WorldWideScience

Sample records for hardened leaf cells

  1. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  2. Two transistor cluster DICE Cells with the minimum area for a hardened 28-nm CMOS and 65-nm SRAM layout design

    International Nuclear Information System (INIS)

    Stenin, V.Ya.; Stepanov, P.V.

    2015-01-01

    A hardened DICE cell layout design is based on the two spaced transistor clusters of the DICE cell each consisting of four transistors. The larger the distance between these two CMOS transistor clusters, the more robust the hardened DICE SRAM to Single Event Upsets. Some versions of the 28-nm and 65-nm DICE CMOS SRAM block composition have been suggested with minimum cluster distances of 2.27-2.32 mkm. The area of hardened 28-nm DICE CMOS cells is larger than the area of 28-nm 6T CMOS cells by a factor of 2.1 [ru

  3. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  4. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  5. The microstructural origin of strain hardening in two-dimensional open-cell metal foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; van Buuren, S. W.; Onck, P. R.

    2010-01-01

    This paper aims at elucidating the microstructural origin of strain hardening in open-cell metal foams. We have developed a multiscale model that allows to study the development of plasticity at two length scales: (i) the development of plastic zones inside individual struts (microscopic scale) and

  6. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    Science.gov (United States)

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  7. SEU-hardened silicon bipolar and GaAs MESFET SRAM cells using local redundancy techniques

    International Nuclear Information System (INIS)

    Hauser, J.R.

    1992-01-01

    Silicon bipolar and GaAs FET SRAM's have proven to be more difficult to harden with respect to single-event upset mechanisms than have silicon CMOS SRAM's. This is a fundamental property of bipolar and JFET or MESFET device technologies which do not have a high-impedance, nonactive isolation between the control electrode and the current or voltage being controlled. All SEU circuit level hardening techniques applied at the local level must use some type of information storage redundancy so that information loss on one node due to an SEU event can be recovered from information stored elsewhere in the cell. In CMOS technologies, this can be achieved by the use of simple cross-coupling resistors, whereas in bipolar and FET technologies, no such simple approach is possible. Several approaches to the use of local redundancy in bipolar and FET technologies are discussed in this paper. At the expense of increased cell complexity and increased power consumption and write time, several approaches are capable of providing complete SEU hardness at the local cell level

  8. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  9. A review of the stages of work hardening

    Energy Technology Data Exchange (ETDEWEB)

    Rollett, A.D.; Kocks, U.F.

    1993-07-01

    Stages of work hardening are reviewed with emphasis on links between each stage. Simple quantitative descriptions are given for each stage. Similarities between stage I, easy glide, and stage IV, large strain hardening, are pointed out both in terms of magnitude of the hardening rate and of the underlying mechanism of dislocation debris accumulation. Stage II is described as an athermal hardening stage that occurs when statistical variations in the dislocation ``forest`` lead to geometrical storage of dislocations. The steadily decreasing hardening rate observed in stage III is characterized by the increasing rate of loss of dislocation density due to dynamic recovery. Stage III appears to have an asymptote to a saturation stress which is determined by the characteristics of the dislocation tangles, or cell walls. The imperfect nature of the dynamic recovery process, however, leads to the accumulation of dislocation debris and this, by analogy with stage 1, causes the apparent saturation stress to rise, thus causing stage IV.

  10. The secondary hardening phenomenon in strain-hardened MP35N alloy

    International Nuclear Information System (INIS)

    Asgari, S.; El-Danaf, E.; Shaji, E.; Kalidindi, S.R.; Doherty, R.D.

    1998-01-01

    Mechanical testing and microscopy techniques were used to investigate the influence of aging on the structure and strengthening of MP35N alloy. It was confirmed that aging the deformed material at 600 C for 4 h provided additional strengthening, here referred to as secondary hardening, in addition to the primary strain hardening. The secondary hardening phenomenon was shown to be distinctly different from typical age hardening processes in that it only occurred in material deformed beyond a certain cold work level. At moderate strains, aging caused a shift in the entire stress-strain curve of the annealed material to higher stresses while at high strains, it produced shear localization and limited work softening. The secondary hardening increment was also found to be grain size dependent. The magnitude of the secondary hardening appeared to be controlled by the flow stress in the strain hardened material. A model is proposed to explain the observations and is supported by direct experimental evidence. The model is based on formation of h.c.p. nuclei through the Suzuki mechanism, that is segregation of solute atoms to stacking faults, on aging the strain hardened material. The h.c.p. precipitates appear to thicken only in the presence of high dislocation density produced by prior cold work

  11. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural....... The duration and temperature of the nitriding/carburising surface hardening treatment can be chosen in agreement with the thermal treatment for obtaining optimal bulk hardness in the precipitation hardening stainless steel....... characterisation of the cases developed included X-ray diffraction analysis, reflected light microscopy and micro-hardness testing. It was found that the incorporation of nitrogen or carbon resulted in a hardened case consisting of a combination of (tetragonal) martensite and expanded (cubic) austenite...

  12. Radiation hardening and irradiation testing of in-cell electronics for MA23/APM

    International Nuclear Information System (INIS)

    Friant, A.

    1988-09-01

    We relate briefly the radiation hardening method used to guarantee a gamma resistance of 10 Mrad for the whole electronic equipment associated with the slave arm of MA23 M servomanipulator which will be set up in cell 404 in Marcoule (APM). We describe the radiation testing of electronic devices and of the various subsystems designed by the D. LETI groups involved in the MA23/APM project

  13. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    Science.gov (United States)

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening.

  14. A hardenability test proposal

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, N.V.S.N. [Ingersoll-Rand (I) Ltd., Bangalore (India)

    1996-12-31

    A new approach for hardenability evaluation and its application to heat treatable steels will be discussed. This will include an overview and deficiencies of the current methods and discussion on the necessity for a new approach. Hardenability terminology will be expanded to avoid ambiguity and over-simplification as encountered with the current system. A new hardenability definition is proposed. Hardenability specification methods are simplified and rationalized. The new hardenability evaluation system proposed here utilizes a test specimen with varying diameter as an alternative to the cylindrical Jominy hardenability test specimen and is readily applicable to the evaluation of a wide variety of steels with different cross-section sizes.

  15. Comparison of Thermal Creep Strain Calculation Results Using Time Hardening and Strain Hardening Rules

    International Nuclear Information System (INIS)

    Kim, Junehyung; Cheon, Jinsik; Lee, Byoungoon; Lee, Chanbock

    2014-01-01

    One of the design criteria for the fuel rod in PGSFR is the thermal creep strain of the cladding, because the cladding is exposed to a high temperature for a long time during reactor operation period. In general, there are two kind of calculation scheme for thermal creep strain: time hardening and strain hardening rules. In this work, thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules are compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule are compared with those by using MACSIS. Thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules were compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule were compared with those by using MACSIS. Tertiary creep started earlier in time hardening rule than in strain hardening rule. Also, calculation results by MACSIS with strain hardening and those obtained by using LIFE-METAL were almost identical to each other

  16. Radiation-hardenable diluents for radiation-hardenable compositions

    International Nuclear Information System (INIS)

    Schuster, K.E.; Rosenkranz, H.J.; Furh, K.; Ruedolph, H.

    1979-01-01

    Radiation-crosslinkable diluents for radiation-hardenable compositions (binders) consisting of a mixture of triacrylates of a reaction product of trimethylol propane and ethylene oxide with an average degree of ethoxylation of from 2.5 to 4 are described. The ethoxylated trimethylol propane is substantially free from trimethylol propane and has the following distribution: 4 to 5% by weight of monoethoxylation product, 14 to 16% by weight of diethoxylation product, 20 to 30% by weight of triethoxylation product, 20 to 30% by weight of tetraethoxylation product, 16 to 18% by weight of pentaethoxylation product, and 6 to 8% by weight of hexaethoxylation product. The diluents effectively reduce the viscosity of radiation-hardenable compositions and do not have any adverse effect upon their reactivity or upon the properties of the resulting hardened products

  17. Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis.

    Science.gov (United States)

    Kim, Jong-yoon

    2007-12-01

    The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell's internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee's behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.

  18. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-01-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  19. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    Science.gov (United States)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  20. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    Science.gov (United States)

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  1. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Thao T. Nguyen

    2015-12-01

    Full Text Available In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  2. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    Science.gov (United States)

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  3. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    Science.gov (United States)

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    Science.gov (United States)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  5. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  6. Laser transformation hardening effect on hardening zone features and surface hardness of tool steel AISI D2

    Directory of Open Access Journals (Sweden)

    D. Lesyk

    2017-06-01

    Full Text Available The relationship of technological input regimes of the laser transformation hardening on change the hardening depth, hardening width, and hardening angle, as well as surface hardness of the tool steel AISI D2 using multifactor experiment with elements of the analysis of variance and regression equations was determined. The laser transformation hardening process implemented by controlling the heating temperature using Nd:YAG fiber laser with scanner, pyrometer and proportional-integral-differential controller. The linear and quadratic regression models are developed, as well as response surface to determine the effect of the heating temperature and feed rate of the treated surface on the energy density of the laser beam, hardening depths, hardening width, hardening angle, and surface hardness are designed. The main effect on the energy density of the laser beam has a velocity laser treatment, on the other hand, the main effect on the geometrical parameters of the laser hardened zone and surface hardness has temperature heating are shown. The optimum magnitudes of the heating temperature (1270 °C and feed rate of the treated surface (90 mm/min for laser transformation hardening of the tool steel AISI D2 using fiber laser with scanner were defined.

  7. Comparison of Cultivars and Seasonal Variation in Blueberry (Vaccinium Species) Leaf Extract on Adult T-Cell Leukemia Cell Line Growth Suppression

    OpenAIRE

    Kai, Hisahiro; Fuse, Takuichi; Kunitake, Hisato; Morishita, Kazuhiro; Matsuno, Koji

    2014-01-01

    The inhibitory effects of blueberry leaves on the proliferation of adult T-cell leukemia (ATL) cell lines have previously been reported. A comparison of blueberry leaf extracts from different cultivars and seasonal variation were investigated regarding their effects on ATL cell line proliferation. The inhibitory effects of 80% ethanol leaf extracts from different blueberry cultivars collected from April to December in 2006 or 2008 were evaluated using two ATL cell lines. The bioactivities of ...

  8. Superheat effect on bainite steel hardenability

    International Nuclear Information System (INIS)

    Kubachek, V.V.; Sklyuev, P.V.

    1978-01-01

    The bainite hardenability of 34KhN1M and 35 KhN1M2Ph steels has been investigated by the end-face hardening technique. It is established that, as the temperature of austenitization rises from 900 to 1280 deg C, the temperature of bainite transformation increases and bainite hardenability of the steels falls off. A repeated slow heating to 900 deg C of previously overheated 34KhN1M steel breaks up grain, lowers the temperature of the bainite transformation and raises the hardenability to values obtained with ordinary hardening from 900 deg C. A similar heating of previously overheated 35KhN1M2Ph steel is accompanied by restoration of initial coarse grains and maintenance of both the elevated bainite transformation temperature and to lower hardenability corresponding to hardening from the temperature of previous overheating

  9. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice.

    Science.gov (United States)

    Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming

    2017-12-01

    Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition.

    Science.gov (United States)

    Barakat, Mohamed N; Saleh, Mohamed; Al-Doss, Abdullah A; Moustafa, Khaled A; Elshafei, Adel A; Al-Qurainy, Fahed H

    2015-03-01

    Segregating F4 families from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes were made to identify SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat (Triticum aestivum L.) under water-stressed condition and to map quantitative trait locus (QTL) for the three physiological traits. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments (2500 and 7500 m3/ha). Using 400 SSR primers tested for polymorphism in testing parental and F4 families genotypes, the results revealed that QTL for leaf chlorophyll content, flag leaf senescence and cell membrane stability traits were associated with 12, 5 and 12 SSR markers, respectively and explained phenotypic variation ranged from 6 to 42%. The SSR markers for physiological traits had genetic distances ranged from 12.5 to 25.5 cM. These SSR markers can be further used in breeding programs for drought tolerance in wheat.

  11. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    Science.gov (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  12. AtLSG1-2 Regulates Leaf Growth by Affecting Cell Proliferation and the Onset of Endoreduplication and Synergistically Interacts with AtNMD3 during Cell Proliferation Process

    KAUST Repository

    Zhao, Huayan

    2017-03-10

    AtLSG1-2 is a circularly permuted GTPase required for ribosome biogenesis and recently shown to be involved in early leaf development, although it was unclear how AtLSG1-2 affects leaf growth. Here, we found that atlsg1-2 mutants had reduced leaf size as a result of decreased cell size and cell number. Leaf kinematic analysis and CYCB1;1

  13. AtLSG1-2 Regulates Leaf Growth by Affecting Cell Proliferation and the Onset of Endoreduplication and Synergistically Interacts with AtNMD3 during Cell Proliferation Process

    KAUST Repository

    Zhao, Huayan; Lü , Shiyou; Xiong, Liming

    2017-01-01

    AtLSG1-2 is a circularly permuted GTPase required for ribosome biogenesis and recently shown to be involved in early leaf development, although it was unclear how AtLSG1-2 affects leaf growth. Here, we found that atlsg1-2 mutants had reduced leaf size as a result of decreased cell size and cell number. Leaf kinematic analysis and CYCB1;1

  14. A Novel Radiation Hardened CAM

    CERN Document Server

    Shojaii, Seyed Ruhollah; The ATLAS collaboration

    2018-01-01

    This poster describes an innovative Content Addressable Memory cell with radiation hardened (RH-CAM) architecture. The RH-CAM is designed in a commercial 28 nm CMOS technology. The circuit has been simulated in worst-case conditions, and the effects due to single particles are analyzed injecting a fault current into a circuit node. The proposed architecture can perform on-time pattern recognition tasks in harsh environments, such as very front-end electronics in hadron colliders and in space applications.

  15. Comparison of Cultivars and Seasonal Variation in Blueberry (Vaccinium Species) Leaf Extract on Adult T-Cell Leukemia Cell Line Growth Suppression.

    Science.gov (United States)

    Kai, Hisahiro; Fuse, Takuichi; Kunitake, Hisato; Morishita, Kazuhiro; Matsuno, Koji

    2014-06-30

    The inhibitory effects of blueberry leaves on the proliferation of adult T-cell leukemia (ATL) cell lines have previously been reported. A comparison of blueberry leaf extracts from different cultivars and seasonal variation were investigated regarding their effects on ATL cell line proliferation. The inhibitory effects of 80% ethanol leaf extracts from different blueberry cultivars collected from April to December in 2006 or 2008 were evaluated using two ATL cell lines. The bioactivities of leaf extracts of rabbit-eye blueberry ( Vaccinium virgatum Aiton; RB species), southern highbush blueberry ( V. spp.; SB species), northern highbush blueberry ( V. corymbosum L.; NB species), and wild blueberry ( V. bracteatum Thunb.; WB species) were compared. Of these, leaves of the RB species collected in December showed a significantly stronger inhibitory effect in both cell lines than the SB, NB, or WB species. These results suggest elevated biosynthesis of ATL-preventative bioactive compounds in the leaves of the RB species before the defoliation season.

  16. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  17. Rapid bioelectric reaction of elodea leaf cells to the UV radiation

    International Nuclear Information System (INIS)

    Aliev, D.A.; Mamedov, T.G.; Akhmedov, I.S.; Khalilov, R.I.

    1984-01-01

    It has been established that changes of membrane potential (MP) of elodea leaf cells in the UV radiation are manifested in a form of rapid response reaction, which is similar to an action potential. At present a lot of new data confirming the existence of electrogenic proton pump on plasmalemma plant cells is making their appearance. The plant cell membrane potential consists of two components: equilibrium( passive) potential and potential created by an electrogenic proton pump. A contribution of the second component to the elodea leaf cell MP is considerable and constitutes more than a half of the total MP. Constant values of membrane conductivity and intracell electric bonds in the process of depolarization development and after MP recovery testify to the fact, that UV radiation does not effect upon the MP passive component. High degree of depolarization and its strong dependence on medium pH and also the observed effect independence on potassium and sodium ions presence in the external medium testify to the fact that UV radiation ingenuously inactivates electrogenic proton pumps

  18. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells.

    Science.gov (United States)

    Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar

    2013-08-19

    Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.

  19. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  20. Preparation of Dispersion-Hardened Copper by Internal Oxidation

    DEFF Research Database (Denmark)

    Brøndsted, Povl; Sørensen, Ole Toft

    1978-01-01

    Internal oxidation experiments in CO2/CO atmospheres on Cu-Al alloys for preparation of dispersion-hardened Cu are described. The oxygen pressures of the atmospheres used in the experiments were controlled with a solid electrolyte oxygen cell based on ZrO2 (CaO). The particle size distributions o...

  1. Working hardening modelization in zirconium alloys

    International Nuclear Information System (INIS)

    Sanchez, P.; Pochettino, Alberto A.

    1999-01-01

    Working hardening effects on mechanical properties and crystallographic textures formation in Zr-based alloys are studied. The hardening mechanisms for different grain deformations and topological conditions of simple crystal yield are considered. Results obtained show that the differences in the cold rolling textures (L and T textures) can be related with hardening microstructural parameters. (author)

  2. Practical aspects of systems hardening

    International Nuclear Information System (INIS)

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system

  3. Solution hardening and strain hardening at elevated temperatures

    International Nuclear Information System (INIS)

    Kocks, U.F.

    1982-10-01

    Solutes can significantly increase the rate of strain hardening; as a consequence, the saturation stress, at which strain hardening tends to cease for a given temperature and strain rate, is increased more than the yield stress: this is the major effect of solutes on strength at elevated temperatures, especially in the regime where dynamic strain-aging occurs. It is shown that local solute mobility can affect both the rate of dynamic recovery and the dislocation/dislocation interaction strength. The latter effect leads to multiplicative solution strengthening. It is explained by a new model based on repeated dislocation unlocking, in a high-temperature limit, which also rationalizes the stress dependence of static and dynamic strain-aging, and may help explain the plateau of the yield stress at elevated temperatures. 15 figures

  4. Hardening Azure applications

    CERN Document Server

    Gaurav, Suraj

    2015-01-01

    Learn what it takes to build large scale, mission critical applications -hardened applications- on the Azure cloud platform. This 208 page book covers the techniques and engineering principles that every architect and developer needs to know to harden their Azure/.NET applications to ensure maximum reliability and high availability when deployed at scale. While the techniques are implemented in .NET and optimized for Azure, the principles here will also be valuable for users of other cloud-based development platforms. Applications come in a variety of forms, from simple apps that can be bui

  5. Radiation-hardened nonvolatile MNOS RAM

    International Nuclear Information System (INIS)

    Wrobel, T.F.; Dodson, W.H.; Hash, G.L.; Jones, R.V.; Nasby, R.D.; Olson, R.J.

    1983-01-01

    A radiation hardened nonvolatile MNOS RAM is being developed at Sandia National Laboratories. The memory organization is 128 x 8 bits and utilizes two p-channel MNOS transistors per memory cell. The peripheral circuitry is constructed with CMOS metal gate and is processed with standard Sandia rad-hard processing techniques. The devices have memory retention after a dose-rate exposure of 1E12 rad(Si)/s, are functional after total dose exposure of 1E6 rad(Si), and are dose-rate upset resistant to levels of 7E8 rad(Si)/s

  6. Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs

    International Nuclear Information System (INIS)

    Wimmers, L.E.; Turgeon, R.

    1987-01-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 μmol photons m -2 sec -1 ) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on 14 C-sucrose (10 mM). There is a positive correlation between uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged

  7. Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes

    NARCIS (Netherlands)

    Lee, K.M.; Driever, S.M.; Heuvelink, E.; Rüger, S.; Zimmermann, U.; Gelder, de A.; Marcelis, L.F.M.

    2012-01-01

    Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. Leaf patch clamp pressure changes, a measure for relative changes in cell turgor, were monitored at three different

  8. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.

    Science.gov (United States)

    Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota

    2018-02-01

    In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.

  9. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.

    2015-01-01

    Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures...... and times for these essentially different hardening mechanisms are compatible. The effect of the processing history of the steel on the nitrided/nitrocarburized case was investigated by varying the amounts of austenite and martensite through variation of the degree of plastic deformation by tensile strain...... consisting of martensite results in the deepest nitrided case, while a shallow case develops on a microstructure consisting of austenite. For an initial microstructure consisting of both martensite and austenite a non-uniform case depth is achieved. Simultaneous bulk and surface hardening is only possible...

  10. Devising Strain Hardening Models Using Kocks–Mecking Plots—A Comparison of Model Development for Titanium Aluminides and Case Hardening Steel

    Directory of Open Access Journals (Sweden)

    Markus Bambach

    2016-08-01

    Full Text Available The present study focuses on the development of strain hardening models taking into account the peculiarities of titanium aluminides. In comparison to steels, whose behavior has been studied extensively in the past, titanium aluminides possess a much larger initial work hardening rate, a sharp peak stress and pronounced softening. The work hardening behavior of a TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B alloy is studied using isothermal hot compression tests conducted on a Gleeble 3500 simulator, and compared to the typical case hardening steel 25MoCrS4. The behavior is analyzed with the help of the Kocks-Mecking plots. In contrast to steel the TNB-V4 alloy shows a non-linear course of θ (i.e., no stage-III hardening initially and exhibits neither a plateau (stage IV hardening nor an inflection point at all deformation conditions. The present paper describes the development and application of a methodology for the design of strain hardening models for the TNB-V4 alloy and the 25CrMoS4 steel by taking the course of the Kocks-Mecking plots into account. Both models use different approaches for the hardening and softening mechanisms and accurately predict the flow stress over a wide range of deformation conditions. The methodology may hence assist in further developments of more sophisticated physically-based strain hardening models for TiAl-alloys.

  11. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  12. An Innovative Radiation Hardened CAM Architecture

    CERN Document Server

    Shojaii, Seyed Ruhollah; The ATLAS collaboration

    2018-01-01

    This article describes an innovative Content Addressable Memory (CAM) cell with radiation hardened (RH) architecture. The RH-CAM is designed in a commercial 28 nm CMOS technology. The circuit has been simulated in worst-case conditions, and the effects due to single particles have been analyzed by injecting a current pulse into a circuit node. The proposed architecture is suitable for on-time pattern recognition tasks in harsh environments, such as front-end electronics in hadron colliders and in space applications.

  13. Frost hardening and dehardening potential in temperate trees from winter to budburst.

    Science.gov (United States)

    Vitra, Amarante; Lenz, Armando; Vitasse, Yann

    2017-10-01

    We investigated how deciduous trees can adjust their freezing resistance in response to temperature during the progress of the ecodormancy phase, from midwinter to budburst. We regularly sampled twigs of four different temperate deciduous tree species from January to the leaf-out date. Using computer-controlled freezers and climate chambers, the freezing resistance of buds was measured directly after sampling and also after the application of artificial hardening and dehardening treatments, simulating cold and warm spells. The thermal time to budburst in forcing conditions (c. 20°C) was also quantified at each sampling as a proxy for dormancy depth. Earlier flushing species showed higher freezing resistance than late flushing species at either similar bud development stage or similar dormancy depth. Overall, freezing resistance and its hardening and dehardening potential dramatically decreased during the progress of ecodormancy and became almost nil during budburst. Our results suggest that extreme cold events in winter are not critical for trees, as freezing resistance can be largely enhanced during this period. By contrast, the timing of budburst is a critical component of tree fitness. Our results provide quantitative values of the freezing resistance dynamics during ecodormancy, particularly valuable in process-based species distribution models. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Challenges in hardening technologies using shallow-trench isolation

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide

  15. Radiation hardened COTS-based 32-bit microprocessor

    International Nuclear Information System (INIS)

    Haddad, N.; Brown, R.; Cronauer, T.; Phan, H.

    1999-01-01

    A high performance radiation hardened 32-bit RISC microprocessor based upon a commercial single chip CPU has been developed. This paper presents the features of radiation hardened microprocessor, the methods used to radiation harden this device, the results of radiation testing, and shows that the RAD6000 is well-suited for the vast majority of space applications. (authors)

  16. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    Science.gov (United States)

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  17. On residual stresses and fatigue of laser hardened steels

    International Nuclear Information System (INIS)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10 7 cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au)

  18. On residual stresses and fatigue of laser hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10[sup 7] cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au).

  19. Lead accumulation within nuclei of moss leaf cells

    Energy Technology Data Exchange (ETDEWEB)

    Skaar, H; Ophus, E; Gullvag, B M

    1973-01-19

    Mosses were cultivated in a greenhouse and watered once a day for three weeks with a series of lead acetate solutions providing concentrations of 100-10,000 ppm of lead. Electron micrographs revealed electron-dense inclusions in the cells of lead-treated samples. Within the nuclei of leaf cells we repeatedly found electron-dense particles and damage to the nuclear membrane. Analysis confirmed that the electron-dense particles found within the nuclei contained lead. The findings that lead is incorporated into the nuclei of lead-polluted moss cells agree with previous findings of lead inclusions within the nuclei of tubular cells from the kidneys of lead poisoned men and animals. The binding of lead within the nuclear membrane as a non-diffusible complex has been suggested as the mechanism whereby the cytoplasmic concentration of diffusible lead substances within the cell can be kept below a level that would otherwise be toxic to the mitochondrial and other lead-sensitive functions of the cytoplasm. 13 references, 2 figures, 1 table.

  20. Laser Surface Hardening of Groove Edges

    Science.gov (United States)

    Hussain, A.; Hamdani, A. H.; Akhter, R.; Aslam, M.

    2013-06-01

    Surface hardening of groove-edges made of 3Cr13 Stainless Steel has been carried out using 500 W CO2 laser with a rectangular beam of 2.5×3 mm2. The processing speed was varied from 150-500 mm/min. It was seen that the hardened depth increases with increase in laser interaction time. A maximum hardened depth of around 1mm was achieved. The microhardness of the transformed zone was 2.5 times the hardness of base metal. The XRD's and microstructural analysis were also reported.

  1. Hardening Embrittlement and Non-Hardening Embrittlement of Welding-Heat-Affected Zones in a Cr-Mo Low Alloy Steel

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-06-01

    Full Text Available The embrittlement of heat affected zones (HAZs resulting from the welding of a P-doped 2.25Cr-1Mo steel was studied by the analysis of the fracture appearance transition temperatures (FATTs of the HAZs simulated under a heat input of 45 kJ/cm with different peak temperatures. The FATTs of the HAZs both with and without tempering increased with the rise of the peak temperature. However, the FATTs were apparently lower for the tempered HAZs. For the as-welded (untempered HAZs, the FATTs were mainly affected by residual stress, martensite/austenite (M/A islands, and bainite morphology. The observed embrittlement is a hardening embrittlement. On the other hand, the FATTs of the tempered HAZs were mainly affected by phosphorus grain boundary segregation, thereby causing a non-hardening embrittlement. The results demonstrate that the hardening embrittlement of the as-welded HAZs was more severe than the non-hardening embrittlement of the tempered HAZs. Consequently, a post-weld heat treatment should be carried out if possible so as to eliminate the hardening embrittlement.

  2. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Shlapatskaya, V.V.; Omel'chenko, S.I.

    1978-01-01

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  3. Bake hardening of nanograin AA7075 aluminum alloy

    International Nuclear Information System (INIS)

    Dehghani, Kamran

    2011-01-01

    Highlights: ► The bake hardening behavior of AA7075 was studied and compared with its coarse-grain counterpart. ► Nanograin AA7075 exhibited 88–100% increase in bake hardenability. ► Nanograin AA7075 exhibited 36–38% increase in final yield strength after baking. ► Maximum bake hardenability and final yield stress were about 185 MPa and 719 MPa. - Abstract: In the present work, the bake hardening of nanostructured AA7075 aluminum alloy was compared with that of its coarse-grain counterpart. Surface severe plastic deformation (SSPD) was used to produce nanograin layers on both surfaces of workpieces. The nanostructured layers were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The thickness of nanostructured layer, having the grains of 50–110 nm, was about 75 μm on each side of workpiece. The bake hardenability of nanograin and coarse-grain AA7075 was then compared by pre-straining to 2, 4 and 6% followed by baking at 100 °C and 200 °C for 20 min. Comparing to coarse-grain case, there was about 88–100% increase in bake hardenability and about 36–38% increase in yield strength after the bake hardening of present nanograin AA7075. Such an increase in bake hardenability and strength was achieved when the thickness of two nanograin layers was about only one-tenth of the whole thickness.

  4. Structural heredity influence upon principles of strain wave hardening

    Science.gov (United States)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  5. Thermomechanical properties of radiation hardened oligoesteracrylates

    International Nuclear Information System (INIS)

    Lomonosova, N.V.; Chikin, Yu.A.

    1984-01-01

    Thermomechanical properties of radiation hardened oligoesteracrylates are studied by the methods of isothermal heating and thermal mechanics. Films of dimethacrylate of ethylene glycol, triethylene glycol (TGM-3), tetraethylene glycol, tridecaethylene glycol and TGM-3 mixture with methyl methacrylate hardened by different doses (5-150 kGy) using Co 60 installation with a dose rate of 2x10 -3 kGy/s served as a subject of the research. During oligoesteracrylate hargening a space network is formed, chain sections between lattice points of which are in a stressed state. Maximum of deformation is observed at 210-220 deg C on thermomechanical curves of samples hardened by doses > 5 kGy, which form and intensity is dependent on an absorbed dose. Presence of a high-temperature maximum on diaqrams of isometric heating of spatially cross-linked oligoesteracrylates is discovered. High thermal stability of three-dimensional network of radiation hardened oligoesteracrylates provides satisfactory tensile properties (40% of initial strength) in sample testing an elevated temperatures (200-250 deg C)

  6. Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial–Abaxial Patterning in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Koji Kojima

    2018-01-01

    Full Text Available Leaf abaxial–adaxial patterning is dependent on the mutual repression of leaf polarity genes expressed either adaxially or abaxially. In Arabidopsis thaliana, this process is strongly affected by mutations in ribosomal protein genes and in ribosome biogenesis genes in a sensitized genetic background, such as asymmetric leaves2 (as2. Most ribosome-related mutants by themselves do not show leaf abaxialization, and one of their typical phenotypes is the formation of pointed rather than rounded leaves. In this study, we characterized two ribosome-related mutants to understand how ribosome biogenesis is linked to several aspects of leaf development. Previously, we isolated oligocellula2 (oli2 which exhibits the pointed-leaf phenotype and has a cell proliferation defect. OLI2 encodes a homolog of Nop2 in Saccharomyces cerevisiae, a ribosome biogenesis factor involved in pre-60S subunit maturation. In this study, we found another pointed-leaf mutant that carries a mutation in a gene encoding an uncharacterized protein with a G-patch domain. Similar to oli2, this mutant, named g-patch domain protein1 (gdp1, has a reduced number of leaf cells. In addition, gdp1 oli2 double mutants showed a strong genetic interaction such that they synergistically impaired cell proliferation in leaves and produced markedly larger cells. On the other hand, they showed additive phenotypes when combined with several known ribosomal protein mutants. Furthermore, these mutants have a defect in pre-rRNA processing. GDP1 and OLI2 are strongly expressed in tissues with high cell proliferation activity, and GDP1-GFP and GFP-OLI2 are localized in the nucleolus. These results suggest that OLI2 and GDP1 are involved in ribosome biogenesis. We then examined the effects of gdp1 and oli2 on adaxial–abaxial patterning by crossing them with as2. Interestingly, neither gdp1 nor oli2 strongly enhanced the leaf polarity defect of as2. Similar results were obtained with as2 gdp1 oli2

  7. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    Science.gov (United States)

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  8. 7 CFR 29.3035 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  9. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  10. 7 CFR 29.6023 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  11. 7 CFR 29.1030 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  12. 7 CFR 29.3527 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  13. Precipitation and Hardening in Magnesium Alloys

    Science.gov (United States)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  14. The microstructural origin of work hardening stages

    DEFF Research Database (Denmark)

    Hughes, D. A.; Hansen, N.

    2018-01-01

    The strain evolution of the flow stress and work hardening rate in stages III and IV is explored by utilizing a fully described deformation microstructure. Extensive measurements by transmission electron microscopy reveal a hierarchical subdivision of grains by low angle incidental dislocation...... addition of the classical Taylor and Hall-Petch formulations. Model predictions agree closely with experimental values of flow stress and work hardening rate in stages III and IV. Strong connections between the evolutionary stages of the deformation microstructure and work hardening rates create a new...... (modern) basis for the classic problem of work hardening in metals and alloys. These connections lead the way for the future development of ultra high strength ductile metals produced via plastic deformation.(c) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  15. Radiation hardenable coating mixture

    International Nuclear Information System (INIS)

    Howard, D.D.

    1977-01-01

    This invention relates to coatings that harden under radiation and to their compositions. Specifically, this invention concerns unsaturated urethane resins polymerisable by addition and to compositions, hardening under the effect of radiation, containing these resins. These resins feature the presence of at least one unsaturated ethylenic terminal group of structure CH 2 =C and containing the product of the reaction of an organic isocyanate compound with at least two isocyanate groups and one polyester polyol with at least two hydroxyl groups, and one unsaturated monomer compound polymerisable by addition having a single active hydrogen group reacting with the isocyanate [fr

  16. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; de Fine Licht, Henrik Hjarvard; Harholt, Jesper

    2011-01-01

    communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated......The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus......, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste...

  17. Fatigue hardening and softening studies on strain hardened 18-8 austenitic stainless steel

    International Nuclear Information System (INIS)

    Ramakrishna Prasad, C.; Vasudevan, R.

    1976-01-01

    Metals when subjected to fatigue harden or soften depending on their previous mechanical history. Annealed or mildly cold worked metals are known to harden while severely cold worked metals soften when subjected to fatigue loading. In the present work samples of austenitic 18-8 steel cold worked to 11% and 22% reduction in area were mounted in a vertical pulsator and fatigued in axial tension-compression. Clear cut effects were produced and it was noticed that these depended on the extent of cold work, the amplitude as well as the number of cycles of fatigue and mean stress if any. (orig.) [de

  18. Radiation-hardened bulk Si-gate CMOS microprocessor family

    International Nuclear Information System (INIS)

    Stricker, R.E.; Dingwall, A.G.F.; Cohen, S.; Adams, J.R.; Slemmer, W.C.

    1979-01-01

    RCA and Sandia Laboratories jointly developed a radiation-hardened bulk Si-gate CMOS technology which is used to fabricate the CDP-1800 series microprocessor family. Total dose hardness of 1 x 10 6 rads (Si) and transient upset hardness of 5 x 10 8 rads (Si)/sec with no latch up at any transient level was achieved. Radiation-hardened parts manufactured to date include the CDP-1802 microprocessor, the CDP-1834 ROM, the CDP-1852 8-bit I/O port, the CDP-1856 N-bit 1 of 8 decoder, and the TCC-244 256 x 4 Static RAM. The paper is divided into three parts. In the first section, the basic fundamentals of the non-hardened C 2 L technology used for the CDP-1800 series microprocessor parts is discussed along with the primary reasons for hardening this technology. The second section discusses the major changes in the fabrication sequence that are required to produce radiation-hardened devices. The final section details the electrical performance characteristics of the hardened devices as well as the effects of radiation on device performance. Also included in this section is a discussion of the TCC-244 256 x 4 Static RAM designed jointly by RCA and Sandia Laboratories for this application

  19. DNA Damage by Radiation in Tradescantia Leaf Cells

    International Nuclear Information System (INIS)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu; Nili, Mohammad

    2010-01-01

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  20. DNA Damage by Radiation in Tradescantia Leaf Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-04-15

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  1. The Bone Building Blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria.

    Science.gov (United States)

    Rau, Julietta V; Wu, Victoria M; Graziani, Valerio; Fadeeva, Inna V; Fomin, Alexander S; Fosca, Marco; Uskoković, Vuk

    2017-10-01

    A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (β-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against Gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper

  2. A cytochemical and immunocytochemical analysis of the wall labyrinth apparatus in leaf transfer cells in Elodea canadensis.

    Science.gov (United States)

    Ligrone, Roberto; Vaughn, Kevin C; Rascio, Nicoletta

    2011-04-01

    Transfer cells are plant cells specialized in apoplast/symplast transport and characterized by a distinctive wall labyrinth apparatus. The molecular architecture and biochemistry of the labyrinth apparatus are poorly known. The leaf lamina in the aquatic angiosperm Elodea canadensis consists of only two cell layers, with the abaxial cells developing as transfer cells. The present study investigated biochemical properties of wall ingrowths and associated plasmalemma in these cells. Leaves of Elodea were examined by light and electron microscopy and ATPase activity was localized cytochemically. Immunogold electron microscopy was employed to localize carbohydrate epitopes associated with major cell wall polysaccharides and glycoproteins. The plasmalemma associated with the wall labyrinth is strongly enriched in light-dependent ATPase activity. The wall ingrowths and an underlying wall layer share an LM11 epitope probably associated with glucuronoarabinoxylan and a CCRC-M7 epitope typically associated with rhamnogalacturonan I. No labelling was observed with LM10, an antibody that recognizes low-substituted and unsubstituted xylan, a polysaccharide consistently associated with secondary cell walls. The JIM5 and JIM7 epitopes, associated with homogalacturonan with different degrees of methylation, appear to be absent in the wall labyrinth but present in the rest of cell walls. The wall labyrinth apparatus of leaf transfer cells in Elodea is a specialized structure with distinctive biochemical properties. The high level of light-dependent ATPase activity in the plasmalemma lining the wall labyrinth is consistent with a formerly suggested role of leaf transfer cells in enhancing inorganic carbon inflow. The wall labyrinth is a part of the primary cell wall. The discovery that the wall ingrowths in Elodea have an antibody-binding pattern divergent, in part, from that of the rest of cell wall suggests that their carbohydrate composition is modulated in relation to transfer

  3. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  4. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in this way induces leaf abscission in Kalanchoe blossfeldiana.

  5. Numerical and experimental comparison of plastic work-hardening rules

    International Nuclear Information System (INIS)

    Haisler, W.E.

    1977-01-01

    The purpose of this paper is to describe recent numerical and experimental correlation studies of several plastic work-hardening rules. The mechanical sublayer model and the combined kinematic-isotropic hardening rules are examined and the numerical results for several structural geometries are compared to experimental results. Both monotonic and cyclic loads are considered. The governing incremental plasticity relations are developed for both work-hardening models. The combined kinematic-isotropic hardening model is developed in terms of a ratio γ which controls the relative contribution of kinematic hardening (yield surface translation) and isotropic hardening (yield surface expansion). In addition to making use of a uniaxial stress-strain curve as input data, the model allows for the input of a yield surface size vs. uniaxial plastic strain curve obtained from a cyclic uniaxial reverse loading test. The mechanical sublayer model is developed in general form and a new method for determining the sublayer parameters (stress weighting factors and yield stresses) is presented. It is demonstrated that former procedures used to obtain the sublayer parameters are inconsistent for multiaxial loading. Numerical and experimental results are presented for a cylinder, circular plate with punch, and a steel pressure vessel. The numerical results are obtained with the computer program AGGIE I. The comparison study indicates that reasonable agreement is obtained with both hardening models; the choice depending upon whether the loading is monotonic or cyclic

  6. Selective killing of cancer cells by leaf extract of Ashwagandha: components, activity and pathway analyses.

    Science.gov (United States)

    Widodo, Nashi; Takagi, Yasuomi; Shrestha, Bhupal G; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2008-04-08

    Ashwagandha, also called as "Queen of Ayurveda" and "Indian ginseng", is a commonly used plant in Indian traditional medicine, Ayurveda. Its roots have been used as herb remedy to treat a variety of ailments and to promote general wellness. However, scientific evidence to its effects is limited to only a small number of studies. We had previously identified anti-cancer activity in the leaf extract (i-Extract) of Ashwagandha and demonstrated withanone as a cancer inhibitory factor (i-Factor). In the present study, we fractionated the i-Extract to its components by silica gel column chromatography and subjected them to cell based activity analyses. We found that the cancer inhibitory leaf extract (i-Extract) has, at least, seven components that could cause cancer cell killing; i-Factor showed the highest selectivity for cancer cells and i-Factor rich Ashwagandha leaf powder was non-toxic and anti-tumorigenic in mice assays. We undertook a gene silencing and pathway analysis approach and found that i-Extract and its components kill cancer cells by at least five different pathways, viz. p53 signaling, GM-CFS signaling, death receptor signaling, apoptosis signaling and G2-M DNA damage regulation pathway. p53 signaling was most common. Visual analysis of p53 and mortalin staining pattern further revealed that i-Extract, fraction F1, fraction F4 and i-Factor caused an abrogation of mortalin-p53 interactions and reactivation of p53 function while the fractions F2, F3, F5 work through other mechanisms.

  7. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    Science.gov (United States)

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  8. Stomatal and pavement cell density linked to leaf internal CO2 concentration.

    Science.gov (United States)

    Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-08-01

    Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Arabidopsis ASYMMETRIC LEAVES2 protein required for leaf morphogenesis consistently forms speckles during mitosis of tobacco BY-2 cells via signals in its specific sequence.

    Science.gov (United States)

    Luo, Lilan; Ando, Sayuri; Sasabe, Michiko; Machida, Chiyoko; Kurihara, Daisuke; Higashiyama, Tetsuya; Machida, Yasunori

    2012-09-01

    Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.

  10. COMPLEX SURFACE HARDENING OF STEEL ARTICLES

    Directory of Open Access Journals (Sweden)

    A. V. Kovalchuk

    2014-01-01

    Full Text Available The method of complex surface hardening of steel detailswas designed. The method is a compound of two processes of hardening: chemical heat treatment and physical vapor deposition (PVD of the coating. The result, achieved in this study is much higher, than in other work on this topic and is cumulative. The method designed can be used in mechanical engineering, medicine, energetics and is perspective for military and space technologies.

  11. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi.

    Science.gov (United States)

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J

    2010-12-31

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.

  12. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2010-12-01

    Full Text Available Abstract Background Leaf-cutting (attine ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. Results We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21% of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Conclusions Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to

  13. Radiation-hardened control system

    International Nuclear Information System (INIS)

    Vandermolen, R.I.; Smith, S.F.; Emery, M.S.

    1993-01-01

    A radiation-hardened bit-slice control system with associated input/output circuits was developed to prove that programmable circuits could be constructed to successfully implement intelligent functions in a highly radioactive environment. The goal for this effort was to design and test a programmable control system that could withstand a minimum total dose of 10 7 rads (gamma). The Radiation Hardened Control System (RHCS) was tested in operation at a dose rate that ranged up to 135 krad/h, with an average total dose of 10.75 Mrads. Further testing beyond the required 10 7 rads was also conducted. RHCS performed properly through the target dose of 10 7 rads, and sporadic intermittent failures in some programmable logic devices were noted after ∼ 13 Mrads

  14. Hardening of niobium alloys at precrystallization annealing

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Pustovalov, V.A.

    1989-01-01

    Niobium base alloys were investigated. It is shown that precrystallization annealing of niobium-molybdenum, niobium-vanadium and niobium-zirconium alloys elevates much more sufficiently their resistance to microplastic strains, than to macroplastic strains. Hardening effect differs sufficiently for different alloys. The maximal hardening is observed for niobium-vanadium alloys, the minimal one - for niobium-zirconium alloys

  15. Comparison of the effects of fresh leaf and peel extracts of walnut (Juglans regia L. on blood glucose and β-cells of streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Somaye Javidanpour

    2012-12-01

    Full Text Available There is some report about the hypoglycemic effect of Juglans rejia L. leaf in alloxan induced diabetic rats and hypoglycemic effect of its fruit peel administered intra peritoneally. Thirty male Wistar rats divided into five groups, to evaluate the hypoglycemic and pancreas β-cells regenerative effects of oral methanolic extracts of leaf and fruit peel of walnut. Rats were made diabetic by intravenous (IV injection of 50 mg kg-1 streptozotocin (STZ. Negative control group did not get STZ and any treatment. Positive control, leaf extract, peel extract and insulin groups were treated orally by extract solvent, 200 mg kg-1 leaf extract, 200 mg kg-1 peel extract and 5 IU kg-1 of subcutaneous neutral protamine Hagedorn (NPH insulin, respectively. Four weeks later, blood was collected for biochemical analysis and pancreases were removed for β-cells counts in histological sections. Diabetes leads to increase of fast blood sugar (FBS and HbA1c, and decrease of β-cell number and insulin. FBS decreased only in leaf extract group. HbA1c decreased in leaf extract and insulin groups. The β-cells number increased in leaf and peel extract groups. Insulin increased moderately in all treatment groups. We showed the proliferative properties of leaves and peel of Juglans regia L. methanolic extract in STZ- induced diabetic rats, which was accompanied by hypoglycemic effect of leaf extract.

  16. Hardening device, by inserts, of electronic component against radiation

    International Nuclear Information System (INIS)

    Val, C.

    1987-01-01

    The hardening device includes at least two materials, one with high atomic number with respect to the other. One of these materials is set as inserts in a layer of the other material. The hardening device is then made by stacking of such layers, the insert density varying from one layer to the other, making thus vary the atomic number resulting from the hardening device along its thickness, following a predefined law [fr

  17. Investigation of srawberry hardening in low temperatures in vitro

    OpenAIRE

    Lukoševičiūtė, Vanda; Rugienius, Rytis; Kavaliauskaitė, Danguolė

    2007-01-01

    Cold resistance of different strawberry varieties in vitro and ability to retain hardening after defrosting and repeated hardening. Phytohormons – gibberellin and abscisic acid added in the growing medium were investigated in Horticulture plant genetic and biotechnology department of LIH. We tried to model common conditions in temperate zone when freeze-thaw cycles often occur during wintertime. For investigation in vitro strawberries for the first time hardened in light at the temperature of...

  18. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  19. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  20. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    Science.gov (United States)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  1. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  2. A procedure for the hardening of materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1984-01-01

    A method of hardening metals or ceramics which have fcc, bcc or hcp structures in which two species of differing atomic radii are introduced into the material to be hardened. One species is of a size such that it can diffuse through the lattice normally. The other is of a size such that it can diffuse readily only along dislocations. Ion bombardment is the preferred method of introducing the species with different atomic radii. The material to be hardened is subjected to heat and plastic deformation so as to cause a large number of dislocations with jogs. The species meet at the jogs where they interact and are trapped and set up strain fields which prevent further deformation of the material. (author)

  3. An Anisotropic Hardening Model for Springback Prediction

    Science.gov (United States)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  4. An Anisotropic Hardening Model for Springback Prediction

    International Nuclear Information System (INIS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-01-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test

  5. 7 CFR 29.2278 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ...

  6. Novel circuits for radiation hardened memories

    International Nuclear Information System (INIS)

    Haraszti, T.P.; Mento, R.P.; Moyer, N.E.; Grant, W.M.

    1992-01-01

    This paper reports on implementation of large storage semiconductor memories which combine radiation hardness with high packing density, operational speed, and low power dissipation and require both hardened circuit and hardened process technologies. Novel circuits, including orthogonal shuffle type of write-read arrays, error correction by weighted bidirectional codes and associative iterative repair circuits, are proposed for significant improvements of SRAMs' immunity against the effects of total dose and cosmic particle impacts. The implementation of the proposed circuit resulted in fault-tolerant 40-Mbit and 10-Mbit monolithic memories featuring a data rate of 120 MHz and power dissipation of 880 mW. These experimental serial-parallel memories were fabricated with a nonhardened standard CMOS processing technology, yet provided a total dose hardness of 1 Mrad and a projected SEU rate of 1 x 10 - 12 error/bit/day. Using radiation hardened processing improvements by factors of 10 to 100 are predicted in both total dose hardness and SEU rate

  7. ANISOTROPIC STRAIN-HARDENING IN POLYCRYSTALLINE COPPER AND ALUMINUM

    NARCIS (Netherlands)

    HESS, F

    1993-01-01

    A new viscoplastic model for the plastic stress-strain behaviour of f.c.c. metals is presented. In this model the strain hardening results from increasing dislocation densities. The observed stagnation of strain hardening after strain reversals is explained by a lowering of the increase in

  8. Surface hardening of titanium alloys with melting depth controlled by heat sink

    Science.gov (United States)

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  9. Research on SEU hardening of heterogeneous Dual-Core SoC

    Science.gov (United States)

    Huang, Kun; Hu, Keliu; Deng, Jun; Zhang, Tao

    2017-08-01

    The implementation of Single-Event Upsets (SEU) hardening has various schemes. However, some of them require a lot of human, material and financial resources. This paper proposes an easy scheme on SEU hardening for Heterogeneous Dual-core SoC (HD SoC) which contains three techniques. First, the automatic Triple Modular Redundancy (TMR) technique is adopted to harden the register heaps of the processor and the instruction-fetching module. Second, Hamming codes are used to harden the random access memory (RAM). Last, a software signature technique is applied to check the programs which are running on CPU. The scheme need not to consume additional resources, and has little influence on the performance of CPU. These technologies are very mature, easy to implement and needs low cost. According to the simulation result, the scheme can satisfy the basic demand of SEU-hardening.

  10. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  11. The pore of the leaf cavity of Azolla species: teat cell differentiation and cell wall projections.

    Science.gov (United States)

    Veys, P; Lejeune, A; Van Hove, C

    2002-02-01

    The differentiation of the specialized secretory teat cells of the leaf cavity pore of Azolla species was investigated at the ultrastructural level with emphasis on their peculiar cell wall projections. The results indicated that the projections are formed as soon as the teat cells complete their differentiation and that their production is principally associated with changes in endoplasmic reticulum profiles. The number of projections increases with the teat cell age and is stimulated under salt and P deficiency stresses. Salt stress also promotes their emergence on Azolla species that under normal conditions do not produce projections. Cytochemical tests on different Azolla species showed that the projection composition is almost identical: proteins, acidic polysaccharides, and pectin are always detected. This study revealed that Azolla teat cell projections differ fundamentally from other types of hitherto described cell wall projections that are considered as remnant structures from cell separation. In contrast, in Azolla teat cells projections are actively produced and compounds are excreted by an exocytotic mechanism. The possible role of the projections in the symbiosis of Azolla spp. with Anabaena azollae is discussed.

  12. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    Science.gov (United States)

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  13. EFFECT OF HARDENING TIME ON DEFORMATION-STRENGTH INDICATORS OF CONCRETE FOR INJECTION WITH A TWO-STAGE EXPANSION DURING HARDENING IN WATER

    Directory of Open Access Journals (Sweden)

    Tatjana N. Zhilnikova

    2017-01-01

    Full Text Available Abstract. Objectives Concretes for injection with a two-stage expansion are a kind of selfstressing concrete obtained with the use of self-stressing cement.The aim of the work is to study the influence of the duration of aging on the porosity, strength and self-stress of concrete hardening in water, depending on the expansion value at the first stage. At the first stage, the compacted concrete mixture is expanded to ensure complete filling of the formwork space. At the second stage, the hardening concrete expands due to the formation of an increased amount of ettringite. This process is prolonged in time, with the amount of self-stress and strength dependant on the conditions of hardening. Methods  Experimental evaluation of self-stress, strength and porosity of concretes that are permanently hardened in water, under air-moist and air-dry conditions after different expansion at the first stage. The self-stress of cement stone is the result of superposition of two processes: the hardening of the structure due to hydration of silicates and its expansion as a result of hydration of calcium aluminates with the subsequent formation of ettringite. The magnitude of self-stress is determined by the ratio of these two processes. The self-stress of the cement stone changes in a manner similar to the change in its expansion. The stabilisation of expansion is accompanied by stabilisation of self-stress of cement stone. Results  The relationship of self-stress, strength and porosity of concrete for injection with a two-stage expansion on the duration and humidity conditions of hardening, taking into account the conditions of deformation limitation at the first stage, is revealed. Conclusion During prolonged hardening in an aqueous medium, self-stresses are reduced up to 25% with the exception of expansion at the first stage and up to 20% with an increase in volume up to 5% at the first stage. The increase in compressive strength is up to 28% relative to

  14. Increasing Leaf Vein Density via Mutagenesis in Rice Results in an Enhanced Rate of Photosynthesis, Smaller Cell Sizes and Can Reduce Interveinal Mesophyll Cell Number

    Directory of Open Access Journals (Sweden)

    Aryo B. Feldman

    2017-11-01

    Full Text Available Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concentration of vascular tissue per unit leaf area has important implications for plant hydraulic properties and assimilate transport. It was an important step to improving photosynthetic rates in the evolution of both C3 and C4 species and is a foundation or prerequisite trait for C4 engineering in crops like rice (Oryza sativa. A previous high throughput screen identified five mutant rice lines (cv. IR64 with increased vein densities and associated narrower leaf widths (Feldman et al., 2014. Here, these high vein density rice variants were analyzed for properties related to photosynthesis. Two lines were identified as having significantly reduced mesophyll to bundle sheath cell number ratios. All five lines had 20% higher light saturated photosynthetic capacity per unit leaf area, higher maximum carboxylation rates, dark respiration rates and electron transport capacities. This was associated with no significant differences in leaf thickness, stomatal conductance or CO2 compensation point between mutants and the wild-type. The enhanced photosynthetic rate in these lines may be a result of increased RuBisCO and electron transport component amount and/or activity and/or enhanced transport of photoassimilates. We conclude that high vein density (associated with altered mesophyll cell length and number is a trait that may confer increased photosynthetic efficiency without increased transpiration.

  15. Hardening of eucalyptus seedlings via salicylic acid application

    Directory of Open Access Journals (Sweden)

    Eduardo Henrique Lima Mazzuchelli

    2014-09-01

    Full Text Available The agricultural and forest productivity suffer restrictions imposed by water stress, high temperature and high solar radiation. This study aimed to evaluate the capacity of stress attenuation and growth promotion of salicylic acid (SA application in eucalyptus (E. urophylla x E. grandis hybrid seedlings under water stress. A completely randomized design, in a 3x4 factorial scheme (three water treatments: constant irrigation with daily replacement of 40% (CI40% or 100% (CI100% of evapotranspirated water, and temporary irrigation suspension with replacement of only 40% of evapotranspirated water (S40%; and four SA concentrations: 0 mg L-1, 100 mg L-1, 200 mg L-1 and 300 mg L-1, was used. Plant photosynthetic parameters and biometric features were evaluated. The stomatal limitation was higher in plants under S40% irrigation, however, the SA application reverted this result, allowing the maintenance of the photosynthetic potential. There was interaction between irrigation regimes and SA doses for number of leaves, leaf area/number of leaves ratio and shoot and root dry mass. It was concluded that the application of 200 mg L -1 of SA positively affected the growth of eucalyptus seedlings under water stress, being considered an auxiliary management technique to their hardening process.

  16. 7 CFR 29.2530 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of...

  17. Radiation hardening of semiconductor parts

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter is an overview of total-ionizing-dose and single-event hardening techniques and should be used as a guide to a range of research publications. It should be stressed that there is no clear and simple route to a radiation-tolerant silicon integrated circuit. What works for one fabrication process may not work for another, and there are many complex interactions within individual processes and designs. The authors have attempted to highlight the most important factors and those process changes which should bring improved hardness. The main point is that radiation-hardening as a procedure must be approached in a methodical fashion and with a good understanding of the response mechanisms involved

  18. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.

    2011-01-01

    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  19. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens.

    Directory of Open Access Journals (Sweden)

    Isabel E Moller

    Full Text Available The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants.

  20. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  1. Hardening cookies in web-based systems for better system integrity

    International Nuclear Information System (INIS)

    Mohamad Safuan Sulaiman; Mohd Dzul Aiman Aslan; Saaidi Ismail; Abdul Aziz Mohd Ramli; Abdul Muin Abdul Rahman; Siti Nurbahyah Hamdan; Norlelawati Hashimuddin; Sufian Norazam Mohamed Aris

    2012-01-01

    IT Center (ITC) as technical support and provider for most of web-based systems in Nuclear Malaysia has conducted a study to investigate cookie vulnerability in a system for better integrity. A part of the result has found that cookies in a web-based system in Nuclear Malaysia can be easily manipulated. The main objective of the study is to harden the vulnerability of the cookies. Two levels of security procedures have been used and enforced which consist of 1) Penetration test (Pen Test) 2) Hardening procedure. In one of the system, study has found that 121 attempts threats have been detected after the hardening enforcement from 23 March till 20 September 2012. At this stage, it can be concluded that cookie vulnerability in the system has been hardened and integrity has been assured after the enforcement. This paper describes in detail the penetration and hardening process of cookie vulnerability for better supporting web-based system in Nuclear Malaysia. (author)

  2. Formulating the strength factor α for improved predictability of radiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov; Busby, J.T.

    2015-10-15

    Analytical equations were developed to calculate the strength factors of precipitates, Frank loops, and cavities in austenitic alloys, which strongly depend on barrier type, size, geometry and density, as well as temperature. Calculated strength factors were successfully used to estimate radiation hardening using the broadly employed dispersed barrier-hardening model, leading to good agreement with experimentally measured hardening in neutron-irradiated type 304 and 316 stainless steel variants. The formulated strength factor provides a route for more reliable hardening predictions and can be easily incorporated into component simulations and design.

  3. Stage IV work-hardening related to disorientations in dislocation structures

    DEFF Research Database (Denmark)

    Pantleon, W.

    2004-01-01

    The effect of deformation-induced disorientations on the work-hardening of metals is modelled based on dislocation dynamics. Essentially, Kocks’ dislocation model describing stage III hardening is extended to stage IV by incorporation of excess dislocations related to the disorientations....... Disorientations evolving from purely statistical reasons — leading to a square root dependence of the average disorientation angle on strain — affect the initial work-hardening rate (and the saturation stress) of stage III only slightly. On the other hand, deterministic contributions to the development...... of disorientations, as differences in the activated slip systems across boundaries, cause a linear increase of the flow stress at large strains. Such a constant work-hardening rate is characteristic for stage IV....

  4. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  5. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  6. Development of Bake Hardening Effect by Plastic Deformation and Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kvačkaj, T.

    2006-01-01

    Full Text Available The paper deals with the classification of steel sheets for automotives industry on the basis of strength and structural characteristics. Experimental works were aimed to obtain the best possible strengthening parameters as well as work hardening and solid solution ferrite hardening, which are the result of thermal activation of interstitial carbon atoms during paint-baking of auto body. Hardening process coming from interstitial atoms is realized as two-step process. The first step is BH (bake hardening effect achieved by interaction of interstitial atoms with dislocations. The Cottrels atmosphere is obtained. The second step of BH effect is to produced the hardening from precipitation of the carbon atoms in e-carbides, or formation of Fe32C4 carbides. WH (work hardening effect is obtained as dislocation hardening from plastic deformations during sheet deep drawing. Experimental works were aimed at as to achieve such plastic material properties after cold rolling, annealing and skin-pass rolling, which would be able to classify the material ZStE220BH into the drawing categories at the level of DQ – DDQ. As resulting from the experimental results, the optimal treatment conditions for the maximal sum (WH+BH = 86 MPa are as follows: total cold rolling deformation ecold = 65 %, annealing temperature Tanneal. = 700 °C.

  7. Application of submerged induction hardening; Ekichu koshuha yakiire no jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nishimori, Y; Nagai, Y; Amii, Y [Mazda Motor Corp., Hiroshima (Japan); Tanaka, Y [Netsuren Co. Ltd., Tokyo (Japan); Mizuma, T [Toyo Advanced Technologies Co. Ltd., Hiroshima (Japan)

    1997-10-01

    As a cost-cutting measure, the linerless diesel engine was adopted by applying submerged induction hardening process which can harden partial inner surface of cylinder block bore. In applying this process, (1) development of induction coil which can form any shape of quenched pattern and (2) the development of machining technology which can hone precisely the distorted bore after quenching, were important. With these improvements, submerged Induction hardening was made practical. 1 ref., 11 figs.

  8. Plastic limit pressure of spherical vessels with combined hardening involving large deformation

    International Nuclear Information System (INIS)

    Leu, S.-Y.; Liao, K.-C.; Lin, Y.-C.

    2014-01-01

    The paper aims to investigate plastic limit pressure of spherical vessels of nonlinear combined isotropic/kinematic hardening materials. The Armstrong-Frederick kinematic hardening model is adopted and the Voce hardening law is incorporated for isotropic hardening behavior. Analytically, we extend sequential limit analysis to deal with combined isotropic/kinematic hardening materials. Further, exact solutions of plastic limit pressure were developed analytically by conducting both static and kinematic limit analysis. The onset of instability was also derived and solved iteratively by Newton's method. Numerically, elastic–plastic analysis is also performed by the commercial finite-element code ABAQUS incorporated with the user subroutine UMAT implemented with user materials of combined hardening. Finally, the problem formulation and the solution derivations presented here are validated by a very good agreement between the numerical results of exact solutions and the results of elastic–plastic finite-element analysis by ABAQUS. -- Highlights: • Sequential limit analysis is extended to consider combined hardening. • Exact solutions of plastic limit pressure are developed. • The onset of instability of a spherical vessel is derived and solved numerically

  9. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  10. High frequency plant regeneration from leaf explants derived callus of evening primrose (oenothera biennis)

    International Nuclear Information System (INIS)

    Ghauri, E.G.; Shafi, N.; Ghani, S.; Fatima, A.

    2008-01-01

    The seeds of Evening primrose were aseptically grown and leaf explants were used for establishment of callus culture. The Excellent growth in callus biomass was achieved on MS medium supplemented with 2, 4, -D and TDZ. For optimal growth of bud and shoot regeneration, fortification of IAA along with TDZ, or BAP was found to be essential. Rooting (70%) could be inducted on hormone free MS-medium. This percentage improved to 98 when NAA was added to the medium. The plantlets thus obtained were transferred to the field successfully after passing through the process of hardening. (author)

  11. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    International Nuclear Information System (INIS)

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.; Oliveira, M. C.; Menezes, L. F.

    2007-01-01

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior

  12. Lace plant ethylene receptors, AmERS1a and AmERS1c, regulate ethylene-induced programmed cell death during leaf morphogenesis.

    Science.gov (United States)

    Rantong, Gaolathe; Evans, Rodger; Gunawardena, Arunika H L A N

    2015-10-01

    The lace plant, Aponogeton madagascariensis, is an aquatic monocot that forms perforations in its leaves as part of normal leaf development. Perforation formation occurs through developmentally regulated programmed cell death (PCD). The molecular basis of PCD regulation in the lace plant is unknown, however ethylene has been shown to play a significant role. In this study, we examined the role of ethylene receptors during perforation formation. We isolated three lace plant ethylene receptors AmERS1a, AmERS1b and AmERS1c. Using quantitative PCR, we examined their transcript levels at seven stages of leaf development. Through laser-capture microscopy, transcript levels were also determined in cells undergoing PCD and cells not undergoing PCD (NPCD cells). AmERS1a transcript levels were significantly lower in window stage leaves (in which perforation formation and PCD are occurring) as compared to all other leaf developmental stages. AmERS1a and AmERS1c (the most abundant among the three receptors) had the highest transcript levels in mature stage leaves, where PCD is not occurring. Their transcript levels decreased significantly during senescence-associated PCD. AmERS1c had significantly higher transcript levels in NPCD compared to PCD cells. Despite being significantly low in window stage leaves, AmERS1a transcripts were not differentially expressed between PCD and NPCD cells. The results suggested that ethylene receptors negatively regulate ethylene-controlled PCD in the lace plant. A combination of ethylene and receptor levels determines cell fate during perforation formation and leaf senescence. A new model for ethylene emission and receptor expression during lace plant perforation formation and senescence is proposed.

  13. Computer modelling of age hardening for cast aluminium alloys

    International Nuclear Information System (INIS)

    Wu, Linda; Ferguson, W George

    2009-01-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  14. A project of X-ray hardening correction in large ICT

    International Nuclear Information System (INIS)

    Fang Min; Liu Yinong; Ni Jianping

    2005-01-01

    This paper presents a means of polychromatic X-ray beam hardening correction using a standard function to transform the polychromatic projection to monochromatic projection in large Industrial Computed Tomography (ICT). Some parameters were defined to verify the validity of hardening correction in large ICT and optimized. Simulated experiments were used to prove that without prior knowledge of the composition of the scanned object, the correction method using monochromatic reconstruction arithmetic could remove beam hardening artifact greatly. (authors)

  15. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  16. Influence of Hardening Model on Weld Residual Stress Distribution

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2009-06-01

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  17. Concrete, hardened: Self desiccation

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Persson, Bertil

    1999-01-01

    The test method covers the determination of internal relative humidity (RH) in hardened concrete and cement mortar using RH instruments. The determination of RH is done on crushed samples of concrete or cement motar. This test method is only for measuring equipment which gives off or takes up...

  18. Radiation-hardened CMOS/SOS LSI circuits

    International Nuclear Information System (INIS)

    Aubuchon, K.G.; Peterson, H.T.; Shumake, D.P.

    1976-01-01

    The recently developed technology for building radiation-hardened CMOS/SOS devices has now been applied to the fabrication of LSI circuits. This paper describes and presents results on three different circuits: an 8-bit adder/subtractor (Al gate), a 256-bit shift register (Si gate), and a polycode generator (Al gate). The 256-bit shift register shows very little degradation after 1 x 10 6 rads (Si), with an increase from 1.9V to 2.9V in minimum operating voltage, a decrease of about 20% in maximum frequency, and little or no change in quiescent current. The p-channel thresholds increase from -0.9V to -1.3V, while the n-channel thresholds decrease from 1.05 to 0.23V, and the n-channel leakage remains below 1nA/mil. Excellent hardening results were also obtained on the polycode generator circuit. Ten circuits were irradiated to 1 x 10 6 rads (Si), and all continued to function well, with an increase in minimum power supply voltage from 2.85V to 5.85V and an increase in quiescent current by a factor of about 2. Similar hardening results were obtained on the 8-bit adder, with the minimum power supply voltage increasing from 2.2V to 4.6V and the add time increasing from 270 to 350 nsec after 1 x 10 6 rads (Si). These results show that large CMOS/SOS circuits can be hardened to above 1 x 10 6 rads (Si) with either the Si gate or Al gate technology. The paper also discusses the relative advantages of the Si gate versus the Al gate technology

  19. Beam hardening correction algorithm in microtomography images

    International Nuclear Information System (INIS)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T.; Assis, Joaquim T. de

    2009-01-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  20. Beam hardening correction algorithm in microtomography images

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T., E-mail: esales@con.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Assis, Joaquim T. de, E-mail: joaquim@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Engenharia Mecanica

    2009-07-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  1. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    Science.gov (United States)

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of hardening by ion irradiation in molybdenum using nanoindentation techniques

    International Nuclear Information System (INIS)

    Iwakiri, Hirotomi; Watanabe, Hideo; Yoshida, Naoaki

    1997-01-01

    As a part of fundamental research on interaction of plasma and wall, some model experiments on loading of particles such as He, H and so forth suffered by plasma facing material were conducted for Mo in high Z material. As an evaluation method for it, nanoindentation technique was proposed. By this method, the hardness evaluation in surface neighboring damage range was conducted. As a result, in the helium irradiated materials, sufficient hardening was observed even at low dpa range impossible to recognize hardening on heavy ion and deuterium irradiated materials, and extreme hardening was established by formation of helium bubble at high dpa region. Furthermore, in the helium irradiated materials, recovery of hardening could not be observed even for annealed materials at 1173 K for 1 hr after irradiation. From such results, hardening promotion work due to helium and extreme thermal stability of the formed defects were elucidated. (B.K.)

  3. Experiment research on grind-hardening of AISI5140 steel based on thermal copensation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiang Ming; Ren, Ying Hui; Zheng, Bo; Zhou, Zhixiong [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan (China); Deng, Zhao Hui [Key Laboratory for High Efficiency and Precision Machining of Difficult-to-Cut Material of Hunan Province, Hunan (China)

    2016-08-15

    The grind-hardening process utilizes the heat generated to induce martensitic phase transformation. However, the maximum achievable harden layer depth is limited due to high grinding forces, and the tensile residual stress appears on the ground surface in the grind-hardening process. This paper proposes a new grind-hardening technology using thermal compensation. The workpiece of AISI5140 steel is preheated by electric resistance heating, and ground under the condition of the workpiece temperature 25°C, 120°C, 180°C and 240°C. The grinding force, harden layer depth and surface quality including residual stress on ground surface, surface roughness and micro-hardness are investigated. The experimental results show that a deep harden layer with a fine grain martensite can be obtained with the thermal compensation. The ground workpiece surface produces a certain compressive residual stress, and the residual compressive stress value increases with preheating temperature. As the preheating temperature increases, grinding force slightly decreases, while there is slightly increment of surface roughness. Compared with the conventional grind-hardening process, both the harden layer depth and residual stress distribution are significantly improved.

  4. Critical PO2 of developing Megachile rotundata, the alfalfa leaf-cutting bee

    Science.gov (United States)

    The alfalfa leaf-cutting bee, Megachile rotundata, is a solitary, cavity-nesting bee. Juvenile bees develop inside brood cells constructed out of leaf pieces. During development inside the brood cell, pre-pupae may experience hypoxic conditions from both the cavity nesting behavior and brood cell ...

  5. Grind hardening process

    CERN Document Server

    Salonitis, Konstantinos

    2015-01-01

    This book presents the grind-hardening process and the main studies published since it was introduced in 1990s.  The modelling of the various aspects of the process, such as the process forces, temperature profile developed, hardness profiles, residual stresses etc. are described in detail. The book is of interest to the research community working with mathematical modeling and optimization of manufacturing processes.

  6. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato.

    Science.gov (United States)

    Pulungan, Sri Imriani; Yano, Ryoichi; Okabe, Yoshihiro; Ichino, Takuji; Kojima, Mikiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Ariizumi, Tohru; Ezura, Hiroshi

    2018-06-01

    Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype 'curl' mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato.

  7. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  8. Analysis of the work-hardening process in spheroidized steels

    International Nuclear Information System (INIS)

    Pacheco, J.L.

    1981-07-01

    An elementary model for the work-hardening process in duplex-structures steels (ferrite - spheroidite) is proposed and tested on low, medium and high carbon content, which seems to give good results concerning the influence of the volume fraction and particle size of the second phase on the work-hardening behaviour. (Author) [pt

  9. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Science.gov (United States)

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  10. Physical and Thermodynamical Properties of Water Phases in Hardening Portland Cement Systems

    DEFF Research Database (Denmark)

    Hansen, T. Bæk

    The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process.......The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process....

  11. Radiation hardening revisited: Role of intracascade clustering

    DEFF Research Database (Denmark)

    Singh, B.N.; Foreman, A.J.E.; Trinkaus, H.

    1997-01-01

    be explained in terms of conventional dispersed-barrier hardening because (a) the grown-in dislocations are not free, and (b) irradiation-induced defect clusters are not rigid indestructible Orowan obstacles. A new model called 'cascade-induced source hardening' is presented where glissile loops produced...... directly in cascades are envisaged to decorate the grown-in dislocations so that they cannot act as dislocation sources. The upper yield stress is related to the breakaway stress which is necessary to pull the dislocation away from the clusters/loops decorating it. The magnitude of the breakaway stress has...

  12. MOULDING MIXTURES HARDENING PROCESS BASED ON LIGNIN-BASE SULPHONATE BINDER

    Directory of Open Access Journals (Sweden)

    V. N. Ektova

    2004-01-01

    Full Text Available Hardening of agglutinant sands on lignosulphonate binding agent is the result of two processes: oxidation-reduction in the system lignosulphonate acids — persulfuric natrium in the early stages of hardening and hydration of cement in the latter stages.

  13. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    Science.gov (United States)

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Radiation-hardened optoelectronic components: detectors

    International Nuclear Information System (INIS)

    Wiczer, J.J.

    1986-01-01

    In this talk, we will survey recent research in the area of radiation hardened optical detectors. We have studied conventional silicon photodiode structures, special radiation hardened silicon photodiodes, and special double heterojunction AlGaAs/GaAs photodiodes in neutron, gamma, pulsed x-ray and charged particle environments. We will present results of our work and summarize other research in this area. Our studies have shown that detectors can be made to function acceptably after exposures to neutron fluences of 10 15 n/cm 2 , total dose gamma exposures of 10 8 rad (Si), and flash x-ray environments of 10 8 rad/sec (Si). We will describe detector structures that can operate through these conditions, pre-rad and post-rad operational characteristics, and experimental conditions that produced these results. 23 refs., 10 figs., 1 tab

  15. Radiation hardening of metals irradiated by heavy ions

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Skuratov, V.A.; Mikhajlova, N.Yu.; Regel', V.R.

    1988-01-01

    The damage dose dependence in the 10 -4 -10 -2 dpa region of radiation hardening of Al, V, Ni, Cu irradiated by xenon ions with 124 MeV energy is investigated using the microhardness technique and transmission electron microscope. It is shown that the pure metals radiation hardening is stimulated for defects clusters with the typical size less than 5 nm, as in the case of neutron and the light charge ion irradiation

  16. Nuclear effects hardened shelters

    International Nuclear Information System (INIS)

    Lindke, P.

    1990-01-01

    This paper reports on the Houston Fearless 76 Government Projects Group that has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8 foot by 8 foot x 22 foot nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Compartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters

  17. Ferroelectric memories: A possible answer to the hardened nonvolatile question

    International Nuclear Information System (INIS)

    Messenger, G.C.; Coppage, F.N.

    1988-01-01

    Ferroelectric memory cells have been fabricated using a process compatible with semiconductor VLSI (Very Large-Scale Integration) manufacturing techniques which are basically nonvolatile and radiation hard. The memory can be made NDRO (Nondestructive Readout) for strategic systems using several techniques; the most practical is probably a rapid read/restore in combination with EDAC software. This memory can replace plated wire and will have substantial advantages in cost, weight, size, power and speed. It provides a practical cost-competitive solution to the need for nonvolatile RAM in all hardened tactical, avionic, and space systems

  18. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells.

    Science.gov (United States)

    Jo, Jeong-Rang; Park, Ju Sung; Park, Yu-Kyoung; Chae, Young Zoo; Lee, Gyu-Hee; Park, Gy-Young; Jang, Byeong-Churl

    2012-04-01

    The leaf of Pinus (P.) densiflora, a pine tree widely distributed in Asian countries, has been used as a traditional medicine. In the present study, we investigated the anticancer activity of essential oil, extracted by steam distillation, from the leaf of P. densiflora in YD-8 human oral squamous cell carcinoma (OSCC) cells. Treatment of YD-8 cells with P. densiflora leaf essential oil (PLEO) at 60 µg/ml for 8 h strongly inhibited proliferation and survival and induced apoptosis. Notably, treatment with PLEO led to generation of ROS, activation of caspase-9, PARP cleavage, down-regulation of Bcl-2, and phosphorylation of ERK-1/2 and JNK-1/2 in YD-8 cells. Treatment with PLEO, however, did not affect the expression of Bax, XIAP and GRP78. Importantly, pharmaco-logical inhibition studies demonstrated that treatment with vitamin E (an anti-oxidant) or z-VAD-fmk (a pan-caspase inhibitor), but not with PD98059 (an ERK-1/2 inhibitor) or SP600125 (a JNK-1/2 inhibitor), strongly suppressed PLEO-induced apoptosis in YD-8 cells and reduction of their survival. Vitamin E treatment further blocked activation of caspase-9 and Bcl-2 down-regulation induced by PLEO. Thus, these results demonstrate firstly that PLEO has anti-proliferative, anti-survival and pro-apoptotic effects on YD-8 cells and the effects are largely due to the ROS-dependent activation of caspases.

  19. Increase of resistance to cracking on stress relieving of hardened steel

    International Nuclear Information System (INIS)

    Velichko, V.V.; Zabil'skij, V.V.; Mikheev, G.M.

    1995-01-01

    Regularities of increase of resistance to cracking during stress relieving of hardened low-alloyed steels were studied, using complex of methods. Effect of carbon, stress concentrator radius, duration and temperature of stress relieving was studies in particular. Results of investigating kinetics of change of physicomechanical properties, hydrogen desorption from hardened specimens showed, that increase of resistance to cracking was caused by desorption from grain boundaries of diffusion-mobile hydrogen, formed during hardening. 18 refs., 8 figs

  20. Some aspects of plasticity in hardened face-centred cubic metals

    International Nuclear Information System (INIS)

    Jackson, P.J.; Nathanson, P.D.K.

    1978-01-01

    The plasticity of crystals of f.c.c. metals hardened by solute atoms, neutron irradiation, quenching and by dislocation distributions not characteristic of the active mode of testing is reviewed, with emphasis being placed on the simiularity of slip after various hardening treatments. Normal work hardening is not treated. The reasons for this exclusion are discussed. It is concluded that correlated slip is a normal aspect of deformation, and that diffuse uncorrelated slip occurs only when secondary dislocation multiplication is promoted, e.g. by obstacles introduced by prior slip, or by the presence of hard impenetrable obstacles of another material or phase [af

  1. Work hardening behavior study of structural alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Chu, D.; Morris, J.W. Jr.

    1992-01-01

    Previous investigation on aluminum-lithium alloys have indicated different dependencies of the work hardening behavior on temperature. This variation in temperature dependence is attributed to differences in microstructure rather than composition. An understanding of the microstructural effect on the observed thermal dependency is important as it may allow the tailoring of deformation properties through mechanical processing. Work hardening analyses on other aluminum alloys and a number of structural steels have been performed to better elucidate the role played by microstructure in determining the work hardening behavior. In the paper correlations between the differences in mechanical behavior and the various microstructures observed are presented

  2. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  3. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  4. Skin hardening effect in patients with polymorphic light eruption: comparison of UVB hardening in hospital with a novel home UV-hardening device.

    Science.gov (United States)

    Franken, S M; Genders, R E; de Gruijl, F R; Rustemeyer, T; Pavel, S

    2013-01-01

    An effective prophylactic treatment of patients with polymorphic light eruption (PLE) consists of repeated low, gradually increasing exposures to UVB radiation. This so-called UV(B) hardening induces better tolerance of the skin to sunlight. SunshowerMedical company (Amsterdam) has developed an UV (B) source that can be used during taking shower. The low UV fluence of this apparatus makes it an interesting device for UV hardening. In a group of PLE patients, we compared the effectiveness of the irradiation with SunshowerMedical at home with that of the UVB treatment in the hospital. The PLE patients were randomized for one of the treatments. The hospital treatment consisted of irradiations with broad-band UVB (Waldmann 85/UV21 lamps) twice a week during 6 weeks. The home UV-device was used each day with the maximal irradiation time of 6 min. The outcome assessment was based on the information obtained from patients' dermatological quality of life (DLQI) questionnaires, the ability of both phototherapies to reduce the provocation reaction and from the patients' evaluation of the long-term benefits of their phototherapies. Sixteen patients completed treatment with SunshowerMedical and thirteen completed treatment in hospital. Both types of phototherapy were effective. There was a highly significant improvement in DLQI with either treatment. In most cases, the hardening reduced or even completely suppressed clinical UV provocation of PLE. The patients using SunshowerMedical at home were, however, much more content with the treatment procedure than the patients visiting the dermatological units. Both treatments were equally effective in the induction of skin tolerance to sunlight in PLE patients. However, the home treatment was much better accepted than the treatment in the hospital. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  5. Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko, E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan); Ohkubo, Tadakatsu, E-mail: OHKUBO.Tadakatsu@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Fukuya, Koji, E-mail: fukuya@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan)

    2011-10-01

    The effects of the elements Mn, Ni, Si and Cu on irradiation hardening and microstructural evolution in low alloy steels were investigated in ion irradiation experiments using five kinds of alloys prepared by removing Mn, Ni and Si from, and adding 0.05 wt.%Cu to, the base alloy (Fe-1.5Mn-0.5Ni-0.25Si). The alloy without Mn showed less hardening and the alloys without Ni or Si showed more hardening. The addition of Cu had hardly any influence on hardening. These facts indicated that Mn enhanced hardening and that Ni and Si had some synergetic effects. The formation of solute clusters was not confirmed by atom probe (AP) analysis, whereas small dislocation loops were identified by TEM observation. The difference in hardening between the alloys with and without Mn was qualitatively consistent with loop formation. However, microstructural components that were not detected by the AP and TEM were assumed to explain the hardening level quantitatively.

  6. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  7. OCCUPATIONAL ASTHMA CAUSED BY A HARDENER CONTAINING AN ALIPHATIC AND A CYCLOALIPHATIC DIAMINE

    NARCIS (Netherlands)

    ALEVA, RM; AALBERS, R; KOETER, GH; DEMONCHY, JGR

    An otherwise healthy 44-yr-old man experienced a serious attack of bronchial obstruction after working with resins and hardeners, releasing fumes of a mixture of an aliphatic and a cycloaliphatic diamine hardener. Eight hours after deliberate challenge with the hardener a large increase of airway

  8. Technology of hardening fills for mined spaces

    International Nuclear Information System (INIS)

    Simek, P.; Holas, M.; Chyla, A.; Pech, P.

    1985-01-01

    The technology is described of hardening fills for mined spaces of uranium deposits in North Bohemian chalk. A special equipment was developed for the controlled preparation of a hardening mixture. The composition of the fill is determined by the strength of the filled rock, expecially by the standard strength, i.e., the minimal strength of the filling under uniaxial pressure. The said parameter determines the consumption of binding materials and thereby the total costs of the filling. A description is presented of the filling technology, including rabbit tube transport of the mixture and quality control. (Pu)

  9. Effect of hardening methods of moulding sands with water glass on structure of bonding bridges

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2010-07-01

    Full Text Available Research on influence of hardening methods on structure of bonding bridges in moulding sands with sodium water glass is presented.Moulding sands with addition of 2.5 % of binder with molar module 2.0 were hardened with CO2 and dried in traditional way or hardenedwith microwaves. It was proved that the hardening method affects structure of bonding bridges, correlating with properties of the hardened moulding sands. It was found that strength of the moulding sands hardened with microwaves for 4 min is very close to that measured after traditional drying at 110 °C for 120 min. So, application of microwave hardening ensures significant shortening of the process time to the value comparable with CO2 hardening but guaranteeing over 10-fold increase of mechanical properties. Analysis of SEM images of hardened moulding sands permitted explaining differences in quality parameters of moulding sands by connecting them with structure of the created bonding bridges.

  10. Generation Mechanism of Work Hardened Surface Layer in Metal Cutting

    Science.gov (United States)

    Hikiji, Rikio; Kondo, Eiji; Kawagoishi, Norio; Arai, Minoru

    Finish machining used to be carried out in grinding, but it is being replaced by cutting with very small undeformed chip thickness. In ultra precision process, the effects of the cutting conditions and the complicated factors on the machined surface integrity are the serious problems. In this research, work hardened surface layer was dealt with as an evaluation of the machined surface integrity and the effect of the mechanical factors on work hardening was investigated experimentally in orthogonal cutting. As a result, it was found that work hardened surface layer was affected not only by the shear angle varied under the cutting conditions and the thrust force of cutting resistance, but also by the thrust force acting point, the coefficient of the thrust force and the compressive stress equivalent to the bulk hardness. Furthermore, these mechanical factors acting on the depth of the work hardened surface layer were investigated with the calculation model.

  11. The Use of Fuzzy Systems for Forecasting the Hardenability of Steel

    Directory of Open Access Journals (Sweden)

    Sitek W.

    2016-06-01

    Full Text Available The goal of the research carried out was to develop the fuzzy systems, allowing the determination of the Jominy hardenability curve based on the chemical composition of structural steels for quenching and tempering. Fuzzy system was created to calculate hardness of the steel, based on the alloying elements concentrations, and to forecast the hardenability curves. This was done based on information from the PN-EN 10083-3: 2008. Examples of hardenability curves calculated for exemplar steels were presented. Results of the research confirmed that fuzzy systems are a useful tool in evaluation the effect of alloying elements on the properties of materials compared to conventional methods. It has been demonstrated the practical usefulness of the developed models which allows forecasting the steels’ Jominy hardenability curve.

  12. Unit rupture work as a criterion for quantitative estimation of hardenability in steel

    International Nuclear Information System (INIS)

    Kramarov, M.A.; Orlov, E.D.; Rybakov, A.B.

    1980-01-01

    Shown is possible utilization of high sensitivity of resistance to fracture of structural steel to the hardenability degree in the course of hardening to find the quantitative estimation of the latter one. Proposed is a criterion kappa, the ratio of the unit rupture work in the case of incomplete hardenability (asub(Tsub(ih))) under investigation, and the analoguc value obtained in the case of complete hardenability Asub(Tsub(Ch)) at the testing temperature corresponding to the critical temperature Tsub(100(M). Confirmed is high criterion sensitivity of the hardened steel structure on the basis of experimental investigation of the 40Kh, 38KhNM and 38KhNMFA steels after isothermal hold-up at different temperatures, corresponding to production of various products of austenite decomposition

  13. Determination of the strain hardening rate of metals and alloys by X ray diffraction

    International Nuclear Information System (INIS)

    Cadalbert, Robert

    1977-01-01

    This report for engineering graduation is based on the study of X ray diffraction line profile which varies with the plastic strain rate of the metal. After some generalities of strain hardening (consequence of a plastic deformation on the structure of a polycrystalline metal, means to study a strain hardened structure, use of X ray diffraction to analyse the strain hardened crystalline structure), the author reports the strain hardening rate measurement by using X ray diffraction. Several aspects are addressed: principles, experimental technique, apparatus, automation and programming of the measurement cycle, method sensitivity and precision. In the next part, the author reports applications: measurement of the strain hardening rate in different materials (tubes with hexagonal profile, cylindrical tubes in austenitic steel), and study of the evolution of strain hardening with temperature [fr

  14. Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation.

    Science.gov (United States)

    Lim, Sanghyun; Chisholm, Kenneth; Coffin, Robert H; Peters, Rick D; Al-Mughrabi, Khalil I; Wang-Pruski, Gefu; Pinto, Devanand M

    2012-04-06

    Foliar diseases, such as late blight, result in serious threats to potato production. As such, potato leaf tissue becomes an important substrate to study biological processes, such as plant defense responses to infection. Nonetheless, the potato leaf proteome remains poorly characterized. Here, we report protein profiling of potato leaf tissues using a modified differential centrifugation approach to separate the leaf tissues into cell wall and cytoplasmic fractions. This method helps to increase the number of identified proteins, including targeted putative cell wall proteins. The method allowed for the identification of 1484 nonredundant potato leaf proteins, of which 364 and 447 were reproducibly identified proteins in the cell wall and cytoplasmic fractions, respectively. Reproducibly identified proteins corresponded to over 70% of proteins identified in each replicate. A diverse range of proteins was identified based on their theoretical pI values, molecular masses, functional classification, and biological processes. Such a protein extraction method is effective for the establishment of a highly qualified proteome profile.

  15. DMILL circuits. The hardened electronics decuples its performances

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Thanks to the DMILL (mixed logic-linear hardening) technology under development at the CEA, MHS, a French company specialized in the fabrication of integrated circuits now produces hardened electronic circuits ten times more resistant to radiations than its competitors. Outside the initial market (several thousands of circuits for the LHC particle accelerator of Geneva), a broad choice of applications is opened to this technology: national defense, space, civil nuclear and medical engineering, and high temperature applications. Short paper. (J.S.)

  16. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  17. Segmentation-free empirical beam hardening correction for CT.

    Science.gov (United States)

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-01

    The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the proposed

  18. Anomalous precipitation hardening in Al-(1 wt%)Cu thin films

    NARCIS (Netherlands)

    Bergers, L. J. C.; De Hosson, J. Th. M.; Geers, M. G. D.; Hoefnagels, J. P. M.

    2018-01-01

    This paper concentrates on the precipitation hardening of Al-(1 wt%)Cu thin films. It is shown that in contrast to bulk, the well-known approach of precipitation hardening in confined systems like thin layers and thin films does not operate in the conventional way. This work analyses and discusses

  19. Rapid cold hardening: a gut feeling.

    Science.gov (United States)

    Worland, M R; Convey, P; Luke ov , A

    2000-01-01

    This study examined the rate of cold hardening of a field population of Antarctic springtails and the effect of eating food with particular levels of ice nucleating activity on the animal's whole body freezing point. The SCPs of samples of c. 20, freshly collected, Cryptopygus antarcticus were measured hourly over a 32 hour collection period using differential scanning calorimetry and related to habitat temperature. The mean SCP of the springtails increased from -24 to -10 degree C during which time the habitat temperature warmed slowly from -2.5 to +2.5 degree C. In laboratory experiments, previously starved, cold tolerant springtails were fed on selected species of algae with measured SCP's but there was no clear correlation between the SCP of food and that of the animals after feeding. Microscopic examination of faecal pellets and guts from springtails showed that algal cells were completely destroyed during digestion.

  20. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  1. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  2. Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa)

    Science.gov (United States)

    Gibeaut, David M.; Karuppiah, Nadarajah; Chang, S.-R.; Brock, Thomas G.; Vadlamudi, Babu; Kim, Donghern; Ghosheh, Najati S.; Rayle, David L.; Carpita, Nicholas C.; Kaufman, Peter B.

    1990-01-01

    The graviresponse of the leaf-sheath pulvinus of oat (Avena sativa) involves an asymmetric growth response and asymmetric processes involving degradation of starch and cell wall synthesis. Cellular and biochemical events were studied by investigation of the activities of related enzymes and changes in cell walls and their constituents. It is suggested that an osmotic potential gradient acts as the driving factor for growth, while wall extensibility is a limiting factor in pulvinus growth.

  3. Ion irradiation-induced swelling and hardening effect of Hastelloy N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, D.H.; Chen, H.C.; Lei, G.H.; Huang, H.F.; Zhang, W.; Wang, C.B. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Yan, L., E-mail: yanlong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Fu, D.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Tang, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-06-15

    The volumetric swelling and hardening effect of irradiated Hastelloy N alloy were investigated in this paper. 7 MeV and 1 MeV Xe ions irradiations were performed at room temperature (RT) with irradiation dose ranging from 0.5 to 27 dpa. The volumetric swelling increases with increasing irradiation dose, and reaches up to 3.2% at 27 dpa. And the irradiation induced lattice expansion is also observed. The irradiation induced hardening initiates at low ion dose (≤1dpa) then saturates with higher ion dose. The irradiation induced volumetric swelling may be ascribed to excess atomic volume of defects. The irradiation induced hardening may be explained by the pinning effect where the defects can act as obstacles for the free movement of dislocation lines. And the evolution of the defects' size and number density could be responsible for the saturation of hardness. - Highlights: •Irradiation Swelling: The irradiation induced volumetric swelling increases with ion dose. •Irradiation Hardening: The irradiation hardening initiates below 1 dpa, then saturates with higher ion dose (1–10 dpa). •Irradiation Mechanism: The irradiation phenomena are ascribed to the microstructural evolution of the irradiation defects.

  4. Effect of Ethanol Stress on Fermentation Performance of Saccharomyces cerevisiae Cells Immobilized on Nypa fruticans Leaf Sheath Pieces

    Directory of Open Access Journals (Sweden)

    Hoang Phong Nguyen

    2015-01-01

    Full Text Available The yeast cells of Saccharomyces cerevisiae immobilized on Nypa fruticans leaf sheath pieces were tested for ethanol tolerance (0, 23.7, 47.4, 71.0 and 94.7 g/L. Increase in the initial ethanol concentration from 23.7 to 94.7 g/L decreased the average growth rate and concentration of ethanol produced by the immobilized yeast by 5.2 and 4.1 times, respectively. However, in the medium with initial ethanol concentration of 94.7 g/L, the average growth rate, glucose uptake rate and ethanol formation rate of the immobilized yeast were 3.7, 2.5 and 3.5 times, respectively, higher than those of the free yeast. The ethanol stress inhibited ethanol formation by Saccharomyces cerevisiae cells and the yeast responded to the stress by changing the fatty acid composition of cellular membrane. The adsorption of yeast cells on Nypa fruticans leaf sheath pieces of the growth medium increased the saturated fatty acid (C16:0 and C18:0 mass fraction in the cellular membrane and that improved alcoholic fermentation performance of the immobilized yeast.

  5. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  6. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  7. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rojacz, H., E-mail: rojacz@ac2t.at [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria); Mozdzen, G. [Aerospace & Advanced Composites GmbH, Viktor-Kaplan-Straße 2F, 2700 Wiener Neustadt (Austria); Weigel, F.; Varga, M. [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria)

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  8. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    International Nuclear Information System (INIS)

    Rojacz, H.; Mozdzen, G.; Weigel, F.; Varga, M.

    2016-01-01

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  9. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  10. The Nissan LEAF electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2011-07-01

    The need for CO{sub 2} reduction as a countermeasure to global warming, and to move away from our dependence on fossil fuels as a countermeasure to energy security are urgent issues. One of the ultimate goals to achieving these targets is to develop a 'Zero emission car' such as an electric vehicle or a fuel cell vehicle, along with the manufacturing of clean energy. Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. Sales of the Nissan LEAF started in North America, Europe and Japan in 2010, with plans to sell it globally by 2012. In order to achieve an improved driving range, power performance and drivability performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and reducer. Moreover, the Nissan LEAF has the capability of a 3.3kW AC charge and a 50kW DC quick charge. This presentation will introduce the features of the electric powertrain adopted for Nissan LEAF. (orig.)

  11. CASE-HARDENING OF STAINLESS STEEL

    DEFF Research Database (Denmark)

    2004-01-01

    The invention relates to case-hardening of a stainless steel article by means of gas including carbon and/or nitrogen, whereby carbon and/or nitrogen atoms diffuse through the surface into the article. The method includes activating the surface of the article, applying a top layer on the activated...

  12. Role of grain refinement in hardening of structural steels at preliminary thermomechanical treatment

    International Nuclear Information System (INIS)

    Bukhvalov, A.B.; Grigor'eva, E.V.; Davydova, L.S.; Degtyarev, M.V.; Levit, V.I.; Smirnova, N.A.; Smirnov, L.V.

    1981-01-01

    The hardening mechanism during preliminary thermomechanical treatment with deformation by cold rolling or hydroextrusion is studied on structural 37KhN3M1 and 38KhN3MFA steels. Specimens have been tested on static tension, impact strength and fracture toughness. It is shown that hydroextrusion application instead of rolling does not change the hardening effect of preliminary thermomechanical treatment (PTMT). It is established that the increase of preliminary deformation degree and the use of accelerated short term hardening heating provides a bett er grain refinement and the increase of PTMT hardening effect [ru

  13. Environmental hardening of a mobile-manipulator system for nuclear environments

    International Nuclear Information System (INIS)

    Jones, S.L.; Cable, T.; Tulenko, J.S.; Toshkov, S.; Sias, F.R. Jr.

    1993-01-01

    This research report discusses the radiation hardening of a commercially available mobile robot, the REMOTEC ANDROS. This hardening effort is culminating in the availability of a megarad hardened mobile platform to access areas in nuclear facilities with extremely high levels of radiation (0.1 to 1 Mrad). These radiation levels may be encountered both during routine repair and monitoring activities and accident situations. The project has completed a phase-I U.S. Department of Energy Small Business Innovative Research contract and is now in a phase-II effort with completion scheduled in early 1995. The research involves the evaluation of the material and electrical components of an ANDROS robot to determine the anticipated radiation hardness of the current production version and evaluation of the components that must be replaced or modified to harden the system to higher radiation levels. The work being reported is based on an evaluation of the complete list of all electronic, electrical, and mechanical parts used in the robot and includes initial experimental radiation evaluations performed at the University of Florida

  14. Investigation of magnesium oxychloride cement at the initial hardening stage

    Directory of Open Access Journals (Sweden)

    Averina Galina

    2018-01-01

    Full Text Available The paper investigates the process of variation of magnesium oxychloride cement deformations at the initial hardening stage depending on the activity of magnesium oxide powder which is determined by the parameters of the source material burning. Investigation is focused on magnesium cements obtained from pure magnesium hydroxide. Source materials were burnt at various temperatures with the purpose to obtain magnesium oxide powder with different activity. Regular content of hydrated phases was determined in hardened magnesium cement prepared on the basis of binders with different activity. The study reveals the influence of magnesium oxide powder activity on the process of deformation occurrence in hardened magnesium cement and its tendency to crack formation.

  15. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    Science.gov (United States)

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. © 2015 Institute of Food Technologists®

  16. Aspect-oriented security hardening of UML design models

    CERN Document Server

    Mouheb, Djedjiga; Pourzandi, Makan; Wang, Lingyu; Nouh, Mariam; Ziarati, Raha; Alhadidi, Dima; Talhi, Chamseddine; Lima, Vitor

    2015-01-01

    This book comprehensively presents a novel approach to the systematic security hardening of software design models expressed in the standard UML language. It combines model-driven engineering and the aspect-oriented paradigm to integrate security practices into the early phases of the software development process. To this end, a UML profile has been developed for the specification of security hardening aspects on UML diagrams. In addition, a weaving framework, with the underlying theoretical foundations, has been designed for the systematic injection of security aspects into UML models. The

  17. Structure of hardened alloys of Sr-Rh system

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Taluth, N.I.

    1997-01-01

    Methods of X-ray diffraction analysis, optical metallography, transmission electron microscopy and hardness measurement were applied to study the structure of hardened zirconium-rhodium system alloys with rhodium contents up to 4.5 at.%. It is shown that in hardening alloys with rhodium concentration lower 2.2 at.% the eutectoid decomposition takes place and bainite-like structure is formed. A metastable ω-phase is formed in alloys with rhodium concentration equal to 2.65 at.% and above. The formation of ω-phase suppresses the process of eutectoid decomposition

  18. Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes.

    Science.gov (United States)

    Pereira, Marcio Paulo; Corrêa, Felipe Fogaroli; de Castro, Evaristo Mauro; de Oliveira, Jean Paulo Vitor; Pereira, Fabricio José

    2017-11-01

    Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd 2+ ) contamination. The aim of this study was to evaluate the Cd 2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd 2+ . Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd 2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd 2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd 2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd 2+ -exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd 2+ levels. Furthermore, older leaves showed higher Cd 2+ content when compared to the younger ones, preventing the Cd 2+ toxicity to these leaves. Thus, low Cd 2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.

  19. Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2016-01-01

    Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes, we present a gradient-based structural optimization method for tailoring the hardening...... involving plane frame structures where the hardening/softening behavior is qualitatively and quantitatively tuned by simple changes in the geometry of the structures....

  20. Micromilling of hardened tool steel for mould making applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    geometries as those characterizing injection moulding moulds. The realization of the micromilling process in connection with hardened tool steel as workpiece material is particularly challenging. The low strength of the miniaturized end mills implies reduction and accurate control of the chip load which...... wear. This paper presents the micromilling process applied to the manufacturing of micro injection moulding moulds in hardened tool steel, presenting experimental evidence and possible solutions to the above-mentioned issues....

  1. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Queyreau, Sylvain; Monnet, Ghiath; Devincre, Benoit

    2010-01-01

    Rule of mixtures are an essential feature of the modeling of plastic deformation in complex materials in which more than one strain-hardening mechanism is involved. In this work, use is made of dislocation dynamics simulations to characterize the individual and the superposed contributions of two major mechanisms of crystal plasticity, i.e. Orowan strengthening and forest hardening. Based on a formal description of each hardening mechanism, evidence is presented to show that a quadratic rule of mixtures has the ability to predict quantitatively the flow stress of complex materials such as reactor pressure vessel steel.

  2. Strain hardening of aluminium alloy 3004 in the deep drawing and ironing processes

    International Nuclear Information System (INIS)

    Courbon, J.; Duval, J.L.

    1993-01-01

    The evolution of material hardening resulting from the canmaking operations on aluminium beverage cans has been investigated. Tensile tests in cup walls revealed that deep drawing induced softening in the hoop direction and hardening in the meridian direction. This anisotropy is retained in the ironing operation. Changes in strain path on a heavily cold-rolled material probably cause such a complex behaviour. To determine hardening laws for deep drawing, simple shear tests were thus performed because of the strain path similarity. They allowed to determine hardening laws over larger strains than tension could reach and revealed a saturation of stress. Altogether they proved adapted to the understanding of deep drawing. (orig.)

  3. Survey of the effect of doxorubicin and flavonoid extract of white Morus alba leaf on apoptosis induction in a-172 GBM cell line.

    Science.gov (United States)

    Dabili, Sheyda; Fallah, Soudabeh; Aein, Mojdeh; Vatannejad, Akram; Panahi, Ghodratollah; Fadaei, Reza; Moradi, Nariman; Shojaii, Asie

    2018-02-20

    In this study, the effect of doxorubicin, flavonoid extract of white Morus alba leaf (MFE) and a combination of doxorubicin and flavonoid extract on Bax and Bcl2 levels and caspase 3 activity of cancer A-172 GBM cell line was investigated. Bax/Bcl2 levels of treated A-172 GBM cell line with flavonoid extract of white mulberry leaf were estimated by ELISA methods. Caspase 3 activity of treated A-172 GBM cells was determined by calorimetric assay. The flow cytometry assessment was used to estimate the apoptosis percent of treated A-172 GBM cells. Treatment of A-172 GBM cells with MFE, doxorubicin and a combination of MFE and doxorubicin caused a significant decrease in Bcl2 level and an increase in Bax level. The apoptosis percent of treated cells were also elevated significantly. Present results suggest that concomitant use of herbal medicine and chemotherapy may be an effective alternative method for the treatment of cancers.

  4. Work hardening correlation for monotonic loading based on state variables

    International Nuclear Information System (INIS)

    Huang, F.H.; Li, C.Y.

    1977-01-01

    An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes

  5. Induction hardening of tool steel for heavily loaded aircraft engine components

    Directory of Open Access Journals (Sweden)

    Rokicki P.

    2017-03-01

    Full Text Available Induction hardening is an innovative process allowing modification of the materials surface with more effective, cheaper and more reproducible way to compare with conventional hardening methods used in the aerospace industry. Unfortunately, high requirements and strict regulation concerning this branch of the industry force deep research allowing to obtain results that would be used for numerical modelling of the process. Only by this way one is able to start the industrial application of the process. The main scope of presented paper are results concerning investigation of microstructure evolution of tool steel after single-frequency induction hardening process. The specimens that aim in representing final industrial products (as heavily loaded gears, were heat- -treated with induction method and subjected to metallographic preparation, after which complex microstructure investigation was performed. The results obtained within the research will be a basis for numerical modelling of the process of induction hardening with potential to be introduced for the aviation industrial components.

  6. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    International Nuclear Information System (INIS)

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M.

    2002-01-01

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s

  7. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    Energy Technology Data Exchange (ETDEWEB)

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M

    2002-02-15

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s.

  8. Simulating the influence of scatter and beam hardening in dimensional computed tomography

    Science.gov (United States)

    Lifton, J. J.; Carmignato, S.

    2017-10-01

    Cone-beam x-ray computed tomography (XCT) is a radiographic scanning technique that allows the non-destructive dimensional measurement of an object’s internal and external features. XCT measurements are influenced by a number of different factors that are poorly understood. This work investigates how non-linear x-ray attenuation caused by beam hardening and scatter influences XCT-based dimensional measurements through the use of simulated data. For the measurement task considered, both scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, only beam hardening is found to influence dimensional measurements when evaluated using an advanced surface determination method. Based on the results presented, recommendations on the use of beam hardening and scatter correction for dimensional XCT are given.

  9. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells.

    Science.gov (United States)

    Noolu, Bindu; Ajumeera, Rajanna; Chauhan, Anitha; Nagalla, Balakrishna; Manchala, Raghunath; Ismail, Ayesha

    2013-01-09

    Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau's method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification of active component(s) from the leaf

  10. GRAVITY PIPELINE TRANSPORT FOR HARDENING FILLING MIXTURES

    Directory of Open Access Journals (Sweden)

    Leonid KROUPNIK

    2015-12-01

    Full Text Available In underground mining of solid minerals becoming increasingly common development system with stowing hardening mixtures. In this case the natural ore array after it is replaced by an artificial excavation of solidified filling mixture consisting of binder, aggregates and water. Such a mixture is prepared on the surface on special stowing complexes and transported underground at special stowing pipelines. However, it is transported to the horizons of a few kilometers, which requires a sustainable mode of motion of such a mixture in the pipeline. Hardening stowing mixture changes its rheological characteristics over time, which complicates the calculation of the parameters of pipeline transportation. The article suggests a method of determining the initial parameters of such mixtures: the status coefficient, indicator of transportability, coefficient of hydrodynamic resistance to motion of the mixture. These indicators characterize the mixture in terms of the possibility to transport it through pipes. On the basis of these indicators is proposed methodology for calculating the parameters of pipeline transport hardening filling mixtures in drift mode when traffic on the horizontal part of the mixture under pressure column of the mixture in the vertical part of the backfill of the pipeline. This technique allows stable operation is guaranteed to provide pipeline transportation.

  11. Effect of ethephon on hardening of Pachystroma longifolium seedlings

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    2013-06-01

    Full Text Available Immediately after planting, tree seedlings face adverse environmental and biotic stresses that must be overcome to ensure survival and to yield a desirable growth. Hardening practices in the nursery may help improve seedling stress resistance through reduction of aboveground plant tissues and increased root volume and biomass. We conducted an assay to quantify changes in the morphogenesis following application of ethephon on seedlings of Pachystroma longifolium (Ness I. M. Johnst.during hardening. The results showed no effect of the ethephon treatments on the number of leaves but a reduction of up to 50% in seedling height increment, and an increase in stem diameter increment of up to 44% with the 600 mg L-1 ethephon treatment, which consequently altered seedling Dickson Quality Index. Our results indicate that ethephon may help to promote desired morphological changes that occur during seedling hardening in nurseries.

  12. Designing of the chemical composition of steels basing on the hardenability of constructional steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    2003-01-01

    The paper presents the original method of modelling of the relationships between chemical composition of alloy constructional steel and its hardenability, employing neural networks. Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. (author)

  13. Leaf and inflorescence axis anatomy of Brazilian species of Rapateoideae (Rapateaceae, Poales

    Directory of Open Access Journals (Sweden)

    Ângela L. Daltin

    2015-03-01

    Full Text Available The anatomy of leaves and inflorescence axes of Spathanthus (2 spp., Rapatea (2 spp., Cephalostemon(1 sp., and Duckea(1 sp. (Rapateoideae, Rapateaceae was studied to identify useful characters for taxonomy. The cross-section shape of inflorescence axis differentiates the genera, while the cross-section shape and structure of leaf midrib has a specific value. The following characteristics are exclusive of Spathanthus: silica cells randomly distributed in the leaf epidermis; plicate chlorenchyma in the leaf blade; presence of fiber bundles in the mesophyll and in the inflorescence axis parenchyma. Spathanthus is also distinguished by the number, type and distribution of vascular bundles in the inflorescence axis. The genus Rapatea is characterized by the presence of stomata and silica cells only on the abaxial epidermis of the leaves and chlorenchyma composed of arm cells in the leaf blade. Characteristics with diagnostic value for Cephalostemon riedelianusare: leaf epidermal cells with straight to slightly sinuous walls in frontal view, inflorescence axes presenting a defined cortex, fiber bundles facing the larger vascular bundles and a fistulous pith. The anatomical characteristics of the leaves and inflorescence axes thus proved to be of taxonomic value in generic and specific levels. They are also useful to differentiate Rapateoideae from other subfamilies of Rapateaceae.

  14. Transcriptional analyses of natural leaf senescence in maize.

    Directory of Open Access Journals (Sweden)

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  15. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    Science.gov (United States)

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  16. Update on radiation-hardened microcomputers for robotics and teleoperated systems

    International Nuclear Information System (INIS)

    Sias, F.R. Jr.; Tulenko, J.S.

    1993-01-01

    Since many programs sponsored by the Department of Defense are being canceled, it is important to select carefully radiation-hardened microprocessors for projects that will mature (or will require continued support) several years in the future. At the present time there are seven candidate 32-bit processors that should be considered for long-range planning for high-performance radiation-hardened computer systems. For Department of Energy applications it is also important to consider efforts at standardization that require the use of the VxWorks operating system and hardware based on the VMEbus. Of the seven processors, one has been delivered and is operating and other systems are scheduled to be delivered late in 1993 or early in 1994. At the present time the Honeywell-developed RH32, the Harris RH-3000 and the Harris RHC-3000 are leading contenders for meeting DOE requirements for a radiation-hardened advanced 32-bit microprocessor. These are all either compatible with or are derivatives of the MIPS R3000 Reduced Instruction Set Computer. It is anticipated that as few as two of the seven radiation-hardened processors will be supported by the space program in the long run

  17. The capability of pulsed laser radiation for cutting band saws hardening

    Directory of Open Access Journals (Sweden)

    Marinin Evgeny

    2017-01-01

    Full Text Available The article deals with the possibilities of pulsed laser radiation for hardening the band saws. The regimes of pulsed laser hardening the band saws of 1 mm thick made of tool steel 9CrV are grounded theoretically and experimentally tested. Selected and justified modes of treatment harden in the autohardening mode without additional heat removal. The results of the experimental research of microhardness are presented and formed as a result of processing of the microstructure. Selected modes increase the microhardness of the surface to 8500 MPa and form ultra highly dispersed structure in the surface layer characterized by high resistance to abrasion.

  18. EFFECT OF HARDENER ON MECHANICAL PROPERTIES OF CARBON FIBRE REINFORCED PHENOLIC RESIN COMPOSITES

    Directory of Open Access Journals (Sweden)

    S. SULAIMAN

    2008-04-01

    Full Text Available In this paper the effect of hardener on mechanical properties of carbon reinforced phenolic resin composites is investigated. Carbon fibre is one of the most useful reinforcement materials in composites, its major use being the manufacture of components in the aerospace, automotive, and leisure industries. In this study, carbon fibres are hot pressed with phenolic resin with various percentages of carbon fibre and hardener contents that range from 5-15%. Composites with 15% hardener content show an increase in flexural strength, tensile strength and hardness. The ultimate tensile strength (UTS, flexural strength and hardness for 15% hardener are 411.9 MPa, 51.7 MPa and 85.4 HRR respectively.

  19. Radiation hardening and embrittlement of some refractory metals and alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.; Pokrovskyb

    2007-01-01

    Tungsten is proposed for application in the ITER divertor and limiter as plasma facing material. The tungsten operation temperature in the ITER divertor is relatively high. Hence, the ductile properties of tungsten will be controlled by the low temperature radiation embrittlement. The mechanism of radiation hardening and embrittlement under neutron irradiation at low temperature is well studied for FCC metals, in particular for copper. At the same time, low-temperature radiation hardening of BCC materials, in particular for refractory metals, is less studied. This study presents the results of investigation into radiation hardening and embrittlement of pure metals: W, Mo and Nb, and W-Re and Ta-4W alloys. The materials were in the annealed conditions. The specimens were irradiated in the SM-2 reactor to doses of 10 -4 -10 -1 dpa at 80 C and then tested for tension at 80 C. The study of the stress-strain curves of unirradiated specimens revealed a yield drop for W, Mo, Nb, Ta-4W, W-Re. After the yield drop some metals (Mo,Nb) retain their capability for strain hardening and demonstrate a high elongation (20-50%). Radiation hardening is maximum in Mo (∝400MPa) and minimum in Nb (∝100 MPa). In this case the dependence slope for Nb is similar to that for pure copper irradiated in SM-2 under the same conditions. Ii and Ta-4W have a higher slope. Measurement of electrical resistivity of irradiated specimens showed that for all materials it is increased monotonously with an increase in the irradiation dose. A minimum gain in electrical resistivity with a dose was observed for Nb (∝3% at 0.1 dpa). As for Mo it was essentially higher, i.e. ∝ 30%. The gain was maximum for W-Re alloy. Comparison of radiation hardening dose dependencies obtained in this study with the data for FCC metals (Cu) showed that in spite of the quantitative difference the qualitative behavior of these two classes of metals is similar. (orig.)

  20. Estimation of radiation hardening in ferritic steels using the cluster dynamics models

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun Hyun; Kim, Whung Whoe; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Evolution of microstructure under irradiation brings about the mechanical property changes of materials, of which the major concern is radiation hardening in this work. Radiation hardening is generally expressed in terms of an increase in yield strength as a function of radiation dose and temperature. Cluster dynamics model for radiation hardening has been developed to describe the evolution of point defects clusters (PDCs) and copperrich precipitates (CRPs). While the mathematical models developed by Stoller focus on the evolution of PDCs in ferritic steels under neutron irradiation, we slightly modify the model by including the CRP growth and estimate the magnitude of hardening induced by PDC and CRP. The model is then used to calculate the changes in yield strength of RPV steels. The calculation results are compared to measured yield strength values, obtained from surveillance testing of PWR vessel steels in France.

  1. Effect of bainitic transformation on bake hardening in TRIP assisted steel

    International Nuclear Information System (INIS)

    Das, S.; Timokhina, I.; Singh, S.B.; Pereloma, E.; Mohanty, O.N.

    2012-01-01

    Highlights: ► Bainitic transformation in TRIP-assisted steel can lead to a very good bake hardening response as demonstrated by other researchers also. ► No extra deformation is needed. Dislocations can be generated in situ during the transformation itself. ► Detail characterisation and theoretical treatments showed bainite plates are sufficiently enriched with extra carbon atoms which can migrate and lock the dislocations. - Abstract: Bake hardening is a phenomenon where freshly generated dislocations get pinned down by the migrating carbon atoms under the influence of temperature employed in paint baking shop. Experimentally, a minimal 2% deformation is given to generate such new dislocations. On the other hand, after bainitic transformation, steel contains a large number of dislocations as well as excess carbon atoms in bainite, a combination of which is capable of producing bake hardening effect. In the current analysis, one grade of transformation induced plasticity aided steel was chosen to study the effect of isothermal bainitic transformation on subsequent bake hardening response, without giving any deformation assuming that the previous treatment would have generated sufficient dislocations which could be pinned down by the migrating carbon atoms under the influence of thermal treatment of the bake hardening process. The final microstructure was characterised by many techniques, using Thermo-Calc, optical microscopy, XRD analysis and 3-DAP. A good agreement was observed amongst all the techniques employed.

  2. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    Science.gov (United States)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  3. Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongsheng, E-mail: chen.dongsheng85@gmail.com [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko; Han, Wentuo; Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-10-15

    Highlights: • The role of oxide particles in α/α′ phase decomposition behavior; microstructure of phase decomposition observed by TEM. • The characteristics of ductility loss caused by age-hardening. • Correlation of phase decomposition and age-hardening explained by dispersion strengthened models. • Age-hardening susceptibility of ODS steels and SUS430 steel. - Abstract: The effect of aging on high-Cr ferritic steels was investigated with focusing on the role of oxide particles in α/α′ phase decomposition behavior. 12Cr-oxide dispersion strengthened (ODS) steel, 15Cr-ODS steel and commercial SUS430 steel were isothermally aged at 475 °C for up to 10,000 h. Thermal aging caused a larger hardening in SUS430 than 15Cr-ODS, while 12Cr-ODS showed almost no hardening. A characteristic of the ODS steels is that the hardening was not accompanied by the significant loss of ductility that was observed in SUS430 steel. After aging for 2000 h, SUS430 steel shows a larger ductile–brittle transition temperature (DBTT) shift than 15Cr-ODS steel, which suggests that the age-hardening susceptibility is lower in 15Cr-ODS steel than in conventional SUS430 steel. Thermal aging leaded to a large number of Cr-rich α′ precipitates, which were confirmed by transmission electron microscopy (TEM). Correlation of age-hardening and phase decomposition was interpreted by Orowan type strengthening model. Results indicate that oxide particles cannot only suppress ductility loss, but also may influence α/α′ phase decomposition kinetics.

  4. Branching structure and strain hardening of branched metallocene polyethylenes

    International Nuclear Information System (INIS)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-01-01

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers

  5. Branching structure and strain hardening of branched metallocene polyethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M., E-mail: john.dealy@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C4 (Canada)

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  6. Method for continuous measurement of export from a leaf

    International Nuclear Information System (INIS)

    Geiger, D.R.; Fondy, B.R.

    1979-01-01

    Export of labeled material derived by continuous photosynthesis in 14 CO 2 was monitored with a Geiger-Mueller detector positioned next to an exporting leaf blade. Rate of export of labeled material was calculated from the difference between rates of retention and net photosynthesis of labeled carbon for the observed leaf. Given certain conditions, including nearly constant distribution of labeled material among minor veins and various types of cells, count rate data for the source leaf can be coverted to rate of export of carbon. Changes in counting efficiency resulting from changes in leaf water status can be corrected for with data from a transducer which measures leaf thickness. Export data agreed with data obtained by monitoring the arrival of 14 C in the sink region; isolated leaves gave values near zero for export of labeled carbon from a given leaf on an intact plant. The technique detects changes in export with a resolution of 10 to 20 minutes

  7. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    International Nuclear Information System (INIS)

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-01

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni 3 Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni 3 Al precipitates and ellipsoidal M 23 C 6 carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni 3 Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni 3 Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage

  8. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong-Ho, E-mail: jongho.shin@doosan.com [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Jeong, JaeSuk [Materials and Manufacturing Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Lee, Jong-Wook [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of)

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  9. Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening

    International Nuclear Information System (INIS)

    Miokovic, T.; Schulze, V.; Voehringer, O.; Loehe, D.

    2007-01-01

    In recent years laser surface hardening using pulsed laser sources has become an increasingly established technology in engineering industry and has opened up wider possibilities for the application of selective surface hardening. However, the choice of the process parameters is generally based on experience rather than on their empirical influence on the resulting microstructure, and for hardening processes with cyclic temperature changes, almost no correlations between process parameters and hardening results are known. Therefore, some problems regarding the choice of the process parameters and their influence on the resulting microstructure still remain. In particular, there is a lack of data concerning the effect of cyclic temperature changes on hardening. To facilitate process optimization, this paper deals with a detailed characterization of the microstructures created in quenched and tempered AISI 4140 (German grade 42CrMo4) steel following a temperature-dependent laser surface hardening treatment. The structure properties were obtained from microhardness measurements, scanning electron microscopy investigations and X-ray diffraction analysis of retained austenite

  10. Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening

    Energy Technology Data Exchange (ETDEWEB)

    Miokovic, T. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany); Schulze, V. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany)]. E-mail: volker.schulze@mach.uni-karlsruhe.de; Voehringer, O. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany); Loehe, D. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany)

    2007-01-15

    In recent years laser surface hardening using pulsed laser sources has become an increasingly established technology in engineering industry and has opened up wider possibilities for the application of selective surface hardening. However, the choice of the process parameters is generally based on experience rather than on their empirical influence on the resulting microstructure, and for hardening processes with cyclic temperature changes, almost no correlations between process parameters and hardening results are known. Therefore, some problems regarding the choice of the process parameters and their influence on the resulting microstructure still remain. In particular, there is a lack of data concerning the effect of cyclic temperature changes on hardening. To facilitate process optimization, this paper deals with a detailed characterization of the microstructures created in quenched and tempered AISI 4140 (German grade 42CrMo4) steel following a temperature-dependent laser surface hardening treatment. The structure properties were obtained from microhardness measurements, scanning electron microscopy investigations and X-ray diffraction analysis of retained austenite.

  11. The surface fatigue life of contour induction hardened AISI 1552 gears

    Science.gov (United States)

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-07-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  12. Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel

    Science.gov (United States)

    Saha, Dulal Chandra; Nayak, Sashank S.; Biro, Elliot; Gerlich, Adrian P.; Zhou, Y.

    2014-12-01

    Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 °C), as confirmed by plotting the tempered hardness against the Holloman-Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.

  13. The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas.

    Science.gov (United States)

    Huang, Xiaohui; Liu, Yun; Li, Jiaxing; Xiong, Xingzheng; Chen, Yang; Yin, Xiaohua; Feng, Dalan

    2013-10-01

    Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70-80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40-50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root

  14. Radiation hardening coating material

    International Nuclear Information System (INIS)

    McDonald, W.H.; Prucnal, P.J.; DeMajistre, Robert.

    1977-01-01

    This invention concerns a radiation hardening coating material. First a resin is prepared by reaction of bisphenol diglycidylic ether with acrylic or methacrylic acids. Then the reactive solvent is prepared by reaction of acrylic or methacrylic acids with epichlorhydrine or epibromhydrine. Then a solution consisting of the resin dissolved in the reactive solvent is prepared. A substrate (wood, paper, polyesters, polyamines etc.) is coated with this composition and exposed to ionizing radiations (electron beams) or ultraviolet radiations [fr

  15. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  16. Effect of ferrite-martensite interface morphology on bake hardening response of DP590 steel

    International Nuclear Information System (INIS)

    Chakraborty, Arnab; Adhikary, Manashi; Venugopalan, T.; Singh, Virender; Nanda, Tarun; Kumar, B. Ravi

    2016-01-01

    The effect of martensite spatial distribution and its interface morphology on the bake hardening characteristics of a dual phase steel was investigated. In one case, typical industrial continuous annealing line parameters were employed to anneal a 67% cold rolled steel to obtain a dual phase microstructure. In the other case, a modified annealing process with changed initial heating rates and peak annealing temperature was employed. The processed specimens were further tensile pre-strained within 1–5% strain range followed by a bake hardening treatment at 170 °C for 20 min. It was observed that industrial continuous annealing line processed specimen showed a peak of about 70 MPa in bake-hardening index at 2% pre-strain level. At higher pre-strain values a gradual drop in bake-hardening index was observed. On the contrary, modified annealing process showed near uniform bake-hardening response at all pre-strain levels and a decrease could be noted only above 4% pre-strain. The evolving microstructure at each stage of annealing process and after bake-hardening treatment was studied using field emission scanning electron microscope. The microstructure analysis distinctly revealed differences in martensite spatial distribution and interface morphologies between each annealing processes employed. The modified process showed predominant formation of martensite within the ferrite grains with serrated lath martensite interfaces. This nature of the martensite was considered responsible for the observed improvement in the bake-hardening response. Furthermore, along with improved bake-hardening response negligible loss in tensile ductility was also noted. This behaviour was correlated with delayed micro-crack initiation at martensite interface due to serrated nature.

  17. Design Features of Hardening Turners with Outstripping Plastic Deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available An efficiency of the cutting method with outstripping plastic deformation (OPD in lathe works is defined in many respects by design features of the add-on devices for mechanical hardening of a cut-off layer material in the course of cutting. Applied on lathes, deforming OPD devices can have differing dimensions, placement on the lathe, drive type (manual, electric, hydraulic, pneumatic, pneumohydraulic, electromagnetic, and autonomy degree towards the metalcutting equipment and industrial equipment.At the same time there are a number of inherent design features of work-hardening devices the modernized lathes with OPD use for machining. Now the OPD standard devices implement two principle construction options: loading device is placed on the machine or on the OPD slide support separate of the tool, or it is structurally aligned with the cutting tool. In the latter case the OPD device for turning is called a tool mandrel, which is mounted in a tool post of the machine or, at large dimensions, such a mandrel is mounted on the machine instead of the tool mandrel.When designing the OPD devices, is important to take into consideration production requirements and recommendations for the technological equipment, developed in the course of creation, working off and introduction of such installations for mechanical hardening of material. In compliance with it, OPD devices, their placement on the machine, and working displacements shouldn't limit technological capabilities of the applied metal-cutting equipment. OPD stresses have to be smoothly regulated, with maximum loads being limited to admissible values for the machine model to be modernized. It is necessary to ensure synchronized longitudinal and cross displacements of the cutting tool and OPD hardener with respect to the axis of billet rotation to enable regulation and readjustment of the hardener and tool placement. It ought to foresee the increased mobile components rigidity and manufacturing

  18. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions.

    Science.gov (United States)

    Zhang, Chunhua; Mallery, Eileen L; Szymanski, Daniel B

    2013-01-01

    In plant cells the actin cytoskeleton adopts many configurations, but is best understood as an unstable, interconnected track that rearranges to define the patterns of long distance transport of organelles during growth. Actin filaments do not form spontaneously; instead filament nucleators, such as the evolutionarily conserved actin-related protein (ARP) 2/3 complex, can efficiently generate new actin filament networks when in a fully activated state. A growing number of genetic experiments have shown that ARP2/3 is necessary for morphogenesis in processes that range from tip growth during root nodule formation to the diffuse polarized growth of leaf trichomes and pavement cells. Although progress has been rapid in the identification of proteins that function in series to positively regulate ARP2/3, less has been learned about the actual function of ARP2/3 in cells. In this paper, we analyze the localization of ARP2/3 in Arabidopsis leaf pavement cells. We detect a pool of ARP2/3 in the nucleus, and also find that ARP2/3 is efficiently and specifically clustered on multiple organelle surfaces and associates with both the actin filament and microtubule cytoskeletons. Our mutant analyses and ARP2/3 and actin double labeling experiments indicate that the clustering of ARP2/3 on organelle surfaces and an association with actin bundles does not necessarily reflect an active pool of ARP2/3, and instead most of the complex appears to exist as a latent organelle-associated pool.

  19. THE MECHANISM OF HARDENING OF ALLOYED STEELS IN IMPULSE MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2012-01-01

    Full Text Available In this paper, a model describing the mechanism of hardening steels in a pulsed magnetic field is provided. The model is based on the consideration of induction currents in the grain bulk ferrite, on the surface of the workpiece near the inductor. The influence of doping efficiency of the process of hardening is established.

  20. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  1. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  2. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    OpenAIRE

    Marian Saniewski; Ewa Gajewska; Henryk Urbanek

    2013-01-01

    It was found previously that methyl jasmonate (JA-Me) induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in thi...

  3. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  4. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    Science.gov (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. On the Spectral Hardening at gsim300 keV in Solar Flares

    Science.gov (United States)

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-01

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies gsim300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range ~k -2.7. A ~k -2.7 dissipation range spectrum is consistent with recent solar wind observations.

  6. Effects of solute elements on hardening of thermally-aged RPV model alloys

    International Nuclear Information System (INIS)

    Dohi, Kenji; Nishida, Kenji; Nomoto, Akiyoshi; Soneda, Naoki; Liu, Li; Sekimura, Naoto; Li Zhengcao

    2012-01-01

    The investigation of effects of solute elements on the copper-enriched cluster, which is a cause of radiation embrittlement of reactor pressure vessel steels, is needed in order to understand the mechanism of the hardening and the cluster formation. The dependence of the hardness change and the formation of thermally-aged Fe-Cu model alloys doped Ni, Si and Mn on aging time are investigated using Vickers harness tester and three dimensional atom probe. Ni addition suppresses hardening, and Si addition accelerates hardening slightly at the initial stage of the aging. Mn addition accelerates hardening much more but does not almost affect the peak hardness. Ni and Si addition increase the number density and the size of the cluster, while Mn addition remarkably increases the number density and the size of the cluster at the initial stage of the aging. In addition, there is no clear correlation between the square root of the volume fraction of the clusters and the hardness change for all of the alloys. The reasons are considered to be the decrease in the solute hardening caused by the cluster formation and the difference in the shear modulus of the cluster due to the difference in the chemical composition of the cluster. (author)

  7. Effect of bainitic transformation on bake hardening in TRIP assisted steel

    Energy Technology Data Exchange (ETDEWEB)

    Das, S., E-mail: sourav.das@tatasteel.com [Research and Development, Tata Steel Limited, Jamshedpur (India); Timokhina, I. [Centre for Material and Fibre Innovation/Science and Technology, Deakin University (Australia); Singh, S.B. [Metallurgical and Materials Engineering, IIT Kharagpur (India); Pereloma, E. [BlueScope Steel Metallurgy Centre, University of Wollongong (Australia); Mohanty, O.N. [RSB Metaltech, RSB Group, Jamshedpur (India)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Bainitic transformation in TRIP-assisted steel can lead to a very good bake hardening response as demonstrated by other researchers also. Black-Right-Pointing-Pointer No extra deformation is needed. Dislocations can be generated in situ during the transformation itself. Black-Right-Pointing-Pointer Detail characterisation and theoretical treatments showed bainite plates are sufficiently enriched with extra carbon atoms which can migrate and lock the dislocations. - Abstract: Bake hardening is a phenomenon where freshly generated dislocations get pinned down by the migrating carbon atoms under the influence of temperature employed in paint baking shop. Experimentally, a minimal 2% deformation is given to generate such new dislocations. On the other hand, after bainitic transformation, steel contains a large number of dislocations as well as excess carbon atoms in bainite, a combination of which is capable of producing bake hardening effect. In the current analysis, one grade of transformation induced plasticity aided steel was chosen to study the effect of isothermal bainitic transformation on subsequent bake hardening response, without giving any deformation assuming that the previous treatment would have generated sufficient dislocations which could be pinned down by the migrating carbon atoms under the influence of thermal treatment of the bake hardening process. The final microstructure was characterised by many techniques, using Thermo-Calc, optical microscopy, XRD analysis and 3-DAP. A good agreement was observed amongst all the techniques employed.

  8. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    Science.gov (United States)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  9. Exploration of a radiation hardening stabilized voltage power supply

    International Nuclear Information System (INIS)

    Xie Zeyuan; Xu Xianguo

    2014-01-01

    This paper mainly introduces the design method of radiation hardening stabilized voltage power supply that makes use of commercial radiation resistant electronic devices and the test results of radiation performance of the power supply and devices are presented in detail. The experiment results show that the hardened power supply can normally work until 1000 Gy (Si) total dose and 1 × 10 14 n/cm 2 neutron radiation, and it doesn't latchup at about 1 × l0 9 Gy (Si)/s gamma transient dose rate. (authors)

  10. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Noolu Bindu

    2013-01-01

    Full Text Available Abstract Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves, a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death

  11. Hardening and softening analysis of pure titanium based on the dislocation density during torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Han; Li, Fuguo, E-mail: fuguolx@nwpu.edu.cn; Li, Jinghui; Ma, Xinkai; Li, Jiang; Wan, Qiong

    2016-08-01

    The hardening and softening phenomena during torsion deformation are studied based on the Taylor dislocation model for pure titanium. The hardening and softening phenomena are observed through the hardness analysis during micro-indentation test and micro-hardness test. Besides, the variations of indentation size also verify the existence of hardening and softening phenomena during torsion. The variations of geometric necessary dislocations (GNDs) and statistic store dislocations (SSDs) state that the positions of high dislocation density and low dislocation density correspond to the positions of hardening and softening. The results from the microstructure, grain boundaries evolution and twins analysis indicate the twins play an important role in appearance of hardening and softening phenomena. The appearance of hardening and softening phenomena are attributed to the combination of different slip systems and twinning systems combining with the Schmid Factor (SF) analysis and the transmission electron microscope (TEM). The appearance of hardening and softening phenomena can be explained by the Taylor dislocation theory based on TEM analysis. - Highlights: • The phenomena can be characterized by Taylor dislocation model. • The variation of GNDs leads to the phenomena. • The phenomena are proved by micro-hardness, indentation hardness. • The {10-12} twin and {11-24} twin play an important role in the phenomena.

  12. Beam-hardening correction in CT based on basis image and TV model

    International Nuclear Information System (INIS)

    Li Qingliang; Yan Bin; Li Lei; Sun Hongsheng; Zhang Feng

    2012-01-01

    In X-ray computed tomography, the beam hardening leads to artifacts and reduces the image quality. It analyzes how beam hardening influences on original projection. According, it puts forward a kind of new beam-hardening correction method based on the basis images and TV model. Firstly, according to physical characteristics of the beam hardening an preliminary correction model with adjustable parameters is set up. Secondly, using different parameters, original projections are operated by the correction model. Thirdly, the projections are reconstructed to obtain a series of basis images. Finally, the linear combination of basis images is the final reconstruction image. Here, with total variation for the final reconstruction image as the cost function, the linear combination coefficients for the basis images are determined according to iterative method. To verify the effectiveness of the proposed method, the experiments are carried out on real phantom and industrial part. The results show that the algorithm significantly inhibits cup and strip artifacts in CT image. (authors)

  13. Literature survey on phase composition of hardened cement paste containing fly ash

    International Nuclear Information System (INIS)

    Otsuka, Taku; Yamamoto, Takeshi

    2015-01-01

    The purpose of this literature survey is to collect the knowledge on the effect of fly ash in hardened cement paste and the information about evaluation of physicochemical performance based on phase composition of hardened cement paste. The performance of hardened cement paste containing fly ash is affected by the property of fly ash, hydration of cement and pozzolanic reaction of fly ash. Some properties of fly ash such as density and chemical composition are reflected in phase composition, showing the progress of cement hydration and pozzolanic reaction. Therefore clarification of the relationship of phase composition and performance will lead to appropriate evaluation of the property of fly ash. The amount of pore, chemical shrinkage, pore solution, compressive strength, Young modulus and alkali silica reaction have relations to the phase composition of hardened cement paste. It is considered as future subject to clarify the relationship of phase composition and performance for various properties of fly ash. (author)

  14. Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma Cell Line SCC-9 in Vitro.

    Science.gov (United States)

    Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama

    2016-01-01

    Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

  15. Identification among morphologically similar Argyreia (Convolvulaceae) based on leaf anatomy and phenetic analyses.

    Science.gov (United States)

    Traiperm, Paweena; Chow, Janene; Nopun, Possathorn; Staples, G; Swangpol, Sasivimon C

    2017-12-01

    The genus Argyreia Lour. is one of the species-rich Asian genera in the family Convolvulaceae. Several species complexes were recognized in which taxon delimitation was imprecise, especially when examining herbarium materials without fully developed open flowers. The main goal of this study is to investigate and describe leaf anatomy for some morphologically similar Argyreia using epidermal peeling, leaf and petiole transverse sections, and scanning electron microscopy. Phenetic analyses including cluster analysis and principal component analysis were used to investigate the similarity of these morpho-types. Anatomical differences observed between the morpho-types include epidermal cell walls and the trichome types on the leaf epidermis. Additional differences in the leaf and petiole transverse sections include the epidermal cell shape of the adaxial leaf blade, the leaf margins, and the petiole transverse sectional outline. The phenogram from cluster analysis using the UPGMA method represented four groups with an R value of 0.87. Moreover, the important quantitative and qualitative leaf anatomical traits of the four groups were confirmed by the principal component analysis of the first two components. The results from phenetic analyses confirmed the anatomical differentiation between the morpho-types. Leaf anatomical features regarded as particularly informative for morpho-type differentiation can be used to supplement macro morphological identification.

  16. RHOBOT: Radiation hardened robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  17. RHOBOT: Radiation hardened robotics

    International Nuclear Information System (INIS)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program

  18. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.

  19. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  20. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  1. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Ye, Qing; He, Peng-Cheng; Liu, Hui; Li, Rong-Hua; Fu, Pei-Li; Jiang, Guo-Feng; Cao, Kun-Fang

    2018-05-01

    Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.

  2. Radiation hardening of oxygen-doped niobium by 14-MeV neutrons

    International Nuclear Information System (INIS)

    Bradley, E.R.; Jones, R.H.

    1983-09-01

    The flow properties of niobium containing 185 and 480 wt ppM oxygen have been studied following irradiation at 300K with T(d,n) neutrons to fluence levels ranging from 6 x 10 20 to 2 x 10 22 m -2 . Two hardening stages connected by a plateau region were observed in the niobium containing 185 wt ppM oxygen. Increasing the oxygen content by 300 wt ppM oxygen shifted the beginning of the high-fluence hardening stage from 6 x 10 21 to 1 x 10 21 m -2 , thereby eliminating the plateau region. This shift resulted in 1.5 times more hardening in the oxygen-doped niobium irradiated to fluence levels above 5 x 10 21 m -2

  3. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    Energy Technology Data Exchange (ETDEWEB)

    Langelier, B., E-mail: langelb@mcmaster.ca [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Korinek, A. [Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Donnadieu, P. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Esmaeili, S. [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada)

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. It has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.

  4. Characterization of the work hardening structure of austenitic steels by X-ray diffraction. Application to the determination of work hardening gradients and the study of recovery

    International Nuclear Information System (INIS)

    Cadalbert, Robert; Baron, J.L.

    1977-01-01

    A method has been developed to determine quantitatively the work hardening of austenitic steels by measurement of the broadening of X-ray diffraction lines. This simple, rapid, accurate and sensible method enables to determine work hardening variations in the thickness of a material. The complete automation of the measurement cycle using a small computer enables to carry out numerous determinations and to process data with accuracy. The unit developed is well adapted to the testing of metallic materials. It is also possible with this method to study the evolution of work hardening in a metal as a function of heat treatments. For instance, the determination of the recovery curves of the crystal lattice in austenitic steels allows to investigate the influence of additions (Mo, Ti) on the recovery kinetics [fr

  5. DEVELOPMENT AND RESEARCH OF ULTRASONIC OSCILLATORY SYSTEM FOR HARDENING OF SPRING PLATE BILLETS

    Directory of Open Access Journals (Sweden)

    V. A. Tomilo

    2015-01-01

    Full Text Available Various schemes of ultrasonic oscillatory system are developed: with a «force nonsensitive» support, with a «force sensitive» support, with the deforming steel balls in bulk. Results of the ultrasonic treatment showed that hardening of a surface of the samples took place when the vibration amplitude of a radiator exceeds a certain level. The level of hardening increases with increase in amplitude of fluctuations of a radiator. Higher level of hardening is registered when the surface is treated by steel balls.

  6. Temperature dependence of work hardening in sparsely twinning zirconium

    International Nuclear Information System (INIS)

    Singh, Jaiveer; Mahesh, S.; Roy, Shomic; Kumar, Gulshan; Srivastava, D.; Dey, G.K.; Saibaba, N.; Samajdar, I.

    2017-01-01

    Fully recrystallized commercial Zirconium plates were subjected to uniaxial tension. Tests were conducted at different temperatures (123 K - 623 K) and along two plate directions. Both directions were nominally unfavorable for deformation twinning. The effect of the working temperature on crystallographic texture and in-grain misorientation development was insignificant. However, systematic variation in work hardening and in the area fraction and morphology of deformation twins was observed with temperature. At all temperatures, twinning was associated with significant near boundary mesoscopic shear, suggesting a possible linkage with twin nucleation. A binary tree based model of the polycrystal, which explicitly accounts for grain boundary accommodation and implements the phenomenological extended Voce hardening law, was implemented. This model could capture the measured stress-strain response and twin volume fractions accurately. Interestingly, slip and twin system hardness evolution permitted multiplicative decomposition into temperature-dependent, and accumulated strain-dependent parts. Furthermore, under conditions of relatively limited deformation twinning, the work hardening of the slip and twin systems followed two phenomenological laws proposed in the literature for non-twinning single-phase face centered cubic materials.

  7. Residual stress analysis of drive shafts after induction hardening

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Guilherme Vieira Braga; Rocha, Alexandre da Silva; Nunes, Rafael Menezes, E-mail: lemos_gl@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Algre, RS (Brazil); Hirsch, Thomas Karl [Stiftung Institut für Werkstofftechnik (IWT), Bremen (Germany)

    2014-08-15

    Typically, for automotive shafts, shape distortion manifests itself in most cases after the induction hardening by an effect known as bending. The distortion results in a boost of costs, especially due to machining parts in the hardened state to fabricate its final tolerances. In the present study, residual stress measurements were carried out on automotive drive shafts made of DIN 38B3 steel. The samples were selected in consequence of their different distortion properties by an industrial manufacturing line. One tested shaft was straightened, because of the considerable dimensional variation and the other one not. Firstly, the residual stress measurements were carried out by using a portable diffractometer, in order to avoid cutting the shafts and evaluate the original state of the stresses, and afterwards a more detailed analysis was realized by a conventional stationary diffractometer. The obtained results presented an overview of the surface residual stress profiles after induction hardening and displayed the influence of the straightening process on the redistribution of residual stresses. They also indicated that the effects of the straightening in the residual stresses cannot be neglected. (author)

  8. Na+-Dependent High-Affinity Nitrate, Phosphate and Amino Acids Transport in Leaf Cells of the Seagrass Posidonia oceanica (L. Delile

    Directory of Open Access Journals (Sweden)

    Lourdes Rubio

    2018-05-01

    Full Text Available Posidonia oceanica (L. Delile is a seagrass, the only group of vascular plants to colonize the marine environment. Seawater is an extreme yet stable environment characterized by high salinity, alkaline pH and low availability of essential nutrients, such as nitrate and phosphate. Classical depletion experiments, membrane potential and cytosolic sodium measurements were used to characterize the high-affinity NO3−, Pi and amino acids uptake mechanisms in this species. Net uptake rates of both NO3− and Pi were reduced by more than 70% in the absence of Na+. Micromolar concentrations of NO3− depolarized mesophyll leaf cells plasma membrane. Depolarizations showed saturation kinetics (Km = 8.7 ± 1 μM NO3−, which were not observed in the absence of Na+. NO3− induced depolarizations at increasing Na+ also showed saturation kinetics (Km = 7.2 ± 2 mM Na+. Cytosolic Na+ measured in P. oceanica leaf cells (17 ± 2 mM Na+ increased by 0.4 ± 0.2 mM Na+ upon the addition of 100 μM NO3−. Na+-dependence was also observed for high-affinity l-ala and l-cys uptake and high-affinity Pi transport. All together, these results strongly suggest that NO3−, amino acids and Pi uptake in P. oceanica leaf cells are mediated by high-affinity Na+-dependent transport systems. This mechanism seems to be a key step in the process of adaptation of seagrasses to the marine environment.

  9. BUSFET - A Novel Radiation-Hardened SOI Transistor

    International Nuclear Information System (INIS)

    Dodd, P.E.; Draper, B.L.; Schwank, J.R.; Shaneyfelt, M.R.

    1999-01-01

    A partially-depleted SOI transistor structure has been designed that does not require the use of specially-processed hardened buried oxides for total-dose hardness and maintains the intrinsic SEU and dose rate hardness advantages of SOI technology

  10. Hardening in AlN induced by point defects

    International Nuclear Information System (INIS)

    Suematsu, H.; Mitchell, T.E.; Iseki, T.; Yano, T.

    1991-01-01

    Pressureless-sintered AIN was neutron irradiated and the hardness change was examined by Vickers indentation. The hardness was increased by irradiation. When the samples were annealed at high temperature, the hardness gradually decreased. Length was also found to increase and to change in the same way as the hardness. A considerable density of dislocation loops still remained, even after the hardness completely recovered to the value of the unirradiated sample. Thus, it is concluded that the hardening in AIN is caused by isolated point defects and small clusters of point defects, rather than by dislocation loops. Hardness was found to increase in proportion to the length change. If the length change is assumed to be proportional to the point defect density, then the curve could be fitted qualitatively to that predicted by models of solution hardening in metals. Furthermore, the curves for three samples irradiated at different temperatures and fluences are identical. There should be different kinds of defect clusters in samples irradiated at different conditions, e.g., the fraction of single point defects is the highest in the sample irradiated at the lowest temperature. Thus, hardening is insensitive to the kind of defects remaining in the sample and is influenced only by those which contribute to length change

  11. ON THE SPECTRAL HARDENING AT ∼>300 keV IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-01-01

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies ∼>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range ∼k –2.7 . A ∼k –2.7 dissipation range spectrum is consistent with recent solar wind observations.

  12. Work hardening and plastic equation of state of tantalum

    International Nuclear Information System (INIS)

    Gypen, L.A.; Aernoudt, E.; Deruyttere, A.

    1983-01-01

    The influence of cold deformation on the thermal and athermal components of the flow stress of tantalum was investigated. Up to high deformation levels the strain hardening is due only to the development of internal stress fields; the effective stress remains almost constant. The athermal strain hardening of tantalum is parabolic at low deformation levels (epsilon < 0.5) and linear at high deformation levels, as for other bcc metals. Hart's plastic equation of state is shown to be valid for tantalum at room temperature in the whole deformation range investigated (from epsilon = 0.005 to epsilon = 2.8). (author)

  13. Why semiconductors must be hardened when used in space

    International Nuclear Information System (INIS)

    Winokur, P.S.

    2000-01-01

    The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest

  14. Photosynthate partitioning in basal zones of tall fescue leaf blades

    International Nuclear Information System (INIS)

    Allard, G.; Nelson, C.J.

    1991-01-01

    Elongating grass leaves have successive zones of cell division, cell elongation, and cell maturation in the basal portion of the blade and are a strong sink for photosynthate. Our objective was to determine dry matter (DM) deposition and partitioning in basal zones of elongating tall fescue (Festuca arundinacea Schreb.) leaf blades. Vegetative tall fescue plants were grown in continuous light (350 micromoles per square meter per second photosynthetic photon flux density) to obtain a constant spatial distribution of elongation growth with time. Content and net deposition rates of water-soluble carbohydrates (WSC) and DM along elongating leaf blades were determined. These data were compared with accumulation of 14 C in the basal zones following leaf-labeling with 14 CO 2 . Net deposition of DM was highest in the active cell elongation zone, due mainly to deposition of WSC. The maturation zone, just distal to the elongation zone, accounted for 22% of total net deposition of DM in elongating leaves. However, the spatial profile of 14 C accumulation suggested that the elongation zone and the maturation zone were sinks of equal strength. WSC-free DM accounted for 55% of the total net DM deposition in elongating leaf blades, but only 10% of incoming 14 C-photosynthate accumulated in the water-insoluble fraction (WIF ∼ WSC-free DM) after 2 hours. In the maturation zone, more WSC was used for synthesis of WSC-free DM than was imported as recent photosynthate

  15. Long-distance signaling within Coleus x hybridus leaves; mediated by changes in intra-leaf CO2?

    Science.gov (United States)

    Stahlberg, R.; Van Volkenburgh, E.; Cleland, R. E.

    2001-01-01

    Rapid long-distance signaling in plants can occur via several mechanisms, including symplastic electric coupling and pressure waves. We show here in variegated Coleus leaves a rapid propagation of electrical signals that appears to be caused by changes in intra-leaf CO2 concentrations. Green leaf cells, when illuminated, undergo a rapid depolarization of their membrane potential (Vm) and an increase in their apoplastic pH (pHa) by a process that requires photosynthesis. This is followed by a slower hyperpolarization of Vm and apoplastic acidification, which do not require photosynthesis. White (chlorophyll-lacking) leaf cells, when in isolated white leaf segments, show only the slow response, but when in mixed (i.e. green and white) segments, the rapid Vm depolarization and increase in pHa propagate over more than 10 mm from the green to the white cells. Similarly, these responses propagate 12-20 mm from illuminated to unilluminated green cells. The fact that the propagation of these responses is eliminated when the leaf air spaces are infiltrated with solution indicates that the signal moves in the apoplast rather than the symplast. A depolarization of the mesophyll cells is induced in the dark by a decrease in apoplastic CO2 but not by an increase in pHa. These results support the hypothesis that the propagating signal for the depolarization of the white mesophyll cells is a photosynthetically induced decrease in the CO2 level of the air spaces throughout the leaf.

  16. Ferrous arrowheads and their oil quench hardening: Some early Indian evidence

    Science.gov (United States)

    Dube, R. K.

    2008-05-01

    A wide variety of ferrous arrowheads were in use in ancient India. Several typical chemical analyses of arrowheads found from archaeological excavation carried out at Kaushambi are reported in this paper. The average carbon content of these arrowheads varied from as low as 0.1 wt.% to approximately 0.9 wt.%. Literary evidence for oil quench hardening of ferrous arrowheads, as reported in famous Sanskrit epics—the Rāmāyana and the Mahābhārata—have been discussed in this paper. This type of quench hardening was intentionally adopted as it helped in preventing distortion and formation of quench cracks in arrowheads. The oil quench-hardened arrowheads were rubbed on stones to sharpen them, which also brought about tempering of martensite due to frictional heat.

  17. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  18. Bioactive Profiles, Antioxidant Activities, Nitrite Scavenging Capacities and Protective Effects on H2O2-Injured PC12 Cells of Glycyrrhiza Glabra L. Leaf and Root Extracts

    Directory of Open Access Journals (Sweden)

    Yi Dong

    2014-06-01

    Full Text Available This study compared the total flavonoid content of Glycyrrhiza glabra L. leaf and root extracts. Results suggested that the total flavonoid content in the leaf extract was obviously higher than that in the root extract. Pinocembrin, the main compound in the leaf extract after purification by column chromatography, showed good antioxidant activity and nitrite scavenging capacity, but moderate inhibitory effect on mushroom tyrosinase. Liquiritin was the main compound in root extract and possessed strong inhibitory effect on mushroom tyrosinase. Both compounds exhibited significant protection effect on H2O2-injured PC12 cells at a low concentration. These results indicate that Glycyrrhiza glabra L. leaf is potential as an important raw material for functional food.

  19. Significance of rate of work hardening in tempered martensite embrittlement

    International Nuclear Information System (INIS)

    Pietikainen, J.

    1995-01-01

    The main explanations for tempered martensite embrittlement are based on the effects of impurities and cementite precipitation on the prior austenite grain boundaries. There are some studies where the rate of work hardening is proposed as a potential reason for the brittleness. One steel was studied by means of a specially developed precision torsional testing device. The test steel had a high Si and Ni content so ε carbide and Fe 3 C appear in quite different tempering temperature ranges. The M S temperature is low enough so that self tempering does not occur. With the testing device it was possible to obtain the true stress - true strain curves to very high deformations. The minimum toughness was always associated with the minimum of rate of work hardening. The change of deformed steel volume before the loss of mechanical stability is proposed as at least one reason for tempered martensite embrittlement. The reasons for the minimum of the rate of work hardening are considered. (orig.)

  20. Study of a design criterion for 316L irradiated represented by a strain hardened material

    International Nuclear Information System (INIS)

    Gouin, H.

    1999-01-01

    The aim of this study is to analyse the consequence of radiation on different structure submitted to imposed displacement loading and for damages due to plastic instability or rupture. The main consequence of radiation is a material hardening with a ductility decrease. This effect is similar to initial mechanical hardening: the mechanical properties (determined on smooth tensile specimen) evolve in the same way while irradiation or mechanical hardening increase. So in this study, radiation hardening is simulated by mechanical hardening (swaging). Tests were carried out for which two damages were considered: plastic instability and rupture. These two damages were studied with initial mechanical hardening (5 tested hammering rate 0, 15, 25, 35 and 45% on 316L stainless steel). Likewise two types of loading were studied: tensile or bending loading on specimens with or without geometrical singularities (notches). From tensile tests, two deformation criteria are proposed for prevention against the two quoted damages. Numerical study is carried out allowing to confirm hypothesis made at the time of the tensile test result interpretation and to validate the rupture criterion by applying on bending test. (author)

  1. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  2. Effect of pre-hardening on the lifetime of type 304L austenitic stainless steels

    International Nuclear Information System (INIS)

    Kpodekon, C.

    2010-01-01

    This study deals with the effect of the loading history on the cyclic behavior and the fatigue life of two kinds (THYSSEN and CLI) of 304L stainless steel at room temperature. The experiments have been performed using two specimens' categories. The first one (virgin) has been submitted to only classical fatigue tests while in the second category, prior to the fatigue test, the specimen is subjected to a pre-hardening process under either monotonic or cyclic strain control. Cyclic softening followed by cyclic hardening are observed for the virgin specimens while only cyclic softening is exhibited by the pre-hardened specimens. The obtained results show that fatigue life is strongly influenced by the pre-hardening: it seems beneficial under stress control but detrimental under strain control, even in the presence of a compressive mean stress. The results are discussed regarding the cyclic evolution of the elastic modulus as well as the isotropic and kinematic parts of the strain hardening, and strain energy density per cycle, in different configurations: with or without prehardening,stress or strain control. (author)

  3. Effect of Annealing on Microstructures and Hardening of Helium-Hydrogen-Implanted Sequentially Vanadium Alloys

    Science.gov (United States)

    Jiang, Shaoning; Wang, Zhiming

    2018-03-01

    The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.

  4. Effect of solute elements on hardening of thermally-aged RPV model alloys

    International Nuclear Information System (INIS)

    Nomoto, A.; Nishida, K.; Dohi, K.; Soneda, N.; Liu, L.; Sekimura, N.; Li, Z.

    2015-01-01

    Embrittlement correlation methods for irradiated reactor pressure vessel (RPV) steels have been developed worldwide to predict the amount of embrittlement during plant operation. The effect of chemical composition on embrittlement is not fully understood, particularly the process of solute atom behavior during solute atom formation. In this series of slides we report the results of thermal ageing experiments of RPV model alloys in order to obtain information on the effect of chemical composition on the hardening process. We can draw the following conclusions. First, the addition of Ni or Si alone to Fe-Cu model alloys does not have clear effect but the addition of Mn to Fe-Cu-Ni alloy accelerates the cluster formation and hardening drastically, the effect of composition on the cluster strength is not clear. Secondly, the hardening process before the hardening peak has linear correlation with APT (Atom Probe Tomography) results and the RSS (Root-Sum-Square)sum model seems to explain the relationship between increase in hardness and APT data in a more consistent manner

  5. Comparison of hardenability calculation methods of the heat-treatable constructional steels

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, L.A.; Sitek, W. [Division of Tool Materials and Computer Techniques in Metal Science, Silesian Technical University, Gliwice (Poland)

    1995-12-31

    Evaluation has been made of the consistency of calculation of the hardenability curves of the selected heat-treatable alloyed constructional steels with the experimental data. The study has been conducted basing on the analysis of present state of knowledge on hardenability calculation employing the neural network methods. Several calculation examples and comparison of the consistency of calculation methods employed are included. (author). 35 refs, 2 figs, 3 tabs.

  6. Synthesis of a new hardener agent for self-healing epoxy resins

    Science.gov (United States)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2014-05-01

    Actually, the development of smart composites capable of self-repair in aeronautical structures is still at the planning stage owing to complex issues to overcome. One of the critical points in the development of self-healing epoxy resin is related to the impossibility to employ primary amines as hardeners. In this paper, the synthesis of a new hardener for self-healing resins is shown together with applicability conditions/ranges.

  7. BUSFET -- A radiation-hardened SOI transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, the authors propose a partially-depleted SOI transistor structure for mitigating the effects of trapped charge in the buried oxide on radiation hardness. They call this structure the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU or dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration, and the depth of the source. 3-D simulations show that for a body doping concentration of 10 18 cm -3 , a drain bias of 3 V, and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3 x 10 17 cm -3 , a thicker silicon film (300 nm) must be used

  8. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel

    International Nuclear Information System (INIS)

    Welsch, E.; Ponge, D.; Hafez Haghighat, S.M.; Sandlöbes, S.; Choi, P.; Herbig, M.; Zaefferer, S.; Raabe, D.

    2016-01-01

    The strain hardening mechanism of a high-Mn lightweight steel (Fe-30.4Mn-8Al-1.2C (wt%)) is investigated by electron channeling contrast imaging (ECCI) and transmission electron microscopy (TEM). The alloy is characterized by a constant high strain hardening rate accompanied by high strength and high ductility (ultimate tensile strength: 900 MPa, elongation to fracture: 68%). Deformation microstructures at different strain levels are studied in order to reveal and quantify the governing structural parameters at micro- and nanometer scales. As the material deforms mainly by planar dislocation slip causing the formation of slip bands, we quantitatively study the evolution of the slip band spacing during straining. The flow stress is calculated from the slip band spacing on the basis of the passing stress. The good agreement between the calculated values and the tensile test data shows dynamic slip band refinement as the main strain hardening mechanism, enabling the excellent mechanical properties. This novel strain hardening mechanism is based on the passing stress acting between co-planar slip bands in contrast to earlier attempts to explain the strain hardening in high-Mn lightweight steels that are based on grain subdivision by microbands. We discuss in detail the formation of the finely distributed slip bands and the gradual reduction of the spacing between them, leading to constantly high strain hardening. TEM investigations of the precipitation state in the as-quenched state show finely dispersed atomically ordered clusters (size < 2 nm). The influence of these zones on planar slip is discussed.

  9. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Yuling; Asano, Tomoya; Fujiwara, Makoto T; Yoshida, Shigeo; Machida, Yasunori; Yoshioka, Yasushi

    2009-05-01

    Plastids are maintained in cells by proliferating prior to cell division and being partitioned to each daughter cell during cell division. It is unclear, however, whether cells without plastids are generated when plastid division is suppressed. The crumpled leaf (crl) mutant of Arabidopsis thaliana is a plastid division mutant that displays severe abnormalities in plastid division and plant development. We show that the crl mutant contains cells lacking detectable plastids; this situation probably results from an unequal partitioning of plastids to each daughter cell. Our results suggest that crl has a partial defect in plastid expansion, which is suggested to be important in the partitioning of plastids to daughter cells when plastid division is suppressed. The absence of cells without detectable plastids in the accumulation and replication of chloroplasts 6 (arc6) mutant, another plastid division mutant of A. thaliana having no significant defects in plant morphology, suggests that the generation of cells without detectable plastids is one of the causes of the developmental abnormalities seen in crl plants. We also demonstrate that plastids with trace or undetectable amounts of chlorophyll are generated from enlarged plastids by a non-binary fission mode of plastid replication in both crl and arc6.

  10. Coatings hardenable by ionizing radiation and their applications

    International Nuclear Information System (INIS)

    Aronoff, E.J.; Labana, S.S.

    1976-01-01

    The invention deals with the production of a coating medium which can be hardened by ionizing radiation. The composition includes tetravinyl compounds containing no free hydroxyl groups which were obtained by the conversion of di-epoxides with acryl or methacryl acid via the intermediary step of a divinyl ester condensation product. The intermediary product is converted with acryloyl or methacryloyl halides. The mass still contains non-polymerisable solvent (such as tolual, xylol), pigments and fillers. It is of advantage if the di-epoxide has a molecular weight of 140 to 500. Furthermore, coatings are to be made of this coating medium which are hardened by ionizing radiation at temperatures between 20 0 C and 70 0 C. 19 examples. (HK) [de

  11. An outbreak of contact dermatitis from toluenesulfonamide formaldehyde resin in a nail hardener

    NARCIS (Netherlands)

    de Wit, F. S.; de Groot, A. C.; Weyland, J. W.; Bos, J. D.

    1988-01-01

    8 cases of contact dermatitis from toluenesulfonamide formaldehyde resin in a nail hardener are presented. Most patients had used nail lacquers containing this resin for many years without trouble, but became sensitized to the resin shortly after the introduction of this particular nail hardener. A

  12. Nonlinear response to the multiple sine wave excitation of a softening--hardening system

    International Nuclear Information System (INIS)

    Koplik, B.; Subudhi, M.; Curreri, J.

    1979-01-01

    In studying the earthquake response of the HTGR core, it was observed that the system can display softening--hardening characteristics. This is of great consequence in evaluating the structural safety aspects of the core. In order to obtain a better understanding of the governing parameters, an investigation was undertaken with a single-degree-of-freedom system having a softening--hardening spring characteristic and excited by multiple sine waves. A parametric study varying the input amplitudes and the spring characteristic was performed. Transients were introduced into the system, and the jump phenomena between the lower softening characteristics to the higher hardening curve was studied

  13. Deep Drawing Simulation Of High And Ultrahigh Strength Steels Under Consideration Of Anisotropic Hardening

    International Nuclear Information System (INIS)

    Roll, Karl; Faust, Alexander; Kessler, Lutz

    2007-01-01

    In today's sheet metal forming simulation, most attention is paid to yield loci functions, which describe the anisotropy of the material in yielding. The coefficients, defining the shape of the yield locus in these functions are usually fitted at a certain level of plastic work and are then valid for the whole range of plastic deformation. Modern high and ultrahigh strength steels, especially those with induced plasticity, may often exhibit only a very small anisotropy in yielding, but a severe anisotropy in work hardening for different loading conditions. This behavior can not be described by fitting the yield locus at a specific value of plastic deformation. An approach to take into account the anisotropic hardening of sheet metals is to provide different yield curves for several loading conditions and expand the yield locus dependent on the current form of load. By doing this, one can use a comparatively simple yield locus, like that of Hill from 1948, because all anisotropy is given by the different hardening curves. For the commercial FEM code LS DYNA the material model MATFEM Generalized Yield is available as a user subroutine, which supports this approach. In this paper, forming simulation results of different yield loci are compared with experimental results. The simulations were carried out in LS-DYNA with the Barlat 89 and 2000 yield loci and isotropic hardening and with the GenYld model combining a Hill 48 yield locus and anisotropic hardening. The deep drawing experiments were conducted on a hydraulic press, measuring binder and punch forces. The deformation of the sheet was measured by optical grid analysis. A comparison of the simulated and measured plastic strains shows that using a model including anisotropic hardening can produce better results than the usage of a complex yield locus but isotropic hardening for the examined materials. This might be interesting for e.g. spring back simulations. By combining a simple yield locus with anisotropic

  14. Surface Induction Hardening of Axi-Symmetric Bodies

    Czech Academy of Sciences Publication Activity Database

    Barglik, J.; Doležel, Ivo; Škopek, M.; Ulrych, B.

    2001-01-01

    Roč. 1, č. 1 (2001), s. 11-16 ISSN 1335-8243 R&D Projects: GA ČR GA102/01/0184 Grant - others:-(PL) 7T08603716 Keywords : induction heating * induction hardening * numerical solution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Kim, Gi-Chul; Son, Kuk-Hyeon; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    Age-hardening behaviour and the related microstructural changes were studied to elucidate the hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). By considering hardness test and XRD results together, it was revealed that the hardness increased during the early stage of phase transformation of α into α 1 . In the SEM photographs, two phases of matrix and particle-like structures were observed, and the precipitation of element from the matrix progressed during isothermal aging. By SEM observations and EPMA analysis, it could be supposed that the increase in hardness was caused by the diffusion and aggregation of Cu atoms from the Ag-rich α matrix containing Au and Cu in the early stage of age-hardening process, and that the decrease in hardness was caused by the progress of coarsening of Cu-rich lamellar precipitates in the later stage of the age-hardening process. The changes in the Ag-rich matrix caused both the increase and decrease in hardness, and the CuPd phase containing small amounts of Zn and Sn did not contribute to the hardness changes

  16. Importance of calcium and magnesium in water - water hardening

    Science.gov (United States)

    Barloková, D.; Ilavský, J.; Kapusta, O.; Šimko, V.

    2017-10-01

    Basic information about importance of calcium and magnesium in water, about their properties, effect to human health, problems what can cause under the lower ( 5 mmol/L) concentrations in water supply distribution systems, the most commonly used methods of water hardening are presented. The article contains the water hardening results carried out during the pilot plant experiments in WTP Hriňová and WTP Turček. For water hardening, treated water at the end of the process line, i.e., after coagulation, sedimentation and filtration, saturated with CO2 and filtrated through half-burnt dolomite material (PVD) was used. The results show that the filtration rate is 17.1 m/h in the case of WTP Hriňová and 15.2 m/h in the case of WTP Turček to achieve the recommended concentration of Ca and Mg in the treated water after the addition of CO2 and filtration through PVD. The longer the water contact time with PVD (depending on the CO2 content), the more water is enriched with magnesium, but the calcium concentration has not so much increased.

  17. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  18. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels

    International Nuclear Information System (INIS)

    Järvinen, Henri; Isakov, Matti; Nyyssönen, Tuomo; Järvenpää, Martti; Peura, Pasi

    2016-01-01

    This paper addresses the relationship between initial microstructure and final properties of press hardened 22MnB5 steels. Four commercial 22MnB5 steels having different initial microstructures were investigated. An experimental press hardening equipment with a flat-die was used to investigate material behavior in the direct press hardening process. Two austenitizing treatments, 450 s and 180 s at 900 °C, were examined. Microstructural characterization with optical and scanning electron microscopes revealed a mixture of martensite and auto-tempered martensite after press hardening. Electron backscatter diffraction data of the transformed martensite was used to reconstruct grain boundary maps of parent austenite. Grain sizes of parent austenite (mean linear intercept) were measured for each material. In addition to microstructural evaluation, quasistatic and high strain rate tensile tests at strain rates of 5×10 −4 s −1 and 400 s −1 , respectively, were performed for press hardened samples. The results show that strength and uniform elongation depend on the initial microstructure of the 22MnB5 steel, when parameters typical to the direct press hardening process are used. Parent austenite grain size was shown to influence the morphology of the transformed martensite, which in turn affects the strength and uniform elongation after press hardening. The tensile properties of the press hardened materials are almost strain rate independent in the studied strain rate range. The obtained results can be used to optimize the properties of 22MnB5 steels in the direct press hardening process. In addition, the here revealed connection between the parent austenite grain size and final steel properties should be taken into account in the development of new press hardening steel grades for automotive industry.

  19. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels

    Energy Technology Data Exchange (ETDEWEB)

    Järvinen, Henri, E-mail: henri.jarvinen@tut.fi [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Isakov, Matti; Nyyssönen, Tuomo [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Järvenpää, Martti [SSAB Europe Oy, Harvialantie 420, FI-13300 Hämeenlinna (Finland); Peura, Pasi [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland)

    2016-10-31

    This paper addresses the relationship between initial microstructure and final properties of press hardened 22MnB5 steels. Four commercial 22MnB5 steels having different initial microstructures were investigated. An experimental press hardening equipment with a flat-die was used to investigate material behavior in the direct press hardening process. Two austenitizing treatments, 450 s and 180 s at 900 °C, were examined. Microstructural characterization with optical and scanning electron microscopes revealed a mixture of martensite and auto-tempered martensite after press hardening. Electron backscatter diffraction data of the transformed martensite was used to reconstruct grain boundary maps of parent austenite. Grain sizes of parent austenite (mean linear intercept) were measured for each material. In addition to microstructural evaluation, quasistatic and high strain rate tensile tests at strain rates of 5×10{sup −4} s{sup −1} and 400 s{sup −1}, respectively, were performed for press hardened samples. The results show that strength and uniform elongation depend on the initial microstructure of the 22MnB5 steel, when parameters typical to the direct press hardening process are used. Parent austenite grain size was shown to influence the morphology of the transformed martensite, which in turn affects the strength and uniform elongation after press hardening. The tensile properties of the press hardened materials are almost strain rate independent in the studied strain rate range. The obtained results can be used to optimize the properties of 22MnB5 steels in the direct press hardening process. In addition, the here revealed connection between the parent austenite grain size and final steel properties should be taken into account in the development of new press hardening steel grades for automotive industry.

  20. On the grain boundary hardening in a B-bearing 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Yao, X.X.

    1999-01-01

    The precipitates, (Cr,Fe) 23 (C,B) 6 carbides and (Cr,Fe) 2 B borides, formed along the grain boundaries in a 304 austenitic stainless steel containing boron of 33 ppm after solution treatment at 1100 C for 1 h followed by isothermal ageing for 0.5 h at temperatures ranging from 750 to 1050 C have been identified. The influence of these precipitates on the grain boundary hardening has been investigated by means of micro-Vickers hardness measurements. It is found that the degree of grain boundary hardening below 900 C decreases, while it increases above 900 C with increasing ageing temperature. The dissolution of (Cr,Fe) 23 (C,B) 6 carbides and the precipitation of (Cr,Fe) 2 B borides are associated with the changes of grain boundary hardening in this B-bearing 304 austenitic stainless steel between 750 and 1100 C. The non-equilibrium boron segregation enhances the grain boundary hardening when the ageing temperature is above 900 C. (orig.)

  1. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  2. Study of radiation hardening in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nogiwa, Kimihiro; Nishimura, Akihiko

    2008-01-01

    In order to investigate the dependence of hardening on copper precipitate diameter and density, in-situ transmission electron microscopy (TEM) observations during tensile tests of dislocation gliding through copper rich-precipitates in thermally aged and neutron irradiated Fe-Cu alloys were performed. The obstacle strength has been estimated from the critical bow-out angle, φ, of dislocations. The obstacle distance on the dislocation line measured from in-situ TEM observations were compared with number density and diameter measured by 3D-AP (three dimensional atom probe) and TEM observation. A comparison is made between hardening estimation based on the critical bowing angles and those obtained from conventional tensile tests. (author)

  3. Thermal stress ratcheting analysis of a time-hardening structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1999-01-01

    Thermal stress ratcheting and shakedown is analyzed for a time-hardening structure: the yield stress increases as time goes on under exposure to neutron irradiation or thermal aging. New three modes of ratcheting and shakedown are identified as transition to other deformation modes. Stress regimes and thermal ratchet strains are formulated as a function of time-increasing yield stress. Moreover, a new model of trouble occurrence frequency as a modification to a bath-tube curve is proposed for calculating a time period of a thermal cycle. Application of the proposed formulation tells us a benefit of taking into account the time hardening due to neutron irradiation. (author)

  4. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  5. Recent developments in turning hardened steels - A review

    Science.gov (United States)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  6. Anti-Ageing Effects of Sonchus oleraceus L. (pūhā) Leaf Extracts on H2O2-Induced Cell Senescence

    OpenAIRE

    Zong-Quan Ou; Thomas Rades; Arlene McDowell

    2015-01-01

    Antioxidants protect against damage from free radicals and are believed to slow the ageing process. Previously, we have reported the high antioxidant activity of 70% methanolic Sonchus oleraceus L. (Asteraceae) leaf extracts. We hypothesize that S. oleraceus extracts protect cells against H2O2-induced senescence by mediating oxidative stress. Premature senescence of young WI-38 cells was induced by application of H2O2. Cells were treated with S. oleraceus extracts before or after H2O2 stress...

  7. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  8. Coefficient of work-hardening in stage-IV

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1994-04-15

    Full Text Available The theory of work hardening in stage IV depends on the relation between the relative misorientation Psi of neighbouring subgrains and the plastic strain gamma (Psi = B gamma exp). The value of the constant B is suggested to be better related...

  9. Influence of anisotropic hardening on longitudinal welding strains and stresses

    International Nuclear Information System (INIS)

    Gatovskij, K.M.; Revutskij, M.N.

    1981-01-01

    The algorithm and program for estimation of longitudinal welding strains and stresses with account of hardening and Bauschinger effect, which expand the possibilities of more complete description of stress change during thermodeformation welding cycles at bead surfacing on plate made of the 06Kh18N9T steel and AMg61 alloy. It is shown that for metals, deformation curves which are characterized by considerable yield moduli (Esub(T)/E>=0.05) hardening effect is considerable and its account leads to the decrease of stress level in the heataffected zone (down to 20%) [ru

  10. Radiation response of two Harris semiconductor radiation hardened 1k CMOS RAMs

    International Nuclear Information System (INIS)

    Abare, W.E.; Huffman, D.D.; Moffett, G.E.

    1982-01-01

    This paper describes the testing of two types 1K CMOS static RAMs in various transient and steady state ionizing radiation environments. Type HM 6551R (256x4 bits) and type HM 6508R (1024x1 bit) RAMs were evaluated. The RAMs are radiation hardened versions of Harris' commercial RAMs. A brief description of the radiation hardened process is presented

  11. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    International Nuclear Information System (INIS)

    Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C

  12. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  13. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype

    Directory of Open Access Journals (Sweden)

    Viktoriya Coneva

    2018-03-01

    Full Text Available Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.

  14. Microstructural effects on the yield strength and its temperature dependence in a bainitic precipitation hardened Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kotilainen, H.; Nenonen, P.

    1980-03-01

    The plastic deformation behaviour of a precipitation hardened bainitic Cr-Mo-V steel is analyzed at ambient and low temperatures. The temperature dependent component of the yield strength is composed of the Peierls-Nabarro force and also partly of the strengthening contribution of the lath- and cell boundaries or the solid solution hardening. The temperature dependence below 230 K is in accordance with the models presented by Yanoshevich and Ryvkina as well as Dorn and Rajnak. The temperature independent component can be calculated merely from the dislocation density, which is stabilized by the vanadium-rich carbides. The linear additivity cannot be used for the superposition of the strengthening effects of various strengthening parameters, By using the phenomenological approach starting from the dislocation movement mechanisms upon yielding the laws for the superposition are discussed. (author)

  15. Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Branchings Effect

    International Nuclear Information System (INIS)

    Kim, Dongwook; Bang, Sungsik; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo

    2013-01-01

    In this study we establish a process to predict hardening behavior considering the Branchings effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Branchings effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with Fea. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments

  16. Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Branchings Effect

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Bang, Sungsik; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo [Sogang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study we establish a process to predict hardening behavior considering the Branchings effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Branchings effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with Fea. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

  17. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  18. Applicability of Voce equation for tensile flow and work hardening behaviour of P92 ferritic steel

    International Nuclear Information System (INIS)

    Sainath, G.; Choudhary, B.K.; Christopher, J.; Isaac Samuel, E.; Mathew, M.D.

    2015-01-01

    Detailed analysis of true stress (σ)-true plastic strain (ε) data indicated that tensile flow behaviour of P92 ferritic steel can be adequately described by Voce equation at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range 300–923 K. The steel exhibited two-stage work hardening in the variations of instantaneous work hardening rate (θ = dσ/dε) with stress. At all the strain rates, the variations in σ-ε, θ-σ and work hardening parameters associated with Voce equation with temperature exhibited three distinct temperature regimes. At intermediate temperatures, the variations in σ-ε, θ-σ and work hardening parameters with temperature and strain rate exhibited anomalous behaviour due to the occurrence of dynamic strain ageing in the steel. The shift in θ-σ towards low stresses, and rapid decrease in flow stress and work hardening parameters with increasing temperature and decreasing strain rate suggested dominance of dynamic recovery at high temperatures. - Highlights: • Tensile flow and work hardening behaviour of P92 steel has been examined. • Applicability of Voce equation to P92 steel is demonstrated. • Three temperature regimes in flow and work hardening has been observed. • Good match between predicted and the experimental tensile properties has been shown

  19. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    Science.gov (United States)

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  20. An energy-based beam hardening model in tomography

    International Nuclear Information System (INIS)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E

    2002-01-01

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (μCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages

  1. Niobium effects on the austenitic grain growth and hardenability of steels for mechanical construction

    International Nuclear Information System (INIS)

    Vieira, R.R.; Arruda Camargo, L.M. de; Oliveira Junior, G.G. de; Dias Filho, A.G.C.

    1983-01-01

    The austenitic grain growth and hardenability of SAE 86XX and 5120 steels modified with 0,001 to 0,20 per-cent niobium content were studied when submitted to case hardening and quenching heat treatments. The results show that niobium controlS the austenite grain size better than molybdenum up to 950 0 C austenitization temperature. The hardenability, evaluated by the Jominy test which the modified SAE 8640 steels, is more strongly inflencied by the grain refining resulting from niobium addition than by any other supposed effect. (Author) [pt

  2. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    International Nuclear Information System (INIS)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-01-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO 2 ) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  3. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  4. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Son, Kuk-Hyeon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Yu, Chin-Ho [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2005-10-27

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase.

  5. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Son, Kuk-Hyeon; Yu, Chin-Ho; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase

  6. Radiation-hardened micro-electronics for nuclear instrumentation

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2007-01-01

    The successful development and deployment of future fission and thermonuclear fusion reactors depends to a large extent on the advances of different enabling technologies. Not only the materials need to be custom engineered but also the instrumentation, the electronics and the communication equipment need to support operation in this harsh environment, with expected radiation levels during maintenance up to several MGy. Indeed, there are yet no commercially available electronic devices available off-the-shelf which demonstrated a satisfying operation at these extremely high radiation levels. The main goal of this task is to identify commercially available radiation tolerant technologies, and to design dedicated and integrated electronic circuits, using radiation hardening techniques, both at the topological and architectural level. Within a stepwise approach, we first design circuits with discrete components and look for an equivalent integrated technology. This will enable us to develop innovative instrumentation and communication tools for the next generation of nuclear reactors, where both radiation hardening and miniaturization play a dominant role

  7. Hardened Solar Array High Temperature Adhesive.

    Science.gov (United States)

    1981-04-01

    SHERWOOO. D SASIU.IS F3361S-0-C-201S UNCLASSI ED 1AC-SCG-IOOIIR AFVAL-TR-OL-201? NLm,,hinii EhhhEE11I1 AFWAL-TR-81- 2017 i : HARDENED SOLAR ARRAY D HIGH...Tg and as a consequence forms a film on the container and also precipitates as tacky waxlike particles, rather than the desired flocullated

  8. Effect of Nonlinear Hardening of Lead Rubber Bearing on Long Term Behavior of Base Isolated Containment Building

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Young-Sun; Kim, Min-Kyu

    2015-01-01

    The rubber material used in laminated rubber bearings is the hyper elastic material whose stress-strain relationship can be defined as nonlinearly elastic. From the previous research, it was presented that the rubber hardness and stiffness was increased by the aging of LRB. The mechanical properties of LRB changed by aging can directly affect a nonlinear hardening behavior. Therefore it is needed to consider the nonlinear hardening effect for exactly evaluating the seismic safety of base isolated structure during the life time. In this study, the seismic response analysis of base isolated containment building was performed by using the bilinear model and the hardening model to identify the effect of structural response on the nonlinear hardening behavior of isolator. Moreover the floor response spectrum of base isolated structure considering the aging was analyzed by according to the analysis model of LRB.. The hardening behavior of lead rubber bearing occurs at high strain. Therefore it is reasonable to assume that the hysteretic model of LRB is the nonlinear hardening model for exactly evaluating the seismic response of base isolated structure. The nonlinear analysis of base isolated containment was performed by using the nonlinear hardening variables which was resulted from the test results and finite element analysis. From the analysis results, it was represented that the FRS was higher about 40% with nonlinear hardening model than with the bilinear model. Therefore the seismic response of base isolated structure with bilinear model can be underestimated than the real response. It is desired that the nonlinear hardening model of LRB is applied for the seismic risk evaluation requiring the ultimate state of LRB

  9. Work hardening characteristics of gamma-ray irradiated Al-5356 alloy

    International Nuclear Information System (INIS)

    Saad, G.; Fayek, S.A.; Fawzy, A.; Soliman, H.N.; Nassr, E.

    2014-01-01

    Effects of γ-irradiation and deformation temperatures on the hardening behavior of Al-5356 alloy have been investigated by means of stress–strain measurements. Wire samples irradiated with different doses (ranging from 500 to 2000 kGy) were strained at different deformation temperatures T w (ranging from 303 to 523 K) and a constant strain rate of 1.5×10 −3 s −1 . The effect of γ-irradiation on the work-hardening parameters (WHP): yield stress σ y , fracture stress σ f , total strain ε T and work-hardening coefficient χ p of the given alloy was studied at the applied deformation temperature range. The obtained results showed that γ-irradiation exhibited an increase in the WHP of the given alloy while the increase in its deformation temperature showed a reverse effect. The mean activation energy of the deformation process was calculated using an Arrhenius-type relation, and was found to be ∼80 kJ/mole, which is close to that of grain boundary diffusion in aluminum alloys

  10. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  11. TALE and Shape: How to Make a Leaf Different.

    Science.gov (United States)

    Di Giacomo, Elisabetta; Iannelli, Maria Adelaide; Frugis, Giovanna

    2013-05-06

    The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.

  12. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.

    Science.gov (United States)

    Villar-Salvador, Pedro; Peñuelas, Juan L; Jacobs, Douglass F

    2013-02-01

    Functional attributes determine the survival and growth of planted seedlings in reforestation projects. Nitrogen (N) and water are important resources in the cultivation of forest species, which have a strong effect on plant functional traits. We analyzed the influence of N nutrition on drought acclimation of Pinus pinea L. seedlings. Specifically, we addressed if high N fertilization reduces drought and frost tolerance of seedlings and whether drought hardening reverses the effect of high N fertilization on stress tolerance. Seedlings were grown under two N fertilization regimes (6 and 100 mg N per plant) and subjected to three drought-hardening levels (well-watered, moderate and strong hardening). Water relations, gas exchange, frost damage, N concentration and growth at the end of the drought-hardening period, and survival and growth of seedlings under controlled xeric and mesic outplanting conditions were measured. Relative to low-N plants, high-N plants were larger, had higher stomatal conductance (27%), residual transpiration (11%) and new root growth capacity and closed stomata at higher water potential. However, high N fertilization also increased frost damage (24%) and decreased plasmalemma stability to dehydration (9%). Drought hardening reversed to a great extent the reduction in stress tolerance caused by high N fertilization as it decreased frost damage, stomatal conductance and residual transpiration by 21, 31 and 24%, respectively, and increased plasmalemma stability to dehydration (8%). Drought hardening increased tissue non-structural carbohydrates and N concentration, especially in high-fertilized plants. Frost damage was positively related to the stability of plasmalemma to dehydration (r = 0.92) and both traits were negatively related to the concentration of reducing soluble sugars. No differences existed between moderate and strong drought-hardening treatments. Neither N nutrition nor drought hardening had any clear effect on seedling

  13. Influence of phytochemicals in piper betle linn leaf extract on wound healing.

    Science.gov (United States)

    Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh

    2015-01-01

    Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.

  14. Reduction of metal artifacts: beam hardening and photon starvation effects

    Science.gov (United States)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  15. Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites

    International Nuclear Information System (INIS)

    Shaikh, F.U.A.

    2013-01-01

    Highlights: • Deflection hardening behaviour is achieved in the DFRGC similar to that observed in DFRCC. • The first crack load or in other word the limit of proportionality (LOP) of DFRGC is similar to that of DFRCC. • The DFRGC also exhibited higher deflection at peak load than DFRCC. • The toughness at peak load of DFRGC is also high than that of DFRCC. • The ductility of DFRGC is also higher than that of DFRCC. - Abstract: This paper reports the newly developed ductile fibre reinforced geopolymer composite (DFRGC) exhibiting deflection hardening and multiple cracking behaviour. The binder of the above composite is different from that used in conventional cement based system. The class F fly ash is used instead of Portland cement in DFRGC and is activated by alkaline liquids (sodium hydroxide and sodium silicate). In this study, two types of fibres namely steel (ST) and polyvinyl alcohol (PVA) fibres are used in mono as well as in ST–PVA hybrid form, with a total volume fraction of 2%. The deflection hardening behaviour of newly developed DFRGC is also compared with that of conventional ductile fibre reinforced cementitious composites (DFRCC). The effects of two different sizes of sand (1.18 mm, and 0.6 mm) and sand/binder ratios of 0.5 and 0.75 on the deflection hardening and multiple cracking behaviour of both DFRGC and DFRCC are also evaluated. Results revel that the deflection hardening and multiple cracking behaviour is achieved in geopolymer based DFRGC similar to that of cement based system. For a given sand size and sand content, comparable deflection hardening behaviour, ultimate flexural strength and the deflection at peak load are observed in both cement and geopolymer based composites irrespective of fibre types and combination. The deflection hardening behaviour of DFRGC is also confirmed by the calculated toughness index values of I 20 > 20. The scanning electron microscope (SEM) study shows no degradation of PVA and steel fibres in the

  16. Modeling and Analysis of Deformation for Spiral Bevel Gear in Die Quenching Based on the Hardenability Variation

    Science.gov (United States)

    Zhang, Yingtao; Wang, Gang; Shi, Wankai; Yang, Lin; Li, Zhichao

    2017-07-01

    Spiral bevel gears are widely used to transmit energy between intersecting axes. The strength and fatigue life of the gears are improved by carburizing and quenching. A die quenching process is used to control the deformation of the gear. The deformation is determined by the variations in the hardenability for a certain die quenching process. The relationship between hardenability, phase transformation and deformation needs to be studied to minimize deformation during the adjustment of the die quenching process parameters. In this paper, material properties for 22CrMoH steel are determined by the results of Jominy tests, dilatometry experiments and static mechanical property tests. The material models were built based on testing results under the consideration of hardenability variation. An finite element analysis model was developed to couple the phase transformation and deformation history of the complete carburizing and die quenching process for the spiral bevel gears. The final microstructures in the gear were bainite for low hardenability steel and a mixture of bainite and ferrite for high hardenability steel. The largest buckling deformation at the gear bottom surface is 0.375 mm at the outer circle for the low hardenability gear and 0.091 mm at the inner circle for the high hardenability gear.

  17. BUSFET - A Novel Radiation-Hardened SOI Transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, we propose a new partially-depleted SOI transistor structure that we call the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU and dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration and the depth of the source. 3-D simulations show that for a doping concentration of 10 18 cm -3 and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3x10 17 cm -3 , a thicker silicon film (300 nm) must be used

  18. The application and processing of paints hardened by electron beams

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Electron beam hardening is a process for changing liquid surface coatings of different thicknesses by irradiation with electrons of high energy into solid, hard, elastic films. In contrast to the UV process, one can harden pigmented paints with electron beams. An electron accelerator, which remits free electrons is used as the energy source for starting the chemical reaction in the coating material. In order to irradiate flat parts, which were coated with liquid paint by rolling, pouring or spraying, equally with electrons, one must produce an 'electron curtain', similar to that in a paint pouring machine. (orig./PW) [de

  19. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  20. Changes in hardness of magnesium alloys due to precipitation hardening

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2018-04-01

    Full Text Available This paper deals with the evaluation of changes in hardness of magnesium alloys during precipitation hardening that are nowadays widely used in different fields of industry. It focuses exactly on AZ31, AZ61 and AZ91 alloys. Observing material hardness changes serves as an effective tool for determining precipitation hardening parameters, such as temperature and time. Brinell hardness measurement was chosen based on experimental needs. There was also necessary to make chemical composition analysis and to observe the microstructures of tested materials. The obtained results are presented and discussed in this paper.

  1. Evaluation of combined hardening parameters for type 304LN stainless steel under strain-controlled cyclic loading

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Vishnuvardhan, S.; Raghava, G.

    2016-01-01

    Low cycle fatigue (LCF) is the primary degradation mechanism affecting coolant piping of pressurized water reactor (PWR) caused by combination of pressure and transient mechanical or thermal loads. In the case of LCF, stresses are high enough for plastic deformation to occur and the fatigue life is correlated with the cyclic plastic strain. Modelling cyclic plastic deformation of a material requires hardening parameters, which have to be obtained from LCF test results. It is customary in low cycle fatigue tests that the strain ranges are kept constant and the stresses are allowed to vary which typically leads to a hysteresis loop that consists of linear and nonlinear parts. In this paper, numerical studies on mechanical behaviour of Type 304LN stainless steel under fully reversed strain-controlled cyclic loading have been carried out. A linear combination of the two hardening types, isotropic and kinematic, governed by a scalar parameter, β (0 ≤β ≤ 1) is used. A value of β=1 indicates a pure isotropic hardening while a value of β=0 indicates pure kinematic hardening. The details of the combined isotropic-kinematic hardening model are also presented. Constitutive relations for the classical von Mises theory along with a bilinear hardening theory have been used. The model is implemented in finite element software ABAQUS using a user subroutine written in FORTRAN, UMAT. An iterative method is adopted to arrive at the model's hardening parameters and the value of β. (author)

  2. Ontogeny of the sheathing leaf base in maize (Zea mays).

    Science.gov (United States)

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Secondary Hardening Behavior in Super Duplex Stainless Steels during LCF in Dynamic Strain Ageing Regime

    OpenAIRE

    Chai, Guocai; Andersson, Marcus

    2013-01-01

    Cyclic deformation behaviors in five modified duplex stainless steel S32705 grades have been studied at 20 °C, 200 °C, 250° and 350 °C. The influence of temperature and nitrogen concentration on the occurrence of the second hardening phenomenon, in the stress response curve was focused. An increase in nitrogen concentration can have a positive effect on dynamic strain ageing by increasing the first hardening and also the second hardening behavior during cyclic deformation. Furthermore, an inc...

  4. Microstructural evolution and strain hardening behavior of the cold-drawn austenitic stainless steels

    International Nuclear Information System (INIS)

    Choi, Jeom Yong; Jin, Won

    1998-01-01

    The strain induced α ' -martensite formation and the strain hardening behavior of metastable austenitic stainless steel during cold drawing have been investigated. The strain induced α ' -martensite nucleates mainly at the intersection of the mechanical twins rather than ε-martensite. It could be explained by the increase of stacking fault energy which arises from the heat generated during high speed drawing and, for AISI 304/Cu, the additional effect of Cu additions. The strain hardening behavior of austenitic stainless steel is strongly related to the microstructural evolution accompanied by strain induced α ' -martensite. The work hardening rates of cold-drawn 304 increased with increasing interstitial element(C,N) contents which affect the strength of the strain induced α ' -martensite

  5. Instability analysis of a fully plastic center-cracked strip of a power hardening material

    International Nuclear Information System (INIS)

    Zahoor, A.; Paris, P.C.

    1978-01-01

    An approach for predicting unstable crack growth in a power hardening material is discussed. A fully plastic center-cracked strip of finite width under plane strain conditions, which involves J-controlled crack growth, is analyzed. The conditions for unstable crack growth are identified in terms of a non-dimensional parameter, the Tearing Modulus, T, which incorporates the effect of elastic system compliance on the cracked structure as well as the influence of hardening. Numerical results also illustrate the strong influences on stability of both the strain hardening characteristics of the material and certain geometrical proportions which greatly influence the system compliance. (author)

  6. Numerical predicting of the structure and stresses state in hardened element made of tool steel

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2008-03-01

    Full Text Available The paper presents numerical model of thcrmal phcnomcna, phasc transformation and mcchanical phcnomcna associated with hardeningof carbon tool steel. Model for evaluation or fractions OF phases and their kinetics bascd on continuous heating diagram (CHT andcontinuous cooling diagram (CCT. The stresses generated during hardening were assumed to rcsult from ~hermal load. stntcturaI plasticdeformations and transformation plasricity. Thc hardened material was assumed to be elastic-plastic, and in ordcr to mark plastic strains the non-isothermal plastic law of flow with the isotropic hardening and condition plasticity of Huber-Misses were used. TherrnophysicaI values of mechanical phenomena dependent on bo~hth e phase composition and temperature. In the numerical example thc simulated estimation of the phasc Fraction and strcss distributions in the hardened axisimmetrical elemcnt was performed.

  7. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Lambrecht, M.; Meslin, E.; Malerba, L.; Hernandez-Mayoral, M.; Bergner, F.; Pareige, P.; Radiguet, B.; Almazouzi, A.

    2010-01-01

    A correlation is attempted between microstructural observations by various complementary techniques, which have been implemented within the PERFECT project and the hardening measured by tensile tests of reactor pressure vessel steel and model alloys after irradiation to a dose of ∼7 x 10 19 n cm -2 . This is done, using the simple hardening model embodied by the Orowan equation and applying the most suitable superposition law, as suggested by a parametric study using the DUPAIR line tension code. It is found that loops are very strong obstacles to dislocation motion, but due to their low concentration, they only play a minor role in the hardening itself. For the precipitates, the contrary is found, although they are quite soft (due to their very small sizes and their coherent nature), they still play the dominant role in the hardening. Vacancy clusters are important for the formation of both loops and precipitates, but they will play almost no role in the hardening by themselves.

  8. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    International Nuclear Information System (INIS)

    Flores, P.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Habraken, A.M.; Duchene, L.; Bael, A. van; He, S.; Duflou, J.

    2005-01-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing

  9. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    Science.gov (United States)

    Flores, P.; Duchêne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.

    2005-08-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  10. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings

    Directory of Open Access Journals (Sweden)

    Zhujia Ye

    2016-08-01

    Full Text Available Switchgrass (Panicum virgatum is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome expressed a significant difference (p < 0.05, fold change <0.6 or >1.7 from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes that can be employed to improve switchgrass seedling growth and

  11. A method for hardening or curing adhesives for flocking thermally sensitive substrata by means of an electron-beam

    International Nuclear Information System (INIS)

    Nablo, S.V.; Fussa, A.D.

    1975-01-01

    The invention relates to a method for hardening or curing adhesives for flocking thermally sensitive substrata by means of an electron-beam. That method consists in accurately adjusting the parameters of irradiation by an electron-beam and the beam velocity so as to obtain, a very rapid hardening of adhesives used for fixing flocking materials, or the like, to thermally sensitive substrate. That can be applied to hardening or curing adhesives for flocking thermally-sensitive substrata which normally restrict the hardening rate [fr

  12. Disorientations and their role on the work-hardening in stage IV

    DEFF Research Database (Denmark)

    Pantleon, W.

    2005-01-01

    statistical reasons still lead to stage III behavior and a saturation of the ow stress, but deterministic contributions to the development of disorienta- tions, as dierences in activated slip systems across boundaries, cause a linear increase of the flow stress at large strains. Such a constant work......The eect of deformation-induced disorientations on work-hardening of metals is modelled by dislocation dynamics. By incorporating excess dislocations related to disori- entations, Kocks' dislocation model describing stage III hardening is extended to stage IV. Disorientations evolving from purely...

  13. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites

    International Nuclear Information System (INIS)

    Li, V.C.; Wu, H.W.

    1992-01-01

    Apart from imparting increased fracture toughness, one of the useful purposes of reinforcing brittle matrices with fibers is to create enhanced composite strain capacity. This paper reviews the conditions underwhich such a composite will exhibit the pseudo strain-hardening phenomenon. The presentation is given in a unified manner for both continuous aligned and discontinuous random fiber composites. It is demonstrated that pseudo strain hardening can be practically designed for both gills of composites by proper tailoring of material structures. 18 refs., 8 figs., 2 tabs

  14. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum

    DEFF Research Database (Denmark)

    Zeng, Wei; Shen, Yao; Zhang, Ning

    2012-01-01

    Nanostructured pure aluminum was fabricated by heavy cold-rolling and then subjected to recovery annealing either by applying electric pulse annealing or by traditional air furnace annealing. Both annealing treatments resulted in an increase in yield strength due to the occurrence of a “dislocation...... source-limited hardening” mechanism. However, the hardening kinetics was substantially faster for the electric pulse annealed material. Detailed microstructural characterization suggested that the rapid hardening during electric pulse annealing is related to an enhanced rate of recovery of dislocation...

  15. Binding of Human GII.4 Norovirus Virus-Like Particles to Carbohydrates of Romaine Lettuce Leaf Cell Wall Materials

    Science.gov (United States)

    Esseili, Malak A.

    2012-01-01

    Norovirus (NoV) genogroup II genotype 4 (GII.4) strains are the dominant cause of the majority of food-borne outbreaks, including those that involve leafy greens, such as lettuce. Since human NoVs use carbohydrates of histo-blood group antigens as receptors/coreceptors, we examined the role of carbohydrates in the attachment of NoV to lettuce leaves by using virus-like particles (VLPs) of a human NoV/GII.4 strain. Immunofluorescence analysis showed that the VLPs attached to the leaf surface, especially to cut edges, stomata, and along minor veins. Binding was quantified using enzyme-linked immunosorbent assay (ELISA) performed on cell wall materials (CWM) from innermost younger leaves and outermost lamina of older leaves. The binding to CWM of older leaves was significantly (P lettuce CWM by utilizing multiple carbohydrate moieties. This binding may enhance virus persistence on the leaf surface and prevent effective decontamination. PMID:22138991

  16. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  17. Study on the Influence of the Work Hardening Models Constitutive Parameters Identification in the Springback Prediction

    International Nuclear Information System (INIS)

    Oliveira, M.C.; Menezes, L. F.; Alves, J.L.; Chaparro, B.M.

    2005-01-01

    The main goal of this work is to determine the influence of the work hardening model in the numerical prediction of springback. This study will be performed according with the specifications of the first phase of the 'Benchmark 3' of the Numisheet'2005 Conference: the 'Channel Draw'. Several work hardening constitutive models are used in order to allow a better description of the different material mechanical behavior. Two are classical pure isotropic hardening models described by a power law (Swift) or a Voce type saturation equation. Those two models were also combined with a non-linear (Lemaitre and Chaboche) kinematic hardening rule. The final one is the Teodosiu microstructural hardening model. The study is performed for two commonly used steels of the automotive industry: mild (DC06) and dual phase (DP600) steels. The mechanical characterization, as well as the constitutive parameters identification of each work hardening models, was performed by LPMTM, based on an appropriate set of experimental data such as uniaxial tensile tests, monotonic and Bauschinger simple shear tests and orthogonal strain path tests, all at various orientations with respect to the rolling direction. All the simulations were carried out with the CEMUC's home code DD3IMP (contraction of 'Deep Drawing 3-D IMPlicit code')

  18. Surface modification on PMMA : PVDF polyblend: hardening under ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Polyblend; surface modification; microhardness; hardening; plasticization; segmental mobility. 1. Introduction. Polymeric materials have a specific feature of stability towards various aggressive chemical environments, which depends on a multiplicity of factors like structure and nature of the polymers and chemical ...

  19. Study of the mechanisms involved in the laser superficial hardening process of metallic alloys

    International Nuclear Information System (INIS)

    Silva, Edmara Marques Rodrigues da

    2001-01-01

    The laser superficial hardening process of a ferrous alloy (gray cast iron) and of an aluminum-silicon alloy was investigated in this work. These metallic alloys are used in the automobile industry for manufacturing cylinders and pistons, respectively. By application of individual pulses and single tracks, the involved mechanisms during the processing were studied. Variables such as energy density, power density, temporal width, beam diameter on the sample surface, atmosphere of the processing region, overlapping and scanning velocity. The hardened surface was characterized by optical and scanning electronic microscopy, dispersive energy microanalysis, X-ray mapping, X-ray diffraction, and measurements of roughness and Vickers microhardness. Depending on the processing parameters, it is possible to obtain different microstructures. The affected area of gray cast iron, can be hardened by remelting or transformation hardening (total or partial) if the reached temperature is higher or not that of melting temperature. Laser treatment originated new structures such as retained austenite, martensite and, occasionally, eutectic of cellular dendritic structure. Aluminum-silicon alloy does not have phase transformation in solid state, it can be hardened only by remelting. The increase of hardness is a function of the precipitation hardening process, which makes the silicon particles smaller and more disperse in the matrix. Maximal values of microhardness (700-1000 HV) were reached with the laser treatment in gray cast iron samples. The initial microhardness is of 242 HV. For aluminum-silicon alloy, the laser remelting increases the initial microhardness of 128 HV to the range of 160-320 HV. The found results give a new perspective for using the CLA/IPEN's laser in the heat treatment area. Besides providing a higher absorptivity to the materials, compared with the CO 2 laser, and optical fiber access, the superficial hardening with Nd:YAG laser, depending on the level of

  20. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  1. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank

    2014-01-01

    are mutually correlated, it remains challenging to interpret measurement results and to identify the distinct error sources. Since simulations allow isolating the different affecting factors, they form a useful complement to experimental investigations. Dewulf et al (2012 CIRP Ann. Manuf. Technol. 61 495......–8) investigated the influence of beam hardening correction parameters on the diameter of a calibrated steel pin in different experimental set-ups. It was clearly shown that an inappropriate beam hardening correction can result in significant dimensional errors. This paper confirms these results using simulations...... of a pin surrounded by a stepped cylinder: a clear discontinuity in the measured diameter of the inner pin is observed where it enters the surrounding material. The results are expanded with an investigation of the beam hardening effect on the measurement results for both inner and outer diameters...

  2. The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis.

    Science.gov (United States)

    Fujiwara, Makoto T; Yasuzawa, Mana; Kojo, Kei H; Niwa, Yasuo; Abe, Tomoko; Yoshida, Shigeo; Nakano, Takeshi; Itoh, Ryuuichi D

    2018-01-01

    Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division

  3. Effect of Carica papaya (Linn) aqueous leaf extract on ...

    African Journals Online (AJOL)

    Effect of Carica papaya (Linn) aqueous leaf extract on pharmacokinetic ... Keywords: Carica papaya, Ciprofloxacin, Sickle cell anaemia, Herb-drug interaction, Pharmacokinetics. Tropical ..... and reproduction in any medium, provided the.

  4. Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies.

    Science.gov (United States)

    Paul, Anamika; Bakshi, Souvika; Sahoo, Debee Prasad; Kalita, Mohan Chandra; Sahoo, Lingaraj

    2012-04-01

    An optimized protocol for Agrobacterium tumefaciens-mediated transformation of patchouli using leaf disk explants is reported. In vitro antibacterial activity of leaf extracts of the plants revealed Agrobacterium sensitivity to the extracts. Fluorometric assay of bacterial cell viability indicated dose-dependent cytotoxic activity of callus extract against Agrobacterium cells. Addition of 0.1% Tween 20 and 2 g/l L-glutamine to Agrobacterium infection medium counteracted the bactericidal effect and significantly increased the T-DNA delivery to explants. A short preculture of explants for 2 days followed by infection with Agrobacterium in medium containing 150 μM of acetosyringone were found essential for efficient T-DNA delivery. Cocultivation for 3 days at 22 °C in conjunction with other optimized factors resulted in maximum T-DNA delivery. The Agrobacterium-mediated transformation of leaf disk explants were found significantly related to physiological age of the explants, age and origin of the of the donor plant. Leaf explants from second node of the 3-month-old in vivo plants showed highest transformation efficiency (94.3%) revealed by transient GUS expression assay. Plants selected on medium containing 20 mg/l kanamycin showed stable GUS expression in leaves and stem. The elongated shoots readily developed roots on kanamycin-free rooting medium and on transfer to soil, plants were successfully established. Polymerase chain reaction (PCR) and reverse-transcriptase PCR analysis in putative plants confirmed their transgenic nature. The established transformation method should provide new opportunities for the genetic improvement of patchouli for desirable trait.

  5. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  6. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  7. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  8. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  9. Hardening of the national flower of Colombia, the threatened Cattleya trianae (Orchidaceae, from in vitro culture with previous invigoration phase

    Directory of Open Access Journals (Sweden)

    Marcela Franco

    2007-06-01

    Full Text Available Cattleya trianae is an endemic species from the tropical rainforest in the Colombian Andes. Its survival is currently threatened due to habitat loss and commercial overexploitation. This study evaluates ten substrates, some organic (pine bark, coconut fiber and wood shavings, some inert icopor (polystyrene foam, vegetable coal and their combinations, and the effects these have on morphometric and phenotypic traits in the hardening phase of 250 plants of C. trianae cultivated in vitro. Recorded data include percent survival, length of longest leaf, biomass (wet weight and number of roots and leaves at the beginning and at the end of the experiment. After the hardening phase, the plants were taken to a greenhouse and later to the natural environment. Coconut fiber alone or mixed in equal parts with pine bark and coal was the most efficient substrate when percent survival (80±SE=0.3742, biomass, and leaf length were evaluated. Hardened plants displayed qualitative characteristics such as vigor, hardness and waxy texture, strength of green coloration in the leaves, and velamen formation. Under greenhouse conditions, plants grew better with filtered light, relative humidity bordering on 80 %, permanent aeration, misting with water, and an average temperature of 25±2 °C. Invigorated plants were firmly anchored on their host trees. Rev. Biol. Trop. 55 (2: 681-691. Epub 2007 June, 29.Cattleya trianae es una especie endémica de los bosques tropicales de los Andes colombianos. Actualmente se encuentra amenazada por la disminución de su hábitat natural y la sobreexplotación con fines comerciales. En este estudio se evaluó el efecto de diez tratamientos con sustratos biológicos (corteza de pino, fibra de coco y viruta e inertes (esferitas de "icopor" y carbón vegetal en diferentes combinaciones, sobre aspectos morfométricos y fenotípicos en la etapa de endurecimiento de 250 vitroplantas de C. trianae. Se registró porcentaje de supervivencia

  10. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  11. A Radiation Hardened Housekeeping Slave Node (RH-HKSN) ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — This projects seeks to continue the development of the Radiation Hardened Housekeeping Slave Node (RH-HKSN) ASIC. The effort has taken parallel paths by implementing...

  12. Leaf size and leaf display of thirty-eight tropical tree species

    NARCIS (Netherlands)

    Poorter, L.; Rozendaal, D.M.A.

    2008-01-01

    Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We

  13. Numerical simulations of progressive hardening by using ABAQUS FEA software

    Directory of Open Access Journals (Sweden)

    Domański Tomasz

    2018-01-01

    Full Text Available The paper concerns numerical simulations of progressive hardening include phase transformations in solid state of steel. Abaqus FEA software is used for numerical analysis of temperature field and phase transformations. Numerical subroutines, written in fortran programming language are used in computer simulations where models of the distribution of movable heat source, kinetics of phase transformations in solid state as well as thermal and structural strain are implemented. Model for evaluation of fractions of phases and their kinetics is based on continuous heating diagram and continuous cooling diagram. The numerical analysis of thermal fields, phase fractions and strain associated progressive hardening of elements made of steel were done.

  14. Effect of aluminizing on hardenability of steel (S45C)

    Science.gov (United States)

    Prayitno, D.; Sugiarto, R.

    2018-01-01

    The objective of research is to know the effect of aluminizing on hardenability of steel (S45C). The research methodologies were as follows. The Steels (S45C) were machined into the Jominy test samples. Next the samples were preheating at 700 ° C for 30 minutes and then the samples were dipped into the molten of aluminium for 3 minutes as a hot dip aluminizng method. The aluminium molten was 700 ° C. Then the samples were cooled into room temperatures. Finally the samples were into the jominy tested. The results show that the aluminizing (include the preheating process) increases the hardenability of steel (S45C).

  15. Leaf structural traits of tropical woody species resistant to cement dust.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa

    2016-08-01

    Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.

  16. Effects of kinematic hardening rules on thermal ratchetting analysis of cylinders subjected to cyclically moving temperature distribution

    International Nuclear Information System (INIS)

    Ohno, N.; Kobayashi, M.

    1995-01-01

    In the present work, thermal ratchetting in a cylinder subjected to a cyclically moving temperature front (i.e. liquid surface induced thermal ratchetting) was analyzed by implementing in a finite element method the four kinds of plasticity models with different kinematic hardening rules. The following findings were thus obtained concerning effects of the kinematic hardening rules on the analysis. (1) If transition nonlinear hardening after yielding is disregarded, the thermal ratchetting becomes significant, as seen in the results of the PP and LKH models. Especially the PP model, which does not express any strain hardening, predicts steady development of the thermal ratchetting. (2) If significant mechanical ratchetting is allowed in the modeling of kinematic hardening, the thermal ratchetting becomes marked, as seen in the results of the AF model. (3) Model dependence of the thermal ratchetting is more noticeable when the difference of temperature at the temperature front, ΔT, is smaller. (4) The OW model makes the thermal ratchetting stop at a smaller number of cycles when ΔT is smaller. On the other hand, the LKH and AF models allow that the thermal ratchetting to develop more constantly when ΔT is smaller. As seen from the above findings, the analysis of liquid surface induced thermal ratchetting has great dependence on the kinematic hardening rules employed. Especially the PP model, which has been used often to analyze the thermal ratchetting so far, gives too large development of the thermal ratchetting. Thus we may say that in order to improve the analysis it is necessary to use an appropriate kinematic hardening model which is capable of expressing appropriately both mechanical ratchetting and transient nonlinear hardening after yielding. (author)

  17. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  18. system hardening architecture for safer access to critical business

    African Journals Online (AJOL)

    eobe

    System hardening is a defence strategy, where several different security measures are applied at various layers, all of which .... commerce have tremendously imparted on corporate services ..... Technology and Exploring Engineering, Vol. 2,.

  19. Architecture and performance of radiation-hardened 64-bit SOS/MNOS memory

    International Nuclear Information System (INIS)

    Kliment, D.C.; Ronen, R.S.; Nielsen, R.L.; Seymour, R.N.; Splinter, M.R.

    1976-01-01

    This paper discusses the circuit architecture and performance of a nonvolatile 64-bit MNOS memory fabricated on silicon on sapphire (SOS). The circuit is a test vehicle designed to demonstrate the feasibility of a high-performance, high-density, radiation-hardened MNOS/SOS memory. The array is organized as 16 words by 4 bits and is fully decoded. It utilizes a two-(MNOS) transistor-per-bit cell and differential sensing scheme and is realized in PMOS static resistor load logic. The circuit was fabricated and tested as both a fast write random access memory (RAM) and an electrically alterable read only memory (EAROM) to demonstrate design and process flexibility. Discrete device parameters such as retention, circuit electrical characteristics, and tolerance to total dose and transient radiation are presented

  20. On the hardenability of Nb-modified metastable beta Ti-5553 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Campo, K.N.; Andrade, D.R.; Opini, V.C.; Mello, M.G.; Lopes, E.S.N.; Caram, R., E-mail: caram@fem.unicamp.br

    2016-05-15

    Among the commercially available titanium alloys, the metastable β Ti-5553 alloy (Ti–5Al–5V–5Mo–3Cr–0.5Fe wt.%) is an object of great interest because it is employed in aerospace structural applications, primarily in the replacement of steel components. One of the primary advantages of this alloy is its high hardenability, which allows it to retain the β phase at room temperature, even at low cooling rates, thereby allowing the thermoprocessing of thick parts. The aim of this investigation was to evaluate the effect of the replacement of V with Nb on the hardenability of Ti-5553. Based on the molybdenum equivalent criterion, the Nb-modified Ti-5553 alloy was designed to present 12 wt.% of Nb instead of 5 wt.% of V. Samples of both alloys were prepared by melting them in an arc furnace under an inert atmosphere, heat-treated at high temperatures for 12 h and plastic deformed using swage forging. Finally, these samples were solution heat-treated at temperatures above the β-transus followed by cooling at different rates using water quenching, furnace cooling and a modified Jominy end quench test. Characterization was performed by measuring Vickers hardness, X-ray diffraction, and light optical, scanning electron and transmission electron microscopy. The results obtained indicate that metastable β phase can be retained when the cooling rate is higher than 21 °C/s for both alloys. At lower cooling rates, α phase precipitation was observed, but it appeared to be less evident in the Nb-modified Ti-5553, suggesting that the replacement of V with Nb increased the hardenability of the alloy. - Highlights: • Hardenability of Ti alloys are assessed using a modified Jominy end quench test. • Ti-5553 and Nb-modified Ti-5553 are subjected to continuous cooling experiments. • β phase decomposition kinetics is reduced by replacing V with Nb in Ti-5553. • Nb-modified Ti-5553 features improved hardenability. • Replacement of V with Nb causes the

  1. Accelerated age hardening by plastic deformation in Al-Cu with minor additions of Si and Ge

    International Nuclear Information System (INIS)

    Victoria Castro Riglos, M.; Taquire de la Cruz, M.; Tolley, Alfredo

    2011-01-01

    An extremely fast hardening response with no reduction in peak hardness was obtained in Al-Cu with minor additions of Si and Ge by 8% plastic deformation before artificial aging. The mechanism for the accelerated hardening was determined by detailed characterization with transmission electron microscopy. Plastic deformation was found to enhance the nucleation rate of Si-Ge precipitates, resulting in a higher volume density. Such precipitates catalyzed the formation of θ' precipitates that are responsible for hardening.

  2. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  3. Origanum vulgare leaf extract protects mice bone marrow cells against ionizing radiation

    Directory of Open Access Journals (Sweden)

    Reza Ghasemnezhad Targhi

    2016-11-01

    Full Text Available Objective: Ionizing radiation produces free radicals which induce DNA damage and cell death. Origanum vulgare leaf extract (OVLE is a natural compound and its capability of scavenging free radicals and its antioxidant activity have been demonstrated by many researchers. In this study, using micronucleus assay, radioprotective effect of OVLE against clastogenic and cytotoxic effect of gamma irradiation has been investigated in mice bone marrow cells. Materials and Methods: OVLE was injected intraperitoneally to the BALB/c mice 1hr prior to gamma irradiation (3Gy at the doses of 100 and 200 mg/kg. Twenty four hours after irradiation or treatment, animals were killed and smears were prepared from the bone marrow cells. The slides were stained with May Grunwald–Giemsa method and analyzed microscopically. The frequency of micronucleated polychromatic erythrocytes (MnPCEs, micronucleated normochromatic erythrocyte (MnNCEs and cell proliferation ratio PCE/PCE+NCE (polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte were calculated. Results: The results showed that gamma irradiation (3Gy increased the frequency of MnPCEs, MnNCEs and  reduced the PCE/PCE+NCE ratio in mice bone marrow compared to the non-irradiated control group (p< 0.0001. Injection of OVLE significantly reduced the frequency of MnPCEs (p< 0.0001 and MnNCEs (p< 0.05 and increased the PCE/PCE+NCE ratio as compared to the irradiated control group (p< 0.05. Conclusion: It seems that OVLE with its antioxidant properties and its capability of scavenging free radicals and reactive oxygen species can reduce the cytotoxic effects of gamma irradiation in mice bone marrow cells.

  4. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  5. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    DEFF Research Database (Denmark)

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter

    2010-01-01

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets conta...

  6. Thermal hardening of saturated clays. Application to underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Picard, Jean-Marc

    1994-01-01

    Saturated clays submitted to constant mechanical loading and slow temperature increase frequently undergo irreversible contractions. This phenomena is described here by means of a change of plastic limits induced by temperature only, called thermal hardening. Constitutive laws adapted to this kind of plastic behaviour can be formulated within a general framework that satisfies thermodynamical principles. It shows that this coupling results from the presence of a latent heat during the isothermal hardening of plastic limits. A thermomechanical extension of Cam Clay model is then proposed and used in the analysis of laboratory thermomechanical tests performed on clay materials. Making use of tests already published, we show the adequacy of the concept of thermal hardening for clay behaviour. Some clay from deep geological formation considered for the disposal of radioactive waste exhibit thermal hardening in laboratory tests. The consequences for the underground storage facilities during the thermal loading created by the waste are investigated by means of in situ tests as well as numerical computation. The measurement around a heating probe buried in the clay mass demonstrate the significance of thermo-hydro-mechanical couplings. An accurate understanding of in situ measurements is achieved by means of numerical modeling in which the interaction between the various loading of the tests (excavation, pore pressure seepage, and heating) is carefully taken into account. Thermal hardening of the clay appears to be of little influence in these in situ tests. On the other hand, the magnitude of thermo-hydro-mechanical couplings observed in situ are higher than might have been expected from laboratory tests. A more accurate prediction is obtained if one takes into account the more stiffer behaviour of clays when they are subjected to small deformations. (authors)

  7. Hardening of alloys in glow discharge with the use of pulsed electric current

    International Nuclear Information System (INIS)

    Shipko, M.N.; Pomel'nikova, A.S.; Solunin, A.M.; Solunin, M.A.

    2002-01-01

    The effect of ex/ternal pulsed electric field on the thickness of a hardened surface layer of a Nd-Fe-B system alloy during chemical heat treatment in a glow discharge is studied. The relationship is established between the hardened layer thickness and the frequency of external electric field which is verified by derived equations for the relation between electron energy and pulsed electric field frequency [ru

  8. Comprehensive Analysis of the Chemical Composition and In Vitro Cytotoxic Mechanisms of Pallines Spinosa Flower and Leaf Essential Oils Against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ayman M Saleh

    2017-08-01

    Full Text Available Background/Aims: In our quest for new natural anticancer agents, we studied the cytotoxicity of the essential oils extracted from flowers and leaves of Pallines spinosa. Methods: The essential oils were extracted by hydrodistillation and solid phase microextraction (SPME from flowers and leaves of the plant and their composition was determined by GC/GC-MS. The cytotoxicity of the oils was evaluated against MCF-7 and MDA-MB-231 breast adenocarcinomas, and the non-cancerous MCF-10-2A cells, using a flow cytometry-based assay Apoptosis was evaluated by flow cytometry, nuclear staining, caspases activation, and Western blotting techniques, and cell cycle by measuring DNA contents. Results: The hydrodistilled flower oil contained mainly sesquiterpenes (96.39%, while the leaf sample was dominated by oxygenated-sesquiterpenes (51.60% and sesquiterpene-hydrocarbons (34.06%. In contrast, the SPME oil contained mainly monoterpene-hydrocarbons (44.09% and sesquiterpene-hydrocarbons (34.15% in the flower and leaf samples, respectively. The cytotoxicity of the flower oil against MCF-7 (IC50 0.25 ± 0.03 µg/mL and MDA-MB-231 (IC50 0.21 ± 0.03 µg/mL was much stronger than the leaf oil (IC50 2.4 ± 0.5 µg/mL and 1.5 ± 0.1 µg/mL, respectively. The toxicity of the flower oil was ∼5 to 8-times less in normal MCF-10-2A (IC50 1.3 ± 0.2 µg/mL and blood mononuclear cells (2.80 ± 0.45 µg/mL as compared to breast and hematological cancer cells, respectively. Both oils induced a caspase-dependent and -independent apoptosis in MCF-7 and MDA-MB-231 cells, and altered the levels of Bcl-2 and Bax proteins. In addition, the oils arrested cell cycle in both cancer cell lines at G0/G1 phase by modulating the expression of cyclin D1, CDK4 and p21 proteins. Conclusion: The cytotoxicity of P. spinosa oils were mediated by apoptosis and cell cycle arrest, suggesting the potential use of their bioactive compounds as natural anticancer compounds.

  9. Epoxy modified bitumen : Chemical hardening and its interpretation

    NARCIS (Netherlands)

    Apostolidis, P.; Pipintakos, G.; van de Ven, M.F.C.; Liu, X.; Erkens, Sandra; Scarpas, Athanasios

    2018-01-01

    Epoxy modified bitumen (EMB) is a promising technology for long lasting paving materials ensuring higher resistance to rutting, oxygen- and moisture-induced damage. In this paper, an analysis of the chemical reactions that take place during the chemical hardening process (curing) of epoxy modified

  10. Oleuropein-Enriched Olive Leaf Extract Affects Calcium Dynamics and Impairs Viability of Malignant Mesothelioma Cells

    Directory of Open Access Journals (Sweden)

    Carla Marchetti

    2015-01-01

    Full Text Available Malignant mesothelioma is a poor prognosis cancer in urgent need of alternative therapies. Oleuropein, the major phenolic of olive tree (Olea europaea L., is believed to have therapeutic potentials for various diseases, including tumors. We obtained an oleuropein-enriched fraction, consisting of 60% w/w oleuropein, from olive leaves, and assessed its effects on intracellular Ca2+ and cell viability in mesothelioma cells. Effects of the oleuropein-enriched fraction on Ca2+ dynamics and cell viability were studied in the REN mesothelioma cell line, using fura-2 microspectrofluorimetry and MTT assay, respectively. Fura-2-loaded cells, transiently exposed to the oleuropein-enriched fraction, showed dose-dependent transient elevations of cytosolic Ca2+ concentration (Ca2+i. Application of standard oleuropein and hydroxytyrosol, and of the inhibitor of low-voltage T-type Ca2+ channels NNC-55-0396, suggested that the effect is mainly due to oleuropein acting through its hydroxytyrosol moiety on T-type Ca2+ channels. The oleuropein-enriched fraction and standard oleuropein displayed a significant antiproliferative effect, as measured on REN cells by MTT cell viability assay, with IC50 of 22 μg/mL oleuropein. Data suggest that our oleuropein-enriched fraction from olive leaf extract could have pharmacological application in malignant mesothelioma anticancer therapy, possibly by targeting T-type Ca2+ channels and thereby dysregulating intracellular Ca2+ dynamics.

  11. Effect of Fibers and Filler Types on Fresh and Hardened Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Saeed K. Rejeb* , Majid Kh . N. Ayad A. M.

    2014-04-01

    Full Text Available This paper deals with studying the fresh and hardened properties of self-compacting concrete, by using three types of filler (silica fume, clinker powder & lime stone powder, and two types of fibers (steel & glass fibers with volume fractions of (0.5% and (0.1% respectively. For each type of fillers, the fresh properties are measured by using Slump test, J- ring and V- funnel, while hardened properties include the compressive strength, splitting tensile strength and flexural strength. The results show that adding fibers to the self-compacting concrete (SCC well reduces the workability and improves the hardened properties. Also, the study concluded that better workability is obtained by using (lime stone, silica fume and clinker powder as fillers, respectively. While the higher hardened properties are gained by using silica fume were rather than those of other types of fillers 

  12. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  13. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yijie; Wang Qiming; Cui Yi; Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.com [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2011-06-15

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  14. Optimization of resistively hardened latches

    International Nuclear Information System (INIS)

    Gagne, G.; Savaria, Y.

    1990-01-01

    The design of digital circuits tolerant to single-event upsets is considered. The results of a study are presented on which an analytical model was used to predict the behavior of a standard resistively hardened latch. It is shown that a worst case analysis for all possible single-event upset situations (on the latch or in the logic) can be derived from studying the effects of a transient disturbed write cycle. The existence of an intrinsic minimum write period to tolerate a transient of a given duration is also demonstrated

  15. Multiple regression analysis of Jominy hardenability data for boron treated steels

    International Nuclear Information System (INIS)

    Komenda, J.; Sandstroem, R.; Tukiainen, M.

    1997-01-01

    The relations between chemical composition and their hardenability of boron treated steels have been investigated using a multiple regression analysis method. A linear model of regression was chosen. The free boron content that is effective for the hardenability was calculated using a model proposed by Jansson. The regression analysis for 1261 steel heats provided equations that were statistically significant at the 95% level. All heats met the specification according to the nordic countries producers classification. The variation in chemical composition explained typically 80 to 90% of the variation in the hardenability. In the regression analysis elements which did not significantly contribute to the calculated hardness according to the F test were eliminated. Carbon, silicon, manganese, phosphorus and chromium were of importance at all Jominy distances, nickel, vanadium, boron and nitrogen at distances above 6 mm. After the regression analysis it was demonstrated that very few outliers were present in the data set, i.e. data points outside four times the standard deviation. The model has successfully been used in industrial practice replacing some of the necessary Jominy tests. (orig.)

  16. Effect of aging hardening on in situ synthesis magnesium matrix composites

    International Nuclear Information System (INIS)

    Zhang Xiuqing; Liao Lihua; Ma Naiheng; Wang Haowei

    2006-01-01

    Magnesium matrix composites reinforced with TiC particulates was synthesized using in situ synthesis technique. The result of XRD revealed the presence of TiC in precursor blocks and TiC/AZ91 composites. Effect of aging hardening on the composites was described using Brinell hardness measurements and scanning electron microscopy (SEM). The results revealed that the aging hardening peak of TiC/AZ91 composite appeared earlier comparatively with that of AZ91 magnesium alloy. And the appearance of aging hardening peak was earlier under the higher aging temperature such as 200 deg. C. The precipitating behavior of Mg 17 Al 12 phase in AZ91 alloy and TiC/AZ91 composites was described. Little discontinuous was discovered in the composites, and the amount of continuous precipitate in the composite matrix is smaller comparatively to that of AZ91 alloy. These results were analyzed with the fine grain size, much more interface between TiC and magnesium and high-density dislocation in magnesium matrix, which was contributed to the addition of TiC particulates

  17. NEW APPROACH FOR TECHNOLOGY OF VOLUMETRIC – SUPERFICIAL HARDENING OF GEAR DETAILS OF THE BACK AXLE OF MOBILE MACHINES

    Directory of Open Access Journals (Sweden)

    A. I. Mihluk

    2010-01-01

    Full Text Available The new approach for technology of volumetric – superficial hardening of gear details of the back axle made of steel lowered harden ability is offered. This approach consisting in formation of intense – hardened condition on all surface of a detail.

  18. The method of modelling of relationships between hardenability and chemical composition of the constructional alloy steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    1998-01-01

    Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. The practical usability of the models developed is presented. (author)

  19. Microstructural and Mechanical Study of Press Hardening of Thick Boron Steel Sheet

    Science.gov (United States)

    Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D.

    2017-09-01

    Press hardening has become a staple in the production of automotive safety components, due to the combination of high mechanical properties and form complexity it offers. However, the use of press hardened components has not spread to the truck industry despite the advantages it confers, namely affordable weight reduction without the use of exotic materials, would be extremely attractive for this sector. The main reason for this is that application of press hardened components in trucks implies adapting the process to the manufacture of thick sheet metal. This introduces an additional layer of complexity, mainly due to the thermal gradients inside the material resulting in though-thickness differences in austenitization and cooling, potentially resulting in complex microstructure and gradient of mechanical properties. This work presents a preliminary study on the press hardening of thick boron steel sheet. First of all, the evolution of the sheet metal during austenitization is studied by means of dilatometry tests and by analysing the effect of furnace dwell time on grain size. Afterwards, material cooled using different cooling strategies, and therefore different effective cooling rates, is studied in terms of microstructure and mechanical properties. Initial results from finite element simulation are compared to experimental results, focusing on the phase composition in through thickness direction. Results show that industrial-equivalent cooling conditions do not lead to gradient microstructures, even in extreme scenarios involving asymmetrical cooling.

  20. Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel

    Science.gov (United States)

    Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar

    2017-12-01

    In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.

  1. Linking stress with macroscopic and microscopic leaf response in trees: New diagnostic perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland)]. E-mail: madeleine.goerg@wsl.ch; Vollenweider, Pierre [Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland)

    2007-06-15

    Visible symptoms in tree foliage can be used for stress diagnosis once validated with microscopical analyses. This paper reviews and illustrates macroscopical and microscopical markers of stress with a biotic (bacteria, fungi, insects) or abiotic (frost, drought, mineral deficiency, heavy metal pollution in the soil, acidic deposition and ozone) origin helpful for the validation of symptoms in broadleaved and conifer trees. Differentiation of changes in the leaf or needle physiology, through ageing, senescence, accelerated cell senescence, programmed cell death and oxidative stress, provides additional clues raising diagnosis efficiency, especially in combination with information about the target of the stress agent at the tree, leaf/needle, tissue, cell and ultrastructural level. Given the increasing stress in a changing environment, this review discusses how integrated diagnostic approaches lead to better causal analysis to be applied for specific monitoring of stress factors affecting forest ecosystems. - Macroscopic leaf symptoms and their microscopic analysis as stress bioindications.

  2. Linking stress with macroscopic and microscopic leaf response in trees: New diagnostic perspectives

    International Nuclear Information System (INIS)

    Guenthardt-Goerg, Madeleine S.; Vollenweider, Pierre

    2007-01-01

    Visible symptoms in tree foliage can be used for stress diagnosis once validated with microscopical analyses. This paper reviews and illustrates macroscopical and microscopical markers of stress with a biotic (bacteria, fungi, insects) or abiotic (frost, drought, mineral deficiency, heavy metal pollution in the soil, acidic deposition and ozone) origin helpful for the validation of symptoms in broadleaved and conifer trees. Differentiation of changes in the leaf or needle physiology, through ageing, senescence, accelerated cell senescence, programmed cell death and oxidative stress, provides additional clues raising diagnosis efficiency, especially in combination with information about the target of the stress agent at the tree, leaf/needle, tissue, cell and ultrastructural level. Given the increasing stress in a changing environment, this review discusses how integrated diagnostic approaches lead to better causal analysis to be applied for specific monitoring of stress factors affecting forest ecosystems. - Macroscopic leaf symptoms and their microscopic analysis as stress bioindications

  3. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    International Nuclear Information System (INIS)

    Barucca, G.; Ferragut, R.; Fiori, F.; Lussana, D.; Mengucci, P.; Moia, F.; Riontino, G.

    2011-01-01

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the β'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on β'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with β'' → β' transformation.

  4. Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation.

    Directory of Open Access Journals (Sweden)

    Navjot Shah

    Full Text Available Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays.We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach.Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.

  5. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    Science.gov (United States)

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  6. Technologies Enabling Custom Radiation-Hardened Component Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Two primary paths are available for the creation of a Rad-Hard ASIC. The first approach is to use a radiation hardened process such as existing Rad-Hard foundries....

  7. Radiation Hardened Ethernet PHY and Switch Fabric, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innoflight will develop a new family of radiation hardened (up to 3 Mrad(Si)), fault-tolerant, high data-rate (up to 8 Gbps), low power Gigabit Ethernet PHY and...

  8. A radiation-hardened SOI-based FPGA

    International Nuclear Information System (INIS)

    Han Xiaowei; Wu Lihua; Zhao Yan; Li Yan; Zhang Qianli; Chen Liang; Zhang Guoquan; Li Jianzhong; Yang Bo; Gao Jiantou; Wang Jian; Li Ming; Liu Guizhai; Zhang Feng; Guo Xufeng; Chen, Stanley L.; Liu Zhongli; Yu Fang; Zhao Kai

    2011-01-01

    A radiation-hardened SRAM-based field programmable gate array VS1000 is designed and fabricated with a 0.5 μm partial-depletion silicon-on-insulator logic process at the CETC 58th Institute. The new logic cell (LC), with a multi-mode based on 3-input look-up-table (LUT), increases logic density about 12% compared to a traditional 4-input LUT The logic block (LB), consisting of 2 LCs, can be used in two functional modes: LUT mode and distributed read access memory mode. The hierarchical routing channel block and switch block can significantly improve the flexibility and routability of the routing resource. The VS1000 uses a CQFP208 package and contains 392 reconfigurable LCs, 112 reconfigurable user I/Os and IEEE 1149.1 compatible with boundary-scan logic for testing and programming. The function test results indicate that the hardware and software cooperate successfully and the VS1000 works correctly. Moreover, the radiation test results indicate that the VS1000 chip has total dose tolerance of 100 krad(Si), a dose rate survivability of 1.5 x 10 11 rad(Si)/s and a neutron fluence immunity of 1 x 10 14 n/cm 2 . (semiconductor integrated circuits)

  9. Radiation-Hardened Memristor-based Memory for Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration missions require radiation-hardened memory technologies that can survive and operate over a wide temperature range. Memristors...

  10. The multi leaf collimator for fast neutron therapy at louvain-la-Neuve

    International Nuclear Information System (INIS)

    Denis, J.M.; Richard, F.; Vynckier, S.; Wambersie, A.; Meulders, J.P.; Lannoye, E.; Longree, Y.; Ryckewaert, G.

    1996-01-01

    The multi-leaf collimator of the fast neutron therapy facility at Louvain-la-Neuve is described, as well as some of the physics experiments performed in order to evaluate the attenuation of neutron beams in different materials and thus optimize the composition of collimator leaves. The multi-leaf collimator consists of two sets of 22 leaves each, which can be moved independently. They are made of iron and their thickness is 95 cm. Seven borated polyethylene disks are located in the distal part of the leaves in order to absorb more efficiently the low-energy component of the neutron spectrum. The width of the leaves is 1 cm at their distal part. The leaves can more 11 cm outwards and 6 cm inwards from their reference position, and field size up to 25.7 x 24.8 cm as well as irregular field shapes, can be obtained. The inner part of the leaves and their two sides are always focused on the target. The complete multi-leaf collimator can rotate around the beam axis, from -90 deg to + 90 deg from the reference position. The width of the penumbra (80 - 20 % isodoses) is 0.64 cm and 1.17 cm at the depth of the maximum buildup and at 10 cm in depth respectively, for a 10 x 10 cm field size. The collimator is adequate for the energy of the p(65)+Be neutron beam of Louvain-la-Neuve and has been adapted to the fixed vertical beam. It has been designed following the original plans of Scanditronix, adjusted and fully assembled at the workshop of the Centre de Recherches du Cyclotron (CRC). Systematic measurements were performed in order to optimize the design and the composition of the leaves. In particular the attenuations of the actual beam and of monoenergetic neutron beams were measured in different materials such as iron and polyethylene. Above (upstream) the multi-leaf collimator, a fixed pre-collimator (iron thickness 50 cm; section 1 x 1 m) defines a conical aperture aligned on the largest opening of the leaves. It contains the two transmission chambers and a 2 cm thick

  11. Design optimization of radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    1975-01-01

    Ionizing-radiation-induced threshold voltage shifts in CMOS integrated circuits will drastically degrade circuit performance unless the design parameters related to the fabrication process are properly chosen. To formulate an approach to CMOS design optimization, experimentally observed analytical relationships showing strong dependences between threshold voltage shifts and silicon dioxide thickness are utilized. These measurements were made using radiation-hardened aluminum-gate CMOS inverter circuits and have been corroborated by independent data taken from MOS capacitor structures. Knowledge of these relationships allows one to define ranges of acceptable CMOS design parameters based upon radiation-hardening capabilities and post-irradiation performance specifications. Furthermore, they permit actual design optimization of CMOS integrated circuits which results in optimum pre- and post-irradiation performance with respect to speed, noise margins, and quiescent power consumption. Theoretical and experimental results of these procedures, the applications of which can mean the difference between failure and success of a CMOS integrated circuit in a radiation environment, are presented

  12. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    Science.gov (United States)

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are... Martensitic Stainless Steel Report Title An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material

  13. work hardening, recovery and recrystallization of alloys containing dispersed precipitates

    International Nuclear Information System (INIS)

    Padilha, A.F.

    1989-01-01

    This paper reviews the work hardening, recovery and recrystallization mechanisms in alloys containing dispersed precipitates. In the section on work hardening, the influence od spacing, particle size and shape on the density and distribution of dislocations have been discussed. They represent a large part of the energy stored in the material following drformation, which in turn is driving force for recrystallization. Next, the role of precipitates on recovery, on the formation and the growth of recrystallized regions has been discussed in detail. The competition between recovery and recrystallization and recrystallization of supersaturated solid solutions have also been mentioned. Finally, the technological relevance of the aspects treated in this paper has been discussed. (author) [pt

  14. Experimental drying shrinkage of hardened cement pastes as a function of relative humidity

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Baroghel, V.B.

    1996-01-01

    The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared.......The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared....

  15. Work hardening and mechanical equation of state in some metals in monotonic loading

    International Nuclear Information System (INIS)

    Wire, G.L.; Ellis, F.V.; Li, C.Y.

    The work hardening coefficients of Type 316 stainless steel, niobium, and 1100 aluminum alloy are measured in tensile tests. It is demonstrated experimentally that in the measured stress, plastic strain rate, and temperature range the work hardening coefficient depends only on stress and plastic strain rate. The significance of the experimental results is discussed in terms of the concept of the mechanical equation of state for plastic deformation. 13 figures

  16. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    Science.gov (United States)

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  17. Observation of a New Mechanism Balancing Hardening and Softening in Metals

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2014-01-01

    Plastic deformation of metals refines the microstructure and increases the strength through work hardening, but this effect of deformation is counterbalanced by dynamic recovery. After large strain, the microstructure typically shows a lamellar morphology, with finely spaced lamellar boundaries...... connected by triple junctions. Here, we report that mechanically assisted triple junction motion is an important contributor to dynamic recovery, leading to an almost steady state. Triple junction motion replaces two boundaries by one, while maintaining the structural morphology. The observation...... rationalizes both a decreasing work hardening rate and the approach to a dynamic equilibrium of structural refinement at large strains....

  18. Calculation of calcium diffusion coefficient of cement hardenings using minute pore data

    International Nuclear Information System (INIS)

    Hitomi, Takashi; Takeda, Nobufumi; Iriya, Keishiro

    2009-01-01

    This report describes the calculations of the diffusion coefficient of the Ca ion of cement hardenings using minute pore data. The observed hardenings were ordinary Portland cement (OPC), low-heat Portland cement with fly ash (LPC+FA) and highly fly ash containing silica fume cement (HFSC). The samples were cured in the standard and artificially leached by accelerated test. Minute pore datas of the cement hardenings were acquired with image processing of internal structural information obtained from high resolution X-ray computed tomography observations. Upon analysis, several voxels are combined into one bigger voxel, the diffusion coefficient of the voxels were determined in proportion to the number of voxels which were included in. The results reveal that the change in the calcium diffusion coefficient of OPC due to leaching was large, but the LPC+FA and HFSC cements exhibited even greater changes than OPC. It is suggested that the diffusion coefficients are proportional to the Ca/Si ratio of the samples. (author)

  19. Non-destructive screening method for radiation hardened performance of large scale integration

    International Nuclear Information System (INIS)

    Zhou Dong; Xi Shanbin; Guo Qi; Ren Diyuan; Li Yudong; Sun Jing; Wen Lin

    2013-01-01

    The space radiation environment could induce radiation damage on the electronic devices. As the performance of commercial devices is generally superior to that of radiation hardened devices, it is necessary to screen out the devices with good radiation hardened performance from the commercial devices and applying these devices to space systems could improve the reliability of the systems. Combining the mathematical regression analysis with the different physical stressing experiments, we investigated the non-destructive screening method for radiation hardened performance of the integrated circuit. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The irradiation-sensitive parameters were confirmed. The pluralistic linear regression equation toward the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability and accuracy of the non-destructive screening method can be elevated by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  20. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on ...

    African Journals Online (AJOL)

    The effects of incorporation of Moringa leaf fibre (a by-product of leaf processing which contains 24% Crude Fibre by dry weight at 0, 5 and 10 % substitution of wheat flour in cookies was investigated. Three products containing wheat flour: Moringa leaf fibre ratios of 100:0, 95:5, and 90:10 respectively were prepared, and a ...

  1. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    Science.gov (United States)

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  2. SEGR- and SEB-hardened structure with DSPSOI in power MOSFETs

    Science.gov (United States)

    Tang, Zhaohuan; Fu, Xinghua; Yang, Fashun; Tan, Kaizhou; Ma, Kui; Wu, Xue; Lin, Jiexing

    2017-12-01

    Single event irradiation-hardened power MOSFET is the most important device for DC/DC converter in space environment application. Single event gate rupture (SEGR) and single event burnout (SEB), which will degrade the running safety and reliability of spacecraft, are the two typical failure modes in power MOSFETs. In this paper, based on recombination mechanism of interface between oxide and silicon, a novel hardened power MOSFETs structure for SEGR and SEB is proposed. The structure comprises double stagger partial silicon-on-insulator (DSPSOI) layers. Results show that the safety operation area (SOA) of a 130 V N-channel power MOSFET in single event irradiation environment is enhanced by up to 50% when the linear-energy-transfer value of heavy ion is a constant of 98 MeV·cm2/mg in the whole incident track, and the other parameters are almost maintained at the same value. Thus this novel structure can be widely used in designing single event irradiation-hardened power MOSFETs. Project supported by the National Natural Science Foundation of China (No. 61464002), the Grand Science and Technology Special Project in Guizhou Province of China (No. [2015]6006), and the Ministry of Education Open Foundation for Semiconductor Power Device Reliability (No. 010201).

  3. Leaf Epidermis of the Rheophyte Dyckia brevifolia Baker (Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Ghislaine Maria Lobo

    2013-01-01

    Full Text Available Some species of Dyckia Schult. f., including Dyckia brevifolia Baker, are rheophytes that live in the fast-moving water currents of streams and rivers which are subject to frequent flooding, but also period of low water. This study aimed to analyze the leaf epidermis of D. brevifolia in the context of epidermal adaptation to this aquatic plant’s rheophytic habitat. The epidermis is uniseriate, and the cuticle is thickened. The inner periclinal and anticlinal walls of the epidermal cells are thickened and lignified. Stomata are tetracytic, located in the depressions in relation to the surrounding epidermal cells, and covered by peltate trichomes. While the epidermal characteristics of D. brevifolia are similar to those of Bromeliaceae species, this species has made particular adaptations of leaf epidermis in response to its rheophytic environment.

  4. Evaluation of Cytotoxicity and Genotoxicity of Inula viscosa Leaf Extracts with Allium Test

    Directory of Open Access Journals (Sweden)

    Tülay Aşkin Çelik

    2010-01-01

    Full Text Available I. viscosa has been used for years in folk medicine for its anti-inflammatory, antipyretic, antiseptic, and paper antiphlogistic activities. In this study, cytotoxic and genotoxic effects of I. viscosa leaf extracts on the root meristem cells of Allium cepa have been examined. Onion bulbs were exposed to 2.5 mg/ml, 5 mg/ml, and 10 mg/ml concentrations of the extracts for macroscopic and microscopic analysis. Tap water has been used as a negative control and Ethyl methanesulfonate (EMS (2⋅10−2 M has been used as a positive control. The test concentrations have been determined according to doses which are recommended for use in alternative medicine. There has been statistically significant (P<.05 inhibition of root growth depending on concentration by the extracts when compared with the control groups. All the tested extracts have been observed to have cytotoxic effects on cell division in A. cepa. I. viscosa leaf extract induces the total number of chromosomal aberrations and micronuclei (MNC formations in A. cepa root tip cells significantly when compared with control groups. Also, this paper shows for the first time the induction of cell death, ghost cells, cells with membrane damage, and binucleated cells by extract treatment. These results suggest the cytotoxic and genotoxic effects of the I. viscosa leaf extracts on A. cepa.

  5. The shrinkage of hardening cement paste and mortar

    NARCIS (Netherlands)

    Haas, de G.D.; Kreijger, P.C.; Niël, E.M.M.G.; Slagter, J.C.; Stein, H.N.; Theissing, E.M.; Wallendael, van M.

    1975-01-01

    This paper is an abstract from the report of the commission B10: "The influence of the shrinkage of cement on the shrink-age of concrete", of the Netherlands Committee for Concrete Research. Measurements of pulse velocity, volume shrinkage and heat of hydration on hardening portland cement support

  6. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  7. Microstructure-property relationships and constitutive response of plastically graded case hardened steels

    Science.gov (United States)

    Klecka, Michael A.

    Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response

  8. Investigation on the effect of chemical composition on the texture and bake hardening I F steels

    International Nuclear Information System (INIS)

    Kariman, M.; Motaghi, A.; Raygan, Sh.; Habibi Parsa, M.; Nili Ahmadabadi, M.

    2008-01-01

    Interstitial free steels have good formability and also excellent deep draw ability. These features make them one of the applicable materials in automotive industry. Chemical composition and thermomechanical treatment used to process these steels have important role in final properties of them. In this study, the effect of chemical composition on texture, anisotropic properties and bake harden ability of these steels were investigated. The results showed that contribution of vanadium as a weak carbonitride former element with titanium as strong carbonitride former could change the texture of steels. Replacing titanium with vanadium caused harmful effect on mechanical properties. In this research deep drawing properties of five steels were compared based on I {111} / I{001} and I {111} / I{110} parameters. The results of bake harden ability test showed that there were critical limits for vanadium volume fractions above which bake harden properties was improved. It was shown that the bake harden properties of Nb-steels were better than that of Ti-steels. This was due to the better solution of Nb(C,N) compared to Ti(C,N). Addition of vanadium to Ti-steels may improve bake harden properties of I F steels

  9. MICROSTRUCTURAL FEATURES EVALUATION OF AGE-HARDENED A 226 CAST ALLOY BY IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Lenka Kuchariková

    2018-01-01

    Full Text Available Age-hardening provides one of the most widely used mechanisms for the strengthening of aluminum alloys. The age-hardening involves three steps: solution treatment, quenching and aging. The temperature of solution treatment and aging is very important in order to reach desired properties of castings. The optimum temperature of solution treatment and aging led to formation microstructural features in form which does not lead to decreasing properties, but increasing ones. The major microstructural features in A 226 cast alloys which are responsible for increasing properties are: eutectic Si particles, Cu-rich phases, Fe-rich phases and porosity. The increase of properties depends on morphology, size and volume of microstructural features. In order to assess age-hardening influence on microstructural features in A226 cast alloys were used as possibilities of evaluation by means of image analysis. Quantitative analysis decelerate changes in microstructure includes the spheroidization and coarsening of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases, the dissolution of precipitates and the precipitation of finer hardening phase (Al2Cu further increase in the hardness and tensile strength in the alloy. Changes of mechanical properties were measured in line with STN EN ISO.

  10. Influence of Cultivar on the Postharvest Hardening of Trifoliate Yam (Dioscorea dumetorum Tubers

    Directory of Open Access Journals (Sweden)

    Christian Siadjeu

    2016-01-01

    Full Text Available The influence of cultivar on the postharvest hardening of Dioscorea dumetorum tubers was assessed. 32 cultivars of D. dumetorum tubers were planted in April 2014, harvested at physiological maturity, and stored under prevailing tropical ambient conditions (19–28°C, 60–85% RH for 0, 5, 14, 21, and 28 days. Samples were evaluated for cooked hardness. Results showed that one cultivar, Ibo sweet 3, was not affected by the hardening phenomenon. The remaining 31 were all subject to the hardening phenomenon at different degree. Cooked hardness increased more rapidly in cultivars with many roots on the tuber surface compared to cultivars with few roots on the tuber surface. When both the characteristics flesh colour and number of roots on tuber surface were associated, cooked hardness in cultivars with yellow flesh and many roots increased more rapidly than in cultivars with white flesh and many roots, whereas cooked hardness in cultivars with yellow flesh and few roots increased more slowly than in cultivars with white flesh and few roots. Accessions collected in high altitude increased more rapidly compared to accessions collected in low altitude. The cultivar Ibo sweet 3 identified in this study could provide important information for breeding program of D. dumetorum against postharvest hardening phenomenon.

  11. METHYL JASMONATE AND STEM BENDING HARDENING AND INITIAL GROWTH OF Cordia trichotoma SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Danielle Acco Cadorin

    2015-12-01

    Full Text Available The submission of seedlings to mechanical stimuli and plant growth regulator promote their hardening and can be included in the routine of nurseries, favoring the survival and initial growth in the field. The study aimed to evaluate the effects of applying methyl jasmonate and stem bending in hardening and initial growth of Cordia trichotoma seedlings. Seedlings were subjected to 20 stem bending daily for 4 weeks; 20 stem bending daily for 8 weeks; 50 µmol.L-1 of methyl jasmonate applied weekly for 4 weeks; 50 µmol.L-1 of methyl jasmonate applied weekly for 8 weeks and the control treatment. The design was a completely randomized, with five repetitions of the fourteen seedlings. Seedlings submitted to hardening treatments showed less increment in height, greater increment in stem diameter and less value for strength index. Seedlings of control treatment had greater loss of root tissue electrolytes and less potential for root regeneration. In the field, 180 days after planting, seedlings submitted to eight weeks of stem bending and eight methyl jasmonate applications showed greater increment in height and stem diameter. The results indicate that both stem bending such as methyl jasmonate application for eight weeks are effective in promoting hardening and improve the starting performance in field of Cordia trichotoma seedlings.

  12. Configurable Radiation Hardened High Speed Isolated Interface ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NVE Corporation will design and build an innovative, low cost, flexible, configurable, radiation hardened, galvanically isolated, interface ASIC chip set that will...

  13. Mechanical properties of metastable austenitic steels, strengthened by hydroextruction and structural hardening

    International Nuclear Information System (INIS)

    Beresnev, B.I.; Georgieva, I.Ya.; Eshchenko, R.N.; Teplov, V.A.

    1981-01-01

    Different regimes of complex strengthening of steels of Fe-Ni-Mo-C system by phase hardening and plastic deformation by hydroextrusion are investigated. It is stated that the degree of strengthening depends on consequence of strengthening operations. Plastic deformation by hydroextrusion of steels stre--ngthened by phase hardening ensures increase of strength (Δσsub(0.2)=500 MPa) at high plasticity (delta=25%). Maximal values of strength properties can be achieved if hydroextrusion is conducted before and after thansverse α→γ-transformation [ru

  14. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Ferragut, R. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Fiori, F. [Dipartimento SAIFET, Sezione di Scienze Fisiche, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Lussana, D. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy); Mengucci, P., E-mail: p.mengucci@univpm.it [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Moia, F. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Riontino, G. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy)

    2011-06-15

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the {beta}'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on {beta}'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with {beta}'' {yields} {beta}' transformation.

  15. Hardening by means of ionising radiation

    International Nuclear Information System (INIS)

    Spoor, H.; Demmler, K.

    1979-01-01

    The polymerisable ethylic unsaturated mixture can be hardened by means of electron irradiation and used as a corrosion preventive layer. The mixture mainly consists of at least a di-olefinic unsaturated polyester, partial esters of polycarbonic acids, in particular the monoester of dicarbonic acids, with a copolymerizable C-C double bond, and mono-olefine unsaturated hydrocarbons, for example vinyl aromatics. The coatings exhibit good adhesion to the substrate, in particular to metal, and good flexibility. (DG) [de

  16. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  17. Low-cycle fatigue behaviors of pre-hardening Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Fei [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2017-05-17

    Low-cycle fatigue behaviors of the pre-hardening (PH) and the water-quenching (WQ) Hadfield steel were studied using optical microscopy, transmission electron microscopy, and electron backscatter diffraction technique. The effect of the PH treatment on low-cycle fatigue behavior of the Hadfield steel was analyzed through comparing the cyclic hardening/softening behaviors and the changing regulations of stress amplitude, internal stress, and effective stress at different total strain amplitudes. Results showed obvious differences in fatigue behaviors between the PH (with a cold rolling deformation degree of 40%) and the WQ Hadfield steels. Transient hardening followed by cyclic stability behavior occurred in the PH Hadfield steel under cyclic loading, whereas cyclic softening behavior was barely observed. The fatigue life of the PH Hadfield steel was higher than that of the WQ Hadfield steel at relatively low strain amplitudes, while a contrary result was obtained at relatively high strain amplitudes. At low strain amplitudes, the deformation twins induced in the PH Hadfield steel could enhance the multiplication and slip process of dislocations, which actually improved the deformation uniformity. The long-range motion of dislocations was intensified at high strain amplitudes. However, the dislocation motion was also blocked by twin boundaries. As a result, the interactions between dislocations and deformation twins enhanced, finally causing severe dislocation accumulation. These two effects of deformation twins on dislocation motion eventually resulted in different low-cycle fatigue behaviors of the PH Hadfield steel.

  18. System Hardening Architecture for Safer Access to Critical Business ...

    African Journals Online (AJOL)

    System Hardening Architecture for Safer Access to Critical Business Data. ... and the threat is growing faster than the potential victims can deal with. ... in this architecture are applied to the host, application, operating system, user, and the ...

  19. Antioxidant and neuroprotector effect of Lepidium meyenii (maca) methanol leaf extract against 6-hydroxy dopamine (6-OHDA)-induced toxicity in PC12 cells.

    Science.gov (United States)

    Rodríguez-Huamán, Ángel; Casimiro-Gonzales, Sandra; Chávez-Pérez, Jorge Antonio; Gonzales-Arimborgo, Carla; Cisneros-Fernández, Richard; Aguilar-Mendoza, Luis Ángel; Gonzales, Gustavo F

    2017-05-01

    Reactive oxygen species (ROS) are normally produced during cell metabolism, there is strong evidence to suggest that ROS produced in excess impair the cell and may be etiologically related to various neurodegenerative diseases. This study was undertaken to examine the effects of Lepidium meyenii (MACA) methanol leaf extract on neurotoxicity in PC12 cell exposed to 6-hydroxydopamine (6-OHDA). Fresh samples of "maca" leaves were processed in order to obtain foliar extracts and to evaluate the neurobiological activity on PC12 cells, subjected to the cytotoxic effect of 6-OHDA through the determination of the capacity antioxidant, cell viability and cytotoxicity assays on PC12 cells. The results of the tests of antioxidant activity, showed maximum values of 2262.37 and 1305.36 expressed in Trolox equivalents (TEAC), for the methanolic and aqueous fractions respectively. Cell viability assays at a dose of 10 μg extract showed an increase of 31% and 60% at 6 and 12 h of pretreatment, respectively. Cytotoxicity assays at the same dose and exposure time showed a 31.4% and 47.8% reduction in lactate dehydrogenase (LDH) activity and an increase in superoxide dismutase (SOD) activity. The results allow us to affirm that the methanolic foliar extract of "maca" presents in vitro neurobiological activity of antioxidant protection, increase in cell viability and reduction of cytotoxicity against oxidative stress generated by 6-OHDA. In conclusion, the present study shows a protective role for Lepidium meyenii leaf extract on 6-OHDA-induced toxicity by an antioxidant effect.

  20. Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners

    Directory of Open Access Journals (Sweden)

    Edgar L. Castellanos-Leal

    2017-09-01

    Full Text Available The increment of the mechanical properties (surface hardness of engine cylinder is one of the principal goals for foundry company, to increase the competitiveness of their products in the local and foreign market. This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment. The characterization was performed by material hardenability evaluation using Grossmann method, and Jominy test; the austenitizing temperature and the severity of cooling medium to a proper hardening of material were selected. Results revealed that the excellent hardness value obtained is attributed to the suitable hardenability of the gray cast iron and adequate severity selection for hardening treatment.

  1. Metabolic responses and β-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts

    Directory of Open Access Journals (Sweden)

    Alireza Einali

    Full Text Available ABSTRACT The present work investigated the effects of aqueous extracts of eucalyptus ( Eucalyptus globulus and elderberry ( Sambucus ebulus leaves on β-carotene productivity in Dunaliella salina, a green microalga. Leaf extracts from eucalyptus have greater amounts of phenolics and flavonoids, as well as greater ferric reducing antioxidant potential than elderberry. The extracts of both species greatly inhibited growth of algal suspensions. However, chlorophyll and β-carotene concentration increased in cells treated with leaf extracts, and the highest values were detected in 1 % eucalyptus and 2 % elderberry extracts. Fresh weight, total sugar, and protein content significantly increased following exposure of cells to different doses of leaf extracts. However, in doses containing more than 2 % eucalyptus, the upward trend for total sugar and protein ceased and remained statistically unchanged. These results suggest that metabolic modifications enable D. salina cells to tolerate the stress induced by the leaf extracts through allocating carbon flux to the synthesis of osmolytes and putative antioxidant molecules (e.g. sugars and β-carotene. Therefore, the use of leaf extracts holds potential to be a promising and effective way to improve D. salina cultivation for β-carotene production and other biotechnological and industrial applications.

  2. Hardening XL. Induction technology with rotating crankshaft; Haerten XL. Induktionstechnik mit rotierender Kurbelwelle

    Energy Technology Data Exchange (ETDEWEB)

    Dappen, Stefan; Schibisch, Dirk M. [SMS Elotherm GmbH, Remscheid (Germany)

    2013-03-15

    Crankshafts are used in combustion engines, transforming the con rod's stroke into a rotary motion for driving the axle shaft. Along with this, torsional and flexural fatigue appears and demands a special heat treatment process. The induction hardening with a rotating crankshaft has mostly replaced competitive methods and provides the engine builders with a flexible production process for varying geometries, different hardening zones as well as increasing production rates. (orig.)

  3. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels

    Science.gov (United States)

    Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.

    2018-05-01

    Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.

  4. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  5. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  6. Induction surface hardening of hard coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, K.; Kessler, O.; Hoffann, F.; Mayr, P. [Stiftung Inst. fuer Werkstofftechnik, Bremen (Germany)

    1999-11-01

    The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence the substrate properties, especially in the case of low alloyed steels. Therefore, a subsequent heat treatment is necessary to restore the properties of steel substrates. Here, induction surface hardening is used as a method of heat treatment after the deposition of TiN hard coatings on AISI 4140 (DIN42CrMo4) substrates. The influences of the heat treatment on both the coating and the substrate properties are discussed in relation to the parameters of induction heating. Thereby, the heating time, heating atmosphere and the power input into the coating-substrate compounds are varied. As a result of induction surface hardening, the properties of the substrates are improved without losing good coating properties. High hardness values in the substrate near the interface allow the AISI 4140 substrates to support TiN hard coatings very well. Consequently, higher critical loads are measured in scratch tests after the heat treatment. Also, compressive residual stresses in the substrate are generated. In addition, only a very low distortion appears. (orig.)

  7. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Long, T; Chen, M; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set of apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.

  8. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Pikor, A.; Reiss, E.M.

    1980-01-01

    Substantial effort has been directed at radiation-hardening CMOS integrated circuits using various oxide processes. While most of these integrated circuits have been successful in demonstrating megarad hardness, further investigations have shown that the 'wet-oxide process' is most compatible with the RCA CD4000 Series process. This article describes advances in the wet-oxide process that have resulted in multimegarad hardness and yield to MIL-M-38510 screening requirements. The implementation of these advances into volume manufacturing is geared towards supplying devices for aerospace requirements such as the Defense Meterological Satellite program (DMSP) and the Global Positioning Satellite (GPS). (author)

  9. Behavior of surface residual stress in explosion hardened high manganese austenitic cast steel due to repeated impact loads

    International Nuclear Information System (INIS)

    Oda, Akira; Miyagawa, Hideaki

    1985-01-01

    Explosion hardened high manganese austenitic cast steel is being tried for rail crossing recently. From the previous studies, it became clear that high tensile residual stress was generated in the hardened surface layer by explosion and microcracks were observed. In this study, therefore, the behavior of surface residual stress in explosion hardened steel due to repeated impact loads was examined and compared with those of the original and shot peened steels. The results obtained are summarized as follows: (1) In the initial stage of the repetition of impact, high tensile surface residual stress in explosion hardened steel decreased rapidly with the repetition of impact, while those of the original and shot peened steels increased rapidly. This difference was attributed to the difference in depth of the work hardened layer in three testing materials. (2) Beyond 20 impacts the residual stress of three test specimens decreased gradually, and at more than 2000 impacts the compressive stress of about 500 MPa was produced regardless of the histories of working of testing materials. (3) The linear law in the second stage of residual stress fading was applicable to this case, and the range of the linear relationship was related to the depth of the work hardened layer of testing material. (4) From the changes in half-value breadth and peak intensity of diffraction X-ray, it was supposed that a peculiar microscopic strain exists in explosion hardened steel. (author)

  10. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation hardened nonvolatile memories for space is still primarily confined to EEPROM. There is high density effective or cost effective NVM solution available to...

  11. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  12. Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ohnishi, A.; Otuka, N.; Sahu, P.K.; Isse, M.; Nara, Y.

    2001-01-01

    We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65 + 65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation. (author)

  13. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-01-01

    This paper presents the interest which lies in non-linear kinematic hardening rule with radial evanescence remain term as proposed for modelling multiaxial ratchetting. From analytical calculations in the case of the tension/torsion test, this ratchetting is compared with that proposed by Armstrong and Frederick. A modification is then proposed for Chaboche's elastoplastic model with two non-linear kinematic variables, by coupling the two types of hardening by means of two scalar parameters. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. Using biaxial ratchetting tests on stainless steel 316 L specimens at ambient temperature, it is shown that satisfactory modelling of multiaxial ratchetting is obtained. (author). 4 refs., 5 figs

  14. Hardening by annealing and softening by deformation in nanostructured metals

    DEFF Research Database (Denmark)

    Huang, X.; Hansen, N.; Tsuji, N.

    2006-01-01

    We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation-dislocation and ......We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation....... As a consequence, the strength decreases and the ductility increases. These observations suggest that for materials such as the nanostructured aluminum studied here, deformation should be used as an optimizing procedure instead of annealing....

  15. Analysis of thermal ratchetting of a cylinder subjected to axially moving temperature front. Effect of kinematic hardening rule

    International Nuclear Information System (INIS)

    Ohno, Nobutada; Yari, Takashi; Kobayashi, Mineo

    1995-01-01

    When a cylinder is subjected to a temperature front moving cyclically in the axial direction, the circumferential plastic strain may accumulate with the increase of the number of cycles. This is a thermal ratchetting problem induced by a liquid surface moving in a cylinder, and it is important especially in designing fast breeder reactors. In the present paper, the effect of kinematic hardening rule on the thermal ratchetting analysis is discussed by implementing the following four kinds of kinematic hardening rules in a finite element analysis; the perfectly plastic model (PP), the linear kinematic hardening rule (LKH), the classical nonlinear kinematic hardening rule of Armstrong and Frederick (AF), and the rule proposed recently by Ohno and Wang (OW). It is shown that disregard of transient hardening after yielding leads to overestimating the thermal ratchetting, that a rule predicting larger mechanical ratchetting under uniaxial cyclic loading makes the thermal ratchetting more serious, and that the Ohno and Wang rule can render the analysis most realistic among them. (author)

  16. Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-03-01

    Full Text Available The paper presents a research on the relation between thermal preparation of chromite sand base of moulding sands containing sodium silicate, hardened with selected physical and chemical methods, and structure of the created bonding bridges. Test specimens were prepared of chromite sand - fresh or baked at 950°C for 10 or 24 hours - mixed with 0.5 wt.% of the selected non-modified inorganic binder and, after forming, were hardened with CO2 or liquid esters, dried traditionally or heated with microwaves at 2.45 GHz. It was shown on the grounds of SEM observations that the time of baking the base sand and the hardening method significantly affect structure of the bonding bridges and are correlated with mechanical properties of the moulding sands. It was found that hardening chromite-based moulding mixtures with physical methods is much more favourable than hardening with chemical methods, guaranteeing also more than ten times higher mechanical properties.

  17. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    KAUST Repository

    Juristyarini, Pramitha

    2011-07-29

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  18. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    KAUST Repository

    Juristyarini, Pramitha; Davison, Richard R.; Glover, Charles J.

    2011-01-01

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  19. Analysis and optimization of fault-tolerant embedded systems with hardened processors

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Polian, Ilia; Pop, Paul

    2009-01-01

    In this paper we propose an approach to the design optimization of fault-tolerant hard real-time embedded systems, which combines hardware and software fault tolerance techniques. We trade-off between selective hardening in hardware and process reexecution in software to provide the required levels...... of fault tolerance against transient faults with the lowest-possible system costs. We propose a system failure probability (SFP) analysis that connects the hardening level with the maximum number of reexecutions in software. We present design optimization heuristics, to select the fault......-tolerant architecture and decide process mapping such that the system cost is minimized, deadlines are satisfied, and the reliability requirements are fulfilled....

  20. Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes

    International Nuclear Information System (INIS)

    Salman, Abdullahi M.; Li, Yue; Stewart, Mark G.

    2015-01-01

    Over the years, power distribution systems have been vulnerable to extensive damage from hurricanes which can cause power outage resulting in millions of dollars of economic losses and restoration costs. Most of the outage is as a result of failure of distribution support structures. Over the years, various methods of strengthening distribution systems have been proposed and studied. Some of these methods, such as undergrounding of the system, have been shown to be unjustified from an economic point of view. A potential cost-effective strategy is targeted hardening of the system. This, however, requires a method of determining critical parts of a system that when strengthened, will have greater impact on reliability. This paper presents a framework for studying the effectiveness of targeted hardening strategies on power distribution systems subjected to hurricanes. The framework includes a methodology for evaluating system reliability that relates failure of poles and power delivery, determination of critical parts of a system, hurricane hazard analysis, and consideration of decay of distribution poles. The framework also incorporates cost analysis that considers economic losses due to power outage. A notional power distribution system is used to demonstrate the framework by evaluating and comparing the effectiveness of three hardening measures. - Highlight: • Risk assessment of power distribution systems subjected to hurricanes is carried out. • Framework for studying effectiveness of targeted hardening strategies is presented. • A system reliability method is proposed. • Targeted hardening is cost effective for existing systems. • Economic losses due to power outage should be considered for cost analysis.

  1. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    Science.gov (United States)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  2. Online frequency adjustment for energy optimisation of induction hardening processes; Energetische Optimierung von Induktionshaertungsprozessen durch Online-Frequenzanpassung

    Energy Technology Data Exchange (ETDEWEB)

    Ulferts, Alexander; Andrae, Frank [HWG Inductoheat GmbH, Reichenbach (Germany)

    2011-06-15

    It is frequently necessary to harden multiple points on a component. The hardness specification may, in many cases, be variable, and the boundary conditions often diverse. The relevant sectors of the component are in many cases more deeply hardened, to enhance strength and vibration-fatigue properties, with simultaneous retention of ductile properties in the core, in order to reduce the danger of fracture of the heat-treated component in service. In other cases, the hardening process is intended more to provide protection against elevated surface loadings and against abrasive erosion of material. Both of these applications are illustrated on the basis of a component in the context of this article, and the requirements made on the inductive hardening process discussed. The authors consciously raise the question of the limits of technical feasibility. (orig.)

  3. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  5. Finite element implementation of strain-hardening Drucker–Prager plasticity model with application to tunnel excavation

    Directory of Open Access Journals (Sweden)

    K. Liu

    2017-09-01

    Full Text Available This paper presents a finite element implementation of a strain-hardening Drucker–Prager model and its application to tunnel excavation. The computational model was constructed based on the return mapping scheme, in which an elastic trial step was first executed, followed by plastic correction involving the Newton–Raphson method to return the predicted state of stresses to the supposed yield surface. By combining the plastic shear hardening rule and stress correction equations, the loading index for the strain-hardening Drucker–Prager model was solved. It is therefore possible to update the stresses, elastic and plastic strains, and slope of the yield locus at the end of each incremental step. As an illustrative example, an integration algorithm was incorporated into ABAQUS through the user subroutine UMAT to solve the tunnel excavation problem in strain-hardening Drucker–Prager rock formations. The obtained numerical results were found to be in excellent agreement with the available analytical solutions, thus indicating the validity and accuracy of the proposed UMAT code, as well as the finite element model.

  6. Surface transformation hardening on steels treated with solar energy in central tower and heliostats field

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G.P.; Lopez, V.; de Damborenea, J.J.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas CENIM/CSIC, Madrid (Spain)

    1995-04-28

    The possibility of surface hardening on AISI 4140 steel treated with concentrated solar energy in solar installations for electricity production has been studied. The samples were slides from a 35 mm diameter steel bar and their height was 35 mm. The quenching was made in water but also was considered the possibility of self-quenching by cooling in air. The amount of the surface hardness and the different structures obtained in both cases are presented, and some discussion is made with reference to the surface hardness, the hardness profiles and the structures obtained. The heating of steel with concentrated solar energy may produce similar hardening to that obtained with more conventional techniques of surface hardening

  7. Process controls for radiation hardened aluminum gate bulk silicon CMOS

    International Nuclear Information System (INIS)

    Gregory, B.L.

    1975-01-01

    Optimized dry oxides have recently yielded notable improvements in CMOS radiation-hardness. By following the proper procedures and recipes, it is now possible to produce devices which will function satisfactorily after exposure to a total ionizing dose in excess of 10 6 RADS (Si). This paper is concerned with the controls required on processing parameters once the optimized process is defined. In this process, the pre-irradiation electrical parameters must be closely controlled to insure that devices will function after irradiation. In particular, the specifications on n- and p-channel threshold voltages require tight control of fixed oxide charge, surface-state density, oxide thickness, and substrate and p-well surface concentrations. In order to achieve the above level of radiation hardness, certain processing procedures and parameters must also be closely controlled. Higher levels of cleanliness are required in the hardened process than are commonly required for commercial CMOS since, for hardened dry oxides, no impurity gettering can be employed during or after oxidation. Without such gettering, an unclean oxide is unacceptable due to bias-temperature instability. Correct pre-oxidation cleaning, residual surface damage removal, proper oxidation and annealing temperatures and times, and the correct metal sintering cycle are all important in determining device hardness. In a reproducible, hardened process, each of these processing steps must be closely controlled. (U.S.)

  8. Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.

    Science.gov (United States)

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M

    2006-08-01

    Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.

  9. Radiation effects on radiation-hardened KU and KS-4V optical fibres

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Tugarinov, S.N.; Kaschuck, Y.A.; Krasilnikov, A.V.; Bender, S.E.

    1999-01-01

    The aim of this work was to test the un-pretreated and the hardened (H 2 -loaded and pre-irradiated) KS-4V and KU optical fibres in reactor environment by in-situ measurements of both the radiation-induced loss and the luminescence in the visible spectral region. Both the radio-luminescent and the transmission spectra were in-situ detected during irradiation by charge-coupled-device (CCD) linear detector in the visible spectral region of 400 to 700 nm. The radiation induced loss spectra at the fast neutron fluence of 2*10 6 n/cm 2 shows the hardened, H 2 -loading and pre-irradiating effects in the both KU and KS-4V fibres. KU un-pretreated fibre shows a big radiation absorption band of non-bridging oxygen centered at the wavelength of 630 nm. It appears that the KS-4V hardened fibre has a specific point in the loss spectrum in the vicinity of 460 nm. Other measurements were performed, particularly after reactor shutdown and at 3 different neutron fluences with constant neutron flux after restarting

  10. Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding

    Directory of Open Access Journals (Sweden)

    Igor Altenberger

    2015-05-01

    Full Text Available There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences. In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI methods and consequences for mechanical properties (tensile strength as well as fatigue and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.

  11. Process for hardening synthetic resins by ionizing radiation

    International Nuclear Information System (INIS)

    Hesse, W.; Ritz, J.

    1975-01-01

    Synthetic resins containing hydroxy groups and polymerizable carbon-carbon bonds are reacted with diketenes to yield aceto ester derivatives, which when reacted with metal compounds to form chelates, and mixed with copolymerizable monomers, are capable of being hardened by unusually low radiation doses to form coatings and articles with superior properties. (E.C.B.)

  12. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  13. LEAF MICROMOPHOMETRY OF PALICOUREA RIGIDA KUNTH. (RUBIACEAE FROM BRAZILIAN CERRADO AND CAMPO RUPESTRE ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Manuel Losada Gavilanes

    2016-06-01

    Full Text Available The objective of this work was to evaluate qualitative and quantitative leaf anatomical traits of Palicourea rigida Kunth. (Rubiaceae species occurring in the Brazilian Cerrado and Campo Rupestre ecosystems. Anatomical analysis was performed in fresh or fixed leaves processed with usual plant microtechnique. Leaves showed uniseriate epidermis in petiole and leaf blade which contains uniseriate nonglandular tricomes (tector type occurring only over the vascular bundles. Likewise, paracytic stomata were found only in abaxial side of the leaf surface. The mesophyll contains uniseriate palisade parenchyma and multiseriate spongy parenchyma (nine layers which showed cells with different morphology and size. Crystal idoblasts of different types were observed in both the petiole and leaf blade. Collateral vascular bundles were found both in the petiole and leaf blade. Leaf venation type was pinnate, campylodromous or brochydodromous. The micromorphometric analysis showed significant differences from plants of different environments for all leaf characteristics and Cerrado plants showed higher means for all evaluated traits. Therefore, the influence of environments may had modulated morphological responses in P. rigida, since no difference was found in the type or distribution of leaf tissues in Cerrado or Campo Rupestre.

  14. Cellular Composites with Ambient and Autoclaved Type of Hardening with Application of Nanostructured Binder

    International Nuclear Information System (INIS)

    Nelyubova, V; Pavlenko, N; Netsvet, D

    2015-01-01

    The research presents the dimensional and structural characteristics of nonhydrational hardening binders - nanostructured binders. Rational areas of their use in composites for construction purposes are given. The paper presents the results of the development of natural hardening foam concrete and aerated autoclaved concrete for thermal insulating and construction and thermal insulating purposes. Thus nanostructured binder (NB) in the composites was used as a primary binder and a high reactive modifier. (paper)

  15. Efficient simulation of press hardening process through integrated structural and CFD analyses

    International Nuclear Information System (INIS)

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek; Roy, Subir

    2013-01-01

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integrated commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies

  16. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation are described which contain as binding agents a mixture of at least 1 unsaturated olefin compound containing urethane groups, and at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound containing the urethane groups is a reaction product of a compound containing carboxylic acid groups and a compound containing at least 1 isocyanate group where the mixture of the two olefins may contain conventional additives of the lacquer industry. 6 claims, no drawings

  17. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys. SVETLANA NESTOROVIC. Technical Faculty Bor, University of Belgrade, Bor, Yugoslavia. MS received 11 February 2004; revised 29 October 2004. Abstract. This paper reports results of investigation carried out on sintered ...

  18. Radiation-hardened I2L 8*8 multiplier circuit

    International Nuclear Information System (INIS)

    Doyle, B.R.; Kreps, S.A.; Van Vonno, N.W.; Lake, G.W.

    1979-01-01

    Development of improved Substrate Fed I 2 L (SFL) processing has been combined with geometry and fanout constraints to design a radiation hardened LSI 8.8 Multiplier. This study describes details of the process and circuit design and gives resultant electrical and radiation test performance

  19. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes

  20. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  1. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-T.; Jin, Z Q; Chakka, Vamsi M; Liu, J P [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2005-11-21

    A systematic study of heat treatments and magnetic hardening of NdFeB-based melt-spun nanocomposite ribbons have been carried out. Comparison was made between samples treated by rapid thermal annealing and by conventional furnace annealing. Heating rates up to 200 K s{sup -1} were adopted in the rapid thermal processing. It was observed that magnetic hardening can be realized in an annealing time as short as 1 s. Coercivity of 10.2 kOe in the nanocomposites has been obtained by rapid thermal annealing for 1 s, and prolonged annealing did not give any increase in coercivity. Detailed results on the effects of annealing time, temperature and heating rate have been obtained. The dependence of magnetic properties on the annealing parameters has been investigated. Structural characterization revealed that there is a close correlation between magnetic hardening and nanostructured morphology. The coercivity mechanism was also studied by analysing the magnetization minor loops.

  2. In vitro effects of Italian Lavandula multifida L. leaf extracts on gilthead seabream (Sparus aurata) leucocytes and SAF-1 cells.

    Science.gov (United States)

    Fazio, Angela; Cerezuela, Rebeca; Panuccio, Maria Rosaria; Cuesta, Alberto; Esteban, Maria Ángeles

    2017-07-01

    Lavandula multifida is very appreciated by pharmaceutical and cosmetic industries. In Italy is only found in Calabria and Sicily and, at present, urge its valorization due to its high extinction and genetic erosion risks. Possible applications of L. multifida extracts as immunostimulant in fish aquaculture were assayed by using gilthead seabream (Sparus aurata) as a marine fish model, due to its importance in fish aquaculture. The in vitro effects of both aqueous and ethanolic leaf extracts obtained from two Italian populations of L. multifida on head kidney leucocyte activities (viability, phagocytosis, respiratory burst and peroxidase content) were assessed. Furthermore, the possible cytotoxic effects of the extracts on SAF-1 cells and their bactericidal effects on three fish pathogenic bacteria (Vibrio harveyi, Vibrio anguillarum, Aeromonas salmonicida) were also evaluated. All the assays were performed in comparison with leaf extracts obtained from a widely-distributed species as L. angustifolia. Results showed that water and ethanolic leaf extracts obtained from L. multifida enhanced innate immune activities of S. aurata HK leucocytes. Furthermore, SAF-1 cell viability was not affected significantly after being incubated with the extracts. These extracts did not exert any bactericidal activity on the pathogenic bacterial strains tested in the present study. Results obtained in the present work suggested the possibility of use such extracts in in vivo studies in order to corroborate the possibility of their use in aquaculture. Their use could prevent to improve fish defense against pathogenic infections through enhancement of the fish immune status. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build a radiation hardened by design (RHBD) flash memory, using a modified version of our RH-eDRAM Memory Controller to solve all the single...

  4. Induction Hardening of External Gear

    Science.gov (United States)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  5. Reducing beam hardening effects and metal artefacts using Medipix3RX: With applications from biomaterial science

    CERN Document Server

    Rajendran, K; de Ruiter, N J A; Chernoglazov, A I; Panta, R K; Butler, A P H; Butler, P H; Bell, S T; Anderson, N G; Woodfield, T B F; Tredinnick, S J; Healy, J L; Bateman, C J; Aamir, R; Doesburg, R M N; Renaud, P F; Gieseg, S P; Smithies, D J; Mohr, J L; Mandalika, V B H; Opie, A M T; Cook, N J; Ronaldson, J P; Nik, S J; Atharifard, A; Clyne, M; Bones, P J; Bartneck, C; Grasset, R; Schleich, N; Billinghurst, M

    2014-01-01

    This paper discusses methods for reducing beam hardening effects using spectral data for biomaterial applications. A small-animal spectral scanner operating in the diagnostic energy range was used. We investigate the use of photon-processing features of the Medipix3RX ASIC in reducing beam hardening and associated artefacts. A fully operational charge summing mode was used during the imaging routine. We present spectral data collected for metal alloy samples, its analysis using algebraic 3D reconstruction software and volume visualisation using a custom volume rendering software. Narrow high energy acquisition using the photon-processing detector revealed substantial reduction in beam hardening effects and metal artefacts.

  6. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  7. State of the art of durability-performance evaluation of hardened cement based on phase compositions

    International Nuclear Information System (INIS)

    Kurashige, Isao; Imoto, Harutake; Yamamoto, Takeshi; Hironaga, Michihiko

    2006-01-01

    Upgrading durability-performance evaluation technique for concrete is urgently demanded in connection to its application to radio-active waste repository which needs ultra long-term durability. Common concrete structures also require an advanced method for minimizing the life-cycle cost. The purpose of this research is to investigate current problems and future tasks on durability-performance evaluation of hardened cement from the view point of phase composition. Although the phase composition of hardened cement has not fully been reflected to durability-performance evaluation, it influences concrete durability as well as its pore structure. This report reviews state of the art of the factors affecting phase composition, analytical and experimental evaluation techniques for phase composition, and durability-performance evaluation methods of hardened cement based on phase composition. (author)

  8. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-κB/MMP-9 Pathway

    Science.gov (United States)

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-01-01

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-κB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-κB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells. PMID:26115086

  9. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-kB/MMP-9 Pathway.

    Science.gov (United States)

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-06-24

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-kB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-kB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells.

  10. Assessment of surface hardening effects from shot peening on a Ni-based alloy using electron backscatter diffraction techniques

    International Nuclear Information System (INIS)

    Child, D.J.; West, G.D.; Thomson, R.C.

    2011-01-01

    An electron backscatter diffraction (EBSD)-based tool is described to assess the depth of strain-hardening effects of shot-peening treatments applied to the Ni-based superalloy, Udimet (copy right) alloy 720Li. The method consists of a statistical analysis of a number of data points from each grain scanned based on the grain orientation spread and their relative position from the shot-peened edge. The output is a quantitative measure of the depth of strain-hardening effects. The tool is used at various shot-peening intensities to demonstrate the ability to distinguish between these changes, using a range of intensities from 4 to 10 Almen. An increase in shot-peening intensity is observed to increase the depth of strain-hardening effects in the alloy. A comparison with residual stress measurements using X-ray diffraction for the same material shows that the strain-hardened depth determined by EBSD extends to approximately half the distance of the residual stress present due to shot peening. A comparison is also made with predicted profiles from the Peenstress SM model and subsequent microhardness testing. A positive correlation is observed between strained hardened depth and surface roughness of the peened samples. In each case, the increases in surface roughness and strain-hardened depth diminish toward the upper end of the shot-peening intensity range studied for this alloy.

  11. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 1, the calculation of sound speed of slurries and hardened porous material

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2011-01-01

    This article focuses on the computation of the sound velocity through slurries and hardened products. The purpose is to use the sound velocity to quantify the composition of the fresh slurry as well as the hardening and hardened - porous - material. Therefore the volumetric models for hydration of

  12. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Chowdhury, S.M.; Chen, D.L.; Bhole, S.D.; Cao, X.; Powidajko, E.; Weckman, D.C.; Zhou, Y.

    2010-01-01

    Microstructures, tensile properties and work hardening behavior of double-sided arc welded (DSAWed) and friction stir welded (FSWed) AZ31B-H24 magnesium alloy sheet were studied at different strain rates. While the yield strength was higher, both the ultimate tensile strength and ductility were lower in the FSWed samples than in the DSAWed samples due to welding defects present at the bottom surface in the FSWed samples. Strain-hardening exponents were evaluated using the Hollomon relationship, the Ludwik equation and a modified equation. After welding, the strain-hardening exponents were nearly twice that of the base metal. The DSAWed samples exhibited stronger strain-hardening capacity due to the larger grain size coupled with the divorced eutectic structure containing β-Mg 17 Al 12 particles in the fusion zone, compared to the FSWed samples and base metal. Kocks-Mecking type plots were used to show strain-hardening stages. Stage III hardening occurred after yielding in both the base metal and the welded samples. At lower strains a higher strain-hardening rate was observed in the base metal, but it decreased rapidly with increasing net flow stress. At higher strains the strain-hardening rate of the welded samples became higher, because the recrystallized grains in the FSWed and the larger re-solidified grains coupled with β particles in the DSAWed provided more space to accommodate dislocation multiplication during plastic deformation. The strain-rate sensitivity evaluated via Lindholm's approach was observed to be higher in the base metal than in the welded samples.

  13. Recovery of leaf elongation during short term osmotic stress correlates with osmotic adjustment and cell turgor restoration in different durum wheat cultivars

    International Nuclear Information System (INIS)

    Mahdid, M.

    2014-01-01

    In order to investigate the responses of leaf elongation rate (LER), turgor and osmotic adjustment (OA) during a short-term stress (7 hours) imposed by PEG6000 and a recovery phase, three durum wheat (Triticum durum L.) varieties (Inrat; MBB; and OZ ) were grown in aerated nutrient solutions. Leaf elongation kinetics of leaf 3 was estimated using LVDT. Turgor was estimated using a cell pressure probe; osmotic potential as well as total sugars and potassium (K+) concentrations were estimated from expressed sap of elongation zone. Growth recovered rapidly and then stabilised at a lower value. A significant difference was found in % recovery of LER between the varieties. The cessation of growth after stress coincided with a decrease in turgor followed by a recovery period reaching control values in MBB and Inrat. A strong correlation (R2 = 0.83) between the reduction in turgor (turgor) and % recovery of LER was found at 7 hours after stress. The difference in the partial recovery of LER between varieties was thus related to the capacity of partial turgor recovery. Partial turgor recovery is associated with sugar or K+ based OA which indicates its importance in maintaining high LER values under water deficit. (author)

  14. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  15. 78 FR 70356 - Compliance With Order EA-13-109, Order Modifying Licenses With Regard to Reliable Hardened...

    Science.gov (United States)

    2013-11-25

    ... Licenses With Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident... Regard to Reliable Hardened Containment Vents Capable of Operation under Severe Accident Conditions... capable of a operation under severe accident conditions. This ISG also endorses, with clarifications, the...

  16. Effects of leaf movement on leaf temperature, transpiration and radiation interception in soybean under water stress conditions

    International Nuclear Information System (INIS)

    Isoda, A.; Wang, P.

    2001-01-01

    Varietal differences in leaf movement were examined in terms of radiation interception, leaf temperature and transpiration under water stressed conditions. Five cultivars (Qindou 7232, Gaofei 16, Dongnong 87 - 138, 8285 - 8 and 8874) were grown in a concrete frame field in Xinjiang, China. Irrigation treatments (irrigation and no irrigation) were made from the flowering to the pod filling stage. A leaflet in the uppermost layer of the canopy was restrained horizontally. Leaf temperatures, transpiration rate (stem sap flow rate of the main stem per unit leaf area) and intercepted radiation of each leaflet were measured. There were greater varietal differences in leaf movement, leaf temperature and transpiration rate. Leaf temperature seemed to be adjusted by leaf movement and transpiration. The extent to which is adjusted by leaf movement and transpiration differed among the cultivars; leaf temperature was influenced mainly by leaf movement for Gaofei 16 and Dongnong 87 - 138, mainly by transpiration for Qindou 7232 and 8874, and by both for 8285 - 8. Intercepted radiation in the upper two layers of the canopy (20 cm from the uppermost) was greater in the irrigated plot, although the mean values of total leaflets of the irrigated plot were not different as compared to the non-irrigated plot. Although paraheliotropic leaf movement decreased radiation interception, it offers some possibilities for the improvement in radiation penetration within a dense canopy. Cumulated amount of transpiration during a day was compared between the restrained-leaf and the non-leaf-restrained plants in 8874. Paraheliotropic leaf movement reduced water loss by 23% in the irrigated and 71% in the non-irrigated plots

  17. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  18. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Abstract This paper studies the stiffening effects of the material strain rate sensitivity and strain hardening on the saturated impulse of elastic, perfectly plastic plates. Finite element (FE code ABAQUS is employed to simulate the elastoplastic response of square plates under rectangular pressure pulse. Rigid-plastic analyses for saturated impulse, which consider strain rate sensitivity and strain hardening, are conducted. Satisfactory agreement between the finite element models (FEM and predictions of the rigid-plastic analysis is obtained, which verifies that the proposed rigid-plastic methods are effective to solve the problem including strain rate sensitivity and strain hardening. The quantitative results for the scale effect of the strain rate sensitivity are given. The results for the stiffening effects suggest that two general stiffening factors n 1 and n 2, which characterizes the strain rate sensitivity and strain hardening effect, respectively can be defined. The saturated displacement is inversely proportional to the stiffening factors (i.e. n 1 and n 2 and saturated impulse is inversely proportional to the square roots of the stiffening factors (i.e. n 1 and n 2. Formulae for displacement and saturated impulse are proposed based on the empirical analysis.

  19. Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: watanabe@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Arase, S. [Interdisciplinary Graduate School of Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Yamamoto, T.; Wells, P. [Dept. Chemical Engineering, UCSB Engineering II, RM3357, Santa Barbara, CA, 93106-5080 (United States); Onishi, T. [Interdisciplinary Graduate School of Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Odette, G.R. [Dept. Chemical Engineering, UCSB Engineering II, RM3357, Santa Barbara, CA, 93106-5080 (United States)

    2016-04-01

    Radiation hardening and embrittlement of A533B steels is heavily dependent on the Cu content. In this study, to investigate the effect of copper on the microstructural evolution of these materials, A533B steels with different Cu levels were irradiated with 2.4 MeV Fe ions and 1.0 MeV electrons. Ion irradiation was performed from room temperature (RT) to 350 °C with doses up to 1 dpa. At RT and 290 °C, low dose (<0.1 dpa) hardening trend corresponded with ΔH ∝ (dpa){sup n}, with n initially approximately 0.5 and consistent with a barrier hardening mechanism, but saturating at ≈0.1 dpa. At higher dose levels, the radiation-induced hardening exhibited a strong Cu content dependence at 290 °C, but not at 350 °C. Electron irradiation using high-voltage electron microscopy revealed the growth of interstitial-type dislocation loops and enrichment of Ni, Mn, and Si in the vicinities of pre-existing dislocations at doses for which the radiation-induced hardness due to ion irradiation was prominent.

  20. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.