WorldWideScience

Sample records for hardener-free epoxy-modified mortar

  1. Epoxy modified bitumen : Chemical hardening and its interpretation

    NARCIS (Netherlands)

    Apostolidis, P.; Pipintakos, G.; van de Ven, M.F.C.; Liu, X.; Erkens, Sandra; Scarpas, Athanasios

    2018-01-01

    Epoxy modified bitumen (EMB) is a promising technology for long lasting paving materials ensuring higher resistance to rutting, oxygen- and moisture-induced damage. In this paper, an analysis of the chemical reactions that take place during the chemical hardening process (curing) of epoxy modified

  2. Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation.

    Science.gov (United States)

    Dutta, Suvangshu; Karak, Niranjan; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2009-12-01

    Epoxy modified Mesua ferrea L. seed oil (MFLSO) based polyurethane nanocomposites with different weight % of clay loadings (1%, 2.5% and 5%) have been evaluated as biocompatible materials. The nanocomposites were prepared by ex situ solution technique under high mechanical shearing and ultrasonication at room temperature. The partially exfoliated nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mechanical properties such as tensile strength and scratch hardness were improved 2 and 5 times, respectively by nanocomposites formation. Even the impact resistance improved a little. The thermostability of the nanocomposites was enhanced by about 40 degrees C. Biodegradation study confirmed 5-10 fold increase in biodegradation rate for the nanocomposites compared to the pristine polymers. All the nanocomposites showed non-cytotoxicity as evident from RBC hemolysis inhibition observed in anti-hemolytic assay carried over the sterilized films. The study reveals that the epoxy modified MFLSO based polyurethane nanocomposites deserve the potential to be applicable as biomaterials.

  3. Drilling mortar

    Energy Technology Data Exchange (ETDEWEB)

    Theodorescu, V; Ditulescu, E

    1979-01-30

    A method is proposed for producing stable drilling mortar from drilled rock which makes it possible to stabilize the walls of the borehole and to maintain producing horizons of oil and gas wells in an undisturbed state. The proposed drilling mortar includes 5-12 wt.-% dry modified calcium lignosulfonate in the form of a solution containing about 30% dry matter with the addition of 0.1 wt.-% anti-foaming agent consisting of C/sub 19/-C/sub 20/ alcohol dissolved in a light petroleum product; cream of milk with about 10 wt.-% Ca(OH)/sub 2/ in a quantity sufficient for reducing the pH value of the ions down to 10.5; sodium chloride in amounts from 5 mg to 100 ml (aqueous phase); ordinarily used agents for ensuring the necessary density, viscosity, and filterability. For example, the preparation of the drilling fluid begins with the processing under laboratory conditions of lignosulfonic pulp obtained in the production of yeast fodder with the following characteristics: specific density, 1.15 kgf/dm/sup 3/; water content, 67% (according to the Dean and Stark method); pH 4.0. In the vessel is placed 1000 cm/sup 3/ lignosulfonic pulp containing 33% dry matter, and the pulp is heated to 90-95/sup 0/C by means of a water bath. To the heated pulp 33 cm/sup 3/ formic acid at a 40-% concentration is added by mixing. The specific temperature of the pulp is maintained in the constant mixing process for two hours. Then the cream of milk containing 10 wt.-% Ca(OH)/sub 2/ is added to raise the pH to 10.5. The cooled product is calcium lignosulfonate. To produce a stable form of the drilling mortar, 750 g clay and 10 g trass gel are added to a vessel containing 1500 cm/sup 3/ fresh water by means of mixing. The resulting dispersed mass remains at rest for 12 hours for purposes of hydration. Then 2 g of an anti-foaming agent dissolved in 6 cm/sup 3/ benzene is introduced to 1000 cm/sup 3/ modified calcium lignosulfonate produced by the above method.

  4. Using Mortar Mixing Pump for Magnesia Mortars Preparing and Transporting

    Science.gov (United States)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the problem of preparation and transportation of magnesia mortars with the help of screw mortar mixing pumps. The urgency of the wide use of mortars on magnesia binders (Sorel’s cement) in construction is substantiated due to their high characteristics: strength, hardening speed, wear resistance, possibility of using organic and mineral aggregates, ecological purity and economic efficiency. The necessity for the development of a technique for calculating the main parameters of a mortar mixing pump for its application in the technology of preparation and transportation of magnesia mortars is demonstrated. The analysis of various types of modern mortar mixing pumps is given. The conclusions are drawn about the advantages and disadvantages of standard schemes. The description of the experiment for determination of the productivity of a mortar mixing pump is described depending on the plasticity (mobility) of the used magnesia mortar. The graph and description of the mathematical dependency of the productivity of the mortar mixing pump on the magnesia mortar plasticity are given. On the basis of the obtained dependency, as well as the already known formulas given in the article, a new method is proposed for calculating the main parameters of the screw mortar mixing pump in preparation and transportation of magnesia mortar: productivity, feed range, supply pressure, drive power.

  5. Improved mortar setup technique

    CSIR Research Space (South Africa)

    De Villiers, D

    2008-10-01

    Full Text Available bearing sensor. This concept focuses directly on one of the most cumbersome aspects of a mortar set-up, namely the use of aiming posts. The prismatic mirror and bearing dials is described as well as the required setup procedures. The measurement...

  6. 2nd Historic Mortars Conference

    CERN Document Server

    Hughes, John; Groot, Caspar; Historic Mortars : Characterisation, Assessment and Repair

    2012-01-01

    This volume focuses on research and practical issues connected with mortars on historic structures. The book is divided into four sections: Characterisation of Historic Mortars, Repair Mortars and Design Issues, Experimental Research into Properties of Repair Mortars, and Assessment and Testing. The papers present the latest work of researchers in their field. The individual contributions were selected from the contributions to the 2nd Historic Mortars Conference, which took place in Prague, September, 22-24, 2010. All papers were reviewed and improved as necessary before publication. This peer review process by the editors resulted in the 34 individual contributions included in here. One extra paper reviewing and summarising State-of-the-Art knowledge covered by this publication was added as a starting and navigational point for the reader. The editors believe that having these papers in print is important and they hope that it will stimulate further research into historic mortars and related subjects. 

  7. Moisture transport properties of mortar and mortar joint: A NMR study

    OpenAIRE

    Brocken, H.J.P.; Adant, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick laying, curing conditions of mortar in mortar joint differ from curing conditions of separately cured mortar. Consequently, the moisture transport properties of mortar joint differ. In addition to the ...

  8. Moisture transport properties of mortar and mortar joint: a NMR study

    OpenAIRE

    Brocken, H.J.P.; Adan, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick laying, curing conditions of mortar in mortar joint differ from curing conditions of separately cured mortar. Consequently, the moisture transport properties of mortar joint differ. In addition to the ...

  9. Durability of air lime mortar

    DEFF Research Database (Denmark)

    Nielsen, Anders

    2016-01-01

    This contribution deals with the physical and chemical reasons why pure air lime mortars used in masonry of burned bricks exposed to outdoor climate have shown to be durable from the Middle Ages to our days. This sounds strange in modern times where pure air lime mortars are regarded as weak...... materials, which are omitted from standards for new masonry buildings, where use of hydraulic binders is prescribed. The reasons for the durability seam to be two: 1. The old mortars have high lime contents. 2. The carbonation process creates a pore structure with a fine pored outer layer and coarser pores...

  10. Mortar fights acid corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-14

    The burning of coal or oil to produce heat required to operate a power boiler also generates a severe corrosion problem within the interior of the duct and stacks used to emit the flue gas into the atmosphere. How can concrete and steel be protected from the effects of acid attack, when the acids are carried in a gas form, or come into direct contact with the steel or concrete from spillage or immersion conditions. Industry in North America has found that the solution to this problem is to build an outside concrete column, in this case of Portland cement, and inside that column, build a totally independent brick liner bonded with Sauereisen mortar.

  11. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  12. Method of producing grouting mortar

    Energy Technology Data Exchange (ETDEWEB)

    Shelomov, I K; Alchina, S I; Dizer, E I; Gruzdeva, G A; Nikitinskii, V I; Sabirzyanov, A K

    1980-10-07

    A method of producing grouting mortar by mixing the cement with an aqueous salt solution is proposed. So as to increase the quality of the mortar through an acceleration of the time for hardening, the mixture is prepared in two stages, in the first of which 20-30% of the entire cement batch hardens, and in the second of which the remainder of the cement hardens; 1-3-% of an aqueous salt solution is used in quantities of 0.5/1 wt.-% of weight of the cement. The use of this method of producing grouting mortar helps to increase the flexural strength of the cement brick up to 50% after two days ageing by comparison with the strength of cement brick produced from grouting mortar by ordinary methods utilizing identical quantities of the initial components (cement, water, chloride).

  13. Improved mortar set-up technique

    CSIR Research Space (South Africa)

    De Villiers, D

    2010-05-01

    Full Text Available -up Technique Presented at the Mortar Systems Conference By D de Villiers May 2009 Mobile Mortars Slide 2 © CSIR 2008 www.csir.co.za Mobile Mortars Slide 3 © CSIR 2008 www.csir.co.za Mobile Mortars Slide 4... © CSIR 2008 www.csir.co.za Mortar Tests Slide 5 © CSIR 2008 www.csir.co.za Mortar Tests Slide 6 © CSIR 2008 www.csir.co.za Electronic Sensors Slide 7 © CSIR 2008...

  14. FRP confined smart concrete/mortar

    Science.gov (United States)

    Xiao, Y.; Zhu, P. S.; Choi, K. G.; Wu, Y. T.; Huang, Z. Y.; Shan, B.

    2006-03-01

    In this study, fiber reinforced polymer (FRP) confined smart concrete/mortar sensors were invented and validated for significantly improved measurement range. Several trial mixes were made using cement mortar and micron-phase graphite powders at different mix proportions. Compressive loading tests were conducted on smart mortar cylinder specimens with or without FRP confinement. Two-probe method was used to detect the electrical resistance of the smart cement mortar specimens. Strong correlation was recognized between the stress and electric resistance of the smart mortar. The test results indicated that the FRP wrapping could significantly enlarge the range of such self-sensing property as a consequence of confinement.

  15. Cross-contamination in Porcelain Mortars.

    Science.gov (United States)

    Bauer-Brandl, A; Falck, A; Ingebrigtsen, L; Nilson, C

    2001-01-01

    Porcelain mortars and pestles are frequently used to comminute drug substances on a small scale and (in some cases) in the production of liquid and semisolid suspensions. Although it is generally accepted that removal of a drug substance from a rough surface by rinsing may be difficult and may lead to cross-contamination, no hard data support that theory. In this study, the amount of salicylic acid remaining on a porcelain mortar after different washing procedures was quantified and compared with the amount remaining on a plastic mortar. Drug residues in the "mg" range on the porcelain mortars made common rinsing procedures appear inappropriate, but no traces of drug were detected on plastic mortars. In addition, the quality of suspension ointments with respect to particle size and homogeneity produced by the two types of mortars was compared. Porcelain and plastic mortars appeared equally suitable for use in the production of semisolid suspensions.

  16. Flowability in crushed sand mortar

    Directory of Open Access Journals (Sweden)

    Cabrera, O. A.

    2010-12-01

    Full Text Available The present experimental study explored the relationship between mortar flowability and the voids content in crushed sand to determine the effect of grain shape and surface texture as well as dust content on the behaviour of fresh mortar. The findings revealed a close correlation between voids content and the volume of paste needed for mortar to begin to flow as a continuous material, mortar flowability and the water content needed to attain a given flowability. The comparison of the empirical findings to the results obtained with the Larrard (1, 2 model provided further information on the effect of sand grain morphology on fresh mortars.

    En el presente trabajo se plantea un estudio experimental de la fluidez de morteros basado en el contenido de vacíos de arenas machacadas, para comprender la influencia de la forma y textura superficial de los granos de arena y del contenido de polvo de las mismas sobre el estado fresco de morteros. Los resultados muestran la estrecha relación entre el contenido de vacíos entre granos y los volúmenes de pasta necesarios para iniciar el escurrimiento como un material continuo, la fluidez de los morteros, el contenido de agua para alcanzar una determinada fluidez, etc. El comportamiento evaluado se compara con resultados obtenidos aplicando el modelo de F. de Larrard (1, 2, permitiendo de este modo obtener mayor información de la influencia de la morfología de los granos de la arena sobre el estado fresco de los morteros.

  17. Investigations of salt mortar containing saliferous clay

    International Nuclear Information System (INIS)

    Walter, F.

    1992-01-01

    Saliferous clay mortar might be considered for combining individual salt bricks into a dense and tight long-term seal. A specific laboratory program was started to test mortars consisting of halite powder and grey saliferous clay of the Stassfurt from the Bleicherode salt mine. Clay fractions between 0 and 45% were used. The interest focused upon obtaining good workabilities of the mixtures as well as upon the permeability and compression strength of the dried mortar samples. Test results: 1) Without loss of quality the mortar can be mixed using fresh water. Apprx. 18 to 20 weight-% of the solids must be added as mixing water. 2) The porosity and the permeability of the mortar samples increases distinctly when equally coarse-grained salt power is used for mixing. 3) The mean grain size and the grain size distribution of the saliferous clay and the salt powder should be very similar to form a useful mortar. 4) The permeability of the mortar samples decreases with increasing clay fraction from 2 10 -12 m 2 to 2 10 -14 m 2 . The investigated samples, however, were large and dried at 100degC. 5) The uniaxial compressive strength of the clay mortar equals, at an average, only 4 MPa and decreases clearly with increasing clay fraction. Moist mortar samples did not show any measurable compressive strength. 6) Moistened saliferous clay mortar may show little temporary swelling. (orig./HP)

  18. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    J. A. Canova

    2009-01-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  19. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    José Aparecido Canova

    2009-12-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  20. Strength of mortar containing rubber tire particle

    Science.gov (United States)

    Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.

    2018-04-01

    The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.

  1. Moisture transport properties of mortar and mortar joint: A NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Adant, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick

  2. Moisture transport properties of mortar and mortar joint: a NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Adan, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick

  3. Simple Analysis of Historical Lime Mortars

    Science.gov (United States)

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  4. Adsorption of carbon-14 on mortar

    International Nuclear Information System (INIS)

    Matsumoto, Junko; Banba, Tsunetaka; Muraoka, Susumu

    1995-01-01

    The sorption experiments of carbon-14 on the mortar grain (grain size: 0.50--1.0 mm) focused on the chemical form of the carbon-14 were carried out by the batch method. Three kinds of carbon-14 chemical form were used for the experiments: sodium carbonate (Na 2 14 CO 3 ) as the inorganic radiocarbon, and sodium acetate (CH 3 14 COONa) and acetaldehyde ( 14 CH 3 14 CHO) as the organic radiocarbons. 0.30 gram samples of mortar were soaked in the solution with carbon-14 at 15 C for periods of up to 160 days. At the end of each run, carbon-14 concentrations in the supernatants were determined before and after centrifugation (3,500 rpm., 1 hr). In the mortar-sodium carbonate system, the retention process of carbon-14 related to reaction on the surface of the mortar was speculated as follows. First, 3CaO-SiO 2 and 2CaO-SiO 2 of the mortar components contact with water and produce Ca(OH) 2 . Ca(OH) 2 produces Ca 2+ and OH - in the solution. Then, calcite forms from Ca 2+ and CO 3 2- in the solution. Thus, the sorption ratio of carbon-14 onto mortar will be high until mortar has been completely carbonated because Ca 2+ is rich in the mortar and the solubility of calcite is low. In the mortar-organic carbon system, the soluble organic carbon-14 is hardly sorbed on the surface of the mortar. Therefore, the cementitious materials may not inhibit the release of organic radiocarbons from the low-level radioactive wastes, contrary to the case of inorganic radiocarbon

  5. Compressive and flexural strength of cement mortar stabilized with ...

    African Journals Online (AJOL)

    Mortar is a material with wide range of applications in the construction industry. However, plain mortar matrices are usually brittle and often cracks and fails more suddenly than reinforced mortars. In this study, the compressive and flexural strengths of cement mortar stabilized with Raffia Palm Fruit Peel (RPFP) as fibre were ...

  6. Effect of hydrated lime on compressive strength mortar of fly ash laterite soil geopolymer mortar

    Science.gov (United States)

    Wangsa, F. A.; Tjaronge, M. W.; Djamaluddin, A. R.; Muhiddin, A. B.

    2017-11-01

    This paper explored the suitability of fly ash, hydrated lime, and laterite soil with several activator (sodium hydroxide and sodium tiosulfate) to produce geopolymer mortar. Furthermore, the heat that released by hydrated lime was used instead of oven curing. In order to produce geopolymer mortar without oven curing, three variations of curing condition has been applied. Based on the result, all the curing condition showed that the hardener mortar can be produced and exhibited the increasing of compressive strength of geopolymer mortar from 3 days to 7 days without oven curing.

  7. Mortars for 3D printing

    Directory of Open Access Journals (Sweden)

    Demyanenko Olga

    2018-01-01

    Full Text Available The paper is aimed at developing scientifically proven compositions of mortars for 3D printing modified by a peat-based admixture with improved operational characteristics. The paper outlines the results of experimental research on hardened cement paste and concrete mixture with the use of modifying admixture MT-600 (thermally modified peat. It is found that strength of hardened cement paste increases at early age when using finely dispersed admixtures, which is the key factor for formation of construction and technical specifications of concrete for 3D printing technologies. The composition of new formations of hardened cement paste modified by MT-600 admixture were obtained, which enabled to suggest the possibility of their physico-chemical interaction while hardening.

  8. Titanium Socket for 120 mm Mortar Base

    National Research Council Canada - National Science Library

    2004-01-01

    .... However, its unique properties also make it difficult to machine productively. ARDEC was spending excessive time turning a profile of a ball socket into the component that supports the mortar tube...

  9. Mechanical characterization of sisal reinforced cement mortar

    OpenAIRE

    R. Fujiyama; F. Darwish; M.V. Pereira

    2014-01-01

    This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the eff...

  10. Recycled sand in lime-based mortars.

    Science.gov (United States)

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Rilem TC 203-RHM: Repair mortars for historic masonry. Requirements for repointing mortars for historic masonry

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Hughes, J.J.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, B.

    2012-01-01

    This paper gives a summary of functional and performance requirements for repointing mortars for historic masonry (design, execution and maintenance). Successful performance of repair and conservation of mortar in historic masonry requires more care with design and execution than with modern

  12. Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance

    Science.gov (United States)

    Luo, Dahao; Wu, Chen; Yan, Mi

    2018-04-01

    Three inorganic-organic hybrids have been designed by incorporating epoxy-modified silicone resin (ESR) with SiO2, Fe3O4 and their mixture in the application as the coating of Fe soft magnetic composites (SMCs). The introduced SiO2 nanoparticles are well dispersed in the ESR, while the Fe3O4 tends to agglomerate or even separate from the ESR. Simultaneous addition of the SiO2 and Fe3O4 gives rise to satisfactory distribution of both nanoparticles and optimized magnetic performance of the SMCs with high permeability (124.6) and low loss (807.8 mW/cm3). On one hand, introduction of the ferromagnetic Fe3O4 reduces the magnetic dilution effect, which is beneficial for improved magnetization and permeability. On the other hand, SiO2 incorporation prevents the agglomeration of the Fe3O4 nanoparticles and gives rise to increased electrical resistivity for reduced core loss as well as enhanced mechanical strength of the SMCs.

  13. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered

  14. Cement-latex grouting mortar for cementing boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Kateev, I S; Golyshkina, L A; Gorbunova, I V; Kurochkin, B M; Vakula, Ya V

    1980-01-01

    The need for the development of cement-latex grouting mortar for the purpose of separating strata when reinforcing boreholes at deposits in the Tatar Associated SSR is evaluated. Results of studies of the physical and mechanical properties of cement-latex grouting mortar systems (mortar plus brick) are presented. Formulas for preparing cement-latex grouting mortor are evaluated and results of industrial tests of such mortars shown.

  15. Mechanical characterization of sisal reinforced cement mortar

    Directory of Open Access Journals (Sweden)

    R. Fujiyama

    2014-01-01

    Full Text Available This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the effect of the fibers on the fracture toughness of the material. The results obtained indicate that, while fiber reinforcement leads to a decrease in compressive strength, J-integral calculations at maximum load for the different notch root radii have indicated, particularly for the case of long fibers, a significant superiority of the reinforced material in comparison with the plain cement mortar, in consistence with the impact test data.

  16. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  17. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  18. Stone mortars in Roman Cisalpine: new specimens

    Directory of Open Access Journals (Sweden)

    Andrea Caffini

    2010-07-01

    Full Text Available The mortar, made of stone or marble, represents artifact in Cisalpine widespread elsewhere in the Roman world. the morphologies are substantially grouped into two basic shapes: type 1 presents a hemispherical bowl more or less flattened, Type 2 is characterized by a conical reverse body, more or less flared. In the mortars were subjected to pounding and grinding, using a pestle driven by hand, raw materials of various origin. The fields of application were mainly three: alimentary, officinal and cosmetic. In some cases the generic definition of mortar is applied improperly to marble containers probably only be used for ornamental. It 'also demonstrated the use of artifacts attributable to type 2 as a function of urns. Therefore, in reference to decontextualized pieces, you should use a definition not unique, reflecting the different possible meanings of the artifact.

  19. Moisture transport over the brick/mortar interface

    NARCIS (Netherlands)

    Brocken, H.J.P.; Pel, L.

    1995-01-01

    The moisture transport in brick, mortar that was cured separately, and combined brick/mortar samples was studied using NMR. The experimental results show that the mortar is less permeable if it is cured bonded to the brick instead of cured separately. Models of the moisture transport are usually

  20. Influence of the mechanical properties of lime mortar on the strength of brick masonry

    OpenAIRE

    PAVIA, SARA

    2013-01-01

    PUBLISHED This paper aims at improving the quality of lime mortar masonry by understanding the mechanics of mortars and masonry and their interaction. It investigates how the mortar?s compressive and flexural strengths impact the compressive and bond strength of clay brick masonry bound with calcium lime (CL) and natural hydraulic lime (NHL) mortars. It concludes that the strength of the bond has a greater impact on the compressive strength of masonry than the mortar?s st...

  1. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    Directory of Open Access Journals (Sweden)

    L. A. C. MOTTA

    Full Text Available Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase in the sulfonated polystyrene content decreased the elasticity modulus of the mortar and, despite higher porosity, there was a reduction of water absorption by capillarity. In relation to mortar without admixture, the modified mortar showed an increase in water retention and consistency index, and a large increase in flexural strength and bond tensile strength. The significant increase of bond tensile strength (214% with admixture 1% highlights the potential of the produced material as an adhesive mortar.

  2. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    in the joint will ensure a certain level of load-carrying capacity. This is due to the interaction between compression in the weak mortar and tension in the adjacent bricks. This paper proposes an expression for the compressive strength of masonry made with weak lime mortars (fm... of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the mortar joints......, which is the most unfavourable stress distribution with respect to tensile stresses in bricks. The expression is compared with the results of compression tests of masonry made with weak mortars. It can take into account bricks with arbitrary dimensions as well as perforated bricks. For a stronger mortar...

  3. Studies on diffusion of 137Cs in cement mortar

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Shimooka, Kenji; Wadachi, Yoshiki; Kuramoto, Yuzuru.

    1989-12-01

    Penetration experiment of 137 Cs into the impermeable cement mortar which has been treated by the impermeable reagent (XYPEX reagent) was carried out in order to advance the performance of engineered barrier for Low Level Radioactive Waste. The result showed that the radioactive concentration at deeper region in the impermeable cement mortar specimen was decreased about 1 order of magnitude below that in the untreated specimen. Diffusion coefficient calculated from the radioactive concentration of 137 Cs in the cement mortar specimen was 9.1 x 10 -5 cm 2 /day for untreated cement mortar specimen and 4.0 x 10 -5 cm 2 /day for the impermeable cement mortar specimen, respectively. Treatment of cement mortar by the impermeable reagent was found to be effective to reduce the value of appearent diffusion coefficient for 137 Cs in the cement mortar. (author)

  4. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  5. Gas generation from the irradiation of mortar

    International Nuclear Information System (INIS)

    Lewis, M.A.; Warren, D.W.

    1989-01-01

    A mortar formulation capable of immobilizing chloride salts with high levels of radioactivity is being developed. As part of the developmental effort, radiation effects are being investigated. The radiolytic generation of gas(es) from irradiated mortar formulations was determined for several formulations with variable salt loadings at several test temperatures. The irradiation of a mortar formulation consisting of cement, slag, fly ash, water and 0 to 10 wt % salt led to the generation of hydrogen. The rate of generation was approximately constant, steady state pressures were not attained and final pressures were comparatively high. Higher salt concentrations were correlated with higher hydrogen generation rates for experiments at ambient temperature while lower rates were observed at 120/degree/C. The irradiation of a mortar consisting of cement, fly ash, water and salt led to the radiolytic generation of both oxygen and hydrogen. The addition of 2 wt % FeS or CaS inhibited oxygen generation and changed the hydrogen production rate. 10 refs., 4 figs., 3 tabs

  6. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    Science.gov (United States)

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  7. Modification of Lime Mortars with Synthesized Aluminosilicates

    Science.gov (United States)

    Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota

    2017-10-01

    The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime

  8. Sulfate and acid resistant concrete and mortar

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  9. Quartzite mining waste for adhesive mortar production

    International Nuclear Information System (INIS)

    Dias, L.S.; Mol, R.M.R.; Silva, K.D.C.; Campos, P.A.M.; Mendes, J.C.; Peixoto, R.A.F.

    2016-01-01

    The construction sector is responsible for a high consumption of natural resources. Moreover, the mining industry generates and discard waste improperly in the environment aggravating environmental problems. In order to reduce the natural sand extraction and provide the environmentally correct disposal of mining waste, this work proposes the use of quartzite mining waste to replace natural sand for the production of adhesive mortars. The quartzite mining tailings was chemically characterized using X-ray fluorescence, and morphologically by optical microscopy. In sequence, the mortars were subjected to characterization tests in the fresh state as consistency index, slip, water retention, entrained air content, bulk density and Squeeze Flow. The results were satisfactory, indicating the viability of this material as fine aggregate in total replacement of natural aggregate, allowing the reduction of environmental impacts. (author)

  10. Development of low weight self-levelling mortars

    International Nuclear Information System (INIS)

    Padilla, A; Panama, I; Toledo, A; Flores, A

    2015-01-01

    This work shows the development of self levelling mortars, using micro bubbles based on aluminium silicate with a density of 0.25 g/cm 3 . Mortars formulations are composed by 8 different components in order to achieve properties balance between fresh and solid state. The mean objective is development light weight mortars with high fluidity and compression strength using micro bubbles and some additives. Formulations were designed employing Taguchi DOE of 8 variables and 3 states. Result analysis according to Taguchi method lets indentify the preponderant effect of each variable on the cited properties. Several formulations reached fluidity higher than 250%, with compression strength around 100 kg/cm 2 and a low volumetric weigh. Obtained volumetric weights are 20% less than commercial self levelling mortars weight. Finally some relations are presented such: as relation water/cement with fluidity, and micro bubble content versus mortars volumetric weight, and finally compression strength versus the volumetric weight of mortars

  11. Domain decomposition methods for mortar finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  12. Comparative evaluation of aerial lime mortars for architectural conservation

    OpenAIRE

    Faria, Paulina; Henriques, Fernando M.A.; Rato, Vasco

    2008-01-01

    Journal of Cultural Heritage 9 (2008) 338-346 International bibliography on conservation usually refers that mortars made with lime putty with long extinction periods behave better than others made with the current dry hydrated limes. In order to evaluate this assess, an experimental study of lime mortars was carried out, using dry hydrated lime and two lime putties. It becomes clear that the use of lime putties with long extinction periods in mortars allow better performances, pa...

  13. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    OpenAIRE

    MOTTA,L. A. C.; VIEIRA,J. G.; OMENA,T. H.; FARIA,F. A. C.; RODRIGUES FILHO,G.; ASSUNÇÃO,R. M. N.

    2016-01-01

    Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase...

  14. Study of mortars with industrial residual plastic scales

    OpenAIRE

    Magariños, O. E.; Alderete, C. E.; Arias, L. E.; Lucca, M. E.

    1998-01-01

    This work proposes the utilization of industrial residues of PET (Polyethylene Terephtalate) as a partial substitute of arids (sand) in mortar making for construction components. Therefore, the environmental impact of large volumes of plastic of urban residues could be decreased. When PET scales were added to mortars in partial replacement of sand, lower unitary weight, acceptable absorption and resistances according to international specifications were achieved. Mortars with 66% of sand...

  15. Moisture transfer across the interface between brick and mortar joint

    OpenAIRE

    Derluyn, Hannelore; Moonen, Peter; Carmeliet, Jan

    2008-01-01

    This paper reports on experimental and modelling work on moisture transport in masonry, with special attention to the liquid transport across the interface between brick and mortar joint. Experiments and simulations reveal that two aspects need to be taken into account: (1) the dependence of moisture transport properties on the curing of the mortar; (2) the presence of a hydraulic interface resistance between brick and mortar. The resistance is due to imperfect contact between brick and morta...

  16. The Aesthetical quality of SSA-containing mortar and concrete

    DEFF Research Database (Denmark)

    Kappel, Annemette; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2014-01-01

    that gives a characteristic red colour. The process of grinding SSA has shown to improve the compressive strength of SSA- containing mortar (Donatello et al. 2010). Thus, in this study SSA was grinded in 6 different intervals ranging from 0 – 10 min, and then added to the mortar mix replacing 20% of cement....... The experiment revealed that the colour of the SSA-containing mortar intensified as the time interval of the grinding process increased. Each of the 6 steps within the time interval provided an additional colour tone and generated a colour scale consisting of mortar samples ranging from greyish to a more...

  17. Early age fracture properties of microstructurally-designed mortars

    DEFF Research Database (Denmark)

    Di Bella, Carmelo; Michel, Alexander; Stang, Henrik

    2017-01-01

    This paper compares the fracture properties as well as crack initiation and propagation of real and equivalent mortars. The development of the elastic modulus, tensile strength, and fracture energy at different hydration stages were determined by inverse analysis of load-displacement curves...... the two mortars. At early age, the moisture content has a considerable influence on the tensile strength and the fracture energy....

  18. Effects of water on mortar-brick bond

    NARCIS (Netherlands)

    Groot, C.J.W.P.

    1995-01-01

    The quality of bond in masonry is, to a large extent, a function of the (i) the hydration conditions and (ii) the mortar composition of the mortar-brick interface. For insight into the effects of these parameters on bond performance it is essential to dispose of quantitative information about water

  19. Advanced Experimental Evaluation of Asphalt Mortar for Induction Healing Purposes

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; van Bochove, G; van de Ven, M.F.C.

    2016-01-01

    This paper studied the induction heating and healing capacity of asphalt mortar by adding electrically conductive additives (e.g. iron powder and steel fibers), and examined the influence of different combinations of them on the mechanical response of asphalt mortars. Induction heating technique is

  20. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  1. Brick mortar exposure and chronic lymphocytic leukemia.

    Science.gov (United States)

    Markovic-Denic, L; Jankovic, S; Marinkovic, J; Radovanovic, Z

    1995-01-01

    A case-control study of 130 patients with chronic lymphocytic leukemia (CLL) and 130 controls matched with respect to sex, age (2 years), type of residence (urban-rural) and area of residence (according to the national per capita income) was carried out. Conditional logistic regression analysis showed that, apart of four risk factors already described in the literature (work in a hazardous industry, hair dye use, family history of leukemia and exposure to electromagnetic radiation), brick mortar exposure was also significantly related to CLL.

  2. Brick mortar exposure and chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Markovic-Denic, Lj.; Jankovic, S.; Marinkovic, J.; Radovanovic, Z.

    1995-01-01

    A case-control study of 130 patients with chronic lymphocytic leukemia (CLL) and 130 controls matched with respect to sex, age (2 years), type of residence, (urban-rural) and area of residence (according to the national per capita income) was carried out. Conditional logistic regression analysis showed that, apart of four risk factors already described in the literature (work in a hazardous industry, hair dye use, family history of leukemia and exposure to electromagnetic radiation), brick mortar exposure was also significantly related to CLL. (author)

  3. Brick mortar exposure and chronic lymphocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Markovic-Denic, Lj; Jankovic, S [Institute of Epidemiology, Faculty of Medicine, Belgrade (Yugoslavia); Marinkovic, J [Institute of Social Medicine, Statistics and Healt Research, Faculty of Medicine, Belgrade (Yugoslavia); Radovanovic, Z [Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, 13110 Safat (Kuwait)

    1996-12-31

    A case-control study of 130 patients with chronic lymphocytic leukemia (CLL) and 130 controls matched with respect to sex, age (2 years), type of residence, (urban-rural) and area of residence (according to the national per capita income) was carried out. Conditional logistic regression analysis showed that, apart of four risk factors already described in the literature (work in a hazardous industry, hair dye use, family history of leukemia and exposure to electromagnetic radiation), brick mortar exposure was also significantly related to CLL. (author) 1 tab., 30 refs.

  4. Dating mortars: three medieval Spanish architectures

    Directory of Open Access Journals (Sweden)

    Quirós Castillo, Juan Antonio

    2011-12-01

    Full Text Available One of the major issues in building archaeology is finding the age of elements and structures discovered. Mortars represent a class of material basically constituted by a mixture of different phases (i.e. binder, aggregates, water and are widely used for constructive uses and artworks. Current scientific literature regarding the possibility of accurate radiocarbon dating for mortars reports different and still contradictory results. In this study, a new protocol for radiocarbon dating of mortar developed at the Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE is used to perform 14C measurements on archaeological mortars coming from three medieval architectures of northern Spain (two churches and the walls of a castle. Results observed will be discussed and compared with independent age estimations (i.e. radiocarbon dating performed on organic materials found in the same study site, archaeological analyses in order to frame experimental observations in the actual site knowledge by means of a multidisciplinary approach.Una de las principales problemáticas a las que se enfrenta la arqueología de la arquitectura es datar los elementos y las estructuras. Las argamasas son un tipo de material constituido por una mezcla de diferentes elementos (agregados, agua y empleadas en muchos tipos de construcciones. Los estudios realizados hasta la actualidad en torno a la posibilidad de realizar dataciones radiocarbónicas precisas han proporcionado resultados contradictorios. El objetivo de este artículo es el de presentar un nuevo protocolo para datar la arquitectura histórica desarrollado por el Centre for Isotopic Research on Cultural and Enviromental Heritage (CIRCE, basado en la realización de dataciones radiocarbónicas de argamasas a partir del análisis de tres arquitecturas medievales del norte del España, dos iglesias y la muralla de un castillo. Los resultados obtenidos han sido confrontados y comparados con otros

  5. Luminescence quartz dating of lime mortars. A first research approach

    International Nuclear Information System (INIS)

    Zacharias, N.; Mauz, B.; Michael, C.T.

    2002-01-01

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870±230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095±190 a. (author)

  6. RILEM TC 203-RHM: Repair mortars for historic masonry The role of mortar in masonry: an introduction to requirements for the design of repair mortars

    Czech Academy of Sciences Publication Activity Database

    Groot, C.; van Balen, K.; Bicer-Simsir, B.; Binda, L.; Elsen, J.; van Hees, R.; von Konow, T.; Lindqvist, J.; Mauerbrecher, P.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.; Thompson, M.; Válek, Jan; Veiga, R.

    2012-01-01

    Roč. 45, č. 9 (2012), s. 1287-1294 ISSN 1359-5997 Institutional support: RVO:68378297 Keywords : mortar * classification * requirements Subject RIV: JN - Civil Engineering Impact factor: 1.184, year: 2012

  7. Tamping Mortars with Stabilizing and Plasticizing Admixtures

    Science.gov (United States)

    Terlyha, Volodymir; Sobol, Khrystyna

    2012-06-01

    Boreholes cementing operations at the depth of several kilometers requires the best technology as well as the best materials. To produce the materials satisfying all the requirements concerning the tamping works is possible using the technology of dry building mixes (DBM) prepared at the factories by thorough mixing of accurately dosed components. Using of chemical admixtures allows improving some properties of these mixes. In this work the influence of mineral fillers and chemical admixtures on the properties of the fresh mixture and hardened tamping mortar was investigated. It is established that introduction of the admixture with complex action on the basis of stabilizer Walocel 15-01 and plasticizer Melflux 2651 allows obtaining the fresh mixture with high spreadability. At the same time the value of dehydration approaches to zero which favorably effects on stabilization of fresh mixture and not allows the sedimentation processes to take place. By the X-ray analysis, the positive influence of modification admixtures on the hydration processes in the tamping mortars by activating them was identified. In the result of this, the formation of hydrate phases is accelerated; these phases tightly mud the pore area of tamping stone increasing by this its strength.

  8. Environmental deterioration of ancient and modern hydraulic mortars (EDAMM)

    Energy Technology Data Exchange (ETDEWEB)

    Van Balen, K.; Toumbakari, E.E.; Blanco-Varela, M.T. (and others) (eds.)

    2002-07-01

    Environmental damage to ancient and modern mortars (EDAMM) is a European Commission funded project in which three European research institutes from Belgium, Spain and Italy have been collaborating. The project has provided a better understanding of the role of environmental pollution on the deterioration of ancient and modern hydraulic mortars. Recent monuments built in the 19th and 20th century, were constructed using these types of hydraulic mortars. Increasing numbers of these monuments need restoration all over Europe. Similar hydraulic mortars have been widely used in treatments carried out during last and the present century. Tests have been carried out on the identification of historic hydraulic mortars, on the evaluation of damage on samples taken from historic buildings and on the laboratory simulations carried out to investigate damage mechanisms. Among pollutants, SO{sub 2} is the main component of pollution causing damage to hydraulic mortars. Hydraulic mortars have been identified as the most sensitive building materials because of the formation of primary and secondary damage products, such as ettringite and thaumasite. Although the important implications of these results are for the development of conservation strategies for monuments and historic buildings, they are also of great relevance to the development of sustainable construction methods as the building industry still uses these materials today.

  9. Applying a biodeposition layer to increase the bond of a repair mortar on a mortar substrate

    OpenAIRE

    Snoeck, Didier; Wang, Jianyun; Bentz, D. P.; De Belie, Nele

    2018-01-01

    One of the major concerns in infrastructure repair is a sufficient bond between the substrate and the repair material, especially for the long-term performance and durability of the repaired structure. In this study, the bond of the repair material on the mortar substrate is promoted via the biodeposition of a calcium carbonate layer by a ureolytic bacterium. X-ray diffraction and scanning electron microscopy were used to examine the interfaces between the repair material and the substrate, a...

  10. Tensile capacity of loop connections grouted with concrete or mortar

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2017-01-01

    This paper presents a study of grout failure in symmetric U-bar loop connections loaded in tension, with focus on the performance of two grouting materials – concrete and mortar. The study contains an experimental investigation as well as a rigid-plastic modelling of the tensile capacity. The test...... to allow yielding of the U-bars. The experimental work showed that connections grouted with concrete performed better than the connections grouted with mortar. In the theoretical models, the difference in tested capacity is explained by the difference in the internal angle of friction and in the softening...... behaviour of concrete as compared with mortar....

  11. Comparative investigation of mortars from Roman Colosseum and cistern

    Energy Technology Data Exchange (ETDEWEB)

    Silva, D.A. [Department of Civil and Environmental Engineering, 725 Davis Hall 94720-1710, University of California at Berkeley, Berkeley, CA (United States)]. E-mail: denise@ecv.ufsc.br; Wenk, H.R. [Department of Earth and Planetary Science, 497 McCone 94720-4767, University of California at Berkeley, Berkeley, CA (United States); Monteiro, P.J.M. [Department of Civil and Environmental Engineering, 725 Davis Hall 94720-1710, University of California at Berkeley, Berkeley, CA (United States)

    2005-11-01

    Mortar from the Roman Colosseum and a Roman cistern from Albano Laziale were characterized with optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)). The different techniques provided consistent results that the mortar of the Colosseum is mainly calcareous lime, while the mortar of the cistern is pozzolanic siliceous material. The study highlights the capabilities of the different methods for the analysis of cement. For routine analysis XRD is adequate but for characterization of poorly crystalline phases FT-IR and TGA have definite advantages.

  12. Comparative investigation of mortars from Roman Colosseum and cistern

    International Nuclear Information System (INIS)

    Silva, D.A.; Wenk, H.R.; Monteiro, P.J.M.

    2005-01-01

    Mortar from the Roman Colosseum and a Roman cistern from Albano Laziale were characterized with optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)). The different techniques provided consistent results that the mortar of the Colosseum is mainly calcareous lime, while the mortar of the cistern is pozzolanic siliceous material. The study highlights the capabilities of the different methods for the analysis of cement. For routine analysis XRD is adequate but for characterization of poorly crystalline phases FT-IR and TGA have definite advantages

  13. Radiocarbon dating of mortars from ancient Greek palaces

    International Nuclear Information System (INIS)

    Zouridakis, N.; Saliege, J.F.; Person, A.; Filippakis, S.E.

    1987-01-01

    The study deals with radiocarbon dating of lime mortars which were used as supports for Mycenaean and Minoan paintings. The 14 C dates are, on the whole, compatible with the historical data, and thus show that a large proportion of the Mycenaean surficial coatings can be dated by the radiocarbon method. However, in order to determine the age of the mortars accurately, it is necessary to evaluate the amount of sedimentary carbonate which may have been added to them. It is shown here that the oxygen and carbon isotope compositions of lime mortars are significant indicators that such a mixing actually took place. (author)

  14. Radiocarbon dating of mortars from ancient Greek palaces

    Energy Technology Data Exchange (ETDEWEB)

    Zouridakis, N.; Saliege, J.F.; Person, A.; Filippakis, S.E.

    1987-02-01

    The study deals with radiocarbon dating of lime mortars which were used as supports for Mycenaean and Minoan paintings. The /sup 14/C dates are, on the whole, compatible with the historical data, and thus show that a large proportion of the Mycenaean surficial coatings can be dated by the radiocarbon method. However, in order to determine the age of the mortars accurately, it is necessary to evaluate the amount of sedimentary carbonate which may have been added to them. It is shown here that the oxygen and carbon isotope compositions of lime mortars are significant indicators that such a mixing actually took place.

  15. Test Method for Rheological Behavior of Mortar for Building Work

    Directory of Open Access Journals (Sweden)

    Korobko Bogdan

    2017-09-01

    Full Text Available This paper offers a test method for rheological behavior of mortars with different mobility and different composition, which are used for execution of construction work. This method is based on investigation of the interaction between the valve ball and the mortar under study and allows quick defining of experimental variables for any composition of building mortars. Certain rheological behavior will permit to calculate the design parameters of machines for specific conditions of work performance – mixing (pre-operation, pressure generation, pumping to the work site, workpiece surfacing.

  16. Composition of mortar as a function of distance to the brick-mortar interface : A study on the formation of cured mortar structure in masonry using NMR, PFM and XRD

    NARCIS (Netherlands)

    Brocken, H.J.P.; Larbi, J.A.; Pel, L.; Pers, N.M. van der

    1999-01-01

    The formation of cured mortar structure in masonry was studied using multiple experimental techniques. Starting with fresh mortar, nuclear magnetic resonance (NMR) was used to measure the water extraction during brick laying. After curing, the composition of cured mortar was investigated with

  17. Aired-time and chamotte hydraulic mortars

    Directory of Open Access Journals (Sweden)

    González Cortina, M.

    2002-06-01

    Full Text Available The aim of this research project has been to obtain aired-li me based hydraulic mortars with the addition of chamotte or burnt clay powder obtained from the ceramic industry waste. By doing this, hydraulic properties have been included into lime and hydraulic mortars with a great improvement in mechanical properties. In order to achieve this, different types of chamotte obtained from clay burnt at different temperatures have been tested, changing, at the same time, the proportions of lime, sand, chamotte and water. All the tests have been performed preparing a double set of test pieces to be kept at room temperature or to be immersed in water, determining the Shore C hardness and the mechanical compressive and tensile strengths. Further on, X-ray diffraction analysis have been developed to determine the qualitative composition of the crystalline structure, as well as micro structural analysis, using stereomicroscope and electric microscope scanning, with X-ray microanalysis have been used. As a conclusion, several types of mortars have been created with different proportions, which can be used, due to its characteristics, as keying mortars in brickwork, for restoration works as well as for new constructions.

    El objetivo de éste trabajo es el conseguir morteros hidráulicos, a partir de la cal aérea, con adición de chamota o polvo de arcilla cocida, obtenida de los residuos-desechos de la industria cerámica. De este modo se pretende infundir propiedades hidráulicas a la cal y obtener morteros hidráulicos, con una mejora sustancial de sus propiedades mecánicas. Para ello, se ha experimentado con diversos tipos de chamotas, obtenidas a partir de arcillas cocidas a diferentes temperaturas, y con diversas granulometrías, y se han realizado morteros con distintas dosificaciones, variando las proporciones de cal, arena, chamota y agua. En todos los casos se ha preparado una doble serie de probetas, para conservarlas al aire o

  18. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  19. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fisher, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes from the fuel cycle of an integral fast reactor (IFR). The IFR is a sodium-cooled fast reactor with metal fuel. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500 degrees C. This cell has a cadmium anode and a liquid salt electrolyte. The salt will be a low-melting mixture of alkaline and alkaline earth chlorides. This paper discusses one method being considered for immobilizing this treated salt, to disperse it in a portland cement-base motar, which would then be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canisters where it will solidify into a strong, leach-resistant material

  20. Mortar alteration: experimental study and ancient analogues

    International Nuclear Information System (INIS)

    Rassineux, Francois

    1987-01-01

    As the durability of cemented matrices is a matter of great importance in numerous domains, notably for the long term reliability of surface storages of radioactive wastes, the objective of this research thesis is to define mechanisms of evolution of cemented matrices when in contact with diluted aqueous solutions. The author notably studied the influence of the lixiviation mode on the evolution of two mortars having different compositions (pH, CO 2 pressure, system containment, and cement mineralogical nature appear to be the main governing parameters), the alteration (dissolution is the prevailing process in the interaction between cemented matrices and a diluted solution such as rain water), and ancient binders (archaeological binders containing mineral phases such as hydrated calcium silicates or hydro-grossulars). The obtained results lead to the definition of alteration mechanisms in modern cements, and highlight factors governing the durability of these materials when submitted to meteoric alteration [fr

  1. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett; Xue, Guangri; Yotov, Ivan

    2012-01-01

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite

  2. Repair mortars based on lime. Accelerated aging tests

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1995-06-01

    Full Text Available The behaviour under different accelerated aging tests (freeze/thaw and crystallization cycles of a new lime mortar with biocide properties destinated to monumental repair has been studied. New mortars (which have the biocide impregnated in a clay called sepiolite have a similar behaviour to lime mortars used as a reference. After the aging tests, the biocide properties of the mortars have been tried.

    Se ha estudiado el comportamiento frente a distintos ensayos de envejecimiento acelerado (ciclos de hielo/deshielo y cristalización de sales de un nuevo mortero de cal con propiedades biocidas, destinado a la reparación monumental. Se ha comprobado que los nuevos morteros (que llevan incorporado el biocida impregnado en una arcilla denominada sepiolita tienen un comportamiento muy similar a los morteros de cal utilizados como referencia. Tras los ensayos de envejecimiento se ha visto que las propiedades biocidas de los morteros se mantienen.

  3. Future Combat Systems (FCS) Creates Cannon and Mortar Synergy

    National Research Council Canada - National Science Library

    Beard, Kirby; James, Jeff; Tolbert, Vincent J

    2008-01-01

    .... The NLOS-C is one of the eight MGVs. Program Manager FCS (Brigade Combat Team (PM FCS(BCT)) is leveraging previous and current research and development efforts to create synergy between cannons and mortars, without duplication of effort...

  4. Characterization of lime mortar additivated with crystallization modifiers

    NARCIS (Netherlands)

    Granneman, S.J.C.; Lubelli, B.; van Hees, R.P.J.

    2018-01-01

    Additivating mortars with crystallization modifiers is a novel approach to mitigate salt crystallization damage in historic masonry. Once verified the effectiveness of crystallization modifiers in bulk solution, the next step consists in verifying whether: (i) modifiers are still effective when

  5. compressive and flexural strength of cement mortar stabilized with ...

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    concrete. However, plain mortar materials are usually brittle and often crack more easily and fail more suddenly than ... impact strength, higher elastic modulus, better sound proofness ..... in Concrete. Unpublished Ph.D. Thesis, Department.

  6. The Provisional Irish Republican Army and the Development of Mortars

    Directory of Open Access Journals (Sweden)

    Gary Ackerman

    2016-03-01

    Full Text Available The Provisional Irish Republican Army (PIRA repeatedly showed itself to be one of the most inventive and adaptive of all the violent non-state actors who operated in the latter part of the twentieth century. Among its most innovative exploits was the PIRA’s successful development and fielding – spanning almost its entire operational lifetime – of improvised mortar systems. This chapter will trace the sustained development of mortars, including the underlying motivations for pursuing mortars as a complex engineering effort, the process by which the development took place and the underpinnings of its success. The discussion will show that the PIRA’s mortar development program was born out of tactical necessity but enabled by good organizational practices and the organization’s access to materials, expertise and places in which to leverage these.

  7. A Study of Array Direction HDPE Fiber Reinforced Mortar

    Science.gov (United States)

    Kamsuwan, Trithos

    2018-02-01

    This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.

  8. A chemometric approach to the characterisation of historical mortars

    International Nuclear Information System (INIS)

    Rampazzi, L.; Pozzi, A.; Sansonetti, A.; Toniolo, L.; Giussani, B.

    2006-01-01

    The compositional knowledge of historical mortars is of great concern in case of provenance and dating investigations and of conservation works since the nature of the raw materials suggests the most compatible conservation products. The classic characterisation usually goes through various analytical determinations, while conservation laboratories call for simple and quick analyses able to enlighten the nature of mortars, usually in terms of the binder fraction. A chemometric approach to the matter is here undertaken. Specimens of mortars were prepared with calcitic and dolomitic binders and analysed by Atomic Spectroscopy. Principal Components Analysis (PCA) was used to investigate the features of specimens and samples. A Partial Least Square (PLS1) regression was done in order to predict the binder/aggregate ratio. The model was applied to historical mortars from the churches of St. Lorenzo (Milan) and St. Abbondio (Como). The accordance between the predictive model and the real samples is discussed

  9. Neutron radiography of heated high-performance mortar

    Directory of Open Access Journals (Sweden)

    Weber B.

    2013-09-01

    Full Text Available Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  10. Application of natural seaweed modified mortar for sustainable concrete production

    Science.gov (United States)

    Siddique, M. N. I.; Zularisam, A. W.

    2018-04-01

    The effect of seaweed such as Eucheuma Cottonii (gel) and Gracilaria Sp. modified mortar on the properties of sustainable concrete was investigated. Pre-experiment and main-experiment was conducted to carry out this study. Pre-experiment was conducted to study the compressive strength of the sustainable concrete. The main-experiment studied the compressive and splitting strength. Results showed that seaweed modified mortar yielded satisfactory compressive and splitting strength of 30 MPa and 5 MPa at 28 days.

  11. Mørtelegenskaber og billedbehandling (Mortar properties and image processing)

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1998-01-01

    The properties of lime mortars can be essentially improved by adding fillers to the mortars in an intelligent way. This is shown in the thesis of Thorborg von Konow (1997).The changes in the pore structure and the following changes in properties can be treated by means of the rules in materials m...... mechanics developed by Lauge Fuglsang Nielsen on this institute. The necessary pore characteristics are measured by means of image processing....

  12. Applicability of Carbonated Electric Arc Furnace Slag to Mortar

    International Nuclear Information System (INIS)

    Yokoyama, S; Izaki, M; Arisawa, R; Hisyamudin, M N N; Murakami, K; Maegawa, A

    2012-01-01

    Authors have been studying the absorption of CO 2 in the steelmaking slag. In this study, an application of the electric arc furnace slag after the carbonation to admixture of mortar was investigated with the JIS (A6206-1997) method for ground granulated blast-furnace slag for concrete. The percent flows for the test mortar were smaller than that for the standard mortar. The percent flow of the carbonated slag whose average particle size of more than approximately 4 μm increased with an increase in the average size of the particles. Because the compressive strengths of the test mortar cured for 91 days were almost the same as those cured 28 days, the slag after the carbonation was thought not to have self-hardening property for a medium and long term. The compressive strength for the test mortar was almost unchanged within a range of approximately 2 to 7 μm of the average particle size, and it in this range was highest. The activity indexes for the test mortar prepared with the slag after the carbonation ranged from approximately 40 to 60%.

  13. Reuse of ground waste glass as aggregate for mortars.

    Science.gov (United States)

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  14. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  15. Properties of microcement mortar with nano particles

    Science.gov (United States)

    Alimeneti, Narasimha Reddy

    Carbon nanotubes (CNT) and Carbon nanofibers (CNF) are one of the toughest and stiffest materials in the world presently with extreme properties yet to be discovered in terms of elastic modulus and tensile strength. Due to the advanced properties of these materials they are being used in almost all fields of science at nanolevel and are being used in construction industry recently for improvement of material properties. Microcement is fine ground cement which as half the particle size of ordinary Portland cement. In this research the behavior of cement mortar of micro cement with the addition of nanoparticles is studied. Due to high aspect ratio and strong van der Waal forces between the particles of CNT and CNF, they agglomerate and form bundles when mixed with water, sonication method is used to mix nanoparticles with few drops of surfactant and super plasticizer. Mechanical properties such as compressive strength and flexural strength with CNT and CNF composites are examined and compared with control samples. 0.1% and 0.05 % of nanoparticles (both CNT and CNF) by the weight of cement are used in this research and 0.8% of super plasticizer by weight of cement was also used along with 0.4, 0.45 and 0.50 water cement ratios for making specimens for compression test. The compressive strength results are not satisfactory as there was no constant increase in strength with all the composites, however strength of few nanocomposites increased by a good percentage. 0.5 water cement ratio cement mortar had compressive strength of 7.15 ksi (49.3 MPa), whereas sample with 0.1% CNT showed 8.38 ksi (57.8 MPa) with 17% increase in strength after 28 days. Same trend was followed by 0.4 water cement ratio as the compressive strength of control sample was 8.89 ksi (61.3 MPa), with 0.05% of CNT strength increased to 10.90 ksi (75.2 MPa) with 23% increase in strength. 0.4 water cement ratio was used for flexural tests including 0.1%, 0.05% of CNT and 0.1%, 0.05% of CNF with 0

  16. The Impact of Additive on the Properties of Fresh and Hardened Mortar

    Directory of Open Access Journals (Sweden)

    Jurga Šeputytė

    2012-11-01

    Full Text Available This paper considers the impact of additives on the properties of mortar. For investigation purposes, two types of Portland cement (CEM II/A-LL 42.5 N and CEM I N (MA, fine aggregate sand, lime, water and air-entraining and stabilizing additives were used. To determine the effects of additives on the mortar mix, the analysis of cone penetration into the mix, mortar mobility, water extraction out of mortar, density and flexural and compressive testing were conducted. When put into mortar, air-entraining and stabilizing additives changed structure. In this case, density and flexural and compressive strength of mortar are reduced.

  17. The effect of fly ash on the quality of mortars

    Energy Technology Data Exchange (ETDEWEB)

    Hovy, M F [Blue Circle Cement (Pty) Ltd., Industria West (South Africa)

    1994-12-31

    A comparative study of the commercially available blends of the fly cement was made. The focus of the research was to determine the suitability of fly ash blends in mortars. A comparative evaluation was made to establish the differences between laboratory analysis and on site practice. These comparisons were made using 4 different building sands. The laboratory evaluations were confined to specified test methods to determine the suitability of the mortar. However, the in-situ tests required an innovative approach such as: conducting tests on mortar joints to determine the in-situ compressive strengths. (A new technique was developed, which involves shooting nails into the mortar joint, determining the penetration depth and its pull out strength. This is then calibrated against cube strengths); and conducting tests using the SABS approach to determine the resistance to water penetration through a brick wall. The trends in the laboratory evaluations were as expected in terms of improved water demands, water retention and reduced compressive strengths. The in-situ mortar compressive strengths were marginally lower when using fly ash blends compared to ordinary portland cement. The use of fly ash blends improved the resistance of water penetration through a brick wall. In-situ tests are probably the only meaningful way to determine the effectiveness of a mortar in fulfilling its functions in a wall as laid down by SABS 0164:1990. With this in mind, the same quality or an improved quality mortar will be obtained using fly ash blended cements rather than ordinary portland cement. 10 refs., 13 figs., 5 tabs.

  18. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives.

    Science.gov (United States)

    Nadif, A; Hunkeler, D; Käuper, P

    2002-08-01

    Sulfur-free lignin, obtained through the acid precipitation of black liquor from the soda pulping process, has been tested as water reducer in mortar. It has also been compared to existing commercial additives such as naphthalene sulfonates and lignosulfonates. The ash content and sugar content of these lignins are low in comparison to lignosulfonates, conferring on them higher purity. A procedure for small scale testing derived from the industrial norms SN-EN196 and ASTM (Designation C230-90) is presented. Specifically, all the sulfur-free lignins tested improved the flow of the mortar. Selected flax lignins performed better than lignosulfonates though still less than naphthalene sulfonates. Furthermore, certain hemp lignins gave comparable results to the lignosulfonates. Overall, the straw lignin prepared herein is comparable in performance to commercially available lignins, such as Organocell, Alcell and Curan 100. The plant from which the lignin was isolated, and the process of the pulp mill are the primary influences on the performance of the lignin.

  19. Rilem TC 203-RHM. Repair mortars for historic masonry. The role of mortar in masonry: an introduction to requirements for the design of repair mortars

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Maurenbrecher, P.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, M.

    2012-01-01

    Mortar has been in use for many thousands of years and is integral to most masonry construction. Its use is widespread in every culture where masonry is constructed. It is present in the majority of the global built cultural heritage, and is therefore a major consideration in building conservation.

  20. NMR relaxometry study of plaster mortar with polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Jumate, E.; Manea, D. [Technical University of Cluj-Napoca, Faculty of Civil Engineering. 15 C Daicoviciu Str., 400020, Cluj-Napoca (Romania); Moldovan, D.; Fechete, R. [Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca (Romania)

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.

  1. NMR relaxometry study of plaster mortar with polymer additives

    Science.gov (United States)

    Jumate, E.; Moldovan, D.; Fechete, R.; Manea, D.

    2013-11-01

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T2 relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T2 distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T2 relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T2 relaxation rates corresponding to the bound water.

  2. NMR relaxometry study of plaster mortar with polymer additives

    International Nuclear Information System (INIS)

    Jumate, E.; Manea, D.; Moldovan, D.; Fechete, R.

    2013-01-01

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T 2 relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T 2 distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T 2 relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T 2 relaxation rates corresponding to the bound water

  3. Use of rubble from building demolition in mortars.

    Science.gov (United States)

    Corinaldesi, V; Giuggiolini, M; Moriconi, G

    2002-01-01

    Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.

  4. MODIFICATION OF FOAMED CEMENT-CLAY MORTARS BY STABILIZERS

    Directory of Open Access Journals (Sweden)

    Panfilova Marina Ivanovna

    2012-10-01

    by-product generated in the course of combustion of crossties, and reduction of the cement consumption rate. The authors have identified that ash added into the injection does not cause any deterioration of the mortar strength; rather, it assures its structural stability and prevents any leaching of heavy metals that it contains. The authors have identified that adding 20 to 26 % of flue ash into the injection reduces the mortar hardening time by 30 %, while the strength of the mortar that has 20 % of ash is almost equal to the one of the benchmark sample. However, any higher ash content causes deterioration of the hardening strength of the mortar. Therefore, the authors have discovered that 20 % of the cement may be replaced by the ash generated in the course of combustion of waste crossties. This replacement is to be performed in the course of preparation of mortars, and it is aimed at the strengthening of the soil. This operation is to be performed in the incinerator to preserve the solution properties. This technology reduces the amount of hazardous by-products through their recycling.

  5. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett

    2012-02-03

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.

  6. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah; Guessasma, Sofiane; Mecheri, Boubakeur; Eshtiaghi, Amir M.; Bennabi, Abdelkrim

    2014-01-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time

  7. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.

    Science.gov (United States)

    Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin

    2010-06-15

    Replacing or repairing masonry mortar is usually necessary in the restoration of historical constructions, but the selection of a proper mortar is often problematic. An inappropriate choice can lead to failure of the restoration work, and perhaps even further damage. Thus, a thorough understanding of the original mortar technology and the fabrication of appropriate replacement materials are important research goals. Many kinds of materials have been used over the years in masonry mortars, and the technology has gradually evolved from the single-component mortar of ancient times to hybrid versions containing several ingredients. Beginning in 2450 BCE, lime was used as masonry mortar in Europe. In the Roman era, ground volcanic ash, brick powder, and ceramic chip were added to lime mortar, greatly improving performance. Because of its superior properties, the use of this hydraulic (that is, capable of setting underwater) mortar spread, and it was adopted throughout Europe and western Asia. Perhaps because of the absence of natural materials such as volcanic ash, hydraulic mortar technology was not developed in ancient China. However, a special inorganic-organic composite building material, sticky rice-lime mortar, was developed. This technology was extensively used in important buildings, such as tombs, in urban constructions, and even in water conservancy facilities. It may be the first widespread inorganic-organic composite mortar technology in China, or even in the world. In this Account, we discuss the origins, analysis, performance, and utility in historic preservation of sticky rice-lime mortar. Mortar samples from ancient constructions were analyzed by both chemical methods (including the iodine starch test and the acid attack experiment) and instrumental methods (including thermogravimetric differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, and scanning electron microscopy). These analytical results show that the ancient masonry

  8. Evaluation of pulp and mortar to pack bitumen radioactive waste

    International Nuclear Information System (INIS)

    Gregorio, Marina da S.; Vieira, Vanessa M.; Tello, Cledola C.O.

    2013-01-01

    According to international experience, for the deposition of cement in surface repository, is necessary the use of cement mortar pastes to immobilize the product. Determining the most efficient folder or for the packed mortar, as well as its ideal formulation, is the goal of this study. To do various experiments with samples of cement paste and mortar, with presence of fluxing and / or clay were performed. Viscosity, density, setting time and compressive strength were evaluated. This study will be presented only the results found in testing of compressive strength to be an essential parameter in the transport, storage and disposal of the product. From the results found will be selected the best formulations for use in packed bitumen tailings from the National Radioactive Waste Repository

  9. PREPARATION OF MORTARS FOR RESTORATION OF ARCHITECTURAL MONUMENTS

    Directory of Open Access Journals (Sweden)

    TEREZA TRIBULOVÁ

    2012-09-01

    Full Text Available Mortar mixtures were prepared considering the microscopic observation, granulometric analysis, mercury porosimetry, XRD analysis, thermogravimetric and differential thermal analysis of the original plaster. Two series of lime mortar samples containing identical mixture of aggregates and admixtures but varying in the kind of a lime binder were prepared. In addition, the sample series varied in the ratio between mixing aggregate and binder. Prepared test bodies were subjected to accelerated carbonation process. Carbonated samples were characterized by the measurement of compressive strength, open porosity, water absorption and resistance to salt crystallization. The samples were also again compared with the original plaster by optical microscopy and XRD analysis. Based on the results of analyses of the original plasters and prepared samples of repair mortar the sample containing lime slurry with the mixture of aggregates in the mixing ratio of 1 : 2 was recommended for the restoration procedure.

  10. Reuse of ash coal in the formulation of mortars

    International Nuclear Information System (INIS)

    Siqueira, J.S.; Souza, C.A.G.; Souza, J.A.S.

    2012-01-01

    This paper aims to study the ash incorporation from the combustion of coal in fluidized bed boilers, in production of mortar, replacing part of cement. Specimens were prepared using Portland cement to the specifications CPII-E-32 of normal characteristics and classification of sand below 100 mesh. Blends in the 4:1 ratio, that is, 4 parts of aggregate to 1 part of cement, with insertion of ashes in the proportions 0, 10, 20, 30, 40 and 50%. The mortar was developed in mixing and casting was made in a mold of 5 cm x 10 cm. The behavior of compressive strength was evaluated after 28 days; the strength decreases with increasing percentage of ash. Additional analysis was carried out by X-ray diffraction, and it was found that the substitution of this waste can be successfully used in mortars with blends of up to 30%. (author)

  11. The dynamic behavior of mortar under impact-loading

    Science.gov (United States)

    Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner

    2007-06-01

    Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.

  12. Characterization of Incorporation the Glass Waste in Adhesive Mortar

    Science.gov (United States)

    Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.

    Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.

  13. Use of red mud as addition for portland cement mortars

    International Nuclear Information System (INIS)

    Ribeiro, D.V.; Morelli, M.R.

    2011-01-01

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste that is obtained from bauxite during the Bayer process for alumina production, in the raw meal of Portland cement mortars. The red mud is classified as dangerous, according to NBR 10004/2004, and world while generation reached over 117 million tons/year. This huge production requires high consuming products to be used as incorporation matrix and we studied the influence of red mud addition on the characteristics of cement mortars and concrete. In this paper the properties of Portland cement mortars incorporating high amounts of red mud was evaluated: pH variation, fresh (setting time, workability or normal consistency and water retention), and hardened state (mechanical strength, capillary water absorption, density and apparent porosity). Results seem promising for red mud additions up to 20 wt%. (author)

  14. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the

  15. Damages to masonry due to interaction(s) between mortar and brick

    NARCIS (Netherlands)

    Klugt, L.J.A.R. van der

    1995-01-01

    Masonry consists of brick and mortar. Next to the laying mortar there can be a separate pointing mortar as well. Each of these components can suffer damage. Such damages, of course, have to do with the properties of the components and with the agressiveness of the environment. However, next to their

  16. Water extraction out of mortar during brick laying. An NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.

    1996-01-01

    The water extraction out of mortar during brick laying was studied by nuclear magnetic resonance. The water extraction is an important parameter that determines, e.g., the stiffness of the mortar due to compaction of the cement particles and the bond strength of the cured-mortar interfaces but allo

  17. Homogeneity and Strength of Mortar Joints in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Arvidsson, Michael; Hansen, Kurt Kielsgaard

    2015-01-01

    -to-mix mortar products are tested. To the authors’ knowledge, no previous published work has documented the homogeneity and properties of mortar joints of such a height. Hence, the present study documents a practical test procedure where the homogeneity of three mortar joints measuring 20 x 220 x 2400 mm has...

  18. Various mortars for anti-fouling purposes in marine environments

    International Nuclear Information System (INIS)

    Kanematsu, Hideyuki; Masuda, Tomoka; Miura, Yoko; Kuroda, Daisuke; Hirai, Nobumitsu; Yokoyama, Seiji

    2014-01-01

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively

  19. The colour potentials of SSA-containing mortar

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2015-01-01

    This paper reports an experimental study of aesthetical qualities of mortar containing sewage sludgeash (SSA). SSA is the residue produced at water treatment plants where incineration of the sludge is applied in order to decrease volume and to prevent pathogens from spreading. Today SSA is with a......This paper reports an experimental study of aesthetical qualities of mortar containing sewage sludgeash (SSA). SSA is the residue produced at water treatment plants where incineration of the sludge is applied in order to decrease volume and to prevent pathogens from spreading. Today SSA...

  20. Various mortars for anti-fouling purposes in marine environments

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Hideyuki; Masuda, Tomoka [Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Miura, Yoko; Kuroda, Daisuke [Department of General Education, The Company, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Hirai, Nobumitsu [Department of Chemistry and Biochemistry, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Yokoyama, Seiji [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580 (Japan)

    2014-02-20

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively.

  1. Ancient mortars from Cape Verde: mineralogical and physical characterization

    Science.gov (United States)

    Rocha, Fernando; Costa, Cristiana; Velosa, Ana; Quintela, Ana; Terroso, Denise; Marques, Vera

    2014-05-01

    Times and locations of different building constructions means different knowledge, habits, different construction methods and materials. The study and safeguarding of the architectural heritage takes nowadays a progressive importance as a vehicle for transmission of cultures and history of nations. The coatings are of great importance in the durability of a building due to the protective role of the masonry. The compatibility between the materials with which they are executed (masonry, mortar and grout settlement) promotes the proper functioning of the wall and a consequent increase in durability. Therefore, it becomes important to study and characterize the mortar coating of buildings to know its characteristics and to use compatible materials in the rehabilitation and maintenance of buildings. This study aims to characterize the chemical, physical, mechanical and mineralogical mortar samples collected in buildings in three islands of Cape Verde, for the conservation, rehabilitation and preservation of them. The collected samples belong to buildings constructed in the end of XIX century and in the beginning of XX century. In order to characterize the mortar samples some tests was made, such as X-Ray Diffraction, X- Ray Fluorescence, acid attack and mechanical strength. The samples were divided into three groups depending on origin; so we have a first group collected on the island of Santiago, the second on the island of Saint Vincent and the third on the island of Santo Antao. The samples are all carbonated, but Santiago samples have a lower carbonates content. In terms of insoluble residue (from the acid attack) it was concluded that the samples have similar value ranging from 9 to 26%. The compressive strength of the mortars have a range between 1.36 and 4.55 MPa, which is related to the presence of more binder in samples with higher resistance. The chemical and mineralogical analyzes showed that these consist of lime mortars (binder), natural pozzolan and

  2. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  3. Light brick mortar with low thermal conductivity for stressed brickwork. Types, properties, limits of application

    Energy Technology Data Exchange (ETDEWEB)

    Plank, A [Bundesanstalt fuer Materialpruefung, Berlin (Germany, F.R.)

    1980-03-01

    Between 40 and 50% of the total energy consumption are used for space heating. 40% of the total heat loss dissipate through external walls due to transmission. The heat insulation properties of a brickwork is decisively determined by the mortar joints. Using light brick mortars with low thermal conductivity an improvement of the total thermal insulation of nearly 20% can be reached in most of the cases. The mechanical properties of these mortars that differ from the common mortars decisively reduce the application of the light brick mortar in brick working and require special measures for stability which are described in detail.

  4. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    OpenAIRE

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-01

    Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). ...

  5. Simulation of the self-healing of dolomitic lime mortar

    NARCIS (Netherlands)

    Lubelli, B.; Nijland, T.G.; Hees, R.P.J. van

    2012-01-01

    A test procedure was set up to reproduce laboratory self-healing on lime-based (both pure calcium and magnesium-calcium) mortar specimens. After a few months of testing, during which time the specimens were submitted to wet-dry cycles, thin sections of the specimens were prepared and observed using

  6. Simulation of self-healing of dolomitic lime mortar

    NARCIS (Netherlands)

    Lubelli, B.; Nijland, T.G.; Van Hees, R.P.J.

    2011-01-01

    In the present research a test procedure was set up to reproduce self-healing on lime-based (both pure calcium and magnesium-calcium) mortar specimens in laboratory. After few months testing, during which the specimens were subjected to wet-dry cycles, thin sections of the specimens were prepared

  7. Determination of the chloride diffusion coefficient in blended cement mortars

    NARCIS (Netherlands)

    Elfmarkova, V.; Spiesz, P.R.; Brouwers, H.J.H.; Bilek, V.; Kersner, Z.

    2014-01-01

    Literature shows that the RCM test development and experience concerns only Ordinary Portland cement. Therefore, a validation of this test method is needed for other types of binders. This study analyzes the application of RCM test for mortars prepared with different binders: Ordinary Portland

  8. A nano approach to consolidation of degraded historic lime mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana; Ziegenbalg, G.

    2009-01-01

    Roč. 8, č. 2 (2009), s. 13-22 ISSN 1662-5250 R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : lime water * calcium hydroxide nanosuspension * lime mortar Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.571, year: 2009

  9. Lime-water consolidation effects on poor lime mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    2012-01-01

    Roč. 43, č. 1 (2012), s. 31-36 ISSN 0044-9466 R&D Projects: GA ČR(CZ) GA103/09/2067 Institutional support: RVO:68378297 Keywords : lime mortar s * lime -water consolidation * conservation Subject RIV: JN - Civil Engineering

  10. Chloride penetration into cementitious mortar at early age

    NARCIS (Netherlands)

    Caballero, J.; Polder, R.B.; Leegwater, G.A.; Fraaij, A.L.A.

    2012-01-01

    Modern service life design methods for concrete structures use chloride diffusion data as an input parameter. Abundant data exist for concrete at 28 days and, to a lesser extent, at later ages. This paper presents chloride diffusion data for mortar at ages between 1 day and 28 days age. Rapid

  11. Low Carbon Footprint mortar from Pozzolanic Waste Material

    Science.gov (United States)

    Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra

    2017-04-01

    Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  12. Do Schools Still Need Brick-and-Mortar Libraries?

    Science.gov (United States)

    Johnson, Doug; Mastrion, Keith

    2009-01-01

    Do all schools need brick-and-mortar libraries? In this article, Johnson and Mastrion share their contradictory thoughts to the question. Johnson says some schools don't need library facilities or programs or librarians. These schools' teachers and administrators: (1) feel no need for a collaborative learning space; (2) feel the ability to process…

  13. Calcium Sulfoaluminate, Geopolymeric, and Cementitious Mortars for Structural Applications

    Directory of Open Access Journals (Sweden)

    Alessandra Mobili

    2017-09-01

    Full Text Available This paper deals with the study of calcium sulfoaluminate (CSA and geopolymeric (GEO binders as alternatives to ordinary Portland cement (OPC for the production of more environmentally-friendly construction materials. For this reason, three types of mortar with the same mechanical strength class (R3 ≥ 25 MPa, according to EN 1504-3 were tested and compared; they were based on CSA cement, an alkaline activated coal fly ash, and OPC. Firstly, binder pastes were prepared and their hydration was studied by means of X-ray diffraction (XRD and differential thermal-thermogravimetric (DT-TG analyses. Afterwards, mortars were compared in terms of workability, dynamic modulus of elasticity, adhesion to red clay bricks, free and restrained drying shrinkage, water vapor permeability, capillary water absorption, and resistance to sulfate attack. DT-TG and XRD analyses evidenced the main reactive phases of the investigated binders involved in the hydration reactions. Moreover, the sulfoaluminate mortar showed the smallest free shrinkage and the highest restrained shrinkage, mainly due to its high dynamic modulus of elasticity. The pore size distribution of geopolymeric mortar was responsible for the lowest capillary water absorption at short times and for the highest permeability to water vapor and the greatest resistance to sulfate attack.

  14. Finite element stress analysis of brick-mortar masonry under ...

    African Journals Online (AJOL)

    Stress analysis of a brick-mortar couplet as a substitute for brick wall structure has been performed by finite element method, and algorithm for determining the element stiffness matrix for a plane stress problem using the displacement approach was developed. The nodal displacements were derived for the stress in each ...

  15. Study on effective modifiers for damaging salts in mortar

    NARCIS (Netherlands)

    Granneman, S.J.C.; Ruiz-Agudo, E.; Lubelli, B.A.; Hees, R.P.J. van; Rodgriguez-Navarro

    2014-01-01

    The use of crystallization modifiers for the prevention or mitigation of salt crystallization damage has recently received a lot of research interest in the field of building conservation. However, the use of crystallization modifiers mixed in a lime-based mortar, is still a very new field of

  16. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.; Fischer, H.B

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  17. Study of the laboratory Vane test on mortars

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Elton [Post-Graduate Program in Structures and Civil Construction, Civil and Environmental Engineering Department, University of Brasilia Campus Universitario Darcy Ribeiro Asa Norte, 70910-900 Brasilia/DF (Brazil); Sousa, Jose G.G. de [Federal University of Vale do Sao Francisco, Av. Presidente Tancredo Neve, 100-56306-410 Petroline/PE (Brazil); Guimaraes, Elvio A. [University of Feira de Santana, Campus Universitario-BR 116, Km 03-44031-460-Feira de Santana/BA (Brazil); Silva, Francisco Gabriel S. [Post-Graduate Program in Structures and Civil Construction, University of Brasilia Campus Universitario Darcy Ribeiro Asa Norte, 70910-900 Brasilia/DF (Brazil)

    2007-01-15

    The Vane method (Vane test) is a simple but efficient method to measure the yield stress among other properties of non-Newtonian fluids. These fluids exhibit big flow effects in flat surfaces which are common in rheometers devices of different types (parallel disk or coaxial cylinder types). The yield stress values obtained with Vane method, in pastes, gels, soils and concentrated suspensions, have presented good agreement with results found elsewhere by most of the rheologic methods shown in the literature. The aim of this work is presenting a discussion on the capabilities of the Vane method, highlighting the theoretical basis, the functioning principle with some operational particularities, and some applications of the method in investigating the properties of fresh rendering mortars. Works of several authors that used the same method for fresh mortars were reviewed and experimental results of tests done by the authors of this paper using the method are also presented and discussed, focusing on the desirable workability for mortars. The Vane test method is an important tool in studying rheological properties in freshly applied mortar. It is able to define clear conditions in the applying of this material. (author)

  18. A Preliminary Study on Cathodic Prevention in Reinforced Mortar

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; Mol, J.M.C.; De Wit, J.H.W.

    2010-01-01

    This work presents the preliminary tests on the performance of cathodic prevention (CPre) in reinforced mortar, subjected to aggressive (10% NaCl environment). Cathodic prevention is an electrochemical technique for minimizing, actually "preventing" any eventual corrosion of the steel bars in

  19. Investigation of Induction Heating in Asphalt Mortar: Numerical Approach

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; van de Ven, M.F.C.; van Bochove, G

    2016-01-01

    The research reported in this paper focuses on utilization of advanced finite-element analyses (COMSOL) for the design and assessment of the induction heating capacity of asphalt mortar by adding electrically conductive additives (e.g., steel fibers), and to understand the factors that influence the

  20. Comportamiento mecánico de mezclas de resina furanopoxídica con polisulfuros para su uso como adhesivos de alta resistencia. Acción de las cargas estáticas. // Mechanical behaviour of epoxi-modified furan polymer blends with polysulfyde for use as high st

    Directory of Open Access Journals (Sweden)

    D. Díaz Batista

    1999-01-01

    Full Text Available La modificación de polímeros furánicos con otros de diferentes propiedades ha sido una vía para lograr el mejoramiento deestos impartiéndoles propiedades específicas. La incorporación de polisulfuros como tiokol caucho a la resina furfural-acetonamodificada con grupos epoxídicos es estudiada en base a ensayos estáticos observándose un incremento discreto sobre laadhesividad de las mezclas y un aumento notable en el módulo elástico. Se estudió el comportamiento de estos adhesivos sobreun grupo de substratos de uso estructural.Palabras claves: resinas, pol isul furos, adhesivos de al ta resi st encia.__________________________________________________________________________AbstractModification of furan polymers with other ones having different behaviour has been an alternative to improve them developingspecific properties. Blends of polysulfide in the rubbery form with epoxi-modified furan resin are studied based on static tests.It has been observed a small increase in adhesive strength and a higher elastic modulus. Four substrates commonly used instructural parts were evaluated.Key words: Resin, polysul fyde, high strength adhesive.

  1. Dispersibility of silica fume in mortar and its effect on properties of mortar. Silica fume no bunsan to mortar no shotokusei

    Energy Technology Data Exchange (ETDEWEB)

    Oga, H; Uomoto, T [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1992-08-01

    Effect of silica fume dispersibility on concrete characteristics was discussed. Properties of mortar mixed with silica fume to exhibit compression strength varied with displacement rates, patterns, and mixing time of silica fume. In submerged curing age of 28 days, the compression strength in a mortar mixed with silica fume at 10% was affected only very little by the mixing time for both pelletizing and non-pelletizing types for up to 180 seconds. The strength increased thereafter with the mixing time. The compression strength at 1020 seconds showed higher value by about 150 kgf/cm [sup 2] than when no silica fume is added, with a difference because of patterns disappearing. In the case of a mixing time of 1020 seconds, neutralization depth receives very little effect from a pattern difference, and decreases with increasing displacement rate. Neutralization coefficient of the mortar mixed with silica fume at 10% decreased with the mixing time, and it was possible to suppress the neutralization coefficient to 25% of the case without silica fume addition in a 1020-second mixing. 7 refs., 8 figs., 1 tab.

  2. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  3. The potential use of silica sand as nanomaterials for mortar

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  4. The adherence in the union stone-mortar

    Directory of Open Access Journals (Sweden)

    Rodríguez García, María Reyes

    1994-06-01

    Full Text Available Stones placates present a wide of problems that result in the fall of plates. One of the causes is the lack of adherence stone-mortar. We considered a study to determine the adherence between several cement mortars (1:3, 1:5, 1:7, 1:9 and a especial mortar prepared with latex and stones (white granite, pink granites, black granites, white marble and cream limestones. The results obtained suggest that only adequate adherence rates (higher than 3 kgf/cm2 achieved with cement mortar 1:3 and especial mortar. Besides it is observed that in the stones studied there is no relation between adherence and the absorption values.

    Los aplacados de piedra presentan una extensa patología que se traduce en la caída de las placas colocadas. Una de las causas es la falta de adherencia mortero-piedra. El estudio se realiza para determinar la tensión de adherencia entre diversos morteros de cemento (1:3, 1:5, 1:7, 1:9 y otro compuesto por mortero y látex y piedras (granito blanco, granitos rosa, granitos negros, mármol blanco y calizas crema. De los resultados obtenidos se deduce que los únicos morteros que permiten valores de adherencia aceptables (superiores a 3 kp/cm2 son el mortero de cemento 1:3 y el especial. Igualmente se comprueba que, en las piedras estudiadas, no existe relación alguna entre la adherencia y la absorción de agua.

  5. Strengthening Masonry Arches with Lime-Based Mortar Composite

    Directory of Open Access Journals (Sweden)

    Valerio Alecci

    2017-06-01

    Full Text Available In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs. These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load

  6. Sulfate resistance of nanosilica contained Portland cement mortars

    Science.gov (United States)

    Batilov, Iani B.

    Soils, sea water and ground water high in sulfates are commonly encountered hostile environments that can attack the structure of concrete via chemical and physical mechanisms which can lead to costly repairs or replacement. Sulfate attack is a slow acting deteriorative phenomenon that can result in cracking, spalling, expansion, increased permeability, paste-to-aggregate bond loss, paste softening, strength loss, and ultimately, progressive failure of concrete. In the presented research study, Portland cement (PC) mortars containing 1.5% to 6.0% nanosilica (nS) cement replacement by weight were tested for sulfate resistance through full submersion in sodium sulfate to simulate external sulfate attack. Mortars with comparable levels of cement replacement were also prepared with microsilica (mS). Three cement types were chosen to explore nS' effectiveness to reduce sulfate expansion, when paired with cements of varying tricalcium aluminate (C3A) content and Blaine fineness, and compare it to that of mS. Mortars were also made with combined cement replacement of equal parts nS and mS to identify if they were mutually compatible and beneficial towards sulfate resistance. Besides sulfate attack expansion of mortar bars, the testing program included investigations into transport and microstructure properties via water absorption, sulfate ion permeability, porosimetry, SEM with EDS, laser diffraction, compressive strength, and heat of hydration. Expansion measurements indicated that mS replacement mortars outperformed both powder form nS, and nS/mS combined replacement mixtures. A negative effect of the dry nS powder replacement attributed to agglomeration of its nanoparticles during mixing negated the expected superior filler, paste densification, and pozzolanic activity of the nanomaterial. Agglomerated nS was identified as the root cause behind poor performance of nS in comparison to mS for all cement types, and the control when paired with a low C3A sulfate resistant

  7. Inhibition of Cracks on the Surface of Cement Mortar Using Estabragh Fibers

    Directory of Open Access Journals (Sweden)

    Tahereh Soleimani

    2013-01-01

    Full Text Available The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.

  8. Evaluation of electric properties of cement mortars containing pozzolans

    Directory of Open Access Journals (Sweden)

    Cruz, J. M.

    2011-03-01

    Full Text Available In this paper the evolution of the microstructure of Portland cement mortar is analyzed, by using electrical impedance measurements. Cement mortars are compared without and with two pozzolanic substitutions: spent fluid catalytic cracking catalyst (FCC and metakaolin (MK. The measurement method is described and the model for analyzing the electrical impedance spectra is developed. Three electrical parameters are defined: electrical resistivity, capacitance exponent, and capacitive factor. The results show a significant increase in resistivity of the mortars with pozzolans after 7 days of curing, especially in mortars with MK. This increase is correlated with lime-fixing by the pozzolans. The capacitive properties evolve differently at early age, but reach the same values after 148 days. The electrical and mineralogical data show that the evolution of the microstructure in the mortar with MK starts before it does in the mortars with FCC and that the final microstructure becomes different.

    En este trabajo se analiza la microestructura de morteros de cemento Portland, mediante medidas de impedancia eléctrica. Se comparan morteros de cemento sin y con dos sustituciones puzolánicas: residuo de catalizador de craqueo catalítico (FCC y metacaolín (MK. Se describe el método de medida y se desarrolla el modelo de análisis de los espectros de impedancia eléctrica. Se definen tres parámetros eléctricos: resistividad eléctrica, exponente capacitivo, y factor capacitivo. Se observa un aumento importante de la resistividad de los morteros con puzolana a partir de los 7 días de curado, sobre todo en morteros con MK. Este aumento está correlacionado con la fijación de cal de las puzolanas. Las propiedades capacitivas son diferentes a edad temprana, pero se igualan a los 148 días. Los resultados eléctricos y mineralógicos muestran que la evolución microestructural comienza antes en los morteros con MK que con FCC y que la microestructura

  9. Chemical composition influence of cement based mortars on algal biofouling

    Science.gov (United States)

    Estelle, Dalod; Alexandre, Govin; Philippe, Grosseau; Christine, Lors; René, Guyonnet; Denis, Damidot

    2013-04-01

    The main cause of building-facade biodegradation is the growth of microorganisms. This phenomenon depends on several parameters such as the geographical situation, the environmental conditions and the surface state of the substrate. Several researches have been devoted to the study of the effect of porosity and roughness on the biofouling of stones and mortars. However, none of them have addressed the influence of the mortar chemistry on the microorganism growth kinetic. The main objective of this study is to highlight the influence of the mortar chemistry in relationship with its physical properties on biological weathering. Earlier work showed a good resistance of Calcium Aluminate Cements to biodeterioration by acidogenic bacteria (Thiobacillus) and fungi (Alternaria alternata, Aspergillus Niger and Coniosporium uncinatum). In order to characterize the influence of the mortar chemistry on biofouling, two Portland cements and two alumina cements are used. Among micro-organisms able to grow, green algae are most involved in the aesthetic deterioration of facades. Indeed, they can colonize any type of media and can be a source of nutrients for other micro-organisms such as fungi. The green algae Klebsormidium flaccidum is chosen because of its representativeness. It is indeed the species the most frequently identified and isolated from samples taken on sites. The biofouling kinetic is followed on samples exposed outdoor and on samples tested in a laboratory bench which consists in spraying an algae culture on mortar specimens. The results obtained by in situ trials are compared with the results obtained on the laboratory bench. The microorganism growth kinetic is measured by image analysis. To improve the detection of algae on the surface of the cementitious samples, the raw image is converted in the YIQ color space. Y, I and Q correspond respectively to luminance, in-phase, and quadrature. On the Q channel, the areas covered by algae and the areas of clean mortar

  10. Study on properties of mortar using silica fume and ground blast furnace slag. Silica fume oyobi koro slag funmatsu wo mochiita mortar no tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shiiba, H; Honda, S; Araki, A [Fukuoka University, Fukuoka (Japan). Faculty of Engineering

    1992-09-01

    The effect of silica fume and ground blast furnace slag in concrete on the content of superplasticizer, and dynamic properties of hardened mortar with such admixtures were studied experimentally. Although the dependence of a flow value on the superplasticizer was dominated by kinds of superplasticizers, blast furnace slag enhanced the flow value resulting in a high fluidity. Adsorption of superplasticizers onto admixtures was dependent on kinds of superplasticizers, and adsorption onto blast furnace slag was 1.3-2 times that onto normal Portland cement (NPC). The compressive strength of mortar increased by mixing admixtures, while the bending strength was enhanced only by mixing silica fume. Mixing mortar was lower in dynamic elastic modulus than NPC mortar at the same compressive strength, and the velocity of supersonic wave in mortar was scarcely affected by mixing. 11 refs., 14 figs., 3 tabs.

  11. Compressive strength of concrete and mortar containing fly ash

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  12. Durability of Mortar Made with Fine Glass Powdered Particles

    Directory of Open Access Journals (Sweden)

    Rosemary Bom Conselho Sales

    2017-01-01

    Full Text Available Different studies investigate the use of waste glass in Portland cement compounds, either as aggregates or as supplementary cementitious materials. Nevertheless, it seems that there is no consensus about the influence of particle color and size on the behavior of the compounds. This study addresses the influence of cement replacement by 10 and 20% of the colorless and amber soda-lime glass particles sized around 9.5 μm on the performance of Portland cement mortars. Results revealed that the partial replacement of cement could contribute to the production of durable mortars in relation to the inhibition of the alkali-aggregate reaction. This effect was more marked with 20% replacement using amber glass. Samples containing glass microparticles were more resistant to corrosion, in particular those made of colorless glass. The use of colorless and amber glass microparticles promoted a reduction in wear resistance.

  13. Finite cover method with mortar elements for elastoplasticity problems

    Science.gov (United States)

    Kurumatani, M.; Terada, K.

    2005-06-01

    Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.

  14. Fracture mechanics of polymer mortar made with recycled raw materials

    Directory of Open Access Journals (Sweden)

    Marco Antonio Godoy Jurumenha

    2010-12-01

    Full Text Available The aim of this work is to show that industrial residues could be used in construction applications so that production costs as well as environmental protection can be improved. The fracture properties of polymer mortar manufactured with recycled materials are investigated to evaluate the materials behaviour to crack propagation. The residues used in this work were spent sand from foundry industry as aggregate, unsaturated polyester resin from polyethylene terephthalate (PET as matrix and polyester textile fibres from garment industry, producing an unique composite material fully from recycled components with low cost. The substitution of fresh by used foundry sand and the insertions of textile fibres contribute to a less brittle behaviour of polymer mortar.

  15. Radiation chemical treatment of cement mortar - polymer composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    1994-01-01

    The development of the hardened cement pastes,mortars and concretes which contain polymers has progressed rapidly in years. Developmental work has identified a number of applications where the high strength and excellent durability of the composite materials will provide definite advantages over conventional mortars and concretes. The first investigations of polymer - impregnated concrete tried mainly to increase the quantity of absorbed and polymerised monomer because this gave a greater decrease in the original of concrete and a subsequent improvement in physico - mechanical properties. However, the production costs which is due mainly to the organic polymer, becomes the most important item. In this respect recent research showed the possibility of obtaining with a very compact concrete, of relative low porosity, a compound material with high performances after impregnation 26 tabs.,28 figs.,109 refs

  16. Effect of temperature on the mechanical properties of polymer mortars

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2012-08-01

    Full Text Available This paper presents the results of an experimental program to investigate the effect of temperature on the performance of epoxy and unsaturated polyester polymer mortars (PM. PM is a composite material in which polymeric materials are used to bond the aggregates in a fashion similar to that used in the preparation of Portland cement concrete. For this purpose, prismatic and cylindrical specimens were prepared for flexural and compressive tests, respectively, at different temperatures. Measurements of the temperature-dependent elastic modulus and the compressive and flexural strength were conducted using a thermostatic chamber attached to a universal test machine for a range of temperatures varying from room temperature to 90 ºC. The flexural and compressive strength decreases as temperature increases, especially after matrix HDT. Epoxy polymer mortars are more sensitive to temperature variation than unsaturated polyester ones.

  17. Valorization of mud from Fergoug dam in manufacturing mortars

    Directory of Open Access Journals (Sweden)

    L. Laoufi

    2016-12-01

    Full Text Available The production of calcined mud, with pozzolanic properties, from the large quantities of sediments dredged from Algerian dams, could be a good opportunity for the formulation of high performance mortars and pozzolanic concretes, with lower costs and less greenhouse gas (CO2 emissions. The optimal temperatures selected for calcination were 750, 850 and 950 °C. The burning operation was continuous over a period of 3 h. Therefore, a series of physical, chemical, mechanical and microstructural analyses were conducted on sediment samples, collected from the waters of Fergoug dam. The results obtained from the analyses of the calcined mud, from the dam, allowed saying that mortars with different percentages of that mud represent a potential source of high reactivity pozzolanic materials.

  18. Characterization of civil construction waste and its incorporation to mortar

    International Nuclear Information System (INIS)

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C.

    2009-01-01

    As the preservation of the environment is a big concern nowadays, plenty of studies have arisen in order to decrease the production or reuse the waste from human activities. In this context, the civil construction industry comes up, as it is able to incorporate waste to mortar, being a great alternative for the reuse of solid waste. The scope of this work has been the characterization of Construction and Demolishment Waste (RCD) and its incorporation to the mortar aiming at the development of alternative construction materials in the future for the economical reutilization of waste discharged in embankments and landfills so far preserving the environment so far. The experimental studies taken with sample bodies, such as water absorption, resistance to compression, X-ray diffraction, X-ray fluorescence and scanning electronic microscopy, elicits the viability of the partial substitution of cement by RCD mixed waste, taking its different applications into consideration. (author)

  19. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial z......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...

  20. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Trtik, Pavel [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Münch, Beat [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Weiss, Jason [Purdue University, School of Civil Engineering, West Lafayette (United States); Vontobel, Peter [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Lura, Pietro [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); ETH Zurich, Institute for Building Materials (IfB), Zurich (Switzerland)

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  1. A lime based mortar for thermal insulation of medieval church vaults

    DEFF Research Database (Denmark)

    Larsen, P.K.; Hansen, Tessa Kvist

    A new mortar for thermal insulation of medieval church vaults was tested in a full scale experiment in Annisse Church, DK. The mortar consists of perlite, a highly porous aggregate, mixed with slaked lime. These materials are compatible with the fired clay bricks and the lime mortar joints....... The lambda-value of the insulation mortar is 0.08 W/m K or twice the lambda-value for mineral wool. The water vapour permeability is equal to a medieval clay brick, and it has three times higher capacity for liquid water absorption. The mortar was applied to the top side of the vaults in a thickness of 10 cm......, despite a water vapour pressure gradient up to 500 Pa between the nave and attic. There was no reduction in energy consumption the first winter, possibly due to the increased heat loss related to the drying of the mortar....

  2. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    International Nuclear Information System (INIS)

    Wyrzykowski, Mateusz; Trtik, Pavel; Münch, Beat; Weiss, Jason; Vontobel, Peter; Lura, Pietro

    2015-01-01

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation

  3. The long term effect on cement mortar by admixture of spray drying absorption products

    International Nuclear Information System (INIS)

    Jeppesen, K.G.

    1988-01-01

    Preliminary investigations have shown that the substitutions of up to 10% fly ash (FA), with spray drying absorption products (SDA), in cement mortars (cement: 80% rapid portland cement (RPC), 10-20% FA, 0-10% SDA) results in low early strength of the same magnitude as in mortar with 80% RPC + 20% FA. Use of the modified instructions for preparation of mortar prisms containing SDA resulted in satisfactory early strengths. A series of mortar prisms with increasing content of SDA (x% RPC, (100-x)% SDA in cements; 0 80% cannot be stored wet. The effects on mortars of the individual constituents of the SDA-products are studied by XRD, development in strength and density. Fragments of 2 year old SDA containing cement mortars and SDA containing concrete from a parking place have been studied

  4. Freezing and thawing resistance of aerial lime mortar with metakaolin\

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana

    2016-01-01

    Roč. 114, July (2016), s. 896-905 ISSN 0950-0618 R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : freeze-thaw * lime * metakaolin * linseed oil * mortar * water-repellency Subject RIV: JN - Civil Engineering Impact factor: 3.169, year: 2016 http://www.sciencedirect.com/science/article/pii/S0950061816305645

  5. Fracture mechanics of polymer mortar made with recycled raw materials

    OpenAIRE

    Jurumenha,Marco Antonio Godoy; Reis,João Marciano Laredo dos

    2010-01-01

    The aim of this work is to show that industrial residues could be used in construction applications so that production costs as well as environmental protection can be improved. The fracture properties of polymer mortar manufactured with recycled materials are investigated to evaluate the materials behaviour to crack propagation. The residues used in this work were spent sand from foundry industry as aggregate, unsaturated polyester resin from polyethylene terephthalate (PET) as matrix and po...

  6. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  7. Environmental Factors Affecting the Strength Characteristics of Modified Resin Mortars

    Science.gov (United States)

    Debska, Bernardeta; Licholai, Lech

    2017-12-01

    Resin concretes are composites in which a cement binder has been completely replaced by a synthetic resin. These materials are a good choice for the construction industry, especially in solutions requiring high strength, fast curing and durability. Polymer mortars are mainly used for the manufacture of industrial floors and prefabricated products such as tanks for aggressive chemicals, sewage pipes, or road and bridge drainage systems, as well as for the repair of damaged concrete structures. In all these applications, the strength and high chemical resistance of the applied material solutions are of key importance. It is particularly crucial to obtain information on how resin composites behave when exposed to aggressive agents over extended periods of time. It is also very important to use waste materials in order to obtain resin composites, as these activities are very well inscribed in the idea of environmental protection and meet the criteria of sustainable construction. The mortars described in this article meet the above principles. The article presents how the compressive strength of glycolyzate-modified epoxy mortars, obtained with the use of poly(ethylene terephthalate), changes after they are immersed in 10% sodium chloride solution. Sodium chloride solution was chosen due to the prospective applicability of the tested composites as repair materials used for e.g. bridges or overpasses that are exposed to this salt solution in wintertime. Changes in the properties of the composite samples were monitored over the period of one year. Statistical analysis of the test results was carried out with the use of Statistica programme. The module available in the mentioned program called Nonparametric Statistics - Comparing multiple independent samples made it possible to check the monitoring times during which the compressive strength values differed significantly. The obtained results allowed for determining the equation of the function approximating the course of

  8. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    OpenAIRE

    Ahmed Ghazy; Mohamed T. Bassuoni; Eugene Maguire; Mark O’Loan

    2016-01-01

    Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the m...

  9. Optimization of superplasticizer in portland pozzolana cement mortar and concrete

    Science.gov (United States)

    Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.

    2018-02-01

    Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.

  10. Strength Performance of Blended Ash Based Geopolymer Mortar

    Science.gov (United States)

    Zahib, Zaidahtulakmal M.; Kamaruddin, Kartini; Saman, Hamidah M.

    2018-03-01

    Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.

  11. Techniques for measuring ammonia in fly ash, mortar, and concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, R.F. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Reseach; Majors, R.K. [Boral Material Technologies, Inc., San Antonio, TX (United States). Engineered Materials

    2003-12-01

    The presence of ammonia in fly ash that is to be used in mortar and concrete is of increasing concern in the U.S., mainly due to the installation of selective catalytic reduction (SCR) DeNOx systems. When the SCR catalyst is new, contamination of the fly ash with ammonia is generally not a concern. However, as the catalyst in the SCR ages and becomes less efficient, the ammonia slip increases and results in a greater amount of ammonium salt being precipitated on the fly ash. The increase in ammonia concentration is compounded by variability that can occur on a day-to-day basis. When marketing ammonia-laden fly ash for use in mortar and concrete it is imperative that the concentration of ammonia is known. However, there currently is no widely accepted or ''standard'' method for ammonia measurement in fly ash. This paper describes two methods that have been developed and used by the University of Kentucky Center for Applied Energy Research and Boral Material Technologies, Inc. One of the methods uses gas detection tubes and can provide an accurate determination within five to ten minutes. Thus it is suitable as a rapid field technique. The other method employs a gas-sensing electrode and requires a longer period of time to complete the measurement. However, this second method can also be used to determine the quantity of ammonia in fresh mortar and concrete. (orig.)

  12. Fatigue behaviour analysis for the durability prequalification of strengthening mortars

    International Nuclear Information System (INIS)

    Bocca, P; Grazzini, A; Masera, D

    2011-01-01

    An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).

  13. SELECTED PROPERTIES OF EPOXY MORTARS WITH PERLITE AGGREGATE

    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska

    2017-01-01

    Full Text Available Contemporarily designed, new polymer concrete-like composites are increasingly often used in construction, particularly where high chemical resistance of the material is important. However, their widespread use is limited, mainly due to the cost of resin binders used. This is a significant problem, especially in a situation where it is necessary to obtain elements of a substantial volume. One solution to this inconvenience is to develop lighter concrete. The article presents a lightweight resin mortar obtained by substitution of sand with expanded perlite. Thanks to its properties, this aggregate allows for the production of a material with a more porous structure, which is highlighted by the received SEM photos. The binder in the mortars was epoxy resin, hardened with triethylenetetramine. The results of the tests carried out allow us to conclude that despite the significant reduction of strength parameters of mortar, we can obtain a material with lower weight, good chemical resistance and low water absorption, and characterized by significant thermal insulation. This type of composites can be used, among others, as cores in sandwich panels.

  14. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    Directory of Open Access Journals (Sweden)

    Rackel eSan Nicolas

    2015-12-01

    Full Text Available The interfacial transition zone (ITZ is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE generated in an environmental scanning electron microscope (ESEM are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  15. Physico Mechanical Properties of Irradiated Waste Rubber Cement Mortar

    International Nuclear Information System (INIS)

    Younes, M.M.

    2010-01-01

    In the present study a partial replacement of aggregate with two different ratios of waste rubber (5%, 10%) with the addition of a constant ratio of rice husk ash (RHA), 5% was carried out. The hardened cement mortar used the optimum water of consistency. The specimens were molded into 1 inch cubic moulds .The specimens were first cured for 24 hours, at 100% relative humidity and then cured under tap water for 3, 7 and 28 days followed by irradiation at different doses of gamma irradiation namely 5 and 10 kGy. The physico-chemical and mechanical properties such as compressive strength, total porosity and bulk density were studied for the three types of specimens. The results showed that the values of the compressive strength, bulk density and chemically combined water of the blended cement mortar paste (OPC-RHA) increase ,while blended cement mortar paste with 5% RHA and 5, 10% waste rubber decrease. The results were confirmed by scanning electron microscopy and thermal behavior of the specimens. Also, it was observed that the irradiated sample was thermally more stable than the unirradiated one

  16. Acidic Attack Resistance of Cement Mortar Treated with Alkaline

    Directory of Open Access Journals (Sweden)

    Nadia Nazhat Sabeeh

    2017-12-01

    Full Text Available The negative effect of acidic attack on the properties of concrete and cement mortar is a topic of increasing significance in the recent years. Many attempts has occurred to mitigate this negative impact by improving the properties of concrete and increase resistance to acids by using additives. The present study includes treatment of sand by alkaline material and examine the effect of treatment on cement mortar resistance towards hydrochloric and sulfuric acid. Results show that sand treatment by alkaline material significantly enhance mortar ability to resist acids. In terms of loss weight, the maximum weight rate gain was 25.54% for specimens immersed in Hydrochloric acid with water cement ratio 40%. For specimens immersed in HCl, the average gain in compressive strength is (20.15-19.433% for w/c (40-45% respectively. The average gain in modulus of rupture toward the influence of H2SO4 is (18.37–17.99% for w/c (40-45%, respectively.

  17. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    Directory of Open Access Journals (Sweden)

    Ahmed Ghazy

    2016-02-01

    Full Text Available Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the mechanical and durability properties of cement-based systems. Thus, there has been a growing interest in the use of nano-modified fiber-reinforced cementitious composites/mortars (NFRM in repair and rehabilitation applications of concrete structures. The current study investigates various mechanical and durability properties of nano-modified mortar containing different types of fibers (steel, basalt, and hybrid (basalt and polypropylene, in terms of compressive and flexural strengths, toughness, drying shrinkage, penetrability, and resistance to salt-frost scaling. The results highlight the overall effectiveness of the NFRM owing to the synergistic effects of nano-silica and fibers.

  18. The transformation of waste Bakelite to replace natural fine aggregate in cement mortar

    Directory of Open Access Journals (Sweden)

    Nopagon Usahanunth

    2017-06-01

    Full Text Available Bakelite material has been used to produce the various components for cars and consumer goods industry in Thailand. The growth of Bakelite consumption increases Bakelite waste. Bakelite waste is prohibited from disposing of direct landfilling and open burning because of the improper disposal and emission reasons. A large amount of this waste needs the large safe space of warehouse area for keeping which becomes a waste management problem. Size reduction by milling machine is helpful for waste handling and storing, however, the post-milling waste Bakelite plastic utilization shall be studied to maintain the waste storing capacity. There are some studies of the milling machine used for waste plastic size reduction. However, the particular study of milling machine application for waste size reduction and its milling waste utilization is still insufficient in Thailand. The purpose of this research is the use of waste Bakelite aggregate milling machine for Bakelite waste size reduction and use of the post-milling waste Bakelite as a fine aggregate to replace natural sand material in cement mortar. The waste Bakelite fine aggregate (WBFA was mixed in cement mortar mixture with the proportion 0% 20% 40% 60% 80% and 100% by volume for cement mortar sample preparation. The mortar sample was tested for compressive strength follow ASTM standard. The compressive test result of mortar samples will be compared between conventional mortar (0% WBFA and waste Bakelite mortar (WBM as well as comparing with the mortar standard. From an analysis of the sample test data found that the WBFA content in cement mortar mixture can predict the strength of WBM. The compressive strength of WBM at 28 days age with the fraction of WBFA is not exceeded 11.03%, and 23.08% respectively can be met the mortar standard according to the equation. The utilization of WBM to develop mortar non-structural mortar product can be usable from a technical point of view.

  19. Effect of cement fineness and polycarboxylate dosage on the rheological and mechanical behavior of a mortar

    Directory of Open Access Journals (Sweden)

    Zahia Didouche

    2018-01-01

    Full Text Available The use of certain organic additives in the production of mortar and concrete influences the workability and the hydration kinetic of mortar. This results in a modification of some properties, namely rheological behavior and mechanical strength. The objective of this work is to evaluate the rheological and mechanical behavior of a mortar by varying the fineness of the cement and using the superplasticizer Polycarboxylate.

  20. Reuse of waste of glass wool in the production of mortar

    International Nuclear Information System (INIS)

    Vieira, P.L.C.; Santos, N.A.; Louzada, D.M.; Araujo, G.S.; Della, V.P.

    2014-01-01

    In recent years, the incorporation of alternative materials, especially waste, in mortars and concretes has become a common practice in the building industry. Against this background, this paper seeks to examine the possibility of using waste glass wool resulting from the steel industry in mortars in partial replacement the thin fraction of sand. To the knowledge of their chemical and mineralogical composition, the waste was subjected to x-ray fluorescence and diffraction assays. Mortars with different percentages of incorporation of waste were produced and performed flow test assays, Water Absorption by capillarity, compressive strength and compressive flexural strength. The results were compared with a reference mortar without residue. (author)

  1. Recycling alternatives of converter slag in concrete and mortars

    International Nuclear Information System (INIS)

    Amorim, Aldo Siervo de

    2000-01-01

    The objective of this work is the study of the use of a residue of a steel plant (COSIPA-SP), constituted by magnetite, in components of the civil construction, aiming to increase the recycling and, consequently, to decrease the impact of that residue in the environment. To reach this objective, additions of this residue were tested in the formulation of concrete with the purpose of radiation shielding, as pellets in coarse aggregate, and as substitute of the fine fraction of sand in the composition of a coating mortar. The concrete produced with purpose of radiation shielding showed that for small residue additions (up to 30%), there was not significant variation in the mechanical properties, nor in the attenuation properties to the radiation. Therefore, it did not justify its addition for purpose of heavy concrete. The results obtained on pelletizing process show that the obtained pellets presented value of specific gravity (2,75 g.cm -3 ) very close to the one of the common crushed stone (2,55 g.cm -3 ), however, they presented a low resistance to the compression, (0,2 KN) for the pellets when compared to regular crushed stones (5,8 KN). These results show that its use could commit the mechanical resistance of the concrete without bringing any advantage on density increase or increment of radiation attenuation. The mortars produced by the addition of the fine residue in substitution to the sand, showed an improvement in the retention of water in green (95%), in comparison to the produced without residue (41%). Also, for ali the tested proportions of substitutions, the same resistance to the compression (approximately 40 MPa) was achieved The results of the leaching and solubility tests showed that even in case of largest amount of substitution of sand for residue (14,55%), there were not great variations on the analyzed elements in the extract, allowing to conclude that the residue behaved satisfactorily to the mortar. Its use as part of mortar composition

  2. Carbon fibre-reinforced, alkali-activated slag mortars

    Directory of Open Access Journals (Sweden)

    Garcés, P.

    2007-12-01

    Full Text Available The paper describes the effect of carbon fibre on alkaliactivated slag mortar (AAS mechanical strength, volume stability and reinforcing steel corrosion, compared to its effect on the same properties in Portland cement (PC properties. Mechanical strength and volume stability tests were performed as set out in the respective Spanish UNE standards. The corrosion rate of steel embedded in the specimens studied was determined from polarization resistance analysis. One of the findings of the study performed was that carbon fibre failed to improve AAS or CP mortar strength. As far as volume stability is concerned, the inclusion of carbon fibres in AAS with a liquid/solid ratio of 0.5 reduced drying shrinkage by about 50%. The effect of carbon fibre on PC mortars differed from its effect on AAS mortars. Studies showed that in the presence of carbonation, steel corrosion reached higher levels in carbon-fibre reinforced AAS mortars; the inclusion of 1% carbon fibre improved corrosion resistance perceptibly in these same mortars, however, when exposed to chloride attack.Se ha estudiado el efecto de la incorporación de fibras de carbón en el comportamiento mecánico, estabilidad de volumen y nivel de corrosión de la armadura en morteros de escorias activadas alcalinamente (AAS. Se evalúa la influencia de las fibras de carbón en el comportamiento de morteros alcalinos en comparación con el efecto que producen en morteros de Portland (CP. Los ensayos mecánicos y de estabilidad de volumen se han realizado según lo establecido en la norma UNE que los regula. Se ha utilizado la técnica de la Resistencia a la Polarización para determinar la velocidad de corrosión del acero embebido en las muestras estudiadas. Como consecuencia del estudio realizado, se ha podido concluir que la adición de fibras de carbón a morteros de AAS y CP no mejora las características resistentes de los mismos. En relación con la estabilidad de volumen, la incorporación de

  3. Influence of moisture condition on chloride diffusion in partially saturated ordinary Portland cement mortar

    NARCIS (Netherlands)

    Zhang, Y.; Zhang, M.; Ye, G.

    2018-01-01

    Experiments have been carried out to study the influence of moisture condition, including moisture content and its distribution, on the chloride diffusion in partially saturated ordinary Portland cement mortar. The mortar samples with water-to-cement (w/c) ratios of 0.4, 0.5 and 0.6, cured for 1

  4. Experimental study of chloride diffusivity in unsaturated ordinary Portland cement mortar

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Santhanam, M.

    2017-01-01

    Experiments are carried out to investigate the chloride diffusivity in partially saturated ordinary Portland cement mortars with water-to-cement (w/c) ratios of 0.4, 0.5 and 0.6. Based on resistivity measurement and Nernst-Einstein equation, the chloride diffusivities of cement mortars at various

  5. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    Science.gov (United States)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.

  6. The Roman mortars used in the construction of the Ponte di Augusto (Narni, Italy)

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Fratini, F.; Frankeová, Dita; Slížková, Zuzana

    2013-01-01

    Roč. 38, č. 1 (2013), s. 1117-1128 ISSN 0950-0618 R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : historic mortar * roman mortar * Narni bridge Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.265, year: 2013

  7. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2014-04-01

    Full Text Available The influence of a chloride-ion adsorption agent (Cl agent in short, composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms.

  8. Self-healing of lime based mortars : Microscopy observations on case studies

    NARCIS (Netherlands)

    Lubelli, B.; Nijland, T.G.; Van Hees, R.P.J.

    2011-01-01

    Lime mortars have, up to a certain extent, a self-healing capacity which may contribute to their durability. Self-healing in lime mortars consists of a process of dissolution, transport and re-precipitation of calcium compounds to heal cracks and fissures. The spontaneous occurrence of self-healing

  9. Self-healing of lime based mortars: Microscopy observations on case studies

    NARCIS (Netherlands)

    Lubelli, B.; Nijland, T.G.; Hees, R.P.J. van

    2011-01-01

    Lime mortars have, up to a certain extent, a self-healing capacity which may contribute to their durability. Self-healing in lime mortars consists of a process of dissolution, transport and re-precipitation of calcium compounds to heal cracks and fissures. The spontaneous occurrence of self-healing

  10. Repair mortars for historic masonry : Effects of the binder choice on durability

    NARCIS (Netherlands)

    Groot, C.J.W.P.

    2016-01-01

    Factors affecting the design of repair mortars for historic masonry are: the type of masonry, the condition of the masonry and the exposure conditions. Especially in case of low-strength masonry exposed to heavy rain and high salt contents the design of a repair mortar may be a challenge. The most

  11. Effect of MHEC on evaporation and hydration characteristics of glue mortar

    NARCIS (Netherlands)

    Faiyas, A.P.A.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G; Nijland, T.G.

    2016-01-01

    The influence of methylhydroxyethylcellulose (MHEC) on both moisture distribution and hydration characteristics of glue mortar using nuclear magnetic resonance imaging (NMR) is investigated. MHEC is added to glue mortar in order to control the drying rate by increasing the open time. Besides drying,

  12. Natural radioactivity levels and danger ratio in cements, concretes and mortars used in construction

    International Nuclear Information System (INIS)

    Meneses, J.; Pacheco, C.; Avila, J. M.; Miro, C.

    2010-01-01

    We have determined the natural radiation level in three types of adhesive cements, five types of concrete and two types of mortars of different strength normally used in the construction field. Of these materials, both concrete and mortars were prepared in our laboratories, cements the contrary were of a commercial nature.

  13. Limiting salt crystallization damage in lime mortar by using crystallization modifiers

    NARCIS (Netherlands)

    Granneman, S.J.C.; Shahidzadeh, N.; Lubelli, B.A.; Hees, R.P.J. van

    2014-01-01

    Salt crystallization is a recurrent cause of damage in porous building materials. Lime-based mortars, which were widely used in construction of ancient masonry, are especially prone to salt damage, due to their low mechanical strength. Existing solutions to tackle salt damage in mortars have been

  14. Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack

    International Nuclear Information System (INIS)

    Lee, Seung-Tae

    2009-01-01

    The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled fine aggregates were examined by X-ray diffraction (XRD) technique. Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C-S-H into M-S-H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.

  15. Influence of light masonry mortar on the thermal insulation of a solid brick wall

    Energy Technology Data Exchange (ETDEWEB)

    Kupke, C

    1980-12-01

    For calculations of the thermal insulation of structural components according to DIN 4108 and to the Thermal Insulation Ordinance, characteristic data of thermal conductivity are used which are contained in DIN 4108 and in the Bundesanzeiger in Supplements to the publication of material characteristics for the calculation of thermal insulation according to the Thermal Insulation Ordinance. For masonry, this value is equivalent to the thermal conductivity of the bricks, including mortar joints. The mortar considered is standard mortar, group II, according to DIN 1053. In the last few years, in order to improve the thermal insulation, mortars of low thermal conductivity and low volume weight - so-called light masonry mortars - have been used to an increasing extent. The improvement in thermal conductivity as compared with standard mortar is referred to as ..delta..lambda; it depends mostly on the thermal conductivity of the light mortar and the bricks. In the article, the laws governing the influence of light masonry mortar on the thermal insulation of masonry of solid bricks and solid blocks are reviewed.

  16. Water extraction out of mortar during brick laying: A NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Spiekman, M.E.; Pel, L.; Kopinga, K.; Larbi, J.A.

    1998-01-01

    The water extraction out of mortar during brick laying was studied using nuclear magnetic resonance. The experiments show that using a fired-clay brick, the water is extracted out of the mortar within 3 minutes, whereas in the case of a sand-lime brick this takes about 10 minutes. Prewetting a

  17. Water extraction out of mortar during brick laying : a NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Spiekman, M.E.; Kopinga, K.; Larbi, J.A.

    1998-01-01

    The water extraction out of mortar during brick laying was studied using nuclear magnetic resonance. The experiments show that using a fired-clay brick, the water is extracted out of the mortar within 3 minutes, whereas in the case of a sand-lime brick this takes about 10 minutes. Prewetting a

  18. Economic Analysis of Small Scale Forest-Based Mortar and Pestles ...

    African Journals Online (AJOL)

    The problems militating against the production of mortar and pestles in the area were high transportation cost, high cost of tools, poor weather condition, poor road network, finance and marketing problems. To bring about sustainable production and enhance the level of profitability from production of mortar and pestle, there ...

  19. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2015-01-01

    Full Text Available Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM and slag-foamed mortar (SFM, 50% cement was replaced by slag weight. Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  20. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.

    Science.gov (United States)

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-30

    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  1. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste

  2. Effect of kaolin treatment temperature on mortar chloride permeability

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2007-03-01

    Full Text Available The present paper discusses the results of chloride resistance tests conducted on ordinary Portland cement (OPC mortars containing a Colombian kaolin pre-treated at temperatures of from 600 to 800 ºC. The resulting metakaolin (MK was added to OPC mortar mixes in proportions of 10 and 20% by cement weight. The mortars were compared for physical and chemical properties, including capillary absorption, chloride permeability and pore microstructure as assessed by mercury porosimetry. The best performance was recorded for the samples containing 20% of the material treated at 800 ºC.En el presente trabajo se incluyen los resultados de la resistencia a la penetración de cloruros de morteros de Cemento Portland Ordinario (OPC adicionados con un caolín colombiano sometido a tratamiento térmico en un rango de temperaturas entre 600 y 800 °C. Los productos del tratamiento térmico, metacaolín (MK, son incorporados en mezclas de morteros de OPC en proporciones del 10 y 20% en relación al peso del cemento. Se comparan sus características físico-químicas, entre las cuales se incluye la microestructura de poros evaluada por la técnica de porosimetría de mercurio, con la absorción capilar y la permeabilidad a cloruros. Se concluye que las muestras adicionadas con un 20% del material tratado térmicamente a 800 °C presentan el mejor desempeño en sus propiedades finales.

  3. Steel passive state stability in activated fly ash mortars

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    2010-12-01

    Full Text Available The present study explores the behaviour of structural steel embedded in Portland cement (OPC mortars and NaOH- and NaOH-waterglass-activated fly ash, in the presence and absence of 2 % Cl- (CaCl2. Variations were determined in the corrosion potential (Ecorr, linear polarization resistance (Rp and corrosion current density (icorr under different environmental conditions (90 days at 95 % relative humidity (RH, 30 days at ≈ 30 % RH, 760 days at ≈ 95 % RH. In the absence of Cl-, fly ash mortars were able to passivate steel reinforcement, although the stability of the passive state in changing environmental conditions was found to depend heavily on the activating solution used. Steel corrosion in the presence of 2 % Cl- was observed to be similar to the corrosion reported for the material in OPC mortars.

    En el presente trabajo se estudia el comportamiento del acero estructural embebido en morteros de cemento Pórtland (OPC y de cenizas volantes activadas con NaOH y una mezcla de NaOH y waterglass, en ausencia y en presencia de un 2% de Cl- (CaCl2. Se determino la evolución del potencial de corrosión (Ecorr, la resistencia de polarización lineal (Rp y la intensidad de corrosión (icorr, variando las condiciones ambientales (90 días al 95% de humedad relativa (HR-30 días a ≈ 30% HR- 760 días a ≈ 95% HR. En ausencia de Cl- los morteros de cenizas volantes activadas pueden pasivar los refuerzos de acero, si bien la estabilidad del estado pasivo ante cambios en las condiciones ambientales parece mostrar una fuerte dependencia de la solución activadora empleada. En presencia de un 2% de Cl- los aceros se corroen mostrando en comportamiento similar al observado en morteros en base OPC.

  4. Study of mortars with industrial residual plastic scales

    Directory of Open Access Journals (Sweden)

    Magariños, O. E.

    1998-06-01

    Full Text Available This work proposes the utilization of industrial residues of PET (Polyethylene Terephtalate as a partial substitute of arids (sand in mortar making for construction components. Therefore, the environmental impact of large volumes of plastic of urban residues could be decreased. When PET scales were added to mortars in partial replacement of sand, lower unitary weight, acceptable absorption and resistances according to international specifications were achieved. Mortars with 66% of sand replacement by scales and without any additive, showed optimal characteristics to be used in concret block manufacturing.

    Este trabajo de investigación se desarrolla a partir de la hipótesis de utilizar los desechos post-industriales de PET (Tereftalato de Polietileno como sustituto de áridos (arena, ingrediente de morteros, en la fabricación de componentes constructivos. En dicho trabajo se estudian las propiedades físico-químicas de distintos morteros en los que se reemplazó el contenido de árido por escamas de plástico en distintas proporciones. Se compararon y evaluaron las propiedades físico-mecánicas de los morteros en estudio con los convencionales mediante ensayos de resistencia a la flexión, compresión, absorción, durabilidad y microfotografías por barrido electrónico. Estos estudios determinaron que el agregado de PET en morteros puede ser usado como un posible sustituto de áridos, ya que se obtuvieron morteros con 66% de reemplazo de arena por escamas que presentaron menor peso unitario, absorción aceptable y resistencias acordes a las exigidas por normas.

  5. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    Science.gov (United States)

    Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.

    2014-01-01

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  6. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

  7. The influence of hardening conditions on the properties of masonry cement mortar prisms made in brick moulds

    NARCIS (Netherlands)

    Bertram, G.; Lourenco, P.B.; Hasseltine, B.A.; Vasconseles, G.

    2014-01-01

    One aspect of our investigation into the spacing of movement joints involved the short and long term deformation of mortar embedded in masonry. In this research the influence of hardening conditions on the physical and mechanical properties of masonry cement mortar [M5] were studied. Mortar prisms

  8. Self-flowing mortar for ferrocement in strengthening applications

    Directory of Open Access Journals (Sweden)

    Shamir Sakir

    2016-09-01

    Full Text Available Ferrocement technology is becoming more and more important nowadays for strengthening and retrofitting of concrete structures mainly due to its inherent strength properties. However, its labour intensive nature makes it undesirable for rapid strengthening works. In narrow spaces, strengthening with conventional ferrocement is very critical and also time consuming. Self-flowing mortar (SFM could be used with this technology to overcome these limitations. This article discusses the applicability of SFM in ferrocement technology. The aim of this study is to summarize available knowledge on SFM to make it feasible for optimization in different industrial applications.

  9. Measurement of mortar permittivity during setting using a coplanar waveguide

    International Nuclear Information System (INIS)

    Juan-García, P; Torrents, J M

    2010-01-01

    A sensor based on a coplanar waveguide structure was designed to perform non-destructive tests for material characterization in which the measurement can be done only on one side of the sample. The measurements were compared with the impedance of a capacitor filled with the same material. The permittivity and insertion loss of the sensor showed valuable information about the setting process of a mortar slab during the first 28 days of the hardening process, and a good correlation between both measurements was obtained, so the proposed setup can be useful for structural surveillance and moisture detection in civil structures

  10. Fresh and Hardened State of Polymer Modified Concrete and Mortars – A Review

    Directory of Open Access Journals (Sweden)

    Tukimat Nurul Nadrah Aqilah

    2017-01-01

    Full Text Available Polymer modified concrete or mortar is an alternative to the advancement of long serving civil engineering material - mortar and concrete. The excellence and promising benefits of modified composites have led to numerous progressive studies of its application. This paper presented a critical review from previous research on the polymer modified concrete and mortar. Both fresh and hardened state behaviours were reviewed as they are important for the development of excellent engineering material. Most of the applications of polymer modified concrete and mortar can be seen in diverse types of polymer such as latex, epoxy and emulsion. The utilization of each type of polymers resulted in different characteristics of composite concrete or mortar. Such applications have contributed to the improvement in terms of workability and mechanical strength, especially at higher grade of composite strength of concrete material.

  11. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  12. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah

    2014-04-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time. The cement phase is replaced by different percentages of dry or wet hemp fibres ranging from 1.1. wt% up to 3.1. wt% whereas carbon nanotubes are dispersed in the aqueous solution. Our experimental results show that compressive and flexural strengths of wet fibres modified mortar are higher than those for dry hemp-mortar material. The achieved optimal percentage of wet hemp fibres is 2.1. wt% allowing a flexural strength higher than that of reference mortar. The addition of an optimal CNT concentration (0.01. wt%) combined with wet hemp has a reinforcing effect which turns to be related to an improvement of compressive and flexural strengths by 10% and 24%, respectively, in comparison with reference condition. © 2013 Elsevier Ltd.

  13. Continuous monitoring of setting and hardening of mortar using FBG sensors

    Science.gov (United States)

    Lima, H.; Ribeiro, R.; Nogueira, R.; Silva, L.; Abe, I.; Pinto, J. L.

    2007-05-01

    The use of fibre Bragg grating sensors to study mortars' dimensional variations during the setting process is reported. When determining a mortar's potential to fissure, it's important to know its total retraction. This means it is necessary to know not only the mortar's retraction after hardened, but also to know how much it retracts during the plastic phase. This work presents a technique which allows to measure dimensional variations, either expansion or retraction, during the whole setting process. Temperature and strain evolution during both plastic and hardened phase of the mortar were obtained, allowing the determination of dimensional variations and setting times. Due to its high-speed, ease of implementation and low operation costs, this technique will allow to get a deeper knowledge of the effects of several additives on the mortar's behaviour, allowing to improve its mechanical properties through the determination of the proper chemical composition.

  14. Physical and mechanical properties of cement mortar made with brick waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz

    2018-01-01

    Full Text Available The development of new building materials is a current problem where researchers are trying to find the right materials for each region and returning cheapest countries. Recycling and recovery of waste are now considered as a promising solution to meet the deficit between production and consumption and protecting the environment. This work focused on the study of the effect of brick waste in the production of cement mortar with substitution rates ranging from 5-30% by weight of cement and to compare its performance with fresh and hardened state with ordinary mortar considered as control mortar. Compressive and tensile strengths up to 28 days of age were compared with those of controlled mortar. Water absorption was also measured at 28 days of age. The test results indicate the beneficial effect of brick waste powder on performance of cement mortar with an optimum of 15% of cement weight substitution.

  15. HEAT INSULATING LIME DRY MORTARS FOR FINISHING OF WALLS MADE OF FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    Loganina Valentina Ivanovna

    2016-05-01

    Full Text Available Different aerated mortars are used for pargeting of walls made of aerated concrete. Though the regulatory documents don’t specify the dependence of plaster density from the density grade of gas-concrete blocks. In case of facing of gas-concrete blocks with the grade D500 using plaster mortars with the density 1400…1600 km/m3 there occurs a dismatch in the values of thermal insulation and vapor permeability of the plaster and base. The authors suggest using dry mortars for finishing of gas-concrete block of the grades D500 и D600, which allow obtaining facing thermal insulating coatings. The efficiency of using four different high-porous additives in the lime dry mortar was compared. They were: hollow glass microspheres, aluminosilicate ash microspheres, expanded vermiculite sand, expanded pearlitic sand. The high efficiency of hollow glass microspheres in heat insulating finishing mortars compared to other fillers is proved.

  16. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  17. Characterization of mudejar mortars from St. Gil Abbot church (Zaragoza, Spain: Investigation of the manufacturing technology of ancient gypsum mortars

    Directory of Open Access Journals (Sweden)

    Igea, J.

    2012-12-01

    Full Text Available This work has been focused on the investigation of the technological procedure of Mudejar mortars applied to the characterization of a group of unaltered samples from an example church of Mudejar architecture of Aragon. The research was carried out using multi-analytical techniques including petrographic study, chemistry and mineralogical analysis. All mortars present a homogeneous composition. The binder is made up of a mixture of gypsum and a very low proportion of lime, while the main components of the aggregate are gypsum and carbonate rock fragments, both in a different thermal state of decomposition. The results have proved that both, binder and aggregates display the same composition in these mortars. These aggregates are the by-product of a grinding process of the previously burnt raw materials which have had a positive influence on the properties of the mortars in improving their quality.

    Este trabajo se ha centrado en la investigación de la tecnología de fabricación de morteros mudéjares mediante la caracterización de un conjunto de muestras inalteradas procedentes de una iglesia representativa de la arquitectura Mudéjar aragonesa. La investigación se llevó a cabo mediante el uso combinado de técnicas analíticas incluyendo el estudio petrográfico y el análisis químico y mineralógico. Todos los morteros presentan una composición constante formada por una mezcla de yeso y cal, en muy baja proporción, como ligante, mientras que el árido está formado por fragmentos de rocas yesíferas y carbonatadas en distinto estado de descomposición térmica. Los resultados confirman que en la fabricación de los morteros, ligante y áridos presentan la misma composición, siendo éstos últimos el subproducto de la misma materia prima calcinada, incorporados para elaborar el mortero, tras un proceso de molienda. Esta característica ha influido positivamente en las propiedades de los morteros, mejorando su calidad.

  18. Experimental analysis of compaction of concrete and mortar

    Science.gov (United States)

    Burlion, Nicolas; Pijaudier-Cabot, Gilles; Dahan, Noël

    2001-12-01

    Compaction of concrete is physically a collapse of the material porous microstructure. It produces plastic strains in the material and, at the same time, an increase of its bulk modulus. This paper presents two experimental techniques aimed at obtaining the hydrostatic response of concrete and mortar. The first one is a uniaxial confined compression test which is quite simple to implement and allows to reach hydrostatic pressures of about 600 MPa. The specimen size is large enough so that concrete with aggregate sizes up to 16 mm can be tested. The second one is a true hydrostatic test performed on smaller (mortar) specimens. Test results show that the hydrostatic response of the material is elasto-plastic with a stiffening effect on both the tangent and unloading bulk moduli. The magnitude of the irreversible volumetric strains depends on the initial porosity of the material. This porosity can be related in a first approximation to the water/cement ratio. A comparison of the hydrostatic responses obtained from the two testing techniques on the same material show that the hydrostatic response of cementitious materials cannot be uncoupled from the deviatoric response, as opposed to the standard assumption in constitutive relations for metal alloys. This feature should be taken into account in the development of constitutive relations for concrete subjected to high confinement pressures which are needed in the modelling of impact problems.

  19. The Effect of Graphene Oxide on Cement Mortar

    Science.gov (United States)

    Kjaernsmo, Henrik; Kakay, Samdar; Fossa, Kjell T.; Gronli, John

    2018-05-01

    This paper investigates the effect of water dispersed- and powder Graphene oxide (GO) nanoparticle on fresh cement mortar, microstructure and mechanical strength after 3,7, and 28 days of curing. These properties were studied by treating the cement mortar with 0.03 wt%, 0.05 wt%, and 0.2 wt% GO of the cement weight combined with 0.8wt % polycarboxylate superplasticizer. The results show that the workability decreases as increasing the content of water dispersed GO. The heat of hydration is increased for both types of GO systems. The percent air content in 0.03 wt% and 0.05 wt% GO is almost constant, but increased from 3.2 % to 4.9 % in 0.2 wt% water dispersed GO. The increased air content has effect on poor compaction and workability. GO has the potential of accelerating the hydration process and enhance the early mechanical strength (3 and 7 days), but the workability seems to diminish the mechanical strength after 28 days of curing, particularly for the highest content of water dispersed GO. No distinct influence of GO on the microstructure. The overall results showed that the impact of water dispersed GO was found out to be higher than the powder GO.

  20. Coupling nonlinear Stokes and Darcy flow using mortar finite elements

    KAUST Repository

    Ervin, Vincent J.

    2011-11-01

    We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions. © 2010 Published by Elsevier B.V. on behalf of IMACS.

  1. Evaluation of Electrochemical Treatment of Chloride Contaminated Mortar Containing GGBS

    Directory of Open Access Journals (Sweden)

    Ki Hong Lee

    2017-01-01

    Full Text Available The present study concerns the influence of cementitious binder on electrochemical treatment of steel embedded in salt contaminated mortar. As binder, ordinary Portland cement (OPC and ground granulated blast furnace slag (GGBS were used and the current density of 250–750 mA/m2 was applied for 4 weeks to complete electrochemical chloride extraction. To evaluate the effect of electrochemical treatment the chloride profile and corrosion behaviour covering chloride concentration, galvanic current density, linear polarization resistance, open circuit potential, and mass loss were measured. An increase in the applied direct current density resulted in a decrease in the chloride concentration at the vicinity of steel, accompanying the mitigated corrosion damage. The performance of electrochemical treatment was more remarkable in mortar containing GGBS presumably due to binding mechanism. However, corrosion damage was more detrimental in GGBS rather than OPC at a given potential, while GGBS had superior corrosion resistance to a corrosive environment and treatment conditions. Therefore, the electrochemical treatment should be conducted prudently to evaluate the corrosion state of embedded steel depending on binder type.

  2. Polymer-Cement Mortar with Quarry Waste as Sand Replacement

    Directory of Open Access Journals (Sweden)

    D. N. Gómez-Balbuena

    2018-01-01

    Full Text Available The activities of carved Quarry extraction generate problems of landscape pollution such is the case of solid waste discharged into open land dumps in central Mexico. This article presents the technological application of this solid waste in a new polymeric material with properties similar to those of a traditional mortar. It is concluded that the polymeric material uses low amounts of cement with respect to the traditional mortar, and it is elaborated with the recycled quarry as they are presented in its granulometry. The polymer used favored a low water/cement ratio (0.3 which did not allow to decrease resistance due to the fine nature of the materials (residues and cement in addition to maintaining the workability of the material. The quarry residue was classified as silt with low plasticity and was characterized by X-ray diffraction and Fluorescence to identify 76% of SiO2, which is why it was used as a stone aggregate even though the fines content was approximately 93%. The maximum compression resistance obtained at 28 days were 8 Mpa with the polymer/solid ratios of 0.10, water/solids of 0.30, and quarry/solids of 0.67. Linear equations were analyzed for more representative values with R squared adjustment.

  3. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2014-01-01

    Full Text Available This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA as partial replacement of cement in presence of copolymer latexes. Portland cement (PC was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA and 2-hydroxymethylacrylate (2-HEMA. Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM. The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  4. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  5. ALKALI-ACTIVATED CEMENT MORTARS CONTAINING RECYCLED CLAY-BASED CONSTRUCTION AND DEMOLITION WASTE

    Directory of Open Access Journals (Sweden)

    F. Puertas

    2015-09-01

    Full Text Available The use of clay-based waste as an aggregate for concrete production is an amply studied procedure. Nonetheless, research on the use of this recycled aggregate to prepare alkaline cement mortars and concretes has yet to be forthcoming. The present study aimed to determine: the behaviour of this waste as a pozzolan in OPC systems, the mechanical strength in OPC, alkali-activated slag (AAS and fly ash (AAFA mortars and the effect of partial replacement of the slag and ash themselves with ground fractions of the waste. The pozzolanic behaviour of clay-based waste was confirmed. Replacing up to 20 % of siliceous aggregate with waste aggregate in OPC mortars induced a decline in 7 day strength (around 23 wt. %. The behaviour of waste aggregate in AAMs mortars, in turn, was observed to depend on the nature of the aluminosilicate and the replacement ratio used. When 20 % of siliceous aggregate was replaced by waste aggregate in AAS mortars, the 7 day strength values remained the same (40 MPa. In AAFA mortars, waste was found to effectively replace both the fly ash and the aggregate. The highest strength for AAFA mortars was observed when they were prepared with both a 50 % replacement ratio for the ash and a 20 % ratio for the aggregate.

  6. Characterization of historic lime mortars by neutron scattering and mercury porosimetry

    International Nuclear Information System (INIS)

    Zouridakis, N.; Stefanopoulos, K.L.; Treimer, W.

    1999-01-01

    Complete text of publication follows. Lime mortars were commonly used in building from ancient Greek times through to the beginning of the nineteenth century [1]. In the past few years, the increased interest in conservation and restoration of historic monuments requires a better knowledge of the structure and composition of lime mortars resulting from the various additives, as well as the preparation technique each time used. Lime mortars from ancient Greek monuments have been dated by using the radiocarbon method [2]. Furthermore, a wide selection of lime mortars from known historic periods and monuments in Greece has been examined by mercury porosimetry. It was found that their structure depends on the utilization of the monument which come from. In specific, lime mortars coming from residences have more or less the same structure, whereas the preparation technique differs for lime mortars coming from tombs and walls. The weathering effects on the porous system of the mortars are studied by neutron scattering. (author) [1] Brown, P.W., and Clifton, J.R., 'Air pollution and conservation', eds. J. Roswall and S. Aleby, 225 (1988), Elsevier, Amsterdam.; [2] N. Zouridakis, J.F. Sliege, A. Person et al., Archaeometry, 60 (1987) 29

  7. Biopolymers to improve physical properties and leaching characteristics of mortar and concrete: A review

    Science.gov (United States)

    Olivia, M.; Jingga, H.; Toni, N.; Wibisono, G.

    2018-04-01

    The invention of environmentally friendly, high performance, and green material such as biopolymers marked an emerging trend for sustainable construction over the past decades. Biopolymer comprises of natural monomers and synthesized by plants or other organisms. The sustainable, biodegradable, and renewable biopolymers were used in concrete mixes to improve their physical and mechanical properties and durability. The aim of this paper is to provide a brief an overview of the impact of biopolymer addition into concrete and mortar mixes. Many studies on the influence of biopolymer on the properties of concrete and mortar by adding biopolymers at a certain proportion (usually less than one wt.%) to the concrete or mortar mixes, and the heavy metal leaching, rheological, and mechanical properties of the mixes were conducted. Biopolymers included in this review are chitosan (CH), xanthan gum (XG), guar gum (GG), lignosulphonate (LS), and cellulose ethers (CE). Data from previous studies showed that the addition of certain types of biopolymer into concrete and mortar mixes improve workability, water retention, and compressive strength by up to 30 percent. Chitosan strengthens heavy metal encapsulation in the mortar and neutralizes the negative impact of heavy metal on the mortar properties and environment. To sum up, the use of biopolymers improve physical properties and leaching characteristics of mortar and concrete.

  8. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.

  9. Use of limestone obtained from waste of the mussel cannery industry for the production of mortars

    International Nuclear Information System (INIS)

    Ballester, Paloma; Marmol, Isabel; Morales, Julian; Sanchez, Luis

    2007-01-01

    Various types of cement-SiO 2 -CaCO 3 mortar were prepared by replacing quarry limestone aggregate with limestone obtained as a by-product from waste of the mussel cannery industry. The CaCO 3 aggregate consists mainly of elongated prismatic particles less than 4 μm long rather than of the rounded particles of smaller size (2-6 μm) obtained with quarry limestone. The mechanical and structural properties of the mortars were found to be influenced by aggregate morphology. Setting of the different types of mortar after variable curing times was evaluated by scanning electron microscopy (SEM), thermogravimetric analysis (TG) and mercury intrusion porosimetry (MIP) techniques. Mortars with a high content in mussel shell limestone exhibited a more packed microstructure, which facilitates setting of cement and results in improved mortar strength. The enhanced mechanical properties of the new mortars allow the cement content in the final mortar composition to be decreased and production costs to be reduced as a result

  10. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    International Nuclear Information System (INIS)

    Soleimani, Sahar; Isgor, O. Burkan; Ormeci, Banu

    2013-01-01

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process

  11. Effect of Polypropylene and Basalt Fiber on the Behavior of Mortars for Repair Applications

    Directory of Open Access Journals (Sweden)

    Chaohua Jiang

    2016-01-01

    Full Text Available The fresh, mechanical, and durability properties of the polypropylene fiber-reinforced mortar (PP FRM and the basalt fiber-reinforced mortar (BFRM with various fiber contents were tested in this paper. The test results show that the presence of polypropylene (PP fiber and basalt fiber (BF in the mortar reduces the initial slump flow and increases the slump flow loss rate. The bond strength and flexural strength of fiber-reinforced mortar (FRM are improved, whereas no obvious improvement on the compressive strength has been observed. Compared with the control mortar, the bond strength of PP FRM and BFRM reinforced with 0.6 kg/m3, 1.6 kg/m3, and 2.6 kg/m3 fiber increases by 16.60%–28.80% and 10.60%–21.40%, respectively. Furthermore, FRM shows lower drying shrinkage, superior abrasion resistance, water impermeability, and freeze-thaw resistance compared with the control mortar. The abrasion resistance strength of PP FRM and BFRM is 77.30% and 38.65% more than the control mortar with 2.6 kg/m3 fiber content. Therefore, PP FRM and BFRM are suitable to be utilized as repair materials, especially in repairing hydraulic structures surfaces with excellent bond strength and abrasion resistance.

  12. Carbonation kinetics in roman-like lime mortar

    Directory of Open Access Journals (Sweden)

    Sánchez-Moral, S.

    2004-09-01

    Full Text Available The kinetic parameterisation of lime mortar carbonation is a useful technique for understanding ancient building methods and the long-lived physical-chemical stability of roman monuments. Portlandite (Ca(OH2 binders harden in the air on contact with atmospheric CO2, producing CaCO3. Water evaporation and the presence of silicate aggregates have a three-fold effect: prompting the development of a pore system that permits CO2, self-diffusion, reducing shrinkage and cracking during drying and (possibly giving rise to subsequent pozzolanic reactions. The present survey involved air-hardening a series of roman-like lime mortars which differed in terms of: (i type of aggregate, volcanic tephra and arkose; (ii aggregate/binder ratio, 1:2 as used in the catacombs and 1:4 as found in standard roman construction and (iii temperature, the 17 ºC prevailing in underground environments and the 30 ºC typical of warm Mediterranean areas. The analyses that provided the most useful information were performed in a classic X-ray diffractometer adapted to accommodate an author-designed chamber in which temperature control was achieved by an internal refrigerant and a PID-governed electrical heater Additional data were obtained with DTA and environmental scanning electron microscopy (ESEM. The tests conducted on the Roman-like lime mortars manufactured for the experiment showed that the hardening temperature is a critical factor in the initial phases of carbonation. Calcite precipitation rates and total mineral precipitation increased with temperature, but fell very quickly as calcite precipitated. In theoretical calculations assuming an open reactor with continuous CO2, input, total calcitisation time was found to be 156 m in. at 30 ºC and 175 min. at 17 ºC, whilst in the mortars actually hardened in the experimental part of the study, calcitisation gradually blocked the flow or CO2, gas into the

  13. AMS radiocarbon dating of mortar: The case study of the medieval UNESCO site of Modena

    Energy Technology Data Exchange (ETDEWEB)

    Carmine, Lubritto [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche & CIRCE lab, Seconda Università degli Studi di Napoli, I-81100 Caserta (Italy); Caroselli, Marta; Lugli, Stefano [Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, I-41100 Modena (Italy); Marzaioli, Fabio [Dipartimento di Matematica e Fisica & CIRCE lab, Seconda Università degli Studi di Napoli, I-81100 Caserta (Italy); Nonni, Sara [Università degli Studi “Sapienza”, Dipartimento di Scienze della Terra, I-00185 Roma (Italy); Marchetti Dori, S. [Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, I-41100 Modena (Italy); Terrasi, Filippo [Dipartimento di Matematica e Fisica & CIRCE lab, Seconda Università degli Studi di Napoli, I-81100 Caserta (Italy)

    2015-10-15

    The carbon dioxide contributing to binder formation during the set of a lime mortar reflects the atmospheric {sup 14}C content at the time of construction of a building. For this reason, the {sup 14}C dating of mortars is used with increasing frequencies in archaeological and architectural research. Mortars, however, may also contain carbonaceous contaminants potentially affecting radiocarbon dating. The Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) of the Second University of Naples (SUN) has recently obtained some promising results in mortar radiocarbon dating thanks to the development of a procedure (i.e. CryoSoniC/Cryo2SoniC) aiming to eliminate exogenous C contamination that may occur in a mortar. The construction history of the UNESCO World Heritage Site of Modena (Italy) is still controversial and represents a challenging case study for the application of absolute dating methodologies for different reasons. From the point of view of {sup 14}C dating, for example, given the high percentage of carbonate aggregates composing these samples, Modena mortars represent an experimental test particularly indicative of exogenous carbon sources suppression ensuring methodology accuracy. In this paper several AMS Radiocarbon dates were carried out on lime lumps with the aim to: (i) verify procedure accuracy by a comparison of the results obtainable from lime lumps dated after different treatments (i.e. bulk lime lumps vs. CryoSoniC purified lime lumps); (ii) compare different building phases absolute chronology for the medieval UNESCO site of Modena, with that assumed by historical sources in order to assess preliminary the {sup 14}C dating feasibility for of the site. Historical temporal constraints and mortar clustering, based on petrography, have been applied to define a temporal framework of the analyzed structure. Moreover, a detailed petrographic characterization of mortars was used both as a preliminary tool for the choice of samples

  14. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → A recycling/treatment process to remove lead on funnel glass surface is described. → Utilizing recycled funnel glass in mortar can reduce hazardous CRT glass wastes. → Effects of CRT glass content on the properties of cement mortar are studied. → Fly ash can effectively mitigate ASR expansion of mortar even at 100% glass content. → Alkaline medium in cement matrix successfully prevented the leaching of lead. - Abstract: Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  15. Effect of crushed sand on mortar and concrete rheology

    Directory of Open Access Journals (Sweden)

    Cabrera, O. A.

    2011-09-01

    Full Text Available This article describes an experimental study conducted on fresh mortars and concretes made with crushed sand. The aim of this research was to assess the effect of aggregate particle shape and surface texture as well as dust content on mortar and concrete rheology. The experimental programme also addressed the impact of angular grains on chemical admixture performance and concrete bleeding. The findings showed that the use of crushed sand induces rheological behaviour that differs from the behaviour observed in natural sand and that superplasticisers can improve this behaviour considerably.

    En el presente trabajo se plantea un estudio experimental del estado fresco de morteros y hormigones con arenas de machaqueo, orientado a la evaluación de la incidencia de la forma y textura superficial de los granos del árido fino y del contenido de polvo sobre la reología de las mezclas. El programa experimental comprendió el estudio del estado fresco de hormigones con arenas con partículas angulares, la influencia de este tipo de partículas sobre la efectividad de los aditivos químicos y la evaluación de la influencia de las características físicas del árido fino sobre la exudación. Los resultados muestran que el empleo de arenas de machaqueo provoca un comportamiento reológico diferente al de hormigones con arenas naturales, y que el efecto de los aditivos superfluidificantes mejora notablemente este comportamiento.

  16. Fire Related Temperature Resistance of Fly Ash Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Jeyalakshmi R.

    2017-01-01

    Full Text Available The study presented in this paper is on the effect of heat treatment on fly ash based geopolymer mortar synthesized from fly ash (Class F –Low lime using alkaline binary activator solution containing sodium hydroxide (18 M and sodium silicate solution (MR 2.0, cured at 80oC for 24 h. 7 days aged specimen heated at elevated temperature (200°C, 400°C, 600°C and 800°C for the sustained period of 2hrs. The TGA/DTA analysis and thermal conductivity measurement as per ASTM C113 were carried out besides the compressive strengths. The thermal stability of the fly ash mortar at elevated temperature was found to be high as reflected in the observed value of f800°C/f30°C being more than 1 and this ratio was raised to about 1.3 with the addition of 2% Zirconium di oxide (ZrO2. No visible cracks were found on the specimens with and without ZrO2 when 800°C was sustained for 4 hrs in smaller specimens of size: 50 mm diameter x 100 mm height and in also bigger size specimens: 22 cm × 11 cm × 7 cm specimens. TGA/DTA analysis of the geopolymer paste showed that the retention of mass was around 90%. The addition of ZrO2 improved thermal resistance. The micro structure of the matrix found to be intact even at elevated temperature that was evident from the FESEM studies.

  17. Characterization of backfill mortars used in different tunnels in Spain

    Directory of Open Access Journals (Sweden)

    Cavalaro, S.

    2013-03-01

    Full Text Available The main objective of this paper is to compare typical backfill mortars used in Spanish tunnels to fill the annular void left between the lining and the ground by the TBM. Initially, a new experimental program is outlined using material corresponding to 6 mixes from 4 tunnels. The results obtained indicate a considerable difference in the density and in the rheological properties of the mixes tested. According to the estimations performed, this leads to a difference of up to 67% on the potency required from the pumps to inject the material. Furthermore, a correlation between the fine content and the rheological properties of the mix was observed. This correlation may be a practical tool to control and modify the performance of the mortars directly in the worksite.

    El objetivo principal del presente estudio es llevar a cabo la comparación de las dosificaciones de mortero de relleno empleadas en algunos de los grandes túneles españoles para rellenar el hueco anular dejado entre el terreno y el extradós de las dovelas. Inicialmente se hace una nueva propuesta experimental usando la composición y los materiales correspondientes a 6 dosificaciones usadas en 4 túneles. Los resultados obtenidos indican diferencias significativas en cuanto a la densidad, a la consistencia y a las propiedades reológicas. De acuerdo con las estimaciones realizadas, ello se traduce en diferencias de hasta un 67% en la potencia requerida del sistema de bombas de la tuneladora para inyectar el material. Por otro lado, se refleja una correlación entre el contenido de finos de la mezcla y las propiedades reológicas. Esa correlación puede servir para controlar y modificar dichas propiedades de manera fácil y rápida a pie de obra.

  18. Mineralogical and microstructural studies of mortars from the bath complex of the Roman villa rustica near Mosnje (Slovenia)

    International Nuclear Information System (INIS)

    Kramar, Sabina; Zalar, Vesna; Urosevic, Maja; Koerner, Wilfried; Mauko, Alenka; Mirtic, Breda; Lux, Judita; Mladenovic, Ana

    2011-01-01

    This study deals with the characterization of mortars collected from bath complex of the Roman villa rustica from an archeological site near Mosnje (Slovenia). The mortar layers of the mosaics, wall paintings and mortar floors were investigated. A special aggregate consisting of brick fragments was present in the mortars studied. The mineralogical and petrographic compositions of the mortars were determined by means of optical microscopy, X-ray powder diffraction and FTIR spectroscopy. Analysis of aggregate-binder interfaces using SEM-EDS revealed various types of reactivity rims. In order to assess the hydraulic characteristics of the mortars, the acid-soluble fractions were determined by ICP-OES. Furthermore, the results of Hg-porosimetry and gas sorption isotherms showed that mortars with a higher content of brick fragments particles exhibited a higher porosity and a greater BET surface area but a lower average pore diameter compared to mortars lacking this special aggregate. - Highlights: → Mineral and microstructural characterizations of brick-lime mortars. → Hydraulic character of mortars in Roman baths complex. → Reaction rims were observed around brick fragments and dolomitic grains. → Higher content of brick particles yielded a higher BET surface area. → Addition of brick particles increased porosity and diminished pore size diameter.

  19. Analysis of main parameters affecting substrate/mortar contact area through tridimensional laser scanner.

    Science.gov (United States)

    Stolz, Carina M; Masuero, Angela B

    2015-10-01

    This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. DOMAIN DECOMPOSITION FOR POROELASTICITY AND ELASTICITY WITH DG JUMPS AND MORTARS

    KAUST Repository

    GIRAULT, V.; PENCHEVA, G.; WHEELER, M. F.; WILDEY, T.

    2011-01-01

    by introducing DG jumps and mortars. The unknowns are condensed on the interface, so that at each time step, the computation in each subdomain can be performed in parallel. In addition, by extrapolating the displacement, we present an algorithm where

  1. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  2. SYSTEM OF CONTROL AND MANAGEMENT OF THE PROCESS OF THE MORTAR SLURRY PREPARATION

    Directory of Open Access Journals (Sweden)

    D. M. Kukuj

    2007-01-01

    Full Text Available The technological schema of automatic flow line allowing to prepare with minimum charges of manual labor the refined from solid additives mortar slurry with stable density is presented in the article.

  3. A case study and mechanism investigation of typical mortars used on ancient architecture in China

    International Nuclear Information System (INIS)

    Zeng Yuyao; Zhang Bingjian; Liang Xiaolin

    2008-01-01

    Mortars sampled from Dutifulness Monument, where typical ancient China mortar formulas and manufacturing processes were used, were analyzed by starch-iodine test, FTIR, DSC-TG, SEM and XRD methods. Several modeling samples were then made according to historical records of Chinese ancient mortar formulas and analyzed with the same techniques. The modeling formulas also were used to consolidate loose specimens. The results show that sticky rice plays a crucial role in the microstructure and the consolidation properties of lime mortars. A possible mechanism was suggested that biomineralization may occur during the carbonation of calcium hydroxide, where the sticky rice functions as a template and controls the growth of calcium carbonate crystal. The organic-inorganic materials formed based on this mechanism will be more favorable for consolidating the loose samples both in strength improvement and durability

  4. Valorisation of waste plastic bags in cement-mortar composites as ...

    African Journals Online (AJOL)

    2015-01-07

    Jan 7, 2015 ... Keywords: Waste plastic bags, cement-plastic-mortar composite, aggregates coating ..... and closely attached to the aggregate by physical bonds and ... transformation steps, known as fusing material behaviour. In fact,.

  5. Study of the adherence between polymer-modified mortars and porcelain stoneware tiles

    Directory of Open Access Journals (Sweden)

    Alessandra Etuko Feuzicana de Souza Almeida

    2005-09-01

    Full Text Available Despite the excellent characteristics of porcelain tiles, their application on building facades requires special attention, since this material differs from conventional ceramics and because facades are exposed to weathering that can damage ceramic revetments. The combination of polymer and silica fume to produce mortars results in excellent properties, which are ideal for repairs and revetments requiring high performance. Such improvements justify its study for the installation of porcelain tiles. This article presents bond strength results for mortars containing different amounts of polymer and silica indicating the applicability of these mortars as a construction material. To complement this study, the interface between the porcelain and the mortars was analyzed by scanning electron microscopy (SEM.

  6. Comparison of setting time and temperature hydration in mortar with substituent ceramic

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Alves, L.S.; Evangelista, A.C.J.; Almeida, V.C.

    2011-01-01

    The workability of mortar is determined mainly by the kinetics of hydration of the hydraulic binder, the process of gelation / hydration of this material in aqueous solutions is significantly influenced by the presence of additives. As a result, this work aims at studying changes in setting time and temperature of hydration of mortars with 10, 15 and 30% of Portland cement replaced by residues of porcelain and ceramic bricks. The influence of these residues in the cement hydration process was studied by testing takes time, temperature, hydration and X-ray diffraction. The results indicate that the mortar setting time not changed significantly since the temperature of hydration has a minor variation on what is preferred because it reduces the microcracks created in mortar during drying.(author)

  7. Synthesis of Expansive Mortar Developed in Laboratory for Dismounting of Ornamental Rocks

    International Nuclear Information System (INIS)

    Lucena D V; Campos D B C; Lira H L; Neves G A

    2011-01-01

    The expansive mortar is constituted by a mixture of watery phase with an agent expander, when hydrated, presents volume increase and the generation of fictions in the rock due to generated pressure. The objective of this work is to synthecize expansive mortar that they present enough expansive pressure for the dismounting of granite and marble. They had been used as raw materials: carbonate of calcium, Portland cement and additives for control of the expansion. The formularizations had been synthecized on the basis of the chemical analysis of a mortar commercial and characterized by XRD, laser particle size measurements and evaluation of expansive pressure. All the developed formularizations had presented similar characteristics to the ones of the commercial mortar.

  8. Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar

    Science.gov (United States)

    Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.

    2017-11-01

    Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.

  9. Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.

    Science.gov (United States)

    Law, S L; Newman, J H; Ptak, F L

    1990-02-01

    A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.

  10. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    Science.gov (United States)

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  11. Influence of cellulose ether particle size on water retention of freshly-mixed mortars

    OpenAIRE

    Patural , Laetitia; Govin , Alexandre; Grosseau , Philippe; Ruot , Bertrand; Deves , Olivier

    2009-01-01

    International audience; Cellulose ethers are polymers frequently introduced into mortar formulations in order to improve water retention capacity and workability of the freshly-mixed materials. Physico-chemical parameters of these admixtures (molecular weight, granulometry, substitution degrees, etc) seem to have a strong influence on mortar water retention capacity. In this paper, the influence of cellulose ether particle size was studied. Two behaviors were highlighted regarding the particl...

  12. Global consolidation of industries and business failures: insights from brick-and-mortar and online outlets

    OpenAIRE

    Amankwah-Amoah, Joseph

    2017-01-01

    Although online platforms are increasingly seen as a linchpin for firms competing in the 21st century, our understanding of competition between the traditional brick-and-mortar and online outlets, and how this can lead to different types of business failures, remains limited. In the light of the disjointed nature of the current streams of research, we propose an integrated framework that classifies the differential effects of online and brick-and-mortar competition. Based on a review of the l...

  13. Hydromechanical properties of some mortars used in some ecologic construction techniques

    OpenAIRE

    Hoxha , Dashnor; Vladimir Nicolae , Ungureanu; Belayachi , Naima; Duc Phi , Do

    2012-01-01

    International audience; This paper presents results of hydromechanical characterization tests performed on some mortars used in eco-construction practice. Typically, such mortars could be found in buildings constructed following so called GREB technique that uses straw bales as structural and insulating elements in addition to a wood frame. The full experimental program includes thermal, mechanical and hydraulic - hygroscopic tests. Mechanical tests, including uniaxial compression test and th...

  14. A Study on the Properties of Carbon Black Mortar Using Granulated Blast Furnace Slag and Polymer.

    Science.gov (United States)

    Jang, Hong-Seok; Jeon, Ui-Hyeon; So, Seung-Young

    2015-11-01

    White Portland Cement (WPC) and inorganic pigment have been used in colored concrete, but there are some physical problems such as increases in efflorescence, and poor workability and low economics. The aim of this study was to investigate the effects of GBFS and polymer (methyl cellulose) on the physical properties of carbon black mortar. For this purpose, a flow test, compressive strength test and color evaluation and was carried out on cement mortar mixed with polymer by changing the proportion of cement and ratio of GBFS. The results show that the addition of polymer influences significantly the color value efficiency in colored mortar. This is due to the reduction of overall amount of micro pore. This polymer films prevent the transport of soluble calcium towards the surface, and decreases efflorescence. And the flow of colored mortar was increased in proportion to the addition rate of the GBFS. In addition the strength of colored mortars with GBFS at the long-term aged (after 28 days) was higher than that of the general WPC mortar, although its strength was developed slowly at the early ages.

  15. FREEZE-THAW AND FIRE RESISTANCE OF GEOPOLYMER MORTAR BASED ON NATURAL AND WASTE POZZOLANS

    Directory of Open Access Journals (Sweden)

    F.Nurhayat Degirmenci

    2017-12-01

    Full Text Available The purpose of this research was to investigate the resistance of pozzolan-based geopolymer mortars subjected to high temperatures and freeze-thaw cycles. Low calcium fly ash and granulated blast furnace slag as waste pozzolans and natural zeolite as a natural pozzolan were used as base materials for producing geopolymer mortar. The other purpose the research was to study the effect of alkaline activator ratio (Na₂SiO₃/NaOH on the performance of pozzolan-based geopolymer mortar specimens subjected to extreme temperatures. The influence of high temperatures on the properties of mortars was investigated at 300°C, 600°C, and 900°C. Fire and freeze-thaw and resistance of mortars were investigated in terms of visual appearance, weight loss and residual compressive strength. The minimal values of the residual compressive strength were obtained at 900°C for all mixtures. The residual compressive strength of all specimens was lower than the values obtained for specimens not subjected to any freeze-thaw resistance test, except those containing GGBS. The Na₂SiO₃/NaOH ratios of the alkaline activator solution used to prepare the geopolymer mortars have an effect on the weight losses and residual compressive strengths of the specimens subjected to high temperatures and freeze-thaw cycles. As the Na2SiO3/NaOH ratios increased, the weight and strength losses decreased.

  16. Effect of nylon fiber on mechanical properties of cement based mortar

    Science.gov (United States)

    Hanif, I. M.; Syuhaili, M. R. Noor; Hasmori, M. F.; Shahmi, S. M.

    2017-11-01

    An investigation has been carried out to study the effect of nylon fiber on the mechanical properties of cement based mortar after receiving large quantities of nylon waste. Subsequently, this research was conducted to compare the compressive, tensile and flexural strength of normal cement based mortar with nylon fiber cement based mortar. All samples using constant water-cement ratio of 0.63 and three different percentages of nylon fiber were added in the mixture during the samples preparation period which consists of 0.5%, 1.5% and 2.5% by total weight of cement based mortar. The results obtained with different nylon percentage marked an increases in compressive strength (up to 17%), tensile strength (up to 21%) and flexural strength (up to 13%) when compared with control cement based mortar samples. Therefore, the results obtained from this study shows that by using nylon fiber as additive material can improve the mechanical properties of the cement based mortar and at the same time produce a good sustainable product that can protects and conserve the marine environment.

  17. Study on compressive strength of self compacting mortar cubes under normal & electric oven curing methods

    Science.gov (United States)

    Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.

  18. Repair Mortars and New Concretes with Coal Bottom and Biomass Ashes Using Rheological Optimisation

    International Nuclear Information System (INIS)

    Bras, A.; Faustino, P.

    2016-01-01

    The objective of the present work is to analyse the potential of using non-classical additions in concrete and mortar compositions such as coal bottom ash and biomass ash (Bio), as partial replacing binder of ordinary Portland cement. It is intended to deal with production of these type of wastes and its accumulation and contribute to the minimisation of carbon and embodied energy in construction materials. The aim is to identify the concrete and mortars formulation types where it is possible to get more benefit by incorporating bottom ash and Bio. Based on the optimisation of the rheological properties of cement-based materials, mortars with repair function and concrete compositions were developed including 0%, 10%, 15% and 20% of bottom ash and Bio as cement replacement. An assessment of the evolution of relative concrete compressive strength was calculated as a function of the relative solid volume fraction of several concretes. bottom ash compositions present low resistance to high flow rates, increasing the ease of placement and vibration. bottom ash seems to present more filler and pozzolanic effect when compared with Bio. bottom ash mortars fulfil the compressive strength and stiffness requirements to be used as repair mortars, allowing the replacement of 15% or 20% of cement by an industrial waste. This by-product is able to work in the development of the mortar and concrete microstructure strength adopting a much more sustainable solution for the environment.

  19. Influence of polyacrylic ester and silica fume on the mechanical properties of mortar for repair application

    Directory of Open Access Journals (Sweden)

    Chaohua Jiang

    2016-12-01

    Full Text Available Experimental investigations on the influence of different amounts of polyacrylic ester and silica fumes on the mechanical properties of mortar such as the compressive strength, splitting tensile strength, bonding strength, and abrasion resistance are presented in this article. The results show that the compressive and splitting tensile strength of mortar can be improved with the addition of polyacrylic ester and silica fumes. Results obtained from both the direct tensile bond test and flexural bond test indicate that the addition of polyacrylic ester and silica fumes improves the bond strength significantly, and the enhancement is more obvious with polyacrylic ester paste as interfacial adhesives. Furthermore, mortar incorporation of polyacrylic ester and silica fumes shows superior abrasion resistance compared to the control mortar. Therefore, the correct combination of polyacrylic ester and silica fumes to produce mortars has been shown to have synergistic effects, which results in excellent properties including high bond strength and superior abrasion resistance. Mortars containing polyacrylic ester and silica fumes are ideal for repairing concrete especially for hydraulic concrete structure.

  20. Effects of Shrinkage Reducing Agent and Expansive Additive on Mortar Properties

    Directory of Open Access Journals (Sweden)

    Sarapon Treesuwan

    2017-01-01

    Full Text Available This research is to study the effect of mortar mixed with shrinkage reducing agent (polyoxyalkylene alkyl ether type, expansive additive (CaO type, and fly ash (hereinafter “SRA,” “EX,” and “FA,” resp.. Moreover, steam curing was studied to improve the properties of mortar. The plastic shrinkage test was conducted by using the strain gauge embedded at 0.5 cm from the surface according to the ASTM C1579-06 standard within early age followed by the total shrinkage test and compressive strength test. The test results showed that mixing both the EX and SRA increases the plastic enlargement of the mortar during the early age more than using either the EX or SRA solely. The steam curing helps to reduce the plastic shrinkage when the mortar is added with the FA and SRA while adding the EX increases the enlargement compared to the normal curing. When the EX, SRA, and FA are all added to the mortar mixing, great attention should be paid due to the increase of greater enlargement. For the compressive strength view, the steam curing increases the compressive strength in all types of mixture. The steam curing significantly helps increasing the compressive strength of mortar with combination of EX, SRA, and FA. Nevertheless, the XRD and SEM tests explain such enlargement accordingly.

  1. Effect of chitosan ethers on fresh state properties of lime mortars

    Science.gov (United States)

    Vyšvařil, M.; Žižlavský, T.

    2017-10-01

    The fresh state properties of mortars are eminently important since determine the material workability and also have a great influence on its hardened state characteristics. In this paper, the behaviour of fresh lime mortars modified by etherified derivatives of chitosan (hydroxypropylchitosan (HPCH) and carboxymethylchitosan (CMCH)) is assessed with the purpose of exploring a new application of such derivatives as lime mortar admixtures. The rheological parameters (relative yield stress, consistency coefficient and fluidity index) and viscoelastic properties were correlated with flow table tests, relative density measurements, water retention abilities of mortars and air content in mortars. Results were seen to be strongly dependent on substituents of the chitosan. Non-ionic derivative (HPCH) had a plasticizing influence on the mortars; the ionic CMCH showed the thickening effect. The effect of chitosan ethers was found to be dosage-dependent. CMCH had low impact on water retention, while HPCH displayed high water retention capability. It was concluded, that the ionic derivative (CMCH) is very similar by its viscosity enhancing effect to starch ether.

  2. Mineralogical and textural characterization of mortars and plasters from the archaeological site of Barsinia, northern Jordan

    Directory of Open Access Journals (Sweden)

    Mustafa Mohammad AL-Naddaf

    2014-12-01

    Full Text Available Twelve mortar and plaster samples excavated in the archaeological site of Barsinia were mineralogically and petrographically examined by XRay Diffraction (XRD and Stereo and Polarized Light Microscopy, while the total carbonate content was measured using a DietrichFruhling Calcimeter. The physical properties of the samples, such as water uptake under atmospheric pressure and under vacuum, together with density and porosity, were measured. Only twelve samples were available for the purposes of this study: 8 plaster samples and 4 mortar samples. Eleven samples out of the total number of samples were mortars or plasters with lime binder and silica aggregate; calcite and quartz were identified in all of these samples. In most of the samples one or more pozzolanic components were detected; a hydraulic effect therefore exists in practically most of the studied mortars. Excluding the plasters taken from waterbearing constructions such as cisterns, and the mortar sample from the compact floor, the binder content is high; in general, the overall porosity of the studied samples is high. Porosity and petrographic investigation results suggest that the burning temperature of the limestone was low and/or the duration of the combustion was short; such preparation conditions produce a desirable quicklime. Owing to the significant compositional and textural differences between the samples that were reported, there is consequently no suitable general mortar that can be adopted for the restoration of the whole site.

  3. The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars

    International Nuclear Information System (INIS)

    Maldonado-García, M.A.; Hernández-Toledo, U.I.; Montes-García, P.; Valdez-Tamez, P.L.

    2018-01-01

    This study investigated the effects of the addition of untreated sugarcane bagasse ash (UtSCBA) on the microstructural and mechanical properties of mortars. The SCBA was sieved for only five minutes through a No. 200 ASTM mesh, and fully characterized by chemical composition analysis, laser ray diffraction, the physical absorption of gas, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Mortar mixtures with 0, 10 and 20% UtSCBA as cement replacement and a constant 0.63 water/cementitious material ratio were prepared. Fresh properties of the mortars were obtained. The microstructural characteristics of the mortars at 1, 7, 28, 90 and 600 days were evaluated by SEM and XRD. The compressive strengths of the mortars at the same ages were then obtained. The results show that the addition of 10 and 20% UtSCBA caused a slight decrease in workability of the mortars but improved their microstructure, increasing the long-term compressive strength. [es

  4. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    Directory of Open Access Journals (Sweden)

    Yunsu Lee

    2018-04-01

    Full Text Available This paper presents the effect of anion exchange resin (AER on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  5. Effects of replacement of binder content on bond strength of mortars

    Directory of Open Access Journals (Sweden)

    E. B. C. Costa

    Full Text Available The reduction of binder content in cementitious systems is an effective way to mitigate environmental impacts without increasing costs. The main purpose of this study is to evaluate the effect of content binder on bond strength of mortar-brick interface. For thus, it was studied mortars produced with two limestone fines with different particle size distribution. The limestone fines were added at rates of 0% to 60% at increments of 15% as partial volume replacement of binder. Mortars were prepared in proportion of 1:3 (binder + limestone: sand in volume. The water content was kept constant and equal to 18% in relation to total weight of solids. The mechanical property of mortars was evaluated by tensile strength and the performance of interface by bond strength tests at 14 days. Results indicate that is possible make mortars with 45% less than binder without reducing bond strength. Thus, the use of appropriate particles of limestone can produce more environmentally friendly concrete and rendering mortars by reducing its binder factor without affecting its performance.

  6. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar

    Science.gov (United States)

    2018-01-01

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431

  7. Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar

    Directory of Open Access Journals (Sweden)

    Danuta Barnat-Hunek

    2018-04-01

    Full Text Available The influence of roughness and the way it affects the adhesion properties and surface free energy (SFE of polysiloxanes hydrophobised basalt fibres–reinforced cement mortars were determined in this article. The physical properties of mortars were investigated in the experimental part, which also explored the impact of hydrophobisation and basalt fibres (BF addition on SFE, frost resistance, contact angle (CA, and roughness. A device capable of calculating all parameters was used to indicate the surface roughness and 3D topography. Prior to and after conducting surface and weight hydrophobisation, the contact angle of mortars was specified. Subsequently, it was used for carrying out SFE calculation by means of Neumann’s method, enabling us to characterize the adhesion properties and wettability of mortars. The research indicated that the surface roughness was substantially decreased, in turn raising the frost resistance. The corrosion resistance drops when the surface roughness, water absorption, and number of fibres in the mortar increase. The SEM images presenting the structure of polysiloxane coating and mortars were provided.

  8. Alternative design of pipe sleeve for liquid removal mechanism in mortar slab layer

    Science.gov (United States)

    Nazri, W. M. H. Wan; Anting, N.; Lim, A. J. M. S.; Prasetijo, J.; Shahidan, S.; Din, M. F. Md; Anuar, M. A. Mohd

    2017-11-01

    Porosity is one of the mortar’s characteristics that can cause problems, especially in the room space that used high amount of water, such as bathrooms. Waterproofing is one of the technology that normally used to minimize this problem which is preventing deep penetration of liquid water or moisture into underlying concrete layers. However, without the proper mechanism to remove liquid water and moisture from mortar system, waterproofing layer tends to be damaged after a long period of time by the static formation of liquid water and moisture at mortar layer. Thus, a solution has been proposed to drain out water that penetrated into the mortar layer. This paper introduces a new solution using a Modified Pipe Sleeve (MPS) that installed at the mortar layer. The MPS has been designed considering the percentage surface area of the pipe sleeve that having contact with mortar layer (2%, 4%, 6%, 8% and 10%) with angle of holes of 60°. Infiltration test and flow rate test have been conducted to identify the effectiveness of the MPS in order to drain out liquid water or moisture from the mortar layer. In this study shows that, MPS surface area 10%, angled 60°, function effectively as a water removal compared to other design.

  9. Effect of Gamma Irradiation on Polymer Modified White Sand Cement Mortar Composites

    International Nuclear Information System (INIS)

    Khattab, M.M.

    2012-01-01

    This study focuses on the substitution effect of standard sand of conventional cement mortar made from ordinary Portland cement (OPC) and standard sand (SS) OPC/SS 1:3; by different ratios of white sand (WS) powder to prepare three types of white sand cement mortar designated as 1OPC:2SS:1WS, 1OPC:1SS:2WS and 1OPC:0SS:3WS. The prepared samples were first cured under tap water for different time intervals namely 3, 7, 28 and 90 days. The effect of addition of 10% styrene-acrylic ester (SAE) as well as the effect of different doses of gamma rays (10, 20, 30 and 50 kGy) on the physicomechanical properties of polymer modified white sand cement mortar specimens also discussed. Compression strength test, total porosity and water absorption percentages were measured according to standard specifications. The obtained data indicated that, the cement mortar samples containing different ratios of white sand have lower values of compressive strength as compared to the conventional cement mortar while, the percentages of total porosity and water absorption increased. On the other hand, the polymer modified mortar specimens showed a noticeably enhancement in the physico-mechanical properties under the effect of gamma-radiation than those of untreated samples. These results were confirmed by scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) studies

  10. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    Science.gov (United States)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  11. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.

    Science.gov (United States)

    Lee, Dongkyoung; Pyo, Sukhoon

    2018-02-10

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.

  12. Mechanical strengths of modified PET mortar composites in aggressive MgSO4 medium: ACI & B.S predictions

    OpenAIRE

    Kazi Tani N; Benosman A.S.; Senhadji Y.; Taïbi H.; Mouli M.

    2018-01-01

    Composites mortars based on plastic aggregates are often considered as an innovative materials of the future because of their potential and the advantages they present. In this paper, a comparative study was carried out on the effect of magnesium sulfate MgSO4 (5%) attack on the durability of composite mortars modified by recycled polyethylene terephthalate (PET). Laboratory tests were accomplished on limestone sand and cement mortars where the blended Portland cement was partially replaced b...

  13. Influence of light-weight masonry mortar on the thermal insulation of walling made from hollow blocks

    Energy Technology Data Exchange (ETDEWEB)

    Kupke, C; Schuele, M

    1984-10-01

    The thermal conductivity equivalent of hollow-block masonry with different types of mortar is calculated for ten different types of blocks as a function of the thermal conductivity of the brick material. A measure is derived for determining the improved thermal conductivity of hollow-block masonry with light mortar as compared to walls with normal mortar. The findings supplement the findings already obtained for solid bricks.

  14. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    Science.gov (United States)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  15. Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings

    International Nuclear Information System (INIS)

    Kheradmand, Mohammad; Azenha, Miguel; Aguiar, José L.B. de; Castro-Gomes, João

    2016-01-01

    This paper proposes a methodology for improvement of energy efficiency in buildings through the innovative simultaneous incorporation of three distinct phase change materials (here termed as hybrid PCM) in plastering mortars for façade walls. The thermal performance of a hybrid PCM mortar was experimentally evaluated by comparing the behaviour of a prototype test cell (including hybrid PCM plastering mortar) subjected to realistic daily temperature profiles, with the behaviour of a similar prototype test cell, in which no PCM was added. A numerical simulation model was employed (using ANSYS-FLUENT) to validate the capacity of simulating temperature evolution within the prototype containing hybrid PCM, as well as to understand the contribution of hybrid PCM to energy efficiency. Incorporation of hybrid PCM into plastering mortars was found to have the potential to significantly reduce heating/cooling temperature demands for maintaining the interior temperature within comfort levels when compared to normal mortars (without PCM), or even mortars comprising a single type of PCM. - Highlights: • New concept of incorporation of more than 1 type of PCM in plastering mortars (hybrid PCM). • Assessment of thermal performance of hybrid PCM plastering mortar. • Thermo-physical properties of plastering mortars modified with PCMs incorporation. • Experimental and numerical simulations of thermal behaviour on laboratory scale prototype.

  16. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  17. Influence of bending deflection rate on properties of fibrous mortar

    Directory of Open Access Journals (Sweden)

    Metwally Abd Allah Abd el Aty

    2013-04-01

    Full Text Available Selection of the construction materials is affected by many factors including their properties under the applied loads. Loading rate is considered as a very important parameter which influences the behavior of the materials. Fibrous concrete is commonly used in applications in which the loading rate exceeds quasi static conditions by a large margin. This paper investigates the influence of flexural loading rate on the performance of fibrous concrete prisms in flexure. Two hundred and fifty two prisms include fibrous concrete and control specimens were prepared and tested. Fiber type, fiber dosage and flexural loading rate were the main parameters considered in this study. Two types of fibers were investigated namely polypropylene fibers and glass fibers. Three dosages of fiber volume fractions were implemented as 0.5%, 1.0% and 2.0%. A total of 12 different rates of displacement (0.0039 up to 8 mm/s for load application were conducted. A computer controlled universal testing machine provided with data acquisition system capable of performing 1000 loop per second was used. Load–central deflection, flexural strength and toughness were the evaluated properties for the investigated specimens. The results indicated that the flexure strength values exhibited loading rate dependence not only for the control mix but also for the investigated fibrous mortar mixes. Also the performance in flexure varied substantially not only with loading rate but with fiber type and fiber volume fractions as well.

  18. Mortar cohesión. The effect of additives

    Directory of Open Access Journals (Sweden)

    Castro, J. H.

    1975-12-01

    Full Text Available This study was concerned with the hydration of clinker compounds in the presence of different additives; it appeared that accelerating additives, such as calcium chloride and silicic acid, produce longer fibers of tobermorite, whereas inhibitors, such as sugar, produce shorter fibers of tobermorite. This same effect was observed in the hydration of anhydrite, in which large crystals of gypsum were produced in the presence of sodium sulphate. So the cohesion in mortars of cement and anhydrite is explained in terms of the role of fibers.Se estudia la hidratación del clínker en presencia de diferentes aditivos encontrándose que los aceleradores, como el cloruro cálcico y el ácido salicílico, producen tobermorita de fibra larga y los inhibidores, como el azúcar, tobermorita de fibra corta. Este mismo efecto se encuentra en la anhidrita, produciéndose cristales de yeso largo, en presencia del sulfato de sodio, y cristales cortos en ausencia del catalizador. La cohesión de un mortero depende luego del largo de sus fibras. Así la cohesión de los morteros de cemento y anhidrita se explican en función del rol de la fibra.

  19. Intensified Pozzolanic Reaction on Kaolinite Clay-Based Mortar

    Directory of Open Access Journals (Sweden)

    Yang-Hee Kwon

    2017-05-01

    Full Text Available The objective of this study is to develop and characterize kaolinite clay-based structural mortar. The pozzolanic reaction induced from two mineral additives, i.e., calcium hydroxide and silica fume (SF, and the physical filling effect from SF, were found to be effective on the enhancement of structural properties. Based on several preliminary experiments, 7:3 ratio of kaolinite clay/calcium hydroxide was selected as a basic binder. Then, the amount of SF was chosen as 0%, 7.5%, and 15% of the total binder to consider both the chemical and physical effects. The results showed that compressive strengths of samples with 7.5% and 15% SF are significantly increased by approximately 200% and 350%, respectively, at 28 days compared to the sample without SF. However, based on the results of the sample with 15% SF, it is found that excessive addition of SF causes long-term strength loss, possibly owing to micro cracks. With the careful consideration on this long-term behavior, this suggested new mix design can be further extended to develop sustainable structural materials using natural minerals or waste materials with nonbinding properties.

  20. Scientific studies on decorated mud mortar of Ajanta

    Directory of Open Access Journals (Sweden)

    M. Singh

    2014-01-01

    Full Text Available This study is an attempt to reveal the decorated earthen plaster of Ajanta. The mud plaster of Ajanta caves has been analyzed with the help of physical and analytical tools. The results indicate that high silt (>70% low clay soil may have been mixed purposefully with lime (calcite for the reason to enhance the cementing characteristics. The presence of calcium oxalate was detected from FTIR spectra may have been the resultant product of proteic materials presented in mud plaster. Ferrugineous silicate along with rarer gluconite–celendonite and white zeolites were also perceived from SEM and FTIR spectral analysis. The existence of quartz and sepiolite in mud mortar was also detected from XRD and SEM studies. The vegetal matter might have been added to tailor the construction behavior. The analytical results authenticate the similarity of earthen plaster of Ajanta and alluvion deposits of Waghura River just in front of caves, probably used as raw material in improvement of new material that suits for restoration for optimize performance and compatibility with the existing materials.

  1. Sulfate resistance of fly ash-based geopolymer mortar

    Science.gov (United States)

    Saloma, Iqbal, Maulid Muhammad; Aqil, Ibnu

    2017-09-01

    This paper presents sulfuric acid attack of fly ash-based geopolymer mortar. Precursor used in this study was fly ash, and activator used was NaOH and Na2SiO3. The ratio of activator/precursor, ratio of Na2SiO3/NaOH, and ratio of fine aggregate/precursor is 0.42, 2.00, and 2.00, respectively. The molar concentration of NaOH which was used were 8, 10, 12, 14, and 16 M. This study used cube specimen with 5 cm x 5 cm x 5 cm. The results showed that the higher the molar concentration of NaOH, the lower the weight loss. Maximum percentage of weight loss is 3.54% occured for the specimen with molar concentration of NaOH 8 M. The compressive strength for all specimens decreased due to the longer duration of immersion in sulfuric acid solution. However, this percentage of decreasing for compressive strength will be as lower as increasing the molar concentration of NaOH used. The maximum percentage of decreasing is 35.49% for specimen with NaOH 8 M with 90 days of immersion.

  2. Characteristics of shock propagation in high-strength cement mortar

    Science.gov (United States)

    Wang, Zhanjiang; Li, Xiaolan; Zhang, Ruoqi

    2001-06-01

    Planar impact experiments have been performed on high-strength cement mortar to determine characteristics of shock propagation.The experiments were conducted on a light-gas gun,and permanent-magnet particle velocity gages were used to obtain the sand of 0.5 3.5mm size.A bulk density of 2.31g/cm^3,and a compressive and tensile strength of 82MPa and 7.8MPa,respectively,were determined.Three kinds of experimental techniques were used,including the reverse ballistic configuration.These techniques effectively averaged the measured dynamic compression state over a sensibly large volume of the test sample.The impact velocities were controlled over a range of approximately 80m/s to 0.83km/s.Hugoniot equation of state data were obtained for the material over a pressure range of approximately 0.2 2.0GPa,and its nonlinear constitutive relation were analyzed.The experiment results show that,in higher pressure range provided in the experiment,the shock wave in the material splits into two components of an elastic and a plastic,with the Hugoniot elastic limit 0.4 0.5GPa and the precursor velocity about 4.7km/s,and the material presents a very strong nonlinear dynamic response,and its shock amplitude will greatly decrease in propagation.

  3. Influence of polymer fibers on rheological properties of cement mortars

    Directory of Open Access Journals (Sweden)

    Malaszkiewicz Dorota

    2017-10-01

    Full Text Available The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12–50 mm and volume fraction in the range 0–4% on the rheological properties of fiber reinforced fresh mortar (FRFM and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value and h (plastic viscosity. Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  4. Influence of polymer fibers on rheological properties of cement mortars

    Science.gov (United States)

    Malaszkiewicz, Dorota

    2017-10-01

    The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12-50 mm and volume fraction in the range 0-4%) on the rheological properties of fiber reinforced fresh mortar (FRFM) and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value ) and h (plastic viscosity). Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  5. Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system

    Science.gov (United States)

    Acharya, Ragini

    Numerical Simulation of interior ballistic processes in gun and mortar systems is a very difficult and interesting problem. The mathematical model for the physical processes in the mortar systems consists of a system of non-linear coupled partial differential equations, which also contain non-homogeneity in form of the source terms. This work includes the development of a three-dimensional mortar interior ballistic (3D-MIB) code for a 120mm mortar system and its stage-wise validation with multiple sets of experimental data. The 120mm mortar system consists of a flash tube contained within an ignition cartridge, tail-boom, fin region, charge increments containing granular propellants, and a projectile payload. The ignition cartridge discharges hot gas-phase products and unburned granular propellants into the mortar tube through vent-holes on its surface. In view of the complexity of interior ballistic processes in the mortar propulsion system, the overall problem was solved in a modular fashion, i.e., simulating each physical component of the mortar propulsion system separately. These modules were coupled together with appropriate initial and boundary conditions. The ignition cartridge and mortar tube contain nitrocellulose-based ball propellants. Therefore, the gas dynamical processes in the 120mm mortar system are two-phase, which were simulated by considering both phases as an interpenetrating continuum. Mass and energy fluxes from the flash tube into the granular bed of ignition cartridge were determined from a semi-empirical technique. For the tail-boom section, a transient one-dimensional two-phase compressible flow solver based on method of characteristics was developed. The mathematical model for the interior ballistic processes in the mortar tube posed an initial value problem with discontinuous initial conditions with the characteristics of the Riemann problem due to the discontinuity of the initial conditions. Therefore, the mortar tube model was solved

  6. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder

    International Nuclear Information System (INIS)

    Zhong Shiyun; Ni Kun; Li Jinmei

    2012-01-01

    Highlights: ► The mortar with uncalcined FGD gypsum has suitable workability. ► The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. ► The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. ► The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C–S–H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563–938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO 4 2- from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO 4 2- releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO 4 2- from the mortar with 20% FGD gypsum is 9200 mg·m −2 , which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.

  7. Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2014-01-15

    This paper presents the performance of cement mortar containing black rice husk ash (BRHA) under nitric and acetic acid attacks. The BRHA, collected from an electrical generating power plant that uses rice husk as fuel, was ground using a grinding machine. The compressive strength loss, weight loss, and expansion of mortars under nitric and acetic acid attack were investigated. The test results of BRHA properties in accordance with the ASTM C 618 standard found that the optimal grinding time was 4 h as this achieved a Blaine fineness of 5370 cm(2)/g. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 20%, 30%, 40%, and 50% by weight of binder. The water-to-binder ratios were 0.55, 0.60, and 0.65. From test results, when the percentage replacements of BRHA in cement increased, it was observed that the strength loss and weight loss of mortars containing BRHA under acetic acid attack were higher than those of the mortars against nitric acid attack. It was found that, of the various BHRA mortars, the strength loss and weight loss due to nitric and acetic acid attacks were the lowest in the mortar with 10% BRHA replacement. For 10%, 20% and 30% BRHA replacements, the rate of expansion of the BRHA mortar decreased when compared with the control mortar. For the mortars with other percentage replacements of BRHA, the rate of expansion increased. Furthermore, the effective water-to-binder ratios of control and BRHA mortars were the primary factor for determining the durability of mortar mixed with BRHA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. AMS radiocarbon dating of mortar: The case study of the medieval UNESCO site of Modena

    International Nuclear Information System (INIS)

    Carmine, Lubritto; Caroselli, Marta; Lugli, Stefano; Marzaioli, Fabio; Nonni, Sara; Marchetti Dori, S.; Terrasi, Filippo

    2015-01-01

    The carbon dioxide contributing to binder formation during the set of a lime mortar reflects the atmospheric "1"4C content at the time of construction of a building. For this reason, the "1"4C dating of mortars is used with increasing frequencies in archaeological and architectural research. Mortars, however, may also contain carbonaceous contaminants potentially affecting radiocarbon dating. The Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) of the Second University of Naples (SUN) has recently obtained some promising results in mortar radiocarbon dating thanks to the development of a procedure (i.e. CryoSoniC/Cryo2SoniC) aiming to eliminate exogenous C contamination that may occur in a mortar. The construction history of the UNESCO World Heritage Site of Modena (Italy) is still controversial and represents a challenging case study for the application of absolute dating methodologies for different reasons. From the point of view of "1"4C dating, for example, given the high percentage of carbonate aggregates composing these samples, Modena mortars represent an experimental test particularly indicative of exogenous carbon sources suppression ensuring methodology accuracy. In this paper several AMS Radiocarbon dates were carried out on lime lumps with the aim to: (i) verify procedure accuracy by a comparison of the results obtainable from lime lumps dated after different treatments (i.e. bulk lime lumps vs. CryoSoniC purified lime lumps); (ii) compare different building phases absolute chronology for the medieval UNESCO site of Modena, with that assumed by historical sources in order to assess preliminary the "1"4C dating feasibility for of the site. Historical temporal constraints and mortar clustering, based on petrography, have been applied to define a temporal framework of the analyzed structure. Moreover, a detailed petrographic characterization of mortars was used both as a preliminary tool for the choice of samples and to infer

  9. Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste

    International Nuclear Information System (INIS)

    Gallala, Wissem; Hayouni, Yousra; Gaied, Mohamed Essghaier; Fusco, Michael; Alsaied, Jasmin; Bailey, Kathryn; Bourham, Mohamed

    2017-01-01

    Highlights: • Effectiveness of mine waste as additive fine aggregate has been investigated. • Experimental results are verified by computationally from composition of synthesized samples. • Work focuses on shielding materials for nuclear systems including spent fuel storage and drycasks. - Abstract: Incorporation of barite-fluorspar mine waste (BFMW) as a fine aggregate additive has been investigated for its effect on the mechanical and shielding properties of cement mortar. Several mortar mixtures were prepared with different proportions of BFMW ranging from 0% to 30% as fine aggregate replacement. Cement mortar mixtures were evaluated for density, compressive and tensile strengths, and gamma ray radiation shielding. The results revealed that the mortar mixes containing 25% BFMW reaches the highest compressive strength values, which exceeded 50 MPa. Evaluation of gamma-ray attenuation was both measured by experimental tests and computationally calculated using MicroShield software package, and results have shown that using BFMW aggregates increases attenuation coefficient by about 20%. These findings have demonstrated that the mine waste can be suitably used as partial replacement aggregate to improve radiation shielding as well as to reduce the mortar and concrete costs.

  10. Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material

    Science.gov (United States)

    Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad

    2016-06-01

    Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.

  11. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Sahmaran; Heru Ari Christianto; Ismail Ozgur Yaman [Middle East Technical University, Ankara (Turkey). Department of Civil Engineering

    2006-05-15

    Mortar serves as the basis for the workability properties of self-compacting concrete (SCC) and these properties could be assessed by self-compacting mortars (SCM). In fact, assessing the properties of SCM is an integral part of SCC design. The objective of this study was to evaluate the effectiveness of various mineral additives and chemical admixtures in producing SCMs. For this purpose, four mineral additives (fly ash, brick powder, limestone powder, and kaolinite), three superplasticizers (SP), and two viscosity modifying admixtures (VMA) were used. Within the scope of the experimental program, 43 mixtures of SCM were prepared keeping the amount of mixing water and total powder content (Portland cement and mineral additives) constant. Workability of the fresh mortar was determined using mini V-funnel and mini slump flow tests. The setting time of the mortars, were also determined. The hardened properties that were determined included ultrasonic pulse velocity and strength determined at 28 and 56 days. It was concluded that among the mineral additives used, fly ash and limestone powder significantly increased the workability of SCMs. On the other hand, especially fly ash significantly increased the setting time of the mortars, which can, however, be eliminated through the use of ternary mixtures, such as mixing fly ash with limestone powder. The two polycarboxyl based SPs yield approximately the same workability and the melamine formaldehyde based SP was not as effective as the other two.

  12. Calcium Extraction from Blast-Furnace-Slag-Based Mortars in Sulphate Bacterial Medium

    Directory of Open Access Journals (Sweden)

    Adriana Estokova

    2018-01-01

    Full Text Available Wastewater structures, such as treatment plants or sewers can be easily affected by bio-corrosion influenced by microorganisms living in waste water. The activity of these microbes results in deterioration and can cause the reduction in structural performance of such structures. In order to improve the durability of mortar and concrete, different admixtures are being used and the best impact is observed in cement based materials combined with blast furnace slag. In this study, mortar samples with blast furnace slag were exposed to bacterial sulphate attack for 90 and 180 days. The leaching of calcium ions from the cement matrix and equivalent damaged depths of studied mortar samples were evaluated. The results showed more significant leaching of samples placed in bacterial environment, compared to the samples placed in non-bacterial environment. Similarly, the equivalent damaged depths of mortars were much higher for the bacteria-influenced samples. The slag-based cement mortars did not clearly show improved resistance in bacterial medium in terms of calcium leaching.

  13. Characterization of a new protocol for mortar dating: 13C and 14C evidences

    International Nuclear Information System (INIS)

    Marzaioli, F.

    2011-01-01

    This paper reviews the present knowledge about the analysis of mortars in the framework of artworks absolute chronology determination with the aim to formulate a new methodology capable of systematically and accurately estimating the age of these constructive and/or art materials. The core of the proposed methodology is represented by a physical procedure (ultrasonication) selecting only carbonaceous materials represented by carbonates formed after the absorption of atmospheric Co2 (carbonatation) by mortars (binder) during their setting. With the aim to evaluate the procedure efficiency in the isolation of binder signal from the most important source of carbonates, the proposed procedure was tested on a series of laboratory mortars produced, in a simplified version, in the laboratory environment. Mortar production was characterized by means of a series of measurements allowing to draw important indications about the applied procedure. The radiocarbon value of isolated binder carbonates was compared with the Co2 signal sampled form laboratory air during mortar setting. The observed results confirmed preliminarily the good protocol accuracy for radiocarbon dating suggesting its capability for the application to real study cases.

  14. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA).

    Science.gov (United States)

    Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára

    2016-01-15

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  15. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    Science.gov (United States)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  16. Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration

    International Nuclear Information System (INIS)

    Sanchez-Moral, Sergio; Luque, Luis; Canaveras, Juan-Carlos; Soler, Vicente; Garcia-Guinea, Javier; Aparicio, Alfredo

    2005-01-01

    Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 deg C, a high CO 2 content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO 2 concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thicker beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds

  17. Crushed and River-Origin Sands Used as Aggregates in Repair Mortars

    Directory of Open Access Journals (Sweden)

    Maria Stefanidou

    2016-04-01

    Full Text Available The systematic analysis of mortars from monuments or historic buildings and the simultaneous study of the construction environment show that it was common practice to use naturally occurring sand from local rivers or streams for the production of the mortars. There are cases though, mainly on islands, where sands of natural origin were limited, and marine or crushed sands were used possibly after elaboration. In all cases the particle size analysis of old mortar confirms the presence of even distribution of the granules. As regards the design of the repair mortars, there are criteria that should be taken into consideration in order to produce materials with compatible properties. The main properties concerning sands are the grain distribution and maximum size, the color, the content of fines, and soluble salts. The objective of this research is the study of the physical characteristics of the sands such as the sand equivalent, the gradation, the apparent density, the morphology of the grains, their mineralogical composition and the influence of these properties on the behavior of lime mortars, notably the mechanical and physical properties acquired.

  18. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate (EVA

    Directory of Open Access Journals (Sweden)

    Luiza R. Brancher

    2016-01-01

    Full Text Available This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate (EVA to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  19. Use of waste brick as a partial replacement of cement in mortar.

    Science.gov (United States)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  20. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    Science.gov (United States)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  1. PERFORMANCE OF CEMENT MORTARS REPLACED BY GROUND WASTE BRICK IN DIFFERENT AGGRESSIVE CONDITIONS

    Directory of Open Access Journals (Sweden)

    ILHAMI DEMIR

    2011-09-01

    Full Text Available This article investigates the sulphate resistance of cement mortars when subjected to different exposure conditions. Cement mortars were prepared using ground waste brick (GWB as a pozzolanic partial replacement for cement at replacement levels of 0%, 2.5%, 5%, 7.5, 10%, 12.5 and 15%. Mortar specimens were stored under three different conditions: continuous curing in lime-saturated tab water (TW, continuous exposure to 5% sodium sulphate solution (SS, and continuous exposure to 5% ammonium nitrate solution (AN, at a temperature of 20 ± 3 ºC, for 7, 28, 90, and 180 days. Prisms with dimensions of 25×25×285 mm, to determine the expansions of the mortar samples; and another set of prisms with dimensions of 40×40×160 mm, were prepared to calculate the compressive strength of the samples. It was determined that the GWB replacement ratios between 2.5% and 10% decreased the 180 days expansion values. The highest compressive strength values were found for the samples with 10% replacement ratio in the TW, SS, and AN conditions for 180 days. The microstructure of the mortars were investigated using scanning electron microscopy (SEM and the Energy dispersive X-ray (EDX.

  2. Use of waste brick as a partial replacement of cement in mortar

    International Nuclear Information System (INIS)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-01-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  3. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars

    Directory of Open Access Journals (Sweden)

    Vanissorn Vimonsatit

    2015-12-01

    Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.

  4. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    Science.gov (United States)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  5. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  6. Generation of Rayleigh waves into mortar and concrete samples.

    Science.gov (United States)

    Piwakowski, B; Fnine, Abdelilah; Goueygou, M; Buyle-Bodin, F

    2004-04-01

    The paper deals with a non-destructive method for characterizing the degraded cover of concrete structures using high-frequency ultrasound. In a preliminary study, the authors emphasized on the interest of using higher frequency Rayleigh waves (within the 0.2-1 MHz frequency band) for on-site inspection of concrete structures with subsurface damage. The present study represents a continuation of the previous work and aims at optimizing the generation and reception of Rayleigh waves into mortar and concrete be means of wedge transducers. This is performed experimentally by checking the influence of the wedge material and coupling agent on the surface wave parameters. The selection of the best combination wedge/coupling is performed by searching separately for the best wedge material and the best coupling material. Three wedge materials and five coupling agents were tested. For each setup the five parameters obtained from the surface wave measurement i.e. the frequency band, the maximal available central frequency, the group velocity error and its standard deviation and finally the error in velocity dispersion characteristic were investigated and classed as a function of the wedge material and the coupling agent. The selection criteria were chosen so as to minimize the absorption of both materials, the randomness of measurements and the systematic error of the group velocity and of dispersion characteristic. Among the three tested wedge materials, Teflon was found to be the best. The investigation on the coupling agent shows that the gel type materials are the best solutions. The "thick" materials displaying higher viscosity were found as the worst. The results show also that the use of a thin plastic film combined with the coupling agent even increases the bandwidth and decreases the uncertainty of measurements.

  7. Highly permeable, cement-bounded backfilling mortars for SMA repositories

    International Nuclear Information System (INIS)

    Jacobs, F.; Mayer, G.; Wittmann, F.H.

    1994-03-01

    In low- and intermediate-level waste repositories, gas is produced due e.g. to corrosion. This gas must be able to escape from the repository in order to prevent damage to the repository structure. A cement-based backfill should take over this function. For this purpose, the composition of cement-based materials was varied to study their influence on porosity and permeability. In parallel to this study the behaviour of fresh concrete, the liberation of the heat of hydration and the hardened concrete properties were investigated. To characterize the permeability of cement-based materials the following parameters are important: 1) composition of the material (pore fabric), 2) storage conditions (degree of saturation), 3) degree of hydration (age), 4) measuring fluid. A change in the composition of cement-based materials can vary the permeability by ten orders of magnitude. It is shown that, by using dense aggregates, the transport of the fluid takes place through the matrix and along the aggregate/matrix interface. By using porous aggregates the permeability can be increased by two orders of magnitude. In the case of a dense matrix, porous aggregates do not alter the permeability. Increasing the matrix content or interface content increases permeability. Hence light weight mortars are an obvious choice. Like-grained mixes showed higher permeabilities in combination with better mechanical properties but, in comparison to normal mixes, they showed worse flow properties. With the composition cement-: water-: aggregate content 1:0.4:5.33 the likegrained mix with aggregates ranging from 2 to 3 mm proved to be a suitable material. With a low compaction after 28 days this mix reaches a permeability of 4.10 -12 m 2 and an uniaxial cylinder compressive strength of 16 N/mm 2 . (author) 58 figs., 23 tabs., refs

  8. The effect of two types of modified Mg-Al hydrotalcites on reinforcement corrosion in cement mortar

    NARCIS (Netherlands)

    Yang, Z.; Polder, R.; Mol, J.M.C.; Andrade, C.

    2017-01-01

    Two modified Mg-Al hydrotalcites (MHTs), (MHT-pAB and MHT-NO2) were incorporated into mortar (with different w/c ratios) in two different ways: (1) as one of the mixing components in bulk mortar; (2) as part of cement paste coating of the reinforcing steel. Accelerated chloride migration, cyclic

  9. Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: Compositional and mechanical characterisation

    NARCIS (Netherlands)

    Nijland, T.G.; Gulotta, D.; Goidanich, S.; Tedeschi, C.; Toniolo, L.

    2013-01-01

    This paper presents the characterisation of a selection of NHL-based commercial products for the conservation of historic masonries. Two binders and four ready-mixed mortars have been analysed; both the anhydrous raw materials and the hardened mortars have been studied, focusing on those parameters

  10. Properties, characterization, and decay of sticky rice–lime mortars from the Wugang Ming dynasty city wall (China)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Ya [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Cultural Relics and Archaeology Institute of Hunan, Changsha 410083 (China); Fu, Xuan; Gu, Haibing [Cultural Relics and Archaeology Institute of Hunan, Changsha 410083 (China); Gao, Feng [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Shaojun, E-mail: liumatthew@csu.edu.cn [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-04-01

    Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role in forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment.

  11. Influence of Titanium Dioxide Nanoparticles on the Sulfate Attack upon Ordinary Portland Cement and Slag-Blended Mortars

    Directory of Open Access Journals (Sweden)

    Atta-ur-Rehman

    2018-02-01

    Full Text Available In this study, the effects of titanium dioxide (TiO2 nanoparticles on the sulfate attack resistance of ordinary Portland cement (OPC and slag-blended mortars were investigated. OPC and slag-blended mortars (OPC:Slag = 50:50 were made with water to binder ratio of 0.4 and a binder to sand ratio of 1:3. TiO2 was added as an admixture as 0%, 3%, 6%, 9% and 12% of the binder weight. Mortar specimens were exposed to an accelerated sulfate attack environment. Expansion, changes in mass and surface microhardness were measured. Scanning Electron Microscopy (SEM, Energy Dispersive Spectroscopy (EDS, X-ray Diffraction (XRD, Thermogravimetry Analysis (TGA and Differential Scanning Calorimetry (DSC tests were conducted. The formation of ettringite and gypsum crystals after the sulfate attack were detected. Both these products had caused crystallization pressure in the microstructure of mortars and deteriorated the mortars. Our results show that the addition of nano-TiO2 accelerated expansion, variation in mass, loss of surface microhardness and widened cracks in OPC and slag-blended mortars. Nano-TiO2 containing slag-blended mortars were more resistant to sulfate attack than nano-TiO2 containing OPC mortars. Because nano-TiO2 reduced the size of coarse pores, so it increased crystallization pressure due to the formation of ettringite and gypsum thus led to more damage under sulfate attack.

  12. Microstructural Characterization of Reinforced Mortar after Corrosion and Cathodic Prevention in the Presence of Core-Shell Micelles

    NARCIS (Netherlands)

    Koleva, D.A.

    2010-01-01

    This work reports on the microstructural properties of reinforced mortar after chloride-induced corrosion and two regimes of cathodic prevention. Additionally, the impact of a very low concentration polymeric nano-aggregates (core-shell micelles from PEO113-b-PS218), admixed in the mortar mixture is

  13. Properties, characterization, and decay of sticky rice–lime mortars from the Wugang Ming dynasty city wall (China)

    International Nuclear Information System (INIS)

    Xiao, Ya; Fu, Xuan; Gu, Haibing; Gao, Feng; Liu, Shaojun

    2014-01-01

    Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role in forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment

  14. Electrodialytically treated MSWI APC residue as substitute for cement in mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Geiker, Mette Rica; Jensen, Pernille Erland

    2014-01-01

    Air pollution control (APC) residues from municipal solid waste incineration (MSWI) are considered hazardous waste and need pretreatment prior to possible reuse. Here, two MSWI APC residues, from which the most mobile fraction of heavy metals and salts has been removed by carbonation and/or elect......Air pollution control (APC) residues from municipal solid waste incineration (MSWI) are considered hazardous waste and need pretreatment prior to possible reuse. Here, two MSWI APC residues, from which the most mobile fraction of heavy metals and salts has been removed by carbonation and....../or electrodialytic remediation, were used in Portland cement mortar. Mortar bars with 15 % weight replacement of cement by APC residues showed compressive strengths up to 40 MPa after 28/32 days. Heavy metal and salt leaching from both crushed and monolithic mortars with APC residues was generally similar...

  15. Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-07-01

    Full Text Available The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too.

  16. Influence of citric acid as setting retarder in CPV portland cement pastes and mortars

    International Nuclear Information System (INIS)

    Mendes, B.C.; Lopes, M.M.S.; Alvarenga, R.C.S.S.; Fassoni, D.P.; Pedroti, L.G.; Azevedo, A.R.G. de

    2016-01-01

    This work aims to study the availability of using and the influence of citric acid in the properties of pastes and mortars made with Portland cement CPV ARI both in fresh and hardened form. The citric acid dosages were 0, 0.4%, and 0.8% relative to the cement mass. The produced cement pastes were tested to determine normal consistency water and initial and final setting times. Mortars were tested to determine the consistency index, specific gravity, air entrained content in the fresh stage, hardened bulk density, compressive strength at ages 7, 14, and 28 days, and analysis by XRD technique. The results show that citric acid, besides improve the mortar workability, contribute to an increase in mechanical strength in older than 14 days. (author)

  17. Study of water retention capacity in mortars with the incorporation of exhaust powder

    International Nuclear Information System (INIS)

    Pereira, Helena Ravache Samy; Valentina, Luiz Veriano Oliveira Dalla; Priscila Warch

    2011-01-01

    The purpose of this study is to suggest the incorporation of exhaust powder waste in mortars for laying and coating walls and ceilings, to evaluate the representative proportions through mixture design, aiming for a satisfactory performance of the analyzed property and the water retention capacity. In the experimental procedure ten mixtures were performed with consistence index of 230±10mm. The surface response generated showed a water retention capacity in mortar varying from 88% to 95%, which could be classified as normal and high. In relation to the water retention, the incorporation of foundry exhaust powder waste in the studied proportions is viable in mortars for laying and coating walls and ceilings. (author)

  18. Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars

    International Nuclear Information System (INIS)

    Ballester, P.; Hidalgo, A.; Marmol, I.; Morales, J.; Sanchez, L.

    2009-01-01

    The effect of temperature on fresh mortar and cement paste was evaluated by simulating the curing conditions of external buildings plastering applied under extremely hot weather. The specimens were heated at controlled temperatures in the 40-80 o C range by exposure to IR radiation over short periods. The effect of soaking for a short time was also examined. The results of compressive strength tests, scanning electron microscopy, infrared spectroscopy and mercury porosimetry helped to characterize the mechanical and physico-chemical properties of the studied sample. Early age behaviour (28 days) in neat cement was barely affected by the temperature. By contrast, exposure to high temperatures caused significant microstructural changes in the mortar. However, successive soaking over short periods was found to reactivate the mechanism of curing and restore the expected mechanical properties. Based on the results, application of cement based mortar at high temperatures is effective when followed by a short, specific soaking process.

  19. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kunther, W., E-mail: Wolfgang.Kunther@empa.ch [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, B. [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Scrivener, K. [EPFL, Laboratory of Construction Materials, CH-1015 Lausanne (Switzerland)

    2013-02-15

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposed in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.

  20. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  1. Partial replacement of Portland cement by red ceramic waste in mortars: study of pozzolanic activity

    International Nuclear Information System (INIS)

    Silva, A.R. da; Cabral, K.C.; Pinto, E.N. de M.G.l.

    2016-01-01

    The objective of this study is to analyze the pozzolanic activity of red ceramic residue on the partial replacement of Portland cement in mortars. The mortars were prepared by substituting 25% of the Portland cement for ground of ceramic residue with water cement’s factor of 0.48. The concrete used to construct the reference mortars and those with addiction was CPII-Z-32 (compound of Portland pozzolana cement). The chemical analysis and physical ceramic waste showed that this meets the requirements of NBR12653 (2014) for use as pozzolanic material. The pozzolanic activity index (IAP) obtained for the ceramic waste to twenty-eight days cure rate was 80.28%. (author)

  2. Characteristic of Polymer-Impregnated Cement Mortar: Composites: Bulk Density and Microstructure

    International Nuclear Information System (INIS)

    Younes, M.M.; Abo-El-Enein, S.A.; El-Saft, M.M.; Sadek, M.A.; Zohdy, K.M.

    2010-01-01

    The effect of radiation initiated polymerization of some monomers on the physical properties of polymer-incorporated mortar was studied. The monomers used were: castor oil (C.O.), 4, 4'-diphenylmethane diisocyanate (MDI) and methyl methacrylate (MMA). Polymerization was carried out by subjecting the monomer-impregnated mortar specimens to different doses of gamma radiation. Where polyurethane (pu) and polyurethane -methyl methacrylate copolymers were formed within the pore system. The influence of polymer impregnation on the various physico-mechanical characteristics of the resulting composites was studied with respect to bulk density and polymer loading. Scanning electron microscopy (SEM) was employed to study the micro-structural characteristics of the neat hardened Ordinary Portland Cement (OPC) mortar pastes and their polymer-impregnated composites

  3. Wood ash used as partly sand and/or cement replacement in mortar

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Esben Østergaard; Jensen, Pernille Erland

    2016-01-01

    , and the present work reports a characterization of three different WAs. Properties of mortar samples with the WAs used as partly cement and/or sand replacement are reported. Compressive strength development and porosity are the mortar properties in focus. The overall aim of the work is to evaluate the influence...... of the ashes were dry and sampled just after the incineration, whereas one ash had a water content of 15%, because the ash was sprayed with water to avoid dust during ash handling at the incineration plant. Regardless of replacing cement or sand with WAs, the compressive strength decreased compared...... to a reference without ash, however, the decrease was small for two of the ashes. Using the ash with the high LoI resulted in significantly lower compressive strength compared to the other two ashes. The mortar samples with two of the ashes (with low LoI) had qualities, which were very encouraging in order...

  4. Cost Optimization of Mortars Containing Different Pigments and Their Freeze-Thaw Resistance Properties

    Directory of Open Access Journals (Sweden)

    Sadık Alper Yıldızel

    2016-01-01

    Full Text Available Nowadays, it is common to use colored concrete or mortar in prefabricated concrete and reinforced concrete construction elements. Within the scope of this study, colored mortars were obtained with the addition of brown, yellow, black, and red pigments into the white cement. Those mixtures are examined for their compressive strength, unit weight, water absorption, and freeze-thaw resistance. Subsequent to comparison of these properties, a cost optimization has been conducted in order to compare pigment costs. The outcomes showed that the pore structure in architectural mortar applications plays an important role in terms of durability. And cost optimization results show that light colored minerals can be used instead of white cements.

  5. The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar

    Science.gov (United States)

    Fan, Cheng-Chih; Huang, Ran; Hwang, Howard; Chao, Sao-Jeng

    2015-01-01

    The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.

  6. Dry ripened mortar with quarry waste and rubber powder from unserviceable tires

    Directory of Open Access Journals (Sweden)

    José Aparecido Canova

    2015-01-01

    Full Text Available Stone-quarry fines have been evaluated in mortar and concrete, but have presented drying shrinkage and consequently higher incidence of cracks than those with natural sand. This study compared the dry ripened mortar in two types of aggregates added of 8% rubber powder. It was used quicklime, artificial and natural sand in volumetric proportions of 1:6. Mixtures were oven-dried, received the cement, establishing the volumetric proportion of 1: 1.5:9. Inplastic state, we evaluated aspects such as consistence, air content, water retention and bleeding; whereas compressive strength, static deformation modulus and water absorption by capillarity was determined in hardened state. Cracking aspects were evaluated in substrate. As a result, the mortar with artificial sand showed higher increases in compressive strength, capillarity rate and cracking, and greater reductions in air content and bleeding. As for the rubber powder, exhibited a greater reduction in the cracking rate and capillarity was found.

  7. Mechanical interaction between historical brick and repair mortar: experimental and numerical tests

    International Nuclear Information System (INIS)

    Bocca, P; Grazzini, A; Masera, D; Alberto, A; Valente, S

    2011-01-01

    An innovative laboratory procedure, developed at the Non Destructive Testing Laboratory of the Politecnico di Torino, as a preliminary design stage for the pre-qualification of repair mortars applied to historical masonry buildings is described. Tested repair mortars are suitable for new dehumidified plaster in order to stop the rising damp effects by capillary action on historical masonry walls. Long-term plaster delamination occurs frequently as a consequence of not compatible mechanical characteristics of mortar. Preventing this phenomenon is the main way to increase the durability of repair work. In this direction, it is useful to analyse, through the cohesive crack model, the evolutionary phenomenon of plaster delamination. The parameters used in the numerical simulation of experimental tests are able to characterize the mechanical behaviour of the interface. It is therefore possible to predict delamination in problems with different boundary conditions.

  8. Consumers Attitudes towards Internet and Brick and Mortar Store Channels Switching Behavior

    Directory of Open Access Journals (Sweden)

    Abdolrazagh MADAHI

    2014-12-01

    Full Text Available he purpose of this study is to examine the role of consumers’ behavioral attitude and intention toward channel switching behavior in regards to Internet and brick and mortar store channels in Malaysia. The survey instrument administered to the Malaysian consumers from regions of Klang Valley and Penang. A total of 497 completed surveys were obtained. Partial least squares (PLS based structural equation modeling (SEM technique was used to analyze data. A total of 497 completed surveys were obtained. Findings showed that compatibility and complexity were significant in predicting attitude in regard to switching channel from Internet to brick and mortar store. Relative advantage and compatibility were relevant in predicting attitude in brick and mortar store channel. Attitude also significantly affected channel switching intention regarding to both channels. Our findings reveal that gender and intention significantly affect channel switching behavior.

  9. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    Science.gov (United States)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  10. Transport-related CO2 effects of online and brick-and-mortar shopping

    DEFF Research Database (Denmark)

    Wiese, Anne; Toporowski, Waldemar; Zielke, Stephan

    2012-01-01

    This paper compares transport-related CO2 emissions of online and brick-and-mortar shopping based on supply, delivery, order and travel data related to one multi-channel clothing retailer. A sensitivity analysis sheds more light on how situational factors, such as the customers’ travel distances......, returns, the use of public transport modes and information behavior via different channels influence the outcome of this comparison. The results show that online retailing causes lower CO2 emissions under many conditions. Nevertheless, the brick-and-mortar channel is more environmentally friendly when...... travel distances are small. The radius for which brick-and-mortar shopping has an advantage increases when returns, shifts in the use of public transport and information behavior are also considered....

  11. Feasibility analysis of the use of sugar cane bagasse ash as mineral addition to cementitious mortars

    International Nuclear Information System (INIS)

    Fazzan, J.V.; Pereira, A.M.; Moraes, M.J.B. de; Akasaki, J.L.; Sanches, A.O.; Malmonge, J. A.

    2014-01-01

    Currently, Brazil is experiencing an expansion of sugarcane plantations, which makes the country the world's largest producer of sugarcane. With the bagasse generated during the process, is generated the bagasse ash cane sugar (CBC) which consists mainly of silicon dioxide (SiO_2) and presents as potential alternative raw material for the production of cement composites. In this context, the objective of this study is to evaluate the reactivity of the CBC through physical and chemical analysis, for the production of mortars. The study of the CBC was performed by means of XRF testing, XRD, SEM and ADL. Mortar specimens with different percentages of CBC in partial replacement of Portland cement, for analysis of compressive strength were also produced. Despite the mixtures with additions have lower resistance to conventional mortars, the results showed the potential of the CBC as reactive mineral addition. (author)

  12. Studies on physico-chemical and mechanical properties of the irradiated latex modified mortar

    International Nuclear Information System (INIS)

    Yassene, A.A.M.A.

    2009-01-01

    This thesis contains three chapter; chapter(I): Introduction and literature review on:- Introduction to polymer. - Mechanism of polymer-cement co-matrix formation.-Sulphate attack. - Solidification /stabilization of heavy metal in cement mortar. chapter(II): Materials and experimental techniques that include: 1- Preparation of latex polymer films from different polymer latices of styrene butadine rubber latex (SBR), poly (styrene-acrylic ester) latex (SAE) and vinylacetate /versatic -ester copolymer latex (C2A). The effect of γ-irradiation dose on the physico - chemical and mechanical properties of different latex polymer films was studied.2- Preparation of latex polymer-modified cement mortar with different ratios of cement: latex polymer and different curing method.3- Solidification /stabilization (S/S) of electroplating heavy metal precipitate in latex polymer- modified mortar with different cement /electroplating heavy metal sludge ratio. chapter(III) results and discussion

  13. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar

    International Nuclear Information System (INIS)

    Care, S.; Nguyen, Q.T.; L'Hostis, V.; Berthaud, Y.

    2008-01-01

    This paper describes the mechanical effects of rust layer formed in reinforced mortar through accelerated tests of corrosion. The morphological and physico-chemical properties (composition, structures) of the corrosion system were characterized at different stages by using optical microscope and scanning electron microscope coupled with energy dispersive spectroscopy. The corrosion pattern was mainly characterized by a rust layer confined at the interface between the steel and the mortar. Expansion coefficient of rust products was determined from the rust thickness and the Faraday's law. Furthermore, in order to understand the mechanical effects of corrosion on the damage of mortar, displacement field measurements were obtained by using digital image correlation. An analytical model (hollow cylinder subjected to inner and outer pressures) was used with a set of experimental data to deduce the time of cracking and the order of magnitude of the mechanical properties of the rust layer

  14. NANOFIBRILLATED CELLULOSE (NFC AS A POTENTIAL REINFORCEMENT FOR HIGH PERFORMANCE CEMENT MORTAR COMPOSITES

    Directory of Open Access Journals (Sweden)

    Mònica Ardanuy,

    2012-07-01

    Full Text Available In this work, nanofibrillated cellulose (NFC has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle, sisal, and cotton linters pulps, were initially characterised in order to assess their reinforcing capability. Sisal pulp was found to be most suitable as reinforcement for the brittle cementitious matrix. Nanofibrillated cellulose was produced by the application of a high intensity refining process of the sisal pulp. It was found that 6 hours of refining time was required to obtain the desired nanofibrillation of the fibers. Cement mortar composites reinforced with both the sisal fibres and the nanofibrillated cellulose were prepared, and the mechanical properties were determined under flexural tests. The cement mortar composites reinforced with the nanofibrillated cellulose exhibited enhanced flexural properties, but lower values of fracture energy, than the ones reinforced with the conventional sisal fibres.

  15. Effect of the microstructure of mortars with low hydraulicity slag on their behavior in aggressive environments

    Directory of Open Access Journals (Sweden)

    Ahmed Hadj sadok

    2018-01-01

    Full Text Available Slag is one of the most used cement additives. Due to its latent hydraulic nature, attached to its hydraulicity, it can contribute to a microstructural modification and an improvement of the durability of the concrete face of aggressive environments. In this study, a low active slag is used in the manufacture of mortars as a substitute for cement, at a maximum rate of 50%. Firstly, a study of the microstructure with mercury porosimetry was used for determination of microstructural parameters (porosity, diameters and volume distribution. The behavior of mortars in aggressive environments (sodium and magnesium sulphate and seawater was studied later. Despite the low reactivity of studied slag, its presence especially at 50% rate, in the long term, has led to a refinement of the microstructure. This effect, among others, led to better resistivity of the mortars in the sulphate environnements.

  16. Possible Use of Diatomite and Pumice-Amended Mortar and Plaster in Agricultural Structures

    Directory of Open Access Journals (Sweden)

    Serkan Yazarel

    2017-12-01

    Full Text Available This study was conducted to investigate the potential use of diatomite (a natural pozzolana and pumice in plasters and mortars to be used in agricultural buildings. Compacted and loose unit weights, specific weight, water absorption, organic matter content, abrasion resistance of aggregate (sand and pumice and pozzolana were investigated and materials were found to comply with the relevant standards. Test results on fresh (unit weight and slum test and hardened (unit weight, capillary water absorption, total water absorption, bending and compressive strength, vapor diffusion test mortar samples revealed that pumice and diatomite could be used in agricultural structures. Diatomite and pumice should be heat-treated and grounded before to use in mortars. In plasters to be made with abundant pumice and diatomite sources, high water holding capacity of the materials should be taken into consideration and further researches should be carried out about their compliance with the other materials.

  17. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    International Nuclear Information System (INIS)

    Kunther, W.; Lothenbach, B.; Scrivener, K.

    2013-01-01

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposed in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.

  18. Stiffness plasticity degradation of masonry mortar under compression: preliminary results : Perda de rigidez da argamassa de assentamento da alvenaria comprimida: resultados preliminares

    NARCIS (Netherlands)

    Mohamad, G.; Fonseca, F.S.; Vermeltfoort, A.T.; Lubeck, A.

    2018-01-01

    The main goal of this research is to determine the mechanical properties of bedding mortar by assessing the mortar damage onset, the stiff ness plasticity degradation and the apparent Poisson´s ratio under compression. Two mortar types, 1:0.5:4 and 1:1:6 (cement:lime:sand ratio), were used and

  19. The physical, chemical, and microscopic properties of masonry mortars from Alhambra Palace (Spain in reference to their earthquake resistance

    Directory of Open Access Journals (Sweden)

    Hanifi Binici

    2016-03-01

    Full Text Available Al-Andalus mortar is an ancient binding material (lime mortar that was used for centuries in numerous historical buildings in Al-Andalus, Granada (Spain. The physico-chemical and microscopic properties of Al-Andalus mortars in Granada were studied as part of an investigation into the mineral raw materials present in the territory of Spain. Scanning electron microscope and X-ray diffraction analyses of eight main types of mortars were performed to show the presence of calcite, gypsum, quartz, and muscovite minerals with organic fibers. Chemical analyses of the specimens showed that high SiO2+Al2O3+Fe2O3 contents yielded high values of hydraulicity and cementation indices. A significant result of this study was that mortars with high hydraulicity and cementation indices have high mechanical strengths. This characteristic may be the main reason for the earthquake resistance of the historical Alhambra Palace.

  20. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    Science.gov (United States)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  1. Influence of water-repellent treatment on the properties lime and lime pozzolan mortars

    Directory of Open Access Journals (Sweden)

    Fortes Revilla, C.

    2001-06-01

    Full Text Available The influence that water-repellent products can have on physical and micro-structural properties of lime mortars, and lime plus pozzolan mortars has been studied. Three water repellent products have been used. Mixes of the previously mentioned three water repellents plus a biocide product were also applied. Treatments make the total porosity and saturation coefficient of both mortars to decrease, while colorimetric coordinates bear little alteration. All treatments with water repellent products provided mortars with a hydrophobic property index close to 100%. Durability of such mortars has been also studied: salt crystallization test, frost-thaw and dry-wet cycles, as well as ultraviolet radiation test were carried out. Relationship between mortars behavior and their porosity and saturation coefficient were found.

    En el presente trabajo se ha estudiado la influencia de la aplicación de productos hidrofugantes a morteros de cal y morteros de cal y puzolana sobre sus propiedades físicas y microestructurales. Se han estudiado tres productos hidrofugantes. También han sido estudiados dichos productos junto con un biocida. La porosidad total y el coeficiente de saturación de ambos tipos de morteros se ve reducido por el efecto de los tratamientos mientras que las coordenadas colorimétricas se ven poco alteradas. Todos los tratamientos confieren un índice de hidrofobicidad a los morteros próximo al 100%. Asimismo, también se ha estudiado la durabilidad de dichos morteros frente a la cristalización de sales, hielo-deshielo, los ciclos de humedad-sequedad y radiaciones ultravioleta. Se relaciona el comportamiento de los morteros con su porosidad y el coeficiente de saturación.

  2. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Haneefa, K., E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2014-08-15

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO{sub 3}, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone.

  3. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    International Nuclear Information System (INIS)

    Mohammed Haneefa, K.; Santhanam, Manu; Parida, F.C.

    2014-01-01

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO 3 , widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone

  4. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.

    Science.gov (United States)

    Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason

    2017-02-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

  5. Physico-Chemical studies on irradiated polymer-reinforcement cement mortar composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    2001-01-01

    The reinforced concrete suffers from corrosion by several salts, acids or alkalies and physico-mechanical properties are greatly affected. This leads to reduce the life of reinforced concrete structure. The present investigation deals with a comparison of corrosion presentation efficiency and passivity retention of reinforcement steel coated with methylethyl and propyl inhibitors which are prepared by using γ radiation and non-coated steel embedded in γ -induced polyester cement mortar composites. From the results of these studies several conclusions could be derived and these are summarized as follows: 1- The time required to reach passivation for coated steel embedded in the mortar after soaking in tap water for 28 days lies within the range 5-15 minutes; whereas, the time required to reach passivation for steel embedded in the polyester cement mortar composites is very short (1 minute). This result is related to the presence of copolymerized polyester in the pore system of the specimens. 2- The time required to reach passivation for steel coated by inhibitors in the mortar specimens after curing in tap water for 6 months is lower than that of non -coated steel embedded in the mortar specimens cured at the same conditions. 3- A relatively high degree of corrosion inhibition was obtained for the steel embedded in polyester-cement mortar composites after curing in sea water for 28 days, the time required to reach passivation is considered as moderate in the case of methyl and ethyl inhibitors the time to passivation (T.T.P.) = 9 minutes and the degree of inhibition of steel coated with the propyl inhibitor is comparatively low (T.T.P.=21 minutes)

  6. Characterization and selection of mortars in the restoration of the Kings Portal (Benavente, Zamora

    Directory of Open Access Journals (Sweden)

    de Luxan, M. P.

    2004-03-01

    Full Text Available In the selection of materials required by any work on Architectural Heritage, a series of special requirements must be borne in mind which are essential to guarantee the application of the repairs. In this work the guidelines and basic criteria for the selection of repair mortars that have led to the design of mortars to restore the Kings Portal of the church of San Juan del Mercado (Benavente, Zamora, carved in stone in the Romanesque style and later polychromed are shown. The study is based on the characteristics of the ancient historical mortars, the compatibility of the restoration mortars with the mortars already existing in the monument, and the application needs of the specific work. Finally, the characteristics and properties of the specific repair mortar chosen are shown

    En la selección de materiales que toda intervención en el Patrimonio requiere, hay que tener presente una serie de requisitos esenciales para garantizar la aplicación de la reparación. En este trabajo se presentan las pautas junto con los criterios básicos de selección de los morteros de reparación que han conducido al diseño de los morteros para la restauración de la Portada de los Reyes de la Iglesia de San Juan del Mercado (Benavente, Zamora, tallada en piedra en estilo románico y, posteriormente, policromada. El estudio se fundamenta en las características de los morteros antiguos históricos, en la compatibilidad de los morteros de restauración con los morteros ya existentes en el monumento y en las necesidades de aplicación en la obra concreta. Finalmente se presentan las características y propiedades del mortero tipo de reparación seleccionado.

  7. MOBILE MORTAR CONCRETE PLANTS FOR BUILDING COMPLEX OF BELARUS: ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available The paper considers main advantages and disadvantages of mobile mortar concrete plants in comparison with stationary concrete mixing units. The main idea of the mobility is to provide quick movement. In its turn, this approach imposes some restrictions on dimensions and weights of concrete mixing equipment. However in the context of the concrete mixing equipment and construction site as whole the mobility concept is considered in the form of three components: minimum expenses on site preparation for assembly of a mortar concrete plant, transportability, reduction in installation and startand-adjustment periods. In this regard processing chain for production of concrete and mortar mixes is divided in separate complete operations. Then it is necessary to develop modules which are performing the required operations. Every module is developed in accordance with the size of a shipping container in order to make transportation convenient. Detachable connections are stipulated in the place of module linkages, electrical wiring, pipelines for supply water and chemical admixtures, pneumatics. Henceforth, these connections make it possible to reduce time for on-site assembly and disassembly of the equipment.The paper presents a mobile mortar concrete unit of block-module arrangement which has been developed within the framework of the State Scientific Research Programme at the BNTU. The unit has been manufactured using production capacities of JSC “Viprotekh” and it has been successfully introduced in production process. One of the promising directions is to use the mobile mortar concrete plants which are located and which are operating directly on construction sites. Their economic efficiency becomes higher with an increase of distance to the nearest stationary mortar concrete unit and scope of concreting works. Mobile mortar concrete plants are mainly intended for construction organizations which are realizing construction projects away from urban

  8. Effects of Shrinkage Reducing Agent and Expansive Additive on Mortar Properties

    OpenAIRE

    Treesuwan, Sarapon; Maleesee, Komsan

    2017-01-01

    This research is to study the effect of mortar mixed with shrinkage reducing agent (polyoxyalkylene alkyl ether type), expansive additive (CaO type), and fly ash (hereinafter “SRA,” “EX,” and “FA,” resp.). Moreover, steam curing was studied to improve the properties of mortar. The plastic shrinkage test was conducted by using the strain gauge embedded at 0.5 cm from the surface according to the ASTM C1579-06 standard within early age followed by the total shrinkage test and compressive streng...

  9. Strength and Mechanical Properties of High Strength Cement Mortar with Silica Fume

    OpenAIRE

    川上, 英男; 谷, 康博

    1993-01-01

    Two series of tests were carried out to clarify the effects of silica fume on the strength and mechanical properties of cement mortar. The test specimens of cement mortar were prepared within the flow values between 180 mm and 240 mm which qualifies better workability of the concrete. The fiow values were attained by using superplasticizer. The specimens were tested at the age of 4 weeks. Main results of the experiments are as follows. 1. At a given cement water ratio,the larger volume of sil...

  10. physico-chemical studies on polymer impregnated blending cement mortar composite

    International Nuclear Information System (INIS)

    Abdel-Rahman, H.A.

    2001-01-01

    as the increasing of the demand on a specific performance characteristics in concrete such as improved strength, low heat, sulfate resistance, improved impermeability and certain other applications. some of the industrial waste materials such as the blast-furnace slag, silica fume and fly ash were mixed with the cement clinker to produce blended cement . the use of these materials modifies the strength, pore structure and permeability of hardened cement mortar or concrete. the incorporation of blast furnace slag and silica fume in the hardened blended cement mortar or concrete is a common practice recently due to technological, economical and environmental benefits

  11. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  12. Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars

    OpenAIRE

    Dur?n-Herrera, A.; Campos-Dimas, J. K.; Valdez-Tamez, P.L.; Bentz, D. P.

    2015-01-01

    In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 ?m was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity (k) of the composite. Mortars were produced for three different water/binder ratios by mass (w/b), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kgf/cm2 (3.4 MPa) according to the requirements of Mexican standards for non-st...

  13. Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure

    Science.gov (United States)

    Sarrafi-Nour, Reza; Manoharan, Mohan; Johnson, Curtis A.

    Many natural composite materials rely on organized architectures that span several length scales. The structures of natural shells such as nacre (mother-of-pearl) and conch are prominent examples of such organizations where the calcium carbonate platelets, the main constituent of natural shells, are held together in an organized fashion within an organic matrix. At one or multiple length scales, these organized arrangements often resemble a brick-and-mortar structure, with calcium carbonate platelets acting as bricks connected through the organic mortar phase.

  14. Development of lime based mortars for repairing glazed tile coatings of historic buildings in the city of Ovar, Portugal

    Directory of Open Access Journals (Sweden)

    B. Teixeira

    2008-01-01

    Full Text Available Portugal is one of the European countries in which built heritage is a testimony of its history. In this context, the legacy of the decorative glazed tile coatings of facades must be preserved and restored. This research is dedicated to the conservation of such facades in the city of Ovar, considered an example due to its rich heritage in glazed tiles, a high percentage of which requires a deep intervention. Therefore, this work is focused on the study of lime renders serving as a support for this type of tile facades. For this, samples were collected from several buildings in the city, targeting their mechanical and physical study with the aim of producing compatible mortars to be used for application of detached tiles in these buildings and generally for the repair of the facades with glazed tile coatings. For this purpose, four lime mortar formulations with different volumetric ratios were composed. The aggregates used were: ordinary river sand and local gravel. In three of the mixtures, metakaolin was added, with the intention of acting as an artificial pozzolan and thus improving the performance of these mortars. The use of a pozzolanic addition promotes hardening of lime mortars in cases when the ingression of carbon dioxide is low as is the case of mortars placed below glazed tile coatings. These mortars were also tested in the laboratory taking into account their physical and mechanical characteristics. The mechanical characteristics determined were: modulus of elasticity by two different methods, compressive strength and flexural strength. In turn, the physical characteristics determined were: water vapour permeability and water absorption by total immersion and capillary action. The best mechanical behaviour (compressive and flexural was observed in the mortar with pozzolanic additions. Similarly, the value of the modulus of elasticity was better in mortars with pozzolanic additions. The performance of these mortars was also adequate

  15. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-01

    Highlights: ► It is feasible to use recycled CRT glass in mortar as shield against X-ray radiation. ► Shielding properties of CRT mortar is strongly depended on CRT content. ► Linear attenuation coefficient was reduced by 142% upon 100% CRT glass in mortar. ► Effect of mortar thickness and irradiation energies on shielding was investigated. - Abstract: Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm 3 can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement–sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  16. Use or rice husk ash an addition in mortar

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. Isabel

    1986-09-01

    Full Text Available With the aid of a 400-litre capacity pilot furnace, in which 40 Kg of rice husk is submitted to controlled combustion, an ash (RHA is obtained for use as an addition, the physicochemical properties of which form the focal point of this work. Results will also be presented for the combustion power of the husk ≃ 4000 kcal/kg, being greater than half the value for normal bituminous coals. Conglomerates have been obtained by mixing RHA with different proportions of lime and portland cement, and their properties are studied with regard to both mortars and concretes. The ultimate aim of the work is to demonstrate how rice husk (world production of which is estimated at 500.106 m3 per annum may be feasibly applied as an addition, without forgetting its excellent properties as a fuel, which makes it particularly suitable for developing countries with a shortage of cement and energy resources.

    Mediante la utilización de un horno-piloto de unos 400 litros de capacidad, en el que se realiza la combustión controlada de unos 40 kg de cáscara de arroz, se consigue una ceniza (RHA, sobre cuyas propiedades físico-químicas se centra el trabajo, para su empleo como adición. Se presentan igualmente resultados sobre el poder de combustión de la cascara ≃ 4.000 kcal/kg, superior a la mitad del valor de los carbones bituminosos normales. Mediante mezclas de RHA con distintas proporciones de cal o de cemento portland, se han conseguido conglomerantes cuyas propiedades se estudian, tanto sobre morteros, como sobre hormigones. El objetivo último del trabajo es mostrar la factible aplicabilidad de la cascara de arroz (cuya "producción" mundial se estima en 500.106 m3 anuales como adición, sin olvidar sus excelentes cualidades como combustible lo que hace especialmente idónea en países en vías de desarrollo, deficitarios en cemento y recursos energéticos.

  17. Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2017-01-01

    This paper reports a study of the colour, compressive strength and workability of mortar when cement is partly replaced by sewage sludge ash (SSA). In the study, an iron rich SSA was dry milled into six different fractions. The results showed that the colour, compressive strength and workability...

  18. The application of modified hydrotalcites as chloride scavengers and inhibitor release agents in cement mortars

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.B.

    2014-01-01

    Owing to the unique molecular structure and high ion exchange capacity, hydrotalcites are believed to have a potential to be modified and tailor-made as an active component of concrete. In this paper, two types of modified hydrotalcites (MHT-pAB and MHT-NO2) were incorporated into cement mortars

  19. The effect of modified hydrotalcites on mechanical properties and chloride penetration resistance in cement mortar

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.B.

    2015-01-01

    In this paper, two types of modified hydrotalcites (MHT) were incorporated into cement mortars with two dosage levels (replacing 5% and 10% cement by mass). Designated testing programme including strength test, porosity test, and rapid chloride migration and diffusion test were employed to

  20. Masonry repair lime-based mortars: factors affecting the mechanical behavior

    International Nuclear Information System (INIS)

    Lanas, J.; Alvarez-Galindo, Jose I.

    2003-01-01

    The increasing use of lime-based mortars for the restoration of historic buildings and structures justifies the research on these materials. The focus of this paper is the effect of technological variables on pore structure and mechanical properties of lime-based mortars. The influence of curing time, binder-aggregate (B/Ag) ratio, aggregate attributes and porosity is discussed. Mortars prepared with aerial lime, varying aggregate types and B/Ag ratios ranging from 1:1 to 1:5 by volume were tested. Compressive and flexural strength measurements, as well as X-ray diffraction (XRD) and thermal studies, were performed after 3, 7, 28, 91, 182 and 365 days. A strong increase in strength of mortar mixtures after 365 curing days (as compared to 28 curing days) is found. In spite of the fact that larger amounts of binder increase the total porosity, the strength of these mixtures is also increased. A good interlocked structure is obtained as binder contents increase. Also, higher porosities allow better portlandite carbonation. A relationship between mechanical properties and pore structure was established. However, in case of binder excess, the increase in voids leads to a strength reduction. The use of calcareous aggregates improves strength more as compared to the use of siliceous aggregates. Factors as grain size distribution and grain shape of the aggregates have also been considered

  1. Characterization of the Lime Mortars of the Rui Barbosa House Museum in Rio De Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Daniele Pereira da Silva Dalto

    2018-02-01

    Full Text Available The aim of this research is to characterize the mortars of the Rui Barbosa House Museum, built in 1850, in the city of Rio de Janeiro, Brazil, using X-ray diffraction (XRD, gel-CSH determination, Fourier Transform Infrared spectrometry (FTIR, Wavelength-Dispersive X-ray Fluorescence spectrometry (WDXRF, Thermo gravimetric analysis (TG-DTG, and granulometric analysis. Also, petrographic and physical characteristics such as porosity, water absorption, and apparent density of the mortars were used to identify the raw materials employed in their preparation. Mineralogical associations found are similar (quartz, calcite, kaolinite, microcline, muscovite, and albite for the majority of samples and only vary in their proportions; the most prominent phases are quartz and calcite. The collected data, indicating that the binder is hydrated lime, lead us to conclude that the analyzed samples are lime mortars, discarding the possibility of cement as the binder material. Two samples, located on the corner of the building, which underwent repairs, present a differentiated behavior, with high levels of dolomite and the presence of pozzolanic material, with greater water absorption and higher density, indicating the use of a different mortar type. In addition, it was verified that the WDXRF and XRD methods are able to determine the trace element composition with comparable precision with respect to the methodological approach proposed by Teutonico (1988. In addition, it has been verified that the major pollutant causing degradation of building are sulfur emitted by the vehicles and saline spray.

  2. The use of additives for reducing hydrogen yield in mortar containing slag and chloride salts

    International Nuclear Information System (INIS)

    Lewis, M.A.; Warren, D.W.

    1989-01-01

    Cementitious waste forms are being considered for immobilizing nuclear waste before disposal. In earlier work, it was found that irradiation of a mortar formulation consisting of slag, portland cement, fly ash, water, and up to 10 wt% KCl endash LiCl salt resulted in the generation of hydrogen. Yields were relatively high and the rates of generation were constant for the irradiation period investigated. The addition of small amounts of oxygen-rich electron scavengers to the mortar was investigated as a means for reducing hydrogen yields. The addition of NaNO 3 reduced the hydrogen yield; changed the radiolytic products from hydrogen to a mixture of hydrogen, nitrogen, and N 2 O; and reduced the pressurization rate after exposure to 400 Mrads. The addition of NaIO 4 and KMnO 4 reduced hydrogen yields slightly while the addition of Ag 2 O increased the yield. Moreover, the addition of FeS to a non-slag mortar changed the radiolysis mechanism but the addition of FeO did not. The results of these experiments provided an insight into the nature of the radiolytic reactions occurring in the mortar formulations and indicated that the radiolytic generation of gases might be controlled with the proper choice of additive. 14 refs., 3 figs., 2 tabs

  3. Self-leveling mortar as a possible cause of symptoms associated with "sick building syndrome".

    Science.gov (United States)

    Lundholm, M; Lavrell, G; Mathiasson, L

    1990-01-01

    In newly constructed houses and buildings in which self-leveling mortar containing casein has been used, residents and office employees have noted a bad odor and have complained of headache, eye and throat irritation, and tiredness. These problems were suspected to result from the degradation products emitted from the mortar. Samples obtained from dry mortar powder and from mortar in buildings where casein was used and from control buildings were found to contain microorganisms (mean of 10(2) culture forming units/g). Environmental species were predominantly found, e.g., Bacillus, Clostridium, Micrococcus, and Propionibacterium. Fungi were found occasionally; no evidence of bacterial degradation was found. Headspace and gas chromatographic-mass spectrometric analysis of air from the newly constructed houses and from hydroxide-degraded casein revealed the presence of amines in the 0.003-0.013 ppm range and the presence of ammonia and sulfhydryl compounds, all of which in low concentrations can cause the symptoms observed. These substances, however, were not detected in control buildings.

  4. Determination of isothermal unsaturated capillary flow in high performance cement mortars by NMR imaging

    NARCIS (Netherlands)

    Hazrati, K.; Pel, L.; Marchand, J.; Kopinga, K.; Pigeon, M.

    2002-01-01

    The time-dependent liquid water distribution in cement mortar mixtures during water absorption was determined using a proton nuclear magnetic resonance imaging (NMRI) technique. The variation of the material water diffusion coefficient with the water content was established on the basis of these

  5. Mitigating salt damage in lime-based mortars with mixed-in crystallization modifiers

    NARCIS (Netherlands)

    Granneman, S.J.C.; Lubelli, B.; van Hees, R.P.J.; Quist, W.J.; Granneman, S.J.C.; van Hees, R.P.J.

    2017-01-01

    This paper describes some of the most important results of a four year PhD research on the use of crystallization modifiers mixed in lime mortar to mitigate salt crystallization damage. The research focused on two of the most damaging salts, sodium chloride and sodium sulfate, and suitable

  6. Effect of Admixed Micelles on the Microstructure Alterations of Reinforced Mortar Subjected to Chloride Induced Corrosion

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2011-01-01

    This paper reports the main results from the influence of the initially admixed nano-aggregates (0.5 g/l PEO113-b-PS70 micelles previously dissolved in demi-water) on microstructural alterations of the reinforced mortar subjected to chloride induced corrosion. The morphology of hydration/corrosion

  7. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar

    International Nuclear Information System (INIS)

    Ranjbar, Navid; Mehrali, Mehdi; Behnia, Arash; Alengaram, U. Johnson; Jumaat, Mohd Zamin

    2014-01-01

    Highlights: • Results show POFA is adaptable as replacement in FA based geopolymer mortar. • The increase in POFA/FA ratio delay of the compressive development of geopolymer. • The density of POFA based geoploymer is lower than FA based geopolymer mortar. - Abstract: This paper presents the effects and adaptability of palm oil fuel ash (POFA) as a replacement material in fly ash (FA) based geopolymer mortar from the aspect of microstructural and compressive strength. The geopolymers developed were synthesized with a combination of sodium hydroxide and sodium silicate as activator and POFA and FA as high silica–alumina resources. The development of compressive strength of POFA/FA based geopolymers was investigated using X-ray florescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM). It was observed that the particle shapes and surface area of POFA and FA as well as chemical composition affects the density and compressive strength of the mortars. The increment in the percentages of POFA increased the silica/alumina (SiO 2 /Al 2 O 3 ) ratio and that resulted in reduction of the early compressive strength of the geopolymer and delayed the geopolymerization process

  8. Repair of pathology of structure with mortar to reject the red ceramics

    International Nuclear Information System (INIS)

    Santana, Claudeir de Souza; Santos, Juzelia

    2010-01-01

    The aim of this research is the use of the reject of red ceramic from an industry of bricks and tiles from the region of Cuiaba as mortar for repair of structural pathology, looking for their application to replace the sand and gravel in the process. The mortar produced restores a park bench made of concrete which seat was made of red ceramic and legs of soil-cement bricks. The reject of red ceramic used is from an industry in the region of Cuiaba, discarded at the end of the production process, ground in an appropriate granulometry to simulate a generic type of sand and gravel. Grinding processes were developed and various granulometric curves were drawned. The aggregates produced were characterized from the deposit until the final grinding according to ABNT norms in force, the specific area by BET, was used for microanalysis X-ray diffraction. ABNT standards were used to characterize and compare the results. The mortar produced proved to be adequate for the proposal restoration, it was consistent and cohesive. It was concluded that the mortar produced with recycled aggregate of red ceramic can be used in structural restoration in civil construction to replace the natural aggregate, with cost and environmental benefits. (author)

  9. Robust a Posteriori Error Control and Adaptivity for Multiscale, Multinumerics, and Mortar Coupling

    KAUST Repository

    Pencheva, Gergina V.; Vohralí k, Martin; Wheeler, Mary F.; Wildey, Tim

    2013-01-01

    -order polynomials are used on the mortar interface mesh. We derive several fully computable a posteriori error estimates which deliver a guaranteed upper bound on the error measured in the energy norm. Our estimates are also locally efficient and one of them

  10. Physicochemical study of parameters for the production of mortar using industrial waste and construction

    International Nuclear Information System (INIS)

    Ferreira, K.C.; Goncalves, S.G. e; Souza, J. A. da S.; Felipe, A.M.P.F.

    2014-01-01

    The mortars can be considered as a mixture of the binders and aggregates with water, having capacity of the induration and adherence. Instead, it is suggested the production of mortars using civil construction waste, with plenty silicoaluminate, obtained in demolitions and reforms of build, and fly ash as material pozzolana, obtained of the combustion of mineral coal in fluidized bed boilers, in partial replacement of Portland cement. The civil construction wastes were benefited and characterized by X-ray spectrometry and X-ray diffraction. The fly ash was characterized by granulometric analyze and X-ray spectrometry. The mortars of the were prepared using the following compositions of RCC, 95, 90, 85, 80, 75 and 70%; CV of 0, 5, 10, 15, 20 and 25% e 5% of Portland CP II Z 32 cement. In all the compositions were put 0,8% of water and the rheological testing was used the same proportions residue (RCC e CV) with 35% water. The specimens were cured for 28 days and after were submitted physical trials of absorption, porosity and bulk density; mechanical trials of resistance to compression and analysis of X-ray diffraction and scanning electron microscopy. The results obtained show that the recycling of civil construction waste and the use of fly ash and RCC is a promising technique in production of mortars. (author)

  11. Pozzolanic Activity Assessment of LUSI (LUmpur SIdoarjo) Mud in Semi High Volume Pozzolanic Mortar

    Science.gov (United States)

    Hardjito, Djwantoro; Antoni; Wibowo, Gunadi M.; Christianto, Danny

    2012-01-01

    LUSI mud obtained from the mud volcano in Sidoarjo, Indonesia, is a viable aluminosilicate material to be utilized as pozzolanic material. LUSI is an abbreviation of the local name of the mud, i.e., Lumpur Sidoarjo, meaning Sidoarjo mud. This paper reports the results of an investigation to assess the pozzolanic activity of LUSI mud, especially in semi high volume pozzolanic mortar. In this case, the amount of mud incorporated is between 30% to 40% of total cementitious material, by mass. The content of SiO2 in the mud is about 30%, whilst the total content of SiO2, Fe2O3 and Al2O3 is more than 70%. Particle size and degree of partial cement replacement by treated LUSI mud affect the compressive strength, the strength activity index (SAI), the rate of pozzolanic activity development, and the workability of mortar incorporating LUSI mud. Manufacturing semi high volume LUSI mud mortar, up to at least 40% cement replacement, is a possibility, especially with a smaller particle size of LUSI mud, less than 63 μm. The use of a larger percentage of cement replacement by LUSI mud does not show any adverse effect on the water demand, as the flow of the fresh mortar increased with the increase of percentage of LUSI mud usage.

  12. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  13. INFLUENCE OF SILICEOUS AND CALCAREOUS FLY-ASHES ON PROPERTIES OF CEMENT MORTARS

    Directory of Open Access Journals (Sweden)

    Gabriela Monika Rutkowska

    2016-09-01

    Full Text Available Care of the environment in accordance with the principles of sustainable development introduces the possibility and need for waste recycling. Construction and building industries have the greatest potential for reuse of waste. The article presents the results of investigations of cement mortars – tests of compressive and tensile strength after 28 and 56 days of curing – for normative mortars and mortars containing fly ashes – calcareous and siliceous ash – in their composition. To make the samples, the Portland cement CEM I 32,5 R, 42,5R and natural aggregate with graining of 0–2 mm were used. Concrete with siliceous and calcareous admixtures was made in six lots where the ash was added in the quantity of 2%, 5%, 10% of the cement mass or the 2%, 5%, 10% of cement was replaced by ashes. After the tests, it was stated that the siliceous fly-ash admixture increases the compressive and bending strength in comparison to the mortars with the calcareous ash admixtures.

  14. Microstructural characterization of phases and interfaces of Portland cement mortar using high resolution microscopy

    International Nuclear Information System (INIS)

    Barreto, M.F.O.; Brandao, P.R.G.

    2014-01-01

    In Portland cement mortars it is of paramount importance to investigate the bond strength between mortar and masonry by means of the study of interfaces and surfaces that make up the system mortar/ceramic block. In this work the aim was to characterize the chemical compositions, microstructures, surfaces and interfaces of mortars applied on ceramic blocks. Therefore, two important characterization tools were used: field-effect gun (FEG) scanning electron microscope (SEM) - FEI Quanta 200 with energy-dispersive (X-ray) spectrometer (EDS) and SEM system with EGF Nanofabrication FIB - FEI Quanta 3D FEG also with an EDS coupled. To date the results obtained from the research show that the characterization of cementitious materials with high resolution SEM is an important tool in the detection and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2), ettringite and calcium carbonate by means of morphological, topographical and chemical data, thus providing extremely reliable as well as qualitative data from the structure of cementitious materials. (author)

  15. Hydrophobic lime based mortars with linseed oil: Characterization and durability assessment

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana

    61-62, July-August (2014), s. 28-39 ISSN 0008-8846 R&D Projects: GA MK(CZ) DF11P01OVV008 Keywords : durability * transport properties * metakaolin * mortar Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.864, year: 2014 http://www.sciencedirect.com/science/article/pii/S0008884614000738

  16. Mitigating salt damage in lime-based mortars with mixed-in crystallization modifiers

    NARCIS (Netherlands)

    Granneman, S.J.C.; Lubelli, B.; van Hees, R.P.J.; Laue, S.

    2017-01-01

    This paper presents the most important results of a research project which
    focused on the use of crystallization modifiers mixed in lime mortar to mitigate
    salt crystallization damage. The research focused on two of the most damaging
    salts, sodium chloride and sodium sulfate, and

  17. Electronic speckle pattern interferometry observation of brick–mortar interface behaviour under compression

    NARCIS (Netherlands)

    Vermeltfoort, A.T.; Martens, D.R.W; Zijl, van G.P.A.G.

    2007-01-01

    The brick–mortar interaction is important in the mechanical behaviour of masonry. It affects the load transfer considerably, as shown by detailed deformation measurements taken using electronic speckle pattern interferometry (ESPI), a laser speckle interference technique. A companion paper [Canadian

  18. Microscopic characterisation of old mortars from the Santa Maria Church in Evora

    International Nuclear Information System (INIS)

    Adriano, P.; Santos Silva, A.; Veiga, R.; Mirao, J.; Candeias, A.E.

    2009-01-01

    Evora Cathedral (one of the most emblematic monuments of Evora - Portugal) has suffered several conservation and restoration interventions through the ages, without, however, any type of previous knowledge about mortars and materials used. This work was carried out in order to identify the mortar's composition in different locations, which were attributed to different construction or conservation periods. The characterisation methodology involved a multidisciplinary set of chemical, physical, microstructural and mechanical techniques, and gave special attention to the use of microstructural characterisation techniques, particularly petrographical analysis and scanning electron microscopy for the identification of the mortar's constituents as well as in the evaluation of the state of conservation. The test results showed that two types of aerial binders were used, dolomitic and calcitic limes, the former being predominant. The aggregates used have a siliceous nature and are similar in composition to the granodiorites of the region around Evora. The mortars differ in the aggregate contents and, in some cases, crushed bricks were used as an additive.

  19. Micromechanical models to guide the development of synthetic 'brick and mortar' composites

    NARCIS (Netherlands)

    Begley, M.R.; Philips, N.R.; Compton, B.G.; Wilbrink, D.V.; Ritchie, R.O.; Utz, M.

    2012-01-01

    This paper describes a micromechanical analysis of the uniaxial response of composites comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic layers (mortar). The model yields closed-form results for the spatial variation of displacements in the bricks as a

  20. Modeling of physico-chemical characteristics of mortar-waste mixture of radioactive waste management

    International Nuclear Information System (INIS)

    Plecas, I.; Arbutina, D.

    2015-01-01

    An optimization of mortar (as matrix), improved with bentonite clay, used for immobilization of radionuclides 137 Cs is presented. A relatively simple mathematical model is given, which permits minimization of leach rate and permeability and maximization of compressive strength. An optimal solution, based on experimental data, is given. These results will be used for a future Serbian radioactive waste disposal center. (authors)

  1. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Science.gov (United States)

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-01-01

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823

  2. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  3. Formulation and characterization of date palm fibers mortar by addition of silica fume

    Science.gov (United States)

    Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.

    2018-05-01

    This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.

  4. Development of lightweight mortars targeted on the high strength, low density and low permeability

    NARCIS (Netherlands)

    Spiesz, P.R.; Yu, Q.; Brouwers, H.J.H.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    This article presents a mix design methodology for the development of cement-based lightweight mortars. Expanded-glass lightweight aggregates were used in this study as the lightweight material. The mix design was developed applying the packing theory using the modified Andreasen and Andersen model

  5. Microstructural characterization of phases and interfaces of Portland cement mortar using high resolution microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, M.F.O.; Brandao, P.R.G., E-mail: matheusfob@yahoo.com.br, E-mail: pbrandao@demin.ufmg.br [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2014-07-01

    In Portland cement mortars it is of paramount importance to investigate the bond strength between mortar and masonry by means of the study of interfaces and surfaces that make up the system mortar/ceramic block. In this work the aim was to characterize the chemical compositions, microstructures, surfaces and interfaces of mortars applied on ceramic blocks. Therefore, two important characterization tools were used: field-effect gun (FEG) scanning electron microscope (SEM) - FEI Quanta 200 with energy-dispersive (X-ray) spectrometer (EDS) and SEM system with EGF Nanofabrication FIB - FEI Quanta 3D FEG also with an EDS coupled. To date the results obtained from the research show that the characterization of cementitious materials with high resolution SEM is an important tool in the detection and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2), ettringite and calcium carbonate by means of morphological, topographical and chemical data, thus providing extremely reliable as well as qualitative data from the structure of cementitious materials. (author)

  6. Effects of environmental factor on gas evolution behavior from Al in simulating mortar environments

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1998-01-01

    Dry Low-Level Radioactive Wastes (LLW) which mean incombustible solid LLW generated from nuclear power stations are scheduled to be packed in steel drums followed by solidification with mortar. The solidified dry LLW is then to be disposed to shallow under-ground at Rokkasho LLW Disposal Center. Dry LLW includes some amphoteric metals among which aluminum is the most corrosive with gas evolution in high alkaline media such as mortar. The evolved gas may accelerate the leaching of solidified dry LLW with mortar. Despite the planned removal of aluminum from dry LLW, small inclusion of aluminum is unavoidable. The present study focuses on the effect of environmental factors such as pH and temperature on gas evolution behavior caused by aluminum corrosion. Large effects of pH and temperature on corrosion rate of aluminum and gas evolution were recognized. Principal corrosion product of aluminum was calcium aluminate compound when it was immersed in simulated mortar environments. It is demonstrated that 1.5 mol hydrogen gas evolves with the corrosion of 1 mol aluminum in environments of 12 < pH < 13 at temperatures below 60degC. (author)

  7. Chemical analysis of Gothic mortar from a bridge pier in Roudnice nad Labem (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Kučková, Š.; Šantrůček, J.; Adamec, M.; Hynek, R.; Zeman, Antonín

    2016-01-01

    Roč. 39, č. 16 (2016), s. 739-744 ISSN 1082-6076 Institutional support: RVO:68378297 Keywords : gothic bridge * inorganic composition * mortars * peptide mass mapping * protein additive * proteolytic digestion Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.697, year: 2016 http://www.tandfonline.com/doi/abs/10.1080/10826076.2016.1238394?journalCode=ljlc20

  8. Historic trass - lime mortars with expansive reactions: Characterization and repair strategies

    NARCIS (Netherlands)

    Hees, R.P.J. van; Nijland, T.G.; Larbi, J.A.; Wijffels, T.J.; Brocken, H.J.P.

    2005-01-01

    The characterisation of two ancient mortars in historic bridges, suffering damage due to thaumasite and other swelling compounds is described. Characterisation was part of the analysis of damage occurring to the brick masonry structure. Expansive reactions were found to have taken place, being the

  9. Multi-channel services for click and mortars : Development of a design method

    NARCIS (Netherlands)

    Simons, L.P.A.

    2006-01-01

    The rise of Internet commerce led to multiple predictions of disintermediation and the decline of physical shopping. However, a "click and mortar" approach, which combines online, offline and telephone contact, has added value for customers and for supplier profitability, as recent research

  10. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, Eva; Rovnaníková, P.

    2016-01-01

    Roč. 120, SEP 1 (2016), s. 530-539 ISSN 0950-0618 Institutional support: RVO:68081731 Keywords : materials Science * pozzolanic activity * amorphous phase * modified lime mortars * compressive strength Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.169, year: 2016

  11. The durability of mortar: consideration of interfacial transition zones to characterize and to model the physicals and chemicals mechanisms involved in mortar corrosion

    International Nuclear Information System (INIS)

    Bourdette, B.

    1994-01-01

    In the framework of a study program aiming at anticipating the lifetime of concrete containers used for radioactive waste surface storage, the aim of this work is to model the physical and chemical processes of leaching of the mortars (cement paste + sand) by low ionized water at pH=8.5. This step is indispensable before the predicting of concrete durability (cement paste + sand + gravels) in which it can exist an initial microcrack. The mortar can be described as a three-phase system: the aggregates, the transition aureoles (aggregates-cement paste interfaces) and the cement matrix. The evolution of the very particular characteristics of the transition aureoles in terms of the degradation have been studied. The study has shown that the thickness of the degraded zone in the transition aureole is identical to those of the cement matrix. It has been shown too that the diffusion coefficient in the degraded transition aureole is similar to the diffusion coefficient in the degraded cement matrix. These observations can eventually be explained by a recombination of the texture and of the structure of the transition aureole during the degradation. This reorganization could lead to a decrease of the textural and structural differences which exist between the transition aureole and the cement matrix. As it has been supposed that the characteristics of the degraded zone govern the degradation kinetics, the thickness degraded in the transition aureole is then similar to those of the cement matrix. Mortar can then be considered as a two-phase system towards the degradation: the cement paste is assimilated to a pure paste but with different characteristics due to the presence of transition aureoles. In order to model the degradation of the mortar, the model used has been developed and validated by Adenot for pure cement pastes. At 300 years, the model anticipates that the thickness of the degraded zone in the mortar is of 2.9 cm, which is lightly higher than for the pure paste

  12. Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan

    International Nuclear Information System (INIS)

    Bertolini, Luca; Carsana, Maddalena; Gastaldi, Matteo; Lollini, Federica; Redaelli, Elena

    2013-01-01

    The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniques throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico

  13. Prediction models of mechanical properties for pet-mortar composite in sodium sulphateaggressive mediums

    Directory of Open Access Journals (Sweden)

    Kazi Tani Nabil

    2018-01-01

    Full Text Available In this research, an investigation was carried out on the effect of sodium sulphate attack on the durability of composites produced with waste polyethylene terephthalate (PET. Experiments were accomplished on limestone sand and cement mortars where the blended Portland cement was partially replaced by various volume fractions of waste PET particles (6%, 12% and 17%. The test solutions used to supply the sulphate ions and cations were 5%sodium sulphate solution. Compressive strengths measured on specimens were used to assess the changes in the mechanical properties of PET-mortars exposed to sulphate attack at different ages, mainly the Young modulus of elasticity. Based on experimental compressive tests on PETMortar composite specimens and there densities, the evolution of Young modulus of elasticity has been analyzed in accordance with normative models given by (ACI-318 and (BS-8110 codes of practice. In addition, a comparative study has been carried out for corrosion resistance coefficients K of unmodified mortar to those modified with waste PET particles. It can be noticed that, for the composite immersed in a corrosive Na2SO4 solution, the corrosion resistance coefficients decrease with the increase of the immersion period. The corrosion sulphate resistance K based on Young modulus before and after immersion of PET-mortar composites is better than that of the control mortar. Therefore, for safety considerations of PET-mortar composites use, ACI 318 is recommended code for design and investigation works. Also, it can be concluded that adding waste PET by volume fractions (6%, 12% and 17% to blend Portland cement renders this cement more resistant to the sodium sulphate aggressive medium. Therefore, composites materials based waste PET aare often presented as the materials of the future because of their potential for innovation and the advantages they offer. In fact, using waste PET as cement substitutes reduces the energy consumption. These

  14. Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar

    Science.gov (United States)

    Dobiszewska, Magdalena; Beycioğlu, Ahmet

    2017-10-01

    Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement

  15. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder.

    Science.gov (United States)

    Zhong, Shiyun; Ni, Kun; Li, Jinmei

    2012-07-01

    A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The comparison of properties and cost of material use of natural rubber and sand in manufacturing cement mortar for construction sub-base layer

    Science.gov (United States)

    Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.

    2017-11-01

    The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.

  17. Elementary characterization of samples of Portland cement, natural gypsum and phosphogypsum mortars from Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Narloch, Danielle Cristine; Paschuk, Sergei Anatolyevich; Corrêa, Janine Nicolosi; Torres, Catarina Alzira Peddis; Mazer, Wellington; Macioski, Gustavo [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil); Lara, Alessandro [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Fisica; Casali, Juliana Machado, E-mail: janine_nicolosi@hotmail.com, E-mail: alellara@hotmail.com, E-mail: jucasali@gmail.com [Instituto Federal de Santa Catarina (IFSC), Florianópolis, SC (Brazil)

    2017-07-01

    Portland cement, the basic ingredient of concrete and is manufactured by crushing, milling and proportioning limestone, sand, clay, iron ore and secondary materials such as shells, chalk or marl combined with shale slate or blast furnace slag, fly ash, gypsum, phosphogypsum, and some others. Evaluating the physical and mineralogical characteristics of the cement and its chemical composition is essential to establish the quality of the product. Therefore, the objective of this work was to characterize and quantify the most common chemical elements in the samples of Brazilian Portland cement, natural gypsum, and phosphogypsum mortars by means of X-ray dispersive energy spectroscopy (EDXRF), as well as to evaluate the strength of these mortars. For analysis of the compressive strength, initially prepared samples were submitted to a destructive mechanical test. Subsequently samples were milled and compacted to form thin tablets, which were submitted to the EDXRF analysis. The qualitative and quantitative analyzes showed that for phosphogypsum mortar the largest mass fractions were found of 49.8±2.5% (Si), 24.66±0.96% (S) and 22.10±0.42% (Ca). For gypsum mortar those values were found of 43.41±0.45% (Ca), 33.8 ± 0.8% (S) and 18.9±1.2% (Si), respectively; and for Portland cement mortar, the predominant elements in those samples have the mass fractions of 64.20±0.52% (Ca) and 27.3±1.5% (Si). The results showed that obtained values of mass fraction of the elements Si, S, K, Ca, Ti, Fe are in rather good agreement with quantities indicated for manufacture. Besides, gypsum and phosphogypsum presented almost the same composition and compressive strength. (author)

  18. Alkali-Activated Mortars for Sustainable Building Solutions: Effect of Binder Composition on Technical Performance

    Directory of Open Access Journals (Sweden)

    Agnese Attanasio

    2018-02-01

    Full Text Available There is a growing interest in the construction sector in the use of sustainable binders as an alternative to ordinary Portland cement, the production of which is highly impacting on the environment, due to high carbon dioxide emissions and energy consumption. Alkali-activated binders, especially those resulting from low-cost industrial by-products, such as coal fly ash or metallurgical slag, represent a sustainable option for cement replacement, though their use is more challenging, due to some technological issues related to workability or curing conditions. This paper presents sustainable alkali-activated mortars cured in room conditions and based on metakaolin, fly ash, and furnace slag (both by-products resulting from local sources and relevant blends, aiming at their real scale application in the building sector. The effect of binder composition—gradually adjusted taking into consideration technical and environmental aspects (use of industrial by-products in place of natural materials in the view of resources saving—on the performance (workability, compressive strength of different mortar formulations, is discussed in detail. Some guidelines for the design of cement-free binders are given, taking into consideration the effect of each investigated alumino-silicate component. The technical feasibility to produce the mortars with standard procedures and equipment, the curing in room conditions, the promising results achieved in terms of workability and mechanical performance (from 20.0 MPa up to 52.0 MPa, confirm the potential of such materials for practical applications (masonry mortars of class M20 and Md. The cement-free binders resulting from this study can be used as reference for the development of mortars and concrete formulations for sustainable building materials production.

  19. Elementary characterization of samples of Portland cement, natural gypsum and phosphogypsum mortars from Brazil

    International Nuclear Information System (INIS)

    Narloch, Danielle Cristine; Paschuk, Sergei Anatolyevich; Corrêa, Janine Nicolosi; Torres, Catarina Alzira Peddis; Mazer, Wellington; Macioski, Gustavo; Lara, Alessandro

    2017-01-01

    Portland cement, the basic ingredient of concrete and is manufactured by crushing, milling and proportioning limestone, sand, clay, iron ore and secondary materials such as shells, chalk or marl combined with shale slate or blast furnace slag, fly ash, gypsum, phosphogypsum, and some others. Evaluating the physical and mineralogical characteristics of the cement and its chemical composition is essential to establish the quality of the product. Therefore, the objective of this work was to characterize and quantify the most common chemical elements in the samples of Brazilian Portland cement, natural gypsum, and phosphogypsum mortars by means of X-ray dispersive energy spectroscopy (EDXRF), as well as to evaluate the strength of these mortars. For analysis of the compressive strength, initially prepared samples were submitted to a destructive mechanical test. Subsequently samples were milled and compacted to form thin tablets, which were submitted to the EDXRF analysis. The qualitative and quantitative analyzes showed that for phosphogypsum mortar the largest mass fractions were found of 49.8±2.5% (Si), 24.66±0.96% (S) and 22.10±0.42% (Ca). For gypsum mortar those values were found of 43.41±0.45% (Ca), 33.8 ± 0.8% (S) and 18.9±1.2% (Si), respectively; and for Portland cement mortar, the predominant elements in those samples have the mass fractions of 64.20±0.52% (Ca) and 27.3±1.5% (Si). The results showed that obtained values of mass fraction of the elements Si, S, K, Ca, Ti, Fe are in rather good agreement with quantities indicated for manufacture. Besides, gypsum and phosphogypsum presented almost the same composition and compressive strength. (author)

  20. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis.

    Science.gov (United States)

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-05-24

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4-8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling.

  1. Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress

    International Nuclear Information System (INIS)

    Larrinaga, Pello; Chastre, Carlos; Biscaia, Hugo C.; San-José, José T.

    2014-01-01

    Highlights: • Making more deepen the knowledge of textile reinforced mortar in tensile stress. • Analyzing the effect of the reinforcing ratio of the composite. • To compare results with Aveston–Cooper–Kelly theory. • To develop a numerical model based on a finite element code. • Considering the importance of the bond-slip law of the mortar-to-textile-interface. - Abstract: During the last years several projects and studies have improved the knowledge about textile reinforced mortar (TRM) technology. TRM has already been used in strengthening masonry and reinforced concrete structural elements such as walls, arches, columns and beams. This material is presented as a real alternative to the use of fiber-reinforced polymers (FRP) in situations where these composites have presented some drawbacks or their use is banned. Textile reinforced mortar show a complex mechanical behavior derived from the heterogeneity of the constituent materials. This paper aims to deepen the knowledge of this composite material in terms of tensile behavior. Following this scope, this paper presents an experimental campaign focused on thirty-one TRM specimens reinforced with four different reinforcing ratios. The results are analyzed and contrasted with two distinct models. (i) The Aveston–Cooper–Kelly theory (ACK) which is based on a tri-linear analytical approach; and (ii) a non-linear numerical simulation with a 3D finite element code. The finite element analysis (FEA) of the TRM tensile tests also showed no significant dependence on the basalt-to-mortar interface, i.e., the choice of a bond-slip curve in order to reproduce the bond stresses and slippages along the interface is irrelevant and it can be simply considered as rigid interface

  2. Cement content influence in rebar corrosion in carbonated mortars

    Directory of Open Access Journals (Sweden)

    Américo, P. O.

    2003-12-01

    Full Text Available The cement hydration products protect the concrete rebars of the reinforced concrete due to the production of Ca(OH2, NaOH, and KOH that, upon dissolving in the concrete s aqueous phase, generate a pH above 12.5. However, reinforced concrete structures are exposed to pollutant gases, such as, CO2 which upon penetrating the concrete, reacts with the alkaline components, consequently reducing the pH of the aqueous phase causing the loss of passivity by the rebar and as a consequence its corrosion when there is the presence of humidity and oxygen. The objective of the current paper is the analysis of the alkaline reserve influence, measured by the cement content, in the corrosion of rebars employing the polarization resistance technique for determining the corrosion intensity. Results for corrosion intensity of rebars embedded in prismatic mortar test specimens are produced with three cement content levels, with equal water/cement ratio. Cylindrical test specimens were also used for verification of the capillary absorption and the porosity by means of mercury porosymetry The results show that the initiation period is shorter and the corrosion intensity of the rebars is higher when the cement content is lower However, there is also an alteration in the microstructure upon altering the cement content, and far this reason one cannot conclude that the alkaline reserve alone is responsible for these results.

    Los productos de hidratación del cemento protegen las armaduras embebidas en el hormigón debido a la gran cantidad de Ca(OH2, NaOH y KOH disueltos en la fase acuosa del hormigón que proporcionan un pH mayor que 12,5. Sin embargo, las estructuras de hormigón armado están expuestas a los gases contaminantes como el CO2, que al penetrar en el hormigón reacciona con los compuestos alcalinos, se reduce el pH de la fase acuosa y provocan la despasivación de la armadura. Posteriormente, si hay

  3. Capacity study of sorption of radionuclides 137Cs, 233U, 75Se and 60Co in concrete and mortar

    International Nuclear Information System (INIS)

    Rojo, H.; Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Alonso, U.; Morejon, J.; Gil, P.; Lopez, T.

    2010-01-01

    In this paper we consider and mortar similar in composition to those used in the storage of radioactive waste of low and intermediate level of the Cabril (Cordoba) and presents the results of tests of selected radionuclides sorption.

  4. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork.

    Science.gov (United States)

    Barnat-Hunek, Danuta; Widomski, Marcin K; Szafraniec, Małgorzata; Łagód, Grzegorz

    2018-03-01

    The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate.

  5. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    Directory of Open Access Journals (Sweden)

    López-Zaldívar, O.

    2015-09-01

    Full Text Available This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales.

  6. Thaumasite formation in hydraulic mortars by atmospheric SO2 deposition

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2001-12-01

    Full Text Available Sulphation of mortars and concretes is a function of diverse environmental factors (SO2 aerosol, temperature, etc as well as some material characteristics. One of the phases that could be formed as consequence of the sulphation of the hydraulic binder is thaumasite. In this paper different hydraulic mortars have been exposed to laboratory exposure chambers in order to reproduce thaumasite formation due to atmospheric SO2. Under the laboratory exposure conditions, thaumasite was formed in hydraulic lime mortars, and mortars elaborated with ordinary Portland cement as well as mineralized white portland cement. However, thaumasite was not formed in mortars made of lime and pozzolan. The first product formed as a result of the SO2-mortar interaction was gypsum. Gypsum reacted with calcite and C-S-H gel, present in the samples, giving place to thaumasite. Low temperature promotes thaumasite formation.

    La sulfatación de morteros y hormigones depende de las condiciones ambientales (SO2 aerosol, temperatura, etc., así como de las características del material. Una de las fases que se puede formar como consecuencia de la sulfatación de los ligantes hidráulicos es la taumasita. En este trabajo se han expuesto diferentes morteros hidráulicos en cámaras de laboratorio con el fin de reproducir la formación de taumasita por efecto del SO2 atmosférico. Bajo las condiciones de laboratorio se formó taumasita en los morteros de cal hidráulica y en los morteros fabricados con cemento portland y cemento blanco mineralizado. Sin embargo, cuando el ligante utilizado en los morteros fue cal y puzolana, no se formó taumasita. El yeso fue el primer producto formado en la interacción entre los morteros y el SO2. A continuación, este yeso reaccionó con la calcita y el gel C-S-H dando lugar a la formación de taumasita. Las bajas temperaturas favorecieron la formación de taumasita.

  7. Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2015-06-01

    Full Text Available This work focuses on the chemical-mineralogical, textural and physical-mechanical properties of hydraulic lime mortars made with siliceous and calcareous aggregate. Mortars were cured at 60% and 90% of relative humidity, so as to assess the variability of mortar petrophysical properties in the hardened state due to the moisture conditions. The final aim was to determine the most adequate moisture conditions to be maintained during application and hardening of hydraulic mortars intended for repair interventions. We found out that using a calcareous aggregate and curing mortar at 90% of relative humidity give place to better textural and mechanical properties. However, these characteristics mostly depend on the maximum size of the aggregate grains, which should be smaller than 6 mm, in order to avoid the occurrence of mechanical discontinuities in the mortar.En este trabajo se han estudiado las propiedades químico-mineralógicas, texturales y físico-mecánicas de morteros de cal hidráulica elaborados con áridos silíceo y calcítico. Estos morteros se han curado al 60% y 90% de humedad relativa, con el fin de evaluar las eventuales diferencias en las propiedades petrofísicas de los morteros una vez endurecidos y así establecer cuál de los dos ambientes es recomendable durante la aplicación y fraguado de morteros de cal hidráulica destinados a obras de restauración. Se ha encontrado que el uso de un árido de composición calcítica y el curado al 90% de humedad relativa dan lugar a morteros hidráulicos con mejores características texturales y propiedades mecánicas. De todas formas, estas características dependen principalmente del tamaño máximo del árido empleado, que debería ser inferior a 6 mm para evitar discontinuidades mecánicas en el mortero.

  8. The Market Gate of Miletus: damages, material characteristics and the development of a compatible mortar for restoration

    Science.gov (United States)

    Siegesmund, Siegfried; Middendorf, Bernhard

    2008-12-01

    The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3-4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.

  9. Accelerator mass spectrometry 14C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy)

    Science.gov (United States)

    Marzaioli, Fabio; Nonni, Sara; Passariello, Isabella; Capano, Manuela; Ricci, Paola; Lubritto, Carmine; De Cesare, Nicola; Eramo, Giacomo; Quirós Castillo, Juan Antonio; Terrasi, Filippo

    2013-01-01

    Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) has, recently, obtained some promising results in testing the feasibility of mortar radiocarbon dating by means of an ad hoc developed purification procedure (CryoSoniC: Cryobraking, Sonication, Centrifugation) applied to a series of laboratory mortars. Observed results encouraged CryoSoniC accuracy evaluation on genuine mortars sampled from archeological sites of known or independently constrained age (i.e., other 14C dates on different materials). In this study, some 14C measurements performed on genuine mortars will be discussed and compared with independently estimated (i.e., radiocarbon/archaeometrical dating) absolute chronologies of two Spanish sites. Observed results confirm the agreement of the CryoSoniC mortar dates with the archaeological expectations for both examined cases. Several authors reported the possibility of obtaining accurate radiocarbon dates of mortar matrices by analyzing lime lumps: binder-related particles of different sizes exclusively composed of calcium carbonate. In this paper, preliminary data for the absolute chronology reconstruction of the Basilica of the cemetery complex of Ponte della Lama (Canosa di Puglia, Italy) based on lime lumps will also be discussed. Dating accuracy will be quantified by comparing 14C data on mortar lime lumps from a funerary inscription of known age found near the Basilica, in the same study site. For this site, a comparison between absolute chronologies performed by bulk and CryoSoniC purified lime lumps, and charcoal incased in mortars (when found) will also be discussed. Observed results for this site provide evidence of how bulk lime lump dating may introduce systematic overestimations of the analyzed sample while CryoSoniC purification allows accurate dating.

  10. Accelerator mass spectrometry {sup 14}C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Marzaioli, Fabio, E-mail: fabio.marzaioli@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali, Caserta (Italy); Nonni, Sara, E-mail: sara.nonni@uniroma1.it [Dipartimento di Scienze della Terra, ' Sapienza' Universita di Roma (Italy); Passariello, Isabella, E-mail: isabella.passariello@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali, Caserta (Italy); Capano, Manuela, E-mail: manuela.capano@unina2.it [CIRCE, INNOVA and Dipartimento di Studio delle Componenti Culturali del Territorio, Seconda Universita degli Studi di Napoli, Santa Maria Capua Vetere, Caserta (Italy); Ricci, Paola, E-mail: paola.ricci@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali, Caserta (Italy); Lubritto, Carmine, E-mail: carmine.lubritto@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali, Caserta (Italy); De Cesare, Nicola, E-mail: nicola.decesare@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze della Vita, Caserta (Italy); Eramo, Giacomo, E-mail: giacomo.eramo@uniba.it [Dipartimento di Scienze della Terra e Geoambientali, Universita degli Studi di Bari ' Aldo Moro' , Bari (Italy); Quiros Castillo, Juan Antonio, E-mail: quiros.castillo@ehu.es [Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, Dipartimento di Geografia, Prehistoria y Arqueologia, Vitoria-Gasteiz (Spain); and others

    2013-01-15

    Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) has, recently, obtained some promising results in testing the feasibility of mortar radiocarbon dating by means of an ad hoc developed purification procedure (CryoSoniC: Cryobraking, Sonication, Centrifugation) applied to a series of laboratory mortars. Observed results encouraged CryoSoniC accuracy evaluation on genuine mortars sampled from archeological sites of known or independently constrained age (i.e., other {sup 14}C dates on different materials). In this study, some {sup 14}C measurements performed on genuine mortars will be discussed and compared with independently estimated (i.e., radiocarbon/archaeometrical dating) absolute chronologies of two Spanish sites. Observed results confirm the agreement of the CryoSoniC mortar dates with the archaeological expectations for both examined cases. Several authors reported the possibility of obtaining accurate radiocarbon dates of mortar matrices by analyzing lime lumps: binder-related particles of different sizes exclusively composed of calcium carbonate. In this paper, preliminary data for the absolute chronology reconstruction of the Basilica of the cemetery complex of Ponte della Lama (Canosa di Puglia, Italy) based on lime lumps will also be discussed. Dating accuracy will be quantified by comparing {sup 14}C data on mortar lime lumps from a funerary inscription of known age found near the Basilica, in the same study site. For this site, a comparison between absolute chronologies performed by bulk and CryoSoniC purified lime lumps, and charcoal incased in mortars (when found) will also be discussed. Observed results for this site provide evidence of how bulk lime lump dating may introduce systematic overestimations of the analyzed sample while CryoSoniC purification allows accurate dating.

  11. An e-Commerce like platform enabling bricks-and-mortar stores to use sophisticated product recommender systems

    OpenAIRE

    Keller, Thorben; Raffelsieper, Matthias

    2014-01-01

    Compared to online-retailers, bricks-and-mortar stores have only limited possibilities to understand consumer preferences, their intentions, and their feedback. The first are able to evaluate clickstream data collected on their web-pages alongside the actual purchase data to put together a comprehensive view on individual customers. Bricks-and-mortar stores on the other hand have to rely solely on the evaluation of scanner data collected at the point of sale (POS). Thus, akin to the Event Hor...

  12. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Science.gov (United States)

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  13. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Directory of Open Access Journals (Sweden)

    Mehmet Serkan Kirgiz

    2014-01-01

    Full Text Available Effects of chemical compositions changes of blended-cement pastes (BCPCCC on some strength gains of blended cement mortars (BCMSG were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP or 6%, 20%, 21%, and 35% brick powder (BP for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min. Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS and flexural strengths (FS of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2, sodium oxide (Na2O, and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2 at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM in comparison with reference mortars (RM at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  14. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Mixture proportioning of fly ash-concretes based on mortar strength and flow data

    International Nuclear Information System (INIS)

    Nusrat, A.; Tahir, M.A.

    2008-01-01

    A method of mixture proportioning of fly ash concretes is presented. The method is based on the strength and flow data of a minimum of nine fly ash-cement mortars. The essence of the method is that three fly ash-binder ratios are to be combined with three water-binder ratios in the range of interest. The strength and water demand data are analyzed for constructing mixture proportion charts. The strength vs. water-binder ratio charts are prepared by down-scaling the 50-mm mortar strength to the 150-mm standard concrete cylinders. The method is illustrated with the help of examples. The trial mixtures proportioned using the proposed methods have reasonably achieved the 28 day target strengths. (author)

  16. Processing method of radiation concrete waste and manufacturing method for radioactive waste solidifying filling mortar

    International Nuclear Information System (INIS)

    Sukekiyo, Mitsuaki; Okamoto, Masamichi

    1998-01-01

    Radioactive concrete wastes are crushed and pulverized. Fine solid granular materials caused by the pulverization are classified and the grain size is controlled so that the maximum grain size is 2.5mm, with the grains having a grain size of up to 0.15mm being up to 30% by weight to form fine aggregates. Separated and recovered fine concrete powders are classified and the size of the powder is controlled within a range of from 3,000 to 15,000cm 2 /g which is smaller than cement particles to form fine powders having a stable quality suitable as a mixing agent. The fine aggregates and the mixing agent are mixed to form a filling mortar (filler) for solidifying radioactive wastes. The filling mortar is filled together with other radioactive wastes in a drum to form a waste body in a drum. With such a constitution, crushed radioactive concrete wastes can be reutilized completely. (I.N.)

  17. MORTAR INCORPORATING SUPPLEMENTARY CEMENTITIOUS MATERIALS: STRENGTH, ISOTHERMAL CALORIMETRY AND ACIDS ATTACK

    Directory of Open Access Journals (Sweden)

    Y. Senhadji

    2016-05-01

    Full Text Available Supplementary cementitious materials (SCMs prove to be effective to meet most of the requirements of durable concrete and leads to a significant reduction in CO2 emissions. This research studies the effect different SCMs (natural pozzolan (PN/ limestone fine (FC at various remplacement levels on the physical and mechano-chemical resistance of blended mortar. The paper primarily deals with the characteristics of these materials, including heat of hydration, strength and effects of aggressive chemical environments (using sulphuric acid and nitric acid. Over 6 mixes were made and compared to the control mix. Tests were conducted at different ages up to 360 days. The experimental results in general showed that Algerian mineral admixtures (PN/FC were less vulnerable to nitric and sulphuric acid attack and improved the properties of mortars, but at different rates depending on the quantity of binder.

  18. Effect of Chlorides on Conductivity and Dielectric Constant in Hardened Cement Mortar: NDT for Durability Evaluation

    Directory of Open Access Journals (Sweden)

    Sunkook Kim

    2016-01-01

    Full Text Available Dielectric constant and conductivity, the so-called EM properties (electromagnetic, are widely adopted for NDT (Nondestructive Technique in order to detect damage or evaluate performance of concrete without damage to existing RC (reinforced concrete. Among deteriorating agents, chloride ion is considered as one of the most critical threats due to rapid penetration and direct effect on steel corrosion. In the work, cement mortar samples with 3 w/c (water-to-cement ratios and 4 levels of chloride addition are considered. Conductivity and dielectric constant are measured in the normal frequency range. They increase with strength of mortar and more chloride ions due to denser pore formation. Furthermore, the behaviors of measured EM property are investigated with carbonation velocity and strength, which shows an attempt of application to durability evaluation through EM measurement.

  19. Characterization of Historica Lime Mortar from the Spanish Colonial Period in the Philippines

    Directory of Open Access Journals (Sweden)

    Jan-Michael C. Cayme

    2017-07-01

    Full Text Available Detailed scientific research applied to the field of cultural heritage is rarely practiced in the Philippines. This study intends to present a systematic approach to the proper chemical characterization of an old lime mortar sample from a Spanish-era church ruin. The analytical techniques employed were: atomic absorption spectroscopy (AAS, infrared spectroscopy (IR, scanning electron microscopy and energy-dispersive x-ray spectroscopy (SEM-EDX, and thermogravimetric analysis (TGA. Results showed that the binder is mostly calcitic, non-dolomitic and air-hardening lime. A slight hydraulic character was observed due to possible clay impurities. Besides the typical sand mixture in mortars, crushed shell fragments were used as aggregates. Possible organic compounds were also identified. The data obtained from this study is very important in understanding traditional building techniques that can enhance heritage conservation work in the Philippines.

  20. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  1. Thermogravimetric analyses and mineralogical study of polymer modified mortar with silica fume

    Directory of Open Access Journals (Sweden)

    Alessandra Etuko Feuzicana de Souza Almeida

    2006-09-01

    Full Text Available Mineral and organic additions are often used in mortars to improve their properties. Microstructural investigation concerning the effects of styrene acrylic polymer and silica fume on the mineralogical composition of high-early-strength portland cement pastes after 28 days of hydration are presented in this paper. Thermogravimetry and derivative thermogravimetry were used to study the interaction between polymers and cement, as well as the extent of pozzolanic reaction of the mortars with silica fume. Differential scanning calorimetry and X ray diffraction were used to investigate the cement hydration and the effect of the additions. The results showed that the addition of silica fume and polymer reduces the portlandite formation due to delaying of Portland cement hydration and pozzolanic reaction.

  2. Effect of Modified Rubber Particles Mixing Amount on Properties of Cement Mortar

    Directory of Open Access Journals (Sweden)

    Gang Xue

    2017-01-01

    Full Text Available The crumb rubber cement mortar is prepared by the crumb rubber aggregates in 60 mesh which are modified by 1% polyvinyl alcohol (PVA solution. Some mechanical properties of cement mortar with different crumb rubber aggregate amounts are researched including compressive strength, flexural strength, the ratio of compressive strength to flexural strength, impact resistance, and dry contraction percentage. In our tests, we consider six kinds of the rubber contents, 0%, 7.5%, 15%, 19%, 22.5%, and 30%, respectively. The optimal mixing amount of crumb rubber is determined by measuring three indices, the ratio of compressive strength to flexural strength, impact resistance, and dry contraction percentage. It is shown by test that the ratio of compressive strength to flexural strength is the smallest when the mixing amount of rubber is 19%; meanwhile high impact resistance and rational drying shrinkage are observed. The optimal mixing amount of the rubber particles is 19% determined by this test.

  3. Colloids in the mortar backfill of a cementitious repository for radioactive waste

    International Nuclear Information System (INIS)

    Wieland, E.; Spieler, P.

    1999-01-01

    Colloids are present in groundwater aquifers and water-permeable engineered barrier systems and may facilitate the migration of radionuclides. A careful evaluation of colloid concentrations is required to assess the potential effect of colloids on nuclide migration and, consequently, on the safety of a repository for radioactive waste. A highly permeable mortar is foreseen to be used as backfill for the engineered barrier of the Swiss repository for low- and intermediate-level waste (L/ILW). The backfill is considered to be a chemical environment with a potential for colloid generation and, due to its high porosity, for colloid mobility. In this contribution a novel in-house built particle counting device is described, and measurements of colloid concentrations in the pore water of backfill mortar are presented. (author)

  4. Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars.

    Science.gov (United States)

    Durán-Herrera, A; Campos-Dimas, J K; Valdez-Tamez, P L; Bentz, D P

    2016-07-01

    In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity ( k ) of the composite. Mortars were produced for three different water/binder ratios by mass ( w/b ), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kg f /cm 2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator.

  5. Utilization of crushed radioactive concrete for mortar to fill waste container void space

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Ohnishi, Kazuhiko; Oguri, Daiichiro; Ueki, Hiroyuki

    2004-01-01

    Minimizing the volume of radioactive waste generated during dismantling of nuclear power plants is a matter of great importance. In Japan waste forms buried in a shallow burial disposal facility as low level radioactive waste must be solidified by cement or other materials with adequate strength and must provide no harmful opening. The authors have developed an improved method to minimize radioactive waste volume by utilizing radioactive concrete for fine aggregate for mortars to fill void space in waste containers. Tests were performed with pre-placed concrete waste and with filling mortar using recycled fine aggregate produced from concrete. It was estimated that the improved method substantially increases the waste fill ratio in waste containers, thereby decreasing the total volume of disposal waste. (author)

  6. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    Directory of Open Access Journals (Sweden)

    Martin Herbrand

    2017-09-01

    Full Text Available Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  7. Micro and nanostructural characterization of surfaces and interfaces of Portland cement mortars using atomic force microscopy

    International Nuclear Information System (INIS)

    Barreto, M.F.O.; Brandao, P.R.G.

    2014-01-01

    The characterization of Portland cement mortars is very important in the study the interfaces and surfaces that make up the system grout/ceramic block. In this sense, scanning electron microscopy and energy-dispersive (X-ray) spectrometer are important tools in investigating the morphology and chemical aspects. However, more detailed topographic information can be necessary in the characterization process. In this work, the aim was to characterize topographically surfaces and interfaces of mortars applied onto ceramic blocks. This has been accomplished by using the atomic force microscope (AFM) - MFP-3D-SA Asylum Research. To date, the results obtained from this research show that the characterization of cementitious materials with the help of AFM has an important contribution in the investigation and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2, ettringite and calcium carbonate by providing morphological and micro topographical data, which are extremely important and reliable for the understanding of cementitious materials. (author)

  8. Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon

    International Nuclear Information System (INIS)

    Ozkaya, Ozlem Aslan; Boeke, Hasan

    2009-01-01

    Serapis temple, which was constructed in the Roman period in the city of Pergamon (Bergama/Turkey), is one of the most important monuments of the world heritage. In this study, the characteristics of bricks and mortars used in the temple have been determined in order to define the necessary characteristics of the intervention materials, which will be used in the conservation works of the temple. Several analyses were carried out to determine their basic physical properties, raw material compositions, mineralogical and microstructural properties using X-ray diffraction, Scanning Electron Microscope and a Thermo Gravimetric Analyzer. Analysis results indicated that the mortars are stiff, compact and hydraulic due to the use of natural pozzolanic aggregates. The Roman bricks are of low density, high porosity and were produced from raw materials containing calcium poor clays fired at low temperatures.

  9. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates......), surface charge, and size (micron and nano). The structure of the resulting cement pastes and mortars has been investigated by atomic force microscopy (AFM), helium porosimetry, nitrogen adsorption (specific surface area and porosity), low-temperature calorimetry (LTC) and thermal analysis. The main result...... is that the cement paste structure and porosity can be engineered by addition of selected layer silicates having specific particle shapes and surface properties (e.g., charge and specific surface area). This seems to be due to the growth of calcium-silicate hydrates (C-S-H) on the clay particle surfaces...

  10. Adjoint Based A Posteriori Analysis of Multiscale Mortar Discretizations with Multinumerics

    KAUST Repository

    Tavener, Simon

    2013-01-01

    In this paper we derive a posteriori error estimates for linear functionals of the solution to an elliptic problem discretized using a multiscale nonoverlapping domain decomposition method. The error estimates are based on the solution of an appropriately defined adjoint problem. We present a general framework that allows us to consider both primal and mixed formulations of the forward and adjoint problems within each subdomain. The primal subdomains are discretized using either an interior penalty discontinuous Galerkin method or a continuous Galerkin method with weakly imposed Dirichlet conditions. The mixed subdomains are discretized using Raviart- Thomas mixed finite elements. The a posteriori error estimate also accounts for the errors due to adjoint-inconsistent subdomain discretizations. The coupling between the subdomain discretizations is achieved via a mortar space. We show that the numerical discretization error can be broken down into subdomain and mortar components which may be used to drive adaptive refinement.Copyright © by SIAM.

  11. Dynamic tensile fracture of mortar at ultra-high strain-rates

    International Nuclear Information System (INIS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-01-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10 4 to 4 × 10 4  s −1 . The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading

  12. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    Science.gov (United States)

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  13. R7T7 glass alteration in the presence of mortar: effect of the cement grade

    International Nuclear Information System (INIS)

    Andriambololona, Z.; Godon, N.; Vernaz, E.

    1991-01-01

    R7T7 glass alteration was investigated in the presence of four mortars prepared from four different cement grades: 'CPA' Portland cement (mortar M1), CPA with pozzolana additive (M2), CPA with amorphous silica additive (M3) and 'CLK' blast furnace slag cement (M4). Glass specimens were also altered in Volvic mineral water and in a cement effluent. Glass corrosion in the cement media was greater than in Volvic water, but well below what could be expected from the high pH (approx 12.5). The relatively low alteration was probably related to the protective action of the calcium-enriched gel layer that formed at the glass surface. The glass corrosion rate was 2 to 3 times lower with cement containing pozzolana or silica gel additives or with CLK cement than with CPA cement alone. 8 refs., 8 figs

  14. Application of Different HSI Color Models to Detect Fire-Damaged Mortar

    Directory of Open Access Journals (Sweden)

    H. Luo

    2013-12-01

    Full Text Available To obtain a better understanding of the effect of vehicle fires on rigid pavement, a nondestructive test method utilizing an ordinary digital camera to capture images of mortar at five elevated temperatures was undertaken. These images were then analyzed by “image color-intensity analyzer” software. In image analysis, the RGB color model was the basic system used to represent the color information of images. HSI is a derived-color model that is transformed from an RGB model by formulae. In order to understand more about surface color changes and temperatures after a vehicle fire, various transformation formulae used in different research areas were applied in this study. They were then evaluated to obtain the optimum HSI model for further studies of fire-damaged mortar through the use of image analysis.

  15. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    International Nuclear Information System (INIS)

    Rottstegge, J.; Arnold, M.; Herschke, L.; Glasser, G.; Wilhelm, M.; Spiess, H.W.; Hergeth, W.D.

    2005-01-01

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulk composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by 27 Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite

  16. Measuring CO2 emissions induced by online and brick-and-mortar retailing

    OpenAIRE

    Carling, Kenneth; Han, Mengjie; Håkansson, Johan; Meng, Xiangli; Rudholm, Niklas

    2014-01-01

    We develop a method for empirically measuring the difference in carbon footprint between traditional and online retailing (“e-tailing”) from entry point to a geographical area to consumer residence. The method only requires data on the locations of brick-and-mortar stores, online delivery points, and residences of the region’s population, and on the goods transportation networks in the studied region. Such data are readily available in most countries, so the method is not country or region sp...

  17. Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites

    OpenAIRE

    Ardanuy Raso, Mònica; Claramunt Blanes, Josep; Arévalo Peces, Raquel; Parés Sabatés, Ferran; Aracri, Elisabetta; Vidal Lluciá, Teresa

    2012-01-01

    In this work, nanofibrillated cellulose (NFC) has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle), sisal, and cotton linters pulps, were initially characterized in order to assess their reinforcement capability. Sisal pulp was found to be most suitable as reinforcement for their brittle cementitious matrix. Nanofibrillated cellulose was produced by th...

  18. Petrographic microscope investigation of mortar and ceramic technologies for the conservation of the built heritage

    Science.gov (United States)

    Pavia, S.; Caro, S.

    2007-07-01

    Polarised-light (or petrographic) microscopy has been widely applied to heritage materials to assess composition and diagnose damage. However, instead, this paper focuses on the petrographic investigation of brick and mortar technologies for the production of quality repair materials compatible with their adjacent fabrics. Furthermore, the paper relates production technologies to the physical properties of the materials fabricated, and thus their final quality and durability. According to Cesare Brandi´s theory of compatibility (the 20th century architect on whose work modern conservation theory and practice are largely based) existing historic materials should be replaced with their equivalent. This paper demonstrates that polarised-light microscopy provides data on the origin and nature of raw materials, and processing parameters such as blending, mixing, firing, calcination and slaking, and how these relate to the quality of the final product. In addition, this paper highlights the importance of production technologies as these directly impact the physical properties of the materials fabricated and thus determine their final quality and durability. In this context, the paper investigates mortar calcination and slaking, two important operations in the manufacture of building limes that govern the reactivity, shrinkage and water retention of a lime binder which will impact mortar's properties such as workability, plasticity and carbonation speed, and these in turn will determine the ease of execution, durability and strength of a lime mortar. Petrographic analysis also provides evidence of ceramic technology including identification of local or foreign production and processing parameters such as sieving, blending, mixing and firing. A petrographic study of the ceramic matrix coupled to the diagnosis of mineral phases formed during firing allows to quantify sintering and vitrification and thus determine firing temperatures. Finally, certain features of the raw

  19. LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS

    OpenAIRE

    Huawang Shi; Lianyu Wei

    2018-01-01

    This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM) pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus), stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS) which is a function of geometry and material type of pipe through parallel plate lo...

  20. Prediction models of mechanical properties for pet-mortar composite in sodium sulphateaggressive mediums

    OpenAIRE

    Kazi Tani Nabil; Benosman A.S.; Senhadji Y.; Taïbi H.; Mouli M.; Belbachir M.

    2018-01-01

    In this research, an investigation was carried out on the effect of sodium sulphate attack on the durability of composites produced with waste polyethylene terephthalate (PET). Experiments were accomplished on limestone sand and cement mortars where the blended Portland cement was partially replaced by various volume fractions of waste PET particles (6%, 12% and 17%). The test solutions used to supply the sulphate ions and cations were 5%sodium sulphate solution. Compressive strengths measure...

  1. Evolution of Durable High-Strength Flowable Mortar Reinforced with Hybrid Fibers

    OpenAIRE

    Dawood, Eethar Thanon; Ramli, Mahyuddin

    2012-01-01

    The production and use of durable materials in construction are considered as one of the most challenging things for the professional engineers. Therefore, this research was conducted to investigate the mechanical properties and the durability by using of different percentages of steel fiber with high-strength flowable mortar (HSFM) and also the use of the hybridization of steel fibers, palm fibers, and synthetic fiber (Barchip). Different experimental tests (compressive strength, splitting t...

  2. Investigation of Hydraulic Binding Characteristics of Lime Based Mortars Used in Historical Masonry Structures

    Science.gov (United States)

    Binal, Adil

    2017-10-01

    In the historic masonry structures, hard and large rock fragments were used as the construction materials. The hydraulic binder material prepared to keep this used material in its entirety is a different material than the cement used today. Khorasan mortar made by using aggregate and lime exhibits a more flexible structure than the concrete. This feature allows the historic building to be more durable. There is also a significant industrial value because of the use of Khorasan mortar in the restoration of historic masonry structures. Therefore, the calculation of the ideal mixture of Khorasan mortar and the determination of its mechanical and physical properties are of great importance regarding preserving historic buildings. In this study, the mixtures of different lime and brick fractions were prepared. It was determined that Khorasan mortar shows the highest compressive strength in mixtures with water/lime ratio of 0.55 and lime/aggregate ratio of 0.66. By keeping the mixing ratio constant, it was observed that the strengths of the samples kept in the humidity chamber for different curing times increased day by day. The early strength values of samples with the high lime/aggregate ratio (l/a: 0.83) were higher than those with the low lime/aggregate ratio (l/a: 0.5). For the samples with low lime/aggregate ratio, there was an increase in the strength values depending on the curing period. As the cure duration increases, a chemical reaction takes place between the lime and the brick fracture, and as a result of this reaction, the strength values are increased.

  3. Special barium-lead mortars for radioactive wastes sealing and insulation

    International Nuclear Information System (INIS)

    Usai, G.

    1995-01-01

    Binding materials with high gamma-absorbance, easy to prepare and use, are of great usefulness in the elimination and disposal of low-level radioactive wastes such as clinical wastes. Use of these materials ranges from construction of containers to sealing of vessels designed for wastes disposal. In this paper the authors describe preparation of special mortars containing barite and/or PbO characterized by good hydraulic properties and high insulating power

  4. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  5. Consolidation of weak lime mortars by means of saturated solution of calcium hydroxide or barium hydroxide

    Czech Academy of Sciences Publication Activity Database

    Slížková, Zuzana; Drdácký, Miloš; Viani, Alberto

    2015-01-01

    Roč. 16, č. 4 (2015), s. 452-460 ISSN 1296-2074 R&D Projects: GA MK(CZ) DF11P01OVV012; GA MŠk(CZ) LO1219 Keywords : lime water * barium water * lime mortar * consolidation * peeling test * mechanical characteristic * physical characteristic * metakaolin Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.533, year: 2015 http://www.sciencedirect.com/science/article/pii/S1296207414001150

  6. Earth mortars use on neolithic domestic structures. Some case studies in Alentejo, Portugal

    Directory of Open Access Journals (Sweden)

    Patrícia Bruno

    2008-01-01

    Full Text Available Earth mortars were constructively used since Ancient Neolithic in Southwest Iberia pre-historic habitat settlements. According to archaeological information, these materials were applied on Neolithic Period to render ditches; latter, on Copper and Bronze Age, earth mortars were also used binding stone masonry, covering and filling vegetable structures, in mudbrick masonry and probably in massive walls. This paper aims to show some specific information about earth constructive traces obtained in interior Alentejo neolithic settlements of Defesa de Cima 2, Lajinha 8, Horta do Albardão 3, Valada do Mato (Évora district and Toca da Raposa (Portalegre district. The analysed materials were composed by samples of burned clayish mortars coming from renderings or small thickness walls of probable storage bins and combustion structures. The samples descriptions include the drawing, measurement and photographic record of the chosen traces and also structural and granulometric analysis. The authors believe these analyses can contribute to deeper the knowledge of pre-historic domestic structures and constructive techniques, making possible technological reproduction of habitat settlements.

  7. Guidance Law Design for a Class of Dual-Spin Mortars

    Directory of Open Access Journals (Sweden)

    Qing-wei Guo

    2015-01-01

    Full Text Available To minimize the cost and maximize the ease of use, a class of dual-spin mortars is designed which only rely on GPS receiver and geomagnetic measurements. However, there are some problems to be solved when the range is small, such as low correction authority and trajectory bending. Guidance law design for this mortar is detailed. Different guidance laws were designed for the ascending and descending segments, respectively. By taking variable parameter guidance law in the vertical plane and using compensation in the lateral plane, the problems mentioned above were resolved. Roll angle resolving algorithms with geomagnetic measurements were demonstrated and the experiment results proved to be effective. In order to verify the effectiveness, Seven-Degrees-of-Freedom (7-DOF rigid ballistic model were established and hardware in the loop simulation was introduced. After the transform function of the actuator was obtained, the control model of the shell was improved. The results of the Monte Carlo simulation demonstrate that the guidance law is suitable and the mortar can be effectively controlled.

  8. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization.

    Science.gov (United States)

    Farinha, Catarina Brazão; de Brito, Jorge; Veiga, Rosário; Fernández, J M; Jiménez, J R; Esquinas, A R

    2018-03-20

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.

  9. Evaluation of red mud as pozzolanic material in replacement of cement for production of mortars

    International Nuclear Information System (INIS)

    Manfroi, E.P.; Cheriaf, M.; Rocha, J.C.

    2010-01-01

    Red mud is a by-product of the alkaline extraction of aluminum from the bauxite and represents a renewed environmental problem due the significant annual throughput by the plants. In the present work, the pozzolanic properties of Brazilian red mud fired at 600, 700, 800 and 900 deg C were investigated by monitoring lime consumption using DTA analysis and Brazilian standard methodology NBR 5772 (1992). Products and kinetics of hydration were determined in cement pastes produced with 5 and 15% red mud using x-ray diffraction and DTA analysis. Compressive strength and capillary absorption tests were realized on mortars constituted by 5, 10 and 15% red mud in replacement of cement. When calcined at 600 deg C, the red mud develops good pozzolanic properties, and the compressive strength of mortars produced with this waste meet values in accordance with regulatory standard. These results shown than red mud can be used, in partial replacement of cement, as new construction material to produce sustainable mortars with low environmental impact. (author)

  10. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization

    Directory of Open Access Journals (Sweden)

    Catarina Brazão Farinha

    2018-03-01

    Full Text Available The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.

  11. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization

    Science.gov (United States)

    de Brito, Jorge; Veiga, Rosário

    2018-01-01

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation. PMID:29558418

  12. The Use of Fly Ash and Lime Sludge as Partial Replacement of Cement in Mortar

    Directory of Open Access Journals (Sweden)

    Vaishali Sahu

    2014-01-01

    Full Text Available The increased demand of drinking water and power has led huge generation of water treatment plant residue i.e. sludge and the thermal power plant by-product such as fly ash. Large quantities of sludge and fly ash are produced in India and disposed off by landfilling or dumping in and around sites. In this study fly ash and water softening sludge (lime sludge has been utilized in mortar. Two types of mortar (type I and II with four binder combinations have been tried. Binder I consists of 70% fly ash (FA and 30% lime sludge (LS , 0 % gypsum (G, binder II is 70% FA, 30% LS and 1% G, binder III is 50% FA, 30% LS and 20% cement and the binder IV is 40% FA, 40% LS with 20% cement. The effect of various combinations on strength has been discussed here. This paper outlines the composition of the composite material, method of preparation of mortar specimen, testing procedure and salient results thereof.

  13. Experimental Investigation of Lime Mortar Used in Historical Buildings in Becin, Turkey

    Directory of Open Access Journals (Sweden)

    Adem SOLAK

    2016-05-01

    Full Text Available It is of great importance that the architectural and engineering disciplines work together in the restoration studies of historical buildings which are our cultural heritages. It is required that the bearing system and the materials of the structures should be investigated in detail prior to any conservation. The determination of the properties and compositions of the mortar material used in the construction of the historical building is one of the most important phases of the conservation studies and it is the main purpose of this study. In the scope of the study, the basic physical and mechanical properties, micro structures, raw material compositions, mineralogical and chemical properties of historical mortars taken from Kizil Khan, Karapasah Madrasah and Yelli Mosque structures in Becin antique city are determined. As a result of the study, it is determined that all mortar samples have hydraulic properties that is a result of hydraulic properties of binder lime.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.9022

  14. Cement-base bearing pads mortar for connections in the precast concrete: study of surface roughness

    Directory of Open Access Journals (Sweden)

    M. K. El Debs

    Full Text Available Bearing pads are used in precast concrete connections to avoid concentrated stresses in the contact area between the precast elements. In the present research, the bearing pads are Portland cement mortar with styrene-butadiene latex (SB, lightweight aggregate (expanded vermiculite-term and short fibers (polypropylene, glass and PVA, in order to obtain a material with low modulus of elasticity and high tenacity, compared with normal Portland cement mortar. The objective of this paper is to analyze the influence of surface roughness on the pads and test other types of polypropylene fibers. Tests were carried out to characterize the composite and test on bearing pads. Characterization tests show compressive strength of 41MPa and modulus of elasticity of 12.8GPa. The bearing pads tests present 30% reduction of stiffness in relation to a reference mortar. The bearing pads with roughness on both sides present a reduction up to 30% in stiffness and an increase in accumulated deformation of more than 120%, regarding bearing pads with both sides smooth.

  15. Basic study of water-cement ratio evaluation for fresh mortar using an ultrasonic measurement technique

    International Nuclear Information System (INIS)

    Hamza Haffies Ismail; Murata, Yorinobu

    2009-01-01

    The objective of this research is for the basic study of ultrasonic evaluation method for the determination of the water-cement-ratio (W/C) in fresh concrete at the early age of hardening. Water-cement ratio is a important parameter to evaluate the strength of concrete for concrete construction. Using an ultrasonic pulse measurement technique, wave velocity and frequency variations depend on the age of concrete during hardening process could be evaluated. As a sample test, fresh mortar of water-cement ratio of 40 %, 50% and 60 % was poured into cylindrical plastic mould form (φ100 mm x 50 mm). For an ultrasonic pulse wave transmission technique, two wide band ultrasonic transducers were set on the top and bottom surface of mortar, and start measuring from 10 minutes after pouring water until 60 minutes of 5 minutes of intervals. As a result, it was confirmed that wave velocity and center frequency were changed with the age of mortar depends on the water-cement ratio. (author)

  16. Application of microbial biocementation to improve the physico-mechanical properties of cement mortar

    Directory of Open Access Journals (Sweden)

    S.A. Abo-El-Enein

    2013-04-01

    Full Text Available Calcite is one of the most common and wide spread mineral on Earth constituting 4 wt% of the Earth’s crust. It is naturally found in extensive sedimentary rock masses, as lime stone marble and calcareous sandstone in marine, fresh water and terrestrial environments. Calcium carbonate is one of the most well known mineral that bacteria deposit by the phenomenon called biocementation or microbiologically induced calcite precipitation (MICP. Such deposits have recently emerged as promising binders for protecting and consolidating various building materials. Microbially enhanced calcite precipitation on concrete or mortar has become an important area of research regarding construction materials. This study describes a method of strength and water absorption improvement of cement–sand mortar by the microbiologically induced calcium carbonate precipitation. A moderately alkalophilic aerobic Sporosarcina pasteurii was incorporated at different cell concentrations with the mixing water. The study showed that a 33% increase in 28 days compressive strength of cement mortar was achieved with the addition of about one optical density (1 OD of bacterial cells with mixing water. The strength and water absorption improvement are due to the growth of calcite crystals within the pores of the cement–sand matrix as indicated from the microstructure obtained from scanning electron microscopy (SEM examination.

  17. Fine natural aggregate replacement for sandy residue from itabirite exploitation in Portland cement mortar

    International Nuclear Information System (INIS)

    Melo, V.A.R.; Freire, C.B.; Pereira Junior, S.S.; Lameiras, F.S.; Tello, C.C.O.

    2011-01-01

    The fine natural aggregates are a material largely used by the civil construction for mortar and concrete production. Due to tightening legal restrictions imposed on their extraction, alternative materials are being considered. The use of sandy residue from BIF (banded iron formations) exploitation was investigated. It requires their grinding and flotation to concentrate iron oxides. Large amounts of sandy residue composed of quartz and iron oxides are generated in this process. The sandy residue was characterized relative to mineralogical composition, particle size distribution, presence of organic impurities, and particle shape. Mortar formulations were prepared by varying the type of cement, the cement to aggregate proportion and the water/cement ratio (a/c). The results of viscosity and density of fresh mortar, setting time, and compressive strength are presented. Compressive strength up to 19.5 MPa at 28 days were achieved with the use of cement CPV, a/c ratio of 0.80 and cement:aggregate proportion of 1:2. The results demonstrate the technical feasibility of using sandy residue as fine aggregate. (author)

  18. Plastering mortar with antibacterial and antifungal properties studied by 1H NMR relaxometry

    Science.gov (United States)

    Jumate, E.; Aciu, C.; Manea, D. L.; Moldovan, D.; Chelcea, R.; Fechete, R.

    2017-12-01

    The Plastering mortars, with good antibacterial (in particular Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa) and antifungal (Aspergillus niger and Penicillium chrysogenum) properties, were studied by 1D NMR relaxometry and internal humidity measurements. Three recipes based on plastering mortar with variable content (0, 5 and 10 %) of Ag/ZnO nanopowders and with adequate physical characteristics regarding the mechanical strengths (CS IV), good adhesion to the substrate and low water absorption by capillarity (W2) were considered. The distributions of transverse relaxation times T2 were measured at 2 h after preparation (for mortar pasta) and then for the same samples at 2, 7, and 28 days during the hydration of mineralogical components. The T2 distributions are characterized by four components associated with hydration water and water in three types of pores of different dimension. The dimension of pores formed during hydration process are strongly dependent on the Ag/ZnO nanopowders content but finally at 28 days the pores distributions, as resulted from the T2 distributions, looks similar. Finally, the transverse relaxation ratio was linearly correlated to the compressive strength and the hydration behaviour during 132 days measured with a dedicated humidity sensor embedded inside sampled was discussed.

  19. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    Energy Technology Data Exchange (ETDEWEB)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

  20. Effect of high temperature and type of cooling on some mechanical properties of cement mortar

    Directory of Open Access Journals (Sweden)

    Abdulhussei Faisal

    2018-01-01

    Full Text Available Mortar of cement as construction materials subjected sometimes to high temperature. Some of properties of this mortar being studied after this effect. The effect of high temperature 100, 200, 400 and 700°C (exposed for two hrs. on some mechanical properties (compressive and flexural strength of two groups of cement mortar samples (with and without the addition of crushed bricks and superplasticizer as modifying materials has been studied. Two methods of cooling samples by air and by water for 1/2 hr. was used, then tested after 3, 7 and 28 days. The results showed that the compressive and flexural strength for reference mix exposed to 700°C and water cooling decreased by 65.3 % and 64.7%, respectively, compared with their reference mix tested at 20°C in 28 days. While mixes containing 100% of crushed brick as an additive and air cooling decreases by 12.3% and 9% of their compressive and flexural strength, respectively compared with the mixes tested at 20°C in 28 days. Also showed that the decreases in flexural strength for no sand mixes containing 100% of crushed brick and 4% of superplasticizer exposed to 700°C and then water cooling was 28.2% compared to those for reference mixes tested at 20°C.

  1. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  2. Effect of Gum Arabic Karroo as a water-reducing admixture in cement mortar

    Directory of Open Access Journals (Sweden)

    Rose Mbugua

    2016-12-01

    Full Text Available The aim of this study was to develop Gum Acacia Karroo (GAK as set retarding-water reducing admixture in cement mortars. Retarding admixtures are used to counter effect the accelerated hydration of cement at elevated temperatures by slowing down the retarding process especially during the day when concreting work is done. However most retarding admixtures available in the market are expensive, thereby making them out of reach for small consumers of concrete in Africa are expensive and not readily available. GAK, which contains soluble sugars, was investigated as a set-retarding water reducing-admixture. Setting time was measured in cement pastes with different dosages of GAK and a commercial retarding agent (Tard CE. Compressive strength, bleeding and flow test were investigated on cement mortars with the control being cement mortar without admixture. GAK was found to increase final setting time by 6 h above control. Compressive strength increased when water cement ratio was reduced from 0.5 to 0.4. Thermogravimetric analysis revealed increased dosage of GAK reduced hydration rate.

  3. Sustainability, Eco-Point and Engineering Performance of Different Workability OPC Fly-Ash Mortar Mixes

    Directory of Open Access Journals (Sweden)

    Putri Zulaiha Razi

    2016-05-01

    Full Text Available This study investigates the engineering performance and CO2 footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO2 footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum. This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%. Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.

  4. Research on Performance and Microstructure of Sewage Pipe Mortar Strengthened with Different Anti-Corrosion Technologies

    Science.gov (United States)

    Mu, Song; Zhou, Huaxin; Shi, Liang; Liu, Jianzhong; Cai, Jingshun; Wang, Feng

    2017-10-01

    Mostly urban underground sewage is the acidic corrosion environment with a high concentration of aggressive ions and microbe, which resulted in performance deterioration and service-life decrease of sewage concrete pipe. In order to effectively protect durability of the concrete pipe, the present paper briefly analysed the main degradation mechanism of concrete pipe attacked by urban underground sewage, and proposed that using penetrating and strengthening surface sealer based on inorganic chemistry. In addition, using index of compressive strength, weight loss and appearance level to investigate the influence of the sealer on corrosion resistance of mortar samples after different dry-wet cycles. Besides, comparative research on effect of the sealer, aluminate cement and admixture of corrosion resistance was also addressed. At last, the SEM technology was used to reveal the improvement mechanism of different technologies of corrosion resistance. The results indicated that the sealer and aluminate cement can significantly improve corrosion resistance of mortar. Besides, the improvement effect can be described as the descending order: the penetrating and strengthening surface sealer > aluminate cement > admixture of corrosion resistance. The mortar sample treated with the sealer displayed the condensed and sound microstructure which proved that the sealer can improve the corrosion resistance to urban underground sewage.

  5. Protection of Steel Rebar in Salt-Contaminated Cement Mortar Using Epoxy Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    The Huu Nguyen

    2018-01-01

    Full Text Available Epoxy reinforced with two kinds of nanoparticles dealing with nano-SiO2 and nano-Fe2O3 was coated on steel rebar embedded in a chloride contaminated cement mortar. NaCl was added to the fresh Portland cement paste (at 0.3% and 0.5% by weight of cement to simulate the chloride contamination at the critical level. The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel rebar was investigated by linear potentiodynamic polarization and electrochemical impedance spectroscopy. For the 0.3 wt.% chloride mortars, the electrochemical monitoring of the coated steel rebars during immersion for 56 days in 0.1 M NaOH solutions suggested the beneficial role of nano-Fe2O3 particles in significantly improving the corrosion resistance of the epoxy-coated rebar. After 56 days of immersion, the nano-Fe2O3 reduced the corrosion current of epoxy-coated rebar by a factor of 7.9. When the chloride concentration in the cement mortar was 0.5 wt.%, the incorporation of nanoparticles into the epoxy matrix did not enhance the corrosion resistance of epoxy coating for the rebar. At this critical level, chloride ions initiated rebar corrosion through nanoparticles at the epoxy/rebar interface.

  6. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    International Nuclear Information System (INIS)

    Beushausen, Hans; Chilwesa, Masuzyo

    2013-01-01

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking

  7. Effects of externally supplied lithium on the suppression of ASR expansion in mortars

    International Nuclear Information System (INIS)

    Kawamura, Mitsunori; Kodera, Takeshi

    2005-01-01

    Lithium salts are being externally supplied for mitigating the progress of deterioration of ASR-affected concrete structures. However, it is not clear whether the sodium or potassium in the ASR gel in concrete is replaced by the lithium supplied from the outside. In this article, we examine changes in the composition of the ASR gel, previously formed in mortar specimens, after they are immersed in LiOH solution, using backscattered electron (BSE) imaging and energy-dispersive X-ray (EDX) analysis, associated with length change measurement of the mortar prisms. The intrusion of lithium ions into mortar specimens containing a reactive aggregate could arrest their further expansion within a relatively short time after immersion in 0.50 N LiOH solution. The alkali ions incorporated in most ASR gels, located not far away from interfaces between the cement paste and reactive aggregate particles, appear to be replaced by the lithium ions supplied from the solution. However, the ASR gel within the reacted aggregate particles did not appear to have been affected by the lithium ions

  8. Design and properties of plaster mortars manufactured with ladle furnace slag

    International Nuclear Information System (INIS)

    Rodríguez, A.; Gutiérrez-González, S.; Horgnies, M.; Calderón, V.

    2013-01-01

    Highlights: • This study analyses plaster with ladle furnace slag as a mineral aggregate. • Tests are completed by characterizing the influences of two admixtures. • Microstructure, physical and mechanical results confirm the feasibility of these materials. • These new materials are potentially useful as plaster mortars for use in masonry. - Abstract: This study deals with the properties of a series of plasters containing different proportions of ladle furnace slag used as mineral aggregate. The tests characterise the influences of two admixtures: a superfluidifier to reduce the water absorption (SikaMix®) of mortar plaster and an adhesive emulsion to improve the surface adherence (SikaLatex®). The physical and mechanical results confirm the feasibility of employing ladle furnace slag as a mineral aggregate, which induces an increase in density, in vapour permeability and in porosity. The results highlight also a decrease of adherence, durability and mechanical strength, proportionally to the amount of plaster substituted by slag. Scanning electron microscopy imaging and elemental mapping show good interaction between the various constituents. The thermal degradation of the mixtures reflects an improvement in strength resistance in relation to temperature, as further slag is incorporated. The economical study suggests that these recycled materials are cost-effectively viable and may be applied as plaster mortars for use in masonry

  9. Heat-insulating mortars for older buildings. Problem solutions for all kinds of building materials. Waermedaemmputze in der Altbausanierung. Problemloesungen auf allen Untergruenden

    Energy Technology Data Exchange (ETDEWEB)

    Bresch, C M

    1988-01-01

    The book is a guideline for the renovation and sanitation of outer walls with improved thermal insulation. Heat-insulating mortars are described, and machines and equipment for efficient roughcasting are listed. Subjects: Heat-insulating mortars; protective cover and thermal insulation; surfaces to be plastered (old brick walls, house fronts, wall cracks); renovation or sanitation; colours and structures; manual and mechanized roughcasting; calculations; an exemplary case of sanitation, solutions for constructional details; light-weight mortar; heat-insulating mortars in Austria. (HWJ).

  10. Dry and wet "deposition" studies of the degradation of cement mortars

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1998-06-01

    Full Text Available The reaction of portland cement mortars with SO2 gaseous pollutant and artificial 'acid rain' solution has been examined using laboratory exposure chambers, with realistic presentation rates of pollutants. The mortar were previously carbonated to produce superficial carbonation. Two mortars with different w/c ratio and hence specific surface were prepared and exposed into the chambers. For dry deposition of SO2 pollutant gas, the important roles of water and water plus oxidant in increasing chemical reaction are readily revealed. Further, accessible porosity also increases reaction through increased times of reaction of pollutant with the mortars. Interestingly, in the absence of deliberate surface wetting, the presence of oxidant, ozone, leads to a reduction in the already limited extent of reaction. Wet deposition studies using artificial 'acid rain' solution result in gypsum formation, which is more extensive for mortars of increased w/c ratios.

    Se han realizado ensayos de laboratorio de simulación de los procesos ambientales de "deposición" seca y húmeda sobre morteros de cemento portland, estudiándose las reacciones que se producen con el contaminante SO2 ("deposición" seca y la disolución de 'lluvia acida' ("deposición" húmeda. Los morteros de cemento se carbonataron para favorecer la carbonatación superficial de los mismos. Se prepararon morteros con dos relaciones a/c con el fin de estudiar la influencia que la variable superficie específica tenía en el proceso de deterioro de dichos materiales. En los estudios de deposición seca con SO2 como gas agresivo se ha visto la importancia que el agua y el agua junto a un oxidante tienen en la reacción del contaminante con los componentes del mortero. La superficie específica Juega un papel importante, ya que al aumentar, aumenta la reacción con el contaminante. La reacción en presencia de oxidante, (SO2+O3

  11. Rendering mortars in Medina Azahara, Part II: Material characterization and alteration causes

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    1997-06-01

    Full Text Available In the present work, the depicted coat that covers some of the mortars exposed to weathering in the Medina Azahara archaeological site is .studied. That coat is characterized from the compositional and physical viewpoint and the main causes for its decay are determined. The depicted coat is formed by cal cite and iron oxides. It is quite compact and homogeneous. It is approximately 0.1 to 1 mm thick. The depicted coats supposed by lime mortars have CaCO3 deposits over polychromy rests. Depicted coats supported by gypsum mortars or mixed lime and gypsum mortars have gypsum deposits over polychromy rests. The processes of rendering mortars dissolution and the later crystallization of salts on their surface, together with biological growth, are the main causes of the decay of the depicted coats.

    En el presente trabajo se estudia la capa de policromía que recubre algunos de los morteros conservados a la intemperie en la ciudad de Medina Azahara. Dicha capa se caracteriza desde el punto de vista composicional y físico, determinándose las principales causas de su deterioro. La capa de policromía está formada por calcita y óxidos de hierro. Dicha capa es bastante homogénea y compacta. Su espesor es de 0,1 a 1 mm aproximadamente. Las capas de pintura sustentadas por morteros de cal tienen un depósito de CaCO sobre los restos de policromía. Las capas de pintura sustentadas por morteros de yeso o bastardos de cal y yeso tienen depósitos de yeso sobre los restos de policromía. Los procesos de disolución de los revocos y la posterior cristalización de las sales en su superficie, junto con la colonización biológica, son las principales causas de deterioro de la capa de policromía de su superficie.

  12. A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes

    International Nuclear Information System (INIS)

    Shaikh, F.U.A.; Supit, S.W.M.; Sarker, P.K.

    2014-01-01

    Highlights: • The addition of NS compensates low early age compressive strength of HVFA system. • NS also contributes to later age compressive strength gain of HVFA system. • The XRD results confirm the reduction of CH in HVFA paste due to addition of NS. - Abstract: This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings

  13. Development of superhigh-strength mortars with compressive strength of 3000kgf/cm sup 2 or higher. 3000kgf/cm sup 2 ijo no asshuku kyodo wo motsu mortar no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ohama, Y; Izumura, K [Nihon University, Tokyo (Japan). Collete of Engineering; Hayashi, S [Onoda Cement Co. Ltd., Yamaguchi (Japan)

    1991-08-01

    This paper discusses the preparation factors and curing conditions of superhigh-strength mortar, and explains a method of manufacturing superhigh-strength mortar having still higher strength and its superhigh strength generating mechanism. A recommended cement material for the superhigh-strength mortar is a Portland cement mixed with a high-purity silica at 20% and silica fume at 20%. This was made to a water-cement material ratio of 15% and fine aggregate cement material ratio of 1.06, cured in an autoclave, and further heat-cured at 200{degree}C for one day to obtain a superhigh-strength mortar. The compression and bending strengths reach 2,200 kgf/cm{sup 2} and 180 kgf/cm{sup 2} respectively when used with silica sand, and 3000 kgf/cm{sup 2} and 220 kgf/cm{sup 2} or more when used with stainless steel grits. The heat curing at 200{degree}C for a day increases remarkably the compression strength of the superhigh-strength mortar regardless of the curing conditions before the heat curing. 7 refs., 11 figs., 1 tab.

  14. Evaluation of the protection behaviour of reinforcement steel against corrosion induced by chlorides in reinforced mortar specimens

    International Nuclear Information System (INIS)

    Crivelaro, Marcos

    2002-01-01

    In this work various treatments for protecting reinforcing steels against corrosion induced by chlorides have been evaluated. Additives to mortars and surface treatments given to reinforcing steels were evaluated as corrosion protection measures. In the preliminary tests the corrosion resistance of a CA 50 steel treated by immersion in nearly 50 different solutions, was determined. The solutions were prepared with tannins (from various sources) and/or benzotriazole, and during immersion, a surface film formed on the steel. The corrosion resistance of the coated steels was evaluated in a saturated Ca(OH) 2 solution with 5% (wt) NaCl. Preliminary tests were also carried out with mortars reinforced with uncoated steel to which tannin or lignin was added. Two organic coatings, a monocomponent and a bicomponent type, formulated specially for this investigation, with both tannin and benzotriazole, were also tested in the preliminary tests to select the coating with better corrosion protection property. The bicomponent type (epoxy coating) showed better performance than the monocomponent type coating, and the former was therefore chosen to investigate the corrosion performance on CA 50 steel inside mortar specimens. From the preliminary tests, two solutions with tannin from two sources, Black Wattle (Acacia mearnsii) and Brazilian tea (Ilex paraguariensis St. Hill), to which benzotriazole and phosphoric acid were added, were chosen. Mortar specimens reinforced with CA50 steel treated by immersion in these two solutions were prepared. Also, epoxy coated CA50 steel was tested as reinforcement inside mortar specimens. Mortars reinforced with uncoated CA50 steel were also prepared and corrosion tested for comparison. The effect of tannin and lignin as separate additives to the mortar on the corrosion resistance of uncoated steel was also studied. The reinforced mortar specimens were tested with various cycles of immersion for 2 days in 3.5% (wt) NaCl followed by with air

  15. EFFECT OF SODIUM SILICATE TO SODIUM HYDROXIDE RATIOS ON DURABILITY OF GEOPOLYMER MORTARS CONTAINING NATURAL AND ARTIFICIAL POZZOLANS

    Directory of Open Access Journals (Sweden)

    F. Nurhayat Degirmenci

    2017-09-01

    Full Text Available This study aims to provide the experimental data on the sulphate and acid performance of geopolymer mortar containing pozzolanic materials such as fly ash (FA, ground granulated blast furnace slag (GGBS and natural zeolite (NZ. The alkaline solution was the combination of sodium silicate and sodium hydroxide solution with the ratio (Na ₂SiO₃/NaOH of 1.0, 2.0 and 3.0. The molarity of sodium hydroxide was fixed as 10. The performances of geopolymer mortar were measured in terms of sodium and magnesium sulphate resistance and sulphuric and hydrochlorich acid resistance with 5% and 10 % concentration after 24 weeks. The evaluations were measured as visual observation, measurement of weight change and residual compressive strength. It has been observed that Na ₂SiO₃/NaOH ratio is effective on residual compressive strength of geopolymer mortar in both sulphate and acid exposure. The higher ratio of Na ₂SiO₃/NaOH results in a higher residual compressive strength. The GGBS based geopolymer mortar has a very good resistance in acid media in terms of weight loss and residual compressive strength. The inclusion of FA in the GGBS based geopolymer mixture was found to be a suitable base of geopolymer mortar under ambient curing conditions.

  16. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    Science.gov (United States)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  17. THE EFFECT OF VOLUME VARIATION OF SILVER NANOPARTICLE SOLUTION TOWARDS THE POROSITY AND COMPRESSIVE STRENGTH OF MORTAR

    Directory of Open Access Journals (Sweden)

    W.S.B. Dwandaru

    2016-10-01

    Full Text Available As the world is growing rapidly, people need better building materials such as mortar. The aim of this research is to determine the effect of adding silver nanoparticle solution towards the porosity and compressive strength of mortar. This research was started by making silver nanoparticle solution from nitrate silver (AgNO3. The solution is then characterized using Uv-Vis spectrophotometer. 5 mM silver nanoparticle is added in the process of mortar production with volume variation of the silver nanoparticle solution. The porosity, compressive strength, and the content of mortar were determined by digital scale, universal testing machine, and X-ray diffraction, respectively. For silver nanoparticle solution volumes of (in mL 0, 5, 10, 15, 20, and 25 the porosity obtained are (in % 20.38, 19.48, 19.42, 18.9, 17.8, and 17.5, respectively. The best increase in compressive strength is obtained for (in MPa 29,068, 29,308, and 31,385, with nanoparticle solution volumes of (in mL 5, 10, and 15   Keywords: mortar, silver nanoparticle, compressive strength

  18. Influence of aggregate and supplementary cementitious materials on the properties of hydrated lime (CL90s mortars

    Directory of Open Access Journals (Sweden)

    S. Pavía

    2016-11-01

    Full Text Available Hydrated lime is a historic material currently used in conservation. It hardens slowly by carbonation slowing construction however, supplementary cementitious materials accelerate hardening enhancing strength. Hydrated-lime mortars with rice husk ash–RHA-; ground granulated blastfurnace slag–GGBS- and increasing amounts of two aggregates were studied. Increasing aggregate lowered strength as interfacial zones proliferate; it lowered hygric properties and raised water demand. Aggregate content/composition didn’t affect the high water retention. For the higher aggregate contents (90 days, limestone mortars are c.20% stronger than silica mortars while the (1:1 silica sand mortars are 56% stronger in flexion. Additions increased strength with little impact on hygric properties. GGBS increased strength c.six times. RHA increased strength with little impact on hygric properties due to its great specific surface and high water-demand increasing porosity. GGBS and RHA properties ruling hydrate production and the kinetics of the pozzolanic reaction are considered partially responsible for the mortar property variation.

  19. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    Directory of Open Access Journals (Sweden)

    Francisca Guadalupe Cabrera-Covarrubias

    2016-12-01

    Full Text Available The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε; therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%, such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content are those of: σ (elastic ranges and failure maximum, ε (elastic ranges and failure maximum, and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  20. Parametric Assessment of Stress Development and Cracking in Internally Cured Restrained Mortars Experiencing Autogenous Deformations and Thermal Loading

    Directory of Open Access Journals (Sweden)

    Kambiz Raoufi

    2011-01-01

    Full Text Available A finite element model is used to examine how the properties of cementitious mortar are related to the stress development in the dual ring test. The results of this investigation are used to explain the thermal cracking behavior of mixtures containing prewetted lightweight aggregates (LWA by quantifying the contribution of several material properties individually. In addition to the beneficial effects of using the LWA as an internal curing agent to reduce the autogenous shrinkage of concrete, the LWA also helps to reduce the potential for thermal cracking due to a lower elastic modulus and increased stress relaxation. The rate of stress development, age of cracking, and magnitude of the temperature drop necessary to induce cracking in a dual ring specimen are dependent on a variety of factors, including the coefficient of thermal expansion of both the cementitious mortar and the restraining rings, elastic modulus of the mortar, creep effect of the mortar, and rate of thermal loading. Depending on the rate of cooling, cracking may or may not occur. The slowest rate of cooling (2.5∘C/h minimizes the effects of creep while cooling rates faster than 8∘C/h can produce a thermal gradient through the mortar cross-section that needs to be considered.

  1. PENGARUH PENAMBAHAN SIKA GROUT PADA MORTAR SEBAGAI BAHAN GROUTING TERHADAP LEKATAN TULANGAN DALAM BETON DENGAN COPPER SLAG SEBAGAI CEMENTITIOUS

    Directory of Open Access Journals (Sweden)

    Mohammad Sulton

    2012-09-01

    Full Text Available Abstract: The Impact of Sika Grout Addition on Grouting Mortar Toward Concrete Reinforcement Stickness with Copper Slag as Cementitious. The aim of this research is to identify the impact of Sika Grout addition on grouting mortar toward concrete reinforcement stickness with copper slag as cementitious. The experiment result of this research shows that (1 the addition of Sika Grout 215 in grouting mortar can improve the reinforcement stickness; (2 the use of 100% Sika Grout 215 in grouting mortar produces maximum stickness; (3 the stickness of 100% Sika Grout 215 has 12.800 kg stronger (2,8% of improvement than those of using copper slag reinforcement (without grouting as 12.450 kg; (4 the use of less than 100% Sika Grout produces less stickness of no-grouting reinforcement; and (5 there is similar slip characteristic between  concrete reinforcement added with grouting and without grouting as 2,5 mm on outer part of the mortar.

  2. Influence of parameters of mixing of the mortar mixtures on the performance of ornamental composites for facade coating

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniay

    2017-01-01

    Full Text Available Studies have shown that the main physical-mechanical properties of decorative coatings based on colloidal cement systems greatly depend on the homogeneity of the structure of hardened stone, therefore, in the preparation of mortar mixtures were set the task of achieving this target. It is shown that vibrational mix of materials helps to ensure the preparation of mortar mixes with cement-based colloidal systems with a more homogeneous distribution of the components. The efficiency of vibrational mixing was determined by comparing the strength of the mortar mixes based on colloidal cement glue, cooked in vibromaster when the vibration acceleration with the strength of samples prepared in a standard mortar mixer of forced action without vibration. The results of the research confirmed some influence of the mineralogical composition of clinker the cement component of the colloidal material on the effect of vibration treatment solutions. Parameters preparation of the mortar mixtures based on cement colloidal material in a vibratory mixer. Optimum resonant operating frequency of the vibrations, at which is achieved the positive effect of mixing of the mixture is ensured with amplitude 5mm while accelerating 214,8 m/S2 and duration of mixing 60-90s. It is established that vibropressure contributes to the intensification hydration processes to temperature is minus 5 0С

  3. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar

    International Nuclear Information System (INIS)

    Aly, M.; Hashmi, M.S.J.; Olabi, A.G.; Messeiry, M.; Abadir, E.F.; Hussain, A.I.

    2012-01-01

    Highlights: → Glass powder (GP) and nano-silica (CS) were used as a partial cement replacement in cement mortar (CM). → No damaging effect can be detected due to the reaction between GP and CM with particle size up to 75 μm. → Hybrid combination of GP/CS greatly improved mechanical properties and microstructure of CM. -- Abstract: This paper presents a laboratory study of the properties of colloidal nano-silica (CS)/waste glass cement composites. The microstructure, alkali-silica reaction (ASR), and the mechanical properties of cement mortars containing waste glass powder (WG) as a cement replacement with and without CS are investigated and compared with plain mortar. In addition, the hydration of cement compounds was followed by differential thermal analysis (DTA), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The results show that incorporation of WG has a positive effect on the mechanical properties of cement mortars especially when CS is presented. In addition, the DTA/TGA results and XRD analysis show a reduction in the calcium hydroxide (CH) content in mortars with both WG and a hybrid combination of WG and CS. This confirms the improvement of mechanical properties and the occurrence of the pozzolanic reaction after 28 days of hydration.

  4. Use of a multi-species reactive transport model to simulate chloride ingress in mortar exposed to NaCl solution or sea-water

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; De Weerdt, K.; Johannesson, Björn

    2015-01-01

    Simulations of ion ingress in Portland cement mortar using a multi-species reactive mass transport model are compared with experimental test results. The model is an extended version of the Poisson–Nernst–Planck equations, accounting for chemical equilibrium. Saturated mortar samples were exposed...

  5. Effect of Nanosilica Particle Size on the Water Permeability, Abrasion Resistance, Drying Shrinkage, and Repair Work Properties of Cement Mortar Containing Nano-SiO2

    Directory of Open Access Journals (Sweden)

    Sattawat Haruehansapong

    2017-01-01

    Full Text Available This work presents the effect of nanosilica particle sizes on durability properties and repair work properties of cement mortar containing nanosilica (NS. Three different NS particle sizes of 12, 20, and 40 nm were used and compared with those of cement mortar without NS and cement mortar with silica fume (SF. Interesting results were obtained in which the particle size of NS affected directly the abrasion resistance and water permeability. NS with particle size of 40 nm is the optimum size and gave the highest abrasion resistance and water permeability. For repair work properties, cement mortars containing NS (12 and 20 nm and SF experienced higher drying shrinkage than that of cement mortar without NS and then presented cracking behavior and debonding between the cement mortars and concrete substrate. Cement mortar containing 40 nm of NS gave the lowest drying shrinkage, the lowest crack number, and the highest adhesive strength. These results indicate that the particle size of NS affected not only the durability properties but also the repair work properties of cement mortar.

  6. Effect of the pre-treatment and the aggregate content on the adhesion strength of repair mortars on Miocene porous limestone

    Science.gov (United States)

    Szemerey-Kiss, Balázs; Török, Ákos

    2016-04-01

    The adhesion between porous limestone and newly prepared repair mortars are crucial in the preservation of historic stone structures. Besides mechanical compatibility other matches such as chemical composition and porosity are also essential, but the current research focuses on the adhesion strength of repair mortars that are used in the restoration of Hungarian porous limestone. 8 mortars (4 commercial and 4 specially prepared) were selected for the tests. Mortars with different amount of aggregate were prepared and caste to stone surface. The stone substrate was highly porous Miocene limestone. The strength was tested by standardized pull-out tests which method is commonly used for concrete testing. The limestone surfaces were either used in their natural conditions or were pre-treated (pre-wetting). The strength of the stone/mortar bond was tested. The failure mechanism was documented and various failure modes were identified. Strength test results suggest that especially pre-treatment influences strongly the pull-out strength at mortar/stone interface. Increasing aggregate content also reduces pull out strength of tested repair mortars, but at various rates depending on the mortar type. The financial support of OTKA post-doctoral grant to BSZK (reference number is: PD 112-955) and National Research, Development and Innovation (NKFI) Fund to ÁT (ref. no. K 116532) are appreciated.

  7. Altered cement hydration and subsequently modified porosity, permeability and compressive strength of mortar specimens due to the influence of electrical current

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2014-01-01

    This paper reports on the influence of stray current flow on microstructural prop-erties, i.e. pore connectivity and permeability of mortar specimens, and link these to the observed alterations in mechanical properties and cement hydration. Mortar specimens were partly submerged in water and calcium

  8. Characterization and modeling of major constituent equilibrium chemistry of a blended cement mortar

    International Nuclear Information System (INIS)

    Arnold, J.; Kosson, D. S.; Brown, K. G.; Garrabrants, A. C.; Meeussen, J. C. L.; Van Der Sloot, H. A.

    2013-01-01

    Cementitious materials containing ground granulated iron blast furnace slag and coal combustion fly ash as admixtures are being used extensively for nuclear waste containment applications. Whereas the solid phases of ordinary Portland cement (OPC) have been studied in great detail, the chemistry of cement, fly ash and slag blends has received relatively less study. Given that OPC is generally more reactive than slag and fly ash, the mineralogy of OPC provides a logical starting point for describing the major constituent chemistry of blended cement mortars. To this end, a blended cement mortar containing Portland cement, granulated blast furnace slag, fly ash and quartz sand was modeled using a set of solid phases known to form in hydrated OPC with the geochemical speciation solver LeachXS/ORCHESTRA. Comparison of modeling results to the experimentally determined pH-dependent batch leaching concentrations (USEPA Method 1313) indicates that major constituent concentrations are described reasonably well with the Portland cement mineral set; however, modeled and measured aluminum concentrations differ greatly. Scanning electron microscopic analysis of the mortar reveals the presence of Al-rich phyllosilicate minerals heretofore unreported in similar cementitious blends: kaolinite and potassic phyllosilicates similar in composition to illite and muscovite. Whereas the potassic phyllosilicates are present in the quartz sand aggregate, the formation of kaolinite appears to be authigenic. The inclusion of kaolinite in speciation modeling provides a substantially improved description of the release of Al and therefore, suggests that the behavior of phyllosilicate phases may be important for predicting long-term physico-chemical behavior of such systems. (authors)

  9. THE INFLUENCE OF JOINT GRINDING OF CEMENT AND COOPER SLAG ON MORTAR PROPERTIES

    Directory of Open Access Journals (Sweden)

    Kravtsov Aleksey Vladimirovich

    2016-08-01

    Full Text Available The problem of applying copper manufacturing waste locating in the Chelyabinsk region as a component of mixed is considered in this article. Application of mixed binder with superplasticizers, based on esters with carboxyl groups, have not sufficiently been studied by the present time due to the diversity of species and complexity of the chemical structure. This trend is current for today’s science because of the growing rates and scales of building production, in particular, of concrete works. Copper slag dumps located in the Ural Federal district haven’t been widely used in building production or in other industrial production by the present time. Efficient utilization of copper production waste materials will help to solve ecological problems in many regions of Russia. Structure formation period of cement stone based on mixed binder made of Portland cement and granulated cooper slag with application of superplasticizer is studied in the article. The authors present a thermal variation diagram of mortar based on mixed binder made of Portland cement and granulated cooper slag in the process of 21 hours of hardening under normal conditions and the results of ultrasound investigation of concrete structure formation period during 5 hours of hardening. The strength development process diagram of mortar based on mixed binder made of Portland cement and granulated cooper slag for 28 days of hardening under normal conditions and the research results of the compressive strength of concrete samples are shown in this article. The obtained characteristics don’t confirm the prospects of applying joint grinding for mortar with the observed kind of non-ferrous metallurgy waste. Also, the obtained results allow us to make a conclusion about little advantages of using this method of binder production. Copper slag can be more effectively used as a component of complex organic and mineral admixture for building production with different purposes and fields

  10. Transmission properties of barite mortar using X-ray spectra measured with Cd Te detector

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J. C.; Mariano, L.; Costa, P. R. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R. 187, Cidade Universitaria, 05508-090 Sao Paulo (Brazil); Tomal, A., E-mail: josilene@usp.br [Universidade Federal de Goias, Instituto de Fisica, Campus Samambaia, 74001-970 Goiania (Brazil)

    2014-08-15

    Current methods for calculating X-ray shielding barriers do not take into account spectral distribution of the beam transmitted by the protective material. This consideration is important in dose estimations for radiation workers and general public in diagnostic radiology facilities. The aim of the present study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. These curves were described in units of ambient dose equivalent (H (10)), since it is the radiation quantity adopted by IAEA for dose assessment in medical environment. Attenuation curves were determined using the optimized model for shielding evaluation presented by Costa and Caldas (2002). Workload distribution presented by Simpkin (1996), measured primary spectra and mass attenuation coefficients of barite mortar were used as input data in this model. X-ray beams in diagnostic energy range were generated by an industrial X-ray tube with 3 mm of aluminum additional filtration. Primary experimental spectra were measured by a Cd Te detector and corrected by the response function of detector by means of a stripping procedure. Air kerma measurements were performed using an ionization chamber for normalization purpose of the spectra. The corrected spectra presented good agreement with spectra generated by a semi-empirical model. The variation of the ambient dose equivalent as a function of barite mortar thickness was calculated. Using these data, it was estimated the optimized thickness of protective barrier needed for shielding a particular area in an X-ray imaging facility. The results obtained for primary protective barriers exhibit qualitative agreement with those presented in literature. (Author)

  11. Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive

    Directory of Open Access Journals (Sweden)

    Júlia G. Vieira

    2012-01-01

    Full Text Available Methylcellulose was produced from the fibers of Mangifera indica L. Ubá mango seeds. MCD and MCI methylcellulose samples were made by heterogeneous methylation, using dimethyl sulfate and iodomethane as alkylating agents, respectively. The materials produced were characterized for their thermal properties (DSC and TGA, crystallinity (XRD and Degree of Substitution (DS in the chemical route. The cellulose derivatives were employed as mortar additive in order to improve mortar workability and adhesion to the substrate. These properties were evaluated by means of the consistency index (CI and bond tensile strength (TS tests. The methylcellulose (MCD and MCI samples had CI increased by 27.75 and 71.54% and TS increased by 23.33 and 29.78%, respectively, in comparison to the reference sample. Therefore, the polymers can be used to produce adhesive mortars.

  12. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    Science.gov (United States)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  13. Reuse of ash coal in the formulation of mortars; Reaproveitamento de cinzas de carvao mineral na formulacao de argamassas

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, J.S.; Souza, C.A.G.; Souza, J.A.S., E-mail: jacilene_s@yahoo.com.br, E-mail: celioag@ufpa.br, E-mail: jass@ufpa.br [Programa de Pos Graduacao em Engenharia Quimica, Universidade Federal do Para, UFPA/PPEQ, Belem, PA (Brazil)

    2012-04-15

    This paper aims to study the ash incorporation from the combustion of coal in fluidized bed boilers, in production of mortar, replacing part of cement. Specimens were prepared using Portland cement to the specifications CPII-E-32 of normal characteristics and classification of sand below 100 mesh. Blends in the 4:1 ratio, that is, 4 parts of aggregate to 1 part of cement, with insertion of ashes in the proportions 0, 10, 20, 30, 40 and 50%. The mortar was developed in mixing and casting was made in a mold of 5 cm x 10 cm. The behavior of compressive strength was evaluated after 28 days; the strength decreases with increasing percentage of ash. Additional analysis was carried out by X-ray diffraction, and it was found that the substitution of this waste can be successfully used in mortars with blends of up to 30%. (author)

  14. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  15. Production of iron-serpentinite concrete and mortar for Jaslovske Bohunice V-2 nuclear power plant

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.

    1982-01-01

    The ideas behind the research and the results of the research of serpentinite concrete with a discontinuous granulometric curve are given. Concrete mixes were experimentally tested; a formula is given for the manufacture of 1 m 3 of fresh concrete. Serpentinite concrete of a density of 2,240 kg/m 3 is satisfactory as shielding material. Time dependence of workability was also tested. It was found that the concrete was well workable as late as 2 hours after manufacture. Serpentinite concrete and mortar were made and used for the biological shielding construction in the shaft of Unit I of the V-2 nuclear power plant. (J.P.)

  16. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  17. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    OpenAIRE

    Auday A Mehatlaf

    2017-01-01

    Cement Klin Dust (CKD) was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40) had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28) d...

  18. Durability testing of low clinker blends - chloride ingress in similar strength mortar exposed to seawater

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; De Weerdt, Klaartje; Garzón, Sergio Ferreiro

    2017-01-01

    Resistance to chloride ingress of ten different binders was investigated. Most of the binders were prepared with 35% substitution of a new clinker by limestone filler, calcined clay, burnt shale and/or siliceous fly ash. Mortar samples with similar design compressive strength after 90 days were e...... exposed to artificial sea-water for 270 days. The results indicate that the use of alternative binders may lead to up to around 15% reduction in CO2 emission without compromising 90 days compressive strength and resistance to chloride ingress in marine exposure....

  19. Characterization and influence of fine recycled aggregates on masonry mortars properties

    Directory of Open Access Journals (Sweden)

    Saiz-Martínez, P.

    2015-09-01

    Full Text Available This research aims to study mechanical behaviour and relevant properties of masonry mortars fabricated using fine recycled aggregate in different mixture proportions. Fine recycled aggregates samples originated from the ceramic and concrete recycling process and coming from two recycling plants of Madrid region have been used. Tests were performed using 1:3:0.5 volumetric cement-to-aggregate-to-water ratio. Standardized sand with fine recycled aggregate replacement percentages were: 10%, 15%, 25%, 35% and 45%. A continuous size distribution curve can be observed and the main crystalline phases determined have been quartz, calcite and gypsum. Compressive strength, shrinkage and bond strength tests revealed poorer performance of recycled mortars compared to the conventional mortars; however, specific values are within the limits established by the manufacturers and standards. This study shows that cement-based mortars prepared with volumetric ratio 1:3:0.5 may contain up to 45% of fine recycled aggregates, without their properties being affected and without presenting significant losses.Esta investigación estudia el comportamiento mecánico y las propiedades más relevantes de los morteros de albañilería fabricados usando arenas recicladas en diferentes proporciones. Muestras pertenecientes a la línea de reciclaje cerámica y de hormigón proceden de dos centrales de reciclaje de la Comunidad de Madrid. Los ensayos se realizaron con una dosificación 1:3:0,5. Los porcentajes de arena reciclada fueron: 10%, 15%, 25%, 35% y 45%. Se observa una línea granulométrica continua y las principales fases cristalinas encontradas son cuarzo, calcita y yeso. Los ensayos de resistencia a compresión, retracción y adherencia muestran un peor comportamiento en los morteros reciclados frente a los morteros elaborados con arena normalizada, aunque dentro de los límites establecidos por normativas y fabricantes. Se deduce que, los morteros de alba

  20. Lime mud from cellulose industry as raw material in cement mortars

    Directory of Open Access Journals (Sweden)

    Modolo, R. C.E.

    2014-12-01

    Full Text Available This study reports the use of lime mud (LM in cement-based-mortars. Lime mud is a waste generated in the production of cellulose by the kraft mill process. It is mainly composed of CaCO3, a small amount of magnesium carbonate and other trace minerals. Mortars were prepared by adding different amounts of LM (10, 20 and 30% by weight of cement in dry weight. The mortar compositions were evaluated through rheology and flow table measurements, assuring that all the samples exhibited adequate conditions for testing in both equipments. The hardened state properties were also evaluated through mechanical strengths at 7, 28 and 90 days of curing. Following a waste management solution perspective, this work intend to provide a general evaluation of LM application in cement based mortars, looking at both fresh and hardened properties in order to guarantee that the final application requirements are not hindered.Este estudio revela el uso de lodo de carbonato (LM en morteros de cemento. El LM es un residuo compuesto principalmente por CaCO3 generado en la producción de pasta de papel por el método Kraft. Los morteros se prepararon a partir de la adición de diferentes niveles de LM (10, 20 y 30% en peso de cemento en peso seco. Las composiciones de los morteros fueron caracterizadas através de mediciones de reología de mesa y de flujo, asegurando que las muestras exhibían condiciones adecuadas para su caracterización en ambos equipamientos. Las propiedades en estado endurecido también se evaluaron através de resistencias mecánicas a los 7, 28 y 90 días de cura. Con objeto de gestión de residuos, este trabajo tiene la intención de proporcionar una visión general de la aplicación de LM en los morteros, haciendo hincapié en las propiedades con el fin de garantizar que los requisitos para su aplicación final no se vean obstaculizados.