony structures and spatial variations in thickness and curvature are obtained. Our study demonstrates the feasibility of using a noninvasive optical imaging system for comprehensive evaluation of the tympanic membrane.
Lavrov, S. D.; Kudryavtsev, A. V.; Shestakova, A. P.; Kulyuk, L.; Mishina, E. D.
2016-05-01
Second harmonic generation is studied in structures containing nanoscale layers of transition metal chalcogenides that are two-dimensional semiconductors and deposited on a SiO2/Si substrate. The second harmonic generation intensity is calculated with allowance for multibeam interference in layers of dichalcogenide and silicon oxide. The coefficient of reflection from the SiO2-layer-based Fabry-Perot cavity is subsequently calculated for pump wave fields initiating nonlinear polarization at every point of dichalcogenide, which is followed by integration of all second harmonic waves generated by this polarization. Calculated second harmonic intensities are presented as functions of dichalcogenide and silicon oxide layer thicknesses. The dependence of the second harmonic intensity on the MoS2 layer thickness is studied experimentally in the layer of 2-140 nm. A good coincidence of the experimental data and numerical simulation results has been obtained.
Third harmonic generation of CO2 laser radiation in AgGaSe2 crystal
Gopal C Bhar; Pathik Kumbhakar; D V Satyanarayana; N S N Banerjee; U Nundy; C G Chao
2000-09-01
Generation of third harmonic of CO2 laser radiation has been obtained in a type-II, =57° cut 9 mm thick AgGaSe2 crystal for the ﬁrst time by sum-frequency-mixing of the fundamental with its second harmonic, the latter being obtained using another type-I, =55° cut 11 mm thick AgGaSe2 crystal. The energy conversion efﬁciencies obtained for second harmonic and third harmonic generations are 6.3% and 2.4% respectively with the input fundamental pump power density of 5.9 MW/cm2 only. The wavelength of the fundamental CO2 laser radiation used for the generation of harmonics is 10.6 m, (20) line. A compact TEA CO2 laser source has been built in the laboratory.
Coherent Harmonic Generation using the Elettra Storage-Ring Optical Klystron A Numerical Analysis
Curbis, F
2005-01-01
Coherent harmonic generation can be obtained by means of frequency up-conversion of a high-power external laser focused into the first undulator of an optical klystron. The standard configuration is based on a single-pass device, where the seed laser is synchronized with an electron beam entering the first undulator of the optical klystron after being accelerated using a linear accelerator. As an alternative, the optical klystron may be installed on a storage ring, where it is normally used as interaction region for an oscillator free-electron laser. In this case, removing the optical cavity and using an external seed, one obtains a configuration which is similar to the standard one but also presents some peculiar characteristics. In this paper we investigate the possibility of harmonic generation using the Elettra storage-ring optical klystron. We explore different experimental set-ups varying the beam energy, the seed characteristics and the strength of the optical-klystron dispersive section. We also study...
Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses
Lara-Astiaso, M.; Silva, R. E. F.; Gubaydullin, A.; Rivière, P.; Meier, C.; Martín, F.
2016-08-01
One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.
Optimized plasma high harmonics generation from ultra-intense laser pulses
Tang, Suo; Keitel, Christoph H
2016-01-01
Plasma high harmonics generation from extremely intense short-pulse laser is explored by including the effects of ion motion and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect resulting into the frequency shifting and widening of the harmonic spectra thereby constraining the coherence properties of the harmonics. Radiation reaction force slightly mitigates the effects caused by the ion motion. Based on the analytical estimates and particle-in-cell simulation results, an optimum parameter regime of plasma high-harmonics is presented.
Near-field second-harmonic generation in single gold nanoparticles
Zavelani-Rossi, M.; Celebrano, M.; Biagioni, P.; Polli, D.; Finazzi, M.; Duò, L.; Cerullo, G.; Labardi, M.; Allegrini, M.; Grand, J.; Adam, P.-M.
2008-03-01
Second-harmonic generation from single gold elliptical nanoparticles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). The near-field nonlinear response is found to be directly related to local surface plasmon resonances and to particle morphology. The combined analysis of linear and second-harmonic SNOM images provides discrimination among different light extinction particle behaviors, not achievable just with linear techniques. The polarization state of the emitted second harmonic is also investigated, providing experimental evidence of second-harmonic particle emission modes peculiar to near-field excitation.
Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses.
Lara-Astiaso, M; Silva, R E F; Gubaydullin, A; Rivière, P; Meier, C; Martín, F
2016-08-26
One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.
Experimental observation of second-harmonic generation and diffusion inside random media
Faez, Sanli; Johnson, P. M.; Mazurenko, D. A.; Lagendijk, Ad
2009-01-01
We have experimentally measured the distribution of the second-harmonic intensity that is generated inside a highly scattering slab of porous gallium phosphide. Two complementary techniques for determining the distribution are used. First, the spatial distribution of second-harmonic light intensity
Zhang, Zhenggang; Liu, Dan; Deng, Mingxi; Ta, Dean; Wang, Weiqi
2014-07-01
The experimental observation of cumulative second-harmonic generation of fundamental Lamb waves in long bones is reported. Based on the modal expansion approach to waveguide excitation and the dispersion characteristics of Lamb waves in long bones, the mechanism underlying the generation and accumulation of second harmonics by propagation of the fundamental Lamb waves was investigated. An experimental setup was established to detect the second-harmonic signals of Lamb wave propagation in long bones in vitro. Through analysis of the group velocities of the received signals, the appropriate fundamental Lamb wave modes and the duration of the second-harmonic signals could be identified. The integrated amplitude of the time-domain second-harmonic signal was introduced and used to characterize the efficiency of second-harmonic generation by fundamental Lamb wave propagation. The results indicate that the second-harmonic signal generated by fundamental Lamb waves propagating in long bones can be observed clearly, and the effect was cumulative with propagation distance when the fundamental Lamb wave mode and the double-frequency Lamb wave mode had the same phase velocities. The present results may be important in the development of a new method to evaluate the status of long bones using the cumulative second harmonic of ultrasonic Lamb waves.
GaoJin-Yue; ZhangHan-Zhuang; YangJian-Bing
2003-01-01
We report on a theoreticalanalysis of the effects of a converging pump field of Gaussian transverse profile on second harmonic generation in a periodic nonlinear material with quasi-phase-matching. The outputs of the centre intensity and the intensity flux for second harmonic generation are derived by simulation, based on the parameters of quasi-phase-mismatch, the waist and focus positions of the input pump beam. The results show that when the transverse profile of the pump field is taken into account, the quasi-phase-match value and focus position of input beam for maximal second harmonic generation flollow new criteria.
Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures
Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank;
2016-01-01
We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists a maxima......We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists...... of second-harmonic generation in periodic nanobeam waveguides with loss. (C) 2016 Optical Society of America...
张汉壮; 杨建冰; 高锦岳
2003-01-01
We report on a theoretical analysis of the effects of a converging pump field of Gaussian transverse profile on second harmonic generation in a periodic nonlinear material with quasi-phase-matching. The outputs of the centre intensity and the intensity flux for second harmonic generation are derived by simulation, based on the parameters of quasi-phase-mismatch, the waist and focus positions of the input pump beam. The results show that when the transverse profile of the pump field is taken into account, the quasi-phase-match value and focus position of input beam for maximal second harmonic generation follow new criteria.
Effect of the shape of quantum dots on the third-harmonic generations
Li, Keyin; Guo, Kangxian; Liang, Litao
2017-02-01
The effect of the shape of quantum dots on the third-harmonic generations is theoretically investigated. Using the effective-mass approximation, calculations are performed employing methods of both the compact-density-matrix and the matrix diagonalization. We discuss the properties of the third-harmonic generations (THG) coefficients as a function of the incident photon frequency in elliptic and triangular shaped quantum dots. The results reveal that the shape of quantum dots has a great influence on the third-harmonic generations.
solution of free harmonic vibration equation of simply supported ...
user
The free vibration analysis of rectangular plates is significant for controlling ... vibrating plate, which values are used in the computation of dynamic ... and efficient computational method. (ii) the solution of complex plate problems is simplified.
Ganeev, Rashid A
2014-01-01
Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o
Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab
Marino, Giuseppe; Krasavin, Alexey V; Ginzburg, Pavel; Olivier, Nicolas; Wurtz, Gregory A; Zayats, Anatoly V
2015-01-01
Hyperbolic plasmonic metamaterials provide numerous opportunities for designing unusual linear and nonlinear optical properties. We show that the modal overlap of fundamental and second-harmonic light in an anisotropic plasmonic metamaterial slab results in the broadband enhancement of radiated second-harmonic intensity by up to 2 and 11 orders of magnitudes for TM- and TE-polarized fundamental light, respectively, compared to a smooth Au film under TM-polarised illumination. The results open up possibilities to design tuneable frequency-doubling metamaterial with the goal to overcome limitations associated with classical phase matching conditions in thick nonlinear crystals.
Butet, Jérémy; Dutta-Gupta, Shourya; Martin, Olivier J. F.
2014-06-01
The surface second-harmonic generation from interacting spherical plasmonic nanoparticles building different clusters (symmetric and asymmetric dimers, trimers) is theoretically investigated. The plasmonic eigenmodes of the nanoparticle clusters are first determined using an ab initio approach based on the Green's functions method. This method provides the properties, such as the resonant wavelengths, of the modes sustained by a given cluster. The fundamental and second-harmonic responses of the corresponding clusters are then calculated using a surface integral method. The symmetry of both the linear and nonlinear responses is investigated, as well as their relationship. It is shown that the second-harmonic generation can be significantly enhanced when the fundamental field is such that its second harmonic matches modes with suitable symmetry. The role played by the nanogaps in second-harmonic generation is also underlined. The results presented in this article demonstrate that the properties of the second-harmonic generation from coupled metallic nanoparticles cannot be fully predicted from their linear response only, while, on the other hand, a detailed knowledge of the underlying modal structure can be used to optimize the generation of the second harmonic.
Zhang, Xiaofan; Zhu, Xiaosong; Liu, Xi; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang
2016-01-01
We investigate the polarization properties of high harmonics generated with the bichromatic counterrotating circularly polarized (BCCP) laser fields by numerically solving time-dependent Schr\\"odinger equation (TDSE). It is found that, the helicity of the elliptically polarized harmonic emission is reversed at particular harmonic orders. Based on the time-frequency analysis and the classical three-step model, the correspondence between the positions of helicity reversions and the classical trajectories of continuum electrons is established. It is shown that, the electrons ionized at one lobe of laser field can be divided into different groups based on the different lobes they recombine at, and the harmonics generated by adjacent groups have opposite helicities. Our study performs a detailed analysis of high harmonics in terms of electron trajectories and depicts a clear and intuitive physical picture of the HHG process in BCCP laser field.
Multi-photon resonance enhanced super high-order harmonic generation
Lin Zheng-Zhe; Zhuang Jun; Ning Xi-Jing
2010-01-01
This paper proposes highly charged ions pumped by intense laser to produce very high order harmonics.Numerical simulations and full quantum theory of Ne9+ ions driven by laser pulses at 1064 nm in the power range of 109 W/cm2 ～ 1015 W/cm2 show that the emission spectrum corresponds to the electronic transitions from the excited states to the ground state,which is very different from the spectrum of general high-order harmonic generation.In such situation,harmonic order as high as 1000 can be obtained without producing lower order harmonics and the energy conversion efficiency is close to general high order harmonic generation of hydrogen atom in the same laser field.
Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate
Xiang Yan-Xun; Deng Ming-Xi
2008-01-01
The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface.In general,the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur.However,the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied.Through boundary condition and initial condition of excitation,the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined.Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.
Macroscopic effect of plasmon-driven high-order-harmonic generation
Wang, Feng; Liu, Weiwei; He, Lixin; Li, Liang; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang
2017-09-01
We present a numerical method to calculate the macroscopic harmonic spectrum generated from the gas-exposed nanostructure. This method includes the propagation of plasmonic and harmonic fields in the macroscopic medium as well as the response of the single atom exposed to plasmonic field. Based on the simulation, we demonstrate that the macroscopic harmonic yields drop dramatically in the high-energy region. This result well interprets the disagreement in the cutoff between the single-atom prediction and the experimental detection. Moreover, we also show that the harmonic cutoff difference induced by a π shift in carrier-envelope phase (CEP) of laser pulses depends sensitively on the spatial position. However, when the collective effect of plasmon-driven high-order-harmonic generation is considered, this cutoff difference is eliminated.
Fully coherent hard X-ray generation by two-stage of Phase-merging Enhanced Harmonic Generation
Wang, Guanglei; Yang, Xueming; Feng, Chao; Deng, Haixiao
2016-01-01
Cascading stages of seeded free electron laser (FEL) is a promising way to produce fully coherent X-ray radiations. We study a new approach to produce coherent hard X-rays by cascading the recently proposed phase-merging enhanced harmonic generation (PEHG). The scheme consists of one dogleg and two PEHG configurations, which may be one of the leading candidates for the extracted undulator branch in future X-ray FEL facilities. FEL physics studies show that such a scheme is feasible within the present technology and can provide high brightness X-ray radiation pulses with narrow bandwidth and fully coherence, and the radiated peak power at 1 angstrom wavelength converted from an initial 200 nm seed laser is over 2 GW.
Fully coherent hard X-ray generation by two-stage phase-merging enhanced harmonic generation
Wang, Guang-Lei; Zhang, Wei-Qing; Yang, Xue-Ming; Feng, Chao; Deng, Hai-Xiao
2016-09-01
Cascading stages of seeded free electron lasers (FELs) is a promising way to produce fully coherent X-ray radiation. We study a new approach to produce coherent hard X-rays by cascading the recently proposed phase-merging enhanced harmonic generation (PEHG) The scheme consists of one dogleg and two PEHG configurations, and may be one of the leading candidates for the extracted undulator branch in future X-ray FEL facilities. FEL physics studies show that such a scheme is feasible within the present technology and can provide high brightness X-ray radiation pulses with narrow bandwidth and full coherence The radiated peak power at 1 Å wavelength converted from an initial 200 nm seed laser is over 2 GW Supported by the National Natural Science Foundation of China (21127902 & 11322550) and Ten Thousand Talent Program
Deng Mingxi [College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Wang Ping [College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Lv Xiafu [College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)
2006-07-21
This paper describes influences of interfacial properties on second-harmonic generation of Lamb waves propagating in layered planar structures. The nonlinearity in the elastic wave propagation is treated as a second-order perturbation of the linear elastic response. Due to the kinematic nonlinearity and the elastic nonlinearity of materials, there are second-order bulk and surface/interface driving sources in layered planar structures through which Lamb waves propagate. These driving sources can be thought of as forcing functions of a series of double frequency lamb waves (DFLWs) in terms of the approach of modal expansion analysis for waveguide excitation. The total second-harmonic fields consist of a summation of DFLWs in the corresponding stress-free layered planar structures. The interfacial properties of layered planar structures can be described by the well-known finite interfacial stiffness technique. The normal and tangential interfacial stiffness constants can be coupled with the equation governing the expansion coefficient of each DFLW component. On the other hand, the normal and tangential interfacial stiffness constants are associated with the degree of dispersion between Lamb waves and DFLWs. Theoretical analyses and numerical simulations indicate that the efficiency of second-harmonic generation by Lamb wave propagation is closely dependent on the interfacial properties of layered structures. The potential of using the effect of second-harmonic generation by Lamb wave propagation to characterize the interfacial properties of layered structures are considered. Some experimental results are presented.
Random laser action with coherent feedback via second-harmonic generation
Qiao, Yanqi; Cai, Zengyan; Chen, Xianfeng
2016-01-01
The random laser action with coherent feedback by second-harmonic generation (SHG) was experimentally demonstrated in this paper. Compared with the conventional random laser action based on photoluminescence effect, which needs strong photoresponse in the active medium and has a fixed response waveband due to the inherent energy level structure of the material, this random SHG laser action indicates a possible confinement of the nonlinear signal with ring cavities and widens the response waveband due to the flexible frequency conversion in nonlinear process. The combination of coherent random laser and nonlinear optics will provide us another possible way to break phase-matching limitations, with fiber or feedback-based wavefront shaping method to transmit the emission signal directionally. This work suggests potential applications in band-tunable random laser, phase-matching-free nonlinear optics and even brings in new consideration about random nonlinear optics (RNO).
Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei
2013-10-01
We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (χ31/χ15 and χ33/χ15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.
Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities
Puckett, Matthew W; Lin, Hung-Hsi; Yang, Muhan; Vallini, Felipe; Fainman, Yeshaiahu
2016-01-01
We present experimental results on the observation of a bulk second-order nonlinear susceptibility derived from both free-space and integrated measurements in silicon nitride. Phase-matching is achieved through dispersion engineering of the waveguide cross-section, independently revealing multiple components of the nonlinear susceptibility, namely X(2)yyy and X(2)xxy. Additionally, we show how the generated second-harmonic signal may be actively tuned through the application of bias voltages across silicon nitride. The nonlinear material properties measured here are anticipated to allow for the practical realization of new nanophotonic devices in CMOS-compatible silicon nitride waveguides, adding to their viability for telecommunication, data communication, and optical signal processing applications.
Arfaoui, [No Value; Bermudez, [No Value; Bottari, G; De Nadai, C; Jalkanen, JP; Kajzar, F; Leigh, DA; Lubomska, M; Mendoza, SM; Niziol, J; Rudolf, P; Zerbetto, F; Arfaoui, Imad; Bermúdez, Verónica; Jalkanen, Jukka-Pekka
2006-01-01
Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest
Ovchinnikov, A. V.; Chefonov, O. V.; Agranat, M. B.; Grishunin, K. A.; Il'in, N. A.; Pisarev, R. V.; Kimel, A. V.; Kalashnikova, A. M.
2016-10-01
Optical second harmonic generation at the photon energy of 2ℏω = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4-2.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation.
Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier
Cirmi, G.; Lai, C.-J.; Huang, S.-W.; Granados, E.; Sell, A.; Moses, J.; Hong, K.-H.; Keathley, P.; Kärtner, F. X.
2013-03-01
We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ-5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.
Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier
Keathley P.
2013-03-01
Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.
On the Inhibition of Linear Absorption in Opaque Materials Using Phase-Locked Harmonic Generation
Centini, Marco; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael
2008-01-01
We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second and third harmonic generation in strongly absorbing materials, GaAs in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300nm generates 650nm and 435nm second and third harmonic pulses that propagate across a 450 micron-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress them with its dispersive properties.
Stator Current Harmonic Control with Resonant Controller for Doubly Fed Induction Generator
Liu, Changjin; Blaabjerg, Frede; Chen, Wenjie;
2012-01-01
Voltage harmonics in the grid can introduce stator current harmonics in a doubly fed induction generator (DFIG) wind turbine system, which may potentially impact the generated power quality. Therefore, wind turbine current controllers need to be designed to eliminate the impact of grid voltage...... rotor current control loop for harmonic suppression. The overall control scheme is implemented in dq frame. Based on a mathematical model of the DFIG control system, the effects on system stability using the resonant controller, an analysis of the steady-state error, and the dynamic performance...
High-Order Harmonic Generation by Two Non-collinear Coherent Femtosecond Laser Pulses
陆伟新; 刘婷婷; 杨宏; 孙騊亨; 龚旗煌
2003-01-01
We have studied the high-order harmonic generated by two coherent pulses in argon gas produced by a gas jet. A loop in the relationship of the harmonic intensity versus the absolute values of relative phase difference was observed for non-collinear arrangement. Compared with the collinear arrangement, increase of 10 times of the conversion efficiency for 17th-order harmonic generation at an appropriate relative phase difference was obtained. The calculation of the intensity and phase for the laser field near the focus gives a simple reason for these phenomena.
Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks
Roland, I.; Gromovyi, M.; Zeng, Y.; El Kurdi, M.; Sauvage, S.; Brimont, C.; Guillet, T.; Gayral, B.; Semond, F.; Duboz, J. Y.; de Micheli, M.; Checoury, X.; Boucaud, P.
2016-09-01
We demonstrate phase-matched second harmonic generation in gallium nitride on silicon microdisks. The microdisks are integrated with side-coupling bus waveguides in a two-dimensional photonic circuit. The second harmonic generation is excited with a continuous wave laser in the telecom band. By fabricating a series of microdisks with diameters varying by steps of 8 nm, we obtain a tuning of the whispering gallery mode resonances for the fundamental and harmonic waves. Phase matching is obtained when both resonances are matched with modes satisfying the conservation of orbital momentum, which leads to a pronounced enhancement of frequency conversion.
Generation of the numerator=2 rational harmonic mode-locked pulses in fiber ring lasers
Pinghe Wang(汪平河); Li Zhan(詹黎); Qinghao Ye(叶庆好); Yuxing Xia(夏宇兴)
2004-01-01
In conventional rational harmonic mode-locking, optical pulse trains with the repetition rate of(pn + 1)fc are generated when the modulation frequency of the in-cavity modulator is set at fm=(n + 1/p)fc, where n and p are both integers, fc is the fundamental cavity frequency. In this paper, we report that rational harmonic mode locking phenomenon takes place in the fiber lasers when the modulation frequency is set at fm =(n + 2/p)fc. The pulse generations are experimentally demonstrated when the numerator of the rational corresponds to 2 in 5th and 7th order rational harmonic mode-locking.
Double-pulse induced harmonic generation in laser-produced plasmas
Ganeev, Rashid A.; Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto
2015-12-01
We report the studies of the metals, non-metals, powders, and nanoparticles as the targets for laser ablation induced high-order harmonic generation of ultrashort pulses using the double-pulse technique. The proposed technique demonstrates the attractiveness as the method for the studies of the high-order nonlinear optical properties of various materials. The comparative analysis of the harmonic generation using different targets showed that the species allowing easier ablation (powders, nanoparticles) produce stronger harmonic yield in the extreme ultraviolet range.
First operation of a harmonic lasing self-seeded free electron laser
Schneidmiller, E.A.; Faatz, B.; Kuhlmann, M.; Roensch-Schulenburg, J.; Schreiber, S.; Tischer, M.; Yurkov, M.V.
2016-12-15
Harmonic lasing is a perspective mode of operation of X-ray FEL user facilities that allows to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is so called Harmonic Lasing Self-Seeded Free Electron Laser (HLSS FEL) that allows to improve spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with Self-Amplified Spontaneous emission (SASE) FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at short wavelengths paves the way for a variety of applications of this new operation mode in X-ray FELs.
First operation of a harmonic lasing self-seeded free electron laser
E. A. Schneidmiller
2017-02-01
Full Text Available Harmonic lasing is a possible mode of operation of X-ray FEL user facilities that allows us to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is the so-called harmonic lasing self-seeded free electron laser (HLSS FEL that allows the improvement of spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with self-amplified spontaneous emission (SASE FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at short wavelengths paves the way for a variety of applications of this new operation mode in X-ray FELs.
A systematic investigation of high harmonic generation using mid-infrared driving laser pulses
无
2010-01-01
We report on a systematic investigation of the influences of gas pressure,focal position and focusing geometry on high harmonic generation by use of mid-infrared femtosecond laser pulses. We also discuss the spatial characteristics of harmonics under different focusing conditions. By optimizing the parameters,we experimentally observed the generation of 1 kHz,low divergence coherent X-ray beams in the water-window region.
Nonlinear Fano Profiles in the Optical Second-Harmonic Generation from Silver Nanoparticles
Butet, J; Russier-Antoine, I; Bertorelle, F; Mosset, A; Lascoux, N; Jonin, C; Benichou, E; Brevet, P -F
2012-01-01
The resonance effects on the optical second harmonic generation from 140 nm silver nanoparticles is studied experimentally by hyper-Rayleigh scattering and numerically by finite element method calculations. We find that the interferences between the broad dipolar and narrow octupolar surface plasmon resonances leads to nonlinear Fano profiles that can be externally controlled by the incident polarization angle. These profiles are responsible for the nonlinear plasmon-induced transparency in the second harmonic generation.
Third-Order Harmonic Generation in Atmospheric Air with Focused Intense Femtosecond Laser Pulses
朱长军; 秦元东; 杨宏; 王树峰; 龚旗煌
2001-01-01
Generation of third-order harmonics at 800 nm of femtosecond laser pulses is studied in neutral atmospheric air and in plasma of optical breakdown in air. Its efficiency is measured at different fundamental laser intensities. A maximum efficiency is observed at the intensity when optical breakdown in atmospheric air starts. The factors that exhibit the main effects on the harmonic generation, including self-focusing in a neutral air and self-focusing in plasma, are discussed.
Impedance matching in photonic crystal microcavities for second-harmonic generation.
Di Falco, Andrea; Conti, Claudio; Assanto, Gaetano
2006-01-15
By numerically integrating the three-dimensional Maxwell equations in the time domain with reference to a dispersive quadratically nonlinear material, we study second-harmonic generation in planar photonic crystal microresonators. The proposed scheme allows efficient coupling of the pump radiation to the defect resonant mode. The outcoupled generated second harmonic is maximized by impedance matching the photonic crystal cavity to the output waveguide.
Electron motion enhanced high harmonic generation in xenon clusters
Li, Na; Bai, Ya; Peng, Peng; Li, Ruxin; Xu, Zhizhan
2016-01-01
Atomic clusters presents an isolated system that models the bulk materials whose mechanism of HHG remains uncertain, and a promising medium to produce HHG beyond the limited conversion efficiency for gaseous atoms. Here we reveal that the oscillation of collective electron motion within clusters develops after the interaction of intense laser fields, and it significantly enhances the harmonic dipole and increases the quantum phase of the harmonics. Experimentally, the phase matching conditions of HHG from nanometer xenon clusters and atoms are distinguished, which confirms the enhanced internal field that was proposed theoretically a decade ago. The separation of HHG from atoms and clusters allows the determination of the amplitude of the HHG for clusters to be 5 orders higher, corresponding to 4 times higher conversion efficiency for atomic response. The finding provides an insight on the HHG mechanism of bulk materials and a means by which an efficient coherent X-ray source can be developed.
Origin of third harmonic generation in plasmonic nanoantennas
Lesina, Antonino Calà; Ramunno, Lora
2016-01-01
Plasmonic nanoantennas have been recently proposed to boost nonlinear optical processes. In a metal dipole nanoantenna with a dielectric nanoparticle placed in the gap, the linear field enhancement can be exploited to enhance third harmonic emission. Since both metals and dielectrics exhibit nonlinearity, the nonlinear far-field contains contributions from each, and the impossibility of measuring these contributions separately has led to seemingly contradictory interpretations about the origin of the nonlinear emission. We determine that the origin of the third harmonic from metal-dielectric dipole nanoantennas depends on nanoantenna design, and in particular, the width. We find that the emission from gold dominates in thin threadlike nanoantennas, whereas the emission from the gap material dominates in wider nanoantennas. We also find that monopole nanoantennas perform better than dipoles having the same width, and due to their simplicity should be preferred in many applications.
McDonald, Kelly L.; Alain, Claude
2005-09-01
The contribution of location and harmonicity cues in sound segregation was investigated using behavioral reports and source waveforms derived from the scalp-recorded evoked potentials. Participants were presented with sounds composed of multiple harmonics in a free-field environment. The third harmonic was either tuned or mistuned and could be presented from the same or different location from the remaining harmonics. Presenting the third harmonic at a different location than the remaining harmonics increased the likelihood of hearing the tuned or slightly (i.e., 2%) mistuned harmonic as a separate object. Partials mistuned by 16% of their original value ``pop out'' of the complex and were paralleled by an object-related negativity (ORN) that superimposed the N1 and P2 components. For the 2% mistuned stimuli, the ORN was present only when the mistuned harmonic was presented at a different location than the remaining harmonics. Presenting the tuned harmonic at a different location also yielded changes in neural activity between 150 and 250 ms after sound onset. The behavioral and electrophysiological results indicate that listeners can segregate sounds based on harmonicity or location alone. The results also indicate that a conjunction of harmonicity and location cues contribute to sound segregation primarily when harmonicity is ambiguous.
Higher and sub-harmonic Lamb wave mode generation due to debond-induced contact nonlinearity
Guha, Anurup; Bijudas, C. R.
2016-04-01
Non-cumulative higher and sub-harmonic Lamb wave mode generation as a result of partial-debond of piezoelectric wafer transducers (PWT) bonded onto an Aluminium plate, is numerically investigated and experimentally validated. The influence of excitation frequency on the extent of nonlinearity due to clapping mechanism of the partially-debonded PWTs is discussed. A set of specific frequency range is arrived at based on the Eigen-value and Harmonic analyses of PWTs used in the model. It is found that, at these frequencies, which are integral multiple of the first width-direction mode of a PWT, significantly higher amplitudes of higher-harmonics are observed. It is also seen that at specific debond-positions and lengths, sharp sub-harmonics in addition to higher-harmonics are present. Signal processing is carried out using Fast Fourier transform, which is normalized for comparisons.
Subfemtosecond X-ray Pulses Produced Directly by High Harmonic Generation
WANG Ying-Song; XU Zhi-Zhan
2000-01-01
The generation of subfemtosecond pulses in hydrogen-like atoms through high-harmonic generation by using superintense multicycle driver pulses is numerically investigated. It is shown that a single subfemtosecond pulse can be directly generated when the driver pulse is strong enough to deplete the neutral atoms within several optical cycles. The propagation effect is neglected during the numerical examinations.
Efficient Third Harmonic Generation for Wind Lidar Applications
Mordaunt, David W.; Cheung, Eric C.; Ho, James G.; Palese, Stephen P.
1998-01-01
The characterization of atmospheric winds on a global basis is a key parameter required for accurate weather prediction. The use of a space based lidar system for remote measurement of wind speed would provide detailed and highly accurate data for future weather prediction models. This paper reports the demonstration of efficient third harmonic conversion of a 1 micrometer laser to provide an ultraviolet (UV) source suitable for a wind lidar system based on atmospheric molecular scattering. Although infrared based lidars using aerosol scattering have been demonstrated to provide accurate wind measurement, a UV based system using molecular or Rayleigh scattering will provide accurate global wind measurements, even in those areas of the atmosphere where the aerosol density is too low to yield good infrared backscatter signals. The overall objective of this work is to demonstrate the maturity of the laser technology and its suitability for a near term flight aboard the space shuttle. The laser source is based on diode-pumped solid-state laser technology which has been extensively demonstrated at TRW in a variety of programs and internal development efforts. The pump laser used for the third harmonic demonstration is a breadboard system, designated the Laser for Risk Reduction Experiments (LARRE), which has been operating regularly for over 5 years. The laser technology has been further refined in an engineering model designated as the Compact Advanced Pulsed Solid-State Laser (CAPSSL), in which the laser head was packaged into an 8 x 8 x 18 inch volume with a weight of approximately 61 pounds. The CAPSSL system is a ruggedized configuration suitable for typical military applications. The LARRE and CAPSSL systems are based on Nd:YAG with an output wavelength of 1064 nm. The current work proves the viability of converting the Nd:YAG fundamental to the third harmonic wavelength at 355 nm for use in a direct detection wind lidar based on atmospheric Rayleigh scattering.
Efficient second harmonic generation of picosecond laser pulses.
Rabson, T. A.; Ruiz, H. J.; Shah, P. L.; Tittel, F. K.
1972-01-01
Efficient conversion to the second harmonic (SH) using KD2PO4 and CsH2AsO4 crystals inside a folded cavity of a high-power-dye mode-locked neodymium-glass laser is reported. For the first time, frequency-doubled picosecond light pulses have been obtained in CsH2AsO4 with peak powers of the order of 1 GW/sq cm at 0.531 micron for an effective pump power density of 4 GW/sq cm.
Extreme Harmonic Generation in an InAs Spin-Orbit Qubit
Stehlik, J.; Schroer, M. D.; Maialle, M. Z.; Degani, M. H.; Petta, J. R.
2014-03-01
Strong spin-orbit materials have shown great promise in the field of quantum computation. Unlike conventional semiconductor materials, fast all-electrical control is achieved through electric dipole spin resonance (EDSR). In this work we explore EDSR in an InAs nanowire spin-orbit qubit. We observe signs of harmonic generation where spin flips occur at the resonance condition nhf = gμB B , where f is the applied frequency, B is the magnetic field, g is the g-factor and n is an integer. Near the interdot charge transition we observe harmonics up to n = 8, indicating extreme harmonic generation. At far detuning we only observe the n = 1 resonance. Further, we find odd/even structure in the harmonic response: odd harmonics result in an increase in the leakage current while even harmonics result in its suppression. Finally we observe oscillations in the resonant current as a function of detuning. The striking detuning dependence suggests that the harmonics may be caused by Landau-Zener transitions occurring due to the anti-crossing between the differing charge states. Numerical simulations of the system are qualitatively consistent with this picture. Funded by the Sloan and Packard Foundations, the NSF, and the Army Research Office. M.Z.M. and M.H.D. were funded by Fundação de Amparo à Pesquisa de São Paulo (Fapesp) and INCT-DISSE/CNPq, Brazil.
Giant Enhancement of Second Harmonic Generation at Photonic Band Gap Edges
MA Dong-Li; REN Ming-Liang; DOU Jun-Hong; LI Zhi-Yuan
2010-01-01
@@ Second harmonic generation(SHG)in one-dimensional nonlinear photonic crystals made from periodically alternating ferroelectric and dielectric layers is investigated by means of the transfer matrix method.When tunedat the photonic band gap(PBG)edges,the fundamental wave and second harmonic wave slow down,and the filed enhancement takes place within the nonlinear photonic crystal.The phase mismatching can be compensated for to some extent and the second harmonic process will be enhanced.Numerical results show that the enhancement of SHG in the PBG structure can be up to four orders of magnitude compared with the traditional quasi-phase-matching structure.
Ultra-broadband Photonic Harmonic Mixer Based on Optical Comb Generation
Zhao, Ying; Pang, Xiaodan; Deng, Lei;
2012-01-01
We propose a novel photonic harmonic mixer operating at frequencies up to the millimeter-wave (MMW) band. By combining a broadband fiber-wireless signal with highorder harmonics of a fundamental local oscillator in an optical frequency comb generator, frequency down-conversion can be implemented...... is experimentally demonstrated. Moreover, the error vector magnitude (EVM) performance of a multi-gigabit quadrature phase shift keying (QPSK) signal at 62.5, 82.5 and 102.5GHz carrier frequencies is studied to evaluate the downconversion efficiency. The proposed photonic harmonic mixer can be a candidate...
Roppo, V; Raineri, F; D'Aguanno, G; Trull, J; Halioua, Y; Raj, R; Sagnes, I; Vilaseca, R; Scalora, M
2009-01-01
We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650nm and 433nm, respectively, well above the absorption edge. Phase locking between the pump and the harmonics changes the effective dispersion of the medium and inhibits absorption. Despite hostile conditions the harmonics become localized inside the cavity leading to relatively large conversion efficiencies. Field localization plays a pivotal role and ushers in a new class of semiconductor-based devices in the visible and UV ranges.
Equal-Amplitude Optical Pulse Generation from a Rational Harmonic Mode-Locked Fibre Laser
FENG Xin-Huan; YUAN Shu-Zhong; LI Yao; LIU Yan-Ge; KAI Gui-Yun; DONG Xiao-Yi
2004-01-01
A simple technique for the generation of equal-amplitude high repetition rate pulses from a rational harmonic mode-locked fibre ring laser is demonstrated. The principle is based on the combination of the nonlinear characteristics of the modulator and the effect of rational harmonic mode-locking. The two sources act on each other and the integrated effect eventually leads to the pulse amplitude-equalization. We obtain amplitude-equalized short pulses up to the fifth-order rational harmonic mode-locking with an optimum bias level and modulation depth of the modulator, which demonstrates the efficiency of this method.
Type I and type II second harmonic generation of conically refracted beams
Turpin, Alex; Kalkandjiev, Todor K; Trull, Jose; Cojocaru, Crina; Mompart, Jordi
2014-01-01
Type I and type II second harmonic generation (SHG) of a beam transformed by the conical refraction phenomenon are presented. We show that, for type I, the second harmonic intensity pattern is a light ring with a point of null intensity while, for type II, the light ring possesses two dark regions. Taking into account the different two-photon processes involved in SHG, we have derived analytical expressions for the resulting transverse intensity patterns that are in good agreement with the experimental data. Finally, we have investigated the spatial evolution of the second harmonic signals, showing that they behave as conically refracted beams.
High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum
Mendonça, J. T., E-mail: josetitomend@gmail.com [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil); Vieira, J., E-mail: jorge.vieira@ist.utl.pt [GoLP, IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2015-12-15
We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.
Second harmonic generation in carbon nanotubes induced by transversal electrostatic field.
Trolle, Mads Lund; Pedersen, Thomas Garm
2013-08-14
Carbon nanotubes (CNTs) of armchair and zigzag type contain an inversion centre, and are thus intrinsically unable to generate dipole even-order nonlinearities, such as second harmonic generation (SHG). Breaking the inversion symmetry by application of an external voltage transversal to the CNT axis will, however, induce a second harmonic response. Similarly, additional non-vanishing second harmonic tensor elements will be induced in chiral tubes already displaying an intrinsic response. Many geometries realizing such a setup can be envisaged, e.g., an experimental gate setup or deposition of CNTs on, or integration in, strongly polarized host media, perhaps facilitating a tunable second harmonic response. In this work, we calculate the SHG signal from CNTs under transversally applied electric fields based on a tight-binding model.
Performance optimization of an external enhancement resonator for optical second-harmonic generation
Jurdik, E.; Hohlfeld, J.; van Etteger, A. F.; Toonen, A. J.; Meerts, W. L.; van Kempen, H.; Rasing, Th.
2002-07-01
We study the factors that ultimately limit the performance of an external enhancement resonator for optical second-harmonic generation (SHG). To describe the resonant SHG process we introduce a theoretical model that accounts for the intensity-dependent cavity loss that is due to harmonic generation and that also includes a realistic assumption about the shape and the frequency width of the laser mode. With the help of this model we optimized the performance of a doubling cavity based on a lithium triborate (LBO) crystal. This cavity was used for frequency doubling the output of a single-frequency titanium-doped sapphire laser at 850 nm. We were able to push the total second-harmonic conversion efficiency to 53% (a 1.54-W pump resulted in 820 mW of second-harmonic light), which to our knowledge is the best result ever reported for a LBO-based doubling cavity. , Laser-focused atomic deposition.
Afinogenov, B. I.; Popkova, A. A.; Bessonov, V. O.; Fedyanin, A. A.
2016-03-01
We have studied an influence of Tamm plasmon-polaritons (TPPs) excitation on the nonlinear-optical response of one-dimensional photonic crystal/metal structures. It was shown that in case when the fundamental radiation is in resonance with the TPP, second-harmonic generation in the sample is enhanced over two times of magnitude in comparison with a bare metal film. Using methods of nonlinear transfer matrices it was demonstrated that the third-order nonlinear response of a metal/dielectric heterostructure, when both fundamental and third-harmonic radiation are in resonance with the first- and third-order TPPs respectively, can be enhanced via two mechanisms: fundamental field localization and optical harmonic resonant tunneling. The overall enhancement of the third harmonic generation in that case can exceed three orders of magnitude in comparison with the non-resonant case.
A Rotating-Frame Perspective on High-Harmonic Generation of Circularly Polarized Light
Reich, Daniel M
2016-01-01
We employ a rotating frame of reference to elucidate high-harmonic generation of circularly polarized light by bicircular driving fields. In particular, we show how the experimentally observed circular components of the high-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame. Supported by numerical simulations of the time-dependent Schr\\"{o}dinger equation, we deduce an optimal strategy for maximizing the cutoff in the high-harmonic plateau while keeping the two circular components of the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality to static electric and static magnetic fields in a rotating-frame description. This demonstrates how high-harmonic generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at static field strengths beyond cur...
SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.
YU,L.H.
2003-04-17
Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.
Quasi-phase-matched high harmonic generation in corrugated micrometer-scale waveguides
Husakou, Anton
2016-01-01
The high harmonic generation in periodically corrugated submicrometer waveguides is studied numerically. Plasmonic field enhancement in the vicinity of the corrugations allows to use low pump intensities. Simultaneously, periodic placement of the corrugations leads to quasi-phase-matching and corresponding increase of the high harmonic efficiency. The optimization of waveguide geometry is performed, and the resulting spectra are analyzed by the means of (1+1)D numerical model.
Beam divergence of high-order harmonics generated in the few-optical cycle regime
Altucci, C. [Universita degli Studi della Basilicata, Potenza (Italy). Dipt. die Chimica; Bruzzese, R.; Lisio, C. de; Tosa, V. [Universita degli Studi della Basilicata, Potenza (Italy). Dipt. die Chimica; Univ. di Napoli ' ' Federico II' ' , Napoli (Italy). Dipt. di Scienze Fisiche; Barbiero, P.; Poletto, L.; Tondello, G.; Villoresi, P. [Universita degli Studi della Basilicata, Potenza (Italy). Dipt. die Chimica; Padova Univ. (Italy). Lab. di Elettronica Quantistica; Nisoli, M.; Stagira, S.; Cerullo, G.; Silvestri, S. de; Svelto, O. [Universita degli Studi della Basilicata, Potenza (Italy). Dipt. die Chimica; Politecnico di Milano, Milan (Italy). Dipt. di Chimica Fisica Applicata
2001-07-01
The beam divergence of high-order harmonics generated in Helium by an ultra-short Ti:sapphire laser (7 fs and 30 fs) is experimentally characterized by means of a flat-field, high-resolution spectrometer. The harmonic beam divergence is also analysed as a function of the gas-jet position relative to the laser beam waist. Results, which are partly different from previous measurements performed at longer laser pulse duration, are discussed. (orig.)
Using the self-filtering property of a femtosecond filament to improve second harmonic generation.
Shwa, David; Eisenmann, Shmuel; Marcus, Gilad; Zigler, Arie
2009-04-13
In this paper we demonstrate the use of NIR femtosecond filament for improving the generation of second harmonic using a type I BBO crystal. Using this method the beam propagation factor (M(2)) of the second harmonic was improved significantly; which led to enhancement of the attainable SH intensity by up to two orders of magnitude. This method can be beneficial for applications demanding high intensities, small spot size or long interaction lengths.
Efficient Dual-LBO Second-Harmonic Generation by Using a Polarization Modulation Configuration
毕勇; 孙志培; 李瑞宁; 张瑛; 姚爱云; 林学春; 许祖彦; 王舫
2003-01-01
We analyse the relationship of conversion efficiency with the inter-crystal phase shift by the heuristic theory and propose a novel configuration of two cascaded nonlinear crystals for the second-harmonic generation with the polarization modulation. With this configuration, 70% external doubling efffciency is obtained, which is, to the best of our knowledge, the highest conversion efficiency with LBO crystal external frequency doubling. This configuration provides a simple and effective method to improve the second harmonic conversion efficiency.
Dimitrovski, Darko; Madsen, Lars Bojer; Pedersen, Thomas Garm
2017-01-01
We consider the interaction of gapped graphene in the two-band approximation using an explicit time-dependent approach. In addition to the full high-order harmonic generation (HHG) spectrum, we also obtain the perturbative harmonic response using the time-dependent method at photon energies covering all the significant features in the responses. The transition from the perturbative to the fully nonperturbative regime of HHG at these photon energies is studied in detail.
Extracavity and external cavity second-harmonic generation in a periodically poled silica fibre
Dontsova, E. I.; Kablukov, S. I.; Lobach, I. A.; Dostovalov, A. V.; Babin, S. A.; Gladyshev, A. V.; Dianov, E. M.; Corbary, C.; Ibsen, M.; Kazansky, P. G.
2016-11-01
We have studied second-harmonic generation (SHG) of a cw single-frequency ytterbium-doped fibre laser, using a periodically poled silica fibre as a nonlinear medium for frequency conversion. All-fibre external cavity SHG has been investigated for the first time. A twofold increase in second-harmonic power in a fibre ring cavity has been demonstrated and possibilities of further optimising the fibre scheme have been analysed.
Alippi, A.; Biagioni, A.; Germano, M.; Passeri, D.
2008-06-01
Local probing of nonlinear generation of harmonic vibrations has been done on bone plate samples and the evaluation of the nonlinear term is derived from a limited number of cases of bovine thigh bones, that shows that a low level of nonlinearity is present in bone structures. This is consistent with the assumption that in low level nonlinear samples the distribution of harmonic vibrations matches the corresponding power distribution of the fundamental mode.
Butet, Jérémy; Duboisset, Julien; Bachelier, Guillaume; Russier-Antoine, Isabelle; Benichou, Emmanuel; Jonin, Christian; Brevet, Pierre-François
2010-05-12
We report the optical second harmonic generation from individual 150 nm diameter gold nanoparticles dispersed in gelatin. The quadratic hyperpolarizability of the particles is determined and the input polarization dependence of the second harmonic intensity obtained. These results are found in excellent agreement with ensemble measurements and finite element simulations. These results open up new perspectives for the investigation of the nonlinear optical properties of noble metal nanoparticles.
Ultra-intense high orbital angular momentum harmonic generation in plasmas
Vieira, Jorge; Trines, R.; Alves, E. P.; Mendonca, J. T.; Fonseca, R. A.; Norreys, P.; Bigham, R.; Silva, L. O.
2016-10-01
As an independent degree of freedom, it is in principle possible to manipulate the orbital angular momentum (OAM) independently of any other laser property. The OAM therefore stands in equal foot to any other fundamental property of light, such as its frequency. There are, however, many open questions regarding the ability to control the OAM as an independent degree of freedom. A striking example is high harmonic generation, for which there is no OAM counterpart. Here we investigate a high OAM harmonics technique to generate and amplify high OAM harmonics while preserving the laser frequency. The scheme, based on simulated Raman backscattering, employs a linearly polarised long pump containing more than one OAM level, and a counter-propagating linearly polarised signal beam. The high OAM harmonics result from angular momentum cascading from modes with lower OAM to the modes with higher OAM. The OAM harmonics spectrum can be tailored according to the OAM contents of the pump. We illustrate the scheme with the generation of prime OAM harmonics, an all-optical realisation of the Green-Tao theorem. We support our theoretical findings with 3D particle-in-cell (PIC) simulations using Osiris.
Surface area-dependent second harmonic generation from silver nanorods.
Ngo, Hoang Minh; Luong, Thanh Tuyen; Ledoux-Rak, Isabelle
2016-08-17
The nonlinear optical (NLO) properties of metallic nanoparticles strongly depend on their size and shape. Metallic gold nanorods have already been widely investigated, but other noble metals could also be used for nanorod fabrication towards applications in photonics. Here we report on the synthesis and NLO characterization of silver nanorods (AgNRs) with controllable localized surface plasmon resonance. We have implemented an original, one-step and seedless synthesis method, based on a spontaneous particle growth technique in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Colloidal solutions of AgNRs with various aspect ratios (5.0; 6.3; 7.5; 8.2 and 9.7) have been obtained and characterized using Harmonic light scattering (HLS) at 1064 nm, in order to investigate their quadratic NLO properties. From HLS experiments, we demonstrate that hyperpolarizability (β) values of AgNRs display a strong dependence on their surface area.
Electron trajectory selection for high harmonic generation inside a short hollow fiber.
Igarashi, Hironori; Makida, Ayumu; Sekikawa, Taro
2013-09-09
The 19th harmonic beam divergences from a Ti:sapphire laser generated using a gas jet and 10-mm-long hollow fibers with bore diameters of 300 and 200 μm were investigated. The beam quality factor M(2) of the harmonic beam generated in a 300-μm hollow fiber was found to be better than the gas jet using the phase match including the atomic dipole phase induced by the short trajectory. On the other hand, a 200-μm hollow fiber was found to generate a more divergent beam with a larger M(2) because of the long trajectory. The electron trajectory contributing to high harmonic generation was selected using the phase-matching process inside a short hollow fiber.
Rivard, Maxime; Couture, Charles-André; Miri, Amir K; Laliberté, Mathieu; Bertrand-Grenier, Antony; Mongeau, Luc; Légaré, François
2013-01-01
We report that combining interferometry with Second Harmonic Generation (SHG) microscopy provides valuable information about the relative orientation of noncentrosymmetric structures composing tissues. This is confirmed through the imaging of rat medial gastrocnemius muscle. The inteferometric Second Harmonic Generation (ISHG) images reveal that each side of the myosin filaments composing the A band of the sarcomere generates π phase shifted SHG signal which implies that the myosin proteins at each end of the filaments are oriented in opposite directions. This highlights the bipolar structural organization of the myosin filaments and shows that muscles can be considered as a periodically poled biological structure.
Second-harmonic generation in single-mode integrated waveguides through mode-shape modulation
Chiles, Jeff; Rao, Ashutosh; Malinowski, Marcin; Camacho-González, Guillermo Fernando; Fathpour, Sasan
2016-01-01
A simple and flexible technique for achieving quasi-phase-matching in integrated photonic waveguides without periodic poling is proposed and experimentally demonstrated, referred to as mode-shape-modulation (MSM). It employs a periodic variation of waveguide width to modulate the intensity of the pump wave, effectively suppressing out-of-phase light generation. This technique is applied to the case of second-harmonic generation in thin-film lithium niobate ridge waveguides. MSM waveguides are fabricated and characterized with pulsed-pumping in the near-infrared, showing harmonic generation at a signal wavelength of 784 nm.
Surface plasmon polariton excitation by second harmonic generation in single organic nanofibers
Simesen, Paw; Søndergaard, Thomas; Skovsen, Esben
2015-01-01
Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated...... to the silver film surface....
Kamitani, Atsushi; Saitoh, Ayumu; Ikuno, Soichiro
2004-10-01
The numerical code for simulating the time evolution of the shielding current density in the high-temperature superconductor has been developed on the basis of the element-free Galerkin method. The magnetic flux density generated by the shielding current density is calculated by use of the code and its spectral analysis is performed. The results of computations show that an increase in the amplitude of the applied ac magnetic field will cause the appearance of the third harmonics of the magnetic flux density. Furthermore, it is found that the rapid growth of the third harmonics arises not from the B-dependence of the critical current density but from that of the flow resistivity.
Dependence of high-order-harmonic generation on dipole moment in Si O2 crystals
Yu, Chao; Zhang, Xirui; Jiang, Shicheng; Cao, Xu; Yuan, Guanglu; Wu, Tong; Bai, Lihua; Lu, Ruifeng
2016-07-01
High-order-harmonic generation in α-quartz Si O2 is theoretically investigated under a strong laser field by solving the extended semiconductor Bloch equations. The accurate band structures as well as dipole moments between different bands are obtained from state-of-the-art first-principles calculations. We find that the shapes of k -space-dependent dipole moments play an important role in harmonic generation. The calculated results show that harmonic conversion efficiency is significantly enhanced and the cutoff energy is distinctly increased when the dipole moments change greatly along a valley in the k direction in the solid. Based on that dependence on the dipole moment, we also show that symmetry groups greatly affect the harmonic spectra from the solid materials. Moreover, a two-color synthesized field is used to achieve a supercontinuum harmonic spectrum near the cutoff region, and isolated attosecond pulses can be obtained directly by filtering out the harmonic radiation. We hope the contribution presented in this work provides a useful reference for future studies on laser-crystal interactions.
High-order harmonic generation at high laser intensities beyond the tunnel regime
Pérez-Hernández, J A; Lewenstein, M; Zaïr, A; Roso, L
2014-01-01
We present studies of high-order harmonic generation (HHG) at laser intensities well above saturation. We use driving laser pulses which present a particular electron dynamics in the turn-on stage. Our results predict an increasing on the harmonic yield, after an initial dropping, when the laser intensity is increased. This fact contradicts the general belief of a progressive degradation of the harmonic emission at ultrahigh intensities. We have identified a particular set of trajectories which emerges in the turn-on stage of these singular laser pulses, responsible of the unexpected growth on the harmonic efficiency at this high intensity regime. Our study combines two complementary approaches: classical analysis and full quantum mechanical calculations resulting from the numerical integration of the 3-dimensional time-dependent Schr\\"odinger equation complemented with the time-frequency analysis.
Bancelin, Stéphane; Aimé, Carole; Gusachenko, Ivan; Kowalczuk, Laura; Latour, Gaël; Coradin, Thibaud; Schanne-Klein, Marie-Claire
2014-09-01
The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemet’s membrane of a diabetic rat cornea.
Feng, Li-Qiang; Li, Wen-Liang; Liu, Hang
2017-01-01
Molecular harmonic spectra of {{{H}}}2+ driven by the linearly polarized laser pulses with different polarized angles have been theoretically investigated through solving the two-dimensional time-dependent Schrödinger equation. (i) Below-threshold harmonic spectra show a visible enhanced peak around the 7th harmonic (H7), which produces a red-shift phenomenon as the internuclear distance increased. Theoretical analyses show the red-shift enhanced peak is caused by the laser-induced electron transfer between the ground state and the 1st excited state of {{{H}}}2+. (ii) Due to the two-centre interference phenomenon, the above-threshold harmonic spectra exhibit many maxima and minima. (iii) With the introduction of the polarized angle, the anomalous elliptically polarized harmonics can be found. But, with the introduction of the spatial inhomogeneous effect, not only the ellipticities of the harmonics are equal to a stable value of \\varepsilon ∼ 0.1–0.3, but also the harmonic cutoffs are extended. As a result, four super-bandwidths of 407 eV, 310 eV, 389 eV, and 581 eV can be obtained. Time profiles of the harmonic generations have been shown to explain the harmonic characteristics. Finally, a series of elliptically polarized (\\varepsilon ∼ 0.1–0.3) attosecond X-ray pulses with durations from 18as to 25as can be directly produced through Fourier transformation of the spectral continuum. Supported by National Natural Science Foundation of China under Grant No. 11504151, Doctoral Scientific Research Foundation of Liaoning Province under Grant No. 201501123 and Scientific Research Fund of Liaoning Provincial Education Department under Grant No. L2014242
Optimization of multi-color laser waveform for high-order harmonic generation
Jin, Cheng; Lin, C. D.
2016-09-01
With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).
Pulsed high harmonic generation of light due to pumped Bloch oscillations in noninteracting metals
Freericks, J K; Kemper, A F; Devereaux, T P; 10.1088/0031-8949/2012/T151/014062
2012-01-01
We derive a simple theory for high-order harmonic generation due to pumping a noninteracting metal with a large amplitude oscillating electric field. The model assumes that the radiated light field arises from the acceleration of electrons due to the time-varying current generated by the pump, and also assumes that the system has a constant density of photoexcited carriers, hence it ignores the dipole excitation between bands (which would create carriers in semiconductors). We examine the circumstances under which odd harmonic frequencies would be expected to dominate the spectrum of radiated light, and we also apply the model to real materials like ZnO, for which high-order harmonic generation has already been demonstrated in experiments.
Macroscopic manipulation of high-order-harmonic generation through bound-state coherent control.
Hadas, Itai; Bahabad, Alon
2014-12-19
We propose a paradigm for macroscopic control of high-order harmonic generation by modulating the bound-state population of the medium atoms. A unique result of this scheme is that apart from regular spatial quasi-phase-matching (QPM), also purely temporal QPM of the emitted radiation can be established. Our simulations demonstrate temporal QPM by inducing homogenous Rabi oscillations in the medium and also spatial QPM by creating a grating of population inversion using the process of rapid adiabatic passage. In the simulations a scaled version of high-order harmonic generation is used: a far off-resonance 2.6 μm source generates UV-visible high-order harmonics from alkali-metal-atom vapor, while a resonant near IR source is used to coherently control the medium.
Yuan, Jian-Hui; Zhang, Yan; Mo, Hua; Chen, Ni; Zhang, Zhihai
2015-12-01
The second-harmonic generation susceptibility in semiparabolic quantum wells with applied electric field is investigated theoretically. For the same topic studied by Zhang and Xie [Phys. Rev. B 68 (2003) 235315] [1], some new and reliable results are obtained by us. It is easily observed that the second harmonic generation susceptibility decreases and the blue shift of the resonance is induced with increasing of the frequencies of the confined potential. Moreover, a transition from a two-photon resonance to two single-photon resonances will appear adjusted by the frequencies of the confined potential. Similar results can also be obtained by controlling the applied electric field. Surprisingly, the second harmonic generation susceptibility is weakened in the presence of the electric field, which is in contrast to the conventional case. Finally, the resonant peak and its corresponding resonant energy are also taken into account.
Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal.
Sheng, Yan; Saltiel, Solomon M; Koynov, Kaloian
2009-03-01
Collinear third-harmonic generation at 526.7 nm was realized by the simultaneous phase matching of two second-order processes in a single quadratic crystal: second-harmonic generation (SHG) and sum-frequency mixing (SFM). The measured conversion efficiency was 12%. As a nonlinear medium a LiNbO(3) nonlinear photonic crystal with short-range order was used that allowed simultaneous phase matching by use of discrete reciprocal vector (for the SHG process) and continuous reciprocal vectors (for the SFM process). It was demonstrated that the third harmonic could be generated efficiently in such a crystal even if the intermediate process of SHG was not perfectly phase matched.
Madsen, Christian Bruun; Abu-Samha, Mahmoud; Madsen, Lars Bojer
2010-01-01
We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters...... as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4 and CD4...... and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane....
Suhaimi, Nurul Sheeda; Gavara, Trivikramarao; Nakagawa, Ken'ichi; Hong, Feng Lei; Katsuragawa, Masayuki
2015-01-01
We report the generation of five phase-locked harmonics, f_1: 2403 nm, f_2: 1201 nm, f_3: 801 nm, f_4: 600 nm, and f_5: 480 nm with an exact frequency ratio of 1 : 2 : 3 : 4 : 5 by implementing a divide-by-three optical-frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.
Quadrupole second harmonic generation and sum-frequency generation in ZnO quantum dots
Maikhuri, Deepti; Purohit, S. P., E-mail: sppurohitjiit@gmail.com; Mathur, K. C. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P. 201307 (India)
2015-04-15
The second harmonic generation (SHG) and the sum frequency generation (SFG) processes are investigated in the conduction band states of the singly charged ZnO quantum dot (QD) embedded in the HfO{sub 2}, and the AlN matrices. With two optical fields of frequency ω{sub p} and ω{sub q} incident on the dot, we study the variation with frequency of the second order nonlinear polarization resulting in SHG and SFG, through the electric dipole and the electric quadrupole interactions of the pump fields with the electron in the dot. We obtain enhanced value of the second order nonlinear susceptibility in the dot compared to the bulk. The effective mass approximation with the finite confining barrier is used for obtaining the energy and wavefunctions of the quantized confined states of the electron in the conduction band of the dot. Our results show that both the SHG and SFG processes depend on the dot size, the surrounding matrix and the polarization states of the pump beams.
Enhanced third-harmonic generation in photonic crystals at band-gap pumping
Yurchenko, Stanislav O.; Zaytsev, Kirill I.; Gorbunov, Evgeny A.; Yakovlev, Egor V.; Zotov, Arsen K.; Masalov, Vladimir M.; Emelchenko, Gennadi A.; Gorelik, Vladimir S.
2017-02-01
More than one order enhancement of third-harmonic generation is observed experimentally at band-gap pumping of globular photonic crystals. Due to a lateral modulation of the dielectric permittivity in two- and three-dimensional photonic crystals, sharp peaks of light intensity (light localization) arise in the media at the band-gap pumping. The light localization enhances significantly the nonlinear light conversion, in particular, third-harmonic generation, in the near-surface volume of photonic crystal. The observed way to enhance the nonlinear conversion can be useful for creation of novel compact elements of nonlinear and laser optics.
Zhang, Hui; Zhu, Ning; Mei, Ting; He, Miao; Li, Hao; Chen, Zhenshi
2017-01-01
A novel scheme for near-field optical lithography utilizing a metallic tip illuminated by femtosecond laser pulses with proper polarization has been presented. The strongly enhanced near field at the metallic tip offers a localized excitation source for the third harmonic generation in the nonlinear material. The generated third harmonic via excitation of nonlinear photoresist provides good exposure contrast due to the cubic intensity dependence. The spatial resolution of this novel lithography scheme is shown to be better than that of the conventional lithography technique.
Schaller, R D; Johnson, J C; Saykally, R J
2000-11-01
Third harmonic generation (THG) imaging using a near-field scanning optical microscope (NSOM) is demonstrated for the first time. A femtosecond, tunable near-infrared laser was used to generate both nonresonant and resonantly enhanced third harmonic radiation in human red blood cells. We show that resonantly enhanced THG is a chemically specific bulk probe in NSOM imaging by tuning the excitation source onto and off of resonance with the Soret transition of oxyhemoglobin. Additionally, we provide evidence that tightly focused, nonresonant, far-field THG imaging experiments do not produce contrast that is truly surface specific.
Terahertz-field-induced second harmonic generation through Pockels effect in zinc telluride crystal.
Cornet, Marion; Degert, Jérôme; Abraham, Emmanuel; Freysz, Eric
2014-10-15
We report on the second harmonic generation (SHG) of a near-infrared pulse in a zinc telluride crystal through the Pockels effect induced by an intense terahertz pulse. The temporal and angular behaviors of the SHG have been measured and agree well with theoretical predictions. This phenomenon, so far overlooked, makes it possible to generate second harmonic through cascading of two second-order nonlinear phenomena in the near-infrared and terahertz ranges. We also show how this cascading process can be used to sample terahertz pulses.
Yuan, Jian-Hui; Chen, Ni; Mo, Hua; Zhang, Yan; Zhang, Zhi-Hai
2015-12-01
A detailed investigation of the second harmonic generation in symmetrical and asymmetrical Gaussian potential quantum wells under the influence of applied electric field by using the compact-density-matrix approach and the finite difference method. The results show that the second-harmonic generation susceptibility obtained in two cases can reach the magnitude of 10-4 m/V, which depend dramatically on the applied electric field and the structural parameters. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.
Dispersion-controlled hollow core fiber for phase matched harmonic generation.
Christov, I; Kapteyn, H; Murnane, M
1998-11-09
We describe theoretically the performance of a new design for quasi-phase matched harmonic generation in a gas medium. A hollow core fiber in which thick glass plates are periodically introduced allows good phase control of the fundamental light. The generated x-rays are transmitted throught small holes in the plates. An increase of the harmonic yield of up to three orders of magnitude is predicted as a result of the structure. This esign can be considered as a phase-locked travelling-wave x-ray laser.
Quantum properties of transverse pattern formation in second-harmonic generation
Bache, Morten; Scotto, P.; Zambrini, R.;
2002-01-01
We investigate the spatial quantum noise properties of the one-dimensional transverse pattern formation instability in intracavity second-harmonic generation. The Q representation of a quasi-probability distribution is implemented in terms of nonlinear stochastic Langevin equations. We study...... these equations through extensive numerical simulations and analytically in the linearized limit. Our study, made below and above the threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern formation in second-harmonic generation. Close to the threshold...
High-harmonic generation from plasma mirrors at kilohertz repetition rate
Quéré, Fabien
2011-01-01
International audience; We report the first demonstration of high-harmonic generation from plasma mirrors at a 1 kHz repetition rate. Harmonics up to nineteenth order are generated at peak intensities close to 1018 W=cm2 by focusing 1 mJ, 25 fs laser pulses down to 1:7 μm FWHM spot size without any prior wavefront correction onto a moving target. We minimize target surface motion with respect to the laser focus using online interferometry to ensure reproducible interaction conditions for ever...
Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma
Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; de Nalda, R.; Castillejo, M.
2017-01-01
Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear medium.
Ranjit, Suman; Dvornikov, Alexander; Dobrinskikh, Evgenia; Wang, Xiaoxin; Luo, Yuhuan; Levi, Moshe; Gratton, Enrico
2017-07-01
The phasor approach to auto-fluorescence lifetime imaging was used to identify and characterize a long lifetime species (LLS) (~7.8 ns) in livers of mice fed with a Western diet. The size of the areas containing this LLS species depends on the type of diet and the size distribution shows Western diet has much larger LLS sizes. Combination of third harmonic generation images with FLIM identified the LLS species with fat droplets and the droplet size distribution was estimated. Second harmonic generation microscopy combined with phasor FLIM shows that there is an increase in fibrosis with a Western diet. A new decomposition in three components of the phasor plot shows that a Western diet is correlated with a higher fraction of free NADH, signifying more reducing condition and more glycolytic condition. Multiparametric analysis of phasor distribution shows that from the distribution of phasor points, a Western diet fed versus a low fat diet fed samples of mice livers can be separated. The phasor approach for the analysis of FLIM images of autofluorescence in liver specimens can result in discovery of new fluorescent species and then these new fluorescent species can help assess tissue architecture. Finally integrating FLIM and second and third harmonic analysis provides a measure of the advancement of fibrosis as an effect of diet.
Li, Yuhui; Zhang, Shancai
2004-01-01
The high-gain harmonic generation (HGHG) free-electron laser (FEL) is an important candidate for a fourth-generation light source. Lots of theoretical work has been performed. Recently a further 1D theory about HGHG FEL has been developed. It considers the effects of different parameters for the whole process. An initial program based on this theory has been made. In this paper, a brief comparison of the results from this 1D program and from TDA (3D code) is discussed. It also analyses the parameters for Shanghai deep ultra violate free-electron laser source (SDUV-FEL), including electron beam energy spread, seed laser power, strength of dispersion section etc.
Spatial position scaling on harmonic generation from He atom in bowtie-shaped nanostructure
Liu, Hang; Feng, Liqiang; Li, Wenliang; Li, Yi
2017-09-01
Spatial position scaling on the harmonic generation from He in the bowtie-shaped nanostructure has been theoretically investigated. It shows that (i) due to the surface plasmon polaritons in the nanostructure, the laser intensity can be enhanced and presents the nonhomogeneous effect in space. As a result, the extension of the harmonic cutoff can be achieved when He is away from the gap center of the nanostructure. However, due to the limit of the gap size, there is a maximum harmonic cutoff extension for a given nanostructure. (ii) Due to the asymmetric enhancement of the laser intensity in space, the extended harmonics are mainly from E(t) >0 a.u. and E(t) <0 a.u. when He is injected into the positive and the negative positions, respectively. Moreover, the intensities and the cutoffs of the extended harmonics can be controlled by changing the pulse duration or by adding the second controlling pulse. Finally, by properly superposing the harmonics from the two-color field, four single attosecond pulses with the durations of 30 as can be produced.
Evaluation of the optical axis tilt of Zinc oxide films via noncollinear second harmonic generation
Bovino, Fabio Antonio; Belardini, Alessandro; Sibilia, Concita
2009-01-01
We investigated noncollinear second harmonic generation form Zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and, eventually, its angular tilt, with respect to the surface normal
Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)
1981-05-01
An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.
Du Hong-Chuan; Wang Hui-Qiao; Hu Bi-Tao
2011-01-01
We have investigated high-order harmonic generation from asymmetric molecules. It is found that supercontinuous high harmonics, which are produced from asymmetric molecules by significantly steering the ionization, are broken down when the electric field of the 5-fs driving laser pulse is increased to 0.16 a.u.The high harmonic generation from asymmetric molecules with the presence of a terahertz field is also investigated. This reveals that the terahertz controlled laser pulse significantly increases the energy difference between photons, emitted from the ejected electrons,in the first and second halves of the optical cycle at the centre of the driving laser pulse. In this way, a 200-eV broadbandsupercontinuum can be produced in the plateau, from which a 60-as pulse with a bandwidth of 60 eV can be directly obtained with a minor post-pulse.
Silencing and enhancement of second-harmonic generation in optical gap antennas.
Berthelot, Johann; Bachelier, Guillaume; Song, Mingxia; Rai, Padmnabh; Colas des Francs, Gérard; Dereux, Alain; Bouhelier, Alexandre
2012-05-07
Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a simple approach to restore and amplify the second-harmonic signal by changing the manner in which electrically-connected optical antennas are interacting in the charge-transfer plasmon regime. Our observations provide critical design rules for realizing optimal structures that are essential for a broad variety of nonlinear surface-enhanced characterizations and for realizing the next generation of electrically-driven optical antennas.
Second-harmonic generation in mixed stilbazium salt/arachidic acid Langmuir-Blodgett films
Liu, Liying; Zheng, Jiabiao; Wang, Wencheng; Zhang, Zhiming; Tao, Fenggang; Xu, Linxiao; Hu, Jiacong
1992-10-01
A stilbazium salt was synthesized and its second-order molecular polarizability was deduced to be 1.2×10 -27 esu. Measurements of second-harmonic generation and small-angle X-ray diffraction on Langmuir-Blodgett films of the stilbazium salt/arachide acid mixtures showed that the mixed compounds with molar ratios of 1:2 and 1:5 could form multilayers with large second- order optical nonlinearity. Second harmonic generation study on the alternate multilayers of stilbazium salt/arachide acid and arachidic acid showed that the second-harmonic signals were increasing monotonously up to 80 bilayers, but the increment was lower than the value predicted theoretically by the quadratic law. Possible reasons are discussed.
Third harmonic generation of shear horizontal guided waves propagation in plate-like structures
Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)
2016-04-15
The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.
Multipass relativistic high-order-harmonic generation for intense attosecond pulses
Edwards, Matthew R.; Mikhailova, Julia M.
2016-02-01
We demonstrate that the total reflected field produced by the interaction of a moderately relativistic laser with dense plasma is itself an efficient driver of high-order-harmonic generation. A system of two or more successive interactions of an incident laser beam on solid targets may therefore be an experimentally realizable method of optimizing conversion of laser energy to high-order harmonics. Particle-in-cell simulations suggest that attosecond pulse intensity may be increased by up to four orders of magnitude in a multipass system, with decreased duration of the attosecond pulse train. We discuss high-order-harmonic wave-form engineering for enhanced attosecond pulse generation with an electron trajectory model, present the behavior of multipass systems over a range of parameters, and offer possible routes towards experimental implementation of a two-pass system.
Effect of localized microstructural evolution on higher harmonic generation of guided wave modes
Choi, Gloria; Liu, Yang; Yao, Xiaochu; Lissenden, Cliff J.
2015-03-01
Higher harmonic generation of ultrasonic waves has the potential to be used to detect precursors to macroscale damage of phenomenon like fatigue due to microstructural evolution contributing to nonlinear material behavior. Aluminum plates having various plastic zone sizes were plastically deformed to different levels. The fundamental shear horizontal mode was then generated in the plate samples via a magnetostrictive transducer. After propagating through the plastic zone the primary wave mode (SH0) and its third harmonic (sh0) were received by a second transducer. Results of a parallel numerical study using the S1-s2 Lamb mode pair, where sensitivity to changes in third order elastic constants were investigated, are described within the context of the experimental results. Specimens used within both studies are geometrically similar and have double edge notches for dog bone samples that introduce localized plastic deformation. Through both studies, the size of the plastic zone with respect to the propagation distance and damage intensity influence the higher harmonics.
Buth, Christian; Ullrich, Joachim; Keitel, Christoph H; Hatsagortsyan, Karen Z
2013-01-01
High-order harmonic generation (HHG) in simultaneous intense near-infrared (NIR) laser light and brilliant x rays above an inner-shell absorption edge is examined. A tightly bound inner-shell electron is transferred into the continuum. Then, NIR light takes over and drives the liberated electron through the continuum until it eventually returns to the cation leading in some cases to recombination and emission of a high-harmonic photon that is upshifted by the x-ray photon energy. We develop a theory of this scenario and apply it to 1s electrons of neon atoms. The boosted high-harmonic light is used to generate a single attosecond pulse in the kiloelectronvolt regime. Prospects for nonlinear x-ray physics and HHG-based spectroscopy involving core orbitals are discussed.
High-order harmonic generation and multi-photon ionization of Na2 in laser fields
Zhang Yan-Ping; Zhang Feng-Shou; Meng Ke-Lai; Xiao Guo-Qing
2007-01-01
In this paper high-order harmonic generation (HHG) spectra and the ionization probabilities of various charge states of small cluster Na2 in the multiphoton regimes are calculated by using time-dependent local density approximation (TDLDA) for one-colour (1064 nm) and two-colour (1064 nm and 532 nm) ultrashort (25 fs) laser pulses. HHG spectra of Na2 have not the large extent of plateaus due to pronounced collective effects of electron dynamics. In addition, the two-colour laser field can result in the breaking of the symmetry and generation of the even order harmonic such as the second order harmonic. The results of ionization probabilities show that a two-colour laser field can increase the ionization probability of higher charge state.
Analysis of Second-Harmonic Generation from CuttbPc LB Film/Metal Interface
程晓曼; 姚素薇; 李成全; 间中孝彰; 岩本光正
2004-01-01
Second-harmonic generation signals from a CuttbPc LB film deposited on metal (Al or Au)-glass substrates were investigated. It was observed that there were two second-harmonic peaks at the wavelength of 1060 and 1250nm in the CuttbPc/A1 film, but only one peak at 1050nm in the CuttbPc/Au film. Meanwhile the surface electric potentials (SEP) at the interfaces of LB film/metals were also measured using a Kelvin probe. The SEP in the CuttbPc/Al decreases and eventually approaches a saturated value of -1.0 V as the film thickness increases,while the SEP in the CuttbPc/Au is nearly zero. Based on the experimental results and theoretical analysis, it was considered that the space-charge-induced electric field makes a main contribution to the second-harmonic generation at 1250nm in the CuttbPc/Al film.
Singh, Navpreet; Gupta, Naveen; Singh, Arvinder
2016-12-01
This paper investigates second harmonic generation (SHG) of an intense Cosh-Gaussian (ChG) laser beam propagating through a preformed underdense collisional plasma with nonlinear absorption. Nonuniform heating of plasma electrons takes place due to the nonuniform irradiance of intensity along the wavefront of laser beam. This nonuniform heating of plasma leads to the self-focusing of the laser beam and thus produces strong density gradients in the transverse direction. The density gradients so generated excite an electron plasma wave (EPW) at pump frequency that interacts with the pump beam to produce its second harmonics. To envision the propagation dynamics of the ChG laser beam, moment theory in Wentzel-Kramers-Brillouin (W.K.B) approximation has been invoked. The effects of nonlinear absorption on self-focusing of the laser beam as well as on the conversion efficiency of its second harmonics have been theoretically investigated.
Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure
E. Hemsing
2017-06-01
Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.
Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting
2015-08-01
Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P 0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.
Farrar, Matthew J.; Wise, Frank W.; Fetcho, Joseph R.; Schaffer, Chris B.
2011-01-01
Loss of myelin in the central nervous system (CNS) leads to debilitating neurological deficits. High-resolution optical imaging of myelin in the CNS of animal models is limited by a lack of in vivo myelin labeling strategies. We demonstrated that third harmonic generation (THG) microscopy—a coherent, nonlinear, dye-free imaging modality—provides micrometer resolution imaging of myelin in the mouse CNS. In fixed tissue, we found that THG signals arose from white matter tracts and were colocalized with two-photon excited fluorescence (2PEF) from a myelin-specific dye. In vivo, we used simultaneous THG and 2PEF imaging of the mouse spinal cord to resolve myelin sheaths surrounding individual fluorescently-labeled axons, and followed myelin disruption after spinal cord injury. Finally, we suggest optical mechanisms that underlie the myelin specificity of THG. These results establish THG microscopy as an ideal tool for the study of myelin loss and recovery. PMID:21354410
Tan, Wai Jin; Yan, Jie; Xu, Shuoyu; Thike, Aye Aye; Bay, Boon Huat; Yu, Hanry; Tan, Min-Han; Tan, Puay Hoon
2015-12-01
Breast fibroepithelial lesions, including fibroadenomas and phyllodes tumours, are commonly encountered in clinical practice. As histological differences between these two related entities may be subtle, resulting in a challenging differential diagnosis, pathological techniques to assist the differential diagnosis of these two entities are of high interest. An accurate diagnosis at biopsy is important given corresponding implications for clinical decision-making including surgical extent and monitoring. Second harmonic generation (SHG) microscopy is a recently developed optical imaging technique capable of robust, powerful and unbiased label-free direct detection of collagen fibril structure in tissue without the use of antibodies. We constructed tissue microarrays emulating limited materials on biopsy to investigate quantitative collagen signal in fibroepithelial lesions using SHG microscopy. Archived formalin-fixed paraffin-embedded materials of 47 fibroepithelial lesions (14 fibroadenomas and 33 phyllodes tumours) were evaluated. Higher collagen signal on SHG microscopy was observed in fibroadenomas than phyllodes tumours on SHG imaging (pmicroscopy for fibroadenoma classification was 71.4% and 84.4%, respectively. To corroborate these findings, we performed immunohistochemistry on tissue array sections using collagen I and III primary antibodies. Both collagen I and III immunohistochemical expressions were also significantly higher in fibroadenomas than in phyllodes tumours (pmicroscopy is a novel imaging approach that can aid the differential diagnosis of fibroepithelial lesions.
Green bright squeezed light from a cw periodically poled KTP second harmonic generator
Andersen, Ulrik Lund; Buchhave, Preben
2002-01-01
We present the experimental observation of bright amplitude squeezed light from a singly resonant second harmonic generator (SHG) based on a periodically poled potassium titanyl phosphate (KTP) crystal. Contrary to conventional SHG, the interacting waves in this device couple efficiently using...
Second harmonic generation microscopy reveals hidden polar organization in fluoride doped MIL-53(Fe)
Markey, K.; Putzeys, T.; Horcajada, P.; Devic, T.; Guillou, N.; Wübbenhorst, M.; Van Cleuvenbergen, S.; Verbiest, T.; De Vos, D.E.; Van der Veen, M.A.
2016-01-01
Polar metal–organic frameworks have potential applications as functional non-linear optical, piezoelectric, pyroelectric and ferroelectric materials. Using second harmonic generation microscopy we found that fluoride doping of the microporous iron(III) terephthalate MOF MIL-53(Fe) induces a polar or
Second-Harmonic Generation Scanning Microscopy on Domains in Al Surfaces
Pedersen, Kjeld; Bozhevolnyi, Sergey I.
1999-01-01
Scanning optical second-harmonic generation microscopy has been used to investigate domains in the surface of polycrystaline Al. Strong contrast among the crystalline grains is obtained due to variations in their crystallographic orientations and thus also nonlinear response. The origin of the co...
Dmitriev, VG; Yur'ev, YV
1999-01-01
The question of the quasi-phase-matching bandwidth for second harmonic generation in crystals with a regular domain structure is considered in terms of the approximation of a constant field of the fundamental-frequency radiation and in the nonlinear conversion regime.
Cascaded half-harmonic generation of femtosecond frequency combs in mid-IR
Marandi, Alireza; Jankowski, Marc; Byer, Robert L
2015-01-01
For the growing demand of frequency combs in mid-infrared (mid-IR), known as the "molecular fingerprint" region of the spectrum [1], down conversion of near-IR frequency combs through half- harmonic generation offers numerous benefits including high conversion efficiency and intrinsic phase and frequency locking to the near-IR pump [2]. Hence cascaded half-harmonic generation promises a simple path towards extending the wavelength coverage of stable frequency combs. Here, we report a two-octave down-conversion of a frequency comb around 1 {\\mu}m through cascaded half-harmonic generation with ~64% efficiency in the first stage, and ~18% in the second stage. We obtain broadband intrinsically-frequency-locked frequency combs with ~50-fs pulses at ~2 {\\mu}m and ~110-fs pulses at ~4 {\\mu}m. These results indicate the effectiveness of half-harmonic generation as a universal tool for efficient phase- and frequency-locked down-conversion, which can be beneficial for numerous applications requiring long-wavelength coh...
Blom, F.C.; Driessen, A.; Hoekstra, Hugo; van Schoot, J.B.P.; van Schoot, Jan B.P.; Popma, T.J.A.
1999-01-01
In the long trajectory from the synthesis of organic nonlinear optical materials to the completed all-optical device it is highly desirable to be able to concentrate already in an early state on only a few promising materials. Third harmonic generation (THG) is a very convenient method as it allows
Plasmonic enhancement of High Harmonic Generation revisited: Predominance of Atomic Line Emission
Ropers C.
2013-03-01
Full Text Available We demonstrate nanostructure-enhanced extreme ultraviolet fluorescence from noble gases driven by low-energy, few-cycle light pulses. Despite sufficient local intensities, plasmon-enhanced high harmonic generation is not observed, which follows from the small, nanometer-size coherent source volume.
Three-dimensional second-harmonic generation imaging of fibrillar collagen in biological tissues.
Xie, Jiansong; Ferbas, John; Juan, Gloria
2012-07-01
Multiphoton-induced second-harmonic generation (SHG) has developed into a very powerful approach for in depth visualization of some biological structures with high specificity. In this unit, we describe the basic principles of three-dimensional SHG microscopy. In addition, we illustrate how SHG imaging can be utilized to assess collagen fibrils in biological tissues. Some technical considerations are also addressed.
Real-time observation of interfering crystal electrons in high-harmonic generation.
Hohenleutner, M; Langer, F; Schubert, O; Knorr, M; Huttner, U; Koch, S W; Kira, M; Huber, R
2015-07-30
Acceleration and collision of particles has been a key strategy for exploring the texture of matter. Strong light waves can control and recollide electronic wavepackets, generating high-harmonic radiation that encodes the structure and dynamics of atoms and molecules and lays the foundations of attosecond science. The recent discovery of high-harmonic generation in bulk solids combines the idea of ultrafast acceleration with complex condensed matter systems, and provides hope for compact solid-state attosecond sources and electronics at optical frequencies. Yet the underlying quantum motion has not so far been observable in real time. Here we study high-harmonic generation in a bulk solid directly in the time domain, and reveal a new kind of strong-field excitation in the crystal. Unlike established atomic sources, our solid emits high-harmonic radiation as a sequence of subcycle bursts that coincide temporally with the field crests of one polarity of the driving terahertz waveform. We show that these features are characteristic of a non-perturbative quantum interference process that involves electrons from multiple valence bands. These results identify key mechanisms for future solid-state attosecond sources and next-generation light-wave electronics. The new quantum interference process justifies the hope for all-optical band-structure reconstruction and lays the foundation for possible quantum logic operations at optical clock rates.
Phase transition of lipid-like monolayer characterized by second harmonic generation
于安池; 常青; 赵新生; 周晴中; 李东; 黄岩谊; 程天蓉; 黄春辉
1999-01-01
Phase transition of a lipid-like hemicyanine compound characterized by second harmonic generation is studied carefully. The phase transition is assigned as the first order transition between solid state and liquid state. The transition temperature increases with an increase in the surface molecular concentration. A monolayer structure parameter a which is very sensitive to the phase transition is introduced.
In vivo optical virtual biopsy of human oral cavity with harmonic generation microscopy
Tsai, M.-R.; Chen, S.-Y.; Shieh, D.-B.; Lou, P.-J.; Sun, C.-K.
2010-02-01
Oral cancer ranked number four in both cancer incident and mortality in Taiwanese male population. Early disease diagnosis and staging is essential for its clinical success. However, most patients were diagnosed in their late disease stage as ideal prescreening procedures are yet to be developed especially when dealing with a large surface of precancerous lesions. Therefore, how to detect and confirm the diagnosis of these early stage lesions are of significant clinical value. Harmonic generation process naturally occurred in biological molecules and requires no energy deposition to the target molecule. Thus harmonic generation microscopy (HGM) could potentially serve as a noninvasive tool for screening of human oral mucosal diseases. The in vivo optical biopsy of human oral cavity with HGM could be achieved with high spatial resolution to resolve dynamic physiological process in the oral mucosal tissue with equal or superior quality but devoid of complicated physical biopsy procedures. The second harmonic generation (SHG) provide significant image contrast for biomolecules with repetitive structures such as the collagen fibers in the lamina propria and the mitotic spindles in dividing cells. The cell morphology in the epithelial layer, blood vessels and blood cells flow through the capillaries can be revealed by third harmonic generation (THG) signals. Tissue transparent technology was used to increase the optical penetration of the tissue. In conclusion, this report demonstrates the first in vivo optical virtual biopsy of human oral mucosa using HGM and revealed a promising future for its clinical application for noninvasive in vivo diseases diagnosis.
Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek
2012-01-01
Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...
Second-Harmonic Generation and Shielding Effects on Alkali Clusters on Ultrathin Organic Films
Balzer, Frank; Rubahn, Horst-Günter
2001-01-01
with the alkali metal, thus demonstrating the sensitivity of second-harmonic generation to morphological changes in these complex systems. Simultaneously performed extinction and scanning force microscopy measurements under ambient air conditions allow us to obtain independent information on the surface coverage...
Second-Harmonic Generation Scanning Microscopy on Domains in Al Surfaces
Pedersen, Kjeld; Bozhevolnyi, Sergey I.
1999-01-01
Scanning optical second-harmonic generation microscopy has been used to investigate domains in the surface of polycrystaline Al. Strong contrast among the crystalline grains is obtained due to variations in their crystallographic orientations and thus also nonlinear response. The origin of the co...
Nonsequential double-recombination high-order-harmonic generation in molecularlike systems
Hansen, Kenneth Christian Klochmann; Madsen, Lars Bojer
2017-01-01
We present a study of nonsequential double-recombination (NSDR) high-harmonic generation (HHG) in a molecularlike system. We have calculated the HHG spectrum for a wide range of internuclear distances, and using a Coulomb-corrected three-step model we are able to analyze and predict the observed...
Non-Sequential Double Recombination High Harmonic Generation in Molecular-like Systems
Hansen, Kenneth Christian Klochmann; Madsen, Lars Bojer
Non-sequential double recombination (NSDR) high harmonic generation (HHG) is a strongly correlated two-electron HHG process where two electrons combine their potential and kinetic energy into emitting a single photon. We have studied this process in a molecular-like system and found that the two...
Blom, Freek C.; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Schoot, van Jan B.P.; Popma, Th.J.A.
1999-01-01
In the long trajectory from the synthesis of organic nonlinear optical materials to the completed all-optical device it is highly desirable to be able to concentrate already in an early state on only a few promising materials. Third harmonic generation (THG) is a very convenient method as it allows
Excitons in C-60 studied by temperature-dependent optical second-harmonic generation
Janner, A.M; Eder, R; Koopmans, B; Jonkman, H.T.; Sawatzky, G.A
1995-01-01
The electric-dipole-forbidden T-1(1g) excitonic state of solid C-60 at hw=1.81 eV can be probed with a second-harmonic generation (SHG) experiment. We show that the SHG line shape depends strongly on the degree of rotational order. We observe a splitting into two peaks below the rotational ordering
A Microscopic Model for the Second-Harmonic Generation from C60
Koopmans, Bert; Janner, Anna-Maria; Guardini, Roberta; Jonkman, Harry T.; Sawatzky, George A.; Woude, Folkert van der
1994-01-01
We discuss the microscopic origin of the Second-Harmonic Generation (SHG) resonance at ħω=1.81 eV, based on spectroscopic and thickness dependent SHG measurements on C60 thin films. We assign the three-level diagram responsible for the observed SHG resonance, and show it to be of magnetic-dipole-ind
A MICROSCOPIC MODEL FOR THE 2ND-HARMONIC GENERATION FROM C-60
KOOPMANS, B; JANNER, AM; GUARDINI, R; JONKMAN, HT; SAWATZKY, GA; VANDERWOUDE, F
1994-01-01
We discuss the microscopic origin of the Second-Harmonic Generation (SHG) resonance at hBAR omega=1.81 eV, based on spectroscopic and thickness dependent SHG measurements on C-60 thin films. We assign the three-level diagram responsible for the observed SHG resonance, and show it to be of magnetic-d
Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory
王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman
2001-01-01
From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.
A novel harmonic control approach of distributed generation converters in a weak microgrid
Ding, Guangqian; Gao, Feng; Tang, Yi;
2014-01-01
This paper proposes a novel approach to compensate the voltage at the point of common coupling (PCC) and the grid line current harmonics through a distributed generation (DG) interfacing converter in a weak microgrid. In the proposed approach, the PCC voltage is indirectly derived from the measured...
Measurement of the angular distributions of high-order harmonic generations from aligned CO{sub 2}
Lu, H; Zhao, S T; Zhang, Z X; Liu, P; Zeng, Z N; Li, R X; Xu, Z Z, E-mail: peng@siom.ac.cn, E-mail: ruxinli@mail.shcnc.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, No. 390, Qinghe Road, Jiading District, Shanghai 201800 (China)
2011-02-01
In this study, the angular distributions of harmonics emission from aligned CO{sub 2} are explored experimentally and theoretically, and the validity of Strong Field Approximation (SFA) model in the molecular high harmonic generation is therefore studied. The study shows that for describing the angle distribution of high harmonic generation from molecules, SFA is roughly consistent with the qualitative analysis, while the quantitative analysis is different.
Second harmonic generation in anisotropic Langmuir-Blodgett films of N-docosyl-4-nitroaniline
Geisler, T.; Rosenkilde, S.; Ramanujam, P.S.
1992-01-01
structure. Both of these observations are not common for Y-type LB films and the usual assumption of C(infinity nu) symmetry is therefore not valid. The results make us suggest that these LB films possess C(s) and C2-nu symmetry for mono- and multilayers, respectively. Theoretical expressions......Langmuir-Blodgett (LB) films of N-docosyl-4-nitroaniline have been made and their nonlinear optical properties studied by second harmonic generation (SHG) measurements. A significant enhancement of the intensity of the second harmonic of the 1.064-mu-m YAG was observed when a two layer Y-type film...
Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber.
Cheng, Tonglei; Gao, Weiqing; Kawashima, Hiroyasu; Deng, Dinghuan; Liao, Meisong; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake
2014-04-01
When a chalcogenide-tellurite hybrid optical fiber with a high refractive index difference Δn=0.24 is pumped by an optical parametric oscillator with a pump wavelength from 1700 to 3000 nm, widely tunable second-harmonic generation (SHG) from 850 to 1502 nm is obtained. The observation of SHG is primarily due to the surface nonlinearity polarization at the core-cladding interface and the second-harmonic signal remains stable at the maximal level throughout the laser pulse irradiation.
Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate
Stivala, Salvatore; Pasquazi, Alessia; Oliveri, Roberto L; Morandotti, Roberto; Assanto, Gaetano; 10.1364/OL.35.000363
2012-01-01
We observe second harmonic generation via random quasi-phase-matching in a 2.0 \\mu m periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component.
High order harmonic generation in noble gases using plasmonic field enhancement
Ciappina, M F; Lewenstein, M
2012-01-01
We present theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. We demonstrate that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. Our models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations.
Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film
Cai, Lutong; Wang, Yiwen; Hu, Hui
2017-03-01
Second harmonic wave was efficiently generated in proton exchanged lithium niobate thin film channel waveguides. Modal dispersion phase matching was achieved between two guided modes at pump and second-harmonic wavelengths with the same polarization, enabling using the largest second-order nonlinear component d33. The χ(2) profile in the lithium niobate thin film was reconfigured by proton exchange, leading to significantly enhanced modal overlap integral between the interacting modes. Normalized conversion efficiency up to 48% W-1 cm-2 was achieved in experiments.
Harmonic generation in ZnO nanocrystalline laser deposited thin films
Narayanan, V.; Thareja, R. K.
2006-04-01
ZnO plasma produced by third harmonic 355 nm of Nd:YAG laser at various ambient pressures of oxygen was used for depositing quality nanocrystalline ZnO thin films. Time and space resolved optical emission spectroscopy is used to correlate the plasma properties with that of deposited thin films. The deposited films showed particle size of 8 and 84 nm at ambient oxygen pressure of 100 and 900 mTorr, respectively. Third harmonic generation observed in ZnO thin films deposited under 100 mTorr of ambient oxygen is reported.
Enhancement of harmonics generation in hysteretic elastic media induced by conditioning
Mechri, C.; Scalerandi, M.; Bentahar, M.
2017-04-01
The physical origin of harmonics generation in non classical (hysteretic) elastic media and the mechanisms of energy transfer among harmonics are still not completely understood. Furthermore the well known conditioning effect observed in such materials is known to have a significant influence on the elastic response of consolidated granular media and damaged composites and metals. Here, we show that the elastic non linearity of samples belonging to these two categories increases after having been excited with a relatively low amplitude stress. The observed behaviours could be described by activation features intrinsically present in phenomenological multistate models proposed in the literature.
Variable Structure Control of DFIG for Wind Power Generation and Harmonic Current Mitigation
BELMADANI, B.
2010-11-01
Full Text Available This paper focuses on wind energy conversion system (WECS analysis and control for power generation along with problems related to the mitigation of harmonic pollution in the grid using a variable-speed structure control of the doubly fed induction generator (DFIG. A control approach based on the so-called sliding mode control (SMC that is both efficient and suitable is used for power generation control and harmonic-current compensation. The WECS then behaves as an active power filter (APF. The method aims at improving the overall efficiency, dynamic performance and robustness of the wind power generation system. Simulation results obtained on a 20-kW, 380-V, 50-Hz DFIG confirm the effectiveness of the proposed approach.
Ahmadi, Hamed; Sabzyan, Hassan; Niknam, Ali Reza; Vafaee, Mohsen
2014-01-01
High-order harmonic generation is investigated for H$_2^+$ and D$_2^+$ with and without Born-Oppenheimer approximation by numerical solution of full dimensional electronic time-dependent Schr\\"{o}dinger equation under 4-cycle intense laser pulses of 800 nm wavelength and $I$=4, 5, 7, 10 $\\times 10^{14}$ W$/$cm$^2$ intensities. For most harmonic orders, the intensity obtained for D$_2^+$ is higher than that for H$_2^+$, and the yield difference increases as the harmonic order increases. Only at some low harmonic orders, H$_2^+$ generates more intense harmonics compared to D$_2^+$. The results show that nuclear motion, ionization probability and system dimensionality must be simultaneously taken into account to properly explain the isotopic effects on high-order harmonic generation and to justify experimental observations.
High throughput second harmonic imaging for label-free biological applications
Macias Romero, Carlos
2014-01-01
Second harmonic generation (SHG) is inherently sensitive to the absence of spatial centrosymmetry, which can render it intrinsically sensitive to interfacial processes, chemical changes and electrochemical responses. Here, we seek to improve the imaging throughput of SHG microscopy by using a wide-field imaging scheme in combination with a medium-range repetition rate amplified near infrared femtosecond laser source and gated detection. The imaging throughput of this configuration is tested by measuring the optical image contrast for different image acquisition times of BaTiO3 nanoparticles in two different wide-field setups and one commercial point-scanning configuration. We find that the second harmonic imaging throughput is improved by 2-3 orders of magnitude compared to point-scan imaging. Capitalizing on this result, we perform low fluence imaging of (parts of) living mammalian neurons in culture.
High-order harmonic generation in polyatomic molecules induced by a bicircular laser field
Odžak, Senad; Milošević, Dejan B
2016-01-01
High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency $r\\omega$ and $s\\omega$ ($r$ and $s$ are integers), is investigated for a polyatomic molecule. This field possesses dynamical symmetry, which can be adjusted to the symmetry of the molecular Hamiltonian and used to investigate the molecular symmetry. For polyatomic molecules having the $C_{r+s}$ symmetry only the harmonics $n=q(r+s)\\pm r$, $q=1,2,\\ldots$, are emitted having the ellipticity $\\varepsilon_n=\\pm 1$. We illustrate this using the example of the planar molecules BH$_3$ and BF$_3$, which obey the $C_3$ symmetry. We show that for the BF$_3$ molecule, similarly to atoms with a $p$ ground state, there is a strong asymmetry in the emission of high harmonics with opposite helicities. This asymmetry depends on the molecular orientation.
High-order harmonic generation in polyatomic molecules induced by a bicircular laser field
Odžak, S.; Hasović, E.; Milošević, D. B.
2016-09-01
High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency r ω and s ω (r and s are integers), is investigated for a polyatomic molecule. This field possesses dynamical symmetry, which can be adjusted to the symmetry of the molecular Hamiltonian and used to investigate the molecular symmetry. For polyatomic molecules having the Cr +s symmetry, only the harmonics n =q (r +s )±r ,q =1 ,2 ,..., are emitted having the ellipticity ɛn=±1 . We illustrate this using the example of the planar molecules BH3 and BF3, which obey the C3 symmetry. We show that for the BF3 molecule, similarly to atoms with a p ground state, there is a strong asymmetry in the emission of high harmonics with opposite helicities. This asymmetry depends on the molecular orientation.
Design, tests and results of a second harmonic filter for the ICRH generator of JET
Vervier, M. E-mail: michel.vervier@fusion.rma.ac.be; Durodie, F.; Messiaen, A.; Dumortier, P
2003-09-01
A resistive harmonic filter has been developed to damp the harmonic signals generated by the ICRH power amplifier for the JET ICRH system. This filter has to produce negligible reflection at the fundamental frequency (VSWR<1.1 on a matched load) and has to absorb more than 64% of the second harmonic signal with total reflection at any phase. The filter has been first tested at low power in the full operating frequency range (23-57 MHz) showing that its electrical characteristics correspond to the modelling and fulfil the requested specifications. Tests at high power have already been successfully done on TEXTOR at 2 MW level for pulses exceeding 10 s and will start on JET.
Probe of Multi-electron Dynamics in Xenon by Caustics in High Order Harmonic Generation
Faccialà, Davide; Bruner, Barry D; Ciriolo, Anna G; De Silvestri, Sandro; Devetta, Michele; Negro, Matteo; Soifer, Hadas; Stagira, Salvatore; Dudovich, Nirit; Vozzi, Caterina
2016-01-01
We investigated the giant resonance in Xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a non-perturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring sub-cycles resulting in the appearance of spectral caustics at two distinct cut-off energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this paper we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in Xenon. The collective excitations of the giant dipole resonance in Xenon combined with the spectral manipulation associated with the two color driving field allow to see features that are normally not accessible and to obtain a quantitative good agreement between the experimental results and the theoretical predictions.
Quantum-orbit analysis of high-order harmonic generation by resonant plasmon field enhancement
Shaaran, T; Lewenstein, M
2012-01-01
We perform a detailed analysis of high-order harmonic generation (HHG) in atoms within the strong field approximation (SFA) by considering spatially inhomogeneous monochromatic laser fields. We investigate how the individual pairs of quantum orbits contribute to the harmonic spectra. We show that in the case of inhomogeneous fields, the electron tunnels with two different canonical momenta. One of them leads to a higher cutoff and the other one develops a lower cutoff. Furthermore, we demonstrate that the quantum orbits have a very different behavior in comparison to the homogeneous field. We also conclude that in the case of the inhomogeneous fields, both odd and even harmonics are present in the HHG spectra. Within our model, we show that the HHG cutoff extends far beyond the semiclassical cutoff as a function of inhomogeneity strength. Our findings are in good agreement both with quantum mechanical and classical models.
Tailoring high-order harmonic generation with nonhomogeneous fields and electron confinement
Ciappina, M F; Shaaran, T; Biegert, J; Quidant, R; Lewenstein, M
2012-01-01
We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse. We show that both the inhomogeneities of the local electric field and the confinement of the electron motion play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In order to understand and characterize this feature, we combine the numerical solution of the time dependent Schroedinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and to explain the extended harmonic spectra. Our findings have the potential to boost up the utilization of HHG as coherent extreme ultraviolet (XUV) sources.
Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures.
Ciappina, M F; Aćimović, Srdjan S; Shaaran, T; Biegert, J; Quidant, R; Lewenstein, M
2012-11-19
We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse of long wavelength. We demonstrate that both the confinement of the electron motion and the inhomogeneous character of the laser electric field play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In particular, in bow-tie nanostructures with small gaps, electron trajectories with large excursion amplitudes experience significant confinement and their contribution is essentially suppressed. In order to understand and characterize this feature, we combine the numerical solution of the time-dependent Schrödinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and classical tools to explain the extended harmonic spectra. The spatial inhomogeneity of the laser electric field modifies substantially the electron trajectories and contributes also to cutoff increase.
Carrier-wave Rabi-flopping signatures in high-order harmonic generation for alkali atoms.
Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F
2015-04-10
We present a theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2π and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.
Carrier-wave Rabi flopping signatures in high-order harmonic generation for alkali atoms
Ciappina, M F; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F
2015-01-01
We present the first theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2$\\pi$ and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These new characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.
Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation
Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.
2016-08-01
We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.
Opportunities for chiral discrimination using high harmonic generation in tailored laser fields
Smirnova, Olga; Patchkovskii, Serguei
2015-01-01
Chiral discrimination with high harmonic generation (cHHG method) has been introduced in the recent work by R. Cireasa et al ( Nat. Phys. 11, 654 - 658, 2015). In its original implementation, the cHHG method works by detecting high harmonic emission from randomly oriented ensemble of chiral molecules driven by elliptically polarized field, as a function of ellipticity. Here we discuss future perspectives in the development of this novel method, the ways of increasing chiral dichroism using tailored laser pulses, new detection schemes involving high harmonic phase measurements, and concentration-independent approaches. Using the example of the epoxypropane molecule C$_3$H$_6$O (also known as 1,2-propylene oxide), we show theoretically that application of two-color counter-rotating elliptically polarized laser fields yields an order of magnitude enhancement of chiral dichroism compared to single color elliptical fields. We also describe how one can introduce a new functionality to cHHG: concentration-independen...
X-ray FEL based on harmonics generation and electron beam outcoupling
Litvinenko, V.N.; Burnham, B. [Duke Univ., Durham, NC (United States)
1995-12-31
Electron beam outcoupling was suggested by N. A. Vinokurov as a method of optics independent outcoupling for high power FELs. The bunching of the electron beam is provided in a master oscillator. The prebunched electron beam then radiates coherently into an additional wiggler called the radiator. The electron beam is turned by an achromatic bend into this wiggler and its radiation propagates with a small angle with respect to the OK-4 optical axis. Thus, the radiation will pass around the mirror of the master oscillator optical cavity and can then be utilized. This scheme is perfectly suited for harmonic generation if the radiator wiggler is tuned on one of the master oscillator wavelength harmonics. This system is reminiscent of a klystron operating on a harmonic of the reference frequency. In this paper we present the theory of this device, its spectral and spatial characteristics of radiation, the optimization of the master oscillator, the achromatic bend and bunching for harmonic generation, and influence of beam parameters (energy spread, emittance, etc.) on generated power. Examples of possible storage ring and linac driven systems are discussed.
Harmonic Generation at Lower Electron Energies for a Hard X-ray FEL
Marksteiner, Quinn R. [Los Alamos National Laboratory
2011-01-01
There are several schemes currently being investigated to pre-bunch the electron beam and step the coherent bunching up to higher harmonics, all which require modulator sections which introduce additional energy modulation. X-ray FELs operate in a regime where the FEL parameter, {rho} is equal to or less than the effective energy spread introduced from the emittance in the electron beam. Because of this large effective energy spread, the energy modulation introduced from harmonic generation schemes would seriously degrade FEL performance. This problem can be mitigated by incorporating the harmonic generation scheme at a lower electron kinetic energy than the energy at the final undulator. This will help because the effective energy spread from emittance is reduced at lower energies, and can be further reduced by making the beam transversely large. Then the beam can be squeezed down slowly enough in the subsequent accelerator sections so that geometric debunching is mitigated. The beam size inside the dispersive chicanes and in the accelerator sections must be carefully optimized to avoid debunching, and each subharmonic modulator section must generate enough energy modulation to overcome the SASE noise without significantly increasing the gain length in the final undulator. Here we show analytical results that demonstrate the feasibility of this harmonic pre-bunching scheme.
X-ray FEL based on harmonics generation and electron beam outcoupling
Litvinenko, V.N.; Burnham, B. [Duke Univ., Durham, NC (United States)
1995-12-31
Electron beam outcoupling was suggested by N. A. Vinokurov as a method of optics independent outcoupling for high power FELs. The bunching of the electron beam is provided in a master oscillator. The prebunched electron beam then radiates coherently into an additional wiggler called the radiator. The electron beam is turned by an achromatic bend into this wiggler and its radiation propagates with a small angle with respect to the OK-4 optical axis. Thus, the radiation will pass around the mirror of the master oscillator optical cavity and can then be utilized. This scheme is perfectly suited for harmonic generation if the radiator wiggler is tuned on one of the master oscillator wavelength harmonics. This system is reminiscent of a klystron operating on a harmonic of the reference frequency. In this paper we present the theory of this device, its spectral and spatial characteristics of radiation, the optimization of the master oscillator, the achromatic bend and bunching for harmonic generation, and influence of beam parameters (energy spread, emittance, etc.) on generated power. Examples of possible storage ring and linac driven systems are discussed.
Theory of THz harmonic generation in semiconductor superlattices (Conference Presentation)
Pereira, Mauro F.; Winge, David O.; Wacker, Andreas
2016-10-01
Superlattices are artificial structures with a wide range of applications and open possibilities for controlling and study transport and optical [M.F. Pereira Jr., Phys. Rev. B 52, (1995)] properties of semiconductors. In this work, we start from the full Nonequilibrium Greens Functions approach [A. Wacker et a, IEEE Journal of Sel. Top. in Quantum Electron.,19 1200611, (2013),T. Schmielau and M.F. Pereira, Appl. Phys. Lett. 95 231111, (2009)] to obtain Voltage-Current curves and compare them with experiments. By adjusting the numerical solutions of the corresponding Dyson equations to a simple model, analytical solutions are given for the nonlinear response of a biased superlattice under sub-THz radiation. The frequency multiplication process leading to multiple harmonicgeneration is described. This hybrid approach leads to predictive simulations and may have important application for a new generation of devices where the superlattices are used as both sources and detectors and may be particular useful for high resolution transient spectroscopy [A.A. Yablokov et at, IEEE Transactions on THz Science and Technology 5, 845 (2015)].
Zhai, Wangjian
2014-12-01
Electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells is investigated using the effective mass approximation employing the compact density matrix method and the iterative approach. Our results show that the absolute value, the real part and the imaginary part of second-harmonic generation are greatly affected by the height of the Gaussian potential quantum wells, the range of the Gaussian confinement potential and the applied electric field. The relationship between the absolute value and the imaginary part of second-harmonic generation together with the relationship between the absolute value and the real part of second-harmonic generation is studied. It is found that no matter how the height of the Gaussian potential quantum wells, the range of the Gaussian confinement potential and the applied electric field vary, the resonant peaks of the absolute value of second-harmonic generation do not originate from the imaginary part but from the real part.
Second-harmonic mode coupling in microresonator-based optical frequency comb generation
Xue, Xiaoxiao; Xuan, Yi; Jaramillo-Villegas, Jose A; Wang, Pei-Hsun; Leaird, Daniel E; Erkintalo, Miro; Qi, Minghao; Weiner, Andrew M
2016-01-01
Microresonator-based optical frequency comb (microcomb) generation can potentially achieve ultra-compact volume and low power consumption for portable applications. The comb formation is a consequence of cascaded four-wave-mixing due to the third-order Kerr nonlinearity. Mode coupling can affect the comb self-starting and mode-locking behaviors, resulting in complex dynamics that is far from well understood. Understanding the mechanism of mode coupling in comb generation proves highly important to achieve stable and robust microcomb sources. Here, we report a nonlinear mode coupling mechanism in microresonators with simultaneous second- and third-order nonlinearities. The nonlinear dynamics governed by the third-order nonlinearity is altered by second-harmonic mode coupling. As a demonstration of this effect, second-harmonic assisted coherent comb generation is achieved in the normal dispersion region, where comb creation is prohibited in the absence of mode coupling. Since second-order nonlinearity has been ...
A Couairon; A Lotti; D Faccio; P Di Trapani; D S Steingrube; E Schulz; T Binhammer; U Morgner; M Kovacev; M B Gaarde
2014-08-01
Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.
High-order harmonic generation from Rydberg atoms driven by plasmonic-enhanced laser fields
Tikman, Y; Ciappina, M F; Chacon, A; Altun, Z; Lewenstein, M
2015-01-01
We theoretically investigate high-order harmonic generation (HHG) in Rydberg atoms driven by spatially inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser intensity should to exceed certain threshold in order to generate HHG, when noble gas atoms in their ground state are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a low intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low damage threshold of the materials employed in the nanostructures engineering. In this work we propose to use Rydberg atoms, driven by spatially inhomogeneous, plasmonic-enhanced laser fields, for HHG. We exhaustively discuss the behaviour and efficiency of these systems in the generation of coherent harmonic emission. To this aim we numerically solve the time...
High-order harmonic generation driven by metal nanotip photoemission: theory and simulations
Ciappina, M F; Lewenstein, M; Krüger, M; Hommelhoff, P
2014-01-01
We present theoretical predictions of high-order harmonic generation (HHG) resulting from the interaction of short femtosecond laser pulses with metal nanotips. It has been demonstrated that high energy electrons can be generated using nanotips as sources; furthermore the recollision mechanism has been proven to be the physical mechanism behind this photoemission. If recollision exists, it should be possible to convert the laser-gained energy by the electron in the continuum in a high energy photon. Consequently the emission of harmonic radiation appears to be viable, although it has not been experimentally demonstrated hitherto. We employ a quantum mechanical time dependent approach to model the electron dipole moment including both the laser experimental conditions and the bulk matter properties. The use of metal tips shall pave a new way of generating coherent XUV light with a femtosecond laser field.
Ludwinek Krzysztof
2017-03-01
Full Text Available The paper presents a comparison of higher harmonics in induced phase voltages of a stator winding in the no-load state of a three-phase 5.5 kVA salient pole synchronous generator. The comparison is carried out for the synchronous generator with different salient pole rotor constructions: a non-skewed solid rotor, a non-skewed solid rotor with radial incisions, and a laminated electrotechnical steel rotor with skewed slots and damping bars. The calculations of higher harmonics are based on the magnetic field distributions in the air gap, which are carried out in a 2D model in a FEMM program and on the induced voltage waveforms in the stator windings registered during experimental investigations of the 5.5 kVA salient pole synchronous generator in the no-load state.
Spatio-spectral analysis of ionization times in high-harmonic generation
Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)
2013-03-12
Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.
Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan
2014-08-05
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.
ZHANG Jingtao
2015-08-01
Full Text Available High-order harmonics generated from aligned molecules are studied by a nonperturbative QED theory and the effect of the multiple molecular orbits is included.The harmonic spectra generated from single molecular orbit exhibit an interference minimum which is induced by the molecular structure.The location of the spectral minimum shifts with the laser intensity in long laser pulses,but is fixed in ultrashort laser pulses.This difference is owed to the quiver motion of the electron in the laser pulses.The maximal shift of the spectral minimum equals to the increment of the ponderomotive energy and depends linearly on the laser intensity.The interference between the harmonics generated from multiple molecular orbits has two principal effects:one is obscuring the deep minima in the overall harmonic spectrum,the other is manifesting the phase jump in the harmonics generated from single molecular orbit.
Sederberg, Shawn
2013-01-01
The emergence of strong-field nanoplasmonics brings extreme laser field-matter interaction into the realm of nanoscale science, unveiling exciting new physics. Highly nonlinear interaction is enabled by tightly confined electric fields in nanoplasmonic structures, permitting use of optical fields from low-power laser oscillators. Here, we report the first demonstration of visible 517nm third harmonic generation in ultracompact nanoplasmonic waveguides on a silicon-on-insulator platform at an unprecedented conversion efficiency of ~10^{-5}. Exponential growth of broadband white light generation confirms a new strong-field phenomenon of ponderomotive force-driven electron avalanche multiplication. Using time-resolved experiments, we show that the strong nanoplasmonic field confinement allows nonlinear interaction to occur on an ultrafast timescale of 1.98 +/- 0.40 ps, despite the long free-carrier lifetime in silicon. These findings uncover a new strong-field interaction that can be used in sensitive nanoplasmo...
Radioprotective thermally generated free-radical dextrins
Piotr TOMASIK; Oskar MICHALSKI; Ewa BIDZINSKA; Antonina CEBULSKA-WASILEWSKA; Krystyna DYREK; Maciej FIEDOROWICZ; Pawel OLKO
2008-01-01
Effect of doses of the X-ray radiation from 0 to 400 Gy upon granular cornstarch and dextrins (British gums, BG) thermally generated from it at 230-300℃ was recognized with quantitative EPR and IR ab-sorption spectroscopy, molecular mass distribution in the depolymerization products, Scanning Elec-tron Microscopy, and X-ray diffractometry. Fractal analysis of the profiles of molecular mass distribu-tion showed that the depolymerization involved debranching of amylopectin. Roasting of cornstarch produced BG which differed in concentration and EPR parameters of stable free radicals from BG generated by X-ray radiation. Two types of stable free radicals, with Gaussian and Lorentzian shapes of EPR signals, were recognized. The shapes of the signals and temperature dependence on free radical intensity indicated exchanging interactions of the antiferromagnetic type, causing partial quenching of the spins at -196℃ (77K). Upon X-ray irradiation, new radicals were generated, the number and stability of which strongly depended on the types of radicals present before irradiation. These radicals slowly ceased because of a repolymerization of BG on storage.
A piezoelectric pulse generator for low frequency non-harmonic vibration
Jiang, Hao; Yeatman, Eric M.
2013-12-01
This paper reports a new piezoelectric prototype for pulse generation by energy harvesting from low frequency non-harmonic vibration. The pulse generator presented here consists of two parts: the electromechanical part and the load circuit. A metal rolling rod is used as the proof mass, moving along the substrate to achieve both actuating of the piezoelectric cantilever by magnetic coupling and self-synchronous switching of the circuit. By using this new approach, the energy from the piezoelectric transduction mechanism is regulated simultaneously when it is extracted. This allows a series of tuneable pulses to be generated, which can be applied to self-powered RF wireless sensor network (WSN) nodes.
Vincenti, Maria Antonietta; de Ceglia, Domenico; Capolino, Filippo; Scalora, Michael
2012-01-01
We investigate enhanced harmonic generation processes in gain-assisted, near-zero permittivity metamaterials composed of spherical plasmonic nanoshells. We report the presence of narrow-band features in transmission, reflection and absorption induced by the presence of an active material inside the core of the nanoshells. The damping-compensation mechanism used to achieve the near-zero effective permittivity condition also induces a significant increase in field localization and strength and, consequently, enhancement of linear absorption. When only metal nonlinearities are considered, second and third harmonic generation efficiencies obtained by probing the structure in the vicinity of the near-zero permittivity condition approach values as high as for irradiance value as low as . These results clearly demonstrate that a relatively straightforward path now exists to the development of exotic and extreme nonlinear optical phenomena in the KW/cm2 range
High-harmonic generation in alpha-quartz by the electron-hole recombination
Otobe, T
2016-01-01
The first-principle calculation for the high-harmonic generation (HHG) in an alpha-quartz employing the time-dependent density-functional theory is reported. The photon energy is set to 1.55 eV, and the cutoff energy of the plateau region is found to be limited at the 19th harmonics (30 eV). The laser intensity dependence of HHG efficiency at the cutoff energy region is consistent with that of the hole density in the lowest-lying valence band. Numerical results indicate that the electron-hole recombination plays a crucial role in HHG in alpha-quartz. It is found that the 200 attosecond pulse train is generated utilizing HHG around the plateau cutoff energy.
Active control of highly efficient third-harmonic generation in ultrathin nonlinear metasurfaces
Gong, Zibo; Li, Chong; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang
2016-10-01
Active electric control of highly efficient third harmonic generation was realized in an ultrathin nonlinear metasurface by using a nanocomposite consisting of gold nanoparticles dispersed in polycrystalline strontium titanate as the electro-optic material. Owing to the nonlinearity enhancement associated with the slow light effect, quantum confinement effect, and field-reinforcement, a high conversion efficiency of 3 × 10-5 was obtained, which is two orders of magnitude larger than previously reported efficiencies at comparable pump intensities. A modulation of 12% in the intensity of the third harmonic generation and a 30-nm shift in the transparency window center were achieved by varying the applied voltage from -30 V to zero. Our results pave the way toward the realization of multi-functional integrated photonic devices and chips based on metasurfaces.
Nelson, C. A.; Zhu, X.-Y.
2016-10-01
Optical excitations at semiconductor surfaces or interfaces are accompanied by transient interfacial electric fields due to charge redistribution or transfer. While such transient fields may be probed by time-resolved second harmonic generation (TR-SHG), it is difficult to determine the field direction, which is invaluable to unveiling the underlying physics. Here we apply a time-resolved frequency domain interferometric second harmonic (TR-FDISH) generation technique to determine the phase relationship between the SH field emitted from bulk GaAs(1 0 0) and the transient SH field from the space charge region. The interference between these two SH fields allow us to unambiguously determine the directions of transient electric fields. Since SH fields from a static bulk contribution and a changing electric field contribution are present at most semiconductor surfaces or interfaces under optical excitation, the TR-FDISH technique is of general significance to probing the dynamics of interfacial charge transfer/redistribution.
Polarization-resolved second harmonic generation microscopy of chiral G-shaped metamaterials
Mamonov, Evgeniy A.; Maydykovskiy, Anton I.; Kolmychek, Irina A.; Magnitskiy, Sergey A.; Murzina, Tatiana V.
2017-08-01
Chiral planar metamaterials are known for their possibility to show strong nonlinear optical effects such as second harmonic generation (SHG) circular dichroism or asymmetric SHG. The underlying mechanisms are commonly discussed in terms of local field effects and formation of localized SHG sources (so called "hotspots") that are sensitive to the shape and size of meta-atoms. Nevertheless, a full characterization of the polarization state of the nonlinear optical radiation from the hotspots has not been performed until now. Here we present the results of the polarization-resolved second harmonic generation microscopy studies of planar chiral G-shaped metamaterials. We demonstrate that the SHG radiation coming from the hotspots that are localized within a single meta-atom is partially polarized; moreover, the SHG polarization state reveals the chirality of the structure. The observed effects are attributed to the induced plasmonic current oscillations at the fundamental frequency along with the local field distribution.
Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.
1976-01-01
The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions a l...... a large-amplitude microwave signal is emitted at fp provided the input power exceeds a threshold value. The results are compared to existing theory. Applied Physics Letters is copyrighted by The American Institute of Physics.......The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions...
Second-harmonic generation from bimetal composites doped with metal nanoparticles
Daneshfar, Nader
2016-05-01
In the present paper, we study the nonlinear optical response of the bimetal composites doped with metal nanoparticles in the framework of nonlinear Mie theory combined with the Maxwell-Garnett model. We concentrate on the second-order harmonic generation from bimetal nanocomposites including silver and gold particles, since sometimes the nonlinear optical response is sensitive to the more accurate of material structure than linear optical response. We show that optical second harmonic generation is strongly sensitive to temperature as an environmental parameter, interparticle plasmon coupling between Au and Ag nanoparticles (the filling factor of inclusions), the particle size and the surrounding medium. However, this work shows good potential of bimetal composites for nonlinear optics at the nanoscale.
Minimum in the high-order harmonic generation spectrum from molecules: role of excited states
Han, Yong-Chang; Madsen, Lars Bojer
2010-01-01
that the coherent laser coupling induced between the 2Σ+g(1sσg) ground state and the first excited 2Σ+u(2pσu) state leads to two dominating amplitudes for the high-order harmonic generation that may interfere: amplitudes describing recombination back into the σg and σu states, respectively. These two amplitudes may......We model the process of high-order harmonic generation by solving the time-dependent Schrödinger equation for H+2 in the fixed nuclei approximation including full 3D electron motion for nonvanishing angles between the nuclear axis and the linear polarization of the driving pulse. We show...
Generation of higher harmonics in longitudinal vibration of beams with breathing cracks
Broda, D.; Pieczonka, L.; Hiwarkar, V.; Staszewski, W. J.; Silberschmidt, V. V.
2016-10-01
Classical nonlinear vibration methods used for structural damage detection are often based on higher- and sub-harmonic generation. However, nonlinearities arising from sources other than damage - e.g. boundary conditions or a measurement chain - are a primary concern in these methods. This paper focuses on localisation of damage-related nonlinearities based on higher harmonic generation. Numerical and experimental investigations in longitudinal vibration of beams with breathing cracks are presented. Numerical modelling is performed using a two-dimensional finite element approach. Different crack depths, locations and boundary conditions are investigated. The results demonstrate that nonlinearities in cracked beams are particularly strong in the vicinity of damage, allowing not only for damage localisation but also for separation of crack induced nonlinearity from other sources of nonlinearities.
Monitoring of collagen shrinkage by use of second harmonic generation microscopy
Lin, Sung-Jan; Chen, Jau-Shiuh; Lo, Wen; Sun, Yen; Chen, Wei-Liang; Chan, Jung-Yi; Tan, Hsin-Yuan; Lin, Wei-Chou; Hsu, Chih-Jung; Young, Tai-Horng; Jee, Shiou-Hwa; Dong, Chen-Yuan
2006-02-01
Thermal treatment induced collagen shrinkage has a great number of applications in medical practice. Clinically, the there is lack of reliable non-invasive methods to quantify the shrinkage. Overt treatment by heat application can lead to devastating results. We investigate the serial changes of collagen shrinkage by thermal treatment of rat tail tendons. The change in length is correlated with the finding in second harmonic generation microscopy and histology. Rat tail tendon shortens progressively during initial thermal treatment. After a certain point in time, the length then remains almost constant despite further thermal treatment. The intensity of second harmonic generation signals also progressively decreases initially and then remains merely detectable upon further thermal treatment. It prompts us to develop a mathematic model to quantify the dependence of collagen shrinkage on changes of SHG intensity. Our results show that SHG intensity can be used to predict the degree of collagen shrinkage during thermal treatment for biomedical applications.
Gaël Latour
Full Text Available BACKGROUND: Second Harmonic Generation (SHG microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet's membrane, in the posterior cornea. METHODOLOGY/PRINCIPAL FINDINGS: We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet's membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats. CONCLUSIONS/SIGNIFICANCE: Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily
Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation.
Babushkin, A; Craxton, R S; Oskoui, S; Guardalben, M J; Keck, R L; Seka, W
1998-06-15
The dual-tripler scheme for enhancing the bandwidth of third-harmonic generation proposed by Eimerl et al. [Opt. Lett. 22, 1208 (1997)] is experimentally demonstrated for the conversion of 1054-nm radiation to 351 nm. It is shown that the spacing between the triplers must be carefully controlled. The results are in excellent agreement with theory and indicate that fusion lasers can be frequency tripled with a threefold increase in bandwidth.
Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping
Lin, Chih-Pin
2015-08-27
We investigated different CVD-synthesized MoS2 films, aiming to correlate the device characteristics with the grain size. The grain size of MoS2 can be precisely characterized through nondestructive second harmonic generation mapping based on the degree of inversion symmetry. The devices with larger grains at the channel region show improved on/off current ratio, which can be explained by the less carrier scattering caused by the grain boundaries.
The use of second-harmonic generation to study diffusion through films under a liquid phase.
van der Veen, Monique A; De Roeck, Marjan; Vankelecom, Ivo F J; De Vos, Dirk E; Verbiest, Thierry
2010-03-15
Knowledge of the diffusion of chemicals through buried films is important for a wide variety of systems--from sensing to drug delivery. Herein, we show that second-harmonic generation (SHG) can be used to follow the diffusion through a thin film buried under a liquid in situ. More specifically, the diffusion of 4-(4-diethylaminostyryl)-1-methylpyridinium iodide through zeolite precursor films of different thickness is followed. The diffusion coefficients are calculated according to Fick's law.
Study of copper diffusion into polyimides by optical second harmonic generation
Zhang, J.Y.; Shen, Y.R. (California Univ., Berkeley, CA (USA). Dept. of Physics Lawrence Berkeley Lab., CA (USA)); Soane, D.S.; Pauschinger, D. (California Univ., Berkeley, CA (USA). Dept. of Chemical Engineering Lawrence Berkeley Lab., CA (USA))
1990-08-01
Formation of Cu clusters deposited on polyimide and their diffusion into polyimide have been studied in-situ by the surface-sensitive second harmonic generation technique. The diffusion coefficients of Cu clusters were measured and compared with those for atomic Cu. The effectiveness of a titanium (Ti) intermediate layer in preventing Cu diffusion into Pl was also investigated. It was found that an atomic layer of Ti was already sufficient for arresting the diffusion process. 15 refs., 5 figs.
Enhanced second-harmonic generation driven from magnetic dipole resonance in AlGaAs nanoantennas
Carletti, Luca; Rocco, Davide; Locatelli, Andrea; Gili, Valerio; Leo, Giuseppe; De Angelis, Costantino
2016-04-01
We model the linear and nonlinear optical response of disk-shaped AlGaAs nanoantennas. We design nanoantennas with a magnetic dipole resonant mode in the near-infrared wavelength range, and we analyze volume second-harmonic generation driven by a magnetic dipole resonance by predicting a conversion efficiency exceeding 10-3 with 1 GW/cm2 of pump intensity.
Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.
2010-11-09
All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.
Experiments on second- and third-harmonic generation from magnetic metamaterials.
Klein, Matthias W; Wegener, Martin; Feth, Nils; Linden, Stefan
2007-04-16
Photonic metamaterials could provide optical nonlinearities far exceeding those of natural substances due to the combined action of (magnetic) resonances and local-field enhancements. Here, we present our experiments on second- and third-harmonic generation from magnetic metamaterials composed of nanoscale gold split-ring resonators and from control samples for excitation with 170-fs pulses centered at 1.5-microm wavelength. The strongest nonlinear signals are found for resonances with magnetic-dipole character.
Kopylov, Denis A.; Spasibko, Kirill Y.; Krutyanskiy, Viktor L.; Murzina, Tatiana V.; Leuchs, Gerd; Chekhova, Maria V.
2017-05-01
The effect of the quantum properties of light on nonlinear processes has been well studied theoretically. It has been shown that the efficiency of n-photon nonlinear processes in many cases scales as the normalized n-th order correlation function. For light with high intensity correlation function, the efficiency of the n-th harmonic generation will be considerably higher than for coherent light. The experimental observation of this effect remained difficult until recently, because of the absence of bright sources with strong and fast intensity fluctuations. For the experimental demonstration of statistical effects in optical harmonic generation we use as a pump the radiation of high-gain parametric down conversion. Such light shows quantum properties (e.g. quadrature or two-mode squeezing) and has large number of photons in one mode. The normalized n-th order correlation function for this light is (2n - 1)!!, which makes it more attractive for nonlinear processes than both coherent and thermal light. For the generation of optical harmonics we used broadband parametric down conversion around frequency-degeneracy (1600 nm) produced in 1cm BBO crystal from Ti:Sapphire laser (800 nm, 1.6ps, 5kHz, 3W mean intensity). Due to spectral filtering and post-selection technique we could vary the statistics of light from coherent to super-bunched, which allowed us to demonstrate the efficiency enhancement for second-, third-, and fourth-harmonic generation. The obtained experimental results show a good agreement with the theory.
Self-starting harmonic frequency comb generation in a quantum cascade laser
Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-En; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico
2017-01-01
Optical frequency combs establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis and for generation of THz tones of high spectral purity in the future wireless communication networks. We demonstrate for the first time self-starting harmonic frequency co...
Second-Harmonic Generation in Optical Fibres Induced by a Cross-Phase Modulation Effect
CUI Wei-Na; HUANG Guo-Xiang
2005-01-01
@@ When two optical pulses copropagate inside a single-modefibre, intensity-dependent refractive index couples the pulses through a cross-phase modulation (XPM). We show that a second-harmonic generation (SHG) on a continuous-wave background is possible in the optical fibre induced by the XPM effect. By means of a multiscale method the nonlinearly coupled envelope equations for the SHG are derived and their explicit solutions are provided and discussed.
Li, Guihua; Xie, Hongqiang; Zeng, Bin; Yao, Jinping; Chu, Wei; Zhang, Haisu; Jing, Chenrui; He, Fei; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan
2013-01-01
We demonstrate unexpectedly strong second harmonic generation (SHG) in Argon gas by use of spatiotemporally focused (SF) femtosecond laser pulses. The resulting SHG by the SF scheme at a 75 cm distance shows a significantly enhanced efficiency than that achieved with conventional focusing scheme, which offers a new promising possibility for standoff applications. Our theoretical calculations reasonably reproduce the experimental observations, which indicate that the observed SHG mainly originates from the gradient of nonuniform plasma dynamically controlled by the SF laser field.
Non-collinear Generation of Angularly Isolated Circularly Polarized High Harmonics
2015-09-21
the electromagnetic field propagator49. The target (gas jet) was discretized into elementary radiators and propagated the emitted field Ej(rd,t) to...harmonic generation using analytical descriptions in both the photon and wave models. Advanced numerical simulations indicate that this non-collinear mixing...collinear HHG using both intuitive physical models as well as advanced numerical calculations. In the photon picture (Fig. 1b), we show that the NCP
Chen, Mei-Yu; Kan, Che-Wei; Lin, Yen-Yin; Ye, Cin-Wei; Wu, Meng-Jer; Liu, Hsiang-Lin; Chu, Shi-Wei
2016-01-01
Conventional linear optical activity effects are widely used for studying chiral materials. However, poor contrast and artifacts due to sample anisotropy limit the applicability of these methods. Here we demonstrate that nonlinear second-harmonic-generation circular dichroism spectral microscopy can overcome these limits. In intact collagenous tissues, clear spectral resonance is observed with sub-micrometer spatial resolution. By performing gradual protein denaturation studies, we show that the resonant responses are dominantly due to the molecular chirality.
Recollision dynamics of electron wave packets in high-order harmonic generation
Yuan, Kai-Jun; Bandrauk, André D.
2009-11-01
We numerically investigate the dynamics of recollision of an electron in high-order harmonic generation (HHG) for an H atom and a molecular ion H2+ using a short (ten optical cycles), and intense (I0≥1014W/cm2) , z -polarized linear laser pulse with wavelength 800 nm by accurately solving the three-dimensional time-dependent Schrödinger equation. A time-frequency analysis obtained via Gabor transforms is employed to identify electron recollision and recombination times responsible for the generation of harmonics. We find that the HHG spectra are mainly attributed to the recollision of an inner electron wave packet with the parent ion in agreement with the classical recollision model. A time delay of the electron recollision occurs between wave packets in inner and outer regions, near to and far from the parent ion, due to different phase of the acceleration (as well as dipole velocity) of the electron. Inner wave packets at recollision contain mainly short and long trajectories whereas outer wave packets contain only single trajectories. Lower-order harmonics are generated mainly by single recollisions near field extrema, i.e., in strong electric fields whereas higher-order harmonics are generated by double trajectories with different intensities. In the case of H2+ at a critical nuclear distance for charge resonance enhanced ionization, we also find that HHG mainly comes from contributions of the inner electron wave packet, but with more complex recollision trajectories due to the presence of more than one Coulomb center. Triple recollision trajectories are shown to occur generally for the latter.
Wei Xie(谢威); Xianfeng Chen(陈险峰); Like He(何利科); Yuping Chen(陈玉萍); Yuxing Xia(夏宇兴)
2004-01-01
The direct fourth harmonic generation (FHG) is theoretically demonstrated based on quasi-phase-matching (QPM) configuration in periodically poled lithium tantalate (PPLT). The wavelength dependence of the period of FHG QPM gratings is calculated. Bandwidths of fundamental wavelength, temperature, and incident angle are also studied. A very wide bandwidth, as large as 119.5 nm, of fundamental wavelength near 3699 nm is found with the QPM period of 9.442 μm and the crystal length of 1 cm.
Photoinduced Second Harmonic Generation of Bi2S3 Microcrystallite Doped Silica Glass
无
2001-01-01
Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 μm and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually.The effect may be explained reasonably by the DC field model.
13.5 nm High Harmonic Generation Driven by a Visible Noncollinear Optical Parametric Amplifier
2011-11-11
light source. We build a high energy tunable visible Optical Parametric Amplifier, and drive High Harmonic Generation in Argon and Helium . We study how...wavelength of 13.5 nm. The results agree well with a previously developed theoretical model. We predict that using a 630-nm driver in Helium could have a...light on the photo resist. Current techniques are capable of producing sub-100-nm features by using UV light at 193 nm from excimer lasers, but for
Camp, Seth; Gaarde, Mette B
2015-01-01
We present a theoretical study of the influence of resonant enhancement on quantum path dynamics in the generation of harmonics above and below the ionization threshold in helium. By varying the wavelength and intensity of the driving field from 425 nm to 500 nm and from 30 TW/cm${^2}$ to 140 TW/cm${^2}$, respectively, we identify enhancements of harmonics 7, 9, and 11 that correspond to multiphoton resonances between the ground state and the Stark shifted $1s2p$, $1s3p$, and $1s4p$ excited states. A time-frequency analysis of the emission shows that both the short and long quantum path contributions to the harmonic yield are enhanced through these bound state resonances. We analyze the sub-cycle time structure of the 9th harmonic yield in the vicinity of the resonances and find that on resonance the long trajectory contribution is phase shifted by approximately $\\pi/4$. Finally, we compare the single atom and the macroscopic response of a helium gas and find that while the sub-cycle time profiles are slightl...
Carrier Envelope Phase Controlled High-Order Harmonic Generation in Ultrashort Laser Pulse
WANG Bing-Bing; CHEN Jing; LIU Jie; LI Xiao-Feng; FU Pan-Ming
2005-01-01
@@ We investigate the carrier envelope phase (CEP) effects on high-order harmonic generation (HHG) in ultrashort pulses with the pulse duration 2.5fs when the laser intensity is high enough so that the initial state is ionized effectively during the laser pulse but remains about 20% population at the end of the laser pulse. We find that the ionization process of the initial state is very sensitive to the CEP during the laser pulse. The ionization process of the initial state determines the continuum state population and hence influences dramatically the weights of the classical trajectories that contribute to HHG. In such a case we can not predict the cutoff and the structure of the harmonic spectrum only by the number and the kinetic energy of the classical trajectories. The harmonic spectrum exhibits abundant characters for different CEP cases. As a result, we can control the cutoff frequency and the plateau structure of the harmonic spectrum with CEP by controlling the time behaviour of the ionization of the initial state.
Biedron, S G; Yu, L H
2000-01-01
One possible design for a fourth-generation light source is the high-gain harmonic generation (HGHG) free-electron laser (FEL). Here, a coherent seed with a wavelength at a subharmonic of the desired output radiation interacts with the electron beam in an energy-modulating section. This energy modulation is then converted into spatial bunching while traversing a dispersive section (a three-dipole chicane). The final step is passage through an undulator tuned to the desired higher harmonic output wavelength. The coherent seed serves to suppress and can be at a much lower subharmonic of the output radiation. Recently, a 3D code that includes multiple frequencies, multiple undulators (both in quantity and/or type), quadrupole magnets, and dipole magnets was developed to easily simulate HGHG. Here, a brief review of the HGHG theory, the code development, the Accelerator Test Facility's (ATF) HGHG FEL experimental parameters, and the parameter analysis from simulations of this specific experiment will be discussed...
In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy
Tsai, Ming-Rung; Chen, Szu-Yu; Shieh, Dar-Bin; Lou, Pei-Jen; Sun, Chi-Kuang
2011-01-01
Recent clinical studies on human skin indicated that in vivo multi-harmonic generation microscopy (HGM) can achieve sub-micron resolution for histopathological analysis with a high penetration depth and leave no energy or photodamages in the interacted tissues. It is thus highly desired to apply HGM for in vivo mucosa histopathological diagnosis. In this paper, the first in vivo optical virtual biopsy of human oral mucosa by using epi-HGM is demonstrated. We modified an upright microscope to rotate the angle of objective for in vivo observation. Our clinical study reveals the capability of HGM to in vivo image cell distributions in human oral mucosa, including epithelium and lamina propria with a high penetration depth greater than 280 μm and a high spatial resolution better than 500 nm. We also found that the third-harmonic-generation (THG) contrast on nucleus depends strongly on its thicknesses, in agreement with a numerical simulation. Besides, 4% acetic acid was found to be able to enhance the THG contrast of nucleus in oral mucosa, while such enhancement was found to decay due to the metabolic clearance of the contrast enhancer by the oral mucosa. Our clinical study indicated that, the combined epi-THG and epi-second-harmonic-generation (SHG) microscopy is a promising imaging tool for in vivo noninvasive optical virtual biopsy and disease diagnosis in human mucosa. PMID:21833368
Quantifying collagen structure in breast biopsies using second-harmonic generation imaging.
Ambekar, Raghu; Lau, Tung-Yuen; Walsh, Michael; Bhargava, Rohit; Toussaint, Kimani C
2012-09-01
Quantitative second-harmonic generation imaging is employed to assess stromal collagen in normal, hyperplastic, dysplastic, and malignant breast tissues. The cellular scale organization is quantified using Fourier transform-second harmonic generation imaging (FT-SHG), while the molecular scale organization is quantified using polarization-resolved second-harmonic generation measurements (P-SHG). In the case of FT-SHG, we apply a parameter that quantifies the regularity in collagen fiber orientation and find that malignant tissue contains locally aligned fibers compared to other tissue conditions. Alternatively, using P-SHG we calculate the ratio of tensor elements (d(15)/d(31), d(22)/d(31), and d(33)/d(31)) of the second-order susceptibility χ(2) for collagen fibers in breast biopsies. In particular, d(15)/d(31) shows potential differences across the tissue pathology. We also find that trigonal symmetry (3m) is a more appropriate model to describe collagen fibers in malignant tissues as opposed to the conventionally used hexagonal symmetry (C6). This novel method of targeting collagen fibers using a combination of two quantitative SHG techniques, FT-SHG and P-SHG, holds promise for breast tissue analysis and applications to characterizing cancer in a manner that is compatible with clinical practice.
Second harmonic generation of near millimeter wave radiation by nonlinear bulk material
Ahn, B. H.
1980-06-01
Bulk crystals have been used frequently to obtain second harmonic generation (SHG) and third harmonic generation (THG) of radiation from the fundamental input frequency, particularly in the optical region. For example ammonium dihydrogen phosphate, potassium dihydrogen phosphate, semiconductor materials, and ferroelectric materials were used for the SHG of input laser beams. SHG and THG have also been realized in the microwave region. Boyd, et. al., reported on the nonlinear coefficients and other important parameters at 55 GHz. Later, Boyd and Pollack published a comprehensive paper on the nonlinear coefficients of LiTaO3 and LiNbO3 in the microwave region. DiDomenico, Jrl, et. al., obtained a 9 GHz TH output with an efficiency of 8.5% from a 2200 watt 3 GHz source by use of a 73% BaTiO3 - 27% SrTiO3 ceramic in a coaxial cavity configuration. Impetus for bulk harmonic generation in the microwave region was given by the discovery that some ferroelectric crystals have very large nonlinear coefficients, large enough to compensate for the lower frequencies of the microwave region in comparison to those of the optical region.
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
Harmonic current filtering and resonance damping have become important concerns on the control of an islanded microgrids. To address these challenges, this paper proposes a control method of inverter-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and ...
Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin
2016-08-08
We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.
Cao Wei; Lu Peixiang; Lan Pengfei; Hong Weiyi; Wang Xinlin [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2007-03-14
The time-frequency properties of high harmonic generation (HHG) driven by a bichromatic field consisting of a fundamental and a weak third harmonic field are investigated. The selection of an individual quantum path contributing to harmonic generation can be achieved by adjusting the relative phase between the two components of the driving field. The classical trajectory simulation of the strong-field electron dynamics is performed to analyse the physical process. Our calculations show that it is the control of the ionization step that leads to the quantum path selection. This quantum selection can be used to generate regular and strong attosecond pulses.
Enhanced harmonic generation and wave-mixing via two-color multiphoton excitation of atoms/molecules
Avetissian, H K; Mkrtchian, G F
2016-01-01
We consider harmonics generation and wave-mixing by two-color multi photon resonant excitation of three-level atoms/molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor harmonics generation is investigated. The obtained analytical results on the basis of generalized rotating wave approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atom and homonuclear diatomic molecular ion show that one can achieve efficient generation of moderately high multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.
Third harmonic generation of high power far infrared radiation in semiconductors
Urban, M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1996-04-01
We investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 {mu}m and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 {mu}m laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. figs., tabs., refs.
Optical second-harmonic generation in lossy media: Application to GaSe and InSe
Bringuier, E.; Bourdon, A.; Piccioli, N.; Chevy, A.
1994-06-01
The paper deals with optical second-harmonic generation in a medium absorbing the second-harmonic radiation, and where phase matching between the fundamental and second-harmonic radiation is not necessarily achieved. We first take the waves to be in the form of traveling waves, and describe the damping of the fundamental beam due to harmonic creation. It is found that both second-harmonic absorption and phase mismatch enhance the depletion length of the pump wave. Before depletion, the second-harmonic output power is independent of the traversed thickness if it exceeds the second-harmonic attenuation length. When depletion occurs, the second-harmonic output power is constant, instead of quadratic, in the input power. Next, second-harmonic generation in a plane-parallel plate of lossy material is envisaged in the case of normal incidence, including the multiple reflections expected in high-reflectance materials. The expressions of the harmonic output intensity, transmitted or reflected, of this paper and from the conventional treatment, are compared. The deviation is noticeable in the case of the transmitted harmonic power, and may be considerable in the case of the reflected power. Last, measurements of the second-harmonic output intensity in GaSe and InSe are reported at a fundamental wavelength of 1.06 μm. The sample dependence is in good agreement with our theory, which in turn is applied to derive new values of the nonlinear optical susceptibilities in the layered-structured III-VI materials. The treatment is fully analytical and may be applied to a wealth of materials.
Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro
In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.
High Harmonic Inverse Free-Electron-Laser Interaction at 800nm
Sears, Christopher M.S.; Colby, Eric; Cowan, Ben; Siemann, Robert H.; Spencer, James; /SLAC; Byer, Robert L.; Plettner, Tomas; /Stanford U., Phys. Dept.
2005-05-13
The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator for micro bunching of beams for laser acceleration experiments [1,2]. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.5 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We also compare the experimental results to a simple analytic model that describes coupling to high order harmonics of the interaction.
High-Harmonic Inverse Free-Electron-Laser Interaction at 800nm
Sears, C
2006-02-17
The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator for micro bunching of beams for laser acceleration experiments [1,2]. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.5 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We also compare the experimental results to a simple analytic model that describes coupling to high order harmonics of the interaction.
Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd
2010-01-01
We demonstrate the generation of high power (>1.5W) and single-frequency green light by single-pass second harmonic generation of a high power tapered diode laser. The tapered diode laser consists of a DBR grating for wavelength selectivity, a ridge section and a tapered section. The DBR tapered...... laser emits in excess of 9 W single-frequency output power with a good beam quality. The output from the tapered diode laser is frequency doubled using periodically poled MgO:LiNbO3. We investigate the modulation potential of the green light and improve the modulation depth from 1:4 to 1:50....
Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd;
2010-01-01
laser emits in excess of 9 W single-frequency output power with a good beam quality. The output from the tapered diode laser is frequency doubled using periodically poled MgO:LiNbO3. We investigate the modulation potential of the green light and improve the modulation depth from 1:4 to 1:50.......We demonstrate the generation of high power (>1.5W) and single-frequency green light by single-pass second harmonic generation of a high power tapered diode laser. The tapered diode laser consists of a DBR grating for wavelength selectivity, a ridge section and a tapered section. The DBR tapered...
Etches, Adam; Madsen, Lars Bojer
2010-01-01
Polar molecules such as CO are interesting target systems for high-order harmonic generation (HHG) as they can be oriented with current laser techniques, thus allowing the study of systems without inversion symmetry. However, the asymmetry of the molecule also means that the molecular orbitals...
Ganeev, R. A.; Suzuki, M.; Kuroda, H.
2016-07-01
We demonstrate the generation of harmonics up to the 27th order (λ=29.9 nm) of 806 nm radiation in the boron carbide plasma. We analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by studying the plasma emission and harmonic spectra from three species. We compare different schemes of the two-color pump of B4C plasma, particularly using the second harmonics of 806 nm laser and optical parametric amplifier (1310 nm) as the assistant fields, as well as demonstrate the sum and difference frequency generation using the mixture of the wavelengths of two laser sources. These studies showed the advantages of the two-color pump of B4C plasma leading to the stable harmonic generation and the growth of harmonic conversion efficiency. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic. Our spatial characterization of harmonics shows their on-axis modification depending on the conditions of frequency conversion.
Zhai, Z; Gao, J; Zhai, Zehui; Li, Yongming; Gao, Jiangrui
2004-01-01
Quantum fluctuation and quantum entanglement of the pump field reflected from an optical cavity for type II second harmonic generation are theoretically analyzed. The correlation spectra between the quadratures of the reflected subharmonic fields are interpreted in terms of pump parameter, intracavity losses and normalized frequency. Large correlation degrees of both amplitude and phase quadratures can be accessed in a triple resonant cavity before the pitchfork bifurcation occurs. The two reflected subharmonic fields are in an entangled state with the quantum correlation of phase quadratures and anticorrelation of amplitude quadratures. The proposed system can be exploited to be a new source generating entangled states of continuous variables.
Multipolar third-harmonic generation driven by optically-induced magnetic resonances
Smirnova, Daria A; Smirnov, Lev A; Kivshar, Yuri S
2016-01-01
We analyze the third-harmonic generation from high-index dielectric nanoparticles and discuss the basic features and multipolar nature of the parametrically generated electromagnetic fields near the Mie-type optical resonances in silicon particles. By combining both analytical and numerical methods, we study the nonlinear scattering from simple nanoparticle geometries such as spheres and disks driven by the magnetic dipole resonance. We reveal the approaches for manipulating and directing the resonantly enhanced nonlinear emission with subwavelength all-dielectric structures that can be of a particular interest for a design of nonlinear optical antennas and engineering the magnetic optical nonlinear response at nanoscale.
Tailoring of XUV supercontinua through coherent control of high-order harmonic generation
Holgado, W; Alonso, B; Miranda, M; Silva, F; Plaja, L; Crespo, H; Sola, I J
2016-01-01
We present observations of the emission of XUV supercontinua in the 20-37 eV region by high harmonic generation (HHG) with 4-7 fs pulses focused onto a Kr gas jet. The underlying mechanism relies on coherent control of the relative delays and phases between individually generated attosecond pulses, achievable by adjusting the chirp of the driving pulses and the interaction geometry. Under adequate chirp and phase matching conditions the resulting interference will yield a supercontinuum XUV spectrum. This technique opens the route for modifying the phase of individual attosecond pulses and for the coherent synthesis of XUV supercontinua without the need of an isolated attosecond burst.
Surface plasmon polariton excitation by second harmonic generation in single organic nanofibers.
Simesen, Paw; Søndergaard, Thomas; Skovsen, Esben; Fiutowski, Jacek; Rubahn, Horst-Günter; Bozhevolnyi, Sergey I; Pedersen, Kjeld
2015-06-15
Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated experimentally with angular-resolved leakage radiation spectroscopy for normal incidence of the excitation beam. Both measurements and simulations show asymmetric excitation of left- and right-propagating SH-SPPs, which is explained as an effect of fiber molecules being oriented at an angle relative to the silver film surface.
Multi-level perspective on high-order harmonic generation in solids
Wu, Mengxi; Gaarde, Mette B
2016-01-01
We investigate high-order harmonic generation in a solid, modeled as a multi-level system dressed by a strong infrared laser field. We show that the cutoff energies and the relative strengths of the multiple plateaus that emerge in the harmonic spectrum can be understood both qualitatively and quantitatively by considering a combination of adiabatic and diabatic processes driven by the strong field. Such a model was recently used to interpret the multiple plateaus exhibited in harmonic spectra generated by solid argon and krypton [Ndabashimiye {\\it et al.}, Nature 534, 520 (2016)]. We also show that when the multi-level system originates from the Bloch state at the $\\Gamma$ point of the band structure, the laser-dressed states are equivalent to the Houston states [Krieger {\\it el al.} Phys. Rev. B 33, 5494 (1986)] and will therefore map out the band structure away from the $\\Gamma$ point as the laser field increases. This leads to a semi-classical three-step picture in momentum space that describes the high-o...
Wannier-Bloch approach to localization in high harmonics generation in solids
Osika, Edyta N; Ortmann, Lisa; Suárez, Noslen; Pérez-Hernández, Jose Antonio; Szafran, Bartłomiej; Ciappina, Marcelo F; Sols, Fernando; Landsman, Alexandra S; Lewenstein, Maciej
2016-01-01
Emission of high-order harmonics from solids provides a new avenue in attosecond science. On one hand, it allows to investigate fundamental processes of the non-linear response of electrons driven by a strong laser pulse in a periodic crystal lattice. On the other hand, it opens new paths toward efficient attosecond pulse generation, novel imaging of electronic wave functions, and enhancement of high-order harmonic generation (HHG) intensity. A key feature of HHG in a solid (as compared to the well-understood phenomena of HHG in an atomic gas) is the delocalization of the process, whereby an electron ionized from one site in the periodic lattice may recombine with any other. Here, we develop an analytic model, based on the localized Wannier wave functions in the valence band and delocalized Bloch functions in the conduction band. This Wannier-Bloch approach assesses the contributions of individual lattice sites to the HHG process, and hence addresses precisely the question of localization of harmonic emission...
Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan
2016-05-01
Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.
High-harmonic generation in α -quartz by electron-hole recombination
Otobe, T.
2016-12-01
A calculation of the high-harmonic generation (HHG) in α -quartz using the time-dependent density functional theory is reported. The interband process is attributed to the dominant in HHG above the band gap. The photon energy is set to 1.55 eV, and the cutoff energy of the plateau region is found to be limited at the 19th harmonic (30 eV). The dependence of the HHG efficiency at the cutoff energy region on laser intensity is consistent with that of the hole density in the lowest-lying valence band. Numerical results indicate that electron-hole recombination plays a crucial role in HHG in α -quartz. It is found that a 200 attosecond pulse train is produced using HHG around the plateau cutoff energy.
Strong-field-approximation theory of high-order harmonic generation by polyatomic molecules
Odžak, S.; Hasović, E.; Milošević, D. B.
2016-04-01
A theory of high-order harmonic generation by arbitrary polyatomic molecules is introduced. A polyatomic molecule is modeled by an (N +1 ) -particle system, which consists of N heavy atomic (ionic) centers and an electron. After the separation of the center-of-mass coordinate, the dynamics of this system is reduced to the relative electronic and nuclear coordinates. Various versions (with or without the dressing of the initial and/or final molecular state) of the molecular strong-field approximation are introduced. For neutral polyatomic molecules the derived expression for the T -matrix element takes a simple form. The interference minima in the harmonic spectrum are explained as a multiple-slit type of interference. This is illustrated by numerical examples for the ozone (O3) and carbon dioxide (CO2) molecules.
Savostianova, N A
2016-01-01
Graphene is a nonlinear material which can be used as a saturable absorber, frequency mixer and frequency multiplier. We investigate the third harmonic generation from graphene lying on different substrates, consisting of a dielectric (dispersionless or polar), metalized or non-metalized on the back side. We show that the third harmonic intensity emitted from graphene lying on a substrate, can be increased by orders of magnitude as compared to the isolated graphene, due the LO-phonon resonances in a polar dielectric or due to the interference effects in the substrates metalized on the back side. In some frequency intervals, the presence of the polar dielectric substrate compensates the strongly decreasing with $\\omega$ frequency dependence of the third-order conductivity of graphene making the response almost frequency independent.
High harmonic generation from bulk diamond driven by intense femtosecond laser pulse
Apostolova, Tzveta
2016-01-01
We investigate the high-harmonic generation (HHG) from bulk diamond induced by intense 15 fs laser pulse and photon energy 1.55 eV. For laser intensity in the range $I \\in [1,50]$ TW/cm$^2$, we find that HHG spectra from diamond exhibits two plateaus with high harmonics extending beyond the 50th order. Consistently with experimental observations, we find that the cutoff energy of the two plateaus scales linearly with the field strength. The first plateau is due to recombination of electron-hole pairs near the Brillouin zone center. The appearance of weak second plateau region for high field strength with $F \\sim$ 1 V/$\\AA$ results in emission of highly energetic XUV photons.
High order harmonic generation in noble gases using plasmonic field enhancement
Ciappina, Marcelo F.; Shaaran, Tahir [ICFO-Institut de Ciences Fotoniques, Castelldefels (Barcelona) (Spain); Lewenstein, Maciej [ICFO-Institut de Ciences Fotoniques, Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain)
2013-02-15
Theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement are presented. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. It is demonstrated that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. The models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Second Harmonic Generation and Confined Acoustic Phonons in HighlyExcited Semiconductor Nanocrystals
Son, Dong Hee; Wittenberg, Joshua S.; Banin, Uri; Alivisatos, A.Paul
2006-03-30
The photo-induced enhancement of second harmonic generation, and the effect of nanocrystal shape and pump intensity on confined acoustic phonons in semiconductor nanocrystals, has been investigated with time-resolved scattering and absorption measurements. The second harmonic signal showed a sublinear increase of the second order susceptibility with respect to the pump pulse energy, indicating a reduction of the effective one-electron second-order nonlinearity with increasing electron-hole density in the nanocrystals. The coherent acoustic phonons in spherical and rod-shaped semiconductor nanocrystals were detected in a time-resolved absorption measurement. Both nanocrystal morphologies exhibited oscillatory modulation of the absorption cross section, the frequency of which corresponded to their coherent radial breathing modes. The amplitude of the oscillation also increased with the level of photoexcitation, suggesting an increase in the amplitude of the lattice displacement as well.
Multibeam second-harmonic generation by spatiotemporal shaping of femtosecond pulses.
Martínez-Cuenca, Raúl; Mendoza-Yero, Omel; Alonso, Benjamín; Sola, Íñigo Juan; Mínguez-Vega, Gladys; Lancis, Jesús
2012-03-01
We present a technique for efficient generation of the second-harmonic signal at several points of a nonlinear crystal simultaneously. Multispot operation is performed by using a diffractive optical element that splits the near-infrared light of a mode-locked Ti:sapphire laser into an arbitrary array of beams that are transformed into an array of foci at the nonlinear crystal. We show that, for pulse temporal durations under 100 fs, spatiotemporal shaping of the pulse is mandatory to overcome chromatic dispersion effects that spread both in space and time the foci showing a reduced peak intensity that prevents nonlinear phenomena. We experimentally demonstrate arbitrary irradiance patterns for the second-harmonic signal consisting of more than 100 spots with a multipass amplifier delivering 28 fs, 0.8 mJ pulses at 1 kHz repetition rate.
The second-harmonic generation in a dissipative and dispersion layered structure
Soltanmohammadi, Jamshid; Jamshidi-Ghaleh, Kazem; Arghand-Hesar, Afshin; Lotfi, Erik S.; Masalehdan, Hossein
2015-10-01
Conversion efficiency of second-harmonic generation (SHG) in a multicrystal structure arrangement, under linearly absorption of interacting waves was analytically investigated. Different linear absorption and nonlinear interaction coefficients were considered for both of the fundamental and the second harmonic waves in cascade layers. The intensity-constant approximation on fundamental wave radiation was applied in calculations. Behavior of conversion efficiency with interaction coherence length of fundamental wave, phase miss-matching and ratio of linear absorption coefficients were graphically illustrated. The results are shown that in multicrystal structure scheme, the conversion efficiency can be tuned by the interaction coherent length and it is possible to compensate the phase differences induced in the previous layers. The phase compensation between the layers is the physical reason of efficiency improvement. Contribution to the topical issue "Advanced Electromagnetics Symposium (AES 2014) - Elected submissions", edited by Adel Razek
Mazumder, Nirmal; Xiang, Lu Yun; Qiu, Jianjun; Kao, Fu-Jen
2017-04-01
The changes of the morphology during heating and the degree of crystallinity of dry and hydrated starch granules are investigated using second harmonic generation (SHG) based Stokes polarimetry. A spatial distribution of various polarization parameters, such as the degree of polarization (DOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP) are extracted and compared with the two dimensional second harmonic (SH) Stokes images of starch granules. The SH signal from hydrated and dry starch on heating differed significantly in DOLP and DOCP values, indicating that hydrated starch has a greater degree of ultrastructural amylopectin disorder. The detail of denaturation and the phase transition of hydrated starch demonstrate the significant influence of thermal processing.
Anomalous circular dichroism in high harmonic generation of stereoisomers with two chiral centers.
Zhu, Xiaosong; Liu, Xi; Lan, Pengfei; Wang, Dian; Zhang, Qingbin; Li, Wei; Lu, Peixiang
2016-10-31
When a molecule has more than one chiral center, it can be either a chiral molecule or a meso isomer. High harmonic generation (HHG) of stereoisomers with two chiral centers driven by circularly polarized (CP) laser pulses is investigated. Counterintuitively, it is found that the HHG exhibits prominent circular dichroism for the meso isomer, while the harmonic spectra with left and right CP laser pulses are nearly the same for the chiral isomers. We show that the anomalous circular dichroism is attributed to the characteristic recollision dynamics of HHG. This feature makes the HHG a promising tool to discriminate the meso isomer and racemic mixture, where no optical activity can be found in both cases. Similar dichroism responses are also found by applying the counter-rotating bicircular laser pulses.
Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids
Tancogne-Dejean, Nicolas; Mücke, Oliver D.; Kärtner, Franz X.; Rubio, Angel
2017-02-01
An accurate analytic model describing the microscopic mechanism of high-harmonic generation (HHG) in solids is derived. Extensive first-principles simulations within a time-dependent density-functional framework corroborate the conclusions of the model. Our results reveal that (i) the emitted HHG spectra are highly anisotropic and laser-polarization dependent even for cubic crystals; (ii) the harmonic emission is enhanced by the inhomogeneity of the electron-nuclei potential; the yield is increased for heavier atoms; and (iii) the cutoff photon energy is driver-wavelength independent. Moreover, we show that it is possible to predict the laser polarization for optimal HHG in bulk crystals solely from the knowledge of their electronic band structure. Our results pave the way to better control and optimize HHG in solids by engineering their band structure.
Ciattoni, Alessandro
2011-01-01
We theoretically predict efficient optical second-harmonic generation (SHG) from a few hundred nanometer thick slab consisting of a quadratic nonlinear anisotropic medium whose linear principal permittivities are, at the fundamental wavelength, very small and have different signs (indefinite medium). We show that, by illuminating the slab with a p-polarized fundamental wave (with intensity of a few MW/cm^2), a highly efficient scattering of the second-harmonic field occurs when the conditions of linear complete slab transparency for the fundamental wave are met. The high efficiency of the SHG process, stems from the large non-plasmonic enhancement of the longitudinal field, perpendicular to the slab surface, produced by the very small value of the slab dielectric permittivities. A suitable nano-structured composite is proposed and numerically designed for observing the novel non-phase-matched and highly efficient SHG process from nano-structures.
Different time scales in plasmonically enhanced high-order harmonic generation
Zagoya, C; Chomet, H; Slade, E; Faria, C Figueira de Morisson
2016-01-01
We investigate high-order harmonic generation in inhomogeneous media for reduced dimensionality models. We perform a phase-space analysis, in which we identify specific features caused by the field inhomogeneity. We compute high-order harmonic spectra using the numerical solution of the time-dependent Schr\\"odinger equation, and provide an interpretation in terms of classical electron trajectories. We show that the dynamics of the system can be described by the interplay of high-frequency and slow-frequency oscillations, which are given by Mathieu's equations. The latter oscillations lead to an increase in the cutoff energy, and, for small values of the inhomogeneity parameter, take place over many driving-field cycles. In this case, the two processes can be decoupled and the oscillations can be described analytically.
Persano Adorno, D.; Capizzo, M.C.; Zarcone, M. [Dipartimento di Fisica e Tecnologie Relative, Viale delle Scienze, Ed. 18, 90128, Palermo (Italy)
2006-08-15
We present results obtained using a three-dimensional multivalleys Monte Carlo (MC) model to simulate the nonlinear carrier dynamics under the influence of an intense sub-terahertz electric field in a doped bulk semiconductor. By self-consistently coupling a one-dimensional Poisson solver to the ensemble MC code we simulate also the nonlinear carrier dynamics in n{sup +}nn{sup +} structures operating under large-amplitude periodic signals and investigate the voltage-current characteristic hysteresis cycle and the high-order harmonic efficiency. For both cases we discuss the dependence of the nonlinearities and of the harmonic generation efficiency on the frequency and the intensity of the alternating signal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Impact of the electronic band structure in high-harmonic generation spectra of solids
Tancogne-Dejean, Nicolas; Kärtner, Franz X; Rubio, Angel
2016-01-01
An accurate analytic model describing high-harmonic generation (HHG) in solids is derived. Extensive first-principles simulations within a time-dependent density-functional framework corroborate the conclusions of the model. Our results reveal that: (i) the emitted HHG spectra are highly anisotropic and laser-polarization dependent even for cubic crystals, (ii) the harmonic emission is enhanced by the inhomogeneity of the electron-nuclei potential, the yield is increased for heavier atoms, and (iii) the cutoff photon energy is driver-wavelength independent. Moreover, we show that it is possible to predict the laser polarization for optimal HHG in bulk crystals solely from the knowledge of their electronic band structure. Our results pave the way to better control and optimize HHG in solids by engineering their band structure.
Kfir, Ofer; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Popmintchev, Dimitar; Popmintchev, Tenio; Nembach, Hans; Shaw, Justin M; Fleicher, Avner; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren
2014-01-01
Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, such experiments have been possible only using large-scale free-electron lasers or synchrotrons. Here we demonstrate the first bright extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of cobalt. This work paves the way towards element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatio-temporal resolution, all on a tabletop.
Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev
2000-01-01
Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation....
Cirmi, Giovanni; Lai, Chien-Jen; Granados, Eduardo; Huang, Shu-Wei; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Keathley, Phillip; Kärtner, Franz X.
2012-10-01
We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 µJ energy at the 1 kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping other parameters (energy, duration and beam size) constant, we experimentally studied the scaling law of cut-off energy with the driver wavelength in helium. Our measurements show a λ1.7 + 0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source, the high-order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ˜25 and ˜100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.
O'Keeffe, Kevin; Robinson, Tom; Hooker, Simon M
2012-03-12
Quasi-phase-matched high harmonic generation using trains of up to 8 counter-propagating pulses is explored. For trains of up to 4 pulses the measured enhancement of the harmonic signal scales with the number of pulses N as (N + 1)², as expected. However, for trains with N > 4, no further enhancement of the harmonic signal is observed. This effect is ascribed to changes of the coherence length Lc within the generating medium. Techniques for overcoming the variation of Lc are discussed. The pressure dependence of quasi-phase-matching is investigated and the switch from true-phase-matching to quasi-phase-matching is observed.
Niti Kant
2013-01-01
Third harmonic generation of a Gaussian short pulse laser in a tunnel ionizing plasma is investigated. A Gaussian short pulse laser propagating through a tunnel ionizing plasma generates third harmonic wave. Inhomogeneity of the electric field along the wavefront of the fundamental laser pulse causes more ionization along the axis of propagation while less ionization off axis, leading to strong density gradient with its maximum on the axis of propagation. The medium acts like a diverging lens...
Single attosecond pulse from terahertz-assisted high-order harmonic generation
Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)
2011-08-15
High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.
Tunable high-harmonic generation by chromatic focusing of few-cycle laser pulses
Holgado, W.; Hernández-García, C.; Alonso, B.; Miranda, M.; Silva, F.; Varela, O.; Hernández-Toro, J.; Plaja, L.; Crespo, H.; Sola, I. J.
2017-06-01
In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order-harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regime, as the pulse spatiotemporal structure may be highly distorted by the spatiotemporal aberrations. Here, however, we demonstrate it as an additional control parameter to modify the generated XUV radiation. We present experiments where few-cycle pulses are focused by a singlet lens in a Kr gas jet. The chromatic distribution of focal lengths allows us to tune HHG spectra by changing the relative singlet-target distance. Interestingly, we also show that the degree of chromatic aberration needed for this control does not degrade substantially the harmonic conversion efficiency, still allowing for the generation of supercontinua with the chirped-pulse scheme, demonstrated previously for achromatic focusing. We back up our experiments with theoretical simulations reproducing the experimental HHG results depending on diverse parameters (input pulse spectral phase, pulse duration, and focus position) and proving that, under the considered parameters, the attosecond pulse train remains very similar to the achromatic case, even showing cases of isolated attosecond pulse generation for near-single-cycle driving pulses.
Louis Jay
Full Text Available Three-dimensional tissues, such as the cornea, are now being engineered as substitutes for the rehabilitation of vision in patients with blinding corneal diseases. Engineering of tissues for translational purposes requires a non-invasive monitoring to control the quality of the resulting biomaterial. Unfortunately, most current methods still imply invasive steps, such as fixation and staining, to clearly observe the tissue-engineered cornea, a transparent tissue with weak natural contrast. Second- and third-harmonic generation imaging are well known to provide high-contrast, high spatial resolution images of such tissues, by taking advantage of the endogenous contrast agents of the tissue itself. In this article, we imaged tissue-engineered corneal substitutes using both harmonic microscopy and classic histopathology techniques. We demonstrate that second- and third-harmonic imaging can non-invasively provide important information regarding the quality and the integrity of these partial-thickness posterior corneal substitutes (observation of collagen network, fibroblasts and endothelial cells. These two nonlinear imaging modalities offer the new opportunity of monitoring the engineered corneas during the entire process of production.