WorldWideScience

Sample records for harmful algal toxins

  1. Harmful Algal Blooms

    Science.gov (United States)

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  2. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.

    Science.gov (United States)

    Deng, Yang; Wu, Meiyin; Zhang, Huiqin; Zheng, Lei; Acosta, Yaritza; Hsu, Tsung-Ta D

    2017-11-01

    Although ferrate(VI) has long been recognized as a multi-purpose treatment agent, previous investigations regarding ferrate(VI) for addressing harmful algal blooms (HABs) impacts in drinking water treatment only focused on a single HAB pollutant (e.g. algal cells or algal toxins). Moreover, the performance of ferrate(VI)-driven coagulation was poorly investigated in comparison with ferrate(VI) oxidation, though it has been widely acknowledged as a major ferrate(VI) treatment mechanism. We herein reported ferrate(VI) as an emerging agent for simultaneous and effective removal of algal cells and toxins in a simulated HAB-impacted water. Ferrate(VI)-driven oxidation enabled algal cell inactivation and toxin decomposition. Subsequently, Fe(III) from ferrate(VI) reduction initiated an in-situ coagulation for cell aggregation. Cell viability (initial 4.26 × 10 4 cells/mL at pH 5.5 and 5.16 × 10 4 cells/mL at pH 7.5) decreased to 0.0% at ≥ 7 mg/L Fe(VI) at pH 5.5 and 7.5, respectively. Cell density and turbidity were dramatically decreased at pH 5.5 once ferrate(VI) doses were beyond their respective threshold levels, which are defined as minimum effective iron doses (MEIDs). However, the particulate removal at pH 7.5 was poor, likely because the coagulation was principally driven by charge neutralization and a higher pH could not sufficiently lower the particle surface charge. Meanwhile, algal toxins (i.e., microcystins) of 3.98 μg/L could be substantially decomposed at either pH. And the greater degradation achieved at pH 5.5 was due to the higher reactivity of ferrate(VI) at the lower pH. This study represents the first step toward the ferrate(VI) application as a promising approach for addressing multiple HABs impacts for water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. HARMFUL ALGAL BLOOMS IN THE MEDITERRANEAN SEA: EFFECTS ON HUMAN HEALTH.

    Directory of Open Access Journals (Sweden)

    Margherita Ferrante

    2013-01-01

    Full Text Available A harmful algal bloom (HAB is defined as a bloom that has deleterious effects on plants, animals or humans. Marine algal toxins are responsible for an array of human illnesses associated with consumption of seafood or exposure to aerosolized toxins. The effects of algal toxins are generally observed as acute intoxications, whereas the environmental health effects of chronic exposure to low levels of algal toxins are, to date, only poorly documented and an emerging issue. Consumption of seafood contaminated with algal toxins can result in five types of seafood poisoning syndromes: paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning, diarrhetic shellfish poisoning and ciguatera fish poisoning. The aim of this paper is to provide an overview on HAB-related issues in the Mediterranean Sea.

  4. Detecting the Killer Toxin (Harmful Algal Blooms)

    International Nuclear Information System (INIS)

    Quevenco, Rodolfo

    2011-01-01

    IAEA is stepping up efforts to help countries understand the phenomenon and use more reliable methods for early detection and monitoring so as to limit harmful algal blooms (HABs) adverse effects on coastal communities everywhere.

  5. Algal Toxins Alter Copepod Feeding Behavior

    Science.gov (United States)

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  6. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  7. Cephalopods as Vectors of Harmful Algal Bloom Toxins in Marine Food Webs

    Directory of Open Access Journals (Sweden)

    Rui Rosa

    2013-09-01

    Full Text Available Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB-related toxins in cephalopods (octopods, cuttlefishes and squids. These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers, saxitoxin (and its derivatives and palytoxin (and palytoxin-like compounds and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin in several tissues, but mainly in the digestive gland (DG—the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6% is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs, these organisms accumulate them at the greatest extent in DG >> kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue reaching 971 μg kg−1 and palytoxin reaching 115 μg kg−1 (the regulatory limit for PlTXs is 30 μg kg−1 in shellfish. Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the

  8. Food safety: developement of new methods for marine algal toxins detection

    OpenAIRE

    Barreras Garcia, Alvaro

    2013-01-01

    2011/2012 SUMMARY Biotoxins produced by harmful algae during their proliferation can be accumulated by filter feeding organisms, such as bivalve shellfish, within their flesh. Furthermore, these toxins gradually are transferred to the higher trophic levels in the food chain, posing a threat to human health, after consumption of contaminated seafood. Filter-feeding invertebrates are organisms in which the toxin accumulation is a well-known phenomenon, especially during harmful algal...

  9. Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native communities

    Science.gov (United States)

    Rosen, Barry H.; St. Amand, Ann

    2015-09-14

    Cyanobacteria can produce toxins and form harmful algal blooms. The Native American and Alaska Native communities that are dependent on subsistence fishing have an increased risk of exposure to these cyanotoxins. It is important to recognize the presence of an algal bloom in a waterbody and to distinguish a potentially toxic harmful algal bloom from a non-toxic bloom. This guide provides field images that show cyanobacteria blooms, some of which can be toxin producers, as well as other non-toxic algae blooms and floating plants that might be confused with algae. After recognition of a potential toxin-producing cyanobacterial bloom in the field, the type(s) of cyanobacteria present needs to be identified. Species identification, which requires microscopic examination, may help distinguish a toxin-producer from a non-toxin producer. This guide also provides microscopic images of the common cyanobacteria that are known to produce toxins, as well as images of algae that form blooms but do not produce toxins.

  10. The Cyanobacteria Assessment Network - Recent Success in Harmful Algal Bloom Detection

    Science.gov (United States)

    Cyanobacteria blooms, which can become harmful algal blooms (HABs), are a huge environmental problem across the United States. They are capable of producing dangerous toxins that threaten the health of humans and animals, quality of drinking water supplies, and the ecosystem in w...

  11. Harmful Algal Blooms (HABs)

    Science.gov (United States)

    ... toxins that may harm or kill fish and marine animals. Humans who eat shellfish contaminated with HAB toxins ... toxins that may harm or kill fish and marine animals. Humans who eat shellfish containing toxins produced by ...

  12. Harmful Algal Blooms and Public Health

    Science.gov (United States)

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels. PMID:27616971

  13. Harmful Algal Blooms and Public Health.

    Science.gov (United States)

    Grattan, Lynn M; Holobaugh, Sailor; Morris, J Glenn

    2016-07-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels.

  14. THE TRPV1 RECEPTOR: THE INTERAGENCY, INTERNATION SYMPOSIUM ON CYANOBACTERIAL HARMFUL ALGAL BLOOMS.

    Science.gov (United States)

    Background and Significance Evidence indicates that the frequency of occurrence of cyanobacterial harmful algal blooms (CHABs) is increasing in spatial and temporal extent in the US and worldwide. Cyanotoxins are among the most potent toxins known, causing death through ...

  15. Harmful algal blooms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.; PrabhaDevi; DeSouza, L.; Verlecar, X.N.; Naik, C.G.

    as harmful algal bloom. Bloom formation is a natural process and it enhances biological productivity, but turns worrisome when caused by toxic species, leading to massive fish mortalities and hazards to human health. Incidences of'red tide' are increasing...

  16. Irish Marine Institute biotoxin, phytoplankton and remote sensing data for Harmful Algal Event monitoring Identification Information (NODC Accession 0000668)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The presence of harmful algal species, which produce toxins, pose a significant threat to public health and coastal aquaculture activities. For example, estimated...

  17. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid

    KAUST Repository

    Seubert, Erica L.

    2012-12-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  18. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid

    KAUST Repository

    Seubert, Erica L.; Trussell, Shane; Eagleton, John; Schnetzer, Astrid; Cetinić, Ivona; Lauri, Phil; Jones, Burton; Caron, David A.

    2012-01-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  19. Oceans and Human Health: Microplastics and Harmful Algal Bloom

    International Nuclear Information System (INIS)

    Sombrito, Elvira Z.

    2015-01-01

    Traditionally the focus of research and concern of environmental studies in the marine system is the impact of human activities in the ocean: the sources, distribution and fate of pollutants resulting from human activities. More recently, there has been recognition of the potential direct impact health can come from eating contaminated seafood, swimming in polluted water, and exposure to toxins from harmful algal blooms. This paper will present two areas of concern that illustrates the fact that the health of the oceans and the health of humans go hand in hand: chemical pollution from plastics in the ocean and harmful alga bloom. The nuclear methodologies than can be useful in these areas will also be introduced. It is hoped that through the recognition of the inter-dependence of the health of both humans and the oceans, efforts will be made to restore and preserve the oceans. (author)

  20. Detection of Harmful Algal Toxins Using the Radioligand Receptor Binding Assay. A Manual of Methods

    International Nuclear Information System (INIS)

    2013-12-01

    Marine ecosystems and their resources play major roles in sustaining human population and economic growth in coastal developing countries. These ecosystems are subjected to various natural and human-made threats. Among these are harmful algal blooms (HABs), which are natural phenomena that are increasingly being reported around the globe and responsible for human poisoning through the accumulation of potent toxins in marine food products. The impact of HABs may be aggravated by a limited knowledge of the microalgal species that cause toxic outbreaks, their biology, their diversity, their life cycles, and by poor capabilities for predicting the outbreaks and assessing the degree of HAB toxicity. Other negative factors are the lack of recognition of the disease, the lack of epidemiological data, the lack of adequate and specific treatment and low public awareness. Owing to the profound public health and socioeconomic impact of HABs, many countries have developed and implemented HAB related monitoring programmes and regulatory frameworks. Following a request made by the Philippines during the IAEA General Conference in 1997 to identify possible meaures to address the impacts of HABs, the IAEA initiated related Technical Cooperation projects to assist Member States in strengthening their capacities for prevention, management and mitigation of health and socioeconomic impacts of HABs. Since 1998, the IAEA and the National Oceanic and Atmospheric Administration (NOAA) have undertaken concerted actions to develop and to validate a radioligand based method, the receptor binding assay (RBA). The RBA is now recognized by the AOAC International as an official method for the detection of paralytic shellfish poisoning toxins. Within the IAEA Technical Cooperation programme, the RBA methodology was transferred to over 23 Member States in Africa, Asia, the Pacific region and Latin America. Transfer of knowledge and relevant equipment has enabled the development and strengthening

  1. Climate Adaptation and Harmful Algal Blooms

    Science.gov (United States)

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  2. Marine algal toxins: origins, health effects, and their increased occurrence

    International Nuclear Information System (INIS)

    Van Dolah, Frances M.

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. (Author)

  3. Potentially harmful microalgae and algal blooms in a eutrophic estuary in Turkey

    Directory of Open Access Journals (Sweden)

    S. TAS

    2015-07-01

    Full Text Available Distribution of potentially harmful microalgae and algal blooms were investigated at monthly and weekly time scales between October 2009 and September 2010 in the Golden Horn, a eutrophic estuary in the Sea of Marmara (Turkey. Several physical and chemical parameters were analysed together with phytoplankton composition and abundance. A total number of 23 potentially harmful and/or bloom-forming microalgae (14 dinoflagellates, 4 diatoms and 5 phytoflagellates were identified throughout this study period, of which nine taxa have been confirmed to be toxic elsewhere in the world. Most harmful species and algal blooms were observed in late spring and summer particularly in the middle and upper estuaries, and nine taxa formed dense and successive algal blooms causing water discoloration. Nutrient concentrations increased significantly from the lower to the upper estuary. Additionally, high organic matter loads in the upper estuary could also have benefited by mixotrophic species. The increasing number of potentially harmful and bloom-forming species and algal blooms indicated that the GHE is a potential risk area for future HABs.

  4. Harmful algal bloom smart device application: using image analysis and machine learning techniques for classification of harmful algal blooms

    Science.gov (United States)

    Northern Kentucky University and the U.S. EPA Office of Research Development in Cincinnati Agency are collaborating to develop a harmful algal bloom detection algorithm that estimates the presence of cyanobacteria in freshwater systems by image analysis. Green and blue-green alg...

  5. Evaluation of Harmful Algal Bloom Outreach Activities

    Directory of Open Access Journals (Sweden)

    Richard Weisman

    2007-12-01

    Full Text Available With an apparent increase of harmful algal blooms (HABs worldwide,healthcare providers, public health personnel and coastal managers are struggling toprovide scientifically-based appropriately-targeted HAB outreach and education. Since1998, the Florida Poison Information Center-Miami, with its 24 hour/365 day/year freeAquatic Toxins Hotline (1-888-232-8635 available in several languages, has received over 25,000 HAB-related calls. As part of HAB surveillance, all possible cases of HAB-relatedillness among callers are reported to the Florida Health Department. This pilot studyevaluated an automated call processing menu system that allows callers to access bilingualHAB information, and to speak directly with a trained Poison Information Specialist. Themajority (68% of callers reported satisfaction with the information, and many provided specific suggestions for improvement. This pilot study, the first known evaluation of use and satisfaction with HAB educational outreach materials, demonstrated that the automated system provided useful HAB-related information for the majority of callers, and decreased the routine informational call workload for the Poison Information Specialists, allowing them to focus on callers needing immediate assistance and their healthcare providers. These results will lead to improvement of this valuable HAB outreach, education and surveillance tool. Formal evaluation is recommended for future HAB outreach and educational materials.

  6. Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    Science.gov (United States)

    Twiner, Michael J.; Fire, Spencer; Schwacke, Lori; Davidson, Leigh; Wang, Zhihong; Morton, Steve; Roth, Stephen; Balmer, Brian; Rowles, Teresa K.; Wells, Randall S.

    2011-01-01

    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health. PMID:21423740

  7. Concurrent exposure of bottlenose dolphins (Tursiops truncatus to multiple algal toxins in Sarasota Bay, Florida, USA.

    Directory of Open Access Journals (Sweden)

    Michael J Twiner

    Full Text Available Sentinel species such as bottlenose dolphins (Tursiops truncatus can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA, the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA. Over a ten-year study period (2000-2009 we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009 with 36% of all animals testing positive for brevetoxin (n = 118 and 53% positive for DA (n = 83 with several individuals (14% testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001 and eosinophil (p<0.001 counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.

  8. Monitoring of harmful algal blooms along the Norwegian coast using ...

    African Journals Online (AJOL)

    A Norwegian monitoring system for harmful algal blooms, consisting of an Observer Network, the State Food Hygiene Control Agency, the Oceanographic Company of Norway, the Institute of Marine Research and the Directorate for Fisheries, is reviewed. Potentially harmful algae on the Norwegian coast are found primarily ...

  9. Harmful algal blooms of the Southern Benguela current: A review ...

    African Journals Online (AJOL)

    Harmful algal blooms of the Southern Benguela current: A review and appraisal of monitoring from 1989 to 1997. ... The Benguela upwelling system is subjected to blooms of harmful and toxic algae, the incidence and consequences of which are documented here. Red tides are common and usually attributed to members of ...

  10. Marine harmful algal blooms, human health and wellbeing

    DEFF Research Database (Denmark)

    Berdalet, Elisa; Fleming, Lora E.; Gowen, Richard

    2016-01-01

    cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments...... maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans...

  11. Detection and effects of harmful algal toxins in Scottish harbour seals and potential links to population decline.

    Science.gov (United States)

    Jensen, Silje-Kristin; Lacaze, Jean-Pierre; Hermann, Guillaume; Kershaw, Joanna; Brownlow, Andrew; Turner, Andrew; Hall, Ailsa

    2015-04-01

    Over the past 15 years or so, several Scottish harbour seal (Phoca vitulina) populations have declined in abundance and several factors have been considered as possible causes, including toxins from harmful algae. Here we explore whether a link could be established between two groups of toxins, domoic acid (DA) and saxitoxins (STXs), and the decline in the harbour seal populations in Scotland. We document the first evidence that harbour seals are exposed to both DA and STXs from consuming contaminated fish. Both groups of toxins were found in urine and faeces sampled from live captured (n = 162) and stranded animals (n = 23) and in faecal samples collected from seal haul-out sites (n = 214) between 2008 and 2013. The proportion of positive samples and the toxins levels measured in the excreta were significantly higher in areas where harbour seal abundance is in decline. There is also evidence that DA has immunomodulatory effects in harbour seals, including lymphocytopenia and monocytosis. Scottish harbour seals are exposed to DA and STXs through contaminated prey at potentially lethal levels and with this evidence we suggest that exposure to these toxins are likely to be important factors driving the harbour seal decline in some regions of Scotland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms (SETAC presentation)

    Science.gov (United States)

    Reports of toxic cyanobacterial blooms, also known as Harmful Algal Blooms (HABS) have increased drastically in recent years. HABS impact human health from causing mild allergies to liver damage and death. The Ecological Stewardship Institute (ESI) at Northern Kentucky Universi...

  13. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    Energy Technology Data Exchange (ETDEWEB)

    May, Nathaniel W. [Department; Olson, Nicole E. [Department; Panas, Mark [Department; Axson, Jessica L. [Department; Tirella, Peter S. [Department; Kirpes, Rachel M. [Department; Craig, Rebecca L. [Department; Gunsch, Matthew J. [Department; China, Swarup [William; Laskin, Alexander [William; Ault, Andrew P. [Department; Department; Pratt, Kerri A. [Department; Department

    2017-12-20

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSA autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.

  14. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.; Tabatabai, S. Assiyeh Alizadeh; Anderson, Donald M.; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2015-01-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  15. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  16. Biological control of Microcystis dominated harmful algal blooms ...

    African Journals Online (AJOL)

    Freshwater resources are now threatened by the presence and increase of harmful algal blooms (HAB) all over the world. The HABs are sometimes a direct result of anthropogenic pollution entering water bodies, such as partially treated nutrient-rich effluents and the leaching of fertilisers and animal wastes. The impact of ...

  17. Satellite monitoring of cyanobacterial harmful algal bloom ...

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of exposure to toxins in both recreational waters and drinking source waters. Successful cyanoHAB assessment by satellites may provide a first-line of defense indicator for human and ecological health protection. In this study, assessment methods were developed to determine the utility of satellite technology for detecting cyanoHAB occurrence frequency at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent Sentinel-3 Ocean and Land Colour Imager (OLCI) launched in 2016. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, there were 275,897 lakes and reservoirs greater than 1 hectare in the 48 U.S. states. Results from this evaluation show that 5.6 % of waterbodies were resolvable by satellites with 300 m single pixel resolution and 0.7 % of waterbodies were resolvable when a 3x3 pixel array was applied based on minimum Euclidian distance from shore. Satellite data was also spatially joined to US public water surface intake (PWSI) locations, where single pixel resolution resolved 57% of PWSI and a 3x3 pixel array resolved 33% of

  18. Possible importance of algal toxins in the Salton Sea, California

    Science.gov (United States)

    Reifel, K.M.; McCoy, M.P.; Rocke, T.E.; Tiffany, M.A.; Hurlbert, S.H.; Faulkner, D.J.

    2002-01-01

    In response to wildlife mortality including unexplained eared grebe (Podiceps nigricollis) die-off events in 1992 and 1994 and other mortality events including large fish kills, a survey was conducted for the presence of algal toxins in the Salton Sea. Goals of this survey were to determine if and when algal toxins are present in the Salton Sea and to describe the phytoplankton composition during those times. A total of 29 samples was collected for toxicity analysis from both nearshore and midlake sites visited biweekly from January to December 1999. Dinoflagellates and diatoms dominated most samples, but some were dominated by a prymnesiophyte (Pleurochrysis pseudoroscoffensis) or a raphidophyte (Chattonella marina). Several types of blooms were observed and sampled. The dinoflagellate Gyrodinium uncatenum formed an extensive, dense (up to 310 000 cells ml−1) and long-lasting bloom during the winter in 1999. A coccolithophorid, Pleurochrysis pseudoroscoffensis, occurred at high densities in surface films and nearshore areas during the spring and summer of 1999. These surface films also contained high densities of one or two other species (an unidentified scrippsielloid, Heterocapsa niei, Chattonella marina). Localized blooms were also observed in the Salton Sea. An unknown small dinoflagellate reached high densities (110 000 cells ml−1) inside Varner Harbor, and an unidentified species of Gymnodinium formed a dense (270 000 cells ml−1) band along part of the southern shoreline during the summer. Three species known to produce toxins in other systems were found. Protoceratium reticulatum (=Gonyaulax grindleyi) and Chattonella marina were found in several samples taken during summer months, and Prorocentrum minimum was found in low densities in several samples. Extracts of most samples, including those containing known toxic species, showed a low level (Salton Sea, no evidence gathered in this study suggests that algal toxins are present

  19. Physical processes contributing to harmful algal blooms in Saldanha ...

    African Journals Online (AJOL)

    Since 1994, disruption of harvesting as a result of the presence of harmful algal species has been a regular late-summer phenomenon. Toxic blooms that are ultimately advected into the bay develop on the continental shelf to the north between 32°S and St Helena Bay, a region characterized by favourable conditions for ...

  20. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    Science.gov (United States)

    Wells, Mark L.; Trainer, Vera L.; Smayda, Theodore J.; Karlson, Bengt S.O.; Trick, Charles G.; Kudela, Raphael M.; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M.; Cochlan, William P.

    2015-01-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB “best practices” manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic

  1. Biodegradation of polyether algal toxins--isolation of potential marine bacteria.

    Science.gov (United States)

    Shetty, Kateel G; Huntzicker, Jacqueline V; Rein, Kathleen S; Jayachandran, Krish

    2010-12-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.

  2. A neurophysiological method of rapid detection and analysis of marine algal toxins

    DEFF Research Database (Denmark)

    Kerr, DS; Bødtkjer, Donna Briggs; Saba, HI

    1999-01-01

    a robust, reversible increase in amplitude mic spikes, and the appearance of multiple spikes (i.e., epileptiform activity) within minutes of toxin wash-in. Other notable features of the domoic acid signature included a significant decrease in amplitude of the field EPSPs, and a complete absence of effect...... responsive fashion at toxin concentrations of 25-200 nM, and tests of naturally contaminated shellfish confirmed the utility of this assay as a screening method for PSP. Our findings suggest that the in vitro hippocampal slice preparation has potential in the detection and analysis of three marine algal...

  3. Review and Evaluation of Reservoir Management Strategies for Harmful Algal Blooms

    Science.gov (United States)

    2017-07-28

    Abstract The purpose of this report is to review and evaluate available infor- mation regarding reservoir operation strategies for management of...12 3 Operations Management Examples ............................................................................ 16...report is to review and evaluate available information regarding reservoir operation strategies for management of harmful algal ERDC/EL TR-17-11 2

  4. Cyanobacteria Toxin and Cell Propagation through Lake Erie Treatment Facilities - proceedings

    Science.gov (United States)

    Harmful algal blooms (HABs), and their associated toxins, in fresh water lakes and reservoirs are drawing the attention of utilities and state regulators nation-wide. Recognizing the potential health and economic consequences, the US Environmental Protection Agency, in partnersh...

  5. Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea.

    Science.gov (United States)

    Jiang, Tao; Liu, Lei; Li, Yang; Zhang, Jing; Tan, Zhijun; Wu, Haiyan; Jiang, Tianjiu; Lu, Songhui

    2017-09-01

    The occurrence and seasonal variations of marine algal toxins in phytoplankton and oyster samples in Daya Bay (DYB), South China Sea were investigated. Two Dinophysis species, namely, D. caudata and D. acuminata complex, were identified as Okadaic acid (OA)/pectenotoxin (PTX) related species. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 2.04-14.47 pg PTX2 per cell was the predominant toxin in single-cell isolates of D. caudata. D. acuminata was not subjected to toxin analysis. The occurrence of OAs in phytoplankton concentrates of net-haul sample coincided with the presence of D. accuminata complex, suggesting that this species is most likely an OA producer in this sea area. OA, dinophysistoxins-1 (DTX1), PTX2, PTX2sa, gymnodimine (GYM), homoyessotoxin (homoYTX), and domoic acid (DA) demonstrated positive results in net haul samples. To our best knowledge, this paper is the first to report the detection of GYM, DA, and homoYTX in phytoplankton samples in Chinese coastal waters. Among the algal toxins, GYM demonstrated the highest frequency of positive detections in phytoplankton concentrates (13/17). Five compounds of algal toxins, including OA, DTX1, PTX2, PTX2sa, and GYM, were detected in oyster samples. DA and homoYTX were not detected in oysters despite of positive detections for both in the phytoplankton concentrates. However, neither the presence nor absence of DA in oysters can be determined because extraction conditions with 100% methanol used to isolate toxins from oysters (recommended by the EU-Harmonised Standard Operating Procedure, 2015) would likely be unsuitable for this water-soluble toxin. In addition, transformation of DA during the digestion process of oysters may also be involved in the negative detections of this toxin. GYM exhibited the highest frequency of positive results in oysters (14/17). OAs were only detected in the hydrolyzed oyster samples. The detection rates of PTX and PTX2sa in

  6. Fibre optic microarrays for the detection and enumeration of harmful ...

    African Journals Online (AJOL)

    Harmful algal blooms (HABs) are a serious threat to coastal resources, causing impacts ranging from the contamination of seafood products with potent toxins to mortalities of wild and farmed fish and other marine animals. As the threat from HABs has expanded, new approaches have become necessary, including ...

  7. Assessment of harmful algal species using different approaches: the case study of the Sardinian coasts

    Directory of Open Access Journals (Sweden)

    C.T. Satta

    2014-04-01

    Full Text Available The presence and distribution of harmful algal species were investigated along the coasts of Sardinia in the summer of 2012. Fourteen potentially noxious taxa were identified at 74 beaches. The majority of the recovered taxa were potentially toxic and/or high biomass producers. Alexandrium taylorii, Gymnodinium instriatum, and Ostreopsis cf. ovata were the most frequent and abundant taxa, although Barrufeta bravensis reached the highest density (4.4 × 106 cells L−1. Barrufeta bravensis, A. taylorii, and G. instriatum were responsible for intense water discoloration at two of the beaches sampled. Polymerase chain reaction (PCR analyses supported the identification of several taxa and decisively identified B. bravensis. PCR assays increased the information available on the species distributions. The locations studied were heterogeneous in their prevailing environmental conditions and their morphodynamic profiles. Statistical analyses indicated that the distributions of harmful algal species correlated with gravel and medium-fine sand substrata. These data provide substantial knowledge on the distributions of harmful algal species on beaches, which have been poorly studied on a global scale. The apparent relationship between noxious species and grain size suggests that vegetative cells may be recruited from cyst beds in beach sediments.

  8. Using Multi-media Modeling to Investigate Conditions Leading to Harmful Algal Blooms

    Science.gov (United States)

    Lake Erie is the twelfth largest lake in the world and provides drinking water to over 11 million people in the United States. 22,720 square miles of varying landcover (e.g., urban, agriculture) drain directly into Lake Erie. Harmful algal blooms (HABs) have historically been an ...

  9. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016).

    Science.gov (United States)

    León-Muñoz, Jorge; Urbina, Mauricio A; Garreaud, René; Iriarte, José Luis

    2018-01-22

    A harmful algal bloom (HAB) of the raphidophyta alga Pseudochattonella cf. verruculosa during the 2016 austral summer (February-March) killed nearly 12% of the Chilean salmon production, causing the worst mass mortality of fish and shellfish ever recorded in the coastal waters of western Patagonia. The HAB coincided with a strong El Niño event and the positive phase of the Southern Annular Mode that altered the atmospheric circulation in southern South America and the adjacent Pacific Ocean. This led to very dry conditions and higher than normal solar radiation reaching the surface. Using time series of atmospheric, hydrologic and oceanographic data we show here that an increase in surface water temperature and reduced freshwater input resulted in a weakening of the vertical stratification in the fjords and sounds of this region. This allowed the advection of more saline and nutrient-rich waters, ultimately resulting in an active harmful algal bloom in coastal southern Chile.

  10. Selective algicidal action of peptides against harmful algal bloom species.

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Park

    Full Text Available Recently, harmful algal bloom (HAB, also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal

  11. Rachael Carson Lecture - Algal Toxins in the Deep Blue Sea: an Environmental Concern?

    Science.gov (United States)

    Silver, M. W.; Bargu, S.

    2008-05-01

    Many land plants are known to possess toxins, presumably for grazer deterrence, whereas toxins in marine phytoplankton are a much rarer phenomenon, particularly in open ocean (blue water) environments. Several dozen phytoplankton species, frequently dinoflagellates but also some diatoms, form "harmful algal blooms" nearshore: here their toxins can contaminate filter-feeding shellfish resulting in poisoning "syndromes" when humans consume the tainted shellfish. The present rise in such coastal events is a likely consequence of human activities. In blue water, open ocean environments, the filamentous cyanobacterium Trichodesmium (a blue green alga) is one of the few bloom-forming toxin producers and hosts a consortium of microorganisms that may be partially immune to its toxins. Pseudo-nitzschia, a ubiquitous genus of diatoms recently has been shown to include coastal species that produce domoic acid (DA), a neurotoxin that passes through the food web, sometimes with resulting deaths of marine birds and mammals. Oceanic species of Pseudo-nitzschia also exist but are less well known, and DA has not yet been found in them. Here we review some general features of toxic marine phytoplankton, recent studies on DA in coastal ecosystems and describe some of our findings on blue water Pseudo-nitzschia. We will summarize laboratory experiments that show complex patterns of DA retention and release into the water when Fe is added to coastal Pseudo-nitzschia cultures. In oceanic species, equivalent experiments on cell physiology are limited and the natural species and abundance patterns poorly known. Here we present our recent discovery that DA occurs in oceanic Pseudo-nitzschia and review evidence from the literature that this genus may be preferentially enhanced when iron is added to HNLC (high nutrient, low chlorophyll) waters: areas where nitrogen and phosphorus are not yet depleted, but iron concentrations and phytoplankton biomass are low. The rapid growth of these DA

  12. Impact of Harmful Algal Blooms on Several Lake Erie Drinking Water Treatment Plants

    Science.gov (United States)

    Recent events in Ohio have demonstrated the challenge treatment facilities face in providing safe drinking water when encountering extreme harmful algal bloom (HAB) events. Over the last two years the impact of HAB-related microcystins on several drinking water treatment facilit...

  13. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina

    Directory of Open Access Journals (Sweden)

    Daniel Wiltsie

    2018-02-01

    Full Text Available The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions, but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β-N-methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT] revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study’s findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed.

  14. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina.

    Science.gov (United States)

    Wiltsie, Daniel; Schnetzer, Astrid; Green, Jason; Vander Borgh, Mark; Fensin, Elizabeth

    2018-02-24

    The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β- N -methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study's findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed.

  15. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina

    Science.gov (United States)

    Wiltsie, Daniel; Schnetzer, Astrid; Green, Jason; Vander Borgh, Mark; Fensin, Elizabeth

    2018-01-01

    The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β-N-methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study’s findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed. PMID:29495289

  16. Isolation and Characterization of a Double Stranded DNA Megavirus Infecting the Toxin-Producing Haptophyte Prymnesium parvum

    Directory of Open Access Journals (Sweden)

    Ben A. Wagstaff

    2017-03-01

    Full Text Available Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms globally, leading to large-scale fish kills that have severe ecological and economic implications. For the model haptophyte, Emiliania huxleyi, it has been shown that large dsDNA viruses play an important role in regulating blooms and therefore biogeochemical cycling, but much less work has been done looking at viruses that infect P. parvum, or the role that these viruses may play in regulating harmful algal blooms. In this study, we report the isolation and characterization of a lytic nucleo-cytoplasmic large DNA virus (NCLDV collected from the site of a harmful P. parvum bloom. In subsequent experiments, this virus was shown to infect cultures of Prymnesium sp. and showed phylogenetic similarity to the extended Megaviridae family of algal viruses.

  17. Cyanobacteria of the 2016 Lake Okeechobee and Okeechobee Waterway harmful algal bloom

    Science.gov (United States)

    Rosen, Barry H.; Davis, Timothy W.; Gobler, Christopher J.; Kramer, Benjamin J.; Loftin, Keith A.

    2017-05-31

    The Lake Okeechobee and the Okeechobee Waterway (Lake Okeechobee, the St. Lucie Canal and River, and the Caloosahatchee River) experienced an extensive harmful algal bloom within Lake Okeechobee, the St. Lucie Canal and River and the Caloosahatchee River in 2016. In addition to the very visible bloom of the cyanobacterium Microcystis aeruginosa, several other cyanobacteria were present. These other species were less conspicuous; however, they have the potential to produce a variety of cyanotoxins, including anatoxins, cylindrospermopsins, and saxitoxins, in addition to the microcystins commonly associated with Microcystis. Some of these species were found before, during, and 2 weeks after the large Microcystis bloom and could provide a better understanding of bloom dynamics and succession. This report provides photographic documentation and taxonomic assessment of the cyanobacteria present from Lake Okeechobee and the Caloosahatchee River and St. Lucie Canal, with samples collected June 1st from the Caloosahatchee River and Lake Okeechobee and in July from the St. Lucie Canal. The majority of the images were of live organisms, allowing their natural complement of pigmentation to be captured. The report provides a digital image-based taxonomic record of the Lake Okeechobee and the Okeechobee Waterway microscopic flora. It is anticipated that these images will facilitate current and future studies on this system, such as understanding the timing of cyanobacteria blooms and their potential toxin production.

  18. Fish Kill Incidents and Harmful Algal Blooms in Omani Waters

    Directory of Open Access Journals (Sweden)

    Hamed Mohammed Al Gheilani

    2011-01-01

    Full Text Available Red tide, one of the harmful algal blooms (HABs is a natural ecological phenomenon and often this event is accompanied by severe impacts on coastal resources, local economies, and public health. The occurrence of red tides has become more frequent in Omani waters in recent years. Some of them caused fish kill, damaged fishery resources and mariculture, threatened the marine environment and the osmosis membranes of desalination plants. However, a number of them have been harmless. The most common dinoflagellate Noctiluca scintillans is associated with the red tide events in Omani waters. Toxic species like Karenia selliformis, Prorocentrum arabianum, and Trichodesmium erythraeum have also been reported recently. Although red tides in Oman have been considered a consequence of upwelling in the summer season (May to September, recent phytoplankton outbreaks in Oman are not restricted to summer. Frequent algal blooms have been reported during winter (December to March. HABs may have contributed to hypoxia and/or other negative ecological impacts.

  19. Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment

    Science.gov (United States)

    Cyanobacterial harmful algal blooms have serious adverse effects on human and environmental health. Herein, we develop a modeling framework that predicts the effect of climate change on cyanobacteria concentrations in reservoirs in the contiguous U.S. The framework, which uses cl...

  20. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of expos...

  1. Harmful algal blooms discovered during the Mote Monthly transect cruises, 1998 and 1999 (NODC Accession 0000532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Harmful algal blooms of the toxic dinoflagellate, Karenia brevis, have caused massive fish kills in the Gulf of Mexico since the 1500's, with most occurrences on the...

  2. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016)

    OpenAIRE

    León-Muñoz, Jorge; Urbina, Mauricio A.; Garreaud, René; Iriarte, José Luis

    2018-01-01

    A harmful algal bloom (HAB) of the raphidophyta alga Pseudochattonella cf. verruculosa during the 2016 austral summer (February-March) killed nearly 12% of the Chilean salmon production, causing the worst mass mortality of fish and shellfish ever recorded in the coastal waters of western Patagonia. The HAB coincided with a strong El Niño event and the positive phase of the Southern Annular Mode that altered the atmospheric circulation in southern South America and the adjacent Pacific Ocean. ...

  3. Biomanipulation with quagga mussels (Dreissena rostriformis bugensis) to control harmful algal blooms in eutrophic urban ponds

    NARCIS (Netherlands)

    Waajen, Guido W. A. M.; Van Bruggen, Niek C. B.; Pires, L. Miguel Dionisio; Lengkeek, Wouter; Lurling, Miquel

    Many urban ponds in The Netherlands and other countries suffer from eutrophication, resulting in harmful algal blooms which are often dominated by cyanobacteria. A sufficient reduction of nutrients, as prerequisite to mitigate cyanobacterial blooms in urban ponds, is not always feasible. Water

  4. Biomanipulation with quagga mussels (Dreissena rostriformis bugensis) to control harmful algal blooms in eutrophic urban ponds

    NARCIS (Netherlands)

    Waajen, Guido W.A.M.; Bruggen, Van Niek C.B.; Pires, Miguel Dionisio L.; Lengkeek, Wouter; Lurling, Miguel

    2016-01-01

    Many urban ponds in The Netherlands and other countries suffer from eutrophication, resulting in harmful algal blooms which are often dominated by cyanobacteria. A sufficient reduction of nutrients, as prerequisite to mitigate cyanobacterial blooms in urban ponds, is not always feasible. Water

  5. Nutrients and toxin producing phytoplankton control algal blooms - a spatio-temporal study in a noisy environment.

    Science.gov (United States)

    Sarkar, Ram Rup; Malchow, Horst

    2005-12-01

    A phytoplankton-zooplankton prey-predator model has been investigated for temporal, spatial and spatio-temporal dissipative pattern formation in a deterministic and noisy environment, respectively. The overall carrying capacity for the phytoplankton population depends on the nutrient level. The role of nutrient concentrations and toxin producing phytoplankton for controlling the algal blooms has been discussed. The local analysis yields a number of stationary and/or oscillatory regimes and their combinations. Correspondingly interesting is the spatio-temporal behaviour, modelled by stochastic reaction-diffusion equations. The present study also reveals the fact that the rate of toxin production by toxin producing phytoplankton (TPP) plays an important role for controlling oscillations in the plankton system. We also observe that different mortality functions of zooplankton due to TPP have significant influence in controlling oscillations, coexistence, survival or extinction of the zoo-plankton population. External noise can enhance the survival and spread of zooplankton that would go extinct in the deterministic system due to a high rate of toxin production.

  6. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing..

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  7. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Deon Van der Merwe

    2015-03-01

    Full Text Available Harmful algal blooms (HABs degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV. Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.

  8. Using Ocean Color Satellite Data to Estimate Economics Benefits Associated with Monitoring and Preventing Harmful Algal Blooms

    Science.gov (United States)

    This presentation describes preliminary work that is underway that will illustrate the use of ocean land colour instrument data (Sentinel-3 & Landsat) to detect and monitor harmful algal blooms (HABS) in freshwater lakes for two types of economic analyses. This project is a j...

  9. Effectiveness of an anti-algal compound in eliminating an aquatic unicellular harmful algal Phaeocystis globosa

    Directory of Open Access Journals (Sweden)

    Huajun eZhang

    2016-04-01

    Full Text Available Phaeocystis globosa blooms can have negative effects on higher trophic levels in the marine ecosystem and consequently influence human activities. Strain KA22, identified as the bacterium Hahella, was isolated from coastal surface water and used to control P. globosa growth. A methanol extract from the bacteral cells showed strong algicidal activity. After purification, the compound showed a similar structure to prodigiosin when identified with Q-Exactive Orbitrap MS and nuclear magnetic resonance spectra. The compound showed algicidal activity against P. globosa with a 50% Lethal Dose (LD50 of 2.24 μg/mL. The prodigiosin was stable under heat and acid environment, and it could be degraded under alkaline environment and natural light condition. The growth rates of strain KA22 was fast in 2216E medium and the content of prodigiosin in this medium was more than 70 μg/mL after 16 h incubation. The compound showed particularly strong algicidal activity against Prorocentrum donghaiense, P. globosa and Heterosigma akashiwo, but having little effect on three other phytoplankton species tested. The results of our research could increase our knowledge on harmful algal bloom control compound and lead to further study on the mechanisms of the lysis effect on harmful algae.

  10. Dinoflagellate community structure from the stratified environment of the Bay of Bengal, with special emphasis on harmful algal bloom species

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, R.K.; Hegde, S.; Anil, A.C.

    the total marine phytoplankton species, approximately 7% are capable of forming algal blooms (red tides) (Sournia 1995); dinoflagellates are the most important group producing toxic and harmful algal blooms (Steidinger 1983, 1993; Anderson 1989... Taxonomic identification revealed 134 species of dinoflagellates in surface waters of the BOB during the observation period (Table 2). Further grouping of these identified species based on their nutritional mode, revealed 40 autotrophic, 50 mixotrophic...

  11. Harmful algae records in Venice lagoon and in Po River Delta (northern Adriatic Sea, Italy).

    Science.gov (United States)

    Facca, Chiara; Bilaničovà, Dagmar; Pojana, Giulio; Sfriso, Adriano; Marcomini, Antonio

    2014-01-01

    A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide "updated reference conditions" for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance.

  12. UV-Visible Spectroscopic Method and Models for Assessment and Monitoring of Harmful Algal Blooms

    Science.gov (United States)

    Mitchell, B. Greg

    2000-01-01

    The development of an enhanced predictive and early warning capability for the occurrence and impact of harmful algal blooms (HABs) would be of great benefit to coastal communities. A critical issue for early detection and monitoring of HABs is the need to detect harmful algal species within a mixed-species phytoplankton assemblage. Possession of UV-absorbing compounds called mycosporine-like amino acids (MAAs) may be one factor that allows HAB species to out-compete their phytoplankton neighbors. Possession of MAAs, which we believe can be inferred from strong UV-absorption signals in phytoplankton absorption coefficients, can be used as a flag for potential HAB outbreak. The goal of this project was to develop a solar simulating UV-visible incubator to grow HAB dinoflagellates, to begin MAA analysis of samples collected on global cruises, and to carry out initial experiments on HAB dinoflagellate species in pure culture. Our scientific objectives are to quantify MAA production and spectral induction mechanisms in HAB species, to characterize spectral absorption of MAAs, and to define the ecological benefit of MAAs (i.e. photoprotection). Data collected on cruises to the global oceans will be used to parameterize phytoplankton absorption in the UV region, and this parameterization could be incorporated into existing models of seawater optical properties in the UV spectral region. Data collected in this project were used for graduate fellowship applications by Elizabeth Frame. She has been awarded an EPA STAR fellowship to continue the work initiated by this project.

  13. Insights into toxic Prymnesium parvum blooms: the role of sugars and algal viruses.

    Science.gov (United States)

    Wagstaff, Ben A; Hems, Edward S; Rejzek, Martin; Pratscher, Jennifer; Brooks, Elliot; Kuhaudomlarp, Sakonwan; O'Neill, Ellis C; Donaldson, Matthew I; Lane, Steven; Currie, John; Hindes, Andrew M; Malin, Gill; Murrell, J Colin; Field, Robert A

    2018-04-17

    Prymnesium parvum is a toxin-producing microalga that causes harmful algal blooms globally, which often result in large-scale fish kills that have severe ecological and economic implications. Although many toxins have previously been isolated from P. parvum , ambiguity still surrounds the responsible ichthyotoxins in P. parvum blooms and the biotic and abiotic factors that promote bloom toxicity. A major fish kill attributed to P. parvum occurred in Spring 2015 on the Norfolk Broads, a low-lying set of channels and lakes (Broads) found on the East of England. Here, we discuss how water samples taken during this bloom have led to diverse scientific advances ranging from toxin analysis to discovery of a new lytic virus of P. parvum , P. parvum DNA virus (PpDNAV-BW1). Taking recent literature into account, we propose key roles for sialic acids in this type of viral infection. Finally, we discuss recent practical detection and management strategies for controlling these devastating blooms. © 2018 The Author(s).

  14. Harmful algal blooms and Vibrio spp. association in fishing and marine farming areas of mollusk bivalves in Sechura and Pisco bays, Peru

    Directory of Open Access Journals (Sweden)

    Rita Orozco

    2017-04-01

    Full Text Available Between February 2010 and May 2014, 22 surveys in Pisco and 16 in Sechura were conducted; both are major areas for shellfish production and mariculture in Peru. The incidence of Vibrio in seawater was monitored during algal blooms and in their absence. Environmental parameters such as temperature and nutrients were measured. In Sechura, Pseudo-nitzschia seriata and Protoperidinium depressum caused algal blooms and were dominant throughout the evaluation period. The temperatures in this area ranged from 21.8 to 25.3 °C. In Pisco, the harmful algal bloom-forming Akashiwo sanguinea, Messodinium rubrum, and Prorocentrum minimum and the dinoflagellate Cochlodinium polikrykoides were most prevalent. Harmful algal blooms occurred when temperatures were between 17.1 and 23.3 °C, with phosphates ranging 1.22 - 6.85 µM and nitrates 0.15 - 7.85 µM. In May 2012, the dinoflagellate Alexandrium peruvianum caused an algal bloom, with temperatures ranging 18.0 to 23.2 °C, phosphate values from 0.73 to 11.56 µM, and nitrates from 0.76 to 9.81 µM. Coliforms were low, < 2 - 23 MPN/100 ml, in both bays throughout the study period. Vibrio alginolyticus was the dominant Vibrio spp. predominated in both bays, while V. vulnificus and V. parahaemolyticus were detected in Pisco, where warmer sea temperatures are common and severe infections cases by seafood ingestion has been associated with a pathogen V. parahaemolyticus.

  15. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    Science.gov (United States)

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  16. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    Science.gov (United States)

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  17. Harmful Algal Bloom-Associated Illnesses in Humans and Dogs Identified Through a Pilot Surveillance System - New York, 2015.

    Science.gov (United States)

    Figgatt, Mary; Hyde, James; Dziewulski, David; Wiegert, Eric; Kishbaugh, Scott; Zelin, Grant; Wilson, Lloyd

    2017-11-03

    Cyanobacteria, also known as blue-green algae, are photosynthetic, aquatic organisms found in fresh, brackish, and marine water around the world (1). Rapid proliferation and accumulation of potentially toxin-producing cyanobacteria characterize one type of harmful algal bloom (HAB). HABs have the potential to cause illness in humans and animals (2,3); however, the epidemiology of these illnesses has not been well characterized. Statewide in 2015, a total of 139 HABs were identified in New York, 97 (70%) of which were confirmed through laboratory analysis; 77 independent beach closures were ordered at 37 beaches on 20 different bodies of water. To better characterize HAB-associated illnesses, during June-September 2015, the New York State Department of Health (NYSDOH) implemented a pilot surveillance system in 16 New York counties. Activities included the collection of data from environmental HAB reports, illness reports, poison control centers, and syndromic surveillance, and increased outreach to the public, health care providers, and veterinarians. During June-September, 51 HAB-associated illnesses were reported, including 35 that met the CDC case definitions*; 32 of the cases occurred in humans and three in dogs. In previous years, New York never had more than 10 HAB-associated illnesses reported statewide. The pilot surveillance results from 16 counties during a 4-month period suggest that HAB-associated illnesses might be more common than previously reported.

  18. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    Science.gov (United States)

    Klisch, Manfred; Häder, Donat-P.

    2008-01-01

    Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences. PMID:18728764

  19. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    Directory of Open Access Journals (Sweden)

    Donat P. Häder

    2008-05-01

    Full Text Available Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporinelike amino acids (MAAs. The latter form a group of water-soluble, low molecular-weight (generally < 400 compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences.

  20. Algal Production of Extra- and Intra-Cellular Polysaccharides as an Adaptive Response to the Toxin Crude Extract of Microcystis Aeruginosa

    Directory of Open Access Journals (Sweden)

    Mostafa Mohamed El-Sheekh

    2012-11-01

    Full Text Available This is an investigation concerned with studying the possible adaptive response of four different unicellular algae, Anabaena PCC 7120, Oscillatoria angustissima, Scendesmus obliquus and Chlorella vulgaris, to the toxin of Microcystis aeruginosa (Kützing. Theeffects of four different concentrations, 25, 50, 100 and 200 μg mL-1 of microcystins crude extract of M. aeruginosa, on both intra and extra-cellular polysaccharide levels, in log phase,of the four tested algae were studied. The obtained results showed differential increase in the production levels for both intra and extra-cellular polysaccharides by the tested algae,compared with the control. S. obliquus and C. vulgaris showed a resistance to crude toxinhigher than Anabaena PCC 7120 and O. angustissima. The highly production of polysaccharides by green algal species under this toxic stress indicated the involvement of these polysaccharides in protecting the algal cells against toxic species and, reflect thebiological behavior of particular algal species to the environmental stresses.

  1. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    CSIR Research Space (South Africa)

    Wells, ML

    2015-11-01

    Full Text Available Harmful algal blooms and climate change: Learning from the past and present to forecast the future Mark L. Wellsa,*, Vera L. Trainerb, Theodore J. Smaydac, Bengt S.O. Karlsond, Charles G. Tricke, Raphael M. Kudelaf, Akira Ishikawag, Stewart Bernardh... and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA c Graduate School of Oceanography, University of Rhode Island, Kingston, RI 02881, USA d SMHI Research & Development, Oceanography, Sven Ka¨llfelts gata 15, 426 71 Va¨stra Fro...

  2. Physical and biological data collected along the Texas, Mississippi, and Florida Gulf coasts in the Gulf of Mexico as part of the Harmful Algal BloomS Observing System from 19 Aug 1953 to 11 July 2014 (NODC Accession 0120767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — HABSOS (Harmful Algal BloomS Observing System) is a data collection and distribution system for harmful algal bloom (HAB) information in the Gulf of Mexico. The goal...

  3. Uptake, transfer and elimination kinetics of paralytic shellfish toxins in common octopus (Octopus vulgaris).

    Science.gov (United States)

    Lopes, Vanessa M; Baptista, Miguel; Repolho, Tiago; Rosa, Rui; Costa, Pedro Reis

    2014-01-01

    Marine phycotoxins derived from harmful algal blooms are known to be associated with mass mortalities in the higher trophic levels of marine food webs. Bivalve mollusks and planktivorous fish are the most studied vectors of marine phycotoxins. However, field surveys recently showed that cephalopod mollusks also constitute potential vectors of toxins. Thus, here we determine, for the first time, the time course of accumulation and depuration of paralytic shellfish toxins (PSTs) in the common octopus (Octopus vulgaris). Concomitantly, the underlying kinetics of toxin transfer between tissue compartments was also calculated. Naturally contaminated clams were used to orally expose the octopus to PSTs during 6 days. Afterwards, octopus specimens were fed with non-contaminated shellfish during 10 days of depuration period. Toxins reached the highest concentrations in the digestive gland surpassing the levels in the kidney by three orders of magnitude. PSTs were not detected in any other tissue analyzed. Net accumulation efficiencies of 42% for GTX5, 36% for dcSTX and 23% for C1+2 were calculated for the digestive gland. These compounds were the most abundant toxins in both digestive gland and the contaminated shellfish diet. The small differences in relative abundance of each toxin observed between the prey and the cephalopod predator indicates low conversion rates of these toxins. The depuration period was better described using an exponential decay model comprising a single compartment - the entire viscera. It is worth noting that since octopuses' excretion and depuration rates are low, the digestive gland is able to accumulate very high toxin concentrations for long periods of time. Therefore, the present study clearly shows that O. vulgaris is a high-potential vector of PSTs during and even after the occurrence of these toxic algal blooms. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. sxtA-based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters.

    Science.gov (United States)

    Murray, Shauna A; Wiese, Maria; Stüken, Anke; Brett, Steve; Kellmann, Ralf; Hallegraeff, Gustaaf; Neilan, Brett A

    2011-10-01

    The recent identification of genes involved in the production of the potent neurotoxin and keystone metabolite saxitoxin (STX) in marine eukaryotic phytoplankton has allowed us for the first time to develop molecular genetic methods to investigate the chemical ecology of harmful algal blooms in situ. We present a novel method for detecting and quantifying the potential for STX production in marine environmental samples. Our assay detects a domain of the gene sxtA that encodes a unique enzyme putatively involved in the sxt pathway in marine dinoflagellates, sxtA4. A product of the correct size was recovered from nine strains of four species of STX-producing Alexandrium and Gymnodinium catenatum and was not detected in the non-STX-producing Alexandrium species, other dinoflagellate cultures, or an environmental sample that did not contain known STX-producing species. However, sxtA4 was also detected in the non-STX-producing strain of Alexandrium tamarense, Tasmanian ribotype. We investigated the copy number of sxtA4 in three strains of Alexandrium catenella and found it to be relatively constant among strains. Using our novel method, we detected and quantified sxtA4 in three environmental blooms of Alexandrium catenella that led to STX uptake in oysters. We conclude that this method shows promise as an accurate, fast, and cost-effective means of quantifying the potential for STX production in marine samples and will be useful for biological oceanographic research and harmful algal bloom monitoring.

  5. Impacts of climate variability and future climate change on harmful algal blooms and human health

    Science.gov (United States)

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-01-01

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675

  6. Impacts of climate variability and future climate change on harmful algal blooms and human health.

    Science.gov (United States)

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-11-07

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.

  7. Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins.

    Science.gov (United States)

    van der Fels-Klerx, H J; Olesen, J E; Naustvoll, L-J; Friocourt, Y; Mengelers, M J B; Christensen, J H

    2012-01-01

    Climate change is expected to affect food and feed safety, including the occurrence of natural toxins in primary crop and seafood production; however, to date, quantitative estimates are scarce. This study aimed to estimate the impact of climate change effects on mycotoxin contamination of cereal grains cultivated in the terrestrial area of north west Europe, and on the frequency of harmful algal blooms and contamination of shellfish with marine biotoxins in the North Sea coastal zone. The study focused on contamination of wheat with deoxynivalenol, and on abundance of Dinophysis spp. and the possible relationship with diarrhetic shellfish toxins. The study used currently available data and models. Global and regional climate models were combined with models of crop phenology, mycotoxin prediction models, hydrodynamic models and ecological models, with the output of one model being used as input for the other. In addition, statistical data analyses using existing national datasets from the study area were performed to obtain information on the relationships between Dinophysis spp. cell counts and contamination of shellfish with diarrhetic shellfish toxins as well as on frequency of cereal cropping. In this paper, a summary of the study is presented, and overall conclusions and recommendations are given. Climate change projections for the years 2031-2050 were used as the starting point of the analyses relative to a preceding 20-year baseline period from which the climate change signal was calculated. Results showed that, in general, climate change effects lead to advanced flowering and harvest of wheat, and increased risk of contamination of wheat with deoxynivalenol. Blooms of dinoflagellates were estimated to occur more often. If the group of Dinophysis spp. behaves similarly to other flagellates in the future then frequency of harmful algal blooms of Dinophysis spp. may also increase, but consequences for contamination of shellfish with diarrhetic shellfish

  8. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry

    Directory of Open Access Journals (Sweden)

    Linda V. Hjørnevik

    2015-12-01

    Full Text Available Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s. A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.

  9. Harmful algal blooms (HABs), dissolved organic matter (DOM), and planktonic microbial community dynamics at a near-shore and a harbour station influenced by upwelling (SW Iberian Peninsula)

    Science.gov (United States)

    Loureiro, Sofia; Reñé, Albert; Garcés, Esther; Camp, Jordi; Vaqué, Dolors

    2011-05-01

    The surface microalgal community, including harmful species, dissolved organic matter (DOM), and bacterial and viral populations were studied during an annual cycle (November 2007-October 2008) in a Near-shore (NS) and a Harbour (H) station located in an upwelling area (Sagres, SW Iberian Peninsula). The higher water residence time, water stability and shallowness of harbours in comparison with open waters likely contributed to the differences found between stations regarding chemical variables, statistical correlations and harmful algal proliferations. Also, several differences were noticed from a previous assessment ( Loureiro et al., 2005) including higher SST, lower nitrate and chlorophyll a concentrations, along with a shift in the microplankton community structure from diatom to nanoflagellate predominance. These variations feasibly reflect the response of this dynamic system to regional environmental modifications contributing to the understanding of common patterns in environmental change trends. The division of the sampling period into (1) non-upwelling (Non-Uw), (2) "spin-up" of upwelling (SU-Uw), and (3) "spin-down" and relaxation-downwelling (SD-Rel) stages allowed the identification of natural groupings of microplankton samples by Multi Dimensional Scaling (MDS) analysis. Dissolved organic nitrogen (DON) and viruses were the most significant abiotic and biotic variables, respectively, contributing to the dissimilarities between these stages (SIMPER analysis) and, therefore, potentially affecting the microplankton community structure. Harmful algal species and a stable viral community appeared to be favoured by SD-Rel conditions. Data seem to indicate that both Gymnodinium catenatum and Heterosigma akashiwo, the most abundant potentially harmful species, have been imported into the sampling area. Also, the H location, together with potential retention sites developing around the Cabo de São Vicente upwelling centre, may contribute to the local

  10. Effects of algal-produced neurotoxins on metabolic activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Bakke, Marit Jorgensen; Horsberg, Tor Einar

    2007-01-01

    Neurotoxins from algal blooms have been reported to cause mortality in a variety of species, including sea birds, sea mammals and fish. Farmed fish cannot escape harmful algal blooms and their potential toxins, thus they are more vulnerable for exposure than wild stocks. Sublethal doses of the toxins are likely to affect fish behaviour and may impair cognitive abilities. In the present study, changes in the metabolic activity in different parts of the Atlantic salmon (Salmo salar) brain involved in central integration and cognition were investigated after exposure to sublethal doses of three algal-produced neurotoxins; saxitoxin (STX), brevetoxin (BTX) and domoic acid (DA). Fish were randomly selected to four groups for i.p. injection of saline (control) or one of the neurotoxins STX (10 μg STX/kg bw), BTX (68 μg BTX/kg bw) or DA (6 mg DA/kg bw). In addition, 14 C-2-deoxyglucose was i.m. injected to measure brain metabolic activity by autoradiography. The three regions investigated were telencephalon (Tel), optic tectum (OT) and cerebellum (Ce). There were no differences in the metabolic activity after STX and BTX exposure compared to the control in these regions. However, a clear increase was observed after DA exposure. When the subregions with the highest metabolic rate were pseudocoloured in the three brain regions, the three toxins caused distinct differences in the respective patterns of metabolic activation. Fish exposed to STX displayed similar patterns as the control fish, whereas fish exposed to BTX and DA showed highest metabolic activity in subregions different from the control group. All three neurotoxins affected subregions that are believed to be involved in cognitive abilities in fish

  11. Cyanobacteria and Algae Blooms: Review of Health and Environmental Data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011

    Science.gov (United States)

    Backer, Lorraine C.; Manassaram-Baptiste, Deana; LePrell, Rebecca; Bolton, Birgit

    2015-01-01

    Algae and cyanobacteria are present in all aquatic environments. We do not have a good sense of the extent of human and animal exposures to cyanobacteria or their toxins, nor do we understand the public health impacts from acute exposures associated with recreational activities or chronic exposures associated with drinking water. We describe the Harmful Algal Bloom-related Illness Surveillance System (HABISS) and summarize the collected reports describing bloom events and associated adverse human and animal health events. For the period of 2007–2011, Departments of Health and/or Environment from 11 states funded by the National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention contributed reports for 4534 events. For 2007, states contributed 173 reports from historical data. The states participating in the HABISS program built response capacity through targeted public outreach and prevention activities, including supporting routine cyanobacteria monitoring for public recreation waters. During 2007–2010, states used monitoring data to support196 public health advisories or beach closures. The information recorded in HABISS and the application of these data to develop a wide range of public health prevention and response activities indicate that cyanobacteria and algae blooms are an environmental public health issue that needs continuing attention. PMID:25826054

  12. Future Climate Impacts on Harmful Algal Blooms in an Agriculturally Dominated Ecosystem

    Science.gov (United States)

    Aloysius, N. R.; Martin, J.; Ludsin, S.; Stumpf, R. P.

    2015-12-01

    Cyanobacteria blooms have become a major problem worldwide in aquatic ecosystems that receive excessive runoff of limiting nutrients from terrestrial drainage. Such blooms often are considered harmful because they degrade ecosystem services, threaten public health, and burden local economies. Owing to changing agricultural land-use practices, Lake Erie, the most biologically productive of the North American Great Lakes, has begun to undergo a re-eutrophication in which the frequency and extent of harmful algal blooms (HABs) has increased. Continued climate change has been hypothesized to magnify the HAB problem in Lake Erie in the absence of new agricultural management practices, although this hypothesis has yet to be formally tested empirically. Herein, we tested this hypothesis by predicting how the frequency and extent of potentially harmful cyanobacteria blooms will change in Lake Erie during the 21st century under the Intergovernmental Panel on Climate Change Fifth Assessment climate projections in the region. To do so, we used 80 ensembles of climate projections from 20 Global Climate Models (GCMs) and two greenhouse gas emission scenarios (moderate reduction, RCP4.5; business-as-usual, RCP8.5) to drive a spatiotemporally explicit watershed-hydrology model that was linked to several statistical predictive models of annual cyanobacteria blooms in Lake Erie. Owing to anticipated increases in precipitation during spring and warmer temperatures during summer, our ensemble of predictions revealed that, if current land-management practices continue, the frequency of severe HABs in Lake Erie will increase during the 21st century. These findings identify a real need to consider future climate projections when developing nutrient reduction strategies in the short term, with adaptation also needing to be encouraged under both greenhouse gas emissions scenarios in the absence of effective nutrient mitigation strategies.

  13. Forecast products from the Gulf of Mexico created by the NOAA Harmful Algal Bloom Operational Forecast System (HAB-OFS) from 2007-09-10 to the present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains outputs from the NOAA Harmful Algal Bloom Operational Forecast System (HAB-OFS) in the form of bulletin documents beginning on 2007-09-10....

  14. Assessing Factors Contributing to Cyanobacteria Harmful Algal Blooms in U.S. Lakes

    Science.gov (United States)

    Salls, W. B.; Iiames, J. S., Jr.; Lunetta, R. S.; Mehaffey, M.; Schaeffer, B. A.

    2017-12-01

    Cyanobacteria Harmful Algal Blooms (CHABs) in inland lakes have emerged as a major threat to water quality from both ecological and public health standpoints. Understanding the factors and processes driving CHAB occurrence is important in order to properly manage ensuring more favorable water quality outcomes. High water temperatures and nutrient loadings are known drivers of CHABs; however, the contribution of landscape variables and their interactions with these drivers remains relatively unstudied at a regional or national scale. This study assesses upstream landscape variables that may contribute to or obstruct/delay nutrient loadings to freshwater systems in several hundred inland lakes in the Upper Mid-western and Northeastern United States. We employ multiple linear regression and random forest modeling to determine which variables contribute most strongly to CHAB occurrence. This lakeshed-based approach will rank the impact of each landscape variable on cyanobacteria levels derived from satellite remotely sensed data from the Medium Resolution Imaging Spectrometer (MERIS) sensor for the 2011 bloom season (July - October).

  15. Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation

    Directory of Open Access Journals (Sweden)

    Marisa Silva

    2015-03-01

    Full Text Available Harmful Algal Blooms (HAB are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.

  16. Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation

    Science.gov (United States)

    Silva, Marisa; Pratheepa, Vijaya K.; Botana, Luis M.; Vasconcelos, Vitor

    2015-01-01

    Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB. PMID:25785464

  17. sxtA-Based Quantitative Molecular Assay To Identify Saxitoxin-Producing Harmful Algal Blooms in Marine Waters ▿ †

    Science.gov (United States)

    Murray, Shauna A.; Wiese, Maria; Stüken, Anke; Brett, Steve; Kellmann, Ralf; Hallegraeff, Gustaaf; Neilan, Brett A.

    2011-01-01

    The recent identification of genes involved in the production of the potent neurotoxin and keystone metabolite saxitoxin (STX) in marine eukaryotic phytoplankton has allowed us for the first time to develop molecular genetic methods to investigate the chemical ecology of harmful algal blooms in situ. We present a novel method for detecting and quantifying the potential for STX production in marine environmental samples. Our assay detects a domain of the gene sxtA that encodes a unique enzyme putatively involved in the sxt pathway in marine dinoflagellates, sxtA4. A product of the correct size was recovered from nine strains of four species of STX-producing Alexandrium and Gymnodinium catenatum and was not detected in the non-STX-producing Alexandrium species, other dinoflagellate cultures, or an environmental sample that did not contain known STX-producing species. However, sxtA4 was also detected in the non-STX-producing strain of Alexandrium tamarense, Tasmanian ribotype. We investigated the copy number of sxtA4 in three strains of Alexandrium catenella and found it to be relatively constant among strains. Using our novel method, we detected and quantified sxtA4 in three environmental blooms of Alexandrium catenella that led to STX uptake in oysters. We conclude that this method shows promise as an accurate, fast, and cost-effective means of quantifying the potential for STX production in marine samples and will be useful for biological oceanographic research and harmful algal bloom monitoring. PMID:21841034

  18. Seasonal and annual dynamics of harmful algae and algal toxins revealed through weekly monitoring at two coastal ocean sites off southern California, USA

    KAUST Repository

    Seubert, Erica L.

    2013-01-04

    Reports of toxic harmful algal blooms (HABs) attributed to the diatom Pseudo-nitzschia spp. have been increasing in California during the last several decades. Whether this increase can be attributed to enhanced awareness and monitoring or to a dramatic upswing in the development of HAB events remains unresolved. Given these uncertainties, the ability to accurately and rapidly identify an emerging HAB event is of high importance. Monitoring of HAB species and other pertinent chemical/physical parameters at two piers in southern California, Newport and Redondo Beach, was used to investigate the development of a site-specific bloom definition for identifying emerging domoic acid (DA) events. Emphasis was given to abundances of the Pseudo-nitzschia seriata size category of Pseudo-nitzschia due to the prevalence of this size class in the region. P. seriata bloom thresholds were established for each location based on deviations from their respective long-term mean abundances, allowing the identification of major and minor blooms. Sixty-five percent of blooms identified at Newport Beach coincided with measurable DA concentrations, while 36 % of blooms at Redondo Beach coincided with measurable DA. Bloom definitions allowed for increased specificity in multiple regression analysis of environmental forcing factors significant to the presence of DA and P. seriata. The strongest relationship identified was between P. seriata abundances 2 weeks following upwelling events at Newport Beach. © 2012 Springer-Verlag Berlin Heidelberg.

  19. Seasonal and annual dynamics of harmful algae and algal toxins revealed through weekly monitoring at two coastal ocean sites off southern California, USA

    KAUST Repository

    Seubert, Erica L.; Gellene, Alyssa G.; Howard, Meredith D Armstrong; Connell, Paige; Ragan, Matthew; Jones, Burton; Runyan, Jennifer; Caron, David A.

    2013-01-01

    Reports of toxic harmful algal blooms (HABs) attributed to the diatom Pseudo-nitzschia spp. have been increasing in California during the last several decades. Whether this increase can be attributed to enhanced awareness and monitoring or to a dramatic upswing in the development of HAB events remains unresolved. Given these uncertainties, the ability to accurately and rapidly identify an emerging HAB event is of high importance. Monitoring of HAB species and other pertinent chemical/physical parameters at two piers in southern California, Newport and Redondo Beach, was used to investigate the development of a site-specific bloom definition for identifying emerging domoic acid (DA) events. Emphasis was given to abundances of the Pseudo-nitzschia seriata size category of Pseudo-nitzschia due to the prevalence of this size class in the region. P. seriata bloom thresholds were established for each location based on deviations from their respective long-term mean abundances, allowing the identification of major and minor blooms. Sixty-five percent of blooms identified at Newport Beach coincided with measurable DA concentrations, while 36 % of blooms at Redondo Beach coincided with measurable DA. Bloom definitions allowed for increased specificity in multiple regression analysis of environmental forcing factors significant to the presence of DA and P. seriata. The strongest relationship identified was between P. seriata abundances 2 weeks following upwelling events at Newport Beach. © 2012 Springer-Verlag Berlin Heidelberg.

  20. Algicidal Effects of a Novel Marine Pseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the Genera Chattonella, Gymnodinium, and Heterosigma

    Science.gov (United States)

    Lovejoy, Connie; Bowman, John P.; Hallegraeff, Gustaaf M.

    1998-01-01

    During a bacterial survey of the Huon Estuary in southern Tasmania, Australia, we isolated a yellow-pigmented Pseudoalteromonas strain (class Proteobacteria, gamma subdivision), designated strain Y, that had potent algicidal effects on harmful algal bloom species. This organism was identified by 16S rRNA sequencing as a strain with close affinities to Pseudoalteromonas peptidysin. This bacterium caused rapid cell lysis and death (within 3 h) of gymnodinoids (including Gymnodinium catenatum) and raphidophytes (Chattonella marina and Heterosigma akashiwo). It caused ecdysis of armored dinoflagellates (e.g., Alexandrium catenella, Alexandrium minutum, and Prorocentrum mexicanum), but the algal cultures then recovered over the subsequent 24 h. Strain Y had no effect on a cryptomonad (Chroomonas sp.), a diatom (Skeletonema sp.), a cyanobacterium (Oscillatoria sp.), and two aplastidic protozoans. The algicidal principle of strain Y was excreted into the seawater medium and lost its efficacy after heating. Another common bacterial species, Pseudoalteromonas carrageenovora, was isolated at the same time and did not have these algicidal effects. The minimum concentrations of strain Y required to kill G. catenatum were higher than the mean concentrations found in nature under nonbloom conditions. However, the new bacterium showed a chemotactic, swarming behavior that resulted in localized high concentrations around target organisms. These observations imply that certain bacteria could play an important role in regulating the onset and development of harmful algal blooms. PMID:9687434

  1. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms

    Directory of Open Access Journals (Sweden)

    Nathan Torbick

    2015-09-01

    Full Text Available Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI, Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophylla and phycocyanin concentrations; all sensors performed well with R2 and root-mean-square error (RMSE ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 μg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost.

  2. Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils.

    Science.gov (United States)

    Dai, Guofei; Zhong, Jiayou; Song, Lirong; Guo, Chunjing; Gan, Nanqin; Wu, Zhenbin

    2015-07-01

    Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.

  3. EFFECT OF MARINE TOXINS ON THERMOREGULATION IN MICE.

    Science.gov (United States)

    Marine algal toxins are extremely toxic and can represent a major health problem to humans and animals. Temperature regulation is one of many processes to be affected by exposure to these toxins. Mice and rats become markedly hypothermic when subjected to acute exposure to the ma...

  4. The use of pigment "fingerprints" in the study of harmful algal blooms

    Directory of Open Access Journals (Sweden)

    J Bustillos-Guzmán

    2004-09-01

    Full Text Available Along the Mexican coast, harmful algae blooms (HAB have become more frequent, and therefore, there is an urgent need to establish monitoring programs to avoid the undesired consequences of HAB in human and natural ecosystems. In this work, we analyzed the pigment signatures and the species composition from phytoplankton samples to evaluate the utility of the specific pigment "fingerprints" in HAB monitoring programs. Vertical profiles from a coastal lagoon and temporal samples of a red tide occurring in a shrimp-culture pond and in a coastal zone were taken into consideration. Between 76% and 84% of dinoflagellate and diatom cell density was explained by their specific signature variation, in both vertical and temporal samples. Only the variation of zeaxanthin and the cyanobacteria Anabaena sp. showed a poor relationship, probably from difficulties in counting other cyanobacteria present in the samples examined with the microscopic method. These results suggest that inclusion of pigment analysis in the study and monitoring programs dealing with harmful algae would be very usefulA lo largo de las costas mexicanas, los florecimientos algales nocivos (FAN se han vuelto cada vez mas frecuentes y por lo tanto, existe una necesidad urgente de establecer programas de monitoreo para evitar las consecuencias no deseadas por su desarrollo, sobre los ecosistemas naturales y el ser humano. En este trabajo, nosotros analizamos las huellas pigmentarias y la composición de especies de diversas muestras de fitoplancton para evaluar la utilidad que pueden representar estos pigmentos específicos o "huellas pigmentarias" en programas de monitoreo de florecimientos algales nocivos. Los perfiles verticales de muestras de fitoplancton de una laguna costera y muestras de mareas rojas que ocurrieron en un estanque de cultivo de camarón y en una laguna costera, fueron considerados en este estudio. Tanto en muestras verticales como en temporales, entre el 76% y 84% de

  5. Toxin content and cytotoxicity of algal dietary supplements

    Energy Technology Data Exchange (ETDEWEB)

    Heussner, A.H.; Mazija, L. [Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz (Germany); Fastner, J. [Federal Environmental Agency, Section II 3.3—Drinking-water resources and treatment, Berlin (Germany); Dietrich, D.R., E-mail: daniel.dietrich@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz (Germany)

    2012-12-01

    Blue-green algae (Spirulina sp., Aphanizomenon flos-aquae) and Chlorella sp. are commercially distributed as organic algae dietary supplements. Cyanobacterial dietary products in particular have raised serious concerns, as they appeared to be contaminated with toxins e.g. microcystins (MCs) and consumers repeatedly reported adverse health effects following consumption of these products. The aim of this study was to determine the toxin contamination and the in vitro cytotoxicity of algae dietary supplement products marketed in Germany. In thirteen products consisting of Aph. flos-aquae, Spirulina and Chlorella or mixtures thereof, MCs, nodularins, saxitoxins, anatoxin-a and cylindrospermopsin were analyzed. Five products tested in an earlier market study were re-analyzed for comparison. Product samples were extracted and analyzed for cytotoxicity in A549 cells as well as for toxin levels by (1) phosphatase inhibition assay (PPIA), (2) Adda-ELISA and (3) LC–MS/MS. In addition, all samples were analyzed by PCR for the presence of the mcyE gene, a part of the microcystin and nodularin synthetase gene cluster. Only Aph. flos-aquae products were tested positive for MCs as well as the presence of mcyE. The contamination levels of the MC-positive samples were ≤ 1 μg MC-LR equivalents g{sup −1} dw. None of the other toxins were found in any of the products. However, extracts from all products were cytotoxic. In light of the findings, the distribution and commercial sale of Aph. flos-aquae products, whether pure or mixed formulations, for human consumption appear highly questionable. -- Highlights: ► Marketed algae dietary supplements were analyzed for toxins. ► Methods: Phosphatase inhibition assay (PPIA), Adda-ELISA, LC-MS/MS. ► Aph. flos-aquae products all tested positive for microcystins. ► Products tested negative for nodularins, saxitoxins, anatoxin-a, cylindrospermopsin. ► Extracts from all products were cytotoxic.

  6. Harmful Freshwater Algal Blooms, With an Emphasis on Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Hans W. Paerl

    2001-01-01

    Full Text Available Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia, toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia are capable of fixing atmospheric nitrogen (N2, enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from

  7. Defense against Toxin Weapons

    National Research Council Canada - National Science Library

    Franz, David

    1998-01-01

    .... We typically fear what we do not understand. Although un- derstanding toxin poisoning is less useful in a toxin attack than knowledge of cold injury on an Arctic battlefield, information on any threat reduces its potential to harm...

  8. The Haber Bosch-harmful algal bloom (HB-HAB) link

    Science.gov (United States)

    Glibert, Patricia M.; Maranger, Roxane; Sobota, Daniel J.; Bouwman, Lex

    2014-10-01

    Large-scale commercialization of the Haber-Bosch (HB) process is resulting in intensification of nitrogen (N) fertilizer use worldwide. Globally N fertilizer use is far outpacing that of phosphorus (P) fertilizer. Much of the increase in N fertilizers is also now in the form of urea, a reduced form of N. Incorporation of these fertilizers into agricultural products is inefficient leading to significant environmental pollution and aquatic eutrophication. Of particular concern is the increased occurrence of harmful algal blooms (HABs) in waters receiving nutrient enriched runoff. Many phytoplankton causing HABs have physiological adaptive strategies that make them favored under conditions of elevated N : P conditions and supply of chemically reduced N (ammonium, urea). We propose that the HB-HAB link is a function of (1) the inefficiency of incorporation of N fertilizers in the food supply chain, the leakiness of the N cycle from crop to table, and the fate of lost N relative to P to the environment; and (2) adaptive physiology of many HABs to thrive in environments in which there is excess N relative to classic nutrient stoichiometric proportions and where chemically reduced forms of N dominate. The rate of HAB expansion is particularly pronounced in China where N fertilizer use has escalated very rapidly, where soil retention is declining, and where blooms have had large economic and ecological impacts. There, in addition to increased use of urea and high N : P based fertilizers overall, escalating aquaculture production adds to the availability of reduced forms of N, as does atmospheric deposition of ammonia. HABs in both freshwaters and marginal seas in China are highly related to these overall changing N loads and ratios. Without more aggressive N control the future outlook in terms of HABs is likely to include more events, more often, and they may also be more toxic.

  9. The Haber Bosch–harmful algal bloom (HB–HAB) link

    International Nuclear Information System (INIS)

    Glibert, Patricia M; Maranger, Roxane; Sobota, Daniel J; Bouwman, Lex

    2014-01-01

    Large-scale commercialization of the Haber–Bosch (HB) process is resulting in intensification of nitrogen (N) fertilizer use worldwide. Globally N fertilizer use is far outpacing that of phosphorus (P) fertilizer. Much of the increase in N fertilizers is also now in the form of urea, a reduced form of N. Incorporation of these fertilizers into agricultural products is inefficient leading to significant environmental pollution and aquatic eutrophication. Of particular concern is the increased occurrence of harmful algal blooms (HABs) in waters receiving nutrient enriched runoff. Many phytoplankton causing HABs have physiological adaptive strategies that make them favored under conditions of elevated N : P conditions and supply of chemically reduced N (ammonium, urea). We propose that the HB-HAB link is a function of (1) the inefficiency of incorporation of N fertilizers in the food supply chain, the leakiness of the N cycle from crop to table, and the fate of lost N relative to P to the environment; and (2) adaptive physiology of many HABs to thrive in environments in which there is excess N relative to classic nutrient stoichiometric proportions and where chemically reduced forms of N dominate. The rate of HAB expansion is particularly pronounced in China where N fertilizer use has escalated very rapidly, where soil retention is declining, and where blooms have had large economic and ecological impacts. There, in addition to increased use of urea and high N : P based fertilizers overall, escalating aquaculture production adds to the availability of reduced forms of N, as does atmospheric deposition of ammonia. HABs in both freshwaters and marginal seas in China are highly related to these overall changing N loads and ratios. Without more aggressive N control the future outlook in terms of HABs is likely to include more events, more often, and they may also be more toxic. (paper)

  10. A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison.

    Science.gov (United States)

    Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Corcoran, Alina A

    2015-01-28

    The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches-as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L(-1) within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission.

  11. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century

    Science.gov (United States)

    BERDALET, ELISA; FLEMING, LORA E.; GOWEN, RICHARD; DAVIDSON, KEITH; HESS, PHILIPP; BACKER, LORRAINE C.; MOORE, STEPHANIE K.; HOAGLAND, PORTER; ENEVOLDSEN, HENRIK

    2015-01-01

    Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing. PMID:26692586

  12. Application of rotifer Brachionus plicatilis in detecting the toxicity of harmful algae

    Science.gov (United States)

    Yan, Tian; Wang, Yunfeng; Wang, Liping; Chen, Yang; Han, Gang; Zhou, Mingjiang

    2009-05-01

    The toxicity of seven major HAB (harmful algal bloom) species/strains, Prorocentrum donghaiense, Phaeocystis globosa, Prorocentrum micans, Alexandrium tamarense (AT-6, non-PSP producer), Alexandrium lusitanicum, Alexandrum tamarense (ATHK) and Heterosigma akashiwo were studied against rotifer Brachionus plicatilis under laboratory conditions. The results show that P. donghaiense, P. globosa, P. micans, A. tamarense (AT-6), or A. lusitanicum could maintain the individual survival and reproduction, as well as the population increase of the rotifer, but the individual reproduction would decrease when exposed to these five algae at higher densities for nine days; H. akashiwo could decrease the individual survival and reproduction, as well as population increase of the rotifer, which is similar to that of the starvation group, indicating that starvation might be its one lethal factor except for the algal toxins; A. tamarense (ATHK) has strong lethal effect on the rotifer with 48h LC50 at 800 cells/mL. The experiment on ingestion ability indicated by gut pigment change shows that P. donghaiense, P. globosa, P. micans, A. tamarense (AT-6) and A. lusitanicum can be taken by the rotifers as food, but A. tamarense (ATHK) or H. akashiwo can be ingested by the rotifers. The results indicate that all the indexes of individual survival and reproduction, population increase, gut pigment change of the rotifers are good and convenient to be used to reflect the toxicities of HAB species. Therefore, rotifer is suggested as one of the toxicity testing organisms in detecting the toxicity of harmful algae.

  13. A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae

    Science.gov (United States)

    Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.

    2016-12-01

    Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7

  14. Assessing the presence of marine toxins in bivalve molluscs from southwest India.

    Science.gov (United States)

    Turner, Andrew D; Dhanji-Rapkova, Monika; Rowland-Pilgrim, Stephanie; Turner, Lucy M; Rai, Ashwin; Venugopal, Moleyur N; Karunasagar, Indrani; Godhe, Anna

    2017-12-15

    The south west coast of India has been showing a steady increase in shellfish cultivation both for local consumption and fishery export, over recent years. Perna viridis and Crassostrea madrasensis are two species of bivalve molluscs which grow in some selected regions of southern Karnataka, close to the city of Mangalore. In the early 1980s, shellfish consumers in the region were affected by intoxication from Paralytic Shellfish Poison present in local bivalves (clams and oysters) resulting in hospitalisation of many, including one fatality. Since then, there have been no further reports of serious shellfish intoxication and there is little awareness of the risks from natural toxins and no routine monitoring programme in place to protect shellfish consumers. This study presents the findings from the first ever systematic assessment of the presence of marine toxins in mussels and oysters grown in four different shellfish harvesting areas in the region. Shellfish were collected and subjected to analysis for ASP, PSP and lipophilic toxins, as well as a suite of non-EU regulated toxins such as tetrodotoxin and selected cyclic imines. Results revealed the presence of low levels of PSP toxins in oysters throughout the study period. Overall, total toxicities reached a maximum of 10% of the EU regulatory limit of 800 μg STX eq/kg. Toxin profiles were similar to those reported from the 1980 outbreak. No evidence was found for significant levels of ASP and lipophilic toxins, although some cyclic imines were detected, including gymnodimine. The results indicated that the risk to shellfish consumers during this specific study period would have been low. However, with historical evidence for extremely high levels of PSP toxins in molluscs, there is a strong need for routine surveillance of shellfish production areas for marine toxins, in order to mitigate against human health impacts resulting from unexpected harmful algal blooms, with potentially devastating socio

  15. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake.

    Science.gov (United States)

    Lee, Tammy A; Rollwagen-Bollens, Gretchen; Bollens, Stephen M; Faber-Hammond, Joshua J

    2015-04-01

    The increasing frequency of harmful cyanobacterial blooms in freshwater systems is a commonly recognized problem due to detrimental effects on water quality. Vancouver Lake, a shallow, tidally influenced lake in the flood plain of the Columbia River within the city of Vancouver, WA, USA, has experienced numerous summertime cyanobacterial blooms, dominated by Aphanizomenon sp. and Anabaena sp. Cyanobacteria abundance and toxin (microcystin) levels have been monitored in this popular urban lake for several years; however, no previous studies have identified which cyanobacteria species produce toxins, nor analyzed how changes in environmental variables contribute to the fluctuations in toxic cyanobacteria populations. We used a suite of molecular techniques to analyze water samples from Vancouver Lake over two summer bloom cycles (2009 and 2010). Both intracellular and extracellular microcystin concentrations were measured using an ELISA kit. Intracellular microcystin concentrations exceeded WHO guidelines for recreational waters several times throughout the sampling period. PCR results demonstrated that Microcystis sp. was the sole microcystin-producing cyanobacteria species present in Vancouver Lake, although Microcystis sp. was rarely detected in microscopical counts. qPCR results indicated that the majority of the Microcystis sp. population contained the toxin-producing gene (mcyE), although Microcystis sp. abundance rarely exceeded 1 percent of overall cyanobacteria abundance. Non-metric multidimensional scaling (NMDS) revealed that PO4-P was the main environmental variable influencing the abundance of toxic and non-toxic cyanobacteria, as well as intracellular microcystin concentrations. Our study underscores the importance of using molecular genetic techniques, in addition to traditional microscopy, to assess the importance of less conspicuous species in the dynamics of harmful algal blooms. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Presence of microcystin during events of algal blooms in Araruama Lagoon

    Directory of Open Access Journals (Sweden)

    Manildo Marcião de Oliveira

    2012-04-01

    Full Text Available Algal blooms are phenomena produced by anthropogenic activities, despite the possible natural causes. In Araruama Lagoon, blooms occurred in 2005 and in subsequent years, causing profound changes in phytoplankton communities. These episodes triggered events of extensive fish mortality associated with low levels of dissolved oxygen. Another adverse effect associated with blooms is the production of harmful toxins such as phycotoxins produced by eukaryotic microalgae and cyanotoxins produced by cyanobacteria. Samples of fish (mullet and menhaden and seston showed levels of microcystin by enzyme-linked immunosorbent assay (ELISA, also a seston sample (São Pedro d'Aldeia on 08/22/2007, in a period not related to fish mortality, showed cells which contained genes encoding microcystin synthetase, an enzyme responsible for the synthesis of microcystin. The succession of microalgae with the concomitant presence of potentially toxic cyanobacteria draws attention to the risk of chronic exposure by the population that uses fish as their main protein source.

  17. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Directory of Open Access Journals (Sweden)

    Minnett Peter

    2008-11-01

    Full Text Available Abstract Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs. Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  18. Application of 210Pb-derived sedimentation rates and dinoflagellate cyst analyses in understanding Pyrodinium bahamense harmful algal blooms in Manila Bay and Malampaya Sound, Philippines.

    Science.gov (United States)

    Sombrito, E Z; Bulos, A dM; Sta Maria, E J; Honrado, M C V; Azanza, Rhodora V; Furio, Elsa F

    2004-01-01

    The number of areas affected by toxic harmful algal bloom (HAB) in the Philippines has been increasing since its first recorded occurrence in 1983. Thus far, HAB has been reported in about 20 areas in the Philippines including major fishery production areas. The HAB-causing organism (Pyrodinium bahamense var. compressum) produces a cyst during its life cycle. Pyrodinium cysts which are deposited in the sediment column may play a role in initiating a toxic bloom. 210Pb-derived sedimentation rate studies in the two important fishing grounds of Manila Bay and Malampaya Sound, Palawan have shown that Pyrodinium cysts may have been present in the sediment even before the first recorded toxic algal bloom in these areas. High sedimentation rates (approximately 1 cm/year) have been observed in the northern and western parts of Manila Bay. The results indicate that the sedimentation processes occurring in these bays would require subsurface cyst concentration analysis in evaluating the potential of an area to act as seed bed.

  19. Application of 210Pb-derived sedimentation rates and dinoflagellate cyst analyses in understanding Pyrodinium bahamense harmful algal blooms in Manila Bay and Malampaya Sound, Philippines

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Bulos, A.M.; Sta Maria, E.J.; Honrado, M.C.V.; Azanza, Rhodora V.; Furio, Elsa F.

    2004-01-01

    The number of areas affected by toxic harmful algal bloom (HAB) in the Philippines has been increasing since its first recorded occurrence in 1983. Thus far, HAB has been reported in about 20 areas in the Philippines including major fishery production areas. The HAB-causing organism (Pyrodinium bahamense var. compressum) produces a cyst during its life cycle. Pyrodinium cysts which are deposited in the sediment column may play a role in initiating a toxic bloom. 210 Pb-derived sedimentation rate studies in the two important fishing grounds of Manila Bay and Malampaya Sound, Palawan have shown that Pyrodinium cysts may have been present in the sediment even before the first recorded toxic algal bloom in these areas. High sedimentation rates (approximately 1 cm/year) have been observed in the Northern and Western parts of Manila Bay. The results indicate that the sedimentation processes occurring in these bays would require subsurface cyst concentration analysis in evaluating the potential of an area to act as sea bed

  20. Evidence for water-mediated mechanisms in coral–algal interactions

    Science.gov (United States)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  1. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom

    Science.gov (United States)

    Page, Benjamin P.; Kumar, Abhishek; Mishra, Deepak R.

    2018-04-01

    As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more common in recreational lakes and water supply reservoirs, demand for rapid detection and temporal monitoring will be imminent for effective management. The goal of this study was to demonstrate a novel and potentially operational cross-satellite based protocol for synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) detection model for the Landsat-8 OLI sensor from the relationship between the normalized difference chlorophyll index and the floating algal index derived from Sentinel-2A on a coinciding overpass date during the summer CyanoHAB bloom in Utah Lake. This aided in the construction of a time-series phenology of the Utah Lake CyanoHAB event. Spatio-temporal cyanobacterial density maps from both Sentinel-2A and Landsat-8 sensors revealed that the bloom started in the first week of July 2016 (July 3rd, mean cell count: 9163 cells/mL), reached peak in mid-July (July 15th, mean cell count: 108176 cells/mL), and reduced in August (August 24th, mean cell count: 9145 cells/mL). Analysis of physical and meteorological factors suggested a complex interaction between landscape processes (high surface runoff), climatic conditions (high temperature, high rainfall followed by negligible rainfall, stable wind), and water quality (low water level, high Chl-a) which created a supportive environment for triggering these blooms in Utah Lake. This cross satellite-based monitoring methods can be a great tool for regular monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large lakes.

  2. Harmful Algal Blooms in Asia: an insidious and escalating water pollution phenomenon with effects on ecological and human health

    Directory of Open Access Journals (Sweden)

    Patricia M Glibert

    2014-02-01

    Full Text Available Harmful Algal Blooms (HABs, those proliferations of algae that causeenvironmental, economic, or human health problems, are increasing in frequency,duration, and geographic extent due to nutrient pollution. The scale of the HABproblem in Asia has escalated in recent decades in parallel with the increase in useof agricultural fertilizer, the development of aquaculture, and a growing population.Three examples, all from China but illustrative of the diversity of events and theirecological, economic, and human health effects throughout Asia, are highlightedhere. These examples include inland (Lake Tai or Taihu as well as offshore (EastChina Sea and Yellow Sea waters. The future outlook for controlling these bloomsis bleak. The effects of advancing industrialized agriculture and a continually growingpopulation will continue to result in more nutrient pollution and more HABs—-and more effects - in the foreseeable future.

  3. Application of {sup 210}Pb-derived sedimentation rates and dinoflagellate cyst analyses in understanding Pyrodinium bahamense harmful algal blooms in Manila Bay and Malampaya Sound, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Sombrito, E.Z. E-mail: ezsombrito@pnri.dost.gov.ph; Bulos, A.M.; Sta Maria, E.J.; Honrado, M.C.V.; Azanza, Rhodora V.; Furio, Elsa F

    2004-07-01

    The number of areas affected by toxic harmful algal bloom (HAB) in the Philippines has been increasing since its first recorded occurrence in 1983. Thus far, HAB has been reported in about 20 areas in the Philippines including major fishery production areas. The HAB-causing organism (Pyrodinium bahamense var. compressum) produces a cyst during its life cycle. Pyrodinium cysts which are deposited in the sediment column may play a role in initiating a toxic bloom. {sup 210}Pb-derived sedimentation rate studies in the two important fishing grounds of Manila Bay and Malampaya Sound, Palawan have shown that Pyrodinium cysts may have been present in the sediment even before the first recorded toxic algal bloom in these areas. High sedimentation rates (approximately 1 cm/year) have been observed in the Northern and Western parts of Manila Bay. The results indicate that the sedimentation processes occurring in these bays would require subsurface cyst concentration analysis in evaluating the potential of an area to act as sea bed.

  4. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index SABI)

    OpenAIRE

    Alawadi, Fahad

    2010-01-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HA...

  5. Airborne Hyperspectral Sensing of Monitoring Harmful Algal Blooms in the Great Lakes Region: System Calibration and Validation

    Science.gov (United States)

    Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey; hide

    2017-01-01

    Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan

  6. Using Multi-media Modeling to Investigate Conditions Leading to Harmful Algal Blooms

    Science.gov (United States)

    Garcia, V.; Nowakowski, C.; Astitha, M.; Vlahos, P.; Cooter, E. J.; Tang, C.

    2017-12-01

    Lake Erie is the twelfth largest lake in the world and provides drinking water to over 11 million people in the United States. 22,720 square miles of varying landcover (e.g., urban, agriculture) drain directly into Lake Erie. Harmful algal blooms (HABs) have historically been an issue in Lake Erie, with events peaking in the late 1960's to early 1970's. Several studies have shown that these events were the result of excess phosphorus draining predominantly into the western portion of the lake from agricultural practices occurring in the surrounding watersheds. Phosphorus controls led to recovery of the lake by 1990, but since the mid-1990's, there has been a resurgence of HAB events, with the largest event on record occurring in 2015. We used linked and coupled physical models to examine relationships among environmental variables across multiple sources and pathways. Because these models link emission sources with meteorology and the pollutant concentrations found in the environment, they shed new light on the complex interactions of these chemicals and chemical mixtures. We used the broad range of variables available from these models, representing meteorology, hydrology, atmospheric processes, landscape characteristics, and agriculture management practices, to examine relationships with available dissolved oxygen and chlorophyll α concentrations measured in Lake Erie. We found that inorganic nitrogen (N) fertilizer applied to crops and atmospheric N deposition were the strongest nutrient loading predictors of dissolved oxygen and chlorophyll α concentrations measured in Lake Erie. Further, we were able to examine the relationships of oxidized and reduced forms of N deposition, and dry and wet N deposition. The results of this analysis will be presented at the conference.

  7. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  8. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    Science.gov (United States)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  9. Toxic Effects of Prodigiosin Secreted by Hahella sp. KA22 on Harmful Alga Phaeocystis globosa

    Directory of Open Access Journals (Sweden)

    Huajun Zhang

    2017-06-01

    Full Text Available Application of algicidal compounds secreted by bacteria is a promising and environmentally friendly strategy to control harmful algal blooms (HABs. Years ago prodigiosin was described as an efficient algicidal compound, but the details about the effect of prodigiosin on algal cells are still elusive. Prodigiosin shows high algicidal activity on Phaeocystis globosa, making it a potential algicide in HAB control. When P. globosa were treated with prodigiosin at 5 μg/mL, algae cells showed cytoplasmic hypervacuolization, chloroplast and nucleus rupture, flagella missing, and cell fracture, when observed by scanning electron microscope and transmission electron microscopy. Prodigiosin induced a reactive oxygen species (ROS burst in P. globosa at 2 h, which could result in severe oxidative damage to algal cells. Chlorophyll a (Chl a fluorescence decreased significantly after prodigiosin treatment; about 45.3 and 90.0% of algal cells lost Chl a fluorescence at 24 and 48 h. The Fv/Fm value, reflecting the status of the photosystem II electron flow also decreased after prodigiosin treatment. Quantitative polymerase chain reaction (PCR analysis psbA and rbcS expression indicated that photosynthesis process was remarkably inhibited by prodigiosin. The results indicated that the inhibition of photosynthesis may produce excessive ROS causing cell necrosis. This study is the first report about algal lysis mechanism of prodigiosin on harmful algae. Our results could increase our knowledge on the interaction between algicidal compounds and harmful algae, which could lead to further studies in the microcosm.

  10. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach?

    International Nuclear Information System (INIS)

    Dietrich, Daniel; Hoeger, Stefan

    2005-01-01

    This article reviews current scientific knowledge on the toxicity and carcinogenicity of microcystins and compares this to the guidance values proposed for microcystins in water by the World Health Organization, and for blue-green algal food supplements by the Oregon State Department of Health. The basis of the risk assessment underlying these guidance values is viewed as being critical due to overt deficiencies in the data used for its generation: (i) use of one microcystin congener only (microcystin-LR), while the other presently known nearly 80 congeners are largely disregarded, (ii) new knowledge regarding potential neuro and renal toxicity of microcystins in humans and (iii) the inadequacies of assessing realistic microcystin exposures in humans and especially in children via blue-green algal food supplements. In reiterating the state-of-the-art toxicology database on microcystins and in the light of new data on the high degree of toxin contamination of algal food supplements, this review clearly demonstrates the need for improved kinetic data of microcystins in humans and for discussion concerning uncertainty factors, which may result in a lowering of the present guidance values and an increased routine control of water bodies and food supplements for toxin contamination. Similar to the approach taken previously by authorities for dioxin or PCB risk assessment, the use of a toxin equivalent approach to the risk assessment of microcystins is proposed

  11. Impact of several harmful algal bloom (HAB) causing species, on life history characteristics of rotifer Brachionus plicatilis Müller

    Science.gov (United States)

    Lin, Jianing; Yan, Tian; Zhang, Qingchun; Zhou, Mingjiang

    2016-07-01

    In recent years, harmful algal blooms (HABs) have occurred frequently along the coast of China, and have been exhibiting succession from diatom- to dinoflagellate-dominated blooms. To examine the effects of different diatom and dinoflagellate HABs, the life history parameters of rotifers ( Brachionus plicatilis Müller) were measured after exposure to different concentrations of HAB species. The HAB species examined included a diatom ( Skeletonema costatum) and four dinoflagellates ( Prorocentrum donghaiense, Alexandrium catenella, Prorocentrum lima and Karlodinium veneficum). Compared with the control treatment (CT), the diatom S. costatum showed no adverse impacts on rotifers. Exposure to dinoflagellates at densities equivalent to those measured in the field resulted in a reduction in all the life history parameters measured. This included a reduction in: lifetime egg production (CT: 20.34 eggs/ind.) reduced to 10.11, 3.22, 4.17, 7.16 eggs/ind., life span (CT: 394.53 h) reduced to 261.11, 162.90, 203.67, 196 h, net reproductive rate (CT: 19.51/ind.) reduced to 3.01, 1.26, 3.53, 5.96/ind., finite rate of increase (CT: 1.47/d) reduced to 1.16, 1.03, 1.33, 1.38/d, and intrinsic rate of population increase (CT: 0.39/d) reduced to 0.15, 0.03, 0.28, 0.32/d, for the dinoflagellates P. donghaiense, A. catenella, P. lima and K. veneficum, respectively. The results showed that the diatom S. costatum had no detrimental consequences on the reproduction and growth of B. plicatilis, however, the four dinoflagellates tested did show adverse effects. This suggests that dinoflagellate HABs may suppress microzooplankton, resulting in an increase in algal numbers.

  12. Summer heatwaves promote blooms of harmful cyanobacteria

    NARCIS (Netherlands)

    K.D Joehnk; J. Huisman; J. Sharples; B.P. Sommeijer (Ben); P.M. Visser (Petra); J.M. Stroom

    2008-01-01

    htmlabstractDense surface blooms of toxic cyanobacteria in eutrophic lakes may lead to mass mortalities of fish and birds, and provide a serious health threat for cattle, pets, and humans. It has been argued that global warming may increase the incidence of harmful algal blooms. Here, we report on a

  13. Summer heatwaves promote blooms of harmful cyanobacteria

    NARCIS (Netherlands)

    Jöhnk, K.D.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P.M.; Stroom, J.M.

    2008-01-01

    Dense surface blooms of toxic cyanobacteria in eutrophic lakes may lead to mass mortalities of fish and birds, and provide a serious health threat for cattle, pets, and humans. It has been argued that global warming may increase the incidence of harmful algal blooms. Here, we report on a lake

  14. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  15. Concentrations of heavy metals in sediment and organisms during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico

    International Nuclear Information System (INIS)

    Garcia-Hernandez, Jaqueline; Garcia-Rico, Leticia; Jara-Marini, Martin E.; Barraza-Guardado, Ramon; Hudson Weaver, Amy

    2005-01-01

    In early April 2003, fishermen from Kino Bay Sonora alerted us about a massive die-off of fish and mollusks occurring at Kun Kaak Bay. Phytoplankton samples taken on 17 May 2003 reported the presence of a harmful algal bloom composed of Chatonella marina, Chatonella cf. ovata, Gymnodinium catenatum and Gymnodinium sanguineum. On 22 of May, we collected samples of water, sediment and organisms at the affected area. Physicochemical parameters and nutrients were measured in water samples from different depths. Sediment and benthic organisms were analyzed for Cd, Cu, Zn, Pb and Hg. We found concentrations of heavy metals higher than background levels for this area. Cadmium and Lead concentrations in sediment from the HAB area were up to 6x greater than background levels and Cd in mollusks was 8x greater than regulations allow. A relationship between elevated Cd and Pb concentrations in sediment and the survival of toxic dinoflagellates is suspected

  16. Concentrations of heavy metals in sediment and organisms during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Hernandez, Jaqueline [Centro de investigacion en Alimentacion y Desarrollo AC (CIAD) Guaymas Unit, Carretera al Varadero Nal. Km 6.6, Apdo. Postal 284, CP 85480 Guaymas, Sonora (Mexico)]. E-mail: jaqueline@cascabel.ciad.mx; Garcia-Rico, Leticia [Centro de investigacion en Alimentacion y Desarrollo AC (CIAD), Carretera a la Victoria Km 0.6, Apdo. Postal 1735, CP 83000 Hermosillo, Sonora (Mexico)]. E-mail: lgarciar@cascabel.ciad.mx; Jara-Marini, Martin E. [Centro de investigacion en Alimentacion y Desarrollo AC (CIAD), Carretera a la Victoria Km 0.6, Apdo. Postal 1735, CP 83000 Hermosillo, Sonora (Mexico)]. E-mail: mjara@cascabel.ciad.mx; Barraza-Guardado, Ramon [Departamento de Investigaciones Cientificas y Tecnologicas de la Universidad de Sonora (DICTUS), Rosales y Ninos Heroes s/n Col. Centro, CP 83000 Hermosillo, Sonora (Mexico)]. E-mail: rbarraza@rtn.uson.mx; Hudson Weaver, Amy [Comunidad y Biodiversidad AC - COBI, Terminacion Bahia de Bacochibampo s/m, Fraccionamiento Lomas de Cortes, CP 85450 Guaymas, Sonora (Mexico)]. E-mail: ahw@cobi.org.mx

    2005-07-01

    In early April 2003, fishermen from Kino Bay Sonora alerted us about a massive die-off of fish and mollusks occurring at Kun Kaak Bay. Phytoplankton samples taken on 17 May 2003 reported the presence of a harmful algal bloom composed of Chatonella marina, Chatonella cf. ovata, Gymnodinium catenatum and Gymnodinium sanguineum. On 22 of May, we collected samples of water, sediment and organisms at the affected area. Physicochemical parameters and nutrients were measured in water samples from different depths. Sediment and benthic organisms were analyzed for Cd, Cu, Zn, Pb and Hg. We found concentrations of heavy metals higher than background levels for this area. Cadmium and Lead concentrations in sediment from the HAB area were up to 6x greater than background levels and Cd in mollusks was 8x greater than regulations allow. A relationship between elevated Cd and Pb concentrations in sediment and the survival of toxic dinoflagellates is suspected.

  17. Concentrations of heavy metals in sediment and organisms during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico.

    Science.gov (United States)

    García-Hernández, Jaqueline; García-Rico, Leticia; Jara-Marini, Martin E; Barraza-Guardado, Ramón; Hudson Weaver, Amy

    2005-07-01

    In early April 2003, fishermen from Kino Bay Sonora alerted us about a massive die-off of fish and mollusks occurring at Kun Kaak Bay. Phytoplankton samples taken on 17 May 2003 reported the presence of a harmful algal bloom composed of Chatonella marina, Chatonella cf. ovata, Gymnodinium catenatum and Gymnodinium sanguineum. On 22 of May, we collected samples of water, sediment and organisms at the affected area. Physicochemical parameters and nutrients were measured in water samples from different depths. Sediment and benthic organisms were analyzed for Cd, Cu, Zn, Pb and Hg. We found concentrations of heavy metals higher than background levels for this area. Cadmium and Lead concentrations in sediment from the HAB area were up to 6x greater than background levels and Cd in mollusks was 8x greater than regulations allow. A relationship between elevated Cd and Pb concentrations in sediment and the survival of toxic dinoflagellates is suspected.

  18. Bacterial toxin-antitoxin systems: more than selfish entities?

    OpenAIRE

    Laurence Van Melderen; Manuel Saavedra De Bast

    2009-01-01

    Bacterial toxin?antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence,...

  19. Population dynamics of potentially harmful algal blooms in Bizerte ...

    African Journals Online (AJOL)

    These were numerically dominated by potentially toxic species of the diatom genus Pseudo-nitzschia, which were present year-round at all stations. ... Canonical correspondence analyses revealed significant relationships between the harmful phytoplankton species monitored and the environmental conditions.

  20. Biodegradation of polyether algal toxins–Isolation of potential marine bacteria

    Science.gov (United States)

    SHETTY, KATEEL G.; HUNTZICKER, JACQUELINE V.; REIN, KATHLEEN S.; JAYACHANDRAN, KRISH

    2012-01-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6 × 107 per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp. PMID:20954040

  1. Associations between marine phytoplankton and symptoms of illness among recreational beachgoers in Puerto Rico, 2009

    Science.gov (United States)

    While phytoplankton generally have crucial roles in marine ecosystems, a small subset can release toxins and produce harmful algal blooms (HABs). HABs can be a threat to human health as symptoms from exposure range from neurological impairment to gastrointestinal (GI), dermal, a...

  2. Associations between Chlorophyll a and various microcystin-LR health advisory concentrations

    Science.gov (United States)

    Cyanobacteria harmful algal blooms (cHABs) are associated with a wide range of adverse health effects that stem mostly from the presence of cyanotoxins. To help protect against these impacts, several health advisory levels have been set for some toxins. In particular, one of the ...

  3. Stability of the intra- and extracellular toxins of Prymnesium parvum using a microalgal bioassay

    DEFF Research Database (Denmark)

    Blossom, Hannah Eva; Andersen, Nikolaj Gedsted; Rasmussen, Silas Anselm

    2014-01-01

    easily maintained. Reducing oxidation by storing the supernatant with no headspace in the vials significantly slowed loss of activity when stored at 4°C. We show that the lytic activity of the intracellular toxins, when released by sonication, is not as high as the extracellular toxins, however...... of P. parvum toxins before attempting to isolate and characterize them. The extracellular toxin in the supernatant is highly unstable, and it loses significant lytic effects after 3 days despite storage at −20°C and after only 24h stored at 4°C. However, when stored at −80°C, lytic activity is more...... the stability of the intracellular toxins when kept as a cell pellet at −20°C is excellent, which proves this is a sufficient storage method for less than 3 months. Our results provide an ecologically appropriate algal bioassay to quantify lytic activity of P. parvum toxins and we have advanced our knowledge...

  4. Investigation and Control of Algal Grwoths in Water Resources Using Zn Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehdi Eskandary

    2016-03-01

    Full Text Available Increasing nutrients such as nitrates and phosphates in water resources lead to the growth of various algal species, causing undesirable odors and taste in the water. This study investigated the identification and removal of harmful algal growths by Zinc oxide nanoparticles (using Ardabil Yamichi Dam reservoir as a case study. Samples were initially collected from the Yamichi Dam reservoir and the algae in the water samples were cultivated. Enough time was allowed for the algae to grow before they were identified under the microscope. The results showed that most of the algal species grown in the culture medium belonged to the species Cladophora and Euglena. Zinc oxide nanoparticles were then synthesized to be used in the removal and/or inhibition of algal growths. ZnO nanoparticles were subsequently characterized by transmission electron microscopy (TEM and X-ray diffraction (XRD methods which revealed that the size of the ZnO nanoparticles was in the range of 10‒30 nanometers and further that the nanoparticles were pure and of a  hexagonal phase. In continuation, the capability of ZnO nanoparticles with concentrations in the range of 0-3 ppm to inhibit algal growth was investigated. Results showed that no reduction was observed in algal growth for Zinc oxide nanoparticle concentrations below 1 mg/lit. At concentrations between 1 to 2 mg/lit, however, a significant reduction was observed in algal growth. Finally, it was found that algal growths completely stopped at ZnO concentrations beyond 2 mg/lit

  5. General Aviation Citizen Science Study to Help Tackle Remote Sensing of Harmful Algal Blooms (HABs)

    Science.gov (United States)

    Ansari, Rafat R.; Schubert, Terry

    2018-01-01

    We present a new, low-cost approach, based on volunteer pilots conducting high-resolution aerial imaging, to help document the onset, growth, and outbreak of harmful algal blooms (HABs) and related water quality issues in central and western Lake Erie. In this model study, volunteer private pilots acting as citizen scientists frequently flew over 200 mi of Lake Erie coastline, its islands, and freshwater estuaries, taking high-quality aerial photographs and videos. The photographs were taken in the nadir (vertical) position in red, green, and blue (RGB) and near-infrared (NIR) every 5 s with rugged, commercially available built-in Global Positioning System (GPS) cameras. The high-definition (HD) videos in 1080p format were taken continuously in an oblique forward direction. The unobstructed, georeferenced, high-resolution images, and HD videos can provide an early warning of ensuing HAB events to coastal communities and freshwater resource managers. The scientists and academic researchers can use the data to compliment a collection of in situ water measurements, matching satellite imagery, and help develop advanced airborne instrumentation, and validation of their algorithms. This data may help develop empirical models, which may lead to the next steps in predicting a HAB event as some watershed observed events changed the water quality such as particle size, sedimentation, color, mineralogy, and turbidity delivered to the Lake site. This paper shows the efficacy and scalability of citizen science (CS) aerial imaging as a complimentary tool for rapid emergency response in HABs monitoring, land and vegetation management, and scientific studies. This study can serve as a model for monitoring/management of freshwater and marine aquatic systems.

  6. Cyanobacteria, Toxins and Indicators: Field Monitoring,Treatment Facility Monitoring and Treatment Studies

    Science.gov (United States)

    This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.

  7. Advantages and disadvantages of the use of immunodetection techniques for the enumeration of micro-organisms and toxins in water

    CSIR Research Space (South Africa)

    Kfir, R

    1993-01-01

    Full Text Available and hepatitis A viruses; and the use of ELISA and immunofluorescence for the detection of bacteria (Legionella, faecal coliforms) and protozoan parasites (Giardia, Cryptosporidium). The production and use of monoclonal antibodies against algal toxins are also...

  8. Algae as test organisms of harmful effects of various radiations

    International Nuclear Information System (INIS)

    Necas, J.

    1989-01-01

    The report describes a complex biotest in which algae serve as the test organisms and where a variety of algal characteristics are employed as indicators of the effects of harmful radiations on the cultures and single organisms. Rules for a successful choice of a suitable algal organism are discussed and the preparation of the latter for the test as well as the growth and morphogenic tests and some physiological responses of algae to harmful radiation are described. The survival and lethality are related to the interpretation of the test results particularly from the physiological and genetic points of view. The complex biotest concerns not only toxic but also mutagenic effects of the factors tested. Some easily detectable mutations in algae are mentioned and their spectra are recommended. The stability of the mutations and the possibility of their delayed manifestation are considered. The possibility of occurrence of teratogenic effects is also dealt with and the negative role of phenocopies in the correct evaluation of the mutation effects is mentioned. Advice for the breeding and laboratory maintenance of suitable algal strains for the biotest is given. Practical use of the biotest is demonstrated on the results of a test using modified samples of waste water from uranium industries. It is recommended that biotests confined to the evaluation of single characteristics of the test organism be replaced by this complex biotest whose results can be interpreted more extensively and exhibit a higher reliability. (author). 268 refs., 1 tab., 9 figs

  9. Seasonality and toxin production of Pyrodinium bahamense in a Red Sea lagoon

    KAUST Repository

    Banguera Hinestroza, Eulalia; Eikrem, W.; Mansour, H.; Solberg, Ingrid; Curdia, Joao; Holtermann, Karie Ellen; Edvardsen, B.; Kaartvedt, Stein

    2016-01-01

    Harmful algal blooms of the dinoflagellate Pyrodinium bahamense have caused human and economic losses in the last decades. This study, for the first time, documents a bloom of P. bahamense in the Red Sea. The alga was recurrently present in a semi

  10. Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes.

    Science.gov (United States)

    Chun, Chan Lan; Ochsner, Urs; Byappanahalli, Muruleedhara N; Whitman, Richard L; Tepp, William H; Lin, Guangyun; Johnson, Eric A; Peller, Julie; Sadowsky, Michael J

    2013-03-19

    Avian botulism, a paralytic disease of birds, often occurs on a yearly cycle and is increasingly becoming more common in the Great Lakes. Outbreaks are caused by bird ingestion of neurotoxins produced by Clostridium botulinum, a spore-forming, gram-positive, anaerobe. The nuisance, macrophytic, green alga Cladophora (Chlorophyta; mostly Cladophora glomerata L.) is a potential habitat for the growth of C. botulinum. A high incidence of botulism in shoreline birds at Sleeping Bear Dunes National Lakeshore (SLBE) in Lake Michigan coincides with increasingly massive accumulations of Cladophora in nearshore waters. In this study, free-floating algal mats were collected from SLBE and other shorelines of the Great Lakes between June and October 2011. The abundance of C. botulinum in algal mats was quantified and the type of botulism neurotoxin (bont) genes associated with this organism were determined by using most-probable-number PCR (MPN-PCR) and five distinct bont gene-specific primers (A, B, C, E, and F). The MPN-PCR results showed that 16 of 22 (73%) algal mats from the SLBE and 23 of 31(74%) algal mats from other shorelines of the Great Lakes contained the bont type E (bont/E) gene. C. botulinum was present up to 15000 MPN per gram dried algae based on gene copies of bont/E. In addition, genes for bont/A and bont/B, which are commonly associated with human diseases, were detected in a few algal samples. Moreover, C. botulinum was present as vegetative cells rather than as dormant spores in Cladophora mats. Mouse toxin assays done using supernatants from enrichment of Cladophora containing high densities of C. botulinum (>1000 MPN/g dried algae) showed that Cladophora-borne C. botulinum were toxin-producing species (BoNT/E). Our results indicate that Cladophora provides a habitat for C. botulinum, warranting additional studies to better understand the relationship between this bacterium and the alga, and how this interaction potentially contributes to botulism

  11. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms

    Science.gov (United States)

    Smith, Christopher G.; Swarzenski, Peter W.

    2012-01-01

    A cross-shelf, water-column mass balance of radon-222 (222Rn) provided estimates of submarine groundwater discharge (SGD), which were then used to quantify benthic nutrient fluxes. Surface water and groundwater were collected along a shore-normal transect that extended from Tampa Bay, Florida, across the Pinellas County peninsula, to the 10-m isobath in the Gulf of Mexico. Samples were analyzed for 222Rn and radium-223,224,226 (223,224,226Ra) activities as well as inorganic and organic nutrients. Cross-shore gradients of 222Rn and 223,224,226Ra activities indicate a nearshore source for these isotopes, which mixes with water characterized by low activities offshore. Radon-based SGD rates vary between 2.5 and 15 cm d-1 proximal to the shoreline and decrease offshore. The source of SGD is largely shallow exchange between surface and pore waters, although deeper groundwater cycling may also be important. Enrichment of total dissolved nitrogen and soluble reactive phosphorus in pore water combined with SGD rates results in specific nutrient fluxes comparable to or greater than estuarine fluxes from Tampa Bay. The significance of these fluxes to nearshore blooms of Karenia brevis is highlighted by comparison with prescribed nutrient demands for bloom maintenance and growth. Whereas our flux estimates do not indicate SGD and benthic fluxes as the dominant nutrient source to the harmful algal blooms, SGD-derived loads do narrow the deficit between documented nutrient supplies and bloom demands.

  12. Strains of toxic and harmful microalgae, from waste water, marine, brackish and fresh water.

    Science.gov (United States)

    Rodríguez-Palacio, M C; Crisóstomo-Vázquez, L; Alvarez-Hernández, S; Lozano-Ramírez, C

    2012-01-01

    Some microalgae are economically important in Mexico and the world because they can be potentially toxic. Algal explosive population growths are named harmful algal blooms and are frequently recorded in Mexico. The authors set up potentially toxic microalgae cultures from the Gulf of Mexico (Garrapatas tideland, Barberena river, Carpintero lagoon in Tamaulipas State; Chalchoapan and Catemaco lakes in Veracruz State), from the Mexican Pacific Ocean, Guerrero, Colima and Michoacán States, and from interior water bodies such as Vicente Aguirre dam, Chapultepec lake and several waste water treatment plants. This research is about the diversity and abundance of phytoplankton in relation a specific site because of harmful algal bloom events. Microalgae cultures are useful in order to solve taxonomic problems, to know life cycles, molecular studies, for the study of toxic species, and the isolation of useful metabolites. The cultures for this research are clonal, non-axenic, semi-continuous, 12:12 light/dark photoperiod, 20 ± 1 °C temperature and 90.5 µmol m(-2)s(-1) illumination. Four different culture media were used. This collection is open to the worldwide scientific community as a source of organisms in controlled conditions that can be used as a useful tool for microalgae research work.

  13. First evidence of "paralytic shellfish toxins" and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in "tegogolo" snails (Pomacea patula catemacensis).

    Science.gov (United States)

    Berry, John P; Lind, Owen

    2010-05-01

    Exposure to cyanobacterial toxins in freshwater systems, including both direct (e.g., drinking water) and indirect (e.g., bioaccumulation in food webs) routes, is emerging as a potentially significant threat to human health. We investigated cyanobacterial toxins, specifically cylindrospermopsin (CYN), the microcystins (MCYST) and the "paralytic shellfish toxins" (PST), in Lago Catemaco (Veracruz, Mexico). Lago Catemaco is a tropical lake dominated by Cylindrospermopsis, specifically identified as Cylindrospermopsis catemaco and Cylindrospermopsis philippinensis, and characterized by an abundant, endemic species of snail (Pomacea patula catemacensis), known as "tegogolos," that is both consumed locally and commercially important. Samples of water, including dissolved and particulate fractions, as well as extracts of tegogolos, were screened using highly specific and sensitive ELISA. ELISA identified CYN and PST at low concentrations in only one sample of seston; however, both toxins were detected at appreciable quantities in tegogolos. Calculated bioaccumulation factors (BAF) support bioaccumulation of both toxins in tegogolos. The presence of CYN in the phytoplankton was further confirmed by HPLC-UV and LC-MS, following concentration and extraction of algal cells, but the toxin could not be confirmed by these methods in tegogolos. These data represent the first published evidence for CYN and the PST in Lago Catemaco and, indeed, for any freshwater system in Mexico. Identification of the apparent bioaccumulation of these toxins in tegogolos may suggest the need to further our understanding of the transfer of cyanobacterial toxins in freshwater food webs as it relates to human health. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in southern California

    KAUST Repository

    Seegers, Bridget N.

    2015-04-01

    An observational study was performed in the central Southern California Bight in Spring 2010 to understand the relationship between seasonal spring phytoplankton blooms and coastal processes that included nutrient input from upwelling, wastewater effluent plumes, and other processes. Multi-month Webb Slocum glider deployments combined with MBARI environmental sample processors (ESPs), weekly pier sampling, and ocean color data provided a multidimensional characterization of the development and evolution of harmful algal blooms (HABs). Results from the glider and ESP observations demonstrated that blooms of toxic Pseudo-nitzschia sp. can develop offshore and subsurface prior to their manifestation in the surface layer and/or near the coast. A significant outbreak and surface manifestation of the blooms coincided with periods of upwelling, or other processes that caused shallowing of the pycnocline and subsurface chlorophyll maximum. Our results indicate that subsurface populations can be an important source for “seeding” surface Pseudo-nitzschia HAB events in southern California.

  15. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework.

    Science.gov (United States)

    Salonen, Laura M; Pinela, Sara R; Fernandes, Soraia P S; Louçano, João; Carbó-Argibay, Enrique; Sarriá, Marisa P; Rodríguez-Abreu, Carlos; Peixoto, João; Espiña, Begoña

    2017-11-24

    Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg -1 . Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    Science.gov (United States)

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups.

  17. Bacterial toxin-antitoxin systems: more than selfish entities?

    Science.gov (United States)

    Van Melderen, Laurence; Saavedra De Bast, Manuel

    2009-03-01

    Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  18. Bacterial toxin-antitoxin systems: more than selfish entities?

    Directory of Open Access Journals (Sweden)

    Laurence Van Melderen

    2009-03-01

    Full Text Available Bacterial toxin-antitoxin (TA systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  19. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    Science.gov (United States)

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  20. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    Science.gov (United States)

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Using Watershed Models and Human Behavioral Analyses to identify Management Options to Reduce Lake Erie's Harmful Algal Blooms

    Science.gov (United States)

    Martin, J.; Wilson, R. S.; Aloysius, N.; Kalcic, M. M.; Roe, B.; Howard, G.; Irwin, E.; Zhang, W.; Liu, H.

    2017-12-01

    In early 2016, the United States and Canada formally agreed to reduce phosphorus inputs to Lake Erie by 40% to reduce the severity of annual Harmful Algal Blooms (HABs). These blooms have become more severe, with record events occurring in 2011 and 2015, and have compromised public safety, shut down drinking water supplies, and negatively impacted the economy of the western Lake Erie basin. Now, a key question is what management options should be pursued to reach the 40% reduction. This presentation will highlight interdisciplinary research to compare the amount and types of practices needed for this reduction to the current and projected levels of adoption. Multiple models of the Maumee watershed identified management plans and adoption rates needed to reach the reduction targets. For example, one successful scenario estimated necessary adoption rates of 50% for subsurface application of fertilizer on row crops, 58% for cover crops, and 78% for buffer strips. Current adoption is below these levels, but future projections based on farmer surveys shows these levels are possible. This information was then used to guide another round of watershed modeling analysis to evaluate scenarios that represented more realistic scenarios based on potential levels of management adoption. In general, these results show that accelerated adoption of management plans is needed compared to past adoption rates, and that some of these greater adoption levels are possible based on likely adoption rates. Increasing the perceived efficacy of the practices is one method that will support greater voluntary rates of adoption.

  2. Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom

    Directory of Open Access Journals (Sweden)

    Verena Häussermann

    2017-05-01

    Full Text Available While large mass mortality events (MMEs are well known for toothed whales, they have been rare in baleen whales due to their less gregarious behavior. Although in most cases the cause of mortality has not been conclusively identified, some baleen whale mortality events have been linked to bio-oceanographic conditions, such as harmful algal blooms (HABs. In Southern Chile, HABs can be triggered by the ocean–atmosphere phenomenon El Niño. The frequency of the strongest El Niño events is increasing due to climate change. In March 2015, by far the largest reported mass mortality of baleen whales took place in a gulf in Southern Chile. Here, we show that the synchronous death of at least 343, primarily sei whales can be attributed to HABs during a building El Niño. Although considered an oceanic species, the sei whales died while feeding near to shore in previously unknown large aggregations. This provides evidence of new feeding grounds for the species. The combination of older and newer remains of whales in the same area indicate that MMEs have occurred more than once in recent years. Large HABs and reports of marine mammal MMEs along the Northeast Pacific coast may indicate similar processes in both hemispheres. Increasing MMEs through HABs may become a serious concern in the conservation of endangered whale species.

  3. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  4. Neurotoxins from Marine Dinoflagellates: A Brief Review

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    2008-06-01

    Full Text Available Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP, neurotoxic shellfish poisoning (NSP, amnesic shellfish poisoning (ASP, diarrheic shellfish poisoning (DSP, ciguatera fish poisoning (CFP and azaspiracid shellfish poisoning (ASP. Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels.

  5. Experimental study on the interspecific interactions between the two bloom-forming algal species and the rotifer Brachionus plicatilis

    Science.gov (United States)

    Xie, Zhihao; Xiao, Hui; Tang, Xuexi; Cai, Hengjiang

    2009-06-01

    The interspecific interactions between the rotifer Brachionus plicatilis and two harmful algal blooms (HAB) species were investigated experimentally by single culture method. B. plicatilis population and the growth of the two algae were compared at different algal cell densities. The results demonstrated that the B. plicatilis obtained sufficient nutrition from Prorocentrum donghaiense to support net population increase. With exposure to 2.5×104 cells mL-1 of P. donghaiense, the number of B. plicatilis increased faster than it did when exposed to other four algal densities (5, 10, 15 and 20 ×104 cells mL-1), and the increase rate of B. plicatilis population ( r) at this algal density was 0.104 ± 0.015 rd-1. Cell densities of P. donghaiense decreased due to the grazing of B. plicatilis. In contrast, Heterosigma akashiwo had an adverse effect on B. plicatilis population and its growth was largely unaffected by rotifer grazing. In this case, B. plicatilis population decreased and H. akashiwo grew at a rate similar to that of the control.

  6. Exotic harmful algae in marine ecosystems : an integrated biological-economic-legal analysis of impacts and policies

    NARCIS (Netherlands)

    van den Bergh, JCJM; Nunes, PALD; Dotinga, HM; Kooistra, WHCF; Vrieling, EG; Peperzak, L

    Harmful algal blooms (HABs) are the cause of important damages to marine living resources and human beings. HABs are generated by micro-algae. These marine species are primarily introduced through ballast water of ships and, to a lesser extent, through import of living fish, in particular shellfish.

  7. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Cyd E. [Dept. of Energy (DOE), Washington DC (United States).

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  8. Removal of cyanobacterial toxins by sediment passage

    Science.gov (United States)

    Gruetzmacher, G.; Boettcher, G.; Chorus, I.; Bartel, H.

    2003-04-01

    Cyanbacterial toxins ("Cyanotoxins") comprise a wide range of toxic substances produced by cyanobacteria ("blue-green algae"). Cyanobacteria occur in surface water word wide and can be found in high concentrations during so-called algal blooms when conditions are favourable (e.g. high nutrient levels, high temperatures). Some cyanobacteria produce hepato- or neurotoxins, of which the hepatotoxic microcystins are the most common in Germany. The WHO guideline value for drinking water was set at 1 μg/L. However, maximum concentrations in surface water can reach 25 mg/L, so that a secure method for toxin elimination has to be found when this water is used as source water for drinking water production. In order to assess if cyanotoxins can be removed by sediment passage the German Federal Environmental Agency (UBA) conducted laboratory- and field scale experiments as well as observations on bank filtration field sites. Laboratory experiments (batch- and column experiments for adsorption and degradation parameters) were conducted in order to vary a multitude of experimental conditions. These experiments were followed by field scale experiments on the UBA's experimental field in Berlin. This plant offers the unique possibility to conduct experiments on the behaviour of various agents - such as harmful substances - during infiltration and bank filtration under well-defined conditions on a field scale, and without releasing these substances to the environment. Finally the development of microcystin concentrations was observed between infiltrating surface water and a drinking water well along a transsecte of observation wells. The results obtained show that infiltration and bank filtration normally seem to be secure treatment methods for source water contaminated by microcystins. However, elimination was shown to be difficult under the following circumstances: - dying cyanobacterial population due to insufficient light and / or nutrients, low temperatures or application of

  9. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  10. Nitrogen cycling in Sandusky Bay, Lake Erie: oscillations between strong and weak export and implications for harmful algal blooms

    Science.gov (United States)

    Salk, Kateri R.; Bullerjahn, George S.; McKay, Robert Michael L.; Chaffin, Justin D.; Ostrom, Nathaniel E.

    2018-05-01

    Recent global water quality crises point to an urgent need for greater understanding of cyanobacterial harmful algal blooms (cHABs) and their drivers. Nearshore areas of Lake Erie such as Sandusky Bay may become seasonally limited by nitrogen (N) and are characterized by distinct cHAB compositions (i.e., Planktothrix over Microcystis). This study investigated phytoplankton N uptake pathways, determined drivers of N depletion, and characterized the N budget in Sandusky Bay. Nitrate (NO3-) and ammonium (NH4+) uptake, N fixation, and N removal processes were quantified by stable isotopic approaches. Dissimilatory N reduction was a relatively modest N sink, with denitrification, anammox, and N2O production accounting for 84, 14, and 2 % of sediment N removal, respectively. Phytoplankton assimilation was the dominant N uptake mechanism, and NO3- uptake rates were higher than NH4+ uptake rates. Riverine N loading was sometimes insufficient to meet assimilatory and dissimilatory demands, but N fixation alleviated this deficit. N fixation made up 23.7-85.4 % of total phytoplankton N acquisition and indirectly supports Planktothrix blooms. However, N fixation rates were surprisingly uncorrelated with NO3- or NH4+ concentrations. Owing to temporal separation in sources and sinks of N to Lake Erie, Sandusky Bay oscillates between a conduit and a filter of downstream N loading to Lake Erie, delivering extensively recycled forms of N during periods of low export. Drowned river mouths such as Sandusky Bay are mediators of downstream N loading, but climate-change-induced increases in precipitation and N loading will likely intensify N export from these systems.

  11. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin transfer from land to sea otters.

    Directory of Open Access Journals (Sweden)

    Melissa A Miller

    "harmful algal bloom" in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP, suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.

  12. Evidence for a novel marine harmful algal bloom: Cyanotoxin (Microcystin) transfer from land to sea otters

    Science.gov (United States)

    Miller, Melissa A.; Kudela, Raphael M.; Mekebri, Abdu; Crane, Dave; Oates, Stori C.; Tinker, M. Timothy; Staedler, Michelle; Miller, Woutrina A.; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A.

    2010-01-01

    "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal

  13. General Aviation Citizen Science Pilot Study to Help Tackle Remote Sensing of Harmful Algal Blooms (HABs)

    Science.gov (United States)

    Ansari, R.

    2017-12-01

    Aerial remote sensing conducted by volunteer pilots acting as citizen scientists is providing high-quality data to help understand reasons behind outbreaks of toxic algal blooms in nation's waterways and coastlines. The toxic water can be detrimental to national economy, human health, clean drinking water, fishing industry, and water sports. We will show how general aviation pilots around the country are contributing to this NASA citizen science initiative.

  14. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  15. Assessing the Magnitude of Polycyclic Aromatic Hydrocarbon Loading from Road Surfaces and Its Effect on Algal Productivity

    Science.gov (United States)

    2010-06-01

    The hypotheses of the study were that PAHs washing off roads would retard the growth of aquatic life-supporting algae and promote the growth of harmful, toxin-producing algae in estuaries, such as the Chesapeake Bay. Runoff from various road surfaces...

  16. Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico).

    Science.gov (United States)

    Berry, J P; Jaja-Chimedza, A; Dávalos-Lind, L; Lind, O

    2012-01-01

    Compared to the well-characterized health threats associated with contamination of fish and shellfish by algal toxins in marine fisheries, the toxicological relevance of the bioaccumulation of toxins from cyanobacteria (blue-green algae), as the primary toxigenic algae in freshwater systems, remains relatively unknown. Lake Catemaco (Veracruz, Mexico) is a small, tropical lake system specifically characterized by a year-round dominance of the known toxigenic cyanobacterial genus, Cylindrospermopsis, and by low, but detectable, levels of both a cyanobacterial hepatotoxin, cylindrospermopsin (CYN), and paralytic shellfish toxins (PSTs). In the present study, we evaluated, using enzyme-linked immunoassay (ELISA), levels of both toxins in several species of finfish caught and consumed locally in the region to investigate the bioaccumulation of, and possible health threats associated with, these toxins as potential foodborne contaminants. ELISA detected levels of both CYN and PSTs in fish tissues from the lake. Levels were generally low (≤ 1 ng g(-1) tissue); however, calculated bioaccumulation factors (BAFs) indicate that toxin levels exceed the rather low levels in the water column and, consequently, indicated bioaccumulation (BAF >1). A reasonable correlation was observed between measured bioaccumulation of CYN and PSTs, possibly indicating a mutual source of both toxins, and most likely cells of Cylindrospermopsis, the dominant cyanobacteria in the lake, and a known producer of both metabolites. The potential roles of trophic transport in the system, as well as possible implications for human health with regards to bioaccumulation, are discussed.

  17. Toxic phytoplankton in San Francisco Bay

    Science.gov (United States)

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  18. Spatiotemporal patterns of paralytic shellfish toxins and their relationships with environmental variables in British Columbia, Canada from 2002 to 2012.

    Science.gov (United States)

    Finnis, Stephen; Krstic, Nikolas; McIntyre, Lorraine; Nelson, Trisalyn A; Henderson, Sarah B

    2017-07-01

    Harmful algal blooms produce paralytic shellfish toxins that accumulate in the tissues of filter feeding shellfish. Ingestion of these toxic shellfish can cause a serious and potentially fatal condition known as paralytic shellfish poisoning (PSP). The coast of British Columbia is routinely monitored for shellfish toxicity, and this study uses data from the monitoring program to identify spatiotemporal patterns in shellfish toxicity events and their relationships with environmental variables. The dinoflagellate genus Alexandrium produces the most potent paralytic shellfish toxin, saxitoxin (STX). Data on all STX measurements were obtained from 49 different shellfish monitoring sites along the coast of British Columbia for 2002-2012, and monthly toxicity events were identified. We performed hierarchical cluster analysis to group sites that had events in similar areas with similar timing. Machine learning techniques were used to model the complex relationships between toxicity events and environmental variables in each group. The Strait of Georgia and the west coast of Vancouver Island had unique toxicity regimes. Out of the seven environmental variables used, toxicity in each cluster could be described by multivariable models including monthly sea surface temperature, air temperature, sea surface salinity, freshwater discharge, upwelling, and photosynthetically active radiation. The sea surface salinity and freshwater discharge variables produced the strongest univariate models for both geographic areas. Applying these methods in coastal regions could allow for the prediction of shellfish toxicity events by environmental conditions. This has the potential to optimize biotoxin monitoring, improve public health surveillance, and engage the shellfish industry in helping to reduce the risk of PSP. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Harmful Algal Bloom Monitoring Data for Puget Sound - SoundToxins: Partnership for Enhanced Monitoring and Emergency Response to Harmful Algal Blooms in Puget Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Toxic outbreaks of species of the dinoflagellate Alexandrium have become pervasive in the Puget Sound region over the last two decades, escalating the threats to...

  20. Uncovering the Complex Transcriptome Response of Mytilus chilensis against Saxitoxin: Implications of Harmful Algal Blooms on Mussel Populations

    Science.gov (United States)

    Detree, Camille; Núñez-Acuña, Gustavo; Roberts, Steven; Gallardo-Escárate, Cristian

    2016-01-01

    Saxitoxin (STX), a principal phycotoxin contributing to paralytic shellfish poisoning, is largely produced by marine microalgae of the genus Alexandrium. This toxin affects a wide range of species, inducing massive deaths in fish and other marine species. However, marine bivalves can resist and accumulate paralytic shellfish poisons. Despite numerous studies on the impact of STX in marine bivalves, knowledge regarding STX recognition at molecular level by benthic species remains scarce. Therefore, the aim of this study was to identify novel genes that interact with STX in the Chilean mussel Mytilus chilensis. For this, RNA-seq and RT-qPCR approaches were used to evaluate the transcriptomic response of M. chilensis to a purified STX as well as in vivo Alexandrium catenella exposure. Approximately 800 million reads were assembled, generating 138,883 contigs that were blasted against the UniProt Mollusca database. Pattern Recognition Receptors (PRRs) involved in mussel immunity, such as Toll-like receptors, tumor necrosis factor receptors, and scavenger-like receptors were found to be strongly upregulated at 8 and 16 h post-STX injection. These results suggest an involvement of PRRs in the response to STX, as well as identifying potential, novel STX-interacting receptors in this Chilean mussel. This study is the first transcriptomic overview of the STX-response in the edible species M. chilensis. However, the most significant contribution of this work is the identification of immune receptors and pathways potentially involved in the recognition and defense against STX’s toxicity and its impact of harmful algae blooms on wild and cultivated mussel populations. PMID:27764234

  1. Satellite retrievals of Karenia brevis harmful algal blooms in the West Florida shelf using neural networks and impacts of temporal variabilities

    Science.gov (United States)

    El-Habashi, Ahmed; Duran, Claudia M.; Lovko, Vincent; Tomlinson, Michelle C.; Stumpf, Richard P.; Ahmed, Sam

    2017-07-01

    We apply a neural network (NN) technique to detect/track Karenia brevis harmful algal blooms (KB HABs) plaguing West Florida shelf (WFS) coasts from Visible-Infrared Imaging Radiometer Suite (VIIRS) satellite observations. Previously KB HABs detection primarily relied on the Moderate Resolution Imaging Spectroradiometer Aqua (MODIS-A) satellite, depending on its remote sensing reflectance signal at the 678-nm chlorophyll fluorescence band (Rrs678) needed for normalized fluorescence height and related red band difference retrieval algorithms. VIIRS, MODIS-A's successor, does not have a 678-nm channel. Instead, our NN uses Rrs at 486-, 551-, and 671-nm VIIRS channels to retrieve phytoplankton absorption at 443 nm (a). The retrieved a images are next filtered by applying limits, defined by (i) low Rrs551-nm backscatter and (ii) a minimum a value associated with KB HABs. The filtered residual images are then converted to show chlorophyll-a concentrations [Chla] and KB cell counts. VIIRS retrievals using our NN and five other retrieval algorithms were compared and evaluated against numerous in situ measurements made over the four-year 2012 to 2016 period, for which VIIRS data are available. These comparisons confirm the viability and higher retrieval accuracies of the NN technique, when combined with the filtering constraints, for effective detection of KB HABs. Analysis of these results as well as sequential satellite observations and recent field measurements underline the importance of short-term temporal variabilities on retrieval accuracies.

  2. Neural network retrievals of Karenia brevis harmful algal blooms in the West Florida Shelf (Conference Presentation)

    Science.gov (United States)

    Ahmed, Samir; El-Habashi, Ahmed

    2016-10-01

    Effective detection and tracking of Karenia brevis Harmful Algal Blooms (KB HAB) that frequently plague the coasts and beaches of the West Florida Shelf (WFS) is important because of their negative impacts on ecology. They pose threats to fisheries, human health, and directly affect tourism and local economies. Detection and tracking capabilities are needed for use with the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite, so that HABs monitoring capabilities, which previously relied on imagery from the Moderate Resolution Imaging Spectroradiometer Aqua, can be extended to VIIRS. Unfortunately, VIIRS, unlike its predecessor MODIS-A, does not have a 678 nm channel to detect chlorophyll fluorescence, which is used in the normalized fluorescence height (nFLH) algorithm, or in the Red Band Difference (RBD) algorithm. Both these techniques have demonstrated that the remote sensing reflectance signal from the MODIS-A fluorescence band (Rrs 678 nm) helps in effectively detecting and tracking KB HABs in the WFS. To overcome the lack of a fluorescence channel on VIIRS, the approach described here, bypasses the need for measurements at 678nm, and permits extension of KB HABs satellite monitoring to VIIRS. The essence of the approach is the application of a standard multiband neural network (NN) inversion algorithm, previously developed and reported by us, that takes VIIRS Rrs measurements at the 486, 551 and 671nm bands as inputs, and produces as output the related Inherent Optical Properties (IOPs), namely: absorption coefficients of phytoplankton (aph443) dissolved organic matter (ag) and non-algal particulates (adm) as well as the particulate backscatter coefficient, (bbp) all at 443nm. We next need to relate aph443 in the VIIRS NN retrieved image to equivalent KB HABs concentrations. To do this, we apply additional constraints, defined by (i) low backscatter manifested as a maximum Rrs551 value and (ii) a minimum [Chla] threshold (and hence an equivalent

  3. Toxins of filamentous fungi.

    Science.gov (United States)

    Bhatnagar, Deepak; Yu, Jiujiang; Ehrlich, Kenneth C

    2002-01-01

    designed to develop natural biocontrol competitive fungi and to enhance host resistance against fungal growth or toxin production. These efforts could prevent toxin formation entirely. Rigorous programs for reducing the risk of human and animal exposure to contaminated foods and feed also include economically feasible and safe detoxification processes and dietary modifications. Although risk assessment has been made for some mycotoxins, additional, systematic epidemological data for human exposure is needed for establishing toxicological parameters for mycotoxins and the safe dose for humans. It is unreasonable to expect complete elimination of the mycotoxin problem. But multiple approaches will be needed to minimize the economic impact of the toxins on the entire agriculture industry and their harmfulness to human and animal health.

  4. Water Quality, Cyanobacteria, and Environmental Factors and Their Relations to Microcystin Concentrations for Use in Predictive Models at Ohio Lake Erie and Inland Lake Recreational Sites, 2013-14

    Science.gov (United States)

    Francy, Donna S.; Graham, Jennifer L.; Stelzer, Erin A.; Ecker, Christopher D.; Brady, Amie M. G.; Pam Struffolino,; Loftin, Keith A.

    2015-11-06

    Harmful cyanobacterial “algal” blooms (cyanoHABs) and associated toxins, such as microcystin, are a major water-quality issue for Lake Erie and inland lakes in Ohio. Predicting when and where a bloom may occur is important to protect the public that uses and consumes a water resource; however, predictions are complicated and likely site specific because of the many factors affecting toxin production. Monitoring for a variety of environmental and water-quality factors, for concentrations of cyanobacteria by molecular methods, and for algal pigments such as chlorophyll and phycocyanin by using optical sensors may provide data that can be used to predict the occurrence of cyanoHABs.

  5. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health

    OpenAIRE

    Anderson, Donald M.; Alpermann, Tilman J.; Cembella, Allan D.; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2012-01-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutri...

  6. Accumulation, biotransformation, histopathology and paralysis in the Pacific calico scallop Argopecten ventricosus by the paralyzing toxins of the dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Escobedo-Lozano, Amada Y; Estrada, Norma; Ascencio, Felipe; Contreras, Gerardo; Alonso-Rodriguez, Rosalba

    2012-05-01

    The dinoflagellate Gymnodinium catenatum produces paralyzing shellfish poisons that are consumed and accumulated by bivalves. We performed short-term feeding experiments to examine ingestion, accumulation, biotransformation, histopathology, and paralysis in the juvenile Pacific calico scallop Argopecten ventricosus that consume this dinoflagellate. Depletion of algal cells was measured in closed systems. Histopathological preparations were microscopically analyzed. Paralysis was observed and the time of recovery recorded. Accumulation and possible biotransformation of toxins were measured by HPLC analysis. Feeding activity in treated scallops showed that scallops produced pseudofeces, ingestion rates decreased at 8 h; approximately 60% of the scallops were paralyzed and melanin production and hemocyte aggregation were observed in several tissues at 15 h. HPLC analysis showed that the only toxins present in the dinoflagellates and scallops were the N-sulfo-carbamoyl toxins (C1, C2); after hydrolysis, the carbamate toxins (epimers GTX2/3) were present. C1 and C2 toxins were most common in the mantle, followed by the digestive gland and stomach-complex, adductor muscle, kidney and rectum group, and finally, gills. Toxin profiles in scallop tissue were similar to the dinoflagellate; biotransformations were not present in the scallops in this short-term feeding experiment.

  7. Constraints to commercialization of algal fuels.

    Science.gov (United States)

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  8. Studies in the Use of Magnetic Microspheres for Immunoaffinity Extraction of Paralytic Shellfish Poisoning Toxins from Shellfish

    Directory of Open Access Journals (Sweden)

    Christopher Elliott

    2011-01-01

    Full Text Available Paralytic shellfish poisoning (PSP is a potentially fatal human health condition caused by the consumption of shellfish containing high levels of PSP toxins. Toxin extraction from shellfish and from algal cultures for use as standards and analysis by alternative analytical monitoring methods to the mouse bioassay is extensive and laborious. This study investigated whether a selected MAb antibody could be coupled to a novel form of magnetic microsphere (hollow glass magnetic microspheres, brand name Ferrospheres-N and whether these coated microspheres could be utilized in the extraction of low concentrations of the PSP toxin, STX, from potential extraction buffers and spiked mussel extracts. The feasibility of utilizing a mass of 25 mg of Ferrospheres-N, as a simple extraction procedure for STX from spiked sodium acetate buffer, spiked PBS buffer and spiked mussel extracts was determined. The effects of a range of toxin concentrations (20–300 ng/mL, incubation times and temperature on the capability of the immuno-capture of the STX from the spiked mussel extracts were investigated. Finally, the coated microspheres were tested to determine their efficiency at extracting PSP toxins from naturally contaminated mussel samples. Toxin recovery after each experiment was determined by HPLC analysis. This study on using a highly novel immunoaffinity based extraction procedure, using STX as a model, has indicated that it could be a convenient alternative to conventional extraction procedures used in toxin purification prior to sample analysis.

  9. Harmful Algae Bloom Occurrence in Urban Ponds: Relationship of Toxin Levels with Cell Density and Species Composition

    Science.gov (United States)

    Retention ponds constructed within urban watershed areas of high density populations are common as a result of green infrastructure applications. Several urban ponds in the Northern Kentucky area were monitored for algal community (algae and cyanobacteria) from October 2012 to Se...

  10. Advanced Algal Systems Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  11. Paralytic Shellfish Toxins and Cyanotoxins in the Mediterranean: New Data from Sardinia and Sicily (Italy).

    Science.gov (United States)

    Lugliè, Antonella; Giacobbe, Maria Grazia; Riccardi, Elena; Bruno, Milena; Pigozzi, Silvia; Mariani, Maria Antonietta; Satta, Cecilia Teodora; Stacca, Daniela; Bazzoni, Anna Maria; Caddeo, Tiziana; Farina, Pasqualina; Padedda, Bachisio Mario; Pulina, Silvia; Sechi, Nicola; Milandri, Anna

    2017-11-16

    Harmful algal blooms represent a severe issue worldwide. They affect ecosystem functions and related services and goods, with consequences on human health and socio-economic activities. This study reports new data on paralytic shellfish toxins (PSTs) from Sardinia and Sicily (Italy), the largest Mediterranean islands where toxic events, mainly caused by Alexandrium species (Dinophyceae), have been ascertained in mussel farms since the 2000s. The toxicity of the A. minutum, A. tamarense and A. pacificum strains, established from the isolation of vegetative cells and resting cysts, was determined by high performance liquid chromatography (HPLC). The analyses indicated the highest toxicity for A. pacificum strains (total PSTs up to 17.811 fmol cell-1). The PSTs were also assessed in a strain of A. tamarense. The results encourage further investigation to increase the knowledge of toxic species still debated in the Mediterranean. This study also reports new data on microcystins (MCs) and β-N-methylamino-L-alanine (BMAA) from a Sardinian artificial lake (Lake Bidighinzu). The presence of MCs and BMAA was assessed in natural samples and in cell cultures by enzyme-linked immunosorbent assay (ELISA). BMAA positives were found in all the analysed samples with a maximum of 17.84 µg L-1. The obtained results added further information on cyanotoxins in Mediterranean reservoirs, particularly BMAA, which have not yet been thoroughly investigated.

  12. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  13. Paralytic shellfish poison algal biotoxins: Sardinia report 2002-2011 and non-compliance management

    Directory of Open Access Journals (Sweden)

    Giuseppa Lorenzoni

    2013-09-01

    Full Text Available Several microalgae of the genus Alexandrium (Alexandrium minutum and Alexandrium catenelle can produce an algal biotoxin, the paralytic shellfish poison (PSP that can be accumulated in the shellfish edible tissues making them hazardous to the consumer’s health. In this paper we report i the results of PSP toxins survey carried out by mouse bioassays (mouse test AOAC 958.08 on 7457 samples of bivalve molluscs farmed in Sardinia and in other European countries and marketed in Sardinia region from 2002 to 2011, and ii the management of positive cases. Based on our experience it is very important to strictly apply the planned activities in order to prevent any risk and to protect the consumer’s and producer’s health.

  14. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  15. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis)

    Science.gov (United States)

    Carvalho, Gustavo A.; Minnett, Peter J.; Fleming, Lora E.; Banzon, Viva F.; Baringer, Warner

    2010-01-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods – July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×104 cells l−1 defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs. PMID:21037979

  16. Sapphire Energy - Integrated Algal Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    White, Rebecca L. [Sapphire Energy, Inc., Columbus, NM (United States). Columbus Algal Biomass Farm; Tyler, Mike [Sapphire Energy, Inc., San Diego, CA (United States)

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  17. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections. Published by Elsevier Inc.

  18. Recreational Exposure to Low Concentrations of Microcystins During an Algal Bloom in a Small Lake

    Directory of Open Access Journals (Sweden)

    Yung-Sung Cheng

    2008-06-01

    Full Text Available We measured microcystins in blood from people at risk for swallowing water or inhaling spray while swimming, water skiing, jet skiing, or boating during an algal bloom. We monitored water samples from a small lake as a Microcystis aeruginosa bloom developed. We recruited 97 people planning recreational activities in that lake and seven others who volunteered to recreate in a nearby bloom-free lake. We conducted our field study within a week of finding a 10-μg/L microcystin concentration. We analyzed water, air, and human blood samples for water quality, potential human pathogens, algal taxonomy, and microcystin concentrations. We interviewed study participants for demographic and current health symptom information. Water samples were assayed for potential respiratory viruses (adenoviruses and enteroviruses, but none were detected. We did find low concentrations of Escherichia coli, indicating fecal contamination. We found low levels of microcystins (2 μg/L to 5 μg/L in the water and (<0.1 ng/m3 in the aerosol samples. Blood levels of microcystins for all participants were below the limit of detection (0.147μg/L. Given this low exposure level, study participants reported no symptom increases following recreational exposure to microcystins. This is the first study to report that water-based recreational activities can expose people to very low concentrations of aerosol-borne microcystins; we recently conducted another field study to assess exposures to higher concentrations of these algal toxins.

  19. Algal Supply System Design - Harmonized Version

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; Daniel Stevens; Allison Ray; Debor

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  20. Spatial variability of harmful algal blooms in Milford Lake, Kansas, July and August 2015

    Science.gov (United States)

    Foster, Guy M.; Graham, Jennifer L.; Stiles, Tom C.; Boyer, Marvin G.; King, Lindsey R.; Loftin, Keith A.

    2017-01-09

    Cyanobacterial harmful algal blooms (CyanoHABs) tend to be spatially variable vertically in the water column and horizontally across the lake surface because of in-lake and weather-driven processes and can vary by orders of magnitude in concentration across relatively short distances (meters or less). Extreme spatial variability in cyanobacteria and associated compounds poses unique challenges to collecting representative samples for scientific study and public-health protection. The objective of this study was to assess the spatial variability of cyanobacteria and microcystin in Milford Lake, Kansas, using data collected on July 27 and August 31, 2015. Spatially dense near-surface data were collected by the U.S. Geological Survey, nearshore data were collected by the Kansas Department of Health and Environment, and open-water data were collected by U.S. Army Corps of Engineers. CyanoHABs are known to be spatially variable, but that variability is rarely quantified. A better understanding of the spatial variability of cyanobacteria and microcystin will inform sampling and management strategies for Milford Lake and for other lakes with CyanoHAB issues throughout the Nation.The CyanoHABs in Milford Lake during July and August 2015 displayed the extreme spatial variability characteristic of cyanobacterial blooms. The phytoplankton community was almost exclusively cyanobacteria (greater than 90 percent) during July and August. Cyanobacteria (measured directly by cell counts and indirectly by regression-estimated chlorophyll) and microcystin (measured directly by enzyme-linked immunosorbent assay [ELISA] and indirectly by regression estimates) concentrations varied by orders of magnitude throughout the lake. During July and August 2015, cyanobacteria and microcystin concentrations decreased in the downlake (towards the outlet) direction.Nearshore and open-water surface grabs were collected and analyzed for microcystin as part of this study. Samples were collected in the

  1. Comparative analysis of the toxic effects of natural toxins and harmful substances produced by conventional processing methods or by irradiation and of toxicity tests

    International Nuclear Information System (INIS)

    Dahlhelm, H.; Arndt, K.; Groeger, G.; Schreiber, G.A.; Boegl, K.W.

    1994-01-01

    In this review, tasks and methods of food toxicology as well as the application of the different toxicity tests for the risk assessment of food ingredients are described. Particular reference is made to short-term genotoxicity tests. Enzymatic digestion and extraction methods for complex foodstuffs which are used in the toxicological testing of foods in in vitro systems are described. Radiolytic products which result from irradiation of foods or components of foodstuffs and corresponding results of toxicity testing are reviewed. Foodstuffs irradiated with doses of up to 10 kGy are regarded as toxicologically safe. A survey of the toxicologically tested irradiated foodstuffs as well as the applied maximum doses are given in tables at the end of chapter 8. Among the great number of toxicological studies of irradiated foods those are especially mentioned which have given rise to discussions on the health risks involved. In addition, the difficulties associated with the testing of toxicity of irradiated foodstuffs in feeding experiments are discussed. Short-term tests used to establish the benotoxicity of irradiated foods and essential results of toxicological testing are also presented in tables. An overview is given of the occurrence, frequency and health risks of natural toxins in foods and harmful substances produced by conventional methods of cooking and preservation, in order to enable a comparison with the health risks of irradiated foods. The relevance of animal experiments and in vitro investigations for the prediction of toxic effects of harmful substances of foodstuffs in man is discussed in the final chapter. (VHE) [de

  2. Fungal farmers or algal escorts: lichen adaptation from the algal perspective.

    Science.gov (United States)

    Piercey-Normore, Michele D; Deduke, Christopher

    2011-09-01

    Domestication of algae by lichen-forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations (Goward 1992). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont 'selection' by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction (Ahmadjian & Jacobs 1981) only after the interaction has been initiated. The theory of ecological guilds (Rikkinen et al. 2002) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens (Rikkinen et al. 2002), other studies propose models to explain variation in symbiont combinations in green algal lichens (Ohmura et al. 2006; Piercey-Normore 2006; Yahr et al. 2006) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & Škaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose

  3. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    Science.gov (United States)

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.

  4. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    Science.gov (United States)

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  5. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    Science.gov (United States)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  6. Algal Systems for Hydrogen Photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, Maria L [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-08

    The National Renewable Energy Laboratory (NREL), under the guidance of Drs. Michael Seibert (retired, Fellow Emeritus) and Maria Ghirardi (Fellow), led 15 years of research addressing the issue of algal H2 photoproduction. This project resulted in greatly increased rates and yields of algal hydrogen production; increased understanding of the H2 metabolism in the green alga, Chlamydomonas reinhardtii; expanded our knowledge of other physiological aspects relevant to sustained algal photosynthetic H2 production; led to the genetic identification, cloning and manipulation of algal hydrogenase genes; and contributed to a broader, fundamental understanding of the technical and scientific challenges to improving the conversion efficiencies in order to reach the U.S. Department of Energy’s Fuel Cell Technologies Office’s targets. Some of the tangible results are: (i) 64 publications and 6 patents, (ii) international visibility to NREL, (iii) reinvigoration of national and international biohydrogen research, and (iv) research progress that helped stimulate new funding from other DOE and non-DOE programs, including the AFOSR and the DOE Office of Science.

  7. Novel analyses of long-term data provide a scientific basis for chlorophyll-a thresholds in San Francisco Bay

    Science.gov (United States)

    Sutula, Martha; Kudela, Raphael; Hagy, James D.; Harding, Lawrence W.; Senn, David; Cloern, James E.; Bricker, Suzanne; Berg, Gry Mine; Beck, Marcus

    2017-10-01

    San Francisco Bay (SFB), USA, is highly enriched in nitrogen and phosphorus, but has been resistant to the classic symptoms of eutrophication associated with over-production of phytoplankton. Observations in recent years suggest that this resistance may be weakening, shown by: significant increases of chlorophyll-a (chl-a) and decreases of dissolved oxygen (DO), common occurrences of phytoplankton taxa that can form Harmful Algal Blooms (HAB), and algal toxins in water and mussels reaching levels of concern. As a result, managers now ask: what levels of chl-a in SFB constitute tipping points of phytoplankton biomass beyond which water quality will become degraded, requiring significant nutrient reductions to avoid impairments? We analyzed data for DO, phytoplankton species composition, chl-a, and algal toxins to derive quantitative relationships between three indicators (HAB abundance, toxin concentrations, DO) and chl-a. Quantile regressions relating HAB abundance and DO to chl-a were significant, indicating SFB is at increased risk of adverse HAB and low DO levels if chl-a continues to increase. Conditional probability analysis (CPA) showed chl-a of 13 mg m-3 as a "protective" threshold below which probabilities for exceeding alert levels for HAB abundance and toxins were reduced. This threshold was similar to chl-a of 13-16 mg m-3 that would meet a SFB-wide 80% saturation Water Quality Criterion (WQC) for DO. Higher "at risk" chl-a thresholds from 25 to 40 mg m-3 corresponded to 0.5 probability of exceeding alert levels for HAB abundance, and for DO below a WQC of 5.0 mg L-1 designated for lower South Bay (LSB) and South Bay (SB). We submit these thresholds as a basis to assess eutrophication status of SFB and to inform nutrient management actions. This approach is transferrable to other estuaries to derive chl-a thresholds protective against eutrophication.

  8. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  9. Accumulation, Biotransformation, Histopathology and Paralysis in the Pacific Calico Scallop Argopecten ventricosus by the Paralyzing Toxins of the Dinoflagellate Gymnodinium catenatum

    Directory of Open Access Journals (Sweden)

    Rosalba Alonso-Rodriguez

    2012-05-01

    Full Text Available The dinoflagellate Gymnodinium catenatum produces paralyzing shellfish poisons that are consumed and accumulated by bivalves. We performed short-term feeding experiments to examine ingestion, accumulation, biotransformation, histopathology, and paralysis in the juvenile Pacific calico scallop Argopecten ventricosus that consume this dinoflagellate. Depletion of algal cells was measured in closed systems. Histopathological preparations were microscopically analyzed. Paralysis was observed and the time of recovery recorded. Accumulation and possible biotransformation of toxins were measured by HPLC analysis. Feeding activity in treated scallops showed that scallops produced pseudofeces, ingestion rates decreased at 8 h; approximately 60% of the scallops were paralyzed and melanin production and hemocyte aggregation were observed in several tissues at 15 h. HPLC analysis showed that the only toxins present in the dinoflagellates and scallops were the N-sulfo-carbamoyl toxins (C1, C2; after hydrolysis, the carbamate toxins (epimers GTX2/3 were present. C1 and C2 toxins were most common in the mantle, followed by the digestive gland and stomach-complex, adductor muscle, kidney and rectum group, and finally, gills. Toxin profiles in scallop tissue were similar to the dinoflagellate; biotransformations were not present in the scallops in this short-term feeding experiment.

  10. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia

    International Nuclear Information System (INIS)

    Murray, R.E.; Cooksey, K.E.; Priscu, J.C.

    1986-01-01

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 10 4 cells cm -2 (diatoms) and 5 x 10 6 cells cm -2 (bacteria). The algal-bacterial consortia consistently exhibited higher rates of [ 3 H]thymidine incorporation than did biofilms composed solely of bacteria. The rates of [ 3 H]thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10 -21 mol to 17.9 x 10 -21 mol of [ 3 H]thymidine incorporated cell -1 h -1 ) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon

  11. NREL Algal Biofuels Projects and Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  12. Particle size fractionation of paralytic shellfish toxins (PSTs): seasonal distribution and bacterial production in the St Lawrence estuary, Canada.

    Science.gov (United States)

    Michaud, S; Levasseur, M; Doucette, G; Cantin, G

    2002-10-01

    We determined the seasonal distribution of paralytic shellfish toxins (PSTs) and PST producing bacteria in > 15, 5-15, and 0.22-5 microm size fractions in the St Lawrence. We also measured PSTs in a local population of Mytilus edulis. PST concentrations were determined in each size fraction and in laboratory incubations of sub-samples by high performance liquid chromatography (HPLC), including the rigorous elimination of suspected toxin 'imposter' peaks. Mussel toxin levels were determined by mouse bioassay and HPLC. PSTs were detected in all size fractions during the summer sampling season, with 47% of the water column toxin levels associated with particles smaller than Alexandrium tamarense ( 15 microm size fraction, we estimated that as much as 92% of PSTs could be associated with particles other than A. tamarense. Our results stress the importance of taking into account the potential presence of PSTs in size fractions other than that containing the known algal producer when attempting to model shellfish intoxication, especially during years of low cell abundance. Finally, our HPLC results confirmed the presence of bacteria capable of autonomous PST production in the St Lawrence as well as demonstrating their regular presence and apparent diversity in the plankton. Copyright 2002 Elsevier Science Ltd.

  13. Harmful algae and toxis in paranaguá bay , Brazil: bases for monitoring

    Directory of Open Access Journals (Sweden)

    Luiz Laureno Mafra Junior

    2006-09-01

    Full Text Available The estuarine complex of Paranaguá - ECP (South Brazil, 25º30'S, 48º30'W is a large subtropical system, where pristine mangrove forests are still present, and fishery and aquaculture are important economic activities. This work investigated the occurrence of harmful algae in Paranaguá Bay, as well as the presence of toxins in the filter feeding mussel Mytella guyanensis, a local fishery resource. Samples along the Paranaguá sub-system were collected almost monthly from August 2002 to October 2003. Besides physical and chemical variables, cell densities of harmful species and presence of toxins in the mussel by mouse bioassay (DSP, PSP and HPLC (ASP were performed. HAB species included Pseudo-nitzschia spp., Dinophysis acuminata,Prorocentrum minimum,Gymnodinium catenatum,Phaeocystis spp., Chattonella spp. and Heterosigma akashiwo.Trichodesmium erythraeum and Coscinodiscus wailesii were also included in this study due to their potential for harmful bloom formation. Toxin results showed the occurrence of DSP (December 2002 in shellfish related to the presence of D. acuminata (max. 4,566 cells.l-1. Additionally, cultivated strains produced paralytic and amnesic toxins in laboratory. Spring (October to December, Southern Hemisphere and late summer (February to April were the periods of higher abundance of harmful algae, mainly in euhaline and inner polyhaline sectors of the ECP.O complexo estuarino de Paranaguá (CEP; 25º30'S, 48º30'W, localizado no litoral sul do Brasil, abriga extensas áreas preservadas de manguezais e tem a pesca e aqüicultura como importantes atividades econômicas. Este trabalho investigou a ocorrência de microalgas nocivas no CEP e a presença de ficotoxinas no molusco bivalve Mytella guyanensis. Para tanto, foram coletadas amostras com periodicidade aproximadamente mensal, entre agosto de 2002 e outubro de 2003. Foram avaliadas variáveis físico-químicas, densidade de espécies nocivas e a presença de toxinas nos

  14. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    Science.gov (United States)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  15. The use of ozone in an artificial seawater environment and its ability to degrade Gymnodinium breve toxins

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.R.

    1991-01-01

    The objectives of this research were to establish the practicality of currently used oxidant tests for ozone-treated artificial seawater and to determine the effectiveness of using ozone to reduce toxins associated with Gymnodinium breve, the red tide-causing dinoflagellate found in the Gulf of Mexico off the coast of Florida. In addition to its beneficial role, some emphasis was placed on ascertaining if any harmful by-products could be formed during the ozonation process. Three tests using amperometric titration, potassium iodide (KI) and N,N-diethyl-p-phenylene-diamine (DPD) were performed to determine their ability to detect ozone-produced oxidants in various solutions. These methods yielded different results when bromine and ammonia concentrations were varied in an artificial seawater (ASW) environment. The KI test yielded up to 100 percent higher estimates for each sample than did the amperometric and DPD tests. To test for the possible production of harmful by-products during the ozonation process, ASW samples were spiked with 1 gram of hesperetin. In experiments where the seawater mix was exposed to 27 ppm of ozone prior to the introduction of the organic precursor, small but measurable amounts of tribromomethane were detected via gas chromatography/mass spectroscopy. As the ozone dose was increased to 135 ppm, the recoverable levels of tribromomethane increased. When G. breve toxins were exposed to ozone treatment, samples displayed a three log reduction in the total amount of toxin recovered after ten minutes. Reduction in toxin levels directly correlated with reduction of toxicity as determined by a fish bioassay. It is significant to report that even after 10 minutes of ozonation, comparable to dose levels of that might be used in a commercial depuration facility, some toxins were still recoverable by HPLC analysis.

  16. Occurrence of Harmful Cyanobacteria in Drinking Water from a Severely Drought-Impacted Semi-arid Region

    Directory of Open Access Journals (Sweden)

    Juline M. Walter

    2018-02-01

    Full Text Available Harmful cyanobacterial blooms have become increasingly common in freshwater ecosystems in recent decades, mainly due to eutrophication and climate change. Water becomes unreliable for human consumption. Here, we report a comprehensive study carried out to investigate the water quality of several Campina Grande reservoirs. Our approach included metagenomics, microbial abundance quantification, ELISA test for three cyanotoxins (microcystin, nodularins, and cylindrospermopsin, and in vivo ecotoxicological tests with zebrafish embryos. Cytometry analysis showed high cyanobacterial abundance, while metagenomics identified an average of 10.6% of cyanobacterial sequences, and demonstrated the presence of Microcystis, Cylindrospermopsis, and toxin coding genes in all ponds. Zebrafish embryos reared with pond water had high mortality and diverse malformations. Among the ponds analyzed, Araçagi showed the highest lethality (an average of 62.9 ± 0.8%, followed by Boqueirão (lethality average of 62.5 ± 0.8%. Here, we demonstrate that water from ponds undergoing extremely drought conditions have an abundance of potentially harmful cyanobacteria and their toxins. Our findings are consistent with a scenario in which polluted drinking water poses a great risk to human health.

  17. Occurrence of Harmful Cyanobacteria in Drinking Water from a Severely Drought-Impacted Semi-arid Region

    Science.gov (United States)

    Walter, Juline M.; Lopes, Fabyano A. C.; Lopes-Ferreira, Mônica; Vidal, Lívia M.; Leomil, Luciana; Melo, Fabiana; de Azevedo, Girlene S.; Oliveira, Rossandra M. S.; Medeiros, Alba J.; Melo, Adriana S. O.; De Rezende, Carlos E.; Tanuri, Amilcar; Thompson, Fabiano L.

    2018-01-01

    Harmful cyanobacterial blooms have become increasingly common in freshwater ecosystems in recent decades, mainly due to eutrophication and climate change. Water becomes unreliable for human consumption. Here, we report a comprehensive study carried out to investigate the water quality of several Campina Grande reservoirs. Our approach included metagenomics, microbial abundance quantification, ELISA test for three cyanotoxins (microcystin, nodularins, and cylindrospermopsin), and in vivo ecotoxicological tests with zebrafish embryos. Cytometry analysis showed high cyanobacterial abundance, while metagenomics identified an average of 10.6% of cyanobacterial sequences, and demonstrated the presence of Microcystis, Cylindrospermopsis, and toxin coding genes in all ponds. Zebrafish embryos reared with pond water had high mortality and diverse malformations. Among the ponds analyzed, Araçagi showed the highest lethality (an average of 62.9 ± 0.8%), followed by Boqueirão (lethality average of 62.5 ± 0.8%). Here, we demonstrate that water from ponds undergoing extremely drought conditions have an abundance of potentially harmful cyanobacteria and their toxins. Our findings are consistent with a scenario in which polluted drinking water poses a great risk to human health. PMID:29541063

  18. Algal stabilisation of estuarine sediments

    International Nuclear Information System (INIS)

    1992-01-01

    The presence of benthic microalgae can increase the stability of intertidal sediments and influence sediment fluxes within an estuarine environment. Therefore the relative importance of algal stabilisation needs to be understood to help predict the effects of a tidal barrage. The biogenic stabilisation of intertidal estuarine sediments by epipelic diatom films and the macrophyte Vaucheria was studied at three sites on the Severn Estuary. The cohesive strength meter (CSM) was developed to measure surface critical shear stress with varied algal density. A number of techniques have been used to determine the general in situ erodibility of cohesive estuarine sediments. The measurements of sediment shear strength and critical erosion velocity were investigated. Field experiments were undertaken to investigate the effect of algae on binding sediments, and a predictive method for the assessment of sediment stabilisation by algal binding was developed. (author)

  19. Stool C difficile toxin

    Science.gov (United States)

    ... toxin; Colitis - toxin; Pseudomembranous - toxin; Necrotizing colitis - toxin; C difficile - toxin ... be analyzed. There are several ways to detect C difficile toxin in the stool sample. Enzyme immunoassay ( ...

  20. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation

    Directory of Open Access Journals (Sweden)

    Jagroop Pandhal

    2018-04-01

    Full Text Available There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (<2 min destruction of two pure microcystins (MC-LR and MC-RR, together with removal of by-products even at low flow rate 1 L min−1 where bubble size was 0.56–0.6 mm and the ozone concentration within the liquid was 20 ppm. Toxicity levels were calculated through protein phosphatase inhibition assays and indicated loss of toxicity as well as confirming the by-products were also non-toxic. Finally, treatment of whole Microcystis aeruginosa cells showed that even at these very low ozone levels, cells can be killed and toxins (MC-LR and Desmethyl MC-LR removed. Little change was observed in the first 20 min of treatment followed by rapid increase in extracellular toxins, indicating cell lysis, with most significant release at the higher 3 L min−1 flow rate compared to 1 L

  1. Observations on algal populations in an experimental maturation pond system

    CSIR Research Space (South Africa)

    Shillinglaw, SN

    1977-01-01

    Full Text Available ?) of influent (HTE) and secondary pond. The arrows indicate the beginning of the noled algal concentration declines. 190 Water SA Vol. 3 No. 4 October 1977 intermittent presence of some factor which suppresses algal growth and/or removes algal cells from... the system at a very rapid rate. Another possibility is that an algal growth suppres sor is almost continuously present and only when the suppres sing factor is intermittently ahsent, do the algal concentrations exhihit a peak. Based on the results...

  2. Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid.

    Science.gov (United States)

    Yang, Fa-zhong; Yang, Bin; Li, Bei-bei; Xiao, Chun

    2015-04-01

    Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demonstrated that tenuazonic acid (TeA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 μg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated responses in rose plants to intensively enhance the plant's resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.

  3. Sustainable Algal Energy Production and Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, William E. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  4. Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model.

    Science.gov (United States)

    Robertson Lain, L; Bernard, S; Evers-King, H

    2014-07-14

    There is a pressing need for improved bio-optical models of high biomass waters as eutrophication of coastal and inland waters becomes an increasing problem. Seasonal boom conditions in the Southern Benguela and persistent harmful algal production in various inland waters in Southern Africa present valuable opportunities for the development of such modelling capabilities. The phytoplankton-dominated signal of these waters additionally addresses an increased interest in Phytoplankton Functional Type (PFT) analysis. To these ends, an initial validation of a new model of Equivalent Algal Populations (EAP) is presented here. This paper makes a first order comparison of two prominent phytoplankton Inherent Optical Property (IOP) models with the EAP model, which places emphasis on explicit bio-physical modelling of the phytoplankton population as a holistic determinant of inherent optical properties. This emphasis is shown to have an impact on the ability to retrieve the detailed phytoplankton spectral scattering information necessary for PFT applications and to successfully simulate reflectance across wide ranges of physical environments, biomass, and assemblage characteristics.

  5. Oil Spills and Dispersants Can Cause the Initiation of Potentially Harmful Dinoflagellate Blooms ("Red Tides")

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Cosgrove, Sarah; Buskey, Edward J.

    2018-01-01

    After oil spills and dispersant applications the formation of red tides or harmful algal blooms (HABs) has been observed, which can cause additional negative impacts in areas affected by oil spills. However, the link between oil spills and HABs is still unknown. Here, we present experimental...... evidence that demonstrates a connection between oil spills and HABs. We determined the effects of oil, dispersant-treated oil, and dispersant alone on the structure of natural plankton assemblages in the Northern Gulf of Mexico. In coastal waters, large tintinnids and oligotrich ciliates, major grazers...

  6. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Smoker awareness of and beliefs about supposedly less-harmful tobacco products.

    Science.gov (United States)

    O'Connor, Richard J; Hyland, Andrew; Giovino, Gary A; Fong, Geoffrey T; Cummings, K Michael

    2005-08-01

    Cigarette manufacturers in the United States have begun marketing cigarette brands claiming to reduce smokers' exposure to selected toxins in tobacco smoke. Little data exist on smokers' awareness, use, and beliefs about these products. Data from the U.S. arm of the International Tobacco Control Policy Four-Country Survey (ITC-4), a telephone survey of 2028 adult current cigarette smokers in the United States conducted between May and September 2003, were analyzed. Respondents were asked to report their awareness, beliefs, and use of products marketed as less harmful than traditional cigarettes and of smokeless tobacco (SLT) products. Close to 39% of smokers were aware of "less-harmful" cigarettes, but only 27% of them could name a specific brand of such cigarettes. The brand named most often was Quest (25.7%), followed by Eclipse (7.6%), Winston (5.7%), herbal cigarettes (3.3%), "smoke-free" cigarettes (2.9%), Marlboro Blend #27 (1.9%), and Omni (1.9%). Of those who named a brand, 25% believed such products were less harmful than "ordinary cigarettes." In contrast, 82% of cigarette smokers were aware of SLT products, but only 10.7% of these believed that SLTs were less harmful than ordinary cigarettes. Smokers hold beliefs about the relative safety of supposedly less-harmful tobacco products that are opposite to existing scientific evidence. These results highlight the need to educate smokers about the risks of alternatives to conventional cigarettes, and the need to regulate the advertising and promotion of such alternatives.

  8. Cyanobacteria toxins in the Salton Sea.

    Science.gov (United States)

    Carmichael, Wayne W; Li, RenHui

    2006-04-19

    The Salton Sea (SS) is the largest inland body of water in California: surface area 980 km2, volume 7.3 million acre-feet, 58 km long, 14-22 km wide, maximum depth 15 m. Located in the southeastern Sonoran desert of California, it is 85 m below sea level at its lowest point. It was formed between 1905 and 1907 from heavy river flows of the Colorado River. Since its formation, it has attracted both people and wildlife, including flocks of migratory birds that have made the Salton Sea a critical stopover on the Pacific flyway. Over the past 15 years wintering populations of eared grebe (Podiceps nigricollis) at the Salton Sea, have experienced over 200,000 mortalities. The cause of these large die-offs remains unknown. The unique environmental conditions of the Salton Sea, including salinities from brackish freshwater at river inlets to hypersaline conditions, extreme daily summer temperatures (>38 degrees C), and high nutrient loading from rivers and agricultural drainage favor eutrophic conditions that encourage algal blooms throughout the year. A significant component of these algal blooms are the prokaryotic group - the Cyanophyta or blue-green algae (also called Cyanobacteria). Since many Cyanobacteria produce toxins (the cyanotoxins) it became important to evaluate their presence and to determine if they are a contributing factor in eared-grebe mortalities at the Salton Sea. From November 1999 to April 2001, 247 water and sediment samples were received for phytoplankton identification and cyanotoxin analyses. Immunoassay (ELISA) screening of these samples found that eighty five percent of all water samples contained low but detectable levels of the potent cyclic peptide liver toxin called microcystins. Isolation and identification of cyanobacteria isolates showed that the picoplanktonic Synechococcus and the benthic filamentous Oscillatoria were dominant. Both organisms were found to produce microcystins dominated by microcystin-LR and YR. A laboratory strain

  9. Algal stabilisation of estuarine sediments

    International Nuclear Information System (INIS)

    1992-01-01

    The presence of benthic microalgae can increase the stability of intertidal sediments and influence sediment fluxes within an estuarine environment. Therefore the relative importance of algal stabilisation needs to be understood to help predict the effects of a tidal barrage. The objectives of this study are: to assess the significance of stabilisation of sediments by algae, in relation to the changes in hydrodynamic and sedimentological regimes arising from the construction of tidal power barrages; to identify a reliable and meaningful method of measuring the effectiveness, including duration, of algal binding on sediment stability, and to relate this method to other methods of measuring critical erosion velocity and sediment shear strength; to undertake a series of field experiments investigating the effect of algae on binding sediments and the parameters which could potentially influence such binding and to develop a predictive method for the assessment of sediment stabilisation by algal binding. This report contains plates, figures and tables. (author)

  10. Resolving Mixed Algal Species in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Mehrube Mehrubeoglu

    2013-12-01

    Full Text Available We investigated a lab-based hyperspectral imaging system’s response from pure (single and mixed (two algal cultures containing known algae types and volumetric combinations to characterize the system’s performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert’s law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements.

  11. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds

    Science.gov (United States)

    All AB-type protein toxins have intracellular targets despite an initial extracellular location. These toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against AB toxins are therefore hard to develop because the toxins use dif...

  12. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  13. Influence of toxins in food on a little child's speech development - overview

    Directory of Open Access Journals (Sweden)

    Marta Wawrzynów

    2018-01-01

    Full Text Available Environmental toxicology is a well-known theme, but not every food toxicology „common” man had to deal with. Hearing the definition of „toxicology” we think that this is an area of medicine, but do not really know what it does and to what extent. Toxicology is the study of toxins, harmful effects on the impact on the health and life of a living organism. In these times it should be erected on a pedestal of medical science. The environment in which we live and lives is contaminated. Toxins are both in the inhaled by human air, of drinking water, food consumption, taking medication, inhaled (even by accident the substances. There are many types of toxins. In this hearing, the importance will be those present in the food as: product additive, chemical, pesticide residues, mycotoxins, aflatoxins chloroprapanoli, amines, heavy metals, fungi, molds (manufactured improperly stored food or in bad conditions, and other xenoestrogens. The impact of toxins on children's development, and their speech to the 36th of the month is hypothesized to be relatively large. Children up to this moment (theoretically healthy, with normal development are not subjected to specialist diagnosis, so they do not always small problems are seriously taken into account. It happens that parents or teachers of children (nursery, kindergarten do not notice the difficulties, there are also often aware of them. The presence of toxins in the environment parents (before becoming pregnant women, prenatally and after birth to 36 months of age has a negative impact on child development.

  14. Developing Predictive Models for Algal Bloom Occurrence and Identifying Factors Controlling their Occurrence in the Charlotte County and Surroundings

    Science.gov (United States)

    Karki, S.; Sultan, M.; Elkadiri, R.; Chouinard, K.

    2017-12-01

    Numerous occurrences of harmful algal blooms (Karenia Brevis) were reported from Southwest Florida along the coast of Charlotte County, Florida. We are developing data-driven (remote sensing, field, and meteorological data) models to accomplish the following: (1) identify the factors controlling bloom development, (2) forecast bloom occurrences, and (3) make recommendations for monitoring variables that are found to be most indicative of algal bloom occurrences and for identifying optimum locations for monitoring stations. To accomplish these three tasks we completed/are working on the following steps. Firstly, we developed an automatic system for downloading and processing of ocean color data acquired through MODIS Terra and MODIS Aqua products using SeaDAS ocean color processing software. Examples of extracted variables include: chlorophyll a (OC3M), chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel- Maritorena (GSM), sea surface temperature (SST), Secchi disk depth, euphotic depth, turbidity index, wind direction and speed, colored dissolved organic material (CDOM). Secondly we are developing a GIS database and a web-based GIS to host the generated remote sensing-based products in addition to relevant meteorological and field data. Examples of the meteorological and field inputs include: precipitation amount and rates, concentrations of nitrogen, phosphorous, fecal coliform and Dissolved Oxygen (DO). Thirdly, we are constructing and validating a multivariate regression model and an artificial neural network model to simulate past algal bloom occurrences using the compiled archival remote sensing, meteorological, and field data. The validated model will then be used to predict the timing and location of algal bloom occurrences. The developed system, upon completion, could enhance the decision making process, improve the citizen's quality of life, and strengthen the local economy.

  15. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-09-01

    Algal bloom can significantly impact reverse osmosis desalination process and reduce the drinking water production. In 2008, a major bloom event forced several UAE reverse osmosis plants to stop their production, and in this context, a better understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also be an alternative for the filtration of marine algal solutions. The fouling potential of the Red Sea and the Arabian Sea, sampled at different seasons, along with four algal monocultures grown in laboratory, and one mesocosm experiment in the Red Sea was investigated. Algal solutions induce a stronger and more irreversible fouling than terrestrial humic solution, toward ceramic membrane. During algal bloom events, this fouling is enhanced and becomes even more problematic at the decline phase of the bloom, for a similar initial DOC. Three main mechanisms are involved: the formation of a cake layer at the membrane surface; the penetration of the algal organic matter (AOM) in the pore network of the membrane; the strong adhesion of AOM with the membrane surface. The last mechanism is species-specific and metal-oxide specific. In order to understand the stronger ceramic UF fouling at the decline phase, AOM quality was analyzed every two days. During growth, AOM is getting enriched in High Molecular Weight (HMW) structures (> 200 kDa), which are mainly composed by proteins and polysaccharides, and these compounds seem to be responsible for the stronger fouling at decline phase. In order to prevent the fouling of ceramic membrane, coagulation-flocculation (CF) using ferric chloride was implemented prior to filtration. It permits a high removal of HMW compounds and greatly reduces the fouling potential of the algal solution. During brief algal bloom events, CF should be

  16. Binding of ATP by pertussis toxin and isolated toxin subunits

    International Nuclear Information System (INIS)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-01-01

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [ 3 H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of [ 3 H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [ 3 H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site

  17. Binding of ATP by pertussis toxin and isolated toxin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. (Center for Biologics Evaluation and Research, Bethesda, MD (USA))

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  18. Deep-Learning-Based Approach for Prediction of Algal Blooms

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2016-10-01

    Full Text Available Algal blooms have recently become a critical global environmental concern which might put economic development and sustainability at risk. However, the accurate prediction of algal blooms remains a challenging scientific problem. In this study, a novel prediction approach for algal blooms based on deep learning is presented—a powerful tool to represent and predict highly dynamic and complex phenomena. The proposed approach constructs a five-layered model to extract detailed relationships between the density of phytoplankton cells and various environmental parameters. The algal blooms can be predicted by the phytoplankton density obtained from the output layer. A case study is conducted in coastal waters of East China using both our model and a traditional back-propagation neural network for comparison. The results show that the deep-learning-based model yields better generalization and greater accuracy in predicting algal blooms than a traditional shallow neural network does.

  19. Failure of botulinum toxin injection for neurogenic detrusor overactivity: Switch of toxin versus second injection of the same toxin.

    Science.gov (United States)

    Peyronnet, Benoit; Castel-Lacanal, Evelyne; Manunta, Andréa; Roumiguié, Mathieu; Marque, Philippe; Rischmann, Pascal; Gamé, Xavier

    2015-12-01

    To evaluate the efficacy of a second injection of the same toxin versus switching to a different botulinum toxin A after failure of a first detrusor injection in patients with neurogenic detrusor overactivity. The charts of all patients who underwent detrusor injections of botulinum toxin A (either abobotulinumtoxinA or onabotulinumtoxinA) for the management of neurogenic detrusor overactivity at a single institution were retrospectively reviewed. Patients in whom a first detrusor injection had failed were included in the present study. They were managed by a second injection of the same toxin at the same dosage or by a new detrusor injection using a different botulinum toxin A. Success was defined as a resolution of urgency, urinary incontinence and detrusor overactivity in a patient self-catheterizing seven times or less per 24 h. A total of 58 patients were included for analysis. A toxin switch was carried out in 29 patients, whereas the other 29 patients received a reinjection of the same toxin at the same dose. The success rate was higher in patients who received a toxin switch (51.7% vs. 24.1%, P = 0.03). Patients treated with a switch from abobotulinumtoxinA to onabotulinumtoxinA and those treated with a switch from onabotulinumtoxinA to abobotulinumtoxinA had similar success rates (52.9% vs. 50%, P = 0.88). After failure of a first detrusor injection of botulinum toxin for neurogenic detrusor overactivity, a switch to a different toxin seems to be more effective than a second injection of the same toxin. The replacement of onabotulinumtoxin by abobotulinumtoxin or the reverse provides similar results. © 2015 The Japanese Urological Association.

  20. Radiolabelling of cholera toxin

    International Nuclear Information System (INIS)

    Santos, R.G.; Neves, Nicoli M.J.; Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L.; Lima, M.E. de; Nicoli, J.R.

    1999-01-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na 125 I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The 125 I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author)

  1. Primary Isolation and Characterization of Tenacibaculum maritimum from Chilean Atlantic Salmon Mortalities Associated with a Pseudochattonella spp. Algal Bloom.

    Science.gov (United States)

    Apablaza, Patricia; Frisch, Kathleen; Brevik, Øyvind Jakobsen; Småge, Sverre Bang; Vallestad, Camilla; Duesund, Henrik; Mendoza, Julio; Nylund, Are

    2017-09-01

    This study presents the first isolation of Tenacibaculum maritimum from farmed Atlantic Salmon Salmo salar in Chile. The isolate, designated T. maritimum Ch-2402, was isolated from gills of Atlantic Salmon at a farm located in region X, Los Lagos, Chile, during the harmful algal bloom caused by Pseudochattonella spp. in February 2016. The algal bloom is reported to have caused 40,000 metric tons of mortality in this salmon farming area. The bacterium T. maritimum, which causes tenacibaculosis, is recognized as an important pathogen of marine fish worldwide. Genetic, phylogenetic, and phenotypic characterizations were used to describe the T. maritimum Ch-2402 isolate. The isolate was similar to the type strain of T. maritimum but was genetically unique. Tenacibaculum dicentrarchi isolates were also recovered during sampling from the same farm. Based on the fact that T. maritimum has been shown to cause disease in Atlantic Salmon in other regions, the presence of this bacterium poses a potential risk of disease to fish in the Chilean aquaculture industry. Received November 6, 2016; accepted May 29, 2017.

  2. Radiolabelling of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.G.; Neves, Nicoli M.J. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L. [Ouro Preto Univ., MG (Brazil). Escola de Farmacia. Lab. de Fisiologia e Bioquimica de Microorganismos; Lima, M.E. de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Bioquimica e Imunologia; Nicoli, J.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Microbiologia

    1999-11-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na {sup 125} I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The {sup 125} I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author) 5 refs., 3 figs.; e-mail: nevesmj at urano.cdtn.br

  3. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  4. Algal Turf Scrubbers: Cleaning Water While Capturing Solar Energy

    International Nuclear Information System (INIS)

    Adey, W.

    2009-01-01

    Algal Turfs and Algal Turf Scrubbers (ATS) Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. ATS was invented at the Smithsonian Institution, by scientist, Walter Adey in the 1980s as a tool for controlling water quality in highly diverse model ecosystems. The technology received extensive R and D for aqua cultural, municipal, and industrial water cleaning by Dr. Adey, using venture capital, through the 1990s. Later, Hydro Mentia, Inc., of Ocala, Florida, engineered ATS to landscape scale of 20-50 Mgpd (it is important to note that this is a modular system, capable of expanding to any size.) A 2005 independent study of ATS, by the South Florida Water Management District and the IFAS Institute of the University of Florida, certified ATS as 5-100 times more cost efficient at removing nutrients from Everglades canal waters than the next competitor, the STA, a managed marsh system. ATS and STA were the final contestants in a 15-year study of nine technologies, and ATS was the only technology that created a use able byproduct.

  5. Algal Biology Toolbox Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-01

    DOE-EERE's Bioenergy Technologies Office (BETO) works to accelerate the development of a sustainable, cost-competitive, advanced biofuel industry that can strengthen U.S. energy security, environmental quality, and economic vitality, through research, development, and demonstration projects in partnership with industry, academia, and national laboratory partners. BETO’s Advanced Algal Systems Program (also called the Algae Program) has a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels. The team works with partners to develop new technologies, to integrate technologies at commercially relevant scales, and to conduct crosscutting analyses to better understand the potential and challenges of the algal biofuels industry. Research has indicated that this industry is capable of producing billions of gallons of renewable diesel, gasoline, and jet fuels annually. R&D activities are integrated with BETO’s longstanding effort to accelerate the commercialization of lignocellulosic biofuels.

  6. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea.

    Science.gov (United States)

    Pyenson, Nicholas D; Gutstein, Carolina S; Parham, James F; Le Roux, Jacobus P; Chavarría, Catalina Carreño; Little, Holly; Metallo, Adam; Rossi, Vincent; Valenzuela-Toro, Ana M; Velez-Juarbe, Jorge; Santelli, Cara M; Rogers, David Rubilar; Cozzuol, Mario A; Suárez, Mario E

    2014-04-22

    Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities.

  7. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea

    Science.gov (United States)

    Pyenson, Nicholas D.; Gutstein, Carolina S.; Parham, James F.; Le Roux, Jacobus P.; Chavarría, Catalina Carreño; Little, Holly; Metallo, Adam; Rossi, Vincent; Valenzuela-Toro, Ana M.; Velez-Juarbe, Jorge; Santelli, Cara M.; Rogers, David Rubilar; Cozzuol, Mario A.; Suárez, Mario E.

    2014-01-01

    Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities. PMID:24573855

  8. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health.

    Science.gov (United States)

    Anderson, Donald M; Alpermann, Tilman J; Cembella, Allan D; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2012-02-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species.

  9. [Effects of Alexandrium tamarense and Prorocentrum donghaiense on rotifer Brachionus plicatilis population].

    Science.gov (United States)

    Wang, Liping; Yan, Tian; Tan, Zhijun; Zhou, Mingjiang

    2003-07-01

    The effects of Prorocentrum donghaiense and Alexandrium sp., causative species of harmful algal bloom of East China Sea in May 2002, on rotifer Brachionus plicatilis population were studied in the laboratory. The results showed that Alexandrium tamarense (ATHK) had a lethal effect on B. plicatilis and the 48hLC50 was about 1300 cell.ml-1. The toxin comparison of different fractions showed that the algal culture and re-suspended algal cells had the adverse effects, and the alga at earlier growth phases showed a stronger impact, indicating that the inhibitory effect was related with the activity of the living algal cells. P. donghaiense at high densities (4 x 10(4), 5 x 10(4) and 10 x 10(4) cell.ml-1) had an adverse effect on B. plicatilis population, while at low densities (1 x 10(4), 2 x 10(4) and 3 x 10(4) cell.ml-1), the alga could be used as food for rotifer population. When the two algae were mixed, the lethal effect of A. tamarense could be decreased by P. donghaiense. The results indicated that the above HAB event could affect the micro-zooplankton population in the occurrence area of East China Sea.

  10. Bioterrorism: toxins as weapons.

    Science.gov (United States)

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  11. Development of a toxicity model for paralytic shellfish toxins in mussel: uptake and release of toxins in Green Bay mussel

    International Nuclear Information System (INIS)

    Tabbada, Rhett Simon DC.; Ranada, Ma. Llorina O.; De Leon, Aileen L.; Bulos, Adelina M.; Sta, Maria; Efren, J.; De Vera, Azucena; Balagtas, Angelina; Sombrito, Elvira Z.

    2009-01-01

    In view of the expressed need to study shellfish toxicity and elucidate the kinetics of saxitoxin in green mussels Perna viridis), uptake/depuration rates of saxitoxin were studied in Juag Lagoon, Sorsogon and Sorsogon Bay. Both areas experience recurring blooms of Pyrodinium bahamanse var compressum (PbC) making them excellent study sites. Two sampling stations were selected, to which, mussels were introduced. Algal cell density and mussel toxicity were measured by receptor binding assay (RBA) and high performance liquid chromatography (HPLC) from May to December 2007. During this period, two bloom events occurred, wherein, a decrease in cell density by two orders of magnitude (30,000 to 600 cells·1 +1 ) caused an order of magnitude decrease in toxicity (600 to 30 μg STX eq./100 g shellfish meat). A time lag between peaks of cell density and the corresponding toxicity was revealed. Vegetative cells were present throughout the sampling period, and a uniform horizontal and vertical distribution of cells was observed between the stations. Cell densities were significantly correlated with both RBA and HPLC estimates of STX content in mussels (Pearson r values of 0.7486 and 0.4325 for RBA and HPLC, respectively). In Sorsogon Bay, six sampling stations were also chosen, from which, water and mussels were being collected. Preliminary data showed that the cellular toxin content was primarily STX, making up to 90-100% of total toxin quantified. The average toxicity was estimated at 52.81fmol/cell. The effect of physiological factors to overall shellfish toxicity, though not directly characterized, may be deduced from these studies. (author)

  12. Botulinum toxin for motor and phonic tics in Tourette's syndrome.

    Science.gov (United States)

    Pandey, Sanjay; Srivanitchapoom, Prachaya; Kirubakaran, Richard; Berman, Brian D

    2018-01-05

    very low. Nine people had muscle weakness following the injection, which could have led to unblinding of treatment group assignment. No data were available to evaluate whether botulinum injections led to immunoresistance to botulinum. We are uncertain about botulinum toxin effects in the treatment of focal motor and phonic tics in select cases, as we assessed the quality of the evidence as very low. Additional randomised controlled studies are needed to demonstrate the benefits and harms of botulinum toxin therapy for the treatment of motor and phonic tics in patients with Tourette's syndrome.

  13. Life histories of microalgal species causing harmful blooms: Haploids, diploids and the relevance of benthic stages.

    Science.gov (United States)

    Figueroa, Rosa Isabel; Estrada, Marta; Garcés, Esther

    2018-03-01

    In coastal and offshore waters, Harmful Algal Blooms (HABs) currently threaten the well-being of coastal countries. These events, which can be localized or involve wide-ranging areas, pose risks to human health, marine ecosystems, and economic resources, such as tourism, fisheries, and aquaculture. Dynamics of HABs vary from one site to another, depending on the hydrographic and ecological conditions. The challenge in investigating HABs is that they are caused by organisms from multiple algal classes, each with its own unique features, including different life histories. The complete algal life cycle has been determined in life cycles of bloom-forming species is essential in developing preventative measures. The knowledge obtained thus far has confirmed the complexity of the algal life cycle, which is composed of discrete life stages whose morphology, ecological niche (plankton/benthos), function, and lifespan vary. The factors that trigger transitions between the different stages in nature are mostly unknown, but it is clear that an understanding of this process provides the key to effectively forecasting bloom recurrence, maintenance, and decline. Planktonic stages constitute an ephemeral phase of the life cycle of most species whereas resistant, benthic stages enable a species to withstand adverse conditions for prolonged periods, thus providing dormant reservoirs for eventual blooms and facilitating organismal dispersal. Here we review current knowledge of the life cycle strategies of major groups of HAB producers in marine and brackish waters. Rather than providing a comprehensive discussion, the objective was to highlight several of the research milestones that have changed our understanding of the plasticity and frequency of the different life cycle stages as well as the transitions between them. We also discuss the relevance of benthic and planktonic forms and their implications for HAB dynamics. Copyright © 2018. Published by Elsevier B.V.

  14. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Energy Technology Data Exchange (ETDEWEB)

    Gobler, C J; Grigoriev, I V; Berry, D L; Dyhrman, S T; Wilhelm, S W; Salamov, A; Lobanov, A V; Zhang, Y; Collier, J L; Wurch, L L; Kustka, A B; Dill, B D; Shah, M; VerBerkomes, N C; Kuo, A; Terry, A; Pangilinan, J; Lindquist, E A; Lucas, S; Paulsen, I; Hattenrath-Lehmann, T K; Talmage, S; Walker, E A; Koch, F; Burson, A M; Marcoval, M A; Tang, Y; LeCleir, G R; Coyne, K J; Berg, G M; Bertrand, E M; Saito, M A; Gladyshev, V N

    2011-03-02

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.

  15. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor; Gobler, Christopher; Salamov, Asaf; Kuo, Alan; Terry, Astrid; Pangillian, Jasmyn; Lindquist, Erika; Lucas, Susan; Berry, Dianna; Dyhrman, Sonya; Wilhelm, Steven; Lobanov, Alexei; Zhang, Yan; Collier, Jackie; Wurch, Louie; Kusta, Adam; Dill, Brian; Shsh, Manesh; VerBerkmoes, Nathan; Paulsen, Ian; Hattenrath-Lehmann, Theresa; Talmage, Stephanie; Walker, Elyse; Koch, Florian; Burson, Amanda; Marcoval, Maria; Tang, Yin-Zhong; LeCleir, Gary; Coyne, Kathyrn; Berg, Gry; Bertrand, Erin; Saito, Mak; Gladyshev, Vadim

    2011-02-18

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

  16. Algal assay research in programs for Euthrophic Lake management: laboratory and field studies

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, G

    1979-01-01

    The present study is an attempt to clarify whether relations between viruses (cyanophages) and their algal hosts can be affected by manipulations in the environment. Is is possible to activate cyanophages and accelerate lysis of blue-green algal populations or to enhance the resistance of blue-green algae to attack from cynaophages. The experiments presented here were performed under laboratory conditions with a well-known algal - canophage system, Plectonema boryanum and cyanophage LPP-1 (attacking strains of Lyngbya, Phormidium and Plectonema). The work was done in close connection with field experiments on natural blue-green algal communities, however, because the nature of the induced blue-green algal collapse in plastic enclosures suggested lysis of the algal cells. The rate of LPP-1 cyanophage replication and lysis of plectonema was studied in relation to: (a) pH alterations by CO/sub 2//air additions, (b) algal host culture age and density, (c) nutrient concentrations and (d) presence of additional algal species.

  17. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  18. Review of Florida Red Tide and Human Health Effects

    Science.gov (United States)

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.

    2010-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  19. Brevetoxin (PbTx-2) influences the redox status and NPQ of Karenia brevis by way of thioredoxin reductase.

    Science.gov (United States)

    Chen, Wei; Colon, Ricardo; Louda, J William; Del Rey, Freddy Rodriguez; Durham, Michaella; Rein, Kathleen S

    2018-01-01

    The Florida red tide dinoflagellate, Karenia brevis, is the major harmful algal bloom dinoflagellate of the Gulf of Mexico and plays a destructive role in the region. Blooms of K. brevis can produce brevetoxins: ladder-shaped polyether (LSP) compounds, which can lead to adverse human health effects, such as reduced respiratory function through inhalation exposure, or neurotoxic shellfish poisoning through consumption of contaminated shellfish. The endogenous role of the brevetoxins remains uncertain. Recent work has shown that some forms of NADPH dependent thioredoxin reductase (NTR) are inhibited by brevetoxin-2 (PbTx-2). The study presented herein reveals that high toxin and low toxin K. brevis, which have a ten-fold difference in toxin content, also show a significant difference in their ability, not only to produce brevetoxin, but also in their cellular redox status and distribution of xanthophyll cycle pigments. These differences are likely due to the inhibition of NTR by brevetoxin. The work could shed light on the physiological role that brevetoxin fills for K. brevis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Public health intervention linked to a toxic microalgae bloom in Mijas beach (Malaga, Spain); Intervencion en salud publica relacionada con la proliferacion de microalgas toxicas en una playa de Mijas (Malaga; Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Gamez de la Hoz, J.; Padilla Fortes, A.

    2012-07-01

    This paper provide an overview of the surveillance environmental efforts and risk management for the public health linked to the register of a disease outbreak related to an episode of toxic potentially and harmful microalgae, identified during the summer of 2010 in a recreational beach of a touristic municipality in the coast of Malaga (Spain). Phytoplankton analyses showed the presence of different species producers of marine biotoxins, dominating Ostreopsis cf. ovata in the followed immediately days to the communication of 39 clinical cases of people that required health cares. The risks of the toxins produced by microalgae must be taken into account in the health networks surveillance for recreational waters. This study suggests the possibility to review the actions of the public health services from Public Administration, to the light of the increasing information on episodic harmful algal blooms. (Author)

  1. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  2. Simultaneous monitoring of faecal indicators and harmful algae using an in-situ autonomous sensor.

    Science.gov (United States)

    Yamahara, K M; Demir-Hilton, E; Preston, C M; Marin, R; Pargett, D; Roman, B; Jensen, S; Birch, J M; Boehm, A B; Scholin, C A

    2015-08-01

    Faecal indicator bacteria (FIB) and harmful algal blooms (HABs) threaten the health and the economy of coastal communities worldwide. Emerging automated sampling technologies combined with molecular analytical techniques could enable rapid detection of micro-organisms in-situ, thereby improving resource management and public health decision-making. We evaluated this concept using a robotic device, the Environmental Sample Processor (ESP). The ESP automates in-situ sample collection, nucleic acid extraction and molecular analyses. Here, the ESP measured and reported concentrations of FIB (Enterococcus spp.), a microbial source-tracking marker (human-specific Bacteriodales) and a HAB species (Psuedo-nitzschia spp.) over a 45-day deployment on the Santa Cruz Municipal Wharf (Santa Cruz, CA, USA). Both FIB and HABs were enumerated from single in-situ collected water samples. The in-situ qPCR efficiencies ranged from 86% to 105%, while the limit of quantifications during the deployment was 10 copies reaction(-1) . No differences were observed in the concentrations of enterococci, the human-specific marker in Bacteroidales spp., and P. australis between in-situ collected sample and traditional hand sampling methods (P > 0·05). Analytical results were Internet-accessible within hours of sample collection, demonstrating the feasibility of same-day public notification of current water quality conditions. This study presents the first report of in-situ qPCR enumeration of both faecal indicators and harmful algal species in coastal marine waters. We utilize a robotic device for in-situ quantification of enterococci, the human-specific marker in Bacteriodales and Pseudo-nitzschia spp. from the same water samples collected and processed in-situ. The results demonstrate that rapid, in-situ monitoring can be utilized to identify and quantify multiple health-relevant micro-organisms important in water quality monitoring and that this monitoring can be used to inform same

  3. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-01-01

    understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also

  4. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups

  5. Characterizing lake water quality, cyanotoxins, and Amyotrophic Lateral Sclerosis (ALS).

    Science.gov (United States)

    Torbick, N.; Ziniti, B.; Stommel, E.; Linder, E.; Andrew, A.; Bradley, W.; Shi, X.

    2016-12-01

    Concern over toxins and public health threats resulting from Cyanobacterial Harmful Algal Blooms (CHABs) have gained attention as reoccurring and seasonal blooms persist in many waters. Concordantly, climate change has been suggested to increase the intensity, duration, and frequency of CHAB events. Humans may be exposed to the cyanotoxins produced by cyanobacteria via the food chain, drinking water, recreational use of waterbodies and by aerosolization. Exposure to the cyanobacterial neurotoxin, β-N-methylamino-L-alanine (BMAA) that has been found in the brains of ALS patients is a hypothesized mechanism. The goals of this research initiative are to investigate spatiotemporal relationships between inland lake water quality and ALS across northern New England (NNE). Multiscale satellite remote sensing was integrated with in situ lake and toxin sampling to provide robust spatiotemporal exposure risk metrics characterizing CHAB. Semi-analytical, shape, and empirical algorithms were bldned together tp generate spatiotemporal measures of chl-a and PC with R2 ranging from 0.65-0.92 using withheld samples. Postmortem aerosolization analysis found 85% of high risk patients to express phycobillin in lung tissue using fluroesence microscopy. To scal eup to the region we employed complementing spatial statistics and a Bayesian hierarchical framework to model relationships between lake risk metrics and ALS case location across NNE. The eco-epidemiolgical modeling results show that on average poorer water quality conditions and higher measures of cyanobacteria are associated with increased odds of belonging to a normalized ALS hot spots and risk of ALS. This has broad societal impacts as the frequency, duration, and magnitude of cyanobacterial harmful algal blooms are expanding and this work helps characterize lake ecosystem services and human health.

  6. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    Science.gov (United States)

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  7. Stability of toxin gene proportion in red-pigmented populations of the cyanobacterium Planktothrix during 29 years of re-oligotrophication of Lake Zürich

    Directory of Open Access Journals (Sweden)

    Ostermaier Veronika

    2012-12-01

    Full Text Available Abstract Background Harmful algal blooms deteriorate the services of aquatic ecosystems. They are often formed by cyanobacteria composed of genotypes able to produce a certain toxin, for example, the hepatotoxin microcystin (MC, but also of nontoxic genotypes that either carry mutations in the genes encoding toxin synthesis or that lost those genes during evolution. In general, cyanobacterial blooms are favored by eutrophication. Very little is known about the stability of the toxic/nontoxic genotype composition during trophic change. Results Archived samples of preserved phytoplankton on filters from aquatic ecosystems that underwent changes in the trophic state provide a so far unrealized possibility to analyze the response of toxic/nontoxic genotype composition to the environment. During a period of 29 years of re-oligotrophication of the deep, physically stratified Lake Zürich (1980 to 2008, the population of the stratifying cyanobacterium Planktothrix was at a minimum during the most eutrophic years (1980 to 1984, but increased and dominated the phytoplankton during the past two decades. Quantitative polymerase chain reaction revealed that during the whole observation period the proportion of the toxic genotype was strikingly stable, that is, close to 100%. Inactive MC genotypes carrying mutations within the MC synthesis genes never became abundant. Unexpectedly, a nontoxic genotype, which lost its MC genes during evolution, and which could be shown to be dominant under eutrophic conditions in shallow polymictic lakes, also co-occurred in Lake Zürich but was never abundant. As it is most likely that this nontoxic genotype contains relatively weak gas vesicles unable to withstand the high water pressure in deep lakes, it is concluded that regular deep mixing selectively reduced its abundance through the destruction of gas vesicles. Conclusions The stability in toxic genotype dominance gives evidence for the adaptation to deep mixing of a

  8. Changes in algal composition and environmental variables in the ...

    African Journals Online (AJOL)

    Monthly sampling in 2003 and 2006 indicated that dissolved inorganic nitrogen concentrations decreased, while dissolved inorganic phosphorus concentration increased 12-fold, resulting in increases in algal concentration and a shift from green algal dominance in 2003 to cyanobacterial dominance in 2006. Multivariate ...

  9. How the marine biotoxins affect human health.

    Science.gov (United States)

    Morabito, Silvia; Silvestro, Serena; Faggio, Caterina

    2018-03-01

    Several marine microalgae produce dangerous toxins very damaging to human health, aquatic ecosystems and coastal resources. These Harmful Algal Blooms (HABs) in recent decades seem greatly increased regarding frequency, severity and biogeographical level, causing serious health risks as a consequence of the consumption of contaminated seafood. Toxins can cause various clinically described syndromes, characterised by a wide range of symptoms: amnesic (ASP), diarrhoetic (DSP), azaspirazid (AZP), neurotoxic (NSP) and paralytic (PSP) shellfish poisonings and ciguatera fish poisoning. The spread of HABs is probably a result of anthropogenic activities and climate change, that influence marine planktonic systems, including global warming, habitat modification, eutrophication and growth of exogenous species in response to human pressures. HABs are a worldwide matter that requests local solutions and international cooperation. This review supplies an overview of HAB phenomena, and, in particular, we describe the major consequences of HABs on human health.

  10. Toxic Microalgal Blooms: What Can Nuclear Techniques Provide for Their Management?

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, B. [Instituto Espanol de Oceanografia, Centro Oceanografico de Vigo (Spain); Boisson, F. [International Atomic Energy Agency, Environment Laboratories (Monaco); Darius, H. T. [Institut Louis Malarde, Laboratoire de Recherche sur les Microalgues Toxiques, Tahiti, French Polynesia (France); Dechraoui Bottein, M. -Y. [NOAA, National Ocean Service, Marine Biotoxins Programme, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC (United States)

    2013-07-15

    Some harmful algal blooms (HABs) produce potent toxins that accumulate in shellfish and fish and represent a major threat to human health, international trade and sustainable coastal fisheries development. In the context of climate change and displacement of endemic toxigenic species (via ship ballast waters and other vectors) to new coastal areas, HABs appear to be more frequent and widespread. The IAEA Marine Environment Laboratory and its partners have been developing and transferring isotopic based analytical methods and instrumentation for monitoring HAB species, their biotoxins, and radiometric dating of sediment cores. The extremely sensitive and robust Receptor Binding Assay (RBA) for toxins associated with Paralytic Shellfish Poisoning (PSP) and Ciguatera Fish Poisoning (CFP) provides an alternative method to the standard mouse bioassay, and radiometric sediment core dating combined with fossil cyst abundance allows reconstruction of the prior history of blooms and their relationship to climate. (author)

  11. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    Science.gov (United States)

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  12. Evidence for water-mediated mechanisms in coral–algal interactions

    NARCIS (Netherlands)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; Beer, De Dirk; Nugues, Maggy M.

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations

  13. Botulinum toxin in parkinsonism: The when, how, and which for botulinum toxin injections.

    Science.gov (United States)

    Cardoso, Francisco

    2018-06-01

    The aim of this article is to provide a review of the use of injections of botulinum toxin in the management of selected symptoms and signs of Parkinson's disease and other forms of parkinsonism. Sialorrhea is defined as inability to control oral secretions, resulting in excessive saliva in the oropharynx. There is a high level of evidence for the treatment of sialorrhea in parkinsonism with injections of different forms of botulinum toxin type A as well as botulinum toxin type B. Tremor can be improved by the use of botulinum toxin injections but improved tremor control often leads to concomitant motor weakness, limiting its use. Levodopa induced dyskinesias are difficult to treat with botulinum toxin injections because of their variable frequency and direction. Apraxia of eyelid opening, a sign more commonly seen in progressive supranuclear palsy and other tauopathies, often improves after botulinum toxin injections. Recent data suggest that regardless of the underlying mechanism, pain in parkinsonism can be alleviated by botulinum toxin injections. Finally, freezing of gait, camptocormia and Pisa syndrome in parkinsonism almost invariably fail to respond to botulinum toxin injections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Algal MIPs, high diversity and conserved motifs.

    Science.gov (United States)

    Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban

    2011-04-21

    Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  15. Algal MIPs, high diversity and conserved motifs

    Directory of Open Access Journals (Sweden)

    Johanson Urban

    2011-04-01

    Full Text Available Abstract Background Major intrinsic proteins (MIPs also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs and GlpF-like Intrinsic Proteins (GIPs, are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  16. The therapeutic use of botulinum toxin in cervical and maxillofacial conditions: an evidence-based review.

    Science.gov (United States)

    Ihde, Stefan K A; Konstantinovic, Vitomir S

    2007-08-01

    The role of botulinum toxin as a therapeutic agent for several conditions is expanding. We sought to determine if botulinum toxin is safe and effective in treating patients with cervical dystonia and maxillofacial conditions. Our purpose was to establish a safety and efficacy profile to determine whether or not this treatment may be used prophylactically in patients undergoing dental implant therapy. We performed a systematic search of the literature to identify randomized clinical trials evaluating patients treated with botulinum toxin as an adjunct to dental implant therapy, maxillofacial conditions including temporomandibular disorders (TMD), and cervical dystonia. Four randomized controlled trials (RCTs) met our search criteria in the area of cervical dystonia and chronic facial pain. No RCTs were identified evaluating dental implant therapy. Patients with cervical dystonia exhibited significant improvements in baseline functional, pain, and global assessments compared to placebo. Adverse events were mild and transient with numbers needed to harm (NNH) ranging from 12 to 17. Patients with chronic facial pain improved significantly from baseline in terms of pain compared to placebo. Rates of adverse events were less than 1%. Botulinum toxin appears relatively safe and effective in treating cervical dystonia and chronic facial pain associated with masticatory hyperactivity. No literature exists evaluating its use in dental implantology. Randomized clinical trials are warranted to determine its safety and efficacy in dental implantology and other maxillofacial conditions such as bruxism.

  17. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    Science.gov (United States)

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use. © 2015 Wiley Periodicals, Inc.

  18. Isolation and characterization of pigmented algicidal bacteria from seawater

    Science.gov (United States)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  19. Investigation of a largescale common murre (Uria aalge) mortality event in California in 2015

    Science.gov (United States)

    Gibble, Corinne; Duerr, Rebecca; Bodenstein, Barbara; Lindquist, Kirsten; Lindsey, Jackie; Beck, Jessie; Henkel, Laird A.; Roletto, Jan; Harvey, Jim; Kudela, Raphael

    2018-01-01

    From August through December 2015, beachcast bird survey programs reported increased deposition of common murres (Uria aalge) on central and northern California beaches, but not on southern California beaches. Coastal wildlife rehabilitation centers received more than 1,000 live, stranded, and debilitated murres from Sonoma County to San Luis Obispo County during August–October. Approximately two-thirds of admitted birds were after-hatch-year birds in emaciated body condition and in various stages of molt, with extremely worn plumage. Necropsies were done on a sample (n=35) of birds to determine the probable cause of death of beachcast carcasses. Most birds examined during necropsy were emaciated, with starvation the most likely cause of death. Birds were also tested for underlying infectious diseases at the US Geological Survey National Wildlife Health Center (NWHC) and harmful algal bloom toxins at the University of California, Santa Cruz and the National Oceanographic and Atmospheric Administration's Northwest Fisheries Science Center. Twenty-four out of 29 tested birds had detectable levels of domoic acid, and no indication of infectious disease was found. Emaciation is thought to be the cause of death for these birds, with a large warm water anomaly and harmful algal bloom playing a secondary detrimental role.

  20. Self-harm.

    Science.gov (United States)

    Skegg, Keren

    The term self-harm is commonly used to describe a wide range of behaviours and intentions including attempted hanging, impulsive self-poisoning, and superficial cutting in response to intolerable tension. As with suicide, rates of self-harm vary greatly between countries. 5-9% of adolescents in western countries report having self-harmed within the previous year. Risk factors include socioeconomic disadvantage, and psychiatric illness--particularly depression, substance abuse, and anxiety disorders. Cultural aspects of some societies may protect against suicide and self-harm and explain some of the international variation in rates of these events. Risk of repetition of self-harm and of later suicide is high. More than 5% of people who have been seen at a hospital after self-harm will have committed suicide within 9 years. Assessment after self-harm includes careful consideration of the patient's intent and beliefs about the lethality of the method used. Strong suicidal intent, high lethality, precautions against being discovered, and psychiatric illness are indicators of high suicide risk. Management after self-harm includes forming a trusting relationship with the patient, jointly identifying problems, ensuring support is available in a crisis, and treating psychiatric illness vigorously. Family and friends may also provide support. Large-scale studies of treatments for specific subgroups of people who self-harm might help to identify more effective treatments than are currently available. Although risk factors for self-harm are well established, aspects that protect people from engaging in self-harm need to be further explored.

  1. Polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Jensen, Lars S; Vogensen, Stine B

    2005-01-01

    Polyamine toxins, isolated from spiders and wasps, have been used as pharmacological tools for the study of ionotropic receptors, but their use have so far been hampered by their lack of selectivity. In this mini-review, we describe how careful synthetic modification of native polyamine toxins ha...

  2. Beach-goer behavior during a retrospectively detected algal ...

    Science.gov (United States)

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  3. Daphnia fed algal food grown at elevated temperature have reduced fitness

    Directory of Open Access Journals (Sweden)

    Anna B. Sikora

    2014-05-01

    Full Text Available Lake water temperature is negatively correlated with fatty acids content and P:C ratio in green algae. Hence, elevated temperature may indirectly reduce the fitness of Daphnia due to induced decrease in algal food quality. The aim of this study was to test the hypotheses that quality of algal food decreases with increasing temperature of its culture and that large-bodied Daphnia are more vulnerable to the temperature-related deterioration of algal food quality than small-bodied ones. Laboratory life-table experiments were performed at 20°C with large-bodied D. pulicaria and small-bodied D. cucullata fed with the green alga Scenedesmus obliquus, that had been grown at temperatures of 16, 24 or 32°C. The somatic growth rates of both species decreased significantly with increasing algal culture temperature and this effect was more pronounced in D. pulicaria than in D. cucullata. In the former species, age at first reproduction significantly increased and clutch size significantly decreased with increasing temperature of algae growth, while no significant changes in these two parameters were observed in the latter species. The proportion of egg-bearing females decreased with increasing algal culture temperature in both species. The results of this study support the notion that the quality of algal food decreases with increasing water temperature and also suggest that small-bodied Daphnia species might be less vulnerable to temperature-related decreases in algal food quality than large-bodied ones.

  4. Algal Bloom: Boon or Bane?

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Algal blooms occur in response to nutrient deplete or replete conditions. Nitrogen fixing forms proliferate under oligotrophic conditions when nutrient levels are low. Replete conditions in response to upwelling creates the most biologically...

  5. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea

    Science.gov (United States)

    Xu, Ning; Huang, Bozhu; Hu, Zhangxi; Tang, Yingzhong; Duan, Shunshan; Zhang, Chengwu

    2017-05-01

    Blooms of Phaeocystis globosa have been frequently reported in Chinese coastal waters, causing serious damage to marine ecosystems. To better understand the ecological characteristics of P. globosa in Chinese coastal waters that facilitate its rapid expansion, the effects of temperature, salinity and irradiance on the growth of P. globosa from the South China Sea were examined in the laboratory. The saturating irradiance for the growth of P. globosa ( I s) was 60 μmol/(m2•s), which was lower than those of other harmful algal species (70-114 μmol/(m2•s)). A moderate growth rate of 0.22/d was observed at 2 μmol/(m2•s) (the minimum irradiance in the experiment), and photo-inhibition did not occur at 230 μmol/(m2•s) (the maximum irradiance in the experiment). Exposed to 42 different combinations of temperatures (10-31°C) and salinities (10-40) under saturating irradiance, P. globosa exhibited its maximum specific growth rate of 0.80/d at the combinations of 24°C and 35, and 27°C and 40. The optimum growth rates (>0.80/d) were observed at temperatures ranging from 24 to 27°C and salinities from 35 to 40. While P. globosa was able to grow well at temperatures from 20°C to 31°C and salinities from 20 to 40, it could not grow at temperatures lower than 15°C or salinities lower than 15. Factorial analysis revealed that temperature and salinity has similar influences on the growth of this species. This strain of P. globosa not only prefers higher temperatures and higher salinity, but also possesses a flexible nutrient competing strategy, adapted to lower irradiance. Therefore, the P. globosa population from South China Sea should belong to a new ecotype. There is also a potentially high risk of blooms developing in this area throughout the year.

  6. Mass Spectral Investigation on Toxins. I. Isolation, Purification, and Characterization of Hepatotoxins from Freshwater Blue-Green Algae (Cyanobacteria) by High-Performance Liquid Chromatography and Fast Atom Bombardment Mass Spectrometric Techniques.

    Science.gov (United States)

    1986-09-01

    analysis ’" methods in environmental samples. The hepatotoxins from laboratory cultures of M. aeruginosa Strain 7820,15 Anabena flos- aguae (A. 4flos...flos- aguae S-23-g-1l (8 lug) F1 The results from the amino acid analysis using the Llqui-Mat Analyzer are listed in Table 2. The elution times of the...Runnegar, M.T.C., and Huynh, V.L. Effec- tiveness of Activated Carbon in the Removal of Algal Toxin from Potable Water Supplies: A Pilot Plant

  7. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  8. Toxin production in Dinophysis and the fate of these toxins in marine mussels

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor

    Diarrhetic shellfish poisoning (DSP) poses a considerable threat to food safety and to the economy of shellfish fishers and farmers in many parts of the world. Thousands of DSP intoxications have been reported, and bivalve harvesting can sometimes be closed down several months in a row. The toxins....... acuta. I grew the two species in laboratory cultures at different irradiances (7-130 μmol photons m-2 s-1) and with different food availability. The results showed that irradiance had no effects on toxin profiles, and only limited effects of the cellular toxin contents. Rather, toxin production rates...... are primarily produced by the marine mixotrophic dinoflagellates Dinophysis spp., known to occur in most parts of the world. Dinophysis can, along with other planktonic organisms, be consumed by filter-feeding bivalves, and thus the toxins can accumulate. Dinophysis can produce the three toxin groups, okadaic...

  9. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  10. Increasing the extraction efficiency of algal lipid for biodiesel ...

    African Journals Online (AJOL)

    Various studies have been conducted recently using microalgal system for the production of algal lipid for biodiesel production. This study aimed at increasing the extraction efficiency of algal lipid from Chlorella sp. by the application of Chlorella viruses. The calorific value of lipid from Chlorella sp. has been reported to be ...

  11. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    Directory of Open Access Journals (Sweden)

    Pavel Pořízka

    2014-09-01

    Full Text Available Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail.

  12. Toxin-Based Therapeutic Approaches

    Science.gov (United States)

    Shapira, Assaf; Benhar, Itai

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin. PMID:22069564

  13. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  14. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, E [Giessen Univ. (Germany, F.R.). Pharmakologisches Inst.

    1976-01-01

    /sup 125/I-labelled tetanus toxin and /sup 125/I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin.

  15. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    Habermann, E.

    1976-01-01

    125 I-labelled tetanus toxin and 125 I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.) [de

  16. Harmful Waste Process

    International Nuclear Information System (INIS)

    Ki, Mun Bong; Lee, Shi Jin; Park, Jun Seok; Yoon, Seok Pyo; Lee, Jae Hyo; Jo, Byeong Ryeol

    2008-08-01

    This book gives descriptions of processing harmful waste, including concerned law and definition of harmful waste, current conditions and generation of harmful waste in Korea, international condition of harmful waste, minimizing of generation of harmful waste, treatment and storage. It also tells of basic science for harmful waste disposal with physics, chemistry, combustion engineering, microbiology and technique of disposal such as physical, chemical, biological process, stabilizing and solidification, incineration and waste in landfill.

  17. Copper desorption from Gelidium algal biomass.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  18. Microbial bioenergetics of coral-algal interactions

    Directory of Open Access Journals (Sweden)

    Ty N.F. Roach

    2017-06-01

    Full Text Available Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify

  19. Collection and conversion of algal lipid

    Science.gov (United States)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  20. Thermodynamic analysis of algal biocrude production

    International Nuclear Information System (INIS)

    Beal, C.M.; Hebner, R.E.; Webber, M.E.

    2012-01-01

    Although algal biofuels possess great potential, profitable production is quite challenging. Much of this challenge is rooted in the thermodynamic constraints associated with producing fuels with high energy, low entropy, and high exergy from dispersed materials. In this study, a preliminary thermodynamic analysis is presented that calculates the energy, entropy, and exergy of the intermediate products for algal biocrude production. These values are also used in an initial attempt to characterize the thermodynamic efficiency of that system. The production pathway is simplified by assuming ideal solutions throughout. Results for the energy and exergy efficiencies, and the first-order energy and exergy return on investment, of the system are given. The summary finding is that the first-order energy return on investment in the best case considered could be as high as 520, as compared to 1.7 × 10 −3 in the experimental unit under development. While this analysis shows that significant improvement may be possible, the ultimate thermodynamic efficiency of algal biofuels likely lies closer to the moderate case examined here, which yielded a first-order energy return on investment of 10. For perspective, the first-order energy return on investment for oil and gas production has been estimated in the literature to be ∼35. -- Highlights: ► A first-principles thermodynamic analysis was conducted for algal biocrude production. ► The energy, entropy, and exergy was determined for each intermediate product by assuming the products were ideal solutions. ► The thermodynamic properties were used to calculate the energy and exergy return on investments for three cases. ► It was determined that the energy and exergy return on investments could be as high as ∼500. ► More realistic assumptions for efficient systems yielded return on investments on the order of 10.

  1. Toxin-Based Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Itai Benhar

    2010-10-01

    Full Text Available Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

  2. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nyholm, Niels; Verbruggen, Eric M. J.

    2000-01-01

    Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well as to the......Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well......, and the resulting dissolved CO2 concentration supported maximum algal growth rates without pH drift for algal densities up to 4 mg dry weight/L. Two-day toxicity tests with kerosene were performed with this new test design and compared with an open bottle test and with a closed bottle test with headspace. Exposure...... concentrations of the volatile fraction of kerosene decreased by 99% in the open test, by 77% in the closed flask test with headspace, and by 16% in the filled closed bottle test. Algal growth inhibition was observed at much lower additions of kerosene in the new test design because of the improved maintenance...

  3. Algal Growth and Waste Stabilization Ponds Performance Efficiency in a Sub-Tropical Climate

    International Nuclear Information System (INIS)

    Alamgir, A.; Khan, M. A.; Shaukat, S. S.

    2016-01-01

    Both irrigation and potable water are in diminutive supply in most of the developing countries particularly those situated in tropical and subtropical regions where, often untreated wastewater is utilized for the purpose of irrigation. Treated wastewater has proved to be a potential asset serving as an alternate source for the expansion of irrigated agriculture. Waste stabilization ponds (WSP) are considered as less costly and effective substitute for the wastewater water treatment in tropics. The principle of wastewater treatment in waste stabilization pond is based on the symbiotic relationship between bacteria and various algal species. In this study, an attempt was made to relate algal growth and different extrinsic factors using multiple regression models. The predominant algal species found in WSP systems were Chlorella, Euglena, Oscillatoria and Scenedesmus. The growth of individual algal species and overall algal growth was principally governed by temperature, total sunshine hours and Total Kjeldhal Nitrogen (TKN). The study suggested that algal bacterial symbiotic relationship works well and the dissolved oxygen production through algal photosynthesis was optimum to decompose heavy organic load resulting in oxygen-rich effluent (liquid fertilizer) which could be successfully exploited for unrestricted irrigation. (author)

  4. Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    The consideration of algal biomass in biodiesel production increased very rapidly in the last decade. A life cycle assessment (LCA) study is presented to compare six different biodiesel production pathways (three different harvesting techniques, i.e., aluminum as flocculent, lime flocculent, and ......, ecosystem quality, and resources were higher than the conventional diesel. This study recommends more practical data at pilot-scale production plant with maximum utilization of by-products generated during the production to produce a sustainable algal biodiesel......., and centrifugation, and two different oil extraction methods, i.e., supercritical CO2 (sCO2) and press and co-solvent extraction). The cultivation of Nannochloropsis sp. considered in a flat-panel photobioreactor (FPPBR). These algal biodiesel production systems were compared with the conventional diesel in a EURO 5...... passenger car used for transport purpose (functional unit 1 person km (pkm). The algal biodiesel production systems provide lesser impact (22–105 %) in comparison with conventional diesel. Impacts of algal biodiesel on climate change were far better than conventional diesel, but impacts on human health...

  5. Testing a Microarray to Detect and Monitor Toxic Microalgae in Arcachon Bay in France

    Directory of Open Access Journals (Sweden)

    Linda K. Medlin

    2013-03-01

    Full Text Available Harmful algal blooms (HABs occur worldwide, causing health problems and economic damages to fisheries and tourism. Monitoring agencies are therefore essential, yet monitoring is based only on time-consuming light microscopy, a level at which a correct identification can be limited by insufficient morphological characters. The project MIDTAL (Microarray Detection of Toxic Algae—an FP7-funded EU project—used rRNA genes (SSU and LSU as a target on microarrays to identify toxic species. Furthermore, toxins were detected with a newly developed multiplex optical Surface Plasmon Resonance biosensor (Multi SPR and compared with an enzyme-linked immunosorbent assay (ELISA. In this study, we demonstrate the latest generation of MIDTAL microarrays (version 3 and show the correlation between cell counts, detected toxin and microarray signals from field samples taken in Arcachon Bay in France in 2011. The MIDTAL microarray always detected more potentially toxic species than those detected by microscopic counts. The toxin detection was even more sensitive than both methods. Because of the universal nature of both toxin and species microarrays, they can be used to detect invasive species. Nevertheless, the MIDTAL microarray is not completely universal: first, because not all toxic species are on the chip, and second, because invasive species, such as Ostreopsis, already influence European coasts.

  6. Enhanced production of green tide algal biomass through additional carbon supply.

    Science.gov (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  7. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  8. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    Energy Technology Data Exchange (ETDEWEB)

    Anton, David [Cellana, LLC, Kailua-Kona, HI (United States)

    2016-12-31

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing, and refining.

  9. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    Science.gov (United States)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  10. 2016 National Algal Biofuels Technology Review Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  11. Catalytic Processes for Utilizing Carbohydrates Derived from Algal Biomass

    Directory of Open Access Journals (Sweden)

    Sho Yamaguchi

    2017-05-01

    Full Text Available The high productivity of oil biosynthesized by microalgae has attracted increasing attention in recent years. Due to the application of such oils in jet fuels, the algal biosynthetic pathway toward oil components has been extensively researched. However, the utilization of the residue from algal cells after oil extraction has been overlooked. This residue is mainly composed of carbohydrates (starch, and so we herein describe the novel processes available for the production of useful chemicals from algal biomass-derived sugars. In particular, this review highlights our latest research in generating lactic acid and levulinic acid derivatives from polysaccharides and monosaccharides using homogeneous catalysts. Furthermore, based on previous reports, we discuss the potential of heterogeneous catalysts for application in such processes.

  12. Early detection of protozoan grazers in algal biofuel cultures.

    Science.gov (United States)

    Day, John G; Thomas, Naomi J; Achilles-Day, Undine E M; Leakey, Raymond J G

    2012-06-01

    Future micro-algal biofuels will most likely be derived from open-pond production systems. These are by definition open to "invasion" by grazers, which could devastate micro-algal mass-cultures. There is an urgent requirement for methodologies capable of early detection and control of grazers in dense algal cultures. In this study a model system employing the marine alga Nannochloropsis oculata was challenged by grazers including ciliates, amoebae and a heterotrophic dinoflagellate. A FlowCAM flow-cytometer was used to detect all grazers investigated (size range 80 μm in length) in the presence of algae. Detection limits were 1.4 × 10(8) cells ml(-1) (>0.5 g l(-1) dry wt.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effects of fertilizers used in agricultural fields on algal blooms

    Science.gov (United States)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.; Misra, A. K.; Chattopadhyay, Joydev

    2017-06-01

    The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.

  14. A review of algal research in space

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-05-01

    With the continued expansion of human presence into space, typical mission durations will routinely exceed six months and extend to distances beyond the Moon. As such, sending periodic resupply vehicles, as currently provided to the International Space Station, will likely no longer be feasible. Instead, self-sustaining life support systems that recycle human waste products will become increasingly necessary, especially for planetary bases. The idea of bioregenerative life support systems using algal photobioreactors has been discussed since the beginning of the space age. In order to evaluate how such a system could be implemented, a variety of space flight studies aimed at characterizing the potential for using algae in air revitalization, water recycling, food production, and radiation shielding applications have been conducted over the years. Also, given the recent, growing interest in algal research for regenerative fuel production, food supplements, and cosmetics, many algal strains are already well documented from related terrestrial experiments. This paper reviews past algal experiments flown in space from 1960 until today. Experimental methods and results from 51 investigations utilizing either green algae (Chlorophyta), cyanobacteria (Cyanophyta), or Euglenophyta are analyzed and categorized by a variety of parameters, including size, species and duration. The collected data are summarized in a matrix that allows easy comparison between the experiments and provides important information for future life support system requirement definition and design. Similarities between experiment results are emphasized. Common problems and shortcomings are summarized and analyzed in terms of potential solutions. Finally, key research gaps, which must be closed before developing a functional life support system, are identified.

  15. The extended Kalman filter for forecast of algal bloom dynamics.

    Science.gov (United States)

    Mao, J Q; Lee, Joseph H W; Choi, K W

    2009-09-01

    A deterministic ecosystem model is combined with an extended Kalman filter (EKF) to produce short term forecasts of algal bloom and dissolved oxygen dynamics in a marine fish culture zone (FCZ). The weakly flushed FCZ is modelled as a well-mixed system; the tidal exchange with the outer bay is lumped into a flushing rate that is numerically determined from a three-dimensional hydrodynamic model. The ecosystem model incorporates phytoplankton growth kinetics, nutrient uptake, photosynthetic production, nutrient sources from organic fish farm loads, and nutrient exchange with a sediment bed layer. High frequency field observations of chlorophyll, dissolved oxygen (DO) and hydro-meteorological parameters (sampling interval Deltat=1 day, 2h, 1h, respectively) and bi-weekly nutrient data are assimilated into the model to produce the combined state estimate accounting for the uncertainties. In addition to the water quality state variables, the EKF incorporates dynamic estimation of algal growth rate and settling velocity. The effectiveness of the EKF data assimilation is studied for a wide range of sampling intervals and prediction lead-times. The chlorophyll and dissolved oxygen estimated by the EKF are compared with field data of seven algal bloom events observed at Lamma Island, Hong Kong. The results show that the EKF estimate well captures the nonlinear error evolution in time; the chlorophyll level can be satisfactorily predicted by the filtered model estimate with a mean absolute error of around 1-2 microg/L. Predictions with 1-2 day lead-time are highly correlated with the observations (r=0.7-0.9); the correlation stays at a high level for a lead-time of 3 days (r=0.6-0.7). Estimated algal growth and settling rates are in accord with field observations; the more frequent DO data can compensate for less frequent algal biomass measurements. The present study is the first time the EKF is successfully applied to forecast an entire algal bloom cycle, suggesting the

  16. Botulinum Toxin (Botox) for Facial Wrinkles

    Science.gov (United States)

    ... Stories Español Eye Health / Eye Health A-Z Botulinum Toxin (Botox) for Facial Wrinkles Sections Botulinum Toxin (Botox) ... Facial Wrinkles How Does Botulinum Toxin (Botox) Work? Botulinum Toxin (Botox) for Facial Wrinkles Leer en Español: La ...

  17. Lymphocyte receptors for pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.G.; Armstrong, G.D. (Univ. of Alberta, Edmonton (Canada))

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.

  18. Botulinum toxin: bioweapon & magic drug.

    Science.gov (United States)

    Dhaked, Ram Kumar; Singh, Manglesh Kumar; Singh, Padma; Gupta, Pallavi

    2010-11-01

    Botulinum neurotoxins, causative agents of botulism in humans, are produced by Clostridium botulinum, an anaerobic spore-former Gram positive bacillus. Botulinum neurotoxin poses a major bioweapon threat because of its extreme potency and lethality; its ease of production, transport, and misuse; and the need for prolonged intensive care among affected persons. A single gram of crystalline toxin, evenly dispersed and inhaled, can kill more than one million people. The basis of the phenomenal potency of botulinum toxin is enzymatic; the toxin is a zinc proteinase that cleaves neuronal vesicle associated proteins responsible for acetylcholine release into the neuromuscular junction. As a military or terrorist weapon, botulinum toxin could be disseminated via aerosol or by contamination of water or food supplies, causing widespread casualties. A fascinating aspect of botulinum toxin research in recent years has been development of the most potent toxin into a molecule of significant therapeutic utility . It is the first biological toxin which is licensed for treatment of human diseases. In the late 1980s, Canada approved use of the toxin to treat strabismus, in 2001 in the removal of facial wrinkles and in 2002, the FDA in the United States followed suit. The present review focuses on both warfare potential and medical uses of botulinum neurotoxin.

  19. Topical botulinum toxin.

    Science.gov (United States)

    Collins, Ashley; Nasir, Adnan

    2010-03-01

    Nanotechnology is a rapidly growing discipline that capitalizes on the unique properties of matter engineered on the nanoscale. Vehicles incorporating nanotechnology have led to great strides in drug delivery, allowing for increased active ingredient stability, bioavailability, and site-specific targeting. Botulinum toxin has historically been used for the correction of neurological and neuromuscular disorders, such as torticollis, blepharospasm, and strabismus. Recent dermatological indications have been for the management of axillary hyperhydrosis and facial rhytides. Traditional methods of botulinum toxin delivery have been needle-based. These have been associated with increased pain and cost. Newer methods of botulinum toxin formulation have yielded topical preparations that are bioactive in small pilot clinical studies. While there are some risks associated with topical delivery, the refinement and standardization of delivery systems and techniques for the topical administration of botulinum toxin using nanotechnology is anticipated in the near future.

  20. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M. L.

    2016-01-13

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  1. Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results

    Directory of Open Access Journals (Sweden)

    Colin M. Beal

    2012-06-01

    Full Text Available Worldwide, algal biofuel research and development efforts have focused on increasing the competitiveness of algal biofuels by increasing the energy and financial return on investments, reducing water intensity and resource requirements, and increasing algal productivity. In this study, analyses are presented in each of these areas—costs, resource needs, and productivity—for two cases: (1 an Experimental Case, using mostly measured data for a lab-scale system, and (2 a theorized Highly Productive Case that represents an optimized commercial-scale production system, albeit one that relies on full-price water, nutrients, and carbon dioxide. For both cases, the analysis described herein concludes that the energy and financial return on investments are less than 1, the water intensity is greater than that for conventional fuels, and the amounts of required resources at a meaningful scale of production amount to significant fractions of current consumption (e.g., nitrogen. The analysis and presentation of results highlight critical areas for advancement and innovation that must occur for sustainable and profitable algal biofuel production can occur at a scale that yields significant petroleum displacement. To this end, targets for energy consumption, production cost, water consumption, and nutrient consumption are presented that would promote sustainable algal biofuel production. Furthermore, this work demonstrates a procedure and method by which subsequent advances in technology and biotechnology can be framed to track progress.

  2. From harmful Microcystis blooms to multi-functional core-double-shell microsphere bio-hydrochar materials.

    Science.gov (United States)

    Bi, Lei; Pan, Gang

    2017-11-13

    Harmful algal blooms (HABs) induced by eutrophication is becoming a serious global environmental problem affecting public health and aquatic ecological sustainability. A novel strategy for the utilization of biomass from HABs was developed by converting the algae cells into hollow mesoporous bio-hydrochar microspheres via hydrothermal carbonization method. The hollow microspheres were used as microreactors and carriers for constructing CaO 2 core-mesoporous shell-CaO 2 shell microspheres (OCRMs). The CaO 2 shells could quickly increase dissolved oxygen to extremely anaerobic water in the initial 40 min until the CaO 2 shells were consumed. The mesoporous shells continued to act as regulators restricting the release of oxygen from CaO 2 cores. The oxygen-release time using OCRMs was 7 times longer than when directly using CaO 2 . More interestingly, OCRMs presented a high phosphate removal efficiency (95.6%) and prevented the pH of the solution from rising to high levels in comparison with directly adding CaO 2 due to the OH - controlled-release effect of OCRMs. The distinct core-double-shell micro/nanostructure endowed the OCRMs with triple functions for oxygen controlled-release, phosphorus removal and less impact on water pH. The study is to explore the possibility to prepare smarter bio-hydrochar materials by utilizing algal blooms.

  3. Surveillance guidelines for toxic algal species of Italian sea and lake waters; Indicazioni per il controllo delle specie algali tossiche delle acque marine e lacustri italiane: Studio delle coste e di un lago del Lazio: 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Milena; Congestri, Roberta; Buzzelli, Elena [Istituot Superiore di Sanita` , Rome (Italy). Lab. di Igiene Ambientale

    1997-09-01

    The health conditions of the coasts of the Rome district and of a large lake in the northern area of the Latium Region were examined to evaluate the toxic algal species, during a 14-month study carried on in cooperation with the Region and the local prevention units of the Region. The study shows the existence of a mesotrophic state in the coastal waters of the lake Bolsena, and a trophic level increased in last years, along the sea coasts of the Rome district. alga populations of genus Dinophysis, harmless to bathing activities, but able to contaminate the edible molluscs with toxins of the okadaic acid group, have been found. The technical occurrences of this study points out the operators`need of a taxonomic atlas, collecting all the toxic algal species known in the Mediterranean basin. This report includes a number of drawings of all the signaled species, each one followed by a fried schedule with the main taxonomic characteristics.

  4. Self-harm

    Science.gov (United States)

    Self-harm refers to a person's harming their own body on purpose. About 1 in 100 people hurts himself or herself in this way. More females hurt themselves than males. A person who self-harms usually does not mean to kill himself or herself. But they are at higher risk of attempting suicide if they do ...

  5. Algal diversity of Adada River, Nigeria. I. Chlorophyta (green algae ...

    African Journals Online (AJOL)

    Commercial water tankers collect water and sell to indigenes and towns around the river, hence the need to investigate the algal biodiversity in other to access its suitability for human consumption using known algal indicators of water quality and add to the pool of data useful for long term trends in floral composition in ...

  6. Botulinum toxin injection - larynx

    Science.gov (United States)

    Injection laryngoplasty; Botox - larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography - guided botulinum toxin treatment; Percutaneous indirect laryngoscopy - guided botulinum toxin treatment; ...

  7. Diversity, Prevalence, and Longitudinal Occurrence of Type II Toxin-Antitoxin Systems of Pseudomonas aeruginosa Infecting Cystic Fibrosis Lungs

    DEFF Research Database (Denmark)

    Breum Andersen, Sandra; Ghoul, Melanie; Griffin, Ashleigh S.

    2017-01-01

    Type II toxin-antitoxin (TA) systems are most commonly composed of two genes encoding a stable toxin, which harms the cell, and an unstable antitoxin that can inactivate it. TA systems were initially characterized as selfish elements, but have recently gained attention for regulating general stress...... responses responsible for pathogen virulence, formation of drug-tolerant persister cells and biofilms—all implicated in causing recalcitrant chronic infections. We use a bioinformatics approach to explore the distribution and evolution of type II TA loci of the opportunistic pathogen, Pseudomonas aeruginosa...... in their core genome and a variable number of the remaining 22 on genomic islands; (2) limited mutations in core genome TA loci, suggesting they are not under negative selection; (3) no evidence for horizontal transmission of elements with TA systems between clone types within patients, despite their ability...

  8. Algal biofuels: challenges and opportunities.

    Science.gov (United States)

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. What’s the Harm? Harms in Research with Adults with Intellectual Disability

    Science.gov (United States)

    McDonald, Katherine E.; Conroy, Nicole E.; Olick, Robert S.

    2017-01-01

    Scientific advances can improve the lives of adults with intellectual disability, yet concerns that research participation may impose harm impede scientific progress. What counts as harmful can be subjective and perceptions of harm may vary among stakeholders. We studied perspectives on the harmfulness of research events among adults with intellectual disability, family members and friends, disability service providers, researchers, and Institutional Review Board members. We found considerable variance. For example, adults with intellectual disability see exclusion from research as more harmful, but most psychosocial harms as less significant than others. All stakeholders agree that having someone else make the participation decision is harmful. Findings provide insights into the concept of harm and ethical research with adults with intellectual disability. PMID:28095059

  10. Effects of solar ultraviolet radiation on tropical algal communities

    International Nuclear Information System (INIS)

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity

  11. The engine of the reef: Photobiology of the coral-algal symbiosis

    Directory of Open Access Journals (Sweden)

    Melissa Susan Roth

    2014-08-01

    Full Text Available Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis and recent advances in the field. Studies integrating physiology with the developing omics fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.

  12. The engine of the reef: photobiology of the coral–algal symbiosis

    Science.gov (United States)

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  13. Algal biofuels: key issues, sustainability and life cycle assessment

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2011-01-01

    wastewater. Algae capture CO2 from atmosphere and industrial flue gases and transform it in to organic biomass that can be used for the production of biofuels. Like other biomass, algal biomass is also a carbon neutral source for the production of bioenergy. Therefore cultivation of algal biomass provides......In recent years research activities are intensively focused on renewable fuels in order to fulfill the increasing energy demand and to reduce the fossil fuels consumption and external oil dependency either in order to provide local energetic resources and or as a means for reducing greenhouse gases...... (GHG) emissions to reduce the climate change effects. Among the various renewable energy sources algal biofuels is a very promising source of biomass as algae sequester huge quantities of carbon from atmosphere and are very efficient in utilizing the nutrients from the industrial effluent and municipal...

  14. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  15. Algal dermatitis in cichlids.

    Science.gov (United States)

    Yanong, Roy P E; Francis-Floyd, Ruth; Curtis, Eric; Klinger, Ruth Ellen; Cichra, Mary E; Berzins, Ilze K

    2002-05-01

    Three varieties of a popular African cichlid aquarium species, Pseudotropheus zebra, from 2 tropical fish farms in east central Florida were submitted for diagnostic evaluation because of the development of multifocal green lesions. The percentage of infected fish in these populations varied from 5 to 60%. Fish were otherwise clinically normal. Microscopic examination of fresh and fixed lesions confirmed algal dermatitis, with light invasion of several internal organs in each group. A different alga was identified from each farm. Fish from farm A were infected with Chlorochytrium spp, whereas fish from farm B were infected with Scenedesmus spp. Because of the numbers of fish involved, bath treatments to remove the algae from affected fish from farm B were attempted, with different dosages of several common algaecides including copper sulfate pentahydrate, diuron, and sodium chloride. However, none of these treatments were successful, possibly because of the location of the algae under the scales and within the dermis, and also because of the sequestering effect of the granulomatous response. To our knowledge, this is the first report of algal dermatitis in ornamental cichlids, as well as the first report of Scenedesmus spp infection in any fish.

  16. Data from: Evidence for water-mediated mechanisms in coral–algal interactions

    NARCIS (Netherlands)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, R.; Beer, De Dirk; Nugues, Maggy M.

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at

  17. First report of detection of the putative receptor of Bacillus thuringiensis toxin Vip3Aa from black cutworm (Agrotis ipsilon

    Directory of Open Access Journals (Sweden)

    Gamal H. Osman

    2018-03-01

    Full Text Available Black cutworm (BCW Agrotis ipsilon, an economically important lepidopteran insect, has attracted a great attention. Bacillus thuringiensis (Bt is spore forming soil bacteria and is an excellent environment-friendly approach for the control of phytophagous and disease-transmitting insects. In fact, bio-pesticide formulations and insect resistant transgenic plants based on the bacterium Bt delta-endotoxin have attracted worldwide attention as a safer alternative to harmful chemical pesticides. The major objective of the current study was to understand the mechanism of interaction of Bt toxin with its receptor molecule(s. The investigation involved the isolation, identification, and characterization of a putative receptor – vip3Aa. In addition, the kinetics of vip toxin binding to its receptor molecule was also studied. The present data suggest that Vip3Aa toxin bound specifically with high affinity to a 48-kDa protein present at the brush border membrane vesicles (BBMV prepared from the midgut epithelial cells of BCW larvae. Keywords: Receptor, vip3Aa, Bacillus thuringiensis, BBMV

  18. Responses of Algal Cells to Engineered Nanoparticles Measured as Algal Cell Population, Chlorophyll a, and Lipid Peroxidation: Effect of Particle Size and Type

    Directory of Open Access Journals (Sweden)

    D. M. Metzler

    2012-01-01

    Full Text Available This paper investigated toxicity of three engineered nanoparticles (ENP, namely, Al2O3, SiO2, and TiO2 to the unicellular green algae, exemplified by Pseudokirchneriella subcapitata with an emphasis on particle size. The changes in pH, cell counts, chlorophyll a, and lipid peroxidation were used to measure the responses of the algal species to ENP. The most toxic particle size was TiO2 at 42 nm with an EC20 of 5.2 mg/L and Al2O3 at 14–18 nm with an EC20 of 5.1 mg/L. SiO2 was the least toxic with an EC20 of 318 mg/L. Toxicity was positively related to the surface charge of both ENP and algae. The chlorophyll content of the algal cells was influenced by the presence of ENP, which resulted in limited light and availability of nutrients due to increase in turbidity and nutrient adsorption onto the ENP surface, separately. Lipid peroxidation was attributed to reactive oxygen species (ROS. Fast reaction between algal cells and ROS due to direct contact between TiO2 and algal cells is an important factor for lipid peroxidation.

  19. [Intoxication of botulinum toxin].

    Science.gov (United States)

    Chudzicka, Aleksandra

    2015-09-01

    Botulinum toxin is an egzotoxin produced by Gram positive bacteria Clostridium botulinum. It is among the most potent toxins known. The 3 main clinical presentations of botulism are as follows: foodborne botulism, infant botulism and wound botulism. The main symptom of intoxication is flat muscles paralysis. The treatment is supportive care and administration of antitoxin. In prevention the correct preparing of canned food is most important. Botulinum toxin is accepted as a biological weapon. © 2015 MEDPRESS.

  20. Why do we study animal toxins?

    Science.gov (United States)

    ZHANG, Yun

    2015-01-01

    Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins. PMID:26228472

  1. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Directory of Open Access Journals (Sweden)

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  2. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    Directory of Open Access Journals (Sweden)

    Ladislav Nedbal

    2010-09-01

    Full Text Available Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C=C stretching mode and 1,445 cm−1 (CH2 scissoring mode as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  3. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    Science.gov (United States)

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  4. Rotating Algal Biofilm Reactors: Mathematical Modeling and Lipid Production

    OpenAIRE

    Woolsey, Paul A.

    2011-01-01

    Harvesting of algal biomass presents a large barrier to the success of biofuels made from algae feedstock. Small cell sizes coupled with dilute concentrations of biomass in lagoon systems make separation an expensive and energy intense-process. The rotating algal biofilm reactor (RABR) has been developed at USU to provide a sustainable technology solution to this issue. Algae cells grown as a biofilm are concentrated in one location for ease of harvesting of high density biomass. A mathematic...

  5. Plant Insecticidal Toxins in Ecological Networks

    Directory of Open Access Journals (Sweden)

    Sébastien Ibanez

    2012-04-01

    Full Text Available Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  6. Plant insecticidal toxins in ecological networks.

    Science.gov (United States)

    Ibanez, Sébastien; Gallet, Christiane; Després, Laurence

    2012-04-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects' vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  7. A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses

    Science.gov (United States)

    Rowan, Rob; Powers, Dennis A.

    1991-03-01

    Zooxanthellae are unicellular algae that occur as endosymbionts in many hundreds of marine invertebrate species. Because zooxanthellae have traditionally been difficult to classify, little is known about the natural history of these symbioses. Zooxanthellae were isolated from 131 individuals in 22 host taxa and characterized by the use of restriction fragment length polymorphisms (RFLPs) in nuclear genes that encode small ribosomal subunit RNA (ssRNA). Six algal RFLPs, distributed host species specifically, were detected. Individual hosts contained one algal RFLP. Zooxanthella phylogenetic relationships were estimated from 22 algal ssRNA sequences-one from each host species. Closely related algae were found in dissimilar hosts, suggesting that animal and algal lineages have maintained a flexible evolutionary relation with each other.

  8. The paradox of algal blooms in oligotrophic waters

    Science.gov (United States)

    Sundareshwar, P. V.; Upadhyay, S.; Abessa, M. B.; Honomichl, S.; Berdanier, B.; Spaulding, S.; Sandvik, C.; Trennepohl, A.

    2010-12-01

    Nutrient inputs to streams and lakes, primarily from anthropogenic sources, lead to eutrophic conditions that favor algal blooms with undesirable consequences. In contrast, low nutrient or oligotrophic waters rarely support algal blooms; such ecosystems are typically lower in productivity. Since the mid-1980’s however, the diatom Didymosphenia geminata has dramatically expanded its range colonizing oligotrophic rivers worldwide with blooms appearing as thick benthic mats. This recent global occurrence of Didymosphenia geminata blooms in temperate rivers has been perplexing in its pace of spread and the paradoxical nature of the nuisance growths. The blooms occur primarily in oligotrophic flowing waters, where phosphorus (P) availability often limits primary production. We present a biogeochemical process by which D. geminata mats adsorb both P and iron (Fe) from flowing waters and make P available for cellular uptake. The adsorbed P becomes bioavailable through biogeochemical processes that occur within the mat. The biogeochemical processes observed here while well accepted in benthic systems are novel for algal blooms in lotic habits. Enzymatic and bacterial processes such as Fe and sulfate reduction can release the adsorbed P and increase its bioavailability, creating a positive feedback between total stalk biomass and nutrient availability. Stalk affinity for Fe, Fe-P biogeochemistry, and interaction between watershed processes and climatic setting explain the paradoxical blooms, and the recent global spread of this invasive aquatic species. At a broader scale the study also implies that such algal blooms in oligotrophic environments can fundamentally alter the retention and longitudinal transfer of important nutrients such as P in streams and rivers.

  9. Thermal Responses of Growth and Toxin Production in Four Prorocentrum Species from the Central Red Sea

    KAUST Repository

    Aynousah, Arwa

    2017-06-01

    Harmful algae studies, in particular toxic dinoflagellates, and their response to global warming in the Red Sea are still limited. This study was aimed to be the first to characterize the identity, thermal responses and toxin production of four Prorocentrum strains isolated from the Central Red Sea, Saudi Arabia. Morphological and molecular phylogenetic analysis identified the strains as P. elegans, P. rhathymum and P. emarginatum. However, the identity of strain P. sp.6 is currently unresolved, albeit sharing close affinity with P. leve. Growth experiments showed that all species could grow at 24-32°C, but only P. sp.6 survived the 34°C treatment. The optimum temperatures (Topt) estimated from the Gaussian model corresponded to 27.17, 29.33, 26.87, and 27.64°C for P. sp.6, P. elegans, P. rhathymum and P. emarginatum, respectively. However, some discrepancy with the Topt derived from the growth performance were observed for P. elegans and P. emarginatum, as thermal responses differed from the typical Gaussian fit. The Prorocentrum species examined showed a sharp decrease after the optimum temperature resulting in very high activation energies for the fall slope, especially for P. elegans and P. emarginatum. The minimum critical temperature limit for growth was not detected within the range of temperatures examined. Subsequently, high performance liquid chromatography coupled with mass spectrometry (HPLC-MS) analysis revealed all species as non okadaic acid (OA, common toxin of the Prorocentrum genus) producers at any temperature treatment. However, other forms of toxin (i.e. fast acting toxins) not examined here could be produced. Therefore, further investigations are required. The results of this study provided significant contribution to our knowledge regarding the presence, thermal response and toxin production of four Prorocentrum species from the Central Red Sea, Saudi Arabia.

  10. Carbohydrate-degrading bacteria closely associated with Tetraselmis indica: Influence on algal growth

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Delany, J.; Rajarajan, N.; Emami, K.; Mesbahi, E.

    to promote growth of the algae. These experiments revealed that microbes associated with the alga differentially influence algal growth dynamics. Bacterial presence on the cast-off cell wall products of the alga suggested the likely utilisation of algal cell...

  11. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins.

    Science.gov (United States)

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-03-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  12. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  13. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  14. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  15. Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin

    International Nuclear Information System (INIS)

    Kohno, Kenji; Hayes, H.; Mekada, Eisuke; Uchida, Tsuyoshi

    1987-01-01

    A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125 I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH 4 Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1,000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells

  16. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  17. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  18. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  20. Effect of algal density in bead, bead size and bead concentrations ...

    African Journals Online (AJOL)

    Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. ... African Journal of Biotechnology ... The bioreactor containing algal beads (4 mm diameter) with 1.5 x 106 cells bead-1 (cell stocking) at concentration of 10.66 beads ml-1 wastewater (1:3 bead: wastewater, v/v) achieved ...

  1. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients.

    Science.gov (United States)

    Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad

    2016-04-01

    Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biofouling in capillary and spiral wound membranes facilitated by marine algal bloom

    NARCIS (Netherlands)

    Villacorte, L.O.; Ekowati, Y.; Calix-Ponce, H.N.; Kisielius, V.; Kleijn, J.M.; Vrouwenvelder, J.S.; Schippers, J.C.; Kennedy, M.D.

    2017-01-01

    Algal-derived organic matter (AOM), particularly transparent exopolymer particles, has been suspected to facilitate biofilm development in membrane systems (e.g., seawater reverse osmosis). This study demonstrates the possible role of AOM on biofouling in membrane systems affected by marine algal

  3. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  4. The use of fuzzy logic for data analysis and modelling of European ...

    African Journals Online (AJOL)

    The use of fuzzy logic for data analysis and modelling of European harmful algal blooms: results of the HABES project. ... African Journal of Marine Science ... Alexandrium minutum, Karenia mikimotoi and Phaeocystis globosa at various European sites as part of the Harmful Algal Blooms Expert System (HABES) project.

  5. [Self-harming behaviour].

    Science.gov (United States)

    Kool, Nienke; Pollen, Wim; van Meijel, Berno

    2010-01-01

    To gain a better understanding of self-harm, a 28-year-old female patient and a 19-year-old female patient with self-harming behaviour are presented. The first patient refused treatment of cut wounds when the doctor enquired about the reason for self-harm. The second patient was referred for mental health care. These cases illustrate the complexity of this behaviour for the patient and the caregiver. Self-harm is often a symbol of underlying problems and serves multiple psychological functions. It is mostly used by patients to cope with unbearable emotions for which they have no other solution. The self-harm invokes different feelings in caregivers which tend to influence the attitude of the caregiver towards the patient. It is very important that caregivers are aware of their feelings and use them professionally. People who self-harm should not be judged, but treated respectfully and attention should be paid to their suffering.

  6. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    International Nuclear Information System (INIS)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael; Toma, Leny; Kalapothakis, Evanguedes; Chavez-Olortegui, Carlos; Mangili, Oldemir Carlos; Gremski, Waldemiro; Dietrich, Carl Peter von; Nader, Helena B.; Sanches Veiga, Silvio

    2006-01-01

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceous material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from

  7. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    Directory of Open Access Journals (Sweden)

    Masaya Takehara

    2017-08-01

    Full Text Available Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  8. Algal Biofuels R&D at NREL (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  9. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II and Pb(II

    Directory of Open Access Journals (Sweden)

    Shengye Wang

    2016-09-01

    Full Text Available Alginate and algal-biomass (Laminaria digitata beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine (PEI was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM coupled with energy dispersive X-ray analysis (EDX: the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads, the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions.

  10. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  11. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  12. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  13. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol

    International Nuclear Information System (INIS)

    Al Abdallah, Qusai; Nixon, B. Tracy; Fortwendel, Jarrod R.

    2016-01-01

    The production of fuels from biomass is categorized as first-, second-, or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild-type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway. Other monosaccharides must be converted to

  14. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol

    Directory of Open Access Journals (Sweden)

    Qusai Al Abdallah

    2016-11-01

    Full Text Available The production of fuels from biomass is categorized as first-, second- or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits, however they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen, the glucose subunits are linked together by α-(1→4 and α-(1→6 glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon are made of glucose subunits that are linked together by β-(1→3 and β-(1→6 glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden-Meyerhof-Parnas pathway or Entner-Doudoroff pathway. Other monosaccharides must be

  15. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Al Abdallah, Qusai, E-mail: qalabdal@uthsc.edu [Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN (United States); Nixon, B. Tracy [Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA (United States); Fortwendel, Jarrod R. [Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN (United States)

    2016-11-04

    The production of fuels from biomass is categorized as first-, second-, or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild-type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway. Other monosaccharides must be converted to

  16. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  17. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  18. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.

    2014-08-04

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  19. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.; Tabatabai, S. Assiyeh Alizadeh; Dhakal, N.; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2014-01-01

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  20. Oil Spills and Dispersants Can Cause the Initiation of Potentially Harmful Dinoflagellate Blooms ("Red Tides").

    Science.gov (United States)

    Almeda, Rodrigo; Cosgrove, Sarah; Buskey, Edward J

    2018-04-25

    After oil spills and dispersant applications the formation of red tides or harmful algal blooms (HABs) has been observed, which can cause additional negative impacts in areas affected by oil spills. However, the link between oil spills and HABs is still unknown. Here, we present experimental evidence that demonstrates a connection between oil spills and HABs. We determined the effects of oil, dispersant-treated oil, and dispersant alone on the structure of natural plankton assemblages in the Northern Gulf of Mexico. In coastal waters, large tintinnids and oligotrich ciliates, major grazers of phytoplankton, were negatively affected by the exposure to oil and dispersant, whereas bloom-forming dinoflagellates ( Prorocentrum texanum, P. triestinum, and Scrippsiella trochoidea) notably increased their concentration. The removal of key grazers due to oil and dispersant disrupts the predator-prey controls ("top-down controls") that normally function in plankton food webs. This disruption of grazing pressure opens a "loophole" that allows certain dinoflagellates with higher tolerance to oil and dispersants than their grazers to grow and form blooms when there are no growth limiting factors (e.g., nutrients). Therefore, oil spills and dispersants can act as disrupters of predator-prey controls in plankton food webs and as indirect inducers of potentially harmful dinoflagellate blooms.

  1. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree and developed an algorithm (SpiderP for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html, a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from

  2. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae.

    Directory of Open Access Journals (Sweden)

    Blake T Hovde

    Full Text Available Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales, is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales, and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb, compact (∼ 40% of the genome is protein coding and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two "red" RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.

  3. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    Directory of Open Access Journals (Sweden)

    Juan José Dorantes-Aranda

    Full Text Available Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum. Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35% and also the major producer of superoxide radicals (14 pmol cell-1 hr-1 especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1. Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content, respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1 and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1 could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability, whereas

  4. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    Science.gov (United States)

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    Phytoplankton populations in the Tualatin River in northwestern Oregon are an important component of the dissolved oxygen (DO) budget of the river and are critical for maintaining DO levels in summer. During the low-flow summer period, sufficient nutrients and a long residence time typically combine with ample sunshine and warm water to fuel blooms of cryptophyte algae, diatoms, green and blue-green algae in the low-gradient, slow-moving reservoir reach of the lower river. Algae in the Tualatin River generally drift with the water rather than attach to the river bottom as a result of moderate water depths, slightly elevated turbidity caused by suspended colloidal material, and dominance of silty substrates. Growth of algae occurs as if on a “conveyor belt” of streamflow, a dynamic system that is continually refreshed with inflowing water. Transit through the system can take as long as 2 weeks during the summer low-flow period. Photosynthetic production of DO during algal blooms is important in offsetting oxygen consumption at the sediment-water interface caused by the decomposition of organic matter from primarily terrestrial sources, and the absence of photosynthesis can lead to low DO concentrations that can harm aquatic life. The periods with the lowest DO concentrations in recent years (since 2003) typically occur in August following a decline in algal abundance and activity, when DO concentrations often decrease to less than State standards for extended periods (nearly 80 days). Since 2003, algal populations have tended to be smaller and algal blooms have terminated earlier compared to conditions in the 1990s, leading to more frequent declines in DO to levels that do not meet State standards. This study was developed to document the current abundance and species composition of phytoplankton in the Tualatin River, identify the possible causes of the general decline in algae, and evaluate hypotheses to explain why algal blooms diminish in midsummer. Plankton

  5. A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms

    International Nuclear Information System (INIS)

    Mishra, S; Mishra, D R

    2014-01-01

    We present a novel three-band algorithm (PC 3 ) to retrieve phycocyanin (PC) pigment concentration in cyanobacteria laden inland waters. The water sample and remote sensing reflectance data used for PC 3 calibration and validation were acquired from highly turbid productive catfish aquaculture ponds. Since the characteristic PC absorption feature at 620 nm is contaminated with residual chlorophyll-a (Chl-a) absorption, we propose a coefficient (ψ) for isolating the PC absorption component at 620 nm. Results show that inclusion of the model coefficient relating Chl-a absorption at 620 nm–665 nm enables PC 3 to compensate for the confounding effect of Chl-a at the PC absorption band and considerably increases the accuracy of the PC prediction algorithm. In the current dataset, PC 3 produced the lowest mean relative error of prediction among all PC algorithms considered in this research. Moreover, PC 3 eliminates the nonlinear sensitivity issue of PC algorithms particularly at high PC range (>100 μg L −1 ). Therefore, introduction of PC 3 will have an immediate positive impact on studies monitoring inland and coastal cyanobacterial harmful algal blooms. (letter)

  6. Microalgal toxin(s): characteristics and importance

    African Journals Online (AJOL)

    Prokaryotic and eukaryotic microalgae produce a wide array of compounds with biological activities. These include antibiotics, algicides, toxins, pharmaceutically active compounds and plant growth regulators. Toxic microalgae, in this sense, are common only among the cyanobacteria and dinoflagellates. The microalgal ...

  7. Binational collaboration to study Gulf of Mexico's harmful algae

    Science.gov (United States)

    Soto, Inia; Hu, Chuanmin; Steidinger, Karen; Muller-Karger, Frank; Cannizzaro, Jennifer; Wolny, Jennifer; Cerdeira-Estrada, Sergio; Santamaria-del-Angel, Eduardo; Tafoya-del-Angel, Fausto; Alvarez-Torres, Porfirio; Herrera Silveira, Jorge; Allen, Jeanne

    2012-01-01

    Blooms of the toxic marine dinoflagellate Karenia brevis cause massive fish kills and other public health and economic problems in coastal waters throughout the Gulf of Mexico [Steidinger, 2009]. These harmful algal blooms (HABs) are a gulf-wide problem that require a synoptic observing system for better serving decision-making needs. The major nutrient sources that initiate and maintain these HABs and the possible connectivity of blooms in different locations are important questions being addressed through new collaborations between Mexican and U.S. researchers and government institutions. These efforts were originally organized under the U.S./Mexico binational partnership for the HABs Observing System (HABSOS), led by the U.S. Environmental Protection Agency's Gulf of Mexico Program (EPAGMP) and several agencies in Veracruz, Mexico, since 2006. In 2010 these efforts were expanded to include other Mexican states and institutions with the integrated assessment and management of the Gulf of Mexico Large Marine Ecosystem (GoMLME) program sponsored by the Global Environment Facility (GEF), the United Nations Industrial Development Organization (UNIDO), the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), and the National Oceanic and Atmospheric Administration (NOAA).

  8. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  9. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    Science.gov (United States)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  10. Algal remediation of CO₂ and nutrient discharges: A review.

    Science.gov (United States)

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically, principally microalgal strain, C:N:P load and balance, CO2 and liquid

  11. Immunotoxins: The Role of the Toxin

    Directory of Open Access Journals (Sweden)

    David FitzGerald

    2013-08-01

    Full Text Available Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.

  12. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  13. Estimating microcystin levels at recreational sites in western Lake Erie and Ohio

    Science.gov (United States)

    Francy, Donna S.; Brady, Amie M. G.; Ecker, Christopher D.; Graham, Jennifer L.; Stelzer, Erin A.; Struffolino, Pamela; Loftin, Keith A.

    2016-01-01

    Cyanobacterial harmful algal blooms (cyanoHABs) and associated toxins, such as microcystin, are a major global water-quality issue. Water-resource managers need tools to quickly predict when and where toxin-producing cyanoHABs will occur. This could be done by using site-specific models that estimate the potential for elevated toxin concentrations that cause public health concerns. With this study, samples were collected at three Ohio lakes to identify environmental and water-quality factors to develop linear-regression models to estimate microcystin levels. Measures of the algal community (phycocyanin, cyanobacterial biovolume, and cyanobacterial gene concentrations) and pH were most strongly correlated with microcystin concentrations. Cyanobacterial genes were quantified for general cyanobacteria, general Microcystis and Dolichospermum, and for microcystin synthetase (mcyE) for Microcystis, Dolichospermum, and Planktothrix. For phycocyanin, the relations were different between sites and were different between hand-held measurements on-site and nearby continuous monitor measurements for the same site. Continuous measurements of parameters such as phycocyanin, pH, and temperature over multiple days showed the highest correlations to microcystin concentrations. The development of models with high R2values (0.81–0.90), sensitivities (92%), and specificities (100%) for estimating microcystin concentrations above or below the Ohio Recreational Public Health Advisory level of 6 μg L−1 was demonstrated for one site; these statistics may change as more data are collected in subsequent years. This study showed that models could be developed for estimates of exceeding a microcystin threshold concentration at a recreational freshwater lake site, with potential to expand their use to provide relevant public health information to water resource managers and the public for both recreational and drinking waters.

  14. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation.

    Science.gov (United States)

    Pandhal, Jagroop; Siswanto, Anggun; Kuvshinov, Dmitriy; Zimmerman, William B; Lawton, Linda; Edwards, Christine

    2018-01-01

    There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD) reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (cyanotoxins.

  15. Ecological study of algal flora of Neelum river Azad Kashmir

    International Nuclear Information System (INIS)

    Leghari, M.K.; Leghari, M.Y.

    2000-01-01

    First time ecological study of Algal Flora of Neelum River Azad Kashmir was carried out during January 1998 to July 1998. A total of 78 species belonging to 48 genera of 4 Algal groups. Cyanophyceae (16 species 20.5 % belonging to 11 genera), Choloronophycease (23 species 29.5 % belonging to 18 genera), Bacillariophyceae (37 species 47 % belonging to 17 genera), Xanthophyceae (2 species 3 % belonging to 2 genera) and 39 physico - chemical parameters were recorded. (author)

  16. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    Science.gov (United States)

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Deliberate Self Harm Behavior

    Directory of Open Access Journals (Sweden)

    Fatma Gul Helvaci Celik

    2017-06-01

    Full Text Available The deliberate self-harm behaviour which defined as attempting to own body resulting in tisue damage without conscious desire of peolple to die, is a major public health problem worldwide. The causes of deliberate self- harm, risk factors, the relationship between mental disorders and treatment strategies are not fully known. Deliberate self- harm can be observed together with psychiatric disorders such as borderline personality disorder, histrionic personality disorder, eating disorders and mood disorders. Also, deliberate self-harm must be distinguished from suicidal behavior. Psychologi-cal trauma has been suggested as a risk factor for deliberate self- harm behavior. Trauma and traumatic events have long been associated with deliberate self- harm behavior. The aim of this review article is to investigate the etiology and epidemiology of deliberate self-harm behaviour and relationship between psychiatric disorders. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(2.000: 209-226

  18. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  19. Role of Botulinum Toxin in Depression.

    Science.gov (United States)

    Parsaik, Ajay K; Mascarenhas, Sonia S; Hashmi, Aqeel; Prokop, Larry J; John, Vineeth; Okusaga, Olaoluwa; Singh, Balwinder

    2016-03-01

    The goal of this review was to consolidate the evidence concerning the efficacy of botulinum toxin type A (onabotulinumtoxinA) in depression. We searched MEDLINE, EMBASE, Cochrane, and Scopus through May 5, 2014, for studies evaluating the efficacy of botulinum toxin A in depression. Only randomized controlled trials were included in the meta-analysis. A pooled mean difference in primary depression score, and pooled odds ratio for response and remission rate with 95% confidence interval (CI) were estimated using the random-effects model. Heterogeneity was assessed using Cochran Q test and χ statistic. Of the 639 articles that were initially retrieved, 5 studies enrolling 194 subjects (age 49±9.6 y) were included in the systematic review, and 3 randomized controlled trials enrolling 134 subjects were included in the meta-analysis. The meta-analysis showed a significant decrease in mean primary depression scores among patients who received botulinum toxin A compared with placebo (-9.80; 95% CI, -12.90 to -6.69) with modest heterogeneity between the studies (Cochran Q test, χ=70). Response and remission rates were 8.3 and 4.6 times higher, respectively, among patients receiving botulinum toxin A compared with placebo, with no heterogeneity between the studies. The 2 studies excluded from the meta-analysis also found a significant decrease in primary depression scores in patients after receiving botulinum toxin A. A few subjects had minor side effects, which were similar between the groups receiving botulinum toxin and those receiving placebo. This study suggests that botulinum toxin A can produce significant improvement in depressive symptoms and is a safe adjunctive treatment for patients receiving pharmacotherapy for depression. Future trials are needed to evaluate the antidepressant effect per se of botulinum toxin A and to further elucidate the underlying antidepressant mechanism of botulinum toxin A.

  20. Botulinum toxin therapy for limb dystonias.

    Science.gov (United States)

    Yoshimura, D M; Aminoff, M J; Olney, R K

    1992-03-01

    We investigated the effectiveness of botulinum toxin in 17 patients with limb dystonias (10 with occupational cramps, three with idiopathic dystonia unrelated to activity, and two each with post-stroke and parkinsonian dystonia) in a placebo-controlled, blinded study. We identified affected muscles clinically and by recording the EMG from implanted wire electrodes at rest and during performance of tasks that precipitated abnormal postures. There were three injections given with graded doses of toxin (average doses, 5 to 10, 10 to 20, and 20 to 40 units per muscle) and one with placebo, in random order. Subjective improvement occurred after 53% of injections of botulinum toxin, and this was substantial in 24%. Only one patient (7%) improved after placebo injection. Subjective improvement occurred in 82% of patients with at least one dose of toxin, lasting for 1 to 4 months. Response rates were similar between clinical groups. Objective evaluation failed to demonstrate significant improvement following treatment with toxin compared with placebo. The major side effect was transient focal weakness after 53% of injections of toxin.

  1. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield

    International Nuclear Information System (INIS)

    Vinebrooke, R.D.; Dixit, S.S.; Graham, M.D.; Gunn, J.M.; Chen, Y.-W.; Belzile, N.

    2002-01-01

    A century of cultural acidification is hypothesized to have altered algal community structure in boreal lakes. To date, this hypothesis has remained untested because of both the lack of data predating the onset of industrial pollution and incomplete estimates of whole-lake algal community structure. High-pressure liquid chromatography (HPLC) of sedimentary pigments was used to quantify whole-lake algal responses to acid deposition in six boreal lakes located in Killarney Park, Ontario, Canada. Concomitant significant increases in chlorophyll and carotenoid concentrations, diatom-inferred lake acidity, and metal levels since 1900 suggested that algal abundances in four acidified lakes and one small, circumneutral lake were enhanced by aerial pollution. An alternate explanation is that increased acidity and underwater light availability in the acidified lakes shifted algal abundance towards phytobenthos and deepwater phytoplankton, whose pigment signatures were better preserved in the sediments. Taxonomically diagnostic pigment stratigraphies were consistent with shifts in algal community structure towards filamentous green phytobenthos and deepwater phytoflagellates in the acidified lakes. Our findings suggest that decades of aerial pollution have altered the base of foodwebs in boreal lakes, potentially rendering them less resilient to other environmental stressors. (author)

  2. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka; Devarenne, Timothy P.; Downes, C. Meghan; Dutcher, Susan K.; Fox, David T.; Goodenough, Ursula; Jaworski, Jan; Holladay, Jonathan E.; Kramer, David M.; Koppisch, Andrew T.; Lipton, Mary S.; Marrone, Babetta L.; McCormick, Margaret; Molnár, István; Mott, John B.; Ogden, Kimberly L.; Panisko, Ellen A.; Pellegrini, Matteo; Polle, Juergen; Richardson, James W.; Sabarsky, Martin; Starkenburg, Shawn R.; Stormo, Gary D.; Teshima, Munehiro; Twary, Scott N.; Unkefer, Pat J.; Yuan, Joshua S.; Olivares, José A.

    2017-03-01

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.

  3. Recent Insights into Clostridium perfringens Beta-Toxin

    Directory of Open Access Journals (Sweden)

    Masahiro Nagahama

    2015-02-01

    Full Text Available Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin.

  4. [Self-harm vs. harming others: the lived experiences of a dysfunctional family].

    Science.gov (United States)

    Wu, Hsiu-Chin; Lin, Mei-Feng; Yu, Shu-Hua

    2007-10-01

    The purpose of this study was to explore the lived experiences of self-harm and harm to others from the perspective of two adult offspring and a father, the latter of whom was prone to alcohol abuse and domestic violence and had attempted suicide. Written informed consents were obtained from the subjects after a detailed explanation of the research aims and procedures. A qualitative, phenomenological method was applied for the study. Three subjects were interviewed using a semi-structured interview guide designed by the researchers and based on the aims of the study over a six-month period of home care. A qualitative content analysis based on a phenomenological method was used to identify themes in the data. Two main categories emerged: (1) the mutual harm to the couple subsystem, (2) the misplaced parental-child subsystem. Subsequently, two to four themes were identified from each category. These results provide a better analysis and understanding of the perceived experiences of the harm to the spouse, parental, and sibling subsystems. They should also help health professionals to improve awareness of the lived experiences associated with the issues of self-harm and threats of harm to others. This study could serve as a valuable reference in promoting possible prevention strategies aiming at the reduction of self-harm and harm to others in dysfunctional families within the community.

  5. Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy

    Directory of Open Access Journals (Sweden)

    Sandra Lage

    2018-03-01

    Full Text Available Algae are without doubt the most productive photosynthetic organisms on Earth; they are highly efficient in converting CO2 and nutrients into biomass. These abilities can be exploited by culturing microalgae from wastewater and flue gases for effective wastewater reclamation. Algae are known to remove nitrogen and phosphorus as well as several organic contaminants including pharmaceuticals from wastewater. Biomass production can even be enhanced by the addition of CO2 originating from flue gases. The algal biomass can then be used as a raw material to produce bioenergy; depending on its composition, various types of biofuels such as biodiesel, biogas, bioethanol, biobutanol or biohydrogen can be obtained. However, algal biomass generated in wastewater and flue gases also contains contaminants which, if not degraded, will end up in the ashes. In this review, the current knowledge on algal biomass production in wastewater and flue gases is summarized; special focus is given to the algal capacity to remove contaminants from wastewater and flue gases, and the consequences when converting this biomass into different types of biofuels.

  6. Cutting and Self-Harm

    Science.gov (United States)

    ... Your feelings Feeling sad Cutting and self-harm Cutting and self-harm Self-harm, sometimes called self- ... There are many types of self-injury, and cutting is one type that you may have heard ...

  7. Military Importance of Natural Toxins and Their Analogs

    Directory of Open Access Journals (Sweden)

    Vladimír Pitschmann

    2016-04-01

    Full Text Available Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots; it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  8. Military Importance of Natural Toxins and Their Analogs.

    Science.gov (United States)

    Pitschmann, Vladimír; Hon, Zdeněk

    2016-04-28

    Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots); it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  9. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production

    International Nuclear Information System (INIS)

    Sturm, Belinda S.M.; Lamer, Stacey L.

    2011-01-01

    Recently, several life cycle analyses of algal biodiesel from virtual production facilities have outlined the potential environmental benefits and energetic balance of the process. There are a wide range of assumptions that have been utilized for these calculations, including the addition of fertilizers and carbon dioxide to achieve high algal yields in open ponds. This paper presents an energy balance of microalgal production in open ponds coupled with nutrient removal from wastewater. Actual microalgal yields and nutrient removal rates were obtained from four pilot-scale reactors (2500 gallons each) fed with wastewater effluent from a conventional activated sludge process for 6 months, and the data was used to estimate an energy balance for treating the total average 12 million gallons per day processed by the wastewater treatment plant. Since one of the most energy-intensive steps is the dewatering of algal cultures, several thickening and dewatering processes were compared. This analysis also includes the energy offset from removing nutrients with algal reactors rather than the biological nutrient removal processes typically utilized in municipal wastewater treatment. The results show that biofuel production is energetically favorable for open pond reactors utilizing wastewater as a nutrient source, even without an energy credit for nutrient removal. The energy content of algal biomass was also considered as an alternate to lipid extraction and biodiesel production. Direct combustion of algal biomass may be a more viable energy source than biofuel production, especially when the lipid content of dry biomass (10% in this field experiment) is lower than the high values reported in lab-scale reactors (50-60%).

  10. Mechanical algal disruption for efficient biodiesel extraction

    Science.gov (United States)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  11. Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate invasive organisms from ballast water.

    Science.gov (United States)

    Gavand, Meghana R; McClintock, James B; Amsler, Charles D; Peters, Robert W; Angus, Robert A

    2007-11-01

    Uptake and release of ship-borne ballast water is a major factor contributing to introductions of aquatic phytoplankton and invasive macroinvertebrates. Some invasive unicellular algae can cause harmful algal blooms and produce toxins that build up in food chains. Moreover, to date, few studies have compared the efficacy of ballast water treatments against different life history phases of aquatic macroinvertebrates. In the present study, the unicellular green alga Dunaliella tertiolecta, and three discrete life history phases of the brine shrimp Artemia salina, were independently used as model organisms to study the efficacy of sonication as well as the advanced oxidants, hydrogen peroxide and ozone, as potential ballast water treatments. Algal cells and brine shrimp cysts, nauplii, and adults were subjected to individual and combined treatments of sonication and advanced oxidants. Combined rather than individual treatments consistently yielded the highest levels of mortality in algal cells (100% over a 2 min exposure) and in brine shrimp (100% and 95% for larvae and adults, respectively, over a 2 min exposure). In contrast, mortality levels in brine shrimp cysts (66% over 2 min; increased to 92% over a 20 min exposure) were moderately high but consistently lower than that detected for larval or adult shrimp. Our results indicate that a combination of sonication and advanced chemical oxidants may be a promising method to eradicate aquatic unicellular algae and macroinvertebrates in ballast water.

  12. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shitanda, Isao [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)], E-mail: shitanda@rs.noda.tus.ac.jp; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2009-08-30

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC{sup '}{sub 50}) for atrazine and DCMU were 12 and 1 {mu}mol dm{sup -3}, respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  13. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    International Nuclear Information System (INIS)

    Shitanda, Isao; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki

    2009-01-01

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC ' 50 ) for atrazine and DCMU were 12 and 1 μmol dm -3 , respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  14. Molecular detection of harmful cyanobacteria and expression of their toxin genes in Dutch lakes using multi-probe RNA chips

    NARCIS (Netherlands)

    Van de Waal, Dedmer B.; Guillebault, Delphine; Alfonso, Amparo; Rodríguez, Inés; Botana, Luis M.; Bijkerk, Ronald; Medlin, Linda K.

    Abstract Harmful cyanobacterial blooms are a major threat to water quality and human health. Adequate risk assessment is thus required, which relies strongly on comprehensive monitoring. Here, we tested novel multi-probe RNA chips developed in the European project, μAqua, to determine the abundance

  15. Primary production of edaphic algal communities in a Mississippi salt marsh

    International Nuclear Information System (INIS)

    Sullivan, M.J.; Moncreiff, C.A.

    1988-01-01

    Primary production rates of edaphic algae associated with the sediments beneath four monospecific canopies of vascular plants were determined over an annual cycle in a Mississippi salt marsh. The edaphic algal flora was dominated by small, motile pennate diatoms. Algal production (as measured by 14 C uptake) was generally highest in spring-early summer and lowest in fall. Hourly rates ranged from a low of 1.4 mg C/m 2 in Juncus roemerianus Scheele to a high of 163 mg C/m 2 beneath the Scirpus olneyi Gray canopy. Stepwise multiple regressions identified a soil moisture index and chlorophyll a as the best environmental predictors of hourly production; light energy reaching the marsh surface and sediment and air temperature proved of little value. Adding the relative abundances of 33 diatom taxa to the set of independent variables only slightly increased R 2 ; however, virtually all variables selected were diatom taxa. R 2 was only 0.38 for the Spartina alterniflora Loisel. habitat but ranged from 0.70 to 0.87 for the remaining three vascular plant zones. Annual rates of algal production (g C/m 2 ) were estimated as follows: Juncus (28), Spartina (57), Distichlis spicata (L.) Greene (88), and Scirpus (151). The ratio of annual edaphic algal production to vascular plant net aerial production (EAP/VPP) was 10-12% for the first three habitats and 61% for Scirpus. Chlorophyll a concentrations, annual algal production rates, and EAP/VPP values were comparable to those determined in Texas, Delaware, and Massachusetts salt marshes but lower than those reported for Georgia and particularly California marshes

  16. Progress on lipid extraction from wet algal biomass for biodiesel production.

    Science.gov (United States)

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    Science.gov (United States)

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.

  18. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation.

    Directory of Open Access Journals (Sweden)

    Mattias K Ekvall

    Full Text Available Eutrophication has been one of the largest environmental problems in aquatic ecosystems during the past decades, leading to dense, and often toxic, cyanobacterial blooms. In a way to counteract these problems many lakes have been subject to restoration through biomanipulation. Here we combine 13 years of monitoring data with experimental assessment of grazing efficiency of a naturally occurring zooplankton community and a, from a human perspective, desired community of large Daphnia to assess the effects of an altered trophic cascade associated with biomanipulation. Lake monitoring data show that the relative proportion of Daphnia spp. grazers in June has increased following years of biomanipulation and that this increase coincides with a drop in cyanobacterial biomass and lowered microcystin concentrations compared to before the biomanipulation. In June, the proportion of Daphnia spp. (on a biomass basis went from around 3% in 2005 (the first year of biomanipulation up to around 58% in 2012. During months when the proportion of Daphnia spp. remained unchanged (July and August no effect on lower trophic levels was observed. Our field grazing experiment revealed that Daphnia were more efficient in controlling the standing biomass of cyanobacteria, as grazing by the natural zooplankton community never even compensated for the algal growth during the experiment and sometimes even promoted cyanobacterial growth. Furthermore, although the total cyanobacterial toxin levels remained unaffected by both grazer communities in the experimental study, the Daphnia dominated community promoted the transfer of toxins to the extracellular, dissolved phase, likely through feeding on cyanobacteria. Our results show that biomanipulation by fish removal is a useful tool for lake management, leading to a top-down mediated trophic cascade, through alterations in the grazer community, to reduced cyanobacterial biomass and lowered cyanobacterial toxin levels. This

  19. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production.

    Science.gov (United States)

    Zheng, Yubin; Chi, Zhanyou; Lucker, Ben; Chen, Shulin

    2012-01-01

    A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Efficient algal bioassay based on short-term photosynthetic response

    International Nuclear Information System (INIS)

    Giddings, J.M.; Stewart, A.J.; O'Neill, R.V.; Gardner, R.H.

    1983-01-01

    A procedure is described for measuring the effects of toxicants on algal photosynthesis (carbon-14 bicarbonate (H 14 CO 3 )uptake) in 4-h experiments. The results for individual aromatic compounds and the water-soluble fraction (WSF) of a synthetic oil are presented as examples of applications of the bioassay. The toxicity of the WSF varied among the seven algal species tested, and the responses of some species were pH-dependent. With Selenastrum capricornutum as the test organism, the bioassay results were unaffected by variations in pH from 7.0 to 9.0, light intensity from 40 to 200 μeinsteins m -2 s -1 , culture density up to 0.5 mg chlorophyll a per litre, and agitation up to 100 rpm. The photosynthesis bioassay is simpler and faster (4 h versus 4 to 14 days), uses smaller culture volumes, and requires less space than static culture-growth tests. One person can conveniently test four materials per day, and the entire procedure, including preparation, exposure, and analysis, takes less than two days. The short incubation time reduces bottle effects such as pH changes, accumulation of metabolic products, nutrient depletion, and bacterial growth. Processes that remove or alter the test materials are also minimized. The data presented here indicate that algal photosynthesis is inhibited at toxicant concentrations similar to those that cause acute effects in aquatic animals. A model of a pelagic ecosystem is used to demonstrate that even temporary (seven-day) inhibition of algal photosynthesis can have a measurable impact on other trophic levels, particularly if the other trophic levels are also experiencing toxic effects. 25 references, 6 figures, 1 table

  1. Toxin-Antitoxin Battle in Bacteria

    DEFF Research Database (Denmark)

    Cataudella, Ilaria

    This PhD thesis consists of three research projects revolving around the common thread of investigation of the properties and biological functions of Toxin-Antitoxin loci. Toxin-Antitoxin (TA) loci are transcriptionally regulated via an auto-inhibition mechanism called conditional cooperativity, ...

  2. Nonsuicidal Self-Harm among Community Adolescents: Understanding the "Whats" and "Whys" of Self-Harm

    Science.gov (United States)

    Laye-Gindhu, Aviva; Schonert-Reichl, Kimberly A.

    2005-01-01

    This study examines self-harm in a community sample of adolescents. More specifically, the study identifies the prevalence and types of self-harm, elucidates the nature and underlying function of self-harm, and evaluates the relation of psychological adjustment, sociodemographic, and health-risk variables to self-harm. Self-report questionnaires…

  3. Bio Warfare and Terrorism: Toxins and Other Mid-Spectrum Agents

    National Research Council Canada - National Science Library

    Madsen, James M

    2005-01-01

    ... counterparts are still by definition toxins. Related terms include phycotoxins (toxins from algae), mycotoxins (fungal toxins), phytotoxins (plant toxins), and venoms (toxins from animals, especially vertebrates...

  4. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-04-01

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  5. Engineering toxins for 21st century therapies.

    Science.gov (United States)

    Chaddock, John A; Acharya, K Ravi

    2011-04-01

    'Engineering Toxins for 21st Century Therapies' (9-10 September 2010) was part of the Royal Society International Seminar series held at the Kavli International Centre, UK. Participants were assembled from a range of disciplines (academic, industry, regulatory, public health) to discuss the future potential of toxin-based therapies. The meeting explored how the current structural and mechanistic knowledge of toxins could be used to engineer future toxin-based therapies. To date, significant progress has been made in the design of novel recombinant biologics based on domains of natural toxins, engineered to exhibit advantageous properties. The meeting concluded, firstly that future product development vitally required the appropriate combination of creativity and innovation that can come from the academic, biotechnology and pharma sectors. Second, that continued investigation into understanding the basic science of the toxins and their targets was essential in order to develop new opportunities for the existing products and to create new products with enhanced properties. Finally, it was concluded that the clinical potential for development of novel biologics based on toxin domains was evident. © 2011 The Authors Journal compilation © 2011 FEBS.

  6. Glyphosate Shapes a Dinoflagellate-Associated Bacterial Community While Supporting Algal Growth as Sole Phosphorus Source

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2017-12-01

    Full Text Available Glyphosate is a widely used herbicide that can potentially be a phosphorus (P source for phytoplankton and microbes when discharged into the coastal ocean. In contrast to bacteria, few eukaryotic phytoplankton species appear capable of directly utilizing glyphosate. In this study, we observed, after a long delay (>60 days, Prorocentrum donghaiense, a dinoflagellate known to cause major harmful algal blooms in the East China Sea, could grow in a medium with glyphosate as the sole P source; suggesting that P. donghaiense growth was through bacterial mediation. To understand how the bacteria community might respond to glyphosate, we analyzed the 16S rRNA genes of the microbial community present in P. donghaiense cultures when grown under lower (36 μM and higher (360 μM glyphosate concentrations. Based on both Sanger and Illumina high throughput sequencing, we obtained more than 55,323 good-quality sequences, which were classified into six phyla. As the concentration of glyphosate rose, our results showed a significant increase in the phyla Proteobacteria and Firmicutes and a decrease in the phylum Bacteroidetes. Further qPCR (Quantitative PCR analysis showed higher abundances of two specific phylotypes in the higher-glyphosate P. donghaiense cultures when compared to the lower-glyphosate and no-glyphosate cultures. Correspondingly, qPCR displayed the same trend for the abundance of a gammaproteobacterial type of phnJ, a gene encoding Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase, which is responsible for phosphonate degradation. In addition, Tax4Fun analysis based on our 16S rRNA gene sequences results in higher predicted abundances of phosphonate metabolizing genes in glyphosate-treated cultures. This study demonstrates that glyphosate could selectively promote the growth of particular groups of bacteria within an algal culture and in glyphosate enriched coastal waters, this interaction may potentially further facilitate the growth of

  7. Crystallization of isoelectrically homogeneous cholera toxin

    International Nuclear Information System (INIS)

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-angstrom resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits

  8. Basic and Applied Algal Life Support System Research on Board the Deep Space Gateway

    Science.gov (United States)

    Niederwieser, T.; Zea, L.; Anthony, J.; Stodieck, L.

    2018-02-01

    We study the effect of long-term preservation methods on DNA damage of algal cultures for BLSS applications. In a secondary step, the Deep Space Gateway serves as a technology demonstration platform for algal photobioreactors in intermittently occupied habitats.

  9. Botulinum toxin in trigeminal neuralgia.

    Science.gov (United States)

    Castillo-Álvarez, Federico; Hernando de la Bárcena, Ignacio; Marzo-Sola, María Eugenia

    2017-01-06

    Trigeminal neuralgia is one of the most disabling facial pain syndromes, with a significant impact on patients' quality of life. Pharmacotherapy is the first choice for treatment but cases of drug resistance often require new strategies, among which various interventional treatments have been used. In recent years a new therapeutic strategy consisting of botulinum toxin has emerged, with promising results. We reviewed clinical cases and case series, open-label studies and randomized clinical trials examining the use of botulinum toxin for drug-refractory trigeminal neuralgia published in the literature. The administration of botulinum toxin has proven to be a safe and effective therapeutic strategy in patients with drug-refractory idiopathic trigeminal neuralgia, but many questions remain unanswered as to the precise role of botulinum toxin in the treatment of this disease. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  10. Collaborative Research Program on Seafood Toxins

    Science.gov (United States)

    1988-08-14

    Crystallographic Structures of Saxitoxins Cl and C2 Appendix C: Collaborative Research Program an Seafcod Toxins Progress Report on Ciguatera and Related...radioimmunoassay for PSP were also evalumted. The Hokama stick test for ciguatera toxin was also evaluated. 4. initiate Studies on the Accumulation...tco•d which caie a form of b-mnn poisoning referred to as ciguatera . The respcnsible toxins originate from ll1ular rine algae of the division

  11. Entry of Shiga toxin into cells

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; van Deurs, Bo

    1994-01-01

    Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport......Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport...

  12. Botulinum Toxin: Pharmacology and Therapeutic Roles in Pain States.

    Science.gov (United States)

    Patil, Shilpadevi; Willett, Olga; Thompkins, Terin; Hermann, Robert; Ramanathan, Sathish; Cornett, Elyse M; Fox, Charles J; Kaye, Alan David

    2016-03-01

    Botulinum toxin, also known as Botox, is produced by Clostridium botulinum, a gram-positive anaerobic bacterium, and botulinum toxin injections are among the most commonly practiced cosmetic procedures in the USA. Although botulinum toxin is typically associated with cosmetic procedures, it can be used to treat a variety of other conditions, including pain. Botulinum toxin blocks the release of acetylcholine from nerve endings to paralyze muscles and to decrease the pain response. Botulinum toxin has a long duration of action, lasting up to 5 months after initial treatment which makes it an excellent treatment for chronic pain patients. This manuscript will outline in detail why botulinum toxin is used as a successful treatment for pain in multiple conditions as well as outline the risks associated with using botulinum toxin in certain individuals. As of today, the only FDA-approved chronic condition that botulinum toxin can be used to treat is migraines and this is related to its ability to decrease muscle tension and increase muscle relaxation. Contraindications to botulinum toxin treatments are limited to a hypersensitivity to the toxin or an infection at the site of injection, and there are no known drug interactions with botulinum toxin. Botulinum toxin is an advantageous and effective alternative pain treatment and a therapy to consider for those that do not respond to opioid treatment. In summary, botulinum toxin is a relatively safe and effective treatment for individuals with certain pain conditions, including migraines. More research is warranted to elucidate chronic and long-term implications of botulinum toxin treatment as well as effects in pregnant, elderly, and adolescent patients.

  13. Tumor Targeting and Drug Delivery by Anthrax Toxin

    Directory of Open Access Journals (Sweden)

    Christopher Bachran

    2016-07-01

    Full Text Available Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  14. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-07-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  15. Loading and Light Degradation Characteristics of B t Toxin on Nano goethite: A Potential Material for Controlling the Environmental Risk of B t Toxin

    International Nuclear Information System (INIS)

    Zhou, X.; She, Ch.; She, Ch.; Liu, H.

    2015-01-01

    Transgenic B t-modified crops release toxins into soil through root exudate s and upon decomposition of residues. The fate of these toxins in soil has not been yet clearly elucidated. Nano goethite was found to have a different influence on the lifetime and identicalness activity of B t toxin. The aim of this study was to elucidate the adsorption characteristics of B t toxin on nano goethite and its activity changes before and after adsorption. The adsorption of toxin on nano goethite reached equilibrium within 5 h, and the adsorption isotherm of B t toxin on nano goethite conformed to the Langmuir equation (). In the range of ph from 6.0 to 8.0, larger adsorption occurred at lower ph value. The toxin adsorption decreased with the temperature between 10 and 50 degree. The results of Ftir, XRD, and SEM indicated that toxin did not influence the structure of nano goethite and the adsorption of toxin only on the surface of nano goethite. The LC_5_0 value for bound toxin was higher than that of free toxin, and the nano goethite greatly accelerated the degradation of toxin by ultraviolet irradiation. The above results suggested that nano goethite is a potential material for controlling the environmental risk of toxin released by Bt transgenic plants

  16. A trait-based framework for stream algal communities.

    Science.gov (United States)

    Lange, Katharina; Townsend, Colin Richard; Matthaei, Christoph David

    2016-01-01

    The use of trait-based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life-history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our "natural experiment" was conducted along gradients of agricultural land-use intensity (0-95% of the catchment in high-producing pasture) and hydrological alteration (0-92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information-theoretic model-selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large-bodied, non-attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a

  17. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Rebecca L. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: r.l.taylor@ncl.ac.uk; Caldwell, Gary S. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Bentley, Matthew G. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD{sub 50} values of 7 and 20 {mu}M for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 {mu}M of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD{sub 50} of decadienal by approximately a third for both species. 1 {mu}M of copper chloride in solutions of decadienal reduced the 24 h LD{sub 50} of decadienal to A. salina nauplii by approximately 11% and 1 {mu}M zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 {mu}M copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  18. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    International Nuclear Information System (INIS)

    Taylor, Rebecca L.; Caldwell, Gary S.; Bentley, Matthew G.

    2005-01-01

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD 50 values of 7 and 20 μM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 μM of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD 50 of decadienal by approximately a third for both species. 1 μM of copper chloride in solutions of decadienal reduced the 24 h LD 50 of decadienal to A. salina nauplii by approximately 11% and 1 μM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 μM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed

  19. Monoclonal antibodies and toxins--a perspective on function and isotype.

    Science.gov (United States)

    Chow, Siu-Kei; Casadevall, Arturo

    2012-06-01

    Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins--Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)--and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.

  20. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  1. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin.

    Science.gov (United States)

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.

  2. Toxins That Affect Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Ji, Yonghua

    2017-10-26

    Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.

  3. Cyanobacterial toxins: risk management for health protection

    International Nuclear Information System (INIS)

    Codd, Geoffrey A.; Morrison, Louise F.; Metcalf, James S.

    2005-01-01

    This paper reviews the occurrence and properties of cyanobacterial toxins, with reference to the recognition and management of the human health risks which they may present. Mass populations of toxin-producing cyanobacteria in natural and controlled waterbodies include blooms and scums of planktonic species, and mats and biofilms of benthic species. Toxic cyanobacterial populations have been reported in freshwaters in over 45 countries, and in numerous brackish, coastal, and marine environments. The principal toxigenic genera are listed. Known sources of the families of cyanobacterial toxins (hepato-, neuro-, and cytotoxins, irritants, and gastrointestinal toxins) are briefly discussed. Key procedures in the risk management of cyanobacterial toxins and cells are reviewed, including derivations (where sufficient data are available) of tolerable daily intakes (TDIs) and guideline values (GVs) with reference to the toxins in drinking water, and guideline levels for toxigenic cyanobacteria in bathing waters. Uncertainties and some gaps in knowledge are also discussed, including the importance of exposure media (animal and plant foods), in addition to potable and recreational waters. Finally, we present an outline of steps to develop and implement risk management strategies for cyanobacterial cells and toxins in waterbodies, with recent applications and the integration of Hazard Assessment Critical Control Point (HACCP) principles

  4. Botulinum toxin for the treatment of bruxism.

    Science.gov (United States)

    Tinastepe, Neslihan; Küçük, Burcu Bal; Oral, Koray

    2015-10-01

    Botulinum toxin, the most potent biological toxin, has been shown to be effective for a variety of disorders in several medical conditions, when used both therapeutically and cosmetically. In recent years, there has been a rising trend in the use of this pharmacological agent to control bruxing activity, despite its reported adverse effects. The aim of this review was to provide a brief overview to clarify the underlying essential ideas for the use of botulinum toxin in bruxism based on available scientific papers. An electronic literature search was performed to identify publications related to botulinum toxin and its use for bruxism in PubMed. Hand searching of relevant articles was also made to identify additional studies. Of the eleven identified studies, only two were randomized controlled trials, compared with the effectiveness of botulinum toxins on the reduction in the frequency of bruxism events and myofascial pain after injection. The authors of these studies concluded that botulinum toxin could be used as an effective treatment for reducing nocturnal bruxism and myofascial pain in patients with bruxism. Evidence-based research was limited on this topic. More randomized controlled studies are needed to confirm that botulinum toxin is safe and reliable for routine clinical use in bruxism.

  5. Are all red algal parasites cut from the same cloth?

    Directory of Open Access Journals (Sweden)

    Eric D. Salomaki

    2014-12-01

    Full Text Available Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. This is largely because few systems present the opportunity to make meaningful comparisons between a parasite and a close free-living relative. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta, and often infect close relatives. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversify and infect more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Elegant microscopic work in the late 20th century provided detailed insight into the infection cycle of red algal parasites and the cellular interactions between parasites and their hosts. Those studies led to the use of molecular work to further investigate the origins of the parasite organelles and reveal the evolutionary relationships between hosts and their parasites. Here we synthesize the research detailing the infection methods and cellular interactions between red algal parasites and their hosts. We offer an alternative hypothesis to the current dogma of red algal parasite evolution and propose that red algae can adopt a parasitic life strategy through multiple evolutionary pathways, including direct infection of distant relatives. Furthermore, we highlight potential directions for future research to further evaluate parasite evolution in red algae.

  6. Short communication: Algal leaf spot associated with Cephaleuros virescens (Trentepohliales, Ulvophyceae on Nephelium lappaceum in Thailand

    Directory of Open Access Journals (Sweden)

    ANURAG SUNPAPAO

    2016-05-01

    Full Text Available Abstract. Sunpapao A, Pitaloka MK, Arikit S. 2015. Algal leaf spot associated with Cephaleuros virescens (Trentepohliales, Ulvophyceae on Nephelium lappaceum in Thailand. Biodiversitas 17: 31-35. Algal leaf spot disease of Nephelium lappaceum (rambutan was observed in southern Thailand. The algae were isolated on Bold’s basal medium (BBM and identified based on appearance of the lesions, algal morphology and molecular properties. Characteristics of the filamentous thallus cells, sporangiophores, sporangia, gametes and zoospores were clarified. A portion of the 18S small subunit rRNA was amplified to validate the morphological identification by sequence similarity. To summarize the main results, the plant parasite causing algal leaf spot was identified as Cephaleuros virescens, and in sequencing-based phylogenetic analysis the Cephaleuros PSU-R5.1 isolate from rambutan grouped with the algae in genus Cephaleuros. This confirms C. virescens as a causal organism of algal leaf spot disease on rambutan in southern Thailand.

  7. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  8. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    Science.gov (United States)

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  9. Can a toxin gene NAAT be used to predict toxin EIA and the severity of Clostridium difficile infection?

    Directory of Open Access Journals (Sweden)

    Mark I. Garvey

    2017-12-01

    Full Text Available Abstract Background Diagnosis of C. difficile infection (CDI is controversial because of the many laboratory methods available and their lack of ability to distinguish between carriage, mild or severe disease. Here we describe whether a low C. difficile toxin B nucleic acid amplification test (NAAT cycle threshold (CT can predict toxin EIA, CDI severity and mortality. Methods A three-stage algorithm was employed for CDI testing, comprising a screening test for glutamate dehydrogenase (GDH, followed by a NAAT, then a toxin enzyme immunoassay (EIA. All diarrhoeal samples positive for GDH and NAAT between 2012 and 2016 were analysed. The performance of the NAAT CT value as a classifier of toxin EIA outcome was analysed using a ROC curve; patient mortality was compared to CTs and toxin EIA via linear regression models. Results A CT value ≤26 was associated with ≥72% toxin EIA positivity; applying a logistic regression model we demonstrated an association between low CT values and toxin EIA positivity. A CT value of ≤26 was significantly associated (p = 0.0262 with increased one month mortality, severe cases of CDI or failure of first line treatment. The ROC curve probabilities demonstrated a CT cut off value of 26.6. Discussions Here we demonstrate that a CT ≤26 indicates more severe CDI and is associated with higher mortality. Samples with a low CT value are often toxin EIA positive, questioning the need for this additional EIA test. Conclusions A CT ≤26 could be used to assess the potential for severity of CDI and guide patient treatment.

  10. Drooling in Parkinson's disease: A randomized controlled trial of incobotulinum toxin A and meta-analysis of Botulinum toxins.

    Science.gov (United States)

    Narayanaswami, Pushpa; Geisbush, Thomas; Tarulli, Andrew; Raynor, Elizabeth; Gautam, Shiva; Tarsy, Daniel; Gronseth, Gary

    2016-09-01

    Botulinum toxins are a therapeutic option for drooling in Parkinson's Disease (PD). The aims of this study were to: 1. evaluate the efficacy of incobotulinum toxin A for drooling in PD. 2. Perform a meta-analysis of studies of Botulinum toxins for drooling in PD. 1. Primary study: Randomized, double blind, placebo controlled, cross over trial. Incobotulinum toxin (100 units) or saline was injected into the parotid (20 units) and submandibular (30 units) glands. Subjects returned monthly for three evaluations after each injection. Outcome measures were saliva weight and Drooling Frequency and Severity Scale. 2. Systematic review of literature, followed by inverse variance meta-analyses using random effects models. 1. Primary Study: Nine of 10 subjects completed both arms. There was no significant change in the primary outcome of saliva weight one month after injection in the treatment period compared to placebo period (mean difference, gm ± SD: -0.194 ± 0.61, range: -1.28 to 0.97, 95% CI -0.71 to 0.32). Secondary outcomes also did not change. 2. Meta-analysis of six studies demonstrated significant benefit of Botulinum toxin on functional outcomes (effect size, Cohen's d: -1.32, CI -1.86 to -0.78). The other studies used a higher dose of Botulinum toxin A into the parotid glands. This study did not demonstrate efficacy of incobotulinum toxin A for drooling in PD, but lacked precision to exclude moderate benefit. The parotid/submandibular dose-ratio may have influenced results. Studies evaluating higher doses of incobotulinum toxin A into the parotid glands may be useful. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Array biosensor for detection of toxins

    Science.gov (United States)

    Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.

    2003-01-01

    The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).

  12. Suicide Following Deliberate Self-Harm.

    Science.gov (United States)

    Olfson, Mark; Wall, Melanie; Wang, Shuai; Crystal, Stephen; Gerhard, Tobias; Blanco, Carlos

    2017-08-01

    The authors sought to identify risk factors for repeat self-harm and completed suicide over the following year among adults with deliberate self-harm. A national cohort of Medicaid-financed adults clinically diagnosed with deliberate self-harm (N=61,297) was followed for up to 1 year. Repeat self-harm per 1,000 person-years and suicide rates per 100,000 person-years (based on cause of death information from the National Death Index) were determined. Hazard ratios of repeat self-harm and suicide were estimated by Cox proportional hazard models. During the 12 months after nonfatal self-harm, the rate of repeat self-harm was 263.2 per 1,000 person-years and the rate of completed suicide was 439.1 per 100,000 person-years, or 37.2 times higher than in a matched general population cohort. The hazard of suicide was higher after initial self-harm events involving violent as compared with nonviolent methods (hazard ratio=7.5, 95% CI=5.5-10.1), especially firearms (hazard ratio=15.86, 95% CI=10.7-23.4; computed with poisoning as reference), and to a lesser extent after events of patients who had recently received outpatient mental health care (hazard ratio=1.6, 95% CI=1.2-2.0). Compared with self-harm patients using nonviolent methods, those who used violent methods were at significantly increased risk of suicide during the first 30 days after the initial event (hazard ratio=17.5, 95% CI=11.2-27.3), but not during the following 335 days. Adults treated for deliberate self-harm frequently repeat self-harm in the following year. Patients who use a violent method for their initial self-harm, especially firearms, have an exceptionally high risk of suicide, particularly right after the initial event, which highlights the importance of careful assessment and close follow-up of this group.

  13. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue

    Directory of Open Access Journals (Sweden)

    Bryan J. Berube

    2013-06-01

    Full Text Available Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

  14. Mathematical-statistical model for analysis of Ulva algal net photosynthesis in Venice lagoon

    International Nuclear Information System (INIS)

    Izzo, G.; Rizzo, V.; Bella, A.; Picci, M.; Giordano, P.

    1996-08-01

    The algal net photosynthesis, an important factor for the characterization of water quality in Venice lagoon, has been studied experimentally providing a mathematical model, validated by using statistical methods. This model relates oxygen production with irradiance, according to a well known law in biological literature. Its observed an inverted proportion between algal oxygen production and temperature, thus seasonality

  15. Botulinum toxin for the treatment of strabismus.

    Science.gov (United States)

    Rowe, Fiona J; Noonan, Carmel P

    2017-03-02

    The use of botulinum toxin as an investigative and treatment modality for strabismus is well reported in the medical literature. However, it is unclear how effective it is in comparison to other treatment options for strabismus. The primary objective was to examine the efficacy of botulinum toxin therapy in the treatment of strabismus compared with alternative conservative or surgical treatment options. This review sought to ascertain those types of strabismus that particularly benefit from the use of botulinum toxin as a treatment option (such as small angle strabismus or strabismus with binocular potential, i.e. the potential to use both eyes together as a pair). The secondary objectives were to investigate the dose effect and complication rates associated with botulinum toxin. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 July 2016. We handsearched the British and Irish Orthoptic Journal, Australian Orthoptic Journal, proceedings of the European Strabismological Association (ESA), International Strabismological Association (ISA) and International Orthoptic Association (IOA) (www.liv.ac.uk/orthoptics/research/search.htm) and American Academy of Paediatric Ophthalmology and Strabismus meetings (AAPOS). We contacted researchers who are active in this field for information about further

  16. Study of cnidarian-algal symbiosis in the "omics" age.

    Science.gov (United States)

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  17. Single toxin dose-response models revisited

    Energy Technology Data Exchange (ETDEWEB)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu [Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH03756 (United States); Glaholt, SP, E-mail: sglaholt@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States); Kyker-Snowman, E, E-mail: ek2002@wildcats.unh.edu [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH03824 (United States); Shaw, JR, E-mail: joeshaw@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Chen, CY, E-mail: Celia.Y.Chen@dartmouth.edu [Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States)

    2017-01-01

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.

  18. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  19. Anthrax Toxin Receptor 2–Dependent Lethal Toxin Killing In Vivo

    Science.gov (United States)

    Scobie, Heather M; Wigelsworth, Darran J; Marlett, John M; Thomas, Diane; Rainey, G. Jonah A; Lacy, D. Borden; Manchester, Marianne; Collier, R. John; Young, John A. T

    2006-01-01

    Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis. PMID:17054395

  20. Toxin-Based Therapeutic Approaches

    OpenAIRE

    Itai Benhar; Assaf Shapira

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmac...

  1. Interplay between toxin transport and flotillin localization

    DEFF Research Database (Denmark)

    Pust, Sascha; Dyve, Anne Berit; Torgersen, Maria L

    2010-01-01

    The flotillin proteins are localized in lipid domains at the plasma membrane as well as in intracellular compartments. In the present study, we examined the importance of flotillin-1 and flotillin-2 for the uptake and transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin and we...... for flotillin-1 or -2. However, the Golgi-dependent sulfation of both toxins was significantly reduced in flotillin knockdown cells. Interestingly, when the transport of ricin to the ER was investigated, we obtained an increased mannosylation of ricin in flotillin-1 and flotillin-2 knockdown cells. The toxicity...... of both toxins was twofold increased in flotillin-depleted cells. Since BFA (Brefeldin A) inhibits the toxicity even in flotillin knockdown cells, the retrograde toxin transport is apparently still Golgi-dependent. Thus, flotillin proteins regulate and facilitate the retrograde transport of Stx and ricin....

  2. Algal-Based Renewable Energy for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fritsen, Christian [Desert Research Institute, Las Vegas, NV (United States)

    2017-03-31

    To help in the overall evaluation of the potential for growing algal biomass in high productivity systems, we conducted a study that evaluated water from geothermal sources and cultivated mixed consortia from hot springs in Nevada, we evaluated their growth at moderately high varying temperatures and then evaluated potential manipulations that could possibly increase their biomass and oleaginous production. Studies were conducted at scales ranging from the laboratory benchtop to raceways in field settings. Mixed consortia were readily grown at all scales and growth could be maintained in Nevada year round. Moderate productivities were attained even during the shoulder seasons- where temperature control was maintained by hot water and seasonally cold temperatures when there was still plentiful solar radiation. The results enhance the prospects for economic feasibility of developing algal based industries in areas with geothermal energy or even other large alternative sources of heat that are not being used for other purposes. The public may benefit from such development as a means for economic development as well as development of industries for alternative energy and products that do not rely on fossil fuels.

  3. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small Polychaeta

    Science.gov (United States)

    Reise, Karsten

    1983-06-01

    On sandy tidal flats at the Island of Sylt (North Sea) ephemeral mats of green algae covered wide areas in the vicinity of sewage outflows. Algae became anchored in the feeding funnels of lugworms ( Arenicola marina) and thus were able to resist displacement by tidal currents. Below the algal mats anoxic conditions extend to the sediment surface. After about one month a rough sea removed all algae. Polychaetes endured this short-term environmental deterioration, while the more sensitive Turbellaria decreased in abundance and species richness. Diatom-feeders were affected most, predators to a medium extent, and bacteria-feeders the least affected. Rare and very abundant species were more affected than moderately abundant ones. None of the turbellarian species increased in abundance and none colonized the algal mats above the sediment. In a semicontrolled experiment with daily hand-removal of drift algae from a 100-m2 plot within an extensive field of algal mats, this cleaned "island" served as a refuge to Turbellaria escaping from their algal covered habitat. Here abundance doubled relative to initial conditions and was 5-times higher than below algal mats.

  4. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    Science.gov (United States)

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuwen, E-mail: qchen@rcees.ac.cn [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China); China Three Gorges University, Daxuelu 8, Yichang 443002 (China); CEER, Nanjing Hydraulics Research Institute, Guangzhoulu 223, Nanjing 210029 (China); Rui, Han; Li, Weifeng; Zhang, Yanhui [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China)

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004–2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial–temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial–temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. - Highlights: • An innovative method is developed to analyze algal bloom risks with uncertainties. • The algal blooms in Taihu Lake showed obvious spatial and temporal patterns. • The lake is mainly characterized as moderate bloom but with high uncertainty. • Severe bloom with low uncertainty appeared occasionally in the northwest part. • The results provide important information to bloom monitoring and management.

  6. Botulinum toxin for vaginismus treatment.

    Science.gov (United States)

    Ferreira, Juliana Rocha; Souza, Renan Pedra

    2012-01-01

    Vaginismus is characterized by recurrent or persistent involuntary contraction of the perineal muscles surrounding the outer third of the vagina when penile, finger, tampon, or speculum penetration is attempted. Recent results have suggested the use of botulinum toxin for the treatment of vaginismus. Here, we assessed previously published data to evaluate the therapeutic effectiveness of botulinum toxin for vaginismus. We have carried out a systematic review followed by a meta-analysis. Our results indicate that botulinum toxin is an effective therapeutic option for patients with vaginismus (pooled odds ratio of 8.723 with 95% confidence interval limits of 1.942 and 39.162, p = 0.005). This may hold particularly true in treatment-refractory patients because most of the studies included in this meta-analysis have enrolled these subjects in their primary analysis. Botulinum toxin appears to bea reasonable intervention for vaginismus. However, this conclusion should be read carefully because of the deficiency of placebo-controlled randomized clinical trials and the quality issues presented in the existing ones.

  7. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  8. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.

    Science.gov (United States)

    Furuhama, A; Hasunuma, K; Hayashi, T I; Tatarazako, N

    2016-05-01

    We propose a three-step strategy that uses structural and physicochemical properties of chemicals to predict their 72 h algal growth inhibition toxicities against Pseudokirchneriella subcapitata. In Step 1, using a log D-based criterion and structural alerts, we produced an interspecies QSAR between algal and acute daphnid toxicities for initial screening of chemicals. In Step 2, we categorized chemicals according to the Verhaar scheme for aquatic toxicity, and we developed QSARs for toxicities of Class 1 (non-polar narcotic) and Class 2 (polar narcotic) chemicals by means of simple regression with a hydrophobicity descriptor and multiple regression with a hydrophobicity descriptor and a quantum chemical descriptor. Using the algal toxicities of the Class 1 chemicals, we proposed a baseline QSAR for calculating their excess toxicities. In Step 3, we used structural profiles to predict toxicity either quantitatively or qualitatively and to assign chemicals to the following categories: Pesticide, Reactive, Toxic, Toxic low and Uncategorized. Although this three-step strategy cannot be used to estimate the algal toxicities of all chemicals, it is useful for chemicals within its domain. The strategy is also applicable as a component of Integrated Approaches to Testing and Assessment.

  9. Clostridial Binary Toxins: Iota and C2 Family Portraits

    Science.gov (United States)

    Stiles, Bradley G.; Wigelsworth, Darran J.; Popoff, Michel R.; Barth, Holger

    2011-01-01

    There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium. PMID:22919577

  10. Short Toxin-like Proteins Abound in Cnidaria Genomes

    Directory of Open Access Journals (Sweden)

    Michal Linial

    2012-11-01

    Full Text Available Cnidaria is a rich phylum that includes thousands of marine species. In this study, we focused on Anthozoa and Hydrozoa that are represented by the Nematostella vectensis (Sea anemone and Hydra magnipapillata genomes. We present a method for ranking the toxin-like candidates from complete proteomes of Cnidaria. Toxin-like functions were revealed using ClanTox, a statistical machine-learning predictor trained on ion channel inhibitors from venomous animals. Fundamental features that were emphasized in training ClanTox include cysteines and their spacing along the sequences. Among the 83,000 proteins derived from Cnidaria representatives, we found 170 candidates that fulfill the properties of toxin-like-proteins, the vast majority of which were previously unrecognized as toxins. An additional 394 short proteins exhibit characteristics of toxin-like proteins at a moderate degree of confidence. Remarkably, only 11% of the predicted toxin-like proteins were previously classified as toxins. Based on our prediction methodology and manual annotation, we inferred functions for over 400 of these proteins. Such functions include protease inhibitors, membrane pore formation, ion channel blockers and metal binding proteins. Many of the proteins belong to small families of paralogs. We conclude that the evolutionary expansion of toxin-like proteins in Cnidaria contributes to their fitness in the complex environment of the aquatic ecosystem.

  11. In vitro reconstitution of the Clostridium botulinum type D progenitor toxin.

    Science.gov (United States)

    Kouguchi, Hirokazu; Watanabe, Toshihiro; Sagane, Yoshimasa; Sunagawa, Hiroyuki; Ohyama, Tohru

    2002-01-25

    Clostridium botulinum type D strain 4947 produces two different sizes of progenitor toxins (M and L) as intact forms without proteolytic processing. The M toxin is composed of neurotoxin (NT) and nontoxic-nonhemagglutinin (NTNHA), whereas the L toxin is composed of the M toxin and hemagglutinin (HA) subcomponents (HA-70, HA-17, and HA-33). The HA-70 subcomponent and the HA-33/17 complex were isolated from the L toxin to near homogeneity by chromatography in the presence of denaturing agents. We were able to demonstrate, for the first time, in vitro reconstitution of the L toxin formed by mixing purified M toxin, HA-70, and HA-33/17. The properties of reconstituted and native L toxins are indistinguishable with respect to their gel filtration profiles, native-PAGE profiles, hemagglutination activity, binding activity to erythrocytes, and oral toxicity to mice. M toxin, which contained nicked NTNHA prepared by treatment with trypsin, could no longer be reconstituted to the L toxin with HA subcomponents, whereas the L toxin treated with proteases was not degraded into M toxin and HA subcomponents. We conclude that the M toxin forms first by assembly of NT with NTNHA and is subsequently converted to the L toxin by assembly with HA-70 and HA-33/17.

  12. Botulinum toxin in pain treatment.

    Science.gov (United States)

    Colhado, Orlando Carlos Gomes; Boeing, Marcelo; Ortega, Luciano Bornia

    2009-01-01

    Botulinum toxin (BTX) is one of the most potent bacterial toxins known and its effectiveness in the treatment of some pain syndromes is well known. However, the efficacy of some of its indications is still in the process of being confirmed. The objective of this study was to review the history, pharmacological properties, and clinical applications of BTX in the treatment of pain of different origins. Botulinum toxin is produced by fermentation of Clostridium botulinum, a Gram-positive, anaerobic bacterium. Commercially, BTX comes in two presentations, types A and B. Botulinum toxin, a neurotoxin with high affinity for cholinergic synapses, blocks the release of acetylcholine by nerve endings without interfering with neuronal conduction of electrical signals or synthesis and storage of acetylcholine. It has been proven that BTX can selectively weaken painful muscles, interrupting the spasm-pain cycle. Several studies have demonstrated the efficacy and safety of BTX-A in the treatment of tension headaches, migraines, chronic lumbar pain, and myofascial pain. Botulinum toxin type A is well tolerated in the treatment of chronic pain disorders in which pharmacotherapy regimens can cause side effects. The reduction in the consumption of analgesics and length of action of 3 to 4 months per dose represent other advantages of its use. However, further studies are necessary to establish the efficacy of BTX-A in chronic pain disorders and its exact mechanism of action, as well as its potential in multifactorial treatments.

  13. Sex-work harm reduction.

    Science.gov (United States)

    Rekart, Michael L

    2005-12-17

    Sex work is an extremely dangerous profession. The use of harm-reduction principles can help to safeguard sex workers' lives in the same way that drug users have benefited from drug-use harm reduction. Sex workers are exposed to serious harms: drug use, disease, violence, discrimination, debt, criminalisation, and exploitation (child prostitution, trafficking for sex work, and exploitation of migrants). Successful and promising harm-reduction strategies are available: education, empowerment, prevention, care, occupational health and safety, decriminalisation of sex workers, and human-rights-based approaches. Successful interventions include peer education, training in condom-negotiating skills, safety tips for street-based sex workers, male and female condoms, the prevention-care synergy, occupational health and safety guidelines for brothels, self-help organisations, and community-based child protection networks. Straightforward and achievable steps are available to improve the day-to-day lives of sex workers while they continue to work. Conceptualising and debating sex-work harm reduction as a new paradigm can hasten this process.

  14. Botulinum Toxin for Rhinitis.

    Science.gov (United States)

    Ozcan, Cengiz; Ismi, Onur

    2016-08-01

    Rhinitis is a common clinical entity. Besides nasal obstruction, itching, and sneezing, one of the most important symptoms of rhinitis is nasal hypersecretion produced by nasal glands and exudate from the nasal vascular bed. Allergic rhinitis is an IgE-mediated inflammatory reaction of nasal mucosa after exposure to environmental allergens. Idiopathic rhinitis describes rhinitis symptoms that occur after non-allergic, noninfectious irritants. Specific allergen avoidance, topical nasal decongestants, nasal corticosteroids, immunotherapy, and sinonasal surgery are the main treatment options. Because the current treatment modalities are not enough for reducing rhinorrhea in some patients, novel treatment options are required to solve this problem. Botulinum toxin is an exotoxin generated by Clostridium botulinum. It disturbs the signal transmission at the neuromuscular and neuroglandular junction by inhibiting the acetylcholine release from the presynaptic nerve terminal. It has been widely used in neuromuscular, hypersecretory, and autonomic nerve system disorders. There have been a lot of published articles concerning the effect of this toxin on rhinitis symptoms. Based on the results of these reports, intranasal botulinum toxin A administration appears to be a safe and effective treatment method for decreasing rhinitis symptoms in rhinitis patients with a long-lasting effect. Botulinum toxin type A will be a good treatment option for the chronic rhinitis patients who are resistant to other treatment methods.

  15. Diffusion of Botulinum Toxins

    Directory of Open Access Journals (Sweden)

    Matthew A. Brodsky

    2012-08-01

    Full Text Available Background: It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion.Methods: This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method. It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB.Results: Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others.Discussion: Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected.

  16. The role of toxins in Clostridium difficile infection.

    Science.gov (United States)

    Chandrasekaran, Ramyavardhanee; Lacy, D Borden

    2017-11-01

    Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease. Published by Oxford University Press on behalf of FEMS 2017.

  17. Tumor Targeting and Drug Delivery by Anthrax Toxin

    OpenAIRE

    Bachran, Christopher; Leppla, Stephen H.

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associ...

  18. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  19. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  20. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    Science.gov (United States)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  1. Algal species composition, photosynthetic pigments and primary productivity in relation to temperature variations in the coastal waters of Kalpakkam

    International Nuclear Information System (INIS)

    Rajadurai, M.; Poornima, E.H.; Rao, V.N.R.; Venugopalan, V.P.

    2002-01-01

    With increase in the number of nuclear and fossil fuel power plants being commissioned along the sea coast to meet the growing demands of the society, more and more of the heated effluents from them find their way into the sea, elevated temperature of the waters may affect the phytoplankton, periphyton and the phytobenthos and any harmful effect on these algae may have a cascading effect on the higher level of the food chain especially those that are ecologically and commercially valuable. Therefore, it is necessary to gain sufficient knowledge on the response of these algae to elevated temperatures which will help us to arrive at a meaningful assessment on the temperature effects and to formulate optimum discharge criteria with regard to thermal effluents from power stations. Fifteen sites were chosen along the East Coast near the Madras Atomic power Station (MAPS) and surface water and sediments were analyzed for various parameters such as temperature, algal species composition, pigments and primary productivity

  2. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    Science.gov (United States)

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. ENSAYOS DE BIOESTIMULACIÓN ALGAL CON DIFERENTES RELACIONES NITRÓGENO: FÓSFORO, BAJO CONDICIONES DE LABORATORIO ASSAYS OF ALGAL BIO-STIMULATION WITH DIFFERENT NITROGEN-PHOSPHORUS RELATIONS UNDER LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Néstor J. Aguirre Ramírez

    2007-07-01

    Full Text Available Esta investigación tuvo como objetivo evaluar el crecimiento del alga Chlorella vulgaris ante diferentes concentraciones de nitrógeno y fósforo, a través de ensayos de bioestimulación en una cámara ambiental. Las variables respuesta fueron la densidad algal y la turbidez, evaluadas por conteo en una cámara de Neubauer y por espectrofotometría, empleando un equipo NOVA 60. Para los ensayos de bioestimulación se utilizó el medio de cultivo Estándar Métodos, sugerido por APHA, AWWA (1995 con diferentes concentraciones de nitrógeno y de fósforo. En general, se concluyó que la bioestimulación del crecimiento de Chlorella vulgaris depende de la relación estequiométrica entre el nitrógeno y el fósforo. En síntesis, cuando el fósforo se hace menos limitante se presentó una mayor tasa de crecimiento poblacional. Sin embargo, el nitrógeno es también esencial y ambos nutrientes no pueden ser analizados independientemente. Por lo tanto, el aumento o la disminución de las concentraciones de estos nutrientes en los ambientes acuáticos deben ser estudiados conjuntamente a través de sus relaciones estequiométricas.The main objective of this work was to evaluate the growth of algal population Chlorella vulgaris in different concentrations from nitrogen and phosphorus, through tests of algal stimulation in an environmental camera. The answer variables were algal density and turbidity, evaluated by count in a camera of Neubauer and with a photometric method (# 077, using NOVA 60 equipment. For the algal stimulation tests, methods suggested by APHA, AWWA (1995 with different phosphorus and nitrogen concentrations were used In general we concluded that the algal stimulation of the population growth of C. vulgaris depends on the stoichiometric relation between nitrogen and phosphorus. In synthesis when phosphorus becomes a less limit, a greater rate of population growth, appears; nevertheless nitrogen is also essential and both nutrients

  4. Repetition of self-harm and suicide following self-harm in children and adolescents: findings from the Multicentre Study of Self-harm in England.

    Science.gov (United States)

    Hawton, Keith; Bergen, Helen; Kapur, Navneet; Cooper, Jayne; Steeg, Sarah; Ness, Jennifer; Waters, Keith

    2012-12-01

    Self-harm (intentional self-poisoning and self-injury) in children and adolescents is often repeated and is associated with increased risk of future suicide. We have investigated factors associated with these outcomes. We used data collected in the Multicentre Study of Self-harm in England on all self-harm hospital presentations by individuals aged 10-18 years between 2000 and 2007, and national death information on these individuals to the end of 2010. Cox hazard proportional models were used to identify independent and multivariable predictors of repetition of self-harm and of suicide. Repetition of self-harm occurred in 27.3% of individuals (N = 3920) who presented between 2000 and 2005 and were followed up until 2007. Multivariate analysis showed that repetition was associated with age, self-cutting, and previous self-harm and psychiatric treatment. Of 51 deaths in individuals who presented between 2000 and 2007 and were followed up to 2010 (N = 5133) half (49.0%) were suicides. The method used was usually different to that used for self-harm. Multivariate analysis showed that suicide was associated with male gender [Hazard ratio (HR) = 2.4, 95% CI 1.2-4.8], self-cutting (HR = 2.1, 95% CI 1.1-3.7) and prior psychiatric treatment at initial presentation (HR = 4.2, 95% CI 1.7-10.5). It was also associated with self-cutting and history of psychiatric treatment at the last episode before death, and history of previous self harm. Self-cutting as a method of self-harm in children and adolescents conveys greater risk of suicide (and repetition) than self-poisoning although different methods are usually used for suicide. The findings underline the need for psychosocial assessment in all cases. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.

  5. The attached algal community near Pickering GS: (II)

    International Nuclear Information System (INIS)

    McKinley, S.R.

    1982-01-01

    Environmental parameters correlated with attached algal standing crop are investigated in this report. Three groups were recognized on the basis of standing crop levels and seasonal standing crop patterns. Factors which appeared to influence the separation among the three groups were substrate size and water temperature. Standing crop levels among the discharge transects, intake and areas outside the station were found to be correlated with a combination of parameters. Standing crop levels outside the station were inversely correlated with wind speed but positively correlated with substrate particle size and depth. Algal standing crop at the intake also was inversely correlated with wind speed. Differences in standing crop levels between the intake and areas outside the station may have been attributed to substrate particle size. Low standing crop level among the discharge transects may have been attributed to higher current velocities and periodically to high water temperature

  6. The Hawaiian Freshwater Algal Database (HfwADB: a laboratory LIMS and online biodiversity resource

    Directory of Open Access Journals (Sweden)

    Sherwood Alison R

    2012-10-01

    Full Text Available Abstract Background Biodiversity databases serve the important role of highlighting species-level diversity from defined geographical regions. Databases that are specially designed to accommodate the types of data gathered during regional surveys are valuable in allowing full data access and display to researchers not directly involved with the project, while serving as a Laboratory Information Management System (LIMS. The Hawaiian Freshwater Algal Database, or HfwADB, was modified from the Hawaiian Algal Database to showcase non-marine algal specimens collected from the Hawaiian Archipelago by accommodating the additional level of organization required for samples including multiple species. Description The Hawaiian Freshwater Algal Database is a comprehensive and searchable database containing photographs and micrographs of samples and collection sites, geo-referenced collecting information, taxonomic data and standardized DNA sequence data. All data for individual samples are linked through unique 10-digit accession numbers (“Isolate Accession”, the first five of which correspond to the collection site (“Environmental Accession”. Users can search online for sample information by accession number, various levels of taxonomy, habitat or collection site. HfwADB is hosted at the University of Hawaii, and was made publicly accessible in October 2011. At the present time the database houses data for over 2,825 samples of non-marine algae from 1,786 collection sites from the Hawaiian Archipelago. These samples include cyanobacteria, red and green algae and diatoms, as well as lesser representation from some other algal lineages. Conclusions HfwADB is a digital repository that acts as a Laboratory Information Management System for Hawaiian non-marine algal data. Users can interact with the repository through the web to view relevant habitat data (including geo-referenced collection locations and download images of collection sites, specimen

  7. Luminescent Solar Concentrators in the Algal Industry

    Science.gov (United States)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  8. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  9. Recent progress and future challenges in algal biofuel production [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Jonathan B. Shurin

    2016-10-01

    Full Text Available Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems.

  10. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  11. Seasonality and toxin production of Pyrodinium bahamense in a Red Sea lagoon

    KAUST Repository

    Banguera Hinestroza, Eulalia

    2016-03-19

    Harmful algal blooms of the dinoflagellate Pyrodinium bahamense have caused human and economic losses in the last decades. This study, for the first time, documents a bloom of P. bahamense in the Red Sea. The alga was recurrently present in a semi-enclosed lagoon throughout nearly 2 years of observations. The highest cell densities (104-105 cells L-1) were recorded from September to beginning of December at temperatures and salinities of ~26-32 °C and ~41, respectively. The peak of the bloom was recorded mid-November, before a sharp decrease in cell numbers at the end of December. Minimum concentrations in summer were at ~103 cells L-1. A saxitoxin ELISA immunoassay of cultures and water samples confirmed the toxicity of the strain found in the Red Sea. Moreover, a gene expression analysis of the saxitoxin gene domain SxtA4 showed that transcript production peaked at the culmination of the bloom, suggesting a relation between transcript production, sudden cells increment-decline, and environmental factors. © 2016 Elsevier B.V.

  12. Seasonality and toxin production of Pyrodinium bahamense in a Red Sea lagoon.

    Science.gov (United States)

    Banguera-Hinestroza, E; Eikrem, W; Mansour, H; Solberg, I; Cúrdia, J; Holtermann, K; Edvardsen, B; Kaartvedt, S

    2016-05-01

    Harmful algal blooms of the dinoflagellate Pyrodinium bahamense have caused human and economic losses in the last decades. This study, for the first time, documents a bloom of P. bahamense in the Red Sea. The alga was recurrently present in a semi-enclosed lagoon throughout nearly 2 years of observations. The highest cell densities (10 4 -10 5 cellsL -1 ) were recorded from September to beginning of December at temperatures and salinities of ∼26-32°C and ∼41, respectively. The peak of the bloom was recorded mid-November, before a sharp decrease in cell numbers at the end of December. Minimum concentrations in summer were at ∼10 3 cellsL -1 . A saxitoxin ELISA immunoassay of cultures and water samples confirmed the toxicity of the strain found in the Red Sea. Moreover, a gene expression analysis of the saxitoxin gene domain SxtA4 showed that transcript production peaked at the culmination of the bloom, suggesting a relation between transcript production, sudden cells increment-decline, and environmental factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Measuring emergency department nurses' attitudes towards deliberate self-harm using the Self-Harm Antipathy Scale.

    LENUS (Irish Health Repository)

    Conlon, Mary

    2012-01-31

    The emergency department is an important gateway for the treatment of self-harm patients. Nurses\\' attitudes towards patients who self-harm can be negative and often nurses experience frustration, helplessness, ambivalence and antipathy. Patients are often dissatisfied with the care provided, and meeting with positive or negative attitudes greatly influences whether they seek additional help. A quantitative design was utilised to measure emergency department nurses\\' attitudes towards deliberate self-harm. The \\'Self-Harm Antipathy Scale\\

  14. Algal communities associated with aquatic macrophytes in some ...

    African Journals Online (AJOL)

    This study describes the algal communities of six ponds colonised by aquatic macrophytes in Nyanza Province, Kenya. Plankton samples were collected from the water column and epiphytic samples from macrophytes such as Azolla, Pistia, Nymphaea, Ipomoea and Ludwigia. Pond pH, temperature, conductivity, ...

  15. Dynamics of plc gene transcription and α-toxin production during growth of Clostridium perfringens strains with contrasting α-toxin production

    DEFF Research Database (Denmark)

    Abildgaard, Lone; Schramm, Andreas; Rudi, Knut

    2009-01-01

    The aim of the present study was to investigate transcription dynamics of the α-toxin-encoding plc gene relative to two housekeeping genes (gyrA and rplL) in batch cultures of three Clostridium perfringens strains with low, intermediate, and high levels of α-toxin production, respectively. The plc...... transcript level was always low in the low α-toxin producing strain. For the two other strains, plc transcription showed an inducible pattern and reached a maximum level in the late exponential growth phase. The transcription levels were however inversely correlated to α-toxin production for the two strains....... We propose that this discrepancy is due to differences in plc translation rates between the strains and that strain-specific translational rates therefore must be determined before α-toxin production can be extrapolated from transcript levels in C. perfringens....

  16. Harmful Algal Blooms of the West Florida Shelf and Campeche Bank: Visualization and Quantification using Remote Sensing Methods

    Science.gov (United States)

    Soto Ramos, Inia Mariel

    Harmful Algal Blooms (HABs) in the Gulf of Mexico (GOM) are natural phenomena that can have negative impacts on marine ecosystems on which human health and the economy of some Gulf States depends. Many of the HABs in the GOM are dominated by the toxic dinoflagellate Karenia brevis. Non-toxic phytoplankton taxa such as Scrippsiella sp. also form intense blooms off the Mexican coast that result in massive fish mortality and economic losses, particularly as they may lead to anoxia. The main objectives of this dissertation were to (1) evaluate and improve the techniques developed for detection of Karenia spp. blooms on the West Florida Shelf (WFS) using satellite remote sensing methods, (2) test the use of these methods for waters in the GOM, and (3) use the output of these techniques to better understand the dynamics and evolution of Karenia spp. blooms in the WFS and off Mexico. The first chapter of this dissertation examines the performance of several Karenia HABs detection techniques using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images and historical ground truth observations collected on the WFS from August 2002 to December 2011. A total of 2323 in situ samples collected by the Florida Fish and Wildlife Research Institute to test for Karenia spp. matched pixels with valid ocean color satellite observations over this period. This dataset was used to systematically optimize variables and coefficients used in five published HAB detection methods. Each technique was tested using a set of metrics that included the F-Measure (FM). Before optimization, the average FM for all techniques was 0.47. After optimization, the average FM increased to 0.59, and false positives decreased ~50%. The addition of a Fluorescence Line Height (FLH) criterion improved the performance of every method. A new practical method was developed using a combination of FLH and Remote Sensing Reflectance at 555 nm (Rrs555-FLH). The new method resulted in an FM of 0.62 and 3

  17. Risk Assessment of Shellfish Toxins

    Directory of Open Access Journals (Sweden)

    Rex Munday

    2013-11-01

    Full Text Available Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.

  18. Casting light on harm reduction

    DEFF Research Database (Denmark)

    Jourdan, Michael

    2009-01-01

    Background: Harm reduction is commonly regarded as complementary to other drug problem responses - as the fourth tier. Yet even core examples of harm reduction such as the provision of injection equipment and methadone treatment has over and over encountered considerable opposition, and harm redu...

  19. CD44 Promotes intoxication by the clostridial iota-family toxins.

    Science.gov (United States)

    Wigelsworth, Darran J; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D; Carman, Robert J; Wilkins, Tracy D; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G; Popoff, Michel R; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44(+) melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.

  20. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.