WorldWideScience

Sample records for hard collision models

  1. Particle production at large transverse momentum and hard collision models

    International Nuclear Information System (INIS)

    Ranft, G.; Ranft, J.

    1977-04-01

    The majority of the presently available experimental data is consistent with hard scattering models. Therefore the hard scattering model seems to be well established. There is good evidence for jets in large transverse momentum reactions as predicted by these models. The overall picture is however not yet well enough understood. We mention only the empirical hard scattering cross section introduced in most of the models, the lack of a deep theoretical understanding of the interplay between quark confinement and jet production, and the fact that we are not yet able to discriminate conclusively between the many proposed hard scattering models. The status of different hard collision models discussed in this paper is summarized. (author)

  2. Calorimeter triggers for hard collisions

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.

    1978-01-01

    We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering processes, and investigate the conditions when instead a multiple- scattering mechanism might dominate. With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally accessible at avalues of the beam energy in the region of 100 GeV/c

  3. A variable hard sphere-based phenomenological inelastic collision model for rarefied gas flow simulations by the direct simulation Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Prasanth, P S; Kakkassery, Jose K; Vijayakumar, R, E-mail: y3df07@nitc.ac.in, E-mail: josekkakkassery@nitc.ac.in, E-mail: vijay@nitc.ac.in [Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode - 673 601, Kerala (India)

    2012-04-01

    A modified phenomenological model is constructed for the simulation of rarefied flows of polyatomic non-polar gas molecules by the direct simulation Monte Carlo (DSMC) method. This variable hard sphere-based model employs a constant rotational collision number, but all its collisions are inelastic in nature and at the same time the correct macroscopic relaxation rate is maintained. In equilibrium conditions, there is equi-partition of energy between the rotational and translational modes and it satisfies the principle of reciprocity or detailed balancing. The present model is applicable for moderate temperatures at which the molecules are in their vibrational ground state. For verification, the model is applied to the DSMC simulations of the translational and rotational energy distributions in nitrogen gas at equilibrium and the results are compared with their corresponding Maxwellian distributions. Next, the Couette flow, the temperature jump and the Rayleigh flow are simulated; the viscosity and thermal conductivity coefficients of nitrogen are numerically estimated and compared with experimentally measured values. The model is further applied to the simulation of the rotational relaxation of nitrogen through low- and high-Mach-number normal shock waves in a novel way. In all cases, the results are found to be in good agreement with theoretically expected and experimentally observed values. It is concluded that the inelastic collision of polyatomic molecules can be predicted well by employing the constructed variable hard sphere (VHS)-based collision model.

  4. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    OpenAIRE

    Uphoff, Jan

    2014-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of...

  5. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  6. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  7. Transverse energy distribution and hard constituent scattering in hadronic collisions

    Directory of Open Access Journals (Sweden)

    Torsten Åkesson

    1983-01-01

    Full Text Available We estimate the contributions to the total transverse energy spectrum from hard constituent scattering and the soft hadronic spectrum in hadron collisions. The transverse energy at which jet production starts to dominate is found to be essentially independent of the cms-energy (for large enough s and roughly a linear function of rapidity and azimuthal angle interval included. Calculations are presented for pp collisions at s= 25and60GeV, andp¯p interactions at s= 540GeV.

  8. Hard and soft physics of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Tywoniuk, Konrad

    2008-01-01

    somehow biased toward personal conclusion drawn during the course of the thesis work. Chapter 3 give a brief introduction to some theoretical approaches of high-energy hadronic scattering, both in the soft and hard regime. Also, the Glauber model is briefly described. Nuclear effects in hadron-nucleus collisions are introduced in Chapter 4 with a main emphasis on nuclear shadowing. Other multiple scattering effects, such as absorption and transverse momentum broadening, are briefly described. We present also some preliminary result on particle production in p+Pb and d+Au collisions at SPS and RHIC, respectively. Finally, nucleus-nucleus collisions are discussed in Chapter 5 in the context of simple model of final state interactions. In the 'string' jargon one may say, that the former chapter relates to particle production from independent strings, while the latter additionally includes the possibility of string interaction or, rather, interactions of particles originating from different strings. Chapter 6 contains a description of the main results obtained in the papers, and outlines interesting topics for further study in the LHC-era of heavy-ion physics.(Author). refs., figs., tabs

  9. Interferometry of hard photons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ostendorf, R.W.

    1993-10-01

    Heavy ion collisions offer the unique opportunity to study interference effects between independent hard photons (energies above 25 MeV). The theoretical basis of interference is presented in the framework of classical as well as quantum theory. Experiments use the photon spectrometer TAPS, a modular array of BaF 2 crystals covering 30% of the solid angle. The properties of the spectrometer and the data analysis techniques are described for the experiment 129 Xe + 197 Au at 44 MeV/u, the very first dedicated to the study of photon correlation function. Data are interpreted using GEANT3 simulations to analyse the effect of the method as well as the response function of the photon spectrometer. A second experiment, 86 Kr + 58 Ni at 60 MeV/u is described briefly, where for the first time the existence of an interference effect between hard photons is observed. 52 figs., 76 refs

  10. Vocal Fold Collision Modeling

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas; Misztal, M. K.

    2015-01-01

    When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model...

  11. Composite quantum collision models

    Science.gov (United States)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  12. Fan Affinity Laws from a Collision Model

    Science.gov (United States)

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  13. Precollisional velocity correlations in a hard-disk fluid with dissipative collisions.

    Science.gov (United States)

    Soto, R; Piasecki, J; Mareschal, M

    2001-09-01

    Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced distributions, we predict the presence of precollisional velocity correlations. They are created by the propagation through correlated sequences of collisions (ring events) of the velocity correlations generated after dissipative collisions. The correlations have their origin in the dissipative character of collisions, being always present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions and molecular dynamics results that showed evidence of precollisional velocity correlations [R. Soto and M. Mareschal, Phys. Rev. E 63, 041303 (2001)].

  14. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan

    2013-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of the running coupling is small and their interactions should be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but also addresses the suppression of light parton jets, in particular to highlight differences due to the mass. For light partons, radiative processes are the dominant contribution to their energy loss. For heavy quarks, we show that also binary interactions with a running coupling and an improved Debye screening matched to hard-thermal-loop calculations play an important role. Furthermore, the impact of the mass in radiative interactions, prominently named the dead cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are studied in great detail. Since the transport model BAMPS has access to all medium properties and the space time information of heavy quarks, it is the ideal tool to study the dissociation and regeneration of J/ψ mesons, which is also investigated in this thesis.

  15. Monte-Carlo Simulation of Hard Probes in Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    Results from the Modular Algorithm for Relativistic Treatment of heavy IoN Interactions (MARTINI) are presented. This comprehensive event generator for the hard and penetrating probes in high energy nucleus-nucleus collisions employs a time evolution model for the soft background, PYTHIA 8.1 and the McGill-AMY parton evolution scheme including radiative as well as elastic processes. It generates full event configurations in the high p T region, taking into account thermal QCD and QED effects as well as effects of the evolving medium.

  16. Relation between hard photon production and impact parameter in heavy ion collisions at intermediate energies; Dependance de la production de photons durs avec le parametre d`impact dans les collisions entre ions lourds aux energies intermediaires

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Garcia, G.

    1994-06-01

    Hard photons produced in heavy-ions collisions at intermediate energies have been used in order to study hot and compresses nuclear matter created in these collisions (at Ganil). It was found that Bremsstrahlung radiation emitted in np collisions is the main mechanism of hard-photon production for the whole range of impact parameter. Moreover, it was observed a substantial decrease of the hardness of hard-photon spectrum. The BUU model reproduces very well the experimental results, showing that the hardness of the spectrum reflects, mainly, nuclear-matter compression in the first stage of the collision. A new method was developed to measure the density of the nuclear matter created at the beginning of the collision. BUU results and some experimental evidences point out that a significant contribution of hard photons are produced in the last stage of the collision: thermal hard photons. These photons are sensitive to the density oscillation of nuclear matter. Its production cross-section will constitute a measurement of the compressibility of nuclear matter and its spectrum a measure of the temperature. (from author) 64 figs., 60 refs.

  17. First-principle proof of the modified collision boundary conditions for the hard-sphere system

    International Nuclear Information System (INIS)

    Tessarotto, Massimo; Cremaschini, Claudio

    2014-01-01

    A fundamental issue lying at the foundation of classical statistical mechanics is the determination of the collision boundary conditions that characterize the dynamical evolution of multi-particle probability density functions (PDF) and are applicable to systems of hard-spheres undergoing multiple elastic collisions. In this paper it is proved that, when the deterministic N-body PDF is included in the class of admissible solutions of the Liouville equation, the customary form of collision boundary conditions adopted in previous literature becomes physically inconsistent and must actually be replaced by suitably modified collision boundary conditions.

  18. Interplay of soft and hard processes and hadron $p_{T}$ spectra in p A and AA collisions

    CERN Document Server

    Enke, Wang; 10.1103/PhysRevC.64.034901

    2001-01-01

    Motivated by a schematic model of multiple parton scattering within the Glauber formalism, the transverse momentum spectra in pA and AA collisions are analyzed in terms of a nuclear modification factor with respect to pp collisions. The existing data at the CERN Super Proton Synchrotron energies are shown to be consistent with the picture of Glauber multiple scattering in which the interplay between soft and hard processes and the effect of absorptive processes lead to nontrivial nuclear modification of the particle spectra. Relative to the additive model of incoherent hard scattering, the spectra are enhanced at large p/sub T/ (hard) by multiple scattering while suppressed at low p/sub T/ (soft) by absorptive correction with the transition occurring at around a scale p/sub 0/~1-2 GeV/c that separates soft and hard processes. Around the same scale, the p/sub T / spectra in pp collisions also change from an exponential form at low p/sub T/ to a power-law behavior at high p/sub T/. At very large p/sub T/>>p/sub...

  19. Hard scattering contribution to particle production in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Pareek, Pooja; Mishra, Aditya Nath; Sahoo, Pragati; Sahoo, Raghunath

    2014-01-01

    Global observables like the multiplicity of produced charged particles and transverse energy, are the key observables used to characterize the properties of the matter created in heavy-ion collisions. In order to study the dependence of the charged particle density on colliding system, center of mass energy and collision centrality, there have been measurements starting few GeV to TeV energies at LHC. There is a need to understand the particle production contribution coming from the QCD hard processes, which scale with number of binary nucleon-nucleon collisions, N coll and soft processes scaling with number of participant nucleons, N part

  20. arXiv Soft photon and two hard jets forward production in proton-nucleus collisions

    CERN Document Server

    Altinoluk, Tolga; Kovner, Alex; Lublinsky, Michael; Petreska, Elena

    2018-04-11

    We calculate the cross section for production of a soft photon and two hard jets in the forward rapidity region in proton-nucleus collisions at high energies. The calculation is performed within the hybrid formalism. The hardness of the final particles is defined with respect to the saturation scale of the nucleus. We consider both the correlation limit of small momentum imbalance and the dilute target limit where the momentum imbalance is of the order of the hardness of the jets. The results depend on the first two transversemomentum-dependent (TMD) gluon distributions of the nucleus.

  1. Hard photons and mesons as probes of heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Metag, V.

    1991-01-01

    Hard photon production in heavy ion collisions has been studied by a large number of groups at various laboratory and a large body of data has been collected. Recent results reviewed are summarized here in a systematics for photon emission. A brief discussion of π 0 -production in heavy ion collisions will be given including first results with the Two Arm Photon spectrometer TAPS obtained at SIS. Furthermore, the new perspectives for the study of compressed nuclear matter by meson emission will be outlined. (orig.)

  2. Diffusion equations and hard collisions in multiple scattering of charged particles

    International Nuclear Information System (INIS)

    Papiez, Lech; Tulovsky, Vladimir

    1998-01-01

    The processes of angular-spatial evolution of multiple scattering of charged particles are described by the Lewis (special case of Boltzmann) integro-differential equation. The underlying stochastic process for this evolution is the compound Poisson process with transition densities satisfying the Lewis equation. In this paper we derive the Lewis equation from the compound Poisson process and show that the effective method of the solution of this equation can be based on the idea of decomposition of the compound Poisson process into processes of soft and hard collisions. Formulas for transition densities of soft and hard collision processes are provided in this paper together with the formula expressing the general solution of the Lewis equation in terms of those transition densities

  3. Diffusion equations and hard collisions in multiple scattering of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Papiez, Lech [Department of Radiation Oncology, Indiana University, Indianapolis, IN (United States); Tulovsky, Vladimir [Department of Mathematics, St. John' s College, Staten Island, New York, NY (United States)

    1998-09-01

    The processes of angular-spatial evolution of multiple scattering of charged particles are described by the Lewis (special case of Boltzmann) integro-differential equation. The underlying stochastic process for this evolution is the compound Poisson process with transition densities satisfying the Lewis equation. In this paper we derive the Lewis equation from the compound Poisson process and show that the effective method of the solution of this equation can be based on the idea of decomposition of the compound Poisson process into processes of soft and hard collisions. Formulas for transition densities of soft and hard collision processes are provided in this paper together with the formula expressing the general solution of the Lewis equation in terms of those transition densities.

  4. Bose-Einstein correlations between hard photons produced in heavy ions collisions

    International Nuclear Information System (INIS)

    Marques Moreno, F.M.

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: 86 KR + nat Ni at 60.0 A.MeV, and 181 Ta + 197 Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi 0 , e +- and γγ correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs

  5. Collision models in quantum optics

    Science.gov (United States)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  6. Comparison of models of high energy heavy ion collision

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1977-01-01

    Some of the main theoretical developments on heavy ion collisions at energies (0.1 to 2.0) GeV/nuc are reviewed. The fireball, firestreak, hydrodynamic (1-fluid, 2-fluids), ''row on row'', hard sphere and intranuclear cascades, and classical equations of motion models are discussed in detail. Results are compared to each other and to measured Ne + U → p + X reactions

  7. Comparison of hard scattering models for particle production at large transverse momentum. 2

    International Nuclear Information System (INIS)

    Schiller, A.; Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.; Ranft, G.; Ranft, J.

    1977-01-01

    Single particle distributions of π + and π - at large transverse momentum are analysed using various hard collision models: qq → qq, qantiq → MantiM, qM → qM. The transverse momentum dependence at thetasub(cm) = 90 0 is well described in all models except qantiq → MantiM. This model has problems with the ratios (pp → π + +X)/(π +- p → π 0 +X). Presently available data on rapidity distributions of pions in π - p and pantip collisions are at rather low transverse momentum (however large xsub(perpendicular) = 2psub(perpendicular)/√s) where it is not obvious that hard collision models should dominate. The data, in particular the π - /π + asymmetry are well described by all models except qM → Mq (CIM). At large values of transverse momentum significant differences between the models are predicted. (author)

  8. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  9. Bose-Einstein correlations between hard photons produced in heavy ions collisions; Correlations Bose-Einstein entre photons durs produits dans les collisions d`ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Marques Moreno, F M

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: {sup 86}KR + {sup nat}Ni at 60.0 A.MeV, and {sup 181}Ta + {sup 197}Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi{sup 0}, e{sup +-} and {gamma}{gamma} correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs.

  10. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  11. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  12. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is currently experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. The more than a factor 10 increase of collision energy at LHC, relative to the previously achieved maximal energy at other collider facilities, results in an increase of production rates of hard probes. This review presents selected experimental results focusing on observables probing hard processes in heavy-ion collisions delivered during the first three years of the LHC operation. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large Hadron Collider, Heavy-ion collisions, High energy physics

  13. Modeling collisions in circumstellar debris disks

    Science.gov (United States)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  14. A numerical 4D Collision Risk Model

    Science.gov (United States)

    Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise

    2017-04-01

    With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical

  15. Hard photons beyond proton-neutron Bremsstrahlung in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.; Ploszajczak, M.

    1998-01-01

    The study of extremely high energy photons, pions and etas, produced in intermediate energy heavy-ion collisions is presented. Possibility of imaging the final-state phase space in these collisions by the Bose-Einstein correlations for photons is critically examined. (author)

  16. Firetube model and hadron-hadron collisions

    International Nuclear Information System (INIS)

    Nazareth, R.A.M.S.; Kodama, T.; Portes Junior, D.A.

    1992-01-01

    A new version of the fire tube model is developed to describe hadron-hadron collisions at ultrarelativistic energies. Several improvements are introduced in order to include the longitudinal expansion of intermediate fireballs, which remedies the overestimates of the transverse momenta in the previous version. It is found that, within a wide range of incident energies, the model describes well the experimental data for the single particle rapidity distribution, two-body correlations in the pseudo-rapidity, transverse momentum spectra of pions and kaons, the leading particle spectra and the K/π ratio. (author)

  17. Traffic simulation based ship collision probability modeling

    Energy Technology Data Exchange (ETDEWEB)

    Goerlandt, Floris, E-mail: floris.goerlandt@tkk.f [Aalto University, School of Science and Technology, Department of Applied Mechanics, Marine Technology, P.O. Box 15300, FI-00076 AALTO, Espoo (Finland); Kujala, Pentti [Aalto University, School of Science and Technology, Department of Applied Mechanics, Marine Technology, P.O. Box 15300, FI-00076 AALTO, Espoo (Finland)

    2011-01-15

    Maritime traffic poses various risks in terms of human, environmental and economic loss. In a risk analysis of ship collisions, it is important to get a reasonable estimate for the probability of such accidents and the consequences they lead to. In this paper, a method is proposed to assess the probability of vessels colliding with each other. The method is capable of determining the expected number of accidents, the locations where and the time when they are most likely to occur, while providing input for models concerned with the expected consequences. At the basis of the collision detection algorithm lays an extensive time domain micro-simulation of vessel traffic in the given area. The Monte Carlo simulation technique is applied to obtain a meaningful prediction of the relevant factors of the collision events. Data obtained through the Automatic Identification System is analyzed in detail to obtain realistic input data for the traffic simulation: traffic routes, the number of vessels on each route, the ship departure times, main dimensions and sailing speed. The results obtained by the proposed method for the studied case of the Gulf of Finland are presented, showing reasonable agreement with registered accident and near-miss data.

  18. HARD PARTON PHYSICS IN HIGH ENERGY NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 17

    Energy Technology Data Exchange (ETDEWEB)

    CARROLL,J.

    1999-09-10

    The RIKEN-BNL center workshop on ''Hard parton physics in high energy nuclear collisions'' was held at BNL from March 1st-5th! 1999. The focus of the workshop was on hard probes of nucleus-nucleus collisions that will be measured at RHIC with the PHENIX and STAR detectors. There were about 45 speakers and over 70 registered participants at the workshop, with roughly a quarter of the speakers from overseas. About 60% of the talks were theory talks. A nice overview of theory for RHIC was provided by George Sterman. The theoretical talks were on a wide range of topics in QCD which can be classified under the following: (a) energy loss and the Landau-Pomeranchuk-Migdal effect; (b) minijet production and equilibration; (c) small x physics and initial conditions; (d) nuclear parton distributions and shadowing; (e) spin physics; (f) photon, di-lepton, and charm production; and (g) hadronization, and simulations of high pt physics in event generators. Several of the experimental talks discussed the capabilities of the PHENIX and STAR detectors at RHIC in measuring high pt particles in heavy ion collisions. In general, these talks were included in the relevant theory sessions. A session was set aside to discuss the spin program at RHIC with polarized proton beams. In addition, there were speakers from 08, HERA, the fixed target experiments at Fermilab, and the CERN fixed target Pb+Pb program, who provided additional perspective on a range of issues of relevance to RHIC; from jets at the Tevatron, to saturation of parton distributions at HERA, and recent puzzling data on direct photon production in fixed target experiments, among others.

  19. Microscopic model of nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Harvey, B.G.

    1986-04-01

    The collision of two nuclei is treated as a collection of collisions between the nucleons of the projectile and those of the target nucleus. The primary projectile fragments contain only those nucleons that did not undergo a collision. The inclusive and coincidence cross sections result from the decay of the excited primary fragments. 15 refs., 5 figs

  20. Simple kinetic theory model of reactive collisions. IV. Laboratory fixed orientational cross sections

    International Nuclear Information System (INIS)

    Evans, G.T.

    1987-01-01

    The differential orientational cross section, obtainable from molecular beam experiments on aligned molecules, is calculated using the line-of-normals model for reactive collisions involving hard convex bodies. By means of kinetic theory methods, the dependence of the cross section on the angle of attack γ 0 is expressed in a Legendre function expansion. Each of the Legendre expansion coefficients is given by an integral over the molecule-fixed cross section and functions of the orientation dependent threshold energy

  1. A classical statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.; Teichert, J.

    1980-01-01

    The use of the computer code TRAJEC which represents the numerical realization of a classical statistical model for heavy ion collisions is described. The code calculates the results of a classical friction model as well as various multi-differential cross sections for heavy ion collisions. INPUT and OUTPUT information of the code are described. Two examples of data sets are given [ru

  2. Comparison of models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1978-01-01

    The treatment of high energy nuclear reaction models covers goals of such collisions, the choice of theoretical framework, the zoo of models (p inclusive), light composites, models versus experiment, conclusions drawn, needed experiments, and pion production. 30 diagrams

  3. Observation of significant spin effects in hard collisions at 40 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Apokin, V D; Arestov, Yu I; Astafiev, O V; Belikov, N I; Chujko, B V; Derevshchikov, A A; Grachev, O A; Matulenko, Yu A; Meshchanin, A P; Morozov, A A; Mochalov, V V; Mysnik, A I; Nurushev, S B; Patalakha, D I; Prudkogliad, A F; Rykov, V L; Soloviev, L F; Solovianov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Borisov, N S; Kazarinov, Yu M; Khachaturov, B A; Liburg, M Yu; Matafonov, V N; Neganov, A B; Usov, Yu A [Joint Inst. for Nuclear Research, Dubna (USSR); Bagaturia, Yu Sh; Glonti, L N; Macharashvili, G G; Ocherashvili, A I; Sakhelashvili, T M [Tbilisskij Gosudarstvennyj Univ. (USSR). Inst. for High Energy Physics

    1990-07-05

    A single-spin asymmetry in the inclusive {pi}{sup 0} production at small x{sub F} was measured. In the experiment 40 GeV/c {pi}{sup -} mesons were incident on transversely polarized protons and deuterons. An asymmetry of (40-50)% has been revealed in the hard scattering region. (orig.).

  4. Computational Modeling Develops Ultra-Hard Steel

    Science.gov (United States)

    2007-01-01

    Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.

  5. Unitarity corrections and high field strengths in high energy hard collisions

    International Nuclear Information System (INIS)

    Kovchegov, Y.V.; Mueller, A.H.

    1997-01-01

    Unitarity corrections to the BFKL description of high energy hard scattering are viewed in large N c QCD in light-cone quantization. In a center of mass frame unitarity corrections to high energy hard scattering are manifestly perturbatively calculable and unrelated to questions of parton saturation. In a frame where one of the hadrons is initially at rest unitarity corrections are related to parton saturation effects and involve potential strengths A μ ∝1/g. In such a frame we describe the high energy scattering in terms of the expectation value of a Wilson loop. The large potentials A μ ∝1/g are shown to be pure gauge terms allowing perturbation theory to again describe unitarity corrections and parton saturation effects. Genuine nonperturbative effects only come in at energies well beyond those energies where unitarity constraints first become important. (orig.)

  6. Modelling seabird collision risk with off-shore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Maria; Arroyo, Gonzalo Munoz; Rosario, Jose Juan Alonso del

    2011-07-01

    Full text: Recent concern about the adverse effects of collision mortality of avian migrants at wind farms has highlighted the need to understand bird-wind turbine interactions. Here, a stochastic collision model, based on data of seabird behaviour collected on- site, is presented, as a flexible and easy to take tool to assess the collisions probabilities of off-shore wind farms in a pre-construction phase. The collision prediction model considering the wind farm area as a risk window has been constructed as a stochastic model for avian migrants, based on Monte Carlo simulation. The model calculates the probable number of birds collided per time unit. Migration volume, wind farm dimensions, vertical and horizontal distribution of the migratory passage, flight direction and avoidance rates, between other variables, are taken into account in different steps of the model as the input variables. In order to assess the weighted importance of these factors on collision probability predictions, collision probabilities obtained from the set of scenarios resulting from the different combinations of the input variables were modelled by using Generalised Additive Models. The application of this model to a hypothetical project for erecting a wind farm at the Strait of Gibraltar showed that collision probability, and consequently mortality rates, strongly depend on the values of the avoidance rates taken into account, and the distribution of birds into the different altitude layers. These parameters should be considered as priorities to be addressed in post-construction studies. (Author)

  7. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock

  8. Realistic modelling of jets in heavy-ion collisions

    International Nuclear Information System (INIS)

    Young, Clint; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2013-01-01

    The reconstruction of jets in heavy-ion collisions provides insight into the dynamics of hard partons in media. Unlike the spectrum of single hadrons, the spectrum of jets is highly sensitive to q -hat ⊥ , as well as being sensitive to partonic energy loss and radiative processes. We use martini, an event generator, to study how finite-temperature processes at leading order affect dijets

  9. Modeling hard clinical end-point data in economic analyses.

    Science.gov (United States)

    Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V

    2013-11-01

    The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (Models of infrequent events or with numerous health states generally preferred constant event rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are

  10. The hard-core model on random graphs revisited

    International Nuclear Information System (INIS)

    Barbier, Jean; Krzakala, Florent; Zhang, Pan; Zdeborová, Lenka

    2013-01-01

    We revisit the classical hard-core model, also known as independent set and dual to vertex cover problem, where one puts particles with a first-neighbor hard-core repulsion on the vertices of a random graph. Although the case of random graphs with small and very large average degrees respectively are quite well understood, they yield qualitatively different results and our aim here is to reconciliate these two cases. We revisit results that can be obtained using the (heuristic) cavity method and show that it provides a closed-form conjecture for the exact density of the densest packing on random regular graphs with degree K ≥ 20, and that for K > 16 the nature of the phase transition is the same as for large K. This also shows that the hard-code model is the simplest mean-field lattice model for structural glasses and jamming

  11. Models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  12. 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

    CERN Document Server

    2014-01-01

    One of the premier meetings in the field of high-energy nuclear physics, the Hard Probes conference series brings together the experimental and theoretical communities interested in the hard and electromagnetic observables related to nuclear matter at extreme temperatures and densities. Prior to the conference, the University of Cape Town will host a summer school for young physicists in the field. High energy nuclear physics focuses on the science of a trillion degrees. These temperatures were last seen in nature a microsecond after the Big Bang, but mankind recreates them thousands of times a second in particle accelerators such as CERN's Large Hadron Collider and BNL's Relativistic Heavy Ion Collider. At these temperatures, 100,000 times hotter than the center of the sun, the strong force is dominant, and we hope to learn about the fundamental and non-trivial emergent many-body dynamics of the quarks and gluons that make up 99% of the mass of the visible universe. We anticipate the usual format for the H...

  13. Elementary Statistical Models for Vector Collision-Sequence Interference Effects with Poisson-Distributed Collision Times

    International Nuclear Information System (INIS)

    Lewis, J.C.

    2011-01-01

    In a recent paper (Lewis, 2008) a class of models suitable for application to collision-sequence interference was introduced. In these models velocities are assumed to be completely randomized in each collision. The distribution of velocities was assumed to be Gaussian. The integrated induced dipole moment μk, for vector interference, or the scalar modulation μk, for scalar interference, was assumed to be a function of the impulse (integrated force) fk, or its magnitude fk, experienced by the molecule in a collision. For most of (Lewis, 2008) it was assumed that μk fk and μk fk, but it proved to be possible to extend the models, so that the magnitude of the induced dipole moment is equal to an arbitrary power or sum of powers of the intermolecular force. This allows estimates of the in filling of the interference dip by the dis proportionality of the induced dipole moment and force. One particular such model, using data from (Herman and Lewis, 2006), leads to the most realistic estimate for the in filling of the vector interference dip yet obtained. In (Lewis, 2008) the drastic assumption was made that collision times occurred at equal intervals. In the present paper that assumption is removed: the collision times are taken to form a Poisson process. This is much more realistic than the equal-intervals assumption. The interference dip is found to be a Lorentzian in this model

  14. Modelling of the Internal Mechanics in Ship Collisions

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Pedersen, Preben Terndrup

    1996-01-01

    A method for analysis of the structural damage due to ship collisions is developed. The method is based on the idealized structural unit method (ISUM). Longitudinal/transverse webs which connect the outer and the inner hulls are modelled by rectangular plate units. The responses are determined...... on the stiffness and the strength is considered as well. In order to include the coupling effects between local and global failure of the structure, the usual non-linear finite-element technique is applied. In order to deal with the gap and contact conditions between the striking and the struck ships, gap......-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example the procedure has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response, namely the collision speed and the scantlings/ arrangements...

  15. Modeling and simulation of cars in frontal collision

    Science.gov (United States)

    Deac, S. C.; Perescu, A.; Simoiu, D.; Nyaguly, E.; Crâştiu, I.; Bereteu, L.

    2018-01-01

    Protection of cars, mainly drivers and passengers in a collision are very important issues worldwide. Statistics given by “World Health Organization” are alarming rate of increase in the number of road accidents, most claiming with serious injury, human and material loss. For these reasons has been a continuous development of protection systems, especially car causing three quarters of all accidents. Mathematical modeling and simulation of a car behavior during a frontal collision leads to new solutions in the development of protective systems. This paper presents several structural models of a vehicle during a frontal collision and its behavior is analyzed by numerical simulation using Simulink.

  16. Some remarks on the statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Koch, V.

    2003-01-01

    This contribution is an attempt to assess what can be learned from the remarkable success of this statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion collisions

  17. Toy model for pion production in nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Hanhart, C.; Miller, G. A.; Myhrer, F.; Sato, T.; Kolck, U. van

    2001-01-01

    We develop a toy model for pion production in nucleon-nucleon collisions that reproduces some of the features of the chiral Lagrangian calculations. We calculate the production amplitude and examine some common approximations

  18. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    Science.gov (United States)

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  19. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo

    International Nuclear Information System (INIS)

    Parsons, Neal; Levin, Deborah A.; Duin, Adri C. T. van; Zhu, Tong

    2014-01-01

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N 2 ( 1 Σ g + )-N 2 ( 1 Σ g + ) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections

  20. Modelling of a collision between two smartphones

    Science.gov (United States)

    de Jesus, V. L. B.; Sasaki, D. G. G.

    2016-09-01

    In the predominant approach in physics textbooks, the collision between particles is treated as a black box, where no physical quantity can be measured. This approach becomes even more evident in experimental classes where collisions are the simplest and most common way of applying the theorem of conservation of linear momentum in the asymptotic behavior. In this paper we develop and analyse an experiment on collisions using only two smartphones. The experimental setup is amazingly simple; the two devices are aligned on a horizontal table of lacquered wood, in order to slide more easily. At the edge of one of them a piece of common sponge is glued using double-sided tape. By using a free smartphone application, the values generated by the accelerometer of the two devices in full motion are measured and tabulated. Through numerical iteration, the speed graphs of the smartphones before, during, and after the collision are obtained. The main conclusions were: (i) the demonstration of the feasibility of using smartphones as an alternative to air tracks and electronic sensors employed in a teaching lab, (ii) the possibility of investigating the collision itself, its characteristics and effects; this is the great advantage of the use of smartphones over traditional experiments, (iii) the compatibility of the results with the impulse-momentum theorem, within the margin of uncertainty.

  1. Avian collision risk models for wind energy impact assessments

    Energy Technology Data Exchange (ETDEWEB)

    Masden, E.A., E-mail: elizabeth.masden@uhi.ac.uk [Environmental Research Institute, North Highland College-UHI, University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE (United Kingdom); Cook, A.S.C.P. [British Trust for Ornithology, The Nunnery, Thetford IP24 2PU (United Kingdom)

    2016-01-15

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.

  2. Avian collision risk models for wind energy impact assessments

    International Nuclear Information System (INIS)

    Masden, E.A.; Cook, A.S.C.P.

    2016-01-01

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.

  3. Geometric branching model of high-energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chen, W.

    1988-01-01

    A phenomenological model is proposed to describe collisions between hadrons at high energies. In the context of the eikonal formalism, the model consists of two components: soft and hard. The former only involves the production of particles with small transverse momenta; the latter is characterized by jet production. Geometrical scaling is taken as an essential input to describe the geometrical properties of hadrons as extended objects on the one hand, and on the other to define the soft component in both regions below and above the jet threshold. A stochastical Furry branching process is adopted as the mechanism of soft particle production, while the jet fragmentation and gluon initial-state bremsstrahlung are for the production of hadrons in hard collisions. Impact parameter and virtuality are smeared to describe the statistical averaging effects of hadron-hadron collisions. Many otherwise separated issues, ranging from elastic scattering to parton decay function, are connected together in the framework of this model. The descriptions of many prominent features of hadronic collisions are in good agreement with the observed experimental data at all available energies. Multiplicity distributions at all energies are discussed as a major issue in this paper. KNO scaling is achieved for energies within ISR range. The emergence of jets is found to be responsible not only for the violation of both geometrical scaling and KNO scaling, but also for the continuous broadening of the multiplicity distribution with ever increasing energy. It is also shown that the geometrical size of a hadron reaches an asymptote in the energy region of CERN-SppS. A Monte Carlo version of the model for soft production is constructed

  4. Binary collisions in popovici’s photogravitational model

    Directory of Open Access Journals (Sweden)

    Mioc V.

    2002-01-01

    Full Text Available The dynamics of bodies under the combined action of the gravitational attraction and the radiative repelling force has large and deep implications in astronomy. In the 1920s, the Romanian astronomer Constantin Popovici proposed a modified photogravitational law (considered by other scientists too. This paper deals with the collisions of the two-body problem associated with Popovici’s model. Resorting to McGehee-type transformations of the second kind, we obtain regular equations of motion and define the collision manifold. The flow on this boundary manifold is wholly described. This allows to point out some important qualitative features of the collisional motion: existence of the black-hole effect, gradientlikeness of the flow on the collision manifold, regularizability of collisions under certain conditions. Some questions, coming from the comparison of Levi-Civita’s regularizing transformations and McGehee’s ones, are formulated.

  5. Student Centric Learning Through Planned Hard work - An Innovative Model

    OpenAIRE

    Aithal, Sreeramana; Aithal, Shubrajyotsna

    2016-01-01

    The strategies followed by educational institutions and the students become very important when the performance of students in the examinations is concerned. By means of properly planned and well guided model of training and motivation to do hard work, students can follow a well disciplined study plan and become exceptionally successful in examinations. Teaching and training by experienced and dedicated faculty members, continuous support by parents and motivating the students based on settin...

  6. Supercooled liquid dynamics for the charged hard-sphere model

    International Nuclear Information System (INIS)

    Lai, S.K.; Chang, S.Y.

    1994-08-01

    We study the dynamics of supercooled liquid and the liquid-glass transition by applying the mode coupling theory to the charged hard-sphere model. By exploiting the two independent parameters inherent in the charged hard-sphere system we examine structurally the subtle and competitive role played by the short-range hard-core correlation and the long-range Coulomb tail. It is found in this work that the long-range Coulombic charge factor effect is generally a less effective contribution to structure when the plasma parameter is less than 500 and becomes dominant when it is greater thereof. To extend our understanding of the supercooled liquid and the liquid-glass transition, an attempt is made to calculate and to give physical relevance to the mode-coupling parameters which are frequently used as mere fitting parameters in analysis of experiments on supercooled liquid systems. This latter information enables us to discuss the possible application of the model to a realistic system. (author). 22 refs, 4 figs

  7. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock. In order to learn more about the response of hard rock to underground nuclear explosions, we have attempted to model the PILEDRIVER event. PILEDRIVER was fired on June 2, 1966 in the granite stock of Area 15 at the Nevada Test Site. The working point was at a depth of 462.7 m and the yield was determined to be 61 kt. Numerous surface, sub-surface and free-field measurements were made and analyzed by SRI. An attempt was made to determine the contribution of spall to the teleseismic signal, but proved unsuccessful because most of the data from below-shot-level gauges was lost. Nonetheless, there is quite a bit of good quality data from a variety of locations. We have been able to obtain relatively good agreement with the experimental PILEDRIVER waveforms. In order to do so, we had to model the granodiorite as being considerably weaker than ''good quality'' granite, and it had to undergo considerable weakening due to shock damage as well. In addition, the near-surface layers had to be modeled as being weak and compressible and as have a much lower sound speed than the material at depth. The is consistent with a fractured and jointed material at depth, and a weathered material near the surface

  8. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    model, to describe the microscopic evolution and decoupling of the hadronic ... progress on hydrodynamic modelling, investigation on the flow data and the ... and to describe and predict the soft particle physics in relativistic heavy-ion collisions [4]. It is based on the conservation laws of energy, momentum and net charge ...

  9. A Mathematical Model for Analysis on Ships Collision Avoidance ...

    African Journals Online (AJOL)

    This study develops a mathematical model for analysis on collision avoidance of ships. The obtained model provides information on the quantitative effect of the ship's engine's response and the applied reversing force on separation distance and stopping abilities of the ships. Appropriate evasive maneuvers require the ...

  10. A mathematical model of bird collisions with wind turbine rotors

    International Nuclear Information System (INIS)

    Tucker, V.A.

    1996-01-01

    When a bird flies through the disk swept out by the blades of a wind turbine rotor, the probability of collision depends on the motions and dimensions of the bird and the blades. The collision model in this paper predicts the probability for birds that glide upwind, downwind, an across the wind past simple one-dimensional blades represented by straight lines, and upwind and downwind past more realistic three-dimensional blades with chord and twist. Probabilities vary over the surface of the disk, and in most cases, the tip of the blade is less likely to collide with a bird than parts of the blade nearer the hub. The mean probability may be found by integration over the disk area. The collision model identifies the rotor characteristics that could be altered to make turbines safer for birds

  11. Discrete Velocity Models for Polyatomic Molecules Without Nonphysical Collision Invariants

    Science.gov (United States)

    Bernhoff, Niclas

    2018-05-01

    An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. Unlike for the Boltzmann equation, for DVMs there can appear extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and hence, without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single species, but also for binary mixtures and recently extensively for multicomponent mixtures. In this paper, we address ways of constructing normal DVMs for polyatomic molecules (here represented by that each molecule has an internal energy, to account for non-translational energies, which can change during collisions), under the assumption that the set of allowed internal energies are finite. We present general algorithms for constructing such models, but we also give concrete examples of such constructions. This approach can also be combined with similar constructions of multicomponent mixtures to obtain multicomponent mixtures with polyatomic molecules, which is also briefly outlined. Then also, chemical reactions can be added.

  12. Time-based collision risk modeling for air traffic management

    Science.gov (United States)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures

  13. Mathematical modeling for surface hardness in investment casting applications

    International Nuclear Information System (INIS)

    Singh, Rupinder

    2012-01-01

    Investment casting (IC) has many potential engineering applications. Not much work hitherto has been reported for modeling the surface hardness (SH) in IC of industrial components. In the present study, outcome of Taguchi based macro model has been used for developing a mathematical model for SH; using Buckingham's π theorem. Three input parameters namely volume/surface area (V/A) ratio of cast components, slurry layer's combination (LC) and molten metal pouring temperature were selected to give output in form of SH. This study will provide main effects of these variables on SH and will shed light on the SH mechanism in IC. The comparison with experimental results will also serve as further validation of model

  14. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  15. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    While the free-streaming of particles in the kinetic theory drive the system out of equi- ... For collisions at RHIC and LHC, a transport model may involve four main com- ...... Further, there are many important conceptual issues such as imple-.

  16. Pseudo potentials and model potentials in atomic collisions

    International Nuclear Information System (INIS)

    Reyes, O.; Jouin, H.; Fuentealba, P.

    1988-01-01

    In this work, it is discussed the main differences between the use of pseudo-potentials and model potentials in collision problems . It is shown the potential energy curves for distinct systems obtained with both kinds of potentials. (A.C.A.S.) [pt

  17. Effect of intruder mass on collisions with hard binaries. II - Dependence on impact parameter and computations of the interaction cross sections

    Science.gov (United States)

    Hills, J. G.

    1992-06-01

    Over 125,000 encounters between a hard binary with equal mass, components and orbital eccentricity of 0, and intruders with solar masses ranging from 0.01 to 10,000 are simulated. Each encounter was followed up to a maximum of 5 x 10 exp 6 integration steps to allow long-term 'resonances', temporary trinary systems, to break into a binary and a single star. These simulations were done over a range of impact parameters to find the cross sections for various processes occurring in these encounters. A critical impact parameter found in these simulations is the one beyond which no exchange collisions can occur. The energy exchange between the binary and a massive intruder decreases greatly in collisions with Rmin of not less than Rc. The semimajor axes and orbital eccentricity of the surviving binary also drops rapidly at Rc in encounters with massive intruders. The formation of temporary trinary systems is important for all intruder masses.

  18. The multistring model VENUS for ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1988-02-01

    The event generator VENUS is based on a multistring model for heavy ion collisions at ultrarelativistic energies. The model is a straightforward extension of a successful model for soft proton-proton scattering, the latter one being consistent with e/sup /plus//e/sup /minus// annihilation and deep inelastic lepton scattering. Comparisons of VENUS results with pA and recent AA data alow some statements about intranuclear cascading. 18 refs., 7 figs

  19. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  20. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  1. NASA Lewis Launch Collision Probability Model Developed and Analyzed

    Science.gov (United States)

    Bollenbacher, Gary; Guptill, James D

    1999-01-01

    There are nearly 10,000 tracked objects orbiting the earth. These objects encompass manned objects, active and decommissioned satellites, spent rocket bodies, and debris. They range from a few centimeters across to the size of the MIR space station. Anytime a new satellite is launched, the launch vehicle with its payload attached passes through an area of space in which these objects orbit. Although the population density of these objects is low, there always is a small but finite probability of collision between the launch vehicle and one or more of these space objects. Even though the probability of collision is very low, for some payloads even this small risk is unacceptable. To mitigate the small risk of collision associated with launching at an arbitrary time within the daily launch window, NASA performs a prelaunch mission assurance Collision Avoidance Analysis (or COLA). For the COLA of the Cassini spacecraft, the NASA Lewis Research Center conducted an in-house development and analysis of a model for launch collision probability. The model allows a minimum clearance criteria to be used with the COLA analysis to ensure an acceptably low probability of collision. If, for any given liftoff time, the nominal launch vehicle trajectory would pass a space object with less than the minimum required clearance, launch would not be attempted at that time. The model assumes that the nominal positions of the orbiting objects and of the launch vehicle can be predicted as a function of time, and therefore, that any tracked object that comes within close proximity of the launch vehicle can be identified. For any such pair, these nominal positions can be used to calculate a nominal miss distance. The actual miss distances may differ substantially from the nominal miss distance, due, in part, to the statistical uncertainty of the knowledge of the objects positions. The model further assumes that these position uncertainties can be described with position covariance matrices

  2. PENGEMBANGAN MODEL PEMBELAJARAN SOFT SKILLS DAN HARD SKILLS UNTUK SISWA SMK

    OpenAIRE

    Widarto Noto Widodo, Pardjono

    2013-01-01

    Abstrak: Pengembangan Model Pembelajaran Soft Skills dan Hard Skills untuk Siswa SMK. Era global menuntut sumber daya manusia yang memiliki daya saing, adaptif dan antisipatif, mampu belajar, terampil, mudah beradaptasi dengan teknologi baru. Profil tenaga kerja yang dibutuhkan pasar adalah yang kuat pada aspek soft skills dan hard skills. Ada tiga alternatif model pendidikan yang memadukan hard skills dan soft skills, yaitu (1) aspek soft skills dan hard skills dilaksanakan di sekolah; (2) a...

  3. Multiple-collision model for pion production in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vary, J.P.

    1978-01-01

    A simple model for pion production in relativistic heavy-ion collisions is developed based on nucleon-nucleon data, nuclear density distribution, and the assumption of straight-line trajectories. Multiplicity distributions for total pion production and for negative-pion production are predicted for 40 Ar incident on a Pb 3 O 4 target at 1.8 GeV/nucleon. Production through intermediate baryon resonances reduces the high-multiplicity region but insufficiently to yield agreement with data. This implies the need for a coherent production mechanism

  4. Study of hard double-parton scattering in four-jet events in $pp$ collisions at $\\sqrt{s} =7$ TeV with the ATLAS experiment

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Frank; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; López, Jorge Andrés; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2016-11-21

    Inclusive four-jet events produced in proton--proton collisions at a centre-of-mass energy of $\\sqrt{s} = 7$ TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb$^{-1}$, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum $p_{\\mathrm{T}} \\geq 20$ GeV and pseudorapidity $\\eta \\leq 4.4$, and at least one having $p_{\\mathrm{T}} \\geq 42.5$ GeV, the contribution of hard double-parton scattering is estimated to be $f_{\\mathrm{DPS}} = 0.092 ^{+0.005}_{-0.011} (\\mathrm{stat.}) ^{+0.033}_{-0.037} (\\mathrm{syst.})$. After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space r...

  5. A model for high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Myers, W.D.

    1978-01-01

    A model is developed for high-energy heavy-ion collisions that treats the variation across the overlap region of the target and projectile in the amount of energy and momentum that is deposited. The expression for calculating any observable takes the form of a sum over a series of terms, each one of which consists of a geometric, a kinematic, and a statistical factor. The geometrical factors for a number of target projectile systems are tabulated. (Auth.)

  6. Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review

    Science.gov (United States)

    Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal

    2017-08-01

    Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.

  7. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Science.gov (United States)

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  8. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Marwah Almasri

    2015-12-01

    Full Text Available Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  9. Quantitative Modelling of Trace Elements in Hard Coal.

    Science.gov (United States)

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  10. Thin sheet numerical modelling of continental collision

    NARCIS (Netherlands)

    Jimenez-Munt, I.; Garcia-Gastellanos, D.; Fernandez, M.

    2005-01-01

    We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping

  11. Simple model of surface roughness for binary collision sputtering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Sloan J. [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Hobler, Gerhard, E-mail: gerhard.hobler@tuwien.ac.at [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Maciążek, Dawid; Postawa, Zbigniew [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30348 Kraków (Poland)

    2017-02-15

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  12. Simple model of surface roughness for binary collision sputtering simulations

    International Nuclear Information System (INIS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-01-01

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  13. Molecular dynamics and binary collisions modeling of the primary damage state of collision cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.

    1992-01-01

    The objective of this work is to determine the spectral dependence of defect production and microstructure evolution for the development of fission-fusion correlations. Quantitative information on defect production in cascades in copper obtained from recent molecular dynamics (MD) simulations is compared to defect production information determined earlier with a model based on the binary collision approximation (BCA). The total numbers of residual defects, the fractions of them that are mobile, and the sizes of immobile clusters compare favorably, especially when the termination conditions of the two simulations are taken into account. A strategy is laid out for integrating the details of the cascade quenching phase determined by MD into a BCA-based model that is practical for simulating much higher energies and longer times than MD alone can achieve. The extraction of collisional phase information from MD simulations and the correspondence of MD and BCA versions of the collisional phase demonstrated at low energy

  14. Molecular dynamics and binary collision modeling of the primary damage state of collision cascades

    DEFF Research Database (Denmark)

    Heinisch, H.L.; Singh, B.N.

    1992-01-01

    Quantitative information on defect production in cascades in copper obtained from recent molecular dynamics simulations is compared to defect production information determined earlier with a model based on the binary collision approximation (BCA). The total numbers of residual defects......, the fractions of them that are mobile, and the sizes of immobile clusters compare favorably, especially when the termination conditions of the two simulations are taken into account. A strategy is laid out for integrating the details of the cascade quenching phase determined by MD into a BCA-based model...... that is practical for simulating much higher energies and longer times than MD alone can achieve. The extraction of collisional phase information from MD simulations and the correspondence of MD and BCA versions of the collisional phase is demonstrated at low energy....

  15. A collision model in plasma particle simulations

    International Nuclear Information System (INIS)

    Ma Yanyun; Chang Wenwei; Yin Yan; Yue Zongwu; Cao Lihua; Liu Daqing

    2000-01-01

    In order to offset the collisional effects reduced by using finite-size particles, β particle clouds are used in particle simulation codes (β is the ratio of charge or mass of modeling particles to real ones). The method of impulse approximation (strait line orbit approximation) is used to analyze the scattering cross section of β particle clouds plasmas. The authors can obtain the relation of the value of a and β and scattering cross section (a is the radius of β particle cloud). By using this relation the authors can determine the value of a and β so that the collisional effects of the modeling system is correspondent with the real one. The authors can also adjust the values of a and β so that the authors can enhance or reduce the collisional effects fictitiously. The results of simulation are in good agreement with the theoretical ones

  16. Quark model and high energy collisions

    International Nuclear Information System (INIS)

    Nyiri, J.; Kobrinsky, M.N.

    1982-06-01

    The aim of the present review is to show that the additive quark model describes well not only the static features of hadrons but also the interaction processes at high energies. Considerations of the hadron-hadron and hadron-nucleus interactions and of the hadron production in multiparticle production processes suggest serious arguments in favour of the nucleus-like hadron structure and show the possibility to apply the rules of quark statistics to the description of the secondary particle production. (author)

  17. Modeling HAZ hardness and weld features with BPN technology

    International Nuclear Information System (INIS)

    Morinishi, S.; Bibby, M.J.; Chan, B.

    2000-01-01

    A BPN (back propagation network) system for predicting HAZ (heat-affected zone) hardnesses and GMAW (gas metal arc) weld features (size and shape) is described in this presentation. Among other things, issues of network structure, training and testing data selection, software efficiency and user interface are discussed. The system is evaluated by comparing network output with experimentally measured test data in the first instance, and with regression methods available for this purpose, thereafter. The potential of the web for exchanging weld process data and for accessing models generated with this system is addressed. In this regard the software has been made available on the Cambridge University 'steel' and 'neural' websites. In addition Java coded software has recently been generated to provide web flexibility and accessibility. Over and above this, the possibility of offering an on-line 'server' training service, arranged to capture user data (user identification, measured welding parameters and features) and trained models for the use of the entire welding community is described. While the possibility of such an exchange is attractive, there are several difficulties in designing such a system. Server software design, computing resources, data base and communications considerations are some of the issues that must be addressed with regard to a server centered training and database system before it becomes reality. (author)

  18. Exponential critical-state model for magnetization of hard superconductors

    International Nuclear Information System (INIS)

    Chen, D.; Sanchez, A.; Munoz, J.S.

    1990-01-01

    We have calculated the initial magnetization curves and hysteresis loops for hard type-II superconductors based on the exponential-law model, J c (H i ) =k exp(-|H i |/H 0 ), where k and H 0 are constants. After discussing the general behavior of penetrated supercurrents in an infinitely long column specimen, we define a general cross-sectional shape based on two equal circles of radius a, which can be rendered into a circle, a rectangle, or many other shapes. With increasing parameter p (=ka/H 0 ), the computed M-H curves show obvious differences with those computed from Kim's model and approach the results of a simple infinitely narrow square pulse J c (H i ). For high-T c superconductors, our results can be applied to the study of the magnetic properties and the critical-current density of single crystals, as well as to the determination of the intergranular critical-current density from magnetic measurements

  19. Artificial neural network modelling in heavy ion collisions

    International Nuclear Information System (INIS)

    El-dahshan, E.; Radi, A.; El-Bakry, M.Y.; El Mashad, M.

    2008-01-01

    The neural network (NN) model and parton two fireball model (PTFM) have been used to study the pseudo-rapidity distribution of the shower particles for C 12, O 16, Si 28 and S 32 on nuclear emulsion. The trained NN shows a better fitting with experimental data than the PTFM calculations. The NN is then used to predict the distributions that are not present in the training set and matched them effectively. The NN simulation results prove a strong presence modeling in heavy ion collisions

  20. Synergy of modeling processes in the area of soft and hard modeling

    Directory of Open Access Journals (Sweden)

    Sika Robert

    2017-01-01

    Full Text Available High complexity of production processes results in more frequent use of computer systems for their modeling and simulation. Process modeling helps to find optimal solution, verify some assumptions before implementation and eliminate errors. In practice, modeling of production processes concerns two areas: hard modeling (based on differential equations of mathematical physics and soft (based on existing data. In the paper the possibility of synergistic connection of these two approaches was indicated: it means hard modeling support based on the tools used in soft modeling. It aims at significant reducing the time in order to obtain final results with the use of hard modeling. Some test were carried out in the Calibrate module of NovaFlow&Solid (NF&S simulation system in the frame of thermal analysis (ATAS-cup. The authors tested output values forecasting in NF&S system (solidification time on the basis of variable parameters of the thermal model (heat conduction, specific heat, density. Collected data was used as an input to prepare soft model with the use of MLP (Multi-Layer Perceptron neural network regression model. The approach described above enable to reduce the time of production process modeling with use of hard modeling and should encourage production companies to use it.

  1. Quark model and high energy collisions

    CERN Document Server

    Anisovich, V V; Nyíri, J; Shabelski, Yu M

    2004-01-01

    This is an updated version of the book published in 1985. QCD-motivated, it gives a detailed description of hadron structure and soft interactions in the additive quark model, where hadrons are regarded as composite systems of dressed quarks. In the past decade it has become clear that nonperturbative QCD, responsible for soft hadronic processes, may differ rather drastically from perturbative QCD. The understanding of nonperturbative QCD requires a detailed investigation of the experiments and the theoretical approaches. Bearing this in mind, the book has been rewritten paying special attenti

  2. Interactive collision detection for deformable models using streaming AABBs.

    Science.gov (United States)

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB

  3. 3-D Numerical Modelling of Oblique Continental Collisions with ASPECT

    Science.gov (United States)

    Karatun, L.; Pysklywec, R.

    2017-12-01

    Among the fundamental types of tectonic plate boundaries, continent-continent collision is least well understood. Deformation of the upper and middle crustal layers can be inferred from surface structures and geophysical imaging, but the fate of lower crustal rocks and mantle lithosphere is not well resolved. Previous research suggests that shortening of mantle lithosphere generally may be occurring by either: 1) a distributed thickening with a formation of a Raleigh-Tailor (RT) type instability (possibly accompanied with lithospheric folding); or 2) plate-like subduction, which can be one- or two-sided, with or without delamination and slab break-off; a combination of both could be taking place too. 3-D features of the orogens such as along-trench material transfer, bounding subduction zones can influence the evolution of the collision zone significantly. The current study was inspired by South Island of New Zealand - a young collision system where a block of continental crust is being shortened by the relative Australian-Pacific plate motion. The collision segment of the plate boundary is relatively small ( 800 km), and is bounded by oppositely verging subduction zones to the North and South. Here, we present results of 3-D forward numerical modelling of continental collision to investigate some of these processes. To conduct the simulations, we used ASPECT - a highly parallel community-developed code based on the Finite Element method. Model setup for three different sets of models featured 2-D vertical across strike, 3-D with periodic front and back walls, and 3-D with open front and back walls, with velocities prescribed on the left and right faces. We explored the importance of values of convergent velocity, strike-slip velocity and their ratio, which defines the resulting velocity direction relative to the plate boundary (obliquity). We found that higher strike-slip motion promotes strain localization, weakens the lithosphere close to the plate boundary and

  4. Born term for high-energy meson-hadron collisions from QCD and chiral quark model

    International Nuclear Information System (INIS)

    Ochs, W.; Shimada, T.

    1988-01-01

    Various experimental observations reveal a sizeable hard component in the high-energy 'soft' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of f π -2 and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. (orig.)

  5. Modeling of Ship Collision Risk Index Based on Complex Plane and Its Realization

    OpenAIRE

    Xiaoqin Xu; Xiaoqiao Geng; Yuanqiao Wen

    2016-01-01

    Ship collision risk index is the basic and important concept in the domain of ship collision avoidance. In this paper, the advantages and deficiencies of the various calculation methods of ship collision risk index are pointed out. Then the ship collision risk model based on complex plane, which can well make up for the deficiencies of the widely-used evaluation model proposed by Kearon.J and Liu ruru is proposed. On this basis, the calculation method of collision risk index under the encount...

  6. Incorporation of human factors into ship collision risk models focusing on human centred design aspects

    International Nuclear Information System (INIS)

    Sotiralis, P.; Ventikos, N.P.; Hamann, R.; Golyshev, P.; Teixeira, A.P.

    2016-01-01

    This paper presents an approach that more adequately incorporates human factor considerations into quantitative risk analysis of ship operation. The focus is on the collision accident category, which is one of the main risk contributors in ship operation. The approach is based on the development of a Bayesian Network (BN) model that integrates elements from the Technique for Retrospective and Predictive Analysis of Cognitive Errors (TRACEr) and focuses on the calculation of the collision accident probability due to human error. The model takes into account the human performance in normal, abnormal and critical operational conditions and implements specific tasks derived from the analysis of the task errors leading to the collision accident category. A sensitivity analysis is performed to identify the most important contributors to human performance and ship collision. Finally, the model developed is applied to assess the collision risk of a feeder operating in Dover strait using the collision probability estimated by the developed BN model and an Event tree model for calculation of human, economic and environmental risks. - Highlights: • A collision risk model for the incorporation of human factors into quantitative risk analysis is proposed. • The model takes into account the human performance in different operational conditions leading to the collision. • The most important contributors to human performance and ship collision are identified. • The model developed is applied to assess the collision risk of a feeder operating in Dover strait.

  7. Using hardness to model yield and tensile strength

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Schrems, Karol K.

    2005-02-01

    The current direction in hardness research is towards smaller and smaller loads as nano-scale materials are developed. There remains, however, a need to investigate the mechanical behavior of complex alloys for severe environment service. In many instances this entails casting large ingots and making numerous tensile samples as the bounds of the operating environment are explored. It is possible to gain an understanding of the tensile strength of these alloys using room and elevated temperature hardness in conjunction with selected tensile tests. The approach outlined here has its roots in the work done by Tabor for metals and low alloy and carbon steels. This research seeks to extend the work to elevated temperatures for multi-phase, complex alloys. A review of the approach will be given after which the experimental data will be examined. In particular, the yield stress and tensile strength will be compared to their corresponding hardness based values.

  8. Model independent method to deconvolve hard X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1984-07-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented.

  9. A Simple Model of Wings in Heavy-Ion Collisions

    CERN Document Server

    Parikh, Aditya

    2015-01-01

    We create a simple model of heavy ion collisions independent of any generators as a way of investigating a possible source of the wings seen in data. As a first test, we reproduce a standard correlations plot to verify the integrity of the model. We then proceed to test whether an η dependent v2 could be a source of the wings and take projections along multiple Δφ intervals and compare with data. Other variations of the model are tested by having dN/dφ and v2 depend on η as well as including pions and protons into the model to make it more realistic. Comparisons with data seem to indicate that an η dependent v2 is not the main source of the wings.

  10. Inelastic collisions of medium energy atomic elements. Qualitative model of energy losses during collisions

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2006-01-01

    A new approach to the theoretical description of energy losses of atomic particle of medium energy during their interaction with the substance is proposed. The corner-stone of this approach is the supposition that all of the collision processes have inelastic nature during particle movement through the substance, while the calculation of the atomic particles braking is based on the law of their dispersion and the laws of energy and momentum conservation at the inelastic collisions. It is shown that inelastic atomic collision there are three dispersion zones for the only potential interaction with different laws, which characterize energy losses. The application conditions of this approach are determined [ru

  11. Study of hard double-parton scattering in four-jet events in pp collisions at √s=7 TeV with the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda (Morocco); Aad, G. [CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille (France); Abbott, B. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America (United States); Abdallah, J. [Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America (United States); Collaboration: The ATLAS collaboration; and others

    2016-11-21

    Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of √s=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb{sup −1}, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum p{sub T}≥20 GeV and pseudorapidity ∣η∣≤4.4, and at least one having p{sub T}≥42.5 GeV, the contribution of hard double-parton scattering is estimated to be f{sub DPS}=0.092 {sub −0.011}{sup +0.005} (stat.) {sub −0.037}{sup +0.033} (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σ {sub eff}, was determined to be σ {sub eff}=14.9 {sub −1.0}{sup +1.2} (stat.) {sub −3.8}{sup +5.1} (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σ {sub eff}, performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21{sub −6}{sup +7}% of the total inelastic cross-section measured at √s=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.

  12. Modeling defect production in high energy collision cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.

    1993-01-01

    A multi-model approach roach (MMA) to simulating defect production processes at the atomic scale is described that incorporates molecular dynamics (MD), binary collision approximation (BCA) calculations and stochastic annealing simulations. The central hypothesis of the MMA is that the simple, fast computer codes capable of simulating large numbers of high energy cascades (e.g., BCA codes) can be made to yield the correct defect configurations when their parameters are calibrated using the results of the more physically realistic MD simulations. The calibration procedure is investigated using results of MD simulations of 25 keV cascades in copper. The configurations of point defects are extracted from the MD cascade simulations at the end of the collisional phase, similar to the information obtained with a binary collision model. The MD collisional phase defect configurations are used as input to the ALSOME annealing simulation code, and values of the ALSOME quenching parameters are determined that yield the best fit to the post-quenching defect configurations of the MD simulations

  13. Single nucleon-nucleon collision model for subthreshold pion production in heavy ion collisions

    International Nuclear Information System (INIS)

    Bellini, V.; Di Toro, M.; Bonasera, A.

    1985-01-01

    We show that inclusive experimental data on subthreshold pion production in 12 C + 12 C and 16 O + 12 C collisions can be reproduced using a first chance Nucleon-Nucleon (NN) collision mechanism. Pauli blocking effects are extremely important while π-resorption can be safely neglected for these light systems. We apply our method at various beam energies. The possible importance of collective dynamical effects around the physical threshold is finally suggested

  14. Insight into collision zone dynamics from topography: numerical modelling results and observations

    OpenAIRE

    A. D. Bottrill; J. van Hunen; M. B. Allen

    2012-01-01

    Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) deepening in the area of the back arc-basin after initial collision. This collisional mantle dynamic basin (CMDB) is caused by slab steepening drawing material away...

  15. Modelling human hard palate shape with Bézier curves.

    Directory of Open Access Journals (Sweden)

    Rick Janssen

    Full Text Available People vary at most levels, from the molecular to the cognitive, and the shape of the hard palate (the bony roof of the mouth is no exception. The patterns of variation in the hard palate are important for the forensic sciences and (palaeoanthropology, and might also play a role in speech production, both in pathological cases and normal variation. Here we describe a method based on Bézier curves, whose main aim is to generate possible shapes of the hard palate in humans for use in computer simulations of speech production and language evolution. Moreover, our method can also capture existing patterns of variation using few and easy-to-interpret parameters, and fits actual data obtained from MRI traces very well with as little as two or three free parameters. When compared to the widely-used Principal Component Analysis (PCA, our method fits actual data slightly worse for the same number of degrees of freedom. However, it is much better at generating new shapes without requiring a calibration sample, its parameters have clearer interpretations, and their ranges are grounded in geometrical considerations.

  16. Proton nucleus collisions in the Landau hydrodynamical model

    International Nuclear Information System (INIS)

    Andersson, B.

    1976-01-01

    The dependence upon energy and the atomic number A for the multiplicities and the angular distributions of the relativistic secondaries is computed according to the hydrodynamic model for proton-nucleus collisions. Some different ways of converting the dependence upon tunnellength in nuclear matter into A dependence are discussed and a phenomenological model employed to exhibit the correlations to the fragmentation of the nucleus. The treatment is valid for arbitrary values of the velocity of sound c 0 in nuclear matter inside the range 0.2 0 0 around c 0 approximately 0.5 is preferred in a comparison to the presently available experimental data. This is the same range of values of the parameter for which the best agreement between theory and experiment occurs in the ISR range. (Auth.)

  17. Heavy ion collision evolution modeling with ECHO-QGP

    Science.gov (United States)

    Rolando, V.; Inghirami, G.; Beraudo, A.; Del Zanna, L.; Becattini, F.; Chandra, V.; De Pace, A.; Nardi, M.

    2014-11-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in (3 + 1)D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  18. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    Science.gov (United States)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  19. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    International Nuclear Information System (INIS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv

    2007-01-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change

  20. Simple model of surface roughness for binary collision sputtering simulations

    Science.gov (United States)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  1. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  2. Meningkatkan Hard Skills dan Soft Skills Siswa melalui Model Pembelajaran Koooperatif Tipe Stad

    OpenAIRE

    Alfiansyah, Muhammad; Jamal, M. Arifuddin; An'nur, Syubhan

    2014-01-01

    Penelitian ini secara umum bertujuan untuk mendeskripsikan keefektifan model pembelajaran kooperatif tipe STAD dalam meningkatkan hard skills dan soft skills siswa SMAN 8 Barabai pada pokok bahasan fluida statis. Secara khusus untuk mendeskripsikan keterlaksanaan RPP model kooperatif tipe STAD, hard skills siswa, soft skills siswa dan respon siswa. Metode penelitian yang digunakan merupakan penelitian tindakan kelas model Kemmis dan Mc Taggart. Hasil penelitian menunjukkan bahwa terjadi pen...

  3. A collision model for safety evaluation of autonomous intelligent cruise control.

    Science.gov (United States)

    Touran, A; Brackstone, M A; McDonald, M

    1999-09-01

    This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.

  4. Basic Modelling principles and Validation of Software for Prediction of Collision Damage

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    2000-01-01

    This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software.......This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software....

  5. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  6. Comparison of string models for heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1990-01-01

    An important method to explore new domains in physics is to compare new results with extrapolations from known areas. For heavy ion collision this can be done with string models, which extrapolate from light to heavy systems and which also may be used to extrapolate to higher energies. That does not mean that these string models are only background models, one may easily implement new ideas on top of the known aspects, providing much more reliable models than those formed from scratch. All the models to be considered in this paper have in common that they consist of three independent building blocks: (a) geometry, (b) string formation and (c) string fragmentation. The geometry aspect is treated quite similar in all models: nucleons are distributed inside each nucleus according to some standard parameterization of nuclear densities. The nuclei move through each other on a straight line trajectory, with all the nucleon positions being fixed. Whenever a projectile and a target nucleon come close, they interact. Such an interaction results in string formation. In the last step these strings decay into observable hadrons according to some string fragmentation procedure. The three building blocks are independent, so one can combine different methods in an arbitrary manner. Therefore rather than treating the models one after the other, the author discusses the procedures for string formation and string fragmentation as used by the models. He considers string models in a very general sense, so he includes models where the authors never use the word string, but which may be most naturally interpreted as string models and show strong similarities with real string models. Although very important he does not discuss - for time and space reasons - recent developments concerning secondary scattering

  7. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Nengchao Lyu

    2017-02-01

    Full Text Available In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  8. A rigorous test for a new conceptual model for collisions

    International Nuclear Information System (INIS)

    Peixoto, E.M.A.; Mu-Tao, L.

    1979-01-01

    A rigorous theoretical foundation for the previously proposed model is formulated and applied to electron scattering by H 2 in the gas phase. An rigorous treatment of the interaction potential between the incident electron and the Hydrogen molecule is carried out to calculate Differential Cross Sections for 1 KeV electrons, using Glauber's approximation Wang's molecular wave function for the ground electronic state of H 2 . Moreover, it is shown for the first time that, when adequately done, the omission of two center terms does not adversely influence the results of molecular calculations. It is shown that the new model is far superior to the Independent Atom Model (or Independent Particle Model). The accuracy and simplicity of the new model suggest that it may be fruitfully applied to the description of other collision phenomena (e.g., in molecular beam experiments and nuclear physics). A new techniques is presented for calculations involving two center integrals within the frame work of the Glauber's approximation for scattering. (Author) [pt

  9. A collision dynamics model of a multi-level train

    Science.gov (United States)

    2006-11-05

    In train collisions, multi-level rail passenger vehicles can deform in modes that are different from the behavior of single level cars. The deformation in single level cars usually occurs at the front end during a collision. In one particular inciden...

  10. Modeling of Ship Collision Risk Index Based on Complex Plane and Its Realization

    Directory of Open Access Journals (Sweden)

    Xiaoqin Xu

    2016-07-01

    Full Text Available Ship collision risk index is the basic and important concept in the domain of ship collision avoidance. In this paper, the advantages and deficiencies of the various calculation methods of ship collision risk index are pointed out. Then the ship collision risk model based on complex plane, which can well make up for the deficiencies of the widely-used evaluation model proposed by Kearon.J and Liu ruru is proposed. On this basis, the calculation method of collision risk index under the encountering situation of multi-ships is constructed, then the three-dimensional image and spatial curve of the risk index are figured out. Finally, single chip microcomputer is used to realize the model. And attaching this single chip microcomputer to ARPA is helpful to the decision-making of the marine navigators.

  11. Statistical model predictions for p+p and Pb+Pb collisions at LHC

    NARCIS (Netherlands)

    Kraus, I.; Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S.

    2009-01-01

    Particle production in p+p and central collisions at LHC is discussed in the context of the statistical thermal model. For heavy-ion collisions, predictions of various particle ratios are presented. The sensitivity of several ratios on the temperature and the baryon chemical potential is studied in

  12. Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions

    Science.gov (United States)

    McCormack, William; Pratt, Scott

    2014-09-01

    High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition

  13. Account of the effect of nuclear collision cascades in model of radiation damage of RPV steels

    International Nuclear Information System (INIS)

    Kevorkyan, Yu.R.; Nikolaev, Yu.A.

    1997-01-01

    A kinetic model is proposed for describing the effect of collision cascades in model of radiation damage of reactor pressure vessel steels. This is a closed system of equations which can be solved only by numerical methods in general case

  14. Collision of the glass shards with the eye: A computational fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Biglari, Hasan; Sera, Toshihiro; Kudo, Susumu

    2017-12-27

    The main stream of blunt trauma injuries has been reported to be related to the automobile crashes, sporting activities, and military operations. Glass shards, which can be induced due to car accident, earthquake, gunshot, etc., might collide with the eye and trigger substantial scarring and, consequently, permanently affect the vision. The complications as a result of the collision with the eye and its following injuries on each component of the eye are difficult to be diagnosed. The objective of this study was to employ a Three-Dimensional (3D) computational Fluid-Structure Interaction (FSI) model of the human eye to assess the results of the glass shards collision with the eye. To do this, a rigid steel-based object hit a Smoothed-Particle Hydrodynamics (SPH) glass wall at the velocities of 100, 150, and 200 m/s and, subsequently, the resultant glass shards moved toward the eye. The amount of injury, then, quantified in terms of the stresses and strains. The results revealed the highest amount of stress in the cornea while the lowest one was observed in the vitreous body. It was also found that increasing the speed of the glass shards amplifies the amount of the stress in the components which are located in the central anterior zone of the eye, such as the cornea, aqueous body, and iris. However, regarding those components located in the peripheral/posterior side of the eye, especially the optic nerve, by increasing the amount of velocity a reduction in the stresses was observed and the optic nerve is hardly damaged. These findings have associations not only for understanding the amount of stresses/strains in the eye components at three different velocities, but also for providing preliminary information for the ophthalmologists to have a better diagnosis after glass shards (small objects impact) injuries to the eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Numerical simulation of binary collisions using a modified surface tension model with particle method

    International Nuclear Information System (INIS)

    Sun Zhongguo; Xi Guang; Chen Xi

    2009-01-01

    The binary collision of liquid droplets is of both practical importance and fundamental value in computational fluid mechanics. We present a modified surface tension model within the moving particle semi-implicit (MPS) method, and carry out two-dimensional simulations to investigate the mechanisms of coalescence and separation of the droplets during binary collision. The modified surface tension model improves accuracy and convergence. A mechanism map is established for various possible deformation pathways encountered during binary collision, as the impact speed is varied; a new pathway is reported when the collision speed is critical. In addition, eccentric collisions are simulated and the effect of the rotation of coalesced particle is explored. The results qualitatively agree with experiments and the numerical protocol may find applications in studying free surface flows and interface deformation

  16. A quantal toy model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Cassing, W.

    1987-01-01

    A one-dimensional toy model of moving finite boxes is analysed with respect to quantal phenomena associated with heavy-ion dynamics at low and intermediate energies. Special attention is payed to the relation between energy and momentum of the nucleons inside and outside the time-dependent mean field. A Wigner transformation of the one-body density matrix in space and time allows for a unique comparison with classical phase-space dynamics. It is found that high momentum components of the nuclear groundstate wave function approximately become on-shell during the heavy-ion reaction. This leads to the emission of energetic nucleons which do not appear classically. It is furthermore shown, that the low lying eigenstates of the dinuclear system for fixed time are only partly occupied throughout the reaction at intermediate energies. This opens up final phase space for nucleons after producing e.g. a pion or energetic photon. Through the present model does not allow for a reliable calculation of double differential nucleon spectra, pion or photon cross sections, it transparently shows the peculiar features of quantum dynamics in heavy-ion collisions. (orig.)

  17. Non-Markovianity in the collision model with environmental block

    Science.gov (United States)

    Jin, Jiasen; Yu, Chang-shui

    2018-05-01

    We present an extended collision model to simulate the dynamics of an open quantum system. In our model, the unit to represent the environment is, instead of a single particle, a block which consists of a number of environment particles. The introduced blocks enable us to study the effects of different strategies of system–environment interactions and states of the blocks on the non-Markovianities. We demonstrate our idea in the Gaussian channels of an all-optical system and derive a necessary and sufficient condition of non-Markovianity for such channels. Moreover, we show the equivalence of our criterion to the non-Markovian quantum jump in the simulation of the pure damping process of a single-mode field. We also show that the non-Markovianity of the channel working in the strategy that the system collides with environmental particles in each block in a certain order will be affected by the size of the block and the embedded entanglement and the effects of heating and squeezing the vacuum environmental state will quantitatively enhance the non-Markovianity.

  18. Learning optimal quantum models is NP-hard

    Science.gov (United States)

    Stark, Cyril J.

    2018-02-01

    Physical modeling translates measured data into a physical model. Physical modeling is a major objective in physics and is generally regarded as a creative process. How good are computers at solving this task? Here, we show that in the absence of physical heuristics, the inference of optimal quantum models cannot be computed efficiently (unless P=NP ). This result illuminates rigorous limits to the extent to which computers can be used to further our understanding of nature.

  19. Model unspecific search for new physics in pp collisions

    International Nuclear Information System (INIS)

    Malhotra, Shivali

    2013-01-01

    The model-independent analysis systematically scans the data taken by Compact Muon Solenoid - CMS detector for deviations from the Standard Model (SM) predictions. This approach is sensitive to a variety of models for new physics due to the minimal theoretical bias i.e. without assumptions on specific models of new physics and covering a large phase space. Possible causes of the significant deviations could be insufficient understanding of the collision event generation or detector simulation, or indeed genuine new physics in the data. Thus the output of MUSiC must be seen as only the first, but important step in the potential discovery of new physics. To get the distinctive final states, events with at least one electron or muon are classified according to their content of reconstructed objects (muons, electrons, photons, jets and missing transverse energy) and sorted into event classes. A broad scan of three kinematic distributions (scalar sum of the transverse momentum, invariant mass of reconstructed objects and missing transverse energy) in those event classes is performed by identifying deviations from SM expectations, accounting for systematic uncertainties. A scanning algorithm determines the regions in the considered distributions where the measured data deviates most from the SM predictions. This search is sensitive to an excess as well as a deficit in the comparison of data and SM background. This approach has been applied to the CMS data and we have obtained the preliminary results. I will talk about the details of the analysis techniques, its implementation in analyzing CMS data, results obtained and the discussion on the discrepancy observed

  20. Modeling of Inelastic Collisions in a Multifluid Plasma: Excitation and Deexcitation

    Science.gov (United States)

    2016-05-31

    DATES COVERED (From - To) 4. TITLE AND SUBTITLE Modeling of Inelastic Collisions in a Multifluid Plasma: Excitation and 5a. CONTRACT NUMBER...describe here a model for inelastic collisions for electronic excitation and deexcitation processes in a general, multifluid plasma. The model is derived... Excitation and Deexcitationa) Hai P. Le1, b) and Jean-Luc Cambier2, c) 1)Department of Mathematics, University of California, Los Angeles, California

  1. Human-robot collision detection under modeling uncertainty using frequency boundary of manipulator dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Byung Jin; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyung Pil [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-11-15

    This paper presents the development and experimental evaluation of a collision detection method for robotic manipulators sharing a workspace with humans. Fast and robust collision detection is important for guaranteeing safety and preventing false alarms. The main cause of a false alarm is modeling error. We use the characteristic of the maximum frequency boundary of the manipulator's dynamic model. The tendency of the frequency boundary's location in the frequency domain is applied to the collision detection algorithm using a band pass filter (band designed disturbance observer, BdDOB) with changing frequency windows. Thanks to the band pass filter, which considers the frequency boundary of the dynamic model, our collision detection algorithm can extract the collision caused by the disturbance from the mixed estimation signal. As a result, the collision was successfully detected under the usage conditions of faulty sensors and uncertain model data. The experimental result of a collision between a 7-DOF serial manipulator and a human body is reported.

  2. A Cross-Domain Survey of Metrics for Modelling and Evaluating Collisions

    Directory of Open Access Journals (Sweden)

    Jeremy A. Marvel

    2014-09-01

    Full Text Available This paper provides a brief survey of the metrics for measuring probability, degree, and severity of collisions as applied to autonomous and intelligent systems. Though not exhaustive, this survey evaluates the state-of-the-art of collision metrics, and assesses which are likely to aid in the establishment and support of autonomous system collision modelling. The survey includes metrics for 1 robot arms; 2 mobile robot platforms; 3 nonholonomic physical systems such as ground vehicles, aircraft, and naval vessels, and; 4 virtual and mathematical models.

  3. Modeling activities in air traffic control systems: antecedents and consequences of a mid-air collision.

    Science.gov (United States)

    de Carvalho, Paulo Victor R; Ferreira, Bemildo

    2012-01-01

    In this article we present a model of some functions and activities of the Brazilian Air traffic Control System (ATS) in the period in which occurred a mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the ATM. Modeling in some detail activities during the collision and related them to overall behavior and antecedents that stress the organization uncover some drift into failure mechanisms that erode safety defenses provided by the Air Navigation Service Provider (ANSP), enabling a mid-air collision to be happen.

  4. Incoherent SSI Analysis of Reactor Building using 2007 Hard-Rock Coherency Model

    International Nuclear Information System (INIS)

    Kang, Joo-Hyung; Lee, Sang-Hoon

    2008-01-01

    Many strong earthquake recordings show the response motions at building foundations to be less intense than the corresponding free-field motions. To account for these phenomena, the concept of spatial variation, or wave incoherence was introduced. Several approaches for its application to practical analysis and design as part of soil-structure interaction (SSI) effect have been developed. However, conventional wave incoherency models didn't reflect the characteristics of earthquake data from hard-rock site, and their application to the practical nuclear structures on the hard-rock sites was not justified sufficiently. This paper is focused on the response impact of hard-rock coherency model proposed in 2007 on the incoherent SSI analysis results of nuclear power plant (NPP) structure. A typical reactor building of pressurized water reactor (PWR) type NPP is modeled classified into surface and embedded foundations. The model is also assumed to be located on medium-hard rock and hard-rock sites. The SSI analysis results are obtained and compared in case of coherent and incoherent input motions. The structural responses considering rocking and torsion effects are also investigated

  5. Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-12-01

    We present a timing analysis of three Rossi X-ray Timing Explorer observations of the black hole binary Cygnus X-1 with the propagating mass accretion rate fluctuations model PROPFLUC. The model simultaneously predicts power spectra, time lags and coherence of the variability as a function of energy. The observations cover the soft and hard states of the source, and the transition between the two. We find good agreement between model predictions and data in the hard and soft states. Our analysis suggests that in the soft state the fluctuations propagate in an optically thin hot flow extending up to large radii above and below a stable optically thick disc. In the hard state, our results are consistent with a truncated disc geometry, where the hot flow extends radially inside the inner radius of the disc. In the transition from soft to hard state, the characteristics of the rapid variability are too complex to be successfully described with PROPFLUC. The surface density profile of the hot flow predicted by our model and the lack of quasi-periodic oscillations in the soft and hard states suggest that the spin of the black hole is aligned with the inner accretion disc and therefore probably with the rotational axis of the binary system.

  6. Matérn's hard core models of types I and II with arbitrary compact grains

    DEFF Research Database (Denmark)

    Kiderlen, Markus; Hörig, Mario

    Matérn's classical hard core models can be interpreted as models obtained from a stationary marked Poisson process by dependent thinning. The marks are balls of fixed radius, and a point is retained when its associated ball does not hit any other balls (type I) or when its random birth time is st...... of this model with the process of intact grains of the dead leaves model and the Stienen model leads to analogous results for the latter....

  7. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  8. Hard Pomeron-odderon interference effects in the production of π+π- pairs in high energy γγ collisions at the LHC

    International Nuclear Information System (INIS)

    Pire, B.; Schwennsen, F.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We estimate the production of two meson pairs in high energy photon-photon collisions produced in ultraperipheral collisions at LHC. We show that the study of charge asymmetries may reveal the existence of the perturbative Odderon and discuss the concrete event rates expected at the LHC. Sizable rates and asymmetries are expected in the case of proton-proton collisions and medium values of γγ energies √(s γγ )≅20 GeV. Proton-proton collisions will benefit from a high rate due to a large effective γγ luminosity and ion-ion collisions with a somewhat lower rate from the possibility to trigger on ultraperipheral collisions and a reduced background from strong interactions.

  9. Semiclassical calculation for collision induced dissociation. II. Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.; Roberts, R.E.

    1978-01-01

    A recently developed semiclassical procedure for calculating collision induced dissociation probabilities P/sup diss/ is applied to the collinear collision between a particle and a Morse oscillator diatomic. The particle--diatom interaction is described with a repulsive exponential potential function. P/sup diss/ is reported for a system of three identical particles, as a function of collision energy E/sub t/ and initial vibrational state of the diatomic n 1 . The results are compared with the previously reported values for the collision between a particle and a truncated harmonic oscillator. The two studies show similar features, namely: (a) there is an oscillatory structure in the P/sup diss/ energy profiles, which is directly related to n 1 ; (b) P/sup diss/ becomes noticeable (> or approx. =10 -3 ) for E/sub t/ values appreciably higher than the energetic threshold; (c) vibrational enhancement (inhibition) of collision induced dissociation persists at low (high) energies; and (d) good agreement between the classical and semiclassical results is found above the classical dynamic threshold. Finally, the convergence of P/sup diss/ for increasing box length is shown to be rapid and satisfactory

  10. Comparative analysis among deterministic and stochastic collision damage models for oil tanker and bulk carrier reliability

    Directory of Open Access Journals (Sweden)

    A. Campanile

    2018-01-01

    Full Text Available The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.

  11. Hard processes and fragmentation in a unified model for interactions at ultra-relativistic energies; Les processus durs et la fragmentation dans un modele unifie pour les interactions aux energies ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J

    1999-06-11

    In this work we have developed hard processes and string fragmentation in the framework of interactions at relativistic energies. The hypothesis of the universality of high energy interactions means that many elements of heavy ion collisions can be studied and simulated in simpler nuclear reactions. In particular this hypothesis implies that the fragmentation observed in the reaction e{sup +}e{sup -} follows the same rules as in the collision of 2 lead ions. This work deals with 2 nuclear processes: the e{sup +}e{sup -} annihilation reaction and the deep inelastic diffusion. For the first process the string model has been developed to simulate fragmentation by adding an artificial breaking of string due to relativistic effects. A monte-Carlo method has been used to determine the points in a Minkowski space where this breaking occurs. For the second reaction, the theory of semi-hard pomerons is introduced in order to define elementary hadron-hadron interactions. The model of fragmentation proposed in this work can be applied to more complicated reactions such as proton-proton or ion-ion collisions.

  12. Three-dimensional computer simulation at vehicle collision using dynamic model. Application to various collision types; Rikigaku model ni yoru jidosha shototsuji no sanjigen kyodo simulation. Shushu no shototsu keitai eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Morisawa, M [Musashi Institute of Technology, Tokyo (Japan); Sato, T [Keio University, Tokyo (Japan); Kobayashi, K [Molex-Japan Co. Ltd., Tokyo (Japan)

    1997-10-01

    The past study of safety at vehicle collision pays attention to phenomena within the short time from starting collision, and the behavior of rollover is studied separating from that at collision. Most simulations of traffic accident are two-dimensional simulations. Therefore, it is indispensable for vehicle design to the analyze three-dimensional and continuous behavior from crash till stopping. Accordingly, in this study, the three-dimensional behavior of two vehicles at collision was simulated by computer using dynamic models. Then, by comparison of the calculated results with real vehicles` collision test data, it was confirmed that dynamic model of this study was reliable. 10 refs., 6 figs., 3 tabs.

  13. Work Hard / Play Hard

    OpenAIRE

    Burrows, J.; Johnson, V.; Henckel, D.

    2016-01-01

    Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with AntiUniversity.org. As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B

  14. Model of Optimal Collision Avoidance Manoeuvre on the Basis of Electronic Data Collection

    Directory of Open Access Journals (Sweden)

    Jelenko Švetak

    2005-11-01

    Full Text Available The results of the data analyses show that accidents mostlyinclude damages to the ship's hull and collisions. Generally allaccidents of ships can be divided into two basic categories.First, accidents in which measures for damage control shouldbe taken immediately, and second, those which require a littlemore patient reaction. The very fact that collisions belong to thefirst category provided the incentive for writing the current paper.The proposed model of optimal collision avoidance manoeuvreof ships on the basis of electronic data collection wasmade by means of the navigation simulator NTPRO- 1000,Transas manufacturer, Russian Federation.

  15. Large-scale model-based assessment of deer-vehicle collision risk.

    Directory of Open Access Journals (Sweden)

    Torsten Hothorn

    Full Text Available Ungulates, in particular the Central European roe deer Capreolus capreolus and the North American white-tailed deer Odocoileus virginianus, are economically and ecologically important. The two species are risk factors for deer-vehicle collisions and as browsers of palatable trees have implications for forest regeneration. However, no large-scale management systems for ungulates have been implemented, mainly because of the high efforts and costs associated with attempts to estimate population sizes of free-living ungulates living in a complex landscape. Attempts to directly estimate population sizes of deer are problematic owing to poor data quality and lack of spatial representation on larger scales. We used data on >74,000 deer-vehicle collisions observed in 2006 and 2009 in Bavaria, Germany, to model the local risk of deer-vehicle collisions and to investigate the relationship between deer-vehicle collisions and both environmental conditions and browsing intensities. An innovative modelling approach for the number of deer-vehicle collisions, which allows nonlinear environment-deer relationships and assessment of spatial heterogeneity, was the basis for estimating the local risk of collisions for specific road types on the scale of Bavarian municipalities. Based on this risk model, we propose a new "deer-vehicle collision index" for deer management. We show that the risk of deer-vehicle collisions is positively correlated to browsing intensity and to harvest numbers. Overall, our results demonstrate that the number of deer-vehicle collisions can be predicted with high precision on the scale of municipalities. In the densely populated and intensively used landscapes of Central Europe and North America, a model-based risk assessment for deer-vehicle collisions provides a cost-efficient instrument for deer management on the landscape scale. The measures derived from our model provide valuable information for planning road protection and defining

  16. Characteristics of particle production in high energy nuclear collisions a model-based analysis

    CERN Document Server

    Guptaroy, P; Bhattacharya, S; Bhattacharya, D P

    2002-01-01

    The present work pertains to the production of some very important negatively charged secondaries in lead-lead and gold-gold collisions at AGS, SPS and RHIC energies. We would like to examine here the role of the particular version of sequential chain model (SCM), which was applied widely in the past in analysing data on various high-energy hadronic collisions, in explaining now the latest findings on the features of particle production in the relativistic nucleus-nucleus collisions. The agreement between the model of our choice and the measured data is found to be modestly satisfactory in cases of the most prominent and abundantly produced varieties of the secondaries in the above-stated two nuclear collisions. (25 refs).

  17. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  18. Offsetting the difficulties of the molecular model of atomic collisions in the intermediate velocity range

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.

    1991-01-01

    To offset the defective behavior of the molecular method of atomic collisions at intermediate energies, we propose a method to approximate the probability flux towards continuum and discrete states not included in the molecular basis. We check the degree of accuracy and limitations of the method for a model case where transition probabilities can be calculated exactly. An application to the benchmark case of He + +H + collisions is also presented, and yields complementary information on the properties of this approach

  19. Inelasticity in hadron-nucleus collisions in the geometrical two-chain model

    International Nuclear Information System (INIS)

    Wibig, T.; Sobczynska, D.

    1995-01-01

    Two features of great importance registered in experiments on hadron-nucleus collisions are the decreased inelasticity and multiplicity in intranucleus collisions. In this paper we show that such behaviour is a natural consequence of the geometrical two-chain model of multi-particle production processes: only the forward-going chain can undergo secondary interactions in the nucleus. A quantitative comparison with the data is presented. (author)

  20. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    International Nuclear Information System (INIS)

    Altsybeev, Igor

    2016-01-01

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions

  1. Ultra-relativistic heavy ion collisions in a multi-string model

    International Nuclear Information System (INIS)

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e + e - or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs

  2. Finding Non-Zero Stable Fixed Points of the Weighted Kuramoto model is NP-hard

    OpenAIRE

    Taylor, Richard

    2015-01-01

    The Kuramoto model when considered over the full space of phase angles [$0,2\\pi$) can have multiple stable fixed points which form basins of attraction in the solution space. In this paper we illustrate the fundamentally complex relationship between the network topology and the solution space by showing that determining the possibility of multiple stable fixed points from the network topology is NP-hard for the weighted Kuramoto Model. In the case of the unweighted model this problem is shown...

  3. Mean spherical model for hard ions and dipoles: Thermodynamics and correlation functions

    International Nuclear Information System (INIS)

    Vericat, F.; Blum, L.

    1980-01-01

    The solution of the mean spherical model of a mixture of equal-size hard ions and dipoles is reinvestigated. Simple expressions for the coefficients of the Laplace transform of the pair correlation function and the other thermodynamic properties are given

  4. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    Science.gov (United States)

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  5. Coordinated HArd Sphere Model (CHASM): A Simplified Model for Silicate and Oxide Liquids at Mantle Conditions

    Science.gov (United States)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2013-12-01

    Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic

  6. Neural network model for proton-proton collision at high energy

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.; El-Metwally, K.A.

    2003-01-01

    Developments in artificial intelligence (AI) techniques and their applications to physics have made it feasible to develop and implement new modeling techniques for high-energy interactions. In particular, AI techniques of artificial neural networks (ANN) have recently been used to design and implement more effective models. The primary purpose of this paper is to model the proton-proton (p-p) collision using the ANN technique. Following a review of the conventional techniques and an introduction to the neural network, the paper presents simulation test results using an p-p based ANN model trained with experimental data. The p-p based ANN model calculates the multiplicity distribution of charged particles and the inelastic cross section of the p-p collision at high energies. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  7. Colour rope model for extreme relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Biro, T.S.; Nielsen, H.B.; Knoll, J.

    1984-04-01

    Our goal is to investigate the possible cumulative effects of the colour fields of the observable meson multiplicity distribution in the central rapidity region in extreme relativistic heavy ion collisions. In the first Chapter we overview the space-time picture of the string formation in a central heavy ion collision. We take into account trivial geometrical factors in a straight line geometry. In the second Chapter we consider the colour chargation process of heavy ions as a random walk. We calculate the expectation value and the relative standard deviation of the total effective charge square. In the third Chapter we consider the stochastic decay of a K-fold string-rope to mesons by the Schwinger-mechanism. We calculate the expected lifetime of a K-fold string and the time for the first quark antiquark pair creation. In the fourth Chapter we deal with the meson production of a K-fold rope relative to that of a single string and hence we look for a scaling between A + A and p + p collisions. (orig./HSI)

  8. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.

    Science.gov (United States)

    Li, Xiaomeng; Yan, Xuedong; Wu, Jiawei; Radwan, Essam; Zhang, Yuting

    2016-12-01

    Driver's collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver's performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver's gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle's sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver's gender. The cell phone use and driver's gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in

  9. Model of the humanoid body for self collision detection based on elliptical capsules

    CSIR Research Space (South Africa)

    Dube, C

    2011-12-01

    Full Text Available . The humanoid body is modeled using elliptical capsules, while the moving segments, i.e. arms and legs, of the humanoid are modeled using circular capsules. This collision detection model provides a good fit to the humanoid body shape while being simple...

  10. Modeling of driver's collision avoidance maneuver based on controller switching model.

    Science.gov (United States)

    Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki

    2005-12-01

    This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.

  11. Mathematical model of heat transfer to predict distribution of hardness through the Jominy bar

    International Nuclear Information System (INIS)

    Lopez, E.; Hernandez, J. B.; Solorio, G.; Vergara, H. J.; Vazquez, O.; Garnica, F.

    2013-01-01

    The heat transfer coefficient was estimated at the bottom surface at Jominy bar end quench specimen by solution of the heat inverse conduction problem. A mathematical model based on the finite-difference method was developed to predict thermal paths and volume fraction of transformed phases. The mathematical model was codified in the commercial package Microsoft Visual Basic v. 6. The calculated thermal path and final phase distribution were used to evaluate the hardness distribution along the AISI 4140 Jominy bar. (Author)

  12. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Science.gov (United States)

    Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  13. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  14. Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin

    2015-01-01

    Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models

  15. Electron collisions in the trapped gyro-Landau fluid transport model

    International Nuclear Information System (INIS)

    Staebler, G. M.; Kinsey, J. E.

    2010-01-01

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  16. Using a collision model to design safer wind turbine rotors for birds

    International Nuclear Information System (INIS)

    Tucker, V.A.

    1996-01-01

    A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today's rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model

  17. Time Extensions of Petri Nets for Modelling and Verification of Hard Real-Time Systems

    Directory of Open Access Journals (Sweden)

    Tomasz Szmuc

    2002-01-01

    Full Text Available The main aim ofthe paper is a presentation of time extensions of Petri nets appropriate for modelling and analysis of hard real-time systems. It is assumed, that the extensions must provide a model of time flow an ability to force a transition to fire within a stated timing constraint (the so-called the strong firing rule, and timing constraints represented by intervals. The presented survey includes extensions of classical Place/Transition Petri nets, as well as the ones applied to high-level Petri nets. An expressiveness of each time extension is illustrated using simple hard real-time system. The paper includes also a brief description of analysis and veryication methods related to the extensions, and a survey of software tools supporting modelling and analysis ofthe considered Petri nets.

  18. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness

    Science.gov (United States)

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and

  19. Study of hard double parton scattering in four-jet events in $pp$ collisions at $\\sqrt{s} = 7~\\mathrm{TeV}$ with the ATLAS experiment at the LHC

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    Inclusive four-jet events produced in proton--proton collisions at a centre-of-mass energy of $\\sqrt{s}\\,=\\,7~\\mathrm{TeV}$ have been analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of $(37.3\\pm1.3)~\\mathrm{pb}^{-1}$, collected with the ATLAS detector at the LHC. The contribution of hard double parton scattering to the production of four-jet events has been extracted using an artificial neural network. The assumption was made that hard double parton scattering can be represented by a random combination of dijet events. The fraction of events that corresponds to the contribution made by hard double parton scattering was estimated to be $f_{\\mathrm{DPS}} \\,= \\, 0.084~^{+0.009}_{-0.012} (\\mathrm{stat.})~^{+0.054}_{-0.036}~(\\mathrm{syst.})$ in four-jet events, where each event contains at least four jets with transverse momentum, $p_{\\text{T}} \\geq 20~\\mathrm{GeV}$, pseudo-rapidity, $\\eta \\leq 4.4$, and the highest-$p_{\\text{T}}$ jet has $p_{\\text{T}...

  20. Insight into collision zone dynamics from topography: numerical modelling results and observations

    Directory of Open Access Journals (Sweden)

    A. D. Bottrill

    2012-11-01

    Full Text Available Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs basin on the overriding plate after initial collision. This "collisional mantle dynamic basin" (CMDB is caused by slab steepening drawing, material away from the base of the overriding plate. Also, during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate cause the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene–Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. Our modelled topography changes fit well with this observed uplift and subsidence.

  1. Mathematical Model for Collision-Coalescence Among Inclusions in the Bloom Continuous Caster with M-EMS

    Science.gov (United States)

    Lei, Hong; Jiang, Jimin; Yang, Bin; Zhao, Yan; Zhang, Hongwei; Wang, Weixian; Dong, Guiwen

    2018-04-01

    Mathematical simulation is an effective tool to analyze the fluid flow and the inclusion behavior in the bloom continuous caster with mold electromagnetic stirring (M-EMS). The mathematical model is applied to the modeling of magnetic field, flow field, and inclusion field. Due to the introduction of Archimedes force, the collision mechanism and inclusion's slipping velocity should be modified in the inclusion mass and population conservation model. Numerically predicted magnetic field, flow field, and the inclusion spatial distribution conform to the experimental results in the existing literature. Lorentz force plays an important role in the fluid flow, and Archimedes force plays an important role in the inclusion distribution in the continuous caster. Due to Brownian collision, Stokes collision, Archimedes collision, and turbulent collision, the coalescence among inclusions occurs in the bloom continuous caster with M-EMS. Among the four types of collisions, turbulent collision occurs most frequently, followed by Archimedes collision and Stokes collision. The frequency of Brownian collision is several orders of magnitudes smaller and is therefore negligible. The inclusion volume concentration, number density, and characteristic radius exhibit a U-shape in the continuous caster without M-EMS. However, with M-EMS, they exhibit an inverted U-shape.

  2. Statistical modeling of competitive threshold collision-induced dissociation

    Science.gov (United States)

    Rodgers, M. T.; Armentrout, P. B.

    1998-08-01

    Collision-induced dissociation of (R1OH)Li+(R2OH) with xenon is studied using guided ion beam mass spectrometry. R1OH and R2OH include the following molecules: water, methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol. In all cases, the primary products formed correspond to endothermic loss of one of the neutral alcohols, with minor products that include those formed by ligand exchange and loss of both ligands. The cross-section thresholds are interpreted to yield 0 and 298 K bond energies for (R1OH)Li+-R2OH and relative Li+ binding affinities of the R1OH and R2OH ligands after accounting for the effects of multiple ion-molecule collisions, internal energy of the reactant ions, and dissociation lifetimes. We introduce a means to simultaneously analyze the cross sections for these competitive dissociations using statistical theories to predict the energy dependent branching ratio. Thermochemistry in good agreement with previous work is obtained in all cases. In essence, this statistical approach provides a detailed means of correcting for the "competitive shift" inherent in multichannel processes.

  3. Anisotropic flow fluctuations in hydro-inspired freeze-out model for relativistic heavy ion collisions

    CERN Document Server

    Bravina, L V; Korotkikh, V L; Lokhtin, I P; Malinina, L V; Nazarova, E N; Petrushanko, S V; Snigirev, A M; Zabrodin, E E

    2015-01-01

    The possible mechanisms contributing to anisotropic flow fluctuations in relativistic heavy ion collisions are discussed. The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. It is shown that HYDJET++ correctly reproduces dynamical fluctuations of elliptic and triangular flows and related to it eccentricity fluctuations of the initial state.

  4. Modelling of hardness distribution curves obtained on two-phase materials by grid indentation technique

    Czech Academy of Sciences Publication Activity Database

    Buršík, Jiří

    2011-01-01

    Roč. 105, - (2011), s. 660-663 ISSN 0009-2770. [Lokálne mechanické vlastnosti 2010. Smolenice, 10.11.2010-12.11.2010] R&D Projects: GA ČR(CZ) GA106/09/0700 Institutional research plan: CEZ:AV0Z20410507 Keywords : grid indentation * hardness * modelling Subject RIV: JG - Metallurgy Impact factor: 0.529, year: 2011

  5. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  6. MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17

    International Nuclear Information System (INIS)

    Velázquez, P. F.; Rodríguez-González, A.; Esquivel, A.; Rosado, M.; Reyes-Iturbide, J.

    2013-01-01

    We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.

  7. Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC

    CERN Document Server

    Kraus, I; Oeschler, H; Redlich, K; Wheaton, S

    2009-01-01

    Particle production in p+p and central Pb+Pb collisions at LHC is discussed in the context of the statistical thermal model. For heavy-ion collisions, predictions of various particle ratios are presented. The sensitivity of several ratios on the temperature and the baryon chemical potential is studied in detail, and some of them, which are particularly appropriate to determine the chemical freeze-out point experimentally, are indicated. Considering elementary interactions on the other hand, we focus on strangeness production and its possible suppression. Extrapolating the thermal parameters to LHC energy, we present predictions of the statistical model for particle yields in p+p collisions. We quantify the strangeness suppression by the correlation volume parameter and discuss its influence on particle production. We propose observables that can provide deeper insight into the mechanism of strangeness production and suppression at LHC.

  8. Constituent quark model for nuclear stopping in high energy nuclear collisions

    International Nuclear Information System (INIS)

    Choi, T.K.; Maruyama, M.; Takagi, F.

    1997-01-01

    We study nuclear stopping in high energy nuclear collisions using the constituent quark model. It is assumed that wounded nucleons with a different number of interacted quarks hadronize in different ways. The probabilities of having such wounded nucleons are evaluated for proton-proton, proton-nucleus, and nucleus-nucleus collisions. After examining our model in proton-proton and proton-nucleus collisions and fixing the hadronization functions, it is extended to nucleus-nucleus collisions. It is used to calculate the rapidity distribution and the rapidity shift of final-state protons in nucleus-nucleus collisions. The computed results are in good agreement with the experimental data on 32 S+ 32 S at E lab =200A GeV and 208 Pb+ 208 Pb at E lab =160A GeV. Theoretical predictions are also given for proton rapidity distribution in 197 Au+ 197 Au at √(s)=200A GeV (BNL-RHIC). We predict that the nearly baryon-free region will appear in the midrapidity region and the rapidity shift is left-angle Δy right-angle=2.24

  9. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S; Cook, K; Fasenfest, B; Jefferson, D; Jiang, M; Leek, J; Levatin, J; Nikolaev, S; Pertica, A; Phillion, D; Springer, K; De Vries, W

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellite collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  10. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  11. TDHF-motivated macroscopic model for heavy ion collisions: a comparative study

    International Nuclear Information System (INIS)

    Biedermann, M.; Reif, R.; Maedler, P.

    1984-01-01

    A detailed investigation of Bertshc's classical TDHF-motivated model for the description of heavy ion collisions is performed. The model agrees well with TDHF and phenomenological models which include deformation degrees of freedom as well as with experimental data. Some quantitative deviations from experiment and/or TDHF can be removed to a large extent if the standard model parameters are considered as adjustable parameters in physically reasonable regions of variation

  12. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    Science.gov (United States)

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  13. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    Directory of Open Access Journals (Sweden)

    Linus Hammar

    Full Text Available A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m, bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  14. Reliability modeling of a hard real-time system using the path-space approach

    International Nuclear Information System (INIS)

    Kim, Hagbae

    2000-01-01

    A hard real-time system, such as a fly-by-wire system, fails catastrophically (e.g. losing stability) if its control inputs are not updated by its digital controller computer within a certain timing constraint called the hard deadline. To assess and validate those systems' reliabilities by using a semi-Markov model that explicitly contains the deadline information, we propose a path-space approach deriving the upper and lower bounds of the probability of system failure. These bounds are derived by using only simple parameters, and they are especially suitable for highly reliable systems which should recover quickly. Analytical bounds are derived for both exponential and Wobble failure distributions encountered commonly, which have proven effective through numerical examples, while considering three repair strategies: repair-as-good-as-new, repair-as-good-as-old, and repair-better-than-old

  15. Double pendulum model for a tennis stroke including a collision process

    Science.gov (United States)

    Youn, Sun-Hyun

    2015-10-01

    By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.

  16. Scaling of multiplicity distribution in hadron collisions and diffractive-excitation like models

    International Nuclear Information System (INIS)

    Buras, A.J.; Dethlefsen, J.M.; Koba, Z.

    1974-01-01

    Multiplicity distribution of secondary particles in inelastic hadron collision at high energy is studied in the semiclassical impact parameter representation. The scaling function is shown to consist of two factors: one geometrical and the other dynamical. We propose a specific choice of these factors, which describe satisfactorily the elastic scattering, the ratio of elastic to total cross-section and the simple scaling behaviour of multiplicity distribution in p-p collisions. Two versions of diffractive-excitation like models (global and local excitation) are presented as interpretation of our choice of dynamical factor. (author)

  17. Transparency in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Karol, P.J.

    1992-01-01

    Problems associated with transparency schemes based on sharp cutoff models are discussed. The soft spheres model of hadron-nucleus and nucleus-nucleus collisions has been used to explore the influence of the realistic nuclear density geometry on transparency. An average nuclear transparency and an average reaction transparency are defined and their dependence on target and projectile dimensions and on the hadron-nucleon collision cross section are described. The results are expected to be valid for projectile energies above several hundred MeV/nucleon through the ultrarelativistic regime. For uniform (hard sphere) nuclear profiles, methods for obtaining effective total transparencies are suggested

  18. A model of fast radio bursts: collisions between episodic magnetic blobs

    Science.gov (United States)

    Li, Long-Biao; Huang, Yong-Feng; Geng, Jin-Jun; Li, Bing

    2018-06-01

    Fast radio bursts (FRBs) are bright radio pulses from the sky with millisecond durations and Jansky-level flux densities. Their origins are still largely uncertain. Here we suggest a new model for FRBs. We argue that the collision of a white dwarf with a black hole can generate a transient accretion disk, from which powerful episodicmagnetic blobs will be launched. The collision between two consecutive magnetic blobs can result in a catastrophic magnetic reconnection, which releases a large amount of free magnetic energy and forms a forward shock. The shock propagates through the cold magnetized plasma within the blob in the collision region, radiating through the synchrotron maser mechanism, which is responsible for a non-repeating FRB signal. Our calculations show that the theoretical energetics, radiation frequency, duration timescale and event rate can be very consistent with the observational characteristics of FRBs.

  19. Response of hard superconductors to crossed magnetic fields: elliptic critical-state model

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C.; Perez-Rodriguez, F

    2004-05-01

    The behavior of hard superconductors subjected to crossed magnetic fields is theoretically investigated by employing an elliptic critical-state model. Here the anisotropy is induced by flux-line cutting. The model reproduces successfully the collapse of the magnetic moment under the action of a sweeping magnetic field, applied perpendicularly to a dc field, for diamagnetic and paramagnetic initial states. Besides, it explains the transition from the diamagnetic state to the paramagnetic one when the magnitudes of the crossed magnetic fields are of the same order.

  20. Macromolecular diffusion in crowded media beyond the hard-sphere model.

    Science.gov (United States)

    Blanco, Pablo M; Garcés, Josep Lluís; Madurga, Sergio; Mas, Francesc

    2018-04-25

    The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.

  1. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  2. Application of a distorted wave model to electron capture in atomic collisions

    International Nuclear Information System (INIS)

    Deco, G.R.; Martinez, A.E.; Rivarola, R.D.

    1988-01-01

    In this work, it is presented the CDW-EIS approximation applied to the description of processes of electron capture in ion-atom collisions. Differential and total cross sections are compared to results obtained by other theoretical models, as well as, to experimental data. (A.C.A.S.) [pt

  3. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson's arms race model.

    Science.gov (United States)

    Riaz, Faisal; Niazi, Muaz A

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.

  4. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson’s arms race model

    Science.gov (United States)

    Niazi, Muaz A.

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson’s arms race model has also been presented. The performance of the proposed social agent has been validated at two levels–firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme. PMID:29040294

  5. A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision

    DEFF Research Database (Denmark)

    Granados, Alba; Misztal, Marek Krzysztof; Brunskog, Jonas

    2016-01-01

    . Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations is developed. The effect of inexact contact constraint enforcement on vocal fold...

  6. Recombination model and baryon production by pp and πp collisions

    International Nuclear Information System (INIS)

    Takasugi, E.; Tata, X.

    1979-12-01

    The recombination model predictions for baryon production, using modified Kuti-Weisskopf structure functions, are in good agreement with the pp and πp collision data. The indistinguishability of sea quarks naturally accounts for the difference in the p and anti p spectra in the pion fragmentation region. 4 figures, 2 tables

  7. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson's arms race model.

    Directory of Open Access Journals (Sweden)

    Faisal Riaz

    Full Text Available This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs, which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM level of the Cognitive Agent Based Computing (CABC framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.

  8. Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton–proton collisions at s=2.76 TeV with ATLAS

    Directory of Open Access Journals (Sweden)

    G. Aad

    2016-05-01

    Full Text Available The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb−1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.

  9. Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton--proton collisions at $\\sqrt{s} = 2.76$ TeV with ATLAS

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-05-10

    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in $4.0$ pb$^{-1}$ of $\\sqrt{s} = 2.76$ TeV $pp$ collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the long...

  10. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    Science.gov (United States)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  11. Study of proton-nucleus collisions at high energies based on the hydrodynamical model

    International Nuclear Information System (INIS)

    Masuda, N.; Weiner, R.M.

    1978-01-01

    We study proton-nucleus collisions at high energies using the one-dimensional hydrodynamical model of Landau with special emphasis on the effect of the size of the target nucleus and of the magnitude of velocity of sound of excited hadronic matter. We convert a collision problem of a proton and a nucleus with a spherical shape into that of a proton and a one-dimensional nuclear tunnel whose length is determined from the average impact parameter. By extending the methods developed by Milekhin and Emelyanov, we obtain the solutions of the hydrodynamical equations of proton-nucleus collisions for arbitrary target tunnel length and arbitrary velocity of sound. The connection between these solutions and observable physical quantities is established as in the work of Cooper, Frye, and Schonberg. Extensive numerical analyses are made at E/sub lab/ = 200 GeV and for the velocity of sound u = 1/√3 of a relativistic ideal Bose gas and u = 1/(7.5)/sup 1/2/ of an interacting Bose gas. In order to compare proton-nucleus collisions with proton-proton collisions, all the analyses are made in the equal-velocity frame. We find the following results. (1) In comparing the number of secondary particles produced in p-A collisions N/sub p/A with those in p-p collisions N/sub p/p, while most of the excess of N/sub p/A over N/sub p/p is concentrated in the backward rapidity region, there exists also an increase of N/sub p/A with A in the forward rapidity region. This result is at variance with the predictions of the energy-flux-cascade model and of the coherent-production model. (2) The excess energies are contained exclusively in the backward region. We also find evidence for new phenomena in proton-nucleus collisions. (3) The existence of an asymmetry of average energies of secondary particles between forward and backward regions, in particular, >> for larger nuclear targets. Thus, energetic particles are predominantly produced in the backward region

  12. Interference pattern in the collision of structures in the Bose-Einstein condensate dark matter model: Comparison with fluids

    International Nuclear Information System (INIS)

    Gonzalez, J. A; Guzman, F. S.

    2011-01-01

    In order to explore nonlinear effects on the distribution of matter during collisions within the Bose-Einstein condensate (BEC) dark matter model driven by the Schroedinger-Poisson system of equations, we study the head-on collision of structures and focus on the interference pattern formation in the density of matter during the collision process. We explore the possibility that the collision of two structures of fluid matter modeled with an ideal gas equation of state also forms interference patterns and found a negative result. Given that a fluid is the most common flavor of dark matter models, we conclude that one fingerprint of the BEC dark matter model is the pattern formation in the density during a collision of structures.

  13. Charge distributions and correlations in fragmentation models for soft hadron collisions

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    1984-01-01

    Data on charge distributions and charge correlations in pp and meson-proton interactions at PS and SPS energies are successfully compared with the Lund fragmentation model for low-psub(T) hadron collisions. It is argued that local conservation of quantum numbers and resonance production, as implemented in fragmentation models, are sufficient ingredients to explain most of the available experimental results at these energies. No necessity is found for dual-sheet contributions considered in DTU-based parton models. (orig.)

  14. 4M Overturned Pyramid (MOP) Model Utilization: Case Studies on Collision in Indonesian and Japanese Maritime Traffic Systems (MTS)

    OpenAIRE

    Wanginingastuti Mutmainnah; Masao Furusho

    2016-01-01

    4M Overturned Pyramid (MOP) model is a new model, proposed by authors, to characterized MTS which is adopting epidemiological model that determines causes of accidents, including not only active failures but also latent failures and barriers. This model is still being developed. One of utilization of MOP model is characterizing accidents in MTS, i.e. collision in Indonesia and Japan that is written in this paper. The aim of this paper is to show the characteristics of ship collision accidents...

  15. Sensitivity testing practice on pre-processing parameters in hard and soft coupled modeling

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2010-01-01

    Full Text Available This paper pays attention to the problem of practical applicability of coupled modeling with the use of hard and soft models types and necessity of adapted to that models data base possession. The data base tests results for cylindrical 30 mm diameter casting made of AlSi7Mg alloy were presented. In simulation tests that were applied the Calcosoft system with CAFE (Cellular Automaton Finite Element module. This module which belongs to „multiphysics” models enables structure prediction of complete casting with division of columnar and equiaxed crystals zones of -phase. Sensitivity tests of coupled model on the particular values parameters changing were made. On these basis it was determined the relations of CET (columnar-to-equaiaxed transition zone position influence. The example of virtual structure validation based on real structure with CET zone location and grain size was shown.

  16. Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model

    Science.gov (United States)

    Vallejo, Jonathon; Hejduk, Matt; Stamey, James

    2015-01-01

    We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.

  17. Model-dependence of the CO2 threshold for melting the hard Snowball Earth

    Directory of Open Access Journals (Sweden)

    W. R. Peltier

    2011-01-01

    Full Text Available One of the critical issues of the Snowball Earth hypothesis is the CO2 threshold for triggering the deglaciation. Using Community Atmospheric Model version 3.0 (CAM3, we study the problem for the CO2 threshold. Our simulations show large differences from previous results (e.g. Pierrehumbert, 2004, 2005; Le Hir et al., 2007. At 0.2 bars of CO2, the January maximum near-surface temperature is about 268 K, about 13 K higher than that in Pierrehumbert (2004, 2005, but lower than the value of 270 K for 0.1 bar of CO2 in Le Hir et al. (2007. It is found that the difference of simulation results is mainly due to model sensitivity of greenhouse effect and longwave cloud forcing to increasing CO2. At 0.2 bars of CO2, CAM3 yields 117 Wm−2 of clear-sky greenhouse effect and 32 Wm−2 of longwave cloud forcing, versus only about 77 Wm−2 and 10.5 Wm−2 in Pierrehumbert (2004, 2005, respectively. CAM3 has comparable clear-sky greenhouse effect to that in Le Hir et al. (2007, but lower longwave cloud forcing. CAM3 also produces much stronger Hadley cells than that in Pierrehumbert (2005. Effects of pressure broadening and collision-induced absorption are also studied using a radiative-convective model and CAM3. Both effects substantially increase surface temperature and thus lower the CO2 threshold. The radiative-convective model yields a CO2 threshold of about 0.21 bars with surface albedo of 0.663. Without considering the effects of pressure broadening and collision-induced absorption, CAM3 yields an approximate CO2 threshold of about 1.0 bar for surface albedo of about 0.6. However, the threshold is lowered to 0.38 bars as both effects are considered.

  18. Collision risk in white-tailed eagles. Modelling kernel-based collision risk using satellite telemetry data in Smoela wind-power plant

    Energy Technology Data Exchange (ETDEWEB)

    May, Roel; Nygaard, Torgeir; Dahl, Espen Lie; Reitan, Ole; Bevanger, Kjetil

    2011-05-15

    Large soaring birds of prey, such as the white-tailed eagle, are recognized to be perhaps the most vulnerable bird group regarding risk of collisions with turbines in wind-power plants. Their mortalities have called for methods capable of modelling collision risks in connection with the planning of new wind-power developments. The so-called 'Band model' estimates collision risk based on the number of birds flying through the rotor swept zone and the probability of being hit by the passing rotor blades. In the calculations for the expected collision mortality a correction factor for avoidance behaviour is included. The overarching objective of this study was to use satellite telemetry data and recorded mortality to back-calculate the correction factor for white-tailed eagles. The Smoela wind-power plant consists of 68 turbines, over an area of approximately 18 km2. Since autumn 2006 the number of collisions has been recorded on a weekly basis. The analyses were based on satellite telemetry data from 28 white-tailed eagles equipped with backpack transmitters since 2005. The correction factor (i.e. 'avoidance rate') including uncertainty levels used within the Band collision risk model for white-tailed eagles was 99% (94-100%) for spring and 100% for the other seasons. The year-round estimate, irrespective of season, was 98% (95-99%). Although the year-round estimate was similar, the correction factor for spring was higher than the correction factor of 95% derived earlier from vantage point data. The satellite telemetry data may provide an alternative way to provide insight into relative risk among seasons, and help identify periods or areas with increased risk either in a pre- or post construction situation. (Author)

  19. SU-E-T-754: Three-Dimensional Patient Modeling Using Photogrammetry for Collision Avoidance

    Energy Technology Data Exchange (ETDEWEB)

    Popple, R; Cardan, R [Univ Alabama Birmingham, Birmingham, AL (United States)

    2015-06-15

    Purpose: To evaluate photogrammetry for creating a three-dimensional patient model. Methods: A mannequin was configured on the couch of a CT scanner to simulate a patient setup using an indexed positioning device. A CT fiducial was placed on the indexed CT table-overlay at the reference index position. Two dimensional photogrammetry targets were placed on the table in known positions. A digital SLR camera was used to obtain 27 images from different positions around the CT table. The images were imported into a commercial photogrammetry package and a 3D model constructed. Each photogrammetry target was identified on 2 to 5 images. The CT DICOM metadata and the position of the CT fiducial were used to calculate the coordinates of the photogrammetry targets in the CT image frame of reference. The coordinates were transferred to the photogrammetry software to orient the 3D model. The mannequin setup was transferred to the treatment couch of a linear accelerator and positioned at isocenter using in-room lasers. The treatment couch coordinates were noted and compared with prediction. The collision free regions were measured over the full range of gantry and table motion and were compared with predictions obtained using a general purpose polygon interference algorithm. Results: The reconstructed 3D model consisted of 180000 triangles. The difference between the predicted and measured couch positions were 5 mm, 1 mm, and 1 mm for longitudinal, lateral, and vertical, respectively. The collision prediction tested 64620 gantry table combinations in 11.1 seconds. The accuracy was 96.5%, with false positive and negative results occurring at the boundaries of the collision space. Conclusion: Photogrammetry can be used as a tool for collision avoidance during treatment planning. The results indicate that a buffer zone is necessary to avoid false negatives at the boundary of the collision-free zone. Testing with human patients is underway. Research partially supported by a grant

  20. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  1. The quark-recombination model and correlations between hard and soft hadronic processes

    International Nuclear Information System (INIS)

    Ranft, J.

    1978-07-01

    Proceeding from the fact that quark and gluon recombination models make definite predictions for correlations between hard and soft processes, the following experiments are briefly discussed: (i) correlations between deep inelastic antineutrino-proton scattering and particle production in the proton fragmentation region, (ii) correlations between massive lepton pairs and particles produced in the fragmentation regions, and (iii) correlations between large transverse momentum particles and leading protons. In order to present the large transverse momentum - leading proton correlation, a divided correlation function similar to that used for studying short-range correlations of low transverse momentum particles is defined

  2. Modelling of hardness prediction of magnesium alloys using artificial neural networks applications

    OpenAIRE

    L.A. Dobrzański; T. Tański; J. Trzaska; L. Čížek

    2008-01-01

    Purpose: In the following paper there have been presented the optimisation of heat treatment condition and structure of the MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 magnesium cast alloy as-cast state and after a heat treatment.Design/methodology/approach: Working out of a neural network model for simulation of influence of temperature, solution heat treatment and ageing time and aluminium content on hardness of the analyzed magnesium cast alloys.Findings: The different heat treatment k...

  3. SMACK: A New Algorithm for Modeling Collisions and Dynamics of Planetesimals in Debris Disks

    Science.gov (United States)

    Nesvold, Erika Rose; Kuchner, Marc J.; Rein, Hanno; Pan, Margaret

    2013-01-01

    We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10(exp 7) yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.

  4. Inclusion of the diffuseness in the schematic model of heavy ion collisions

    International Nuclear Information System (INIS)

    Marta, H.D.

    1989-01-01

    The schematic model of central heavy ion collisions developed by Swiatecki includes the Coulomb and surface contributions to the potential energy of the system and one-body dissipation. This model is extended by considering the diffuseness of the nuclear surface; this has the implication that we must consider the proximity forces in the dynamics of the collisions. For the sake of simplicity we work with symmetrical systems. The results of the model studied are compared with experimental data and with other theoretical calculations. We conclude that the detailed consideration of the diffuseness of the nuclear surfaces does not substantially change the results of the schematic model for sharp surfaces in which the diffuseness is considered only through the parameters. (author) [pt

  5. Model-Based Estimation of Collision Risks of Predatory Birds with Wind Turbines

    Directory of Open Access Journals (Sweden)

    Marcus Eichhorn

    2012-06-01

    Full Text Available The expansion of renewable energies, such as wind power, is a promising way of mitigating climate change. Because of the risk of collision with rotor blades, wind turbines have negative effects on local bird populations, particularly on raptors such as the Red Kite (Milvus milvus. Appropriate assessment tools for these effects have been lacking. To close this gap, we have developed an agent-based, spatially explicit model that simulates the foraging behavior of the Red Kite around its aerie in a landscape consisting of different land-use types. We determined the collision risk of the Red Kite with the turbine as a function of the distance between the wind turbine and the aerie and other parameters. The impact function comprises the synergistic effects of species-specific foraging behavior and landscape structure. The collision risk declines exponentially with increasing distance. The strength of this decline depends on the raptor's foraging behavior, its ability to avoid wind turbines, and the mean wind speed in the region. The collision risks, which are estimated by the simulation model, are in the range of values observed in the field. The derived impact function shows that the collision risk can be described as an aggregated function of distance between the wind turbine and the raptor's aerie. This allows an easy and rapid assessment of the ecological impacts of (existing or planned wind turbines in relation to their spatial location. Furthermore, it implies that minimum buffer zones for different landscapes can be determined in a defensible way. This modeling approach can be extended to other bird species with central-place foraging behavior. It provides a helpful tool for landscape planning aimed at minimizing the impacts of wind power on biodiversity.

  6. Modeling chiral criticality and its consequences for heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Friman, Bengt, E-mail: b.friman@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); ExtreMe Matter Institute (EMMI), D-64291 Darmstadt (Germany); Redlich, Krzysztof, E-mail: krzysztof.redlich@ift.uni.wroc.pl [ExtreMe Matter Institute (EMMI), D-64291 Darmstadt (Germany); University of Wrocław - Faculty of Physics and Astronomy, PL-50-204 Wrocław (Poland); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We explore the critical fluctuations near the chiral critical endpoint (CEP) in a chiral effective model and discuss possible signals of the CEP, recently explored experimentally in nuclear collision. Particular attention is paid to the dependence of such signals on the location of the phase boundary and the CEP relative to the chemical freeze-out conditions in nuclear collisions. We argue that in effective models, standard freeze-out fits to heavy-ion data should not be used directly. Instead, the relevant quantities should be examined on lines in the phase diagram that are defined self-consistently, within the framework of the model. We discuss possible choices for such an approach.

  7. Modeling chiral criticality and its consequences for heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Gabor [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); Friman, Bengt [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Redlich, Krzysztof [ExtreMe Matter Institute (EMMI), Darmstadt (Germany); University of Wroclaw, Faculty of Physics and Astronomy, Wroclaw (Poland); Department of Physics, Duke University, Durham, NC (United States)

    2016-07-01

    We explore the critical fluctuations near the chiral critical endpoint (CEP), which belongs to the Z(2) universality class, in a chiral effective model and discuss possible signals of the CEP, recently explored in nuclear collision experiments. Particular attention is attributed to the dependence of such signals on the location of the phase boundary and the CEP relative to the hypothetical freeze-out conditions in nuclear collisions. We argue that in effective models freeze-out fits to heavy-ion results should not be used directly, and relevant quantities should be investigated on lines of the phase diagram, that are defined self-consistently in the framework of the model. We discuss possible choices for such an approach. Additionally we discuss the effect of the repulsive vector interaction of quarks on the location of the CEP and on the structure of the baryon number cumulant ratios.

  8. Semiclassical model of atomic collisions: stopping and capture of the heavy charged particles and exotic atom formation

    International Nuclear Information System (INIS)

    Beck, W.A.

    2000-01-01

    The semiclassical model of atomic collisions, especially in different areas of the maximum stopping, when proton collides at the velocity of the boron order velocity, providing as the result for interactions of many bodies with an electron target, enabling application of the model with high degree of confidence to a clearly expressed experimental problem, such the antiproton capture on helium, is presented. The semiclassical collision model and stopping energy are considered. The stopping and capture of negatively-charged particles are investigated. The capture and angular moments of antiprotons, captures at the end of the collision cascade, are presented [ru

  9. Modelling the distribution of hard seabed using calibrated multibeam acoustic backscatter data in a tropical, macrotidal embayment: Darwin Harbour, Australia

    Science.gov (United States)

    Siwabessy, P. Justy W.; Tran, Maggie; Picard, Kim; Brooke, Brendan P.; Huang, Zhi; Smit, Neil; Williams, David K.; Nicholas, William A.; Nichol, Scott L.; Atkinson, Ian

    2018-06-01

    Spatial information on the distribution of seabed substrate types in high use coastal areas is essential to support their effective management and environmental monitoring. For Darwin Harbour, a rapidly developing port in northern Australia, the distribution of hard substrate is poorly documented but known to influence the location and composition of important benthic biological communities (corals, sponges). In this study, we use angular backscatter response curves to model the distribution of hard seabed in the subtidal areas of Darwin Harbour. The angular backscatter response curve data were extracted from multibeam sonar data and analysed against backscatter intensity for sites observed from seabed video to be representative of "hard" seabed. Data from these sites were consolidated into an "average curve", which became a reference curve that was in turn compared to all other angular backscatter response curves using the Kolmogorov-Smirnov goodness-of-fit. The output was used to generate interpolated spatial predictions of the probability of hard seabed ( p-hard) and derived hard seabed parameters for the mapped area of Darwin Harbour. The results agree well with the ground truth data with an overall classification accuracy of 75% and an area under curve measure of 0.79, and with modelled bed shear stress for the Harbour. Limitations of this technique are discussed with attention to discrepancies between the video and acoustic results, such as in areas where sediment forms a veneer over hard substrate.

  10. Modelling and Analysis of a Collision Avoidance Protocol using SPIN and UPPAAL

    DEFF Research Database (Denmark)

    Skou, Arne; Larsen, Kim Guldstrand; Jensen, Henrik Ejersbo

    1997-01-01

    , the modelling of the media becomes ackward due to the lack of broadcast communication in the PROMELA language. On the other hand we find it easy to model the timed aspects using the UPPAAL tool. Especially, the notion of committed locations supports the modelling of broadcast communication. However......This paper compares the tools SPIN and UPPAAL by modelling and verifying a Collision Avoidance Protocol for an Ethernet-like medium. We find that SPIN is well suited for modelling the untimed aspects of the protocol processes and for expressing the relevant (untimed) properties. However...

  11. A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision.

    Science.gov (United States)

    Granados, Alba; Misztal, Marek Krzysztof; Brunskog, Jonas; Visseq, Vincent; Erleben, Kenny

    2017-02-01

    Analysis of voice pathologies may require vocal fold models that include relevant features such as vocal fold asymmetric collision. The present study numerically addresses the problem of frictionless asymmetric collision in a self-sustained three-dimensional continuum model of the vocal folds. Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations is developed. The effect of inexact contact constraint enforcement on vocal fold dynamics is examined by different variational methods for inequality constrained minimization problems, namely, the Lagrange multiplier method and the penalty method. In contrast to the penalty solution, which is related to classical spring-like contact forces, numerical examples show that the parameter-independent Lagrange multiplier solution is more robust and accurate in the estimation of dynamical and mechanical features at vocal fold contact. Furthermore, special attention is paid to the temporal integration schemes in relation to the contact problem, the results suggesting an advantage of highly diffusive schemes. Finally, vocal fold contact enforcement is shown to affect asymmetric oscillations. The present model may be adapted to existing vocal fold models, which may contribute to a better understanding of the effect of the nonlinear contact phenomenon on phonation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Development of collision dynamics models to estimate the results of full-scale rail vehicle impact tests : Tufts University Master's Thesis

    Science.gov (United States)

    2000-11-01

    In an effort to study occupant survivability in train collisions, analyses and tests were conducted to understand and improve the crashworthiness of rail vehicles. A collision dynamics model was developed in order to estimate the rigid body motion of...

  13. Introduction to fluid model for RHIC heavy ion collisions

    International Nuclear Information System (INIS)

    Muraya, Shin

    2007-01-01

    An introductory review of the fluid model which has been looked upon as the promising phenomenological model for the heavy ion scattering experiments at RHIC is presented here. Subjects are especially focused on the fundamental assumptions of the model and the decision process of the phenomenological parameters considering newcomers to hadron physics. Introduction of thermodynamical quantities, 1+1 dimension model, time-space evolution of fluid, correspondence of fluid to particles, initial condition, boundary condition and comparison of the equation of state of fluid model and that of hadron model are described. Limitation of fluid picture and the validity of the model are discussed finally. It is summarized that the present fluid model does not predict much about results in advance but gives interpretation after the event, nevertheless it reproduces much of the experimental results in natural form. It is expected that the parameter of the fluid model is to be used as the intermediate theory to relate experimental results with theory. (S. Funahashi)

  14. An analysis of urban collisions using an artificial intelligence model.

    Science.gov (United States)

    Mussone, L; Ferrari, A; Oneta, M

    1999-11-01

    Traditional studies on road accidents estimate the effect of variables (such as vehicular flows, road geometry, vehicular characteristics), and the calculation of the number of accidents. A descriptive statistical analysis of the accidents (those used in the model) over the period 1992-1995 is proposed. The paper describes an alternative method based on the use of artificial neural networks (ANN) in order to work out a model that relates to the analysis of vehicular accidents in Milan. The degree of danger of urban intersections using different scenarios is quantified by the ANN model. Methodology is the first result, which allows us to tackle the modelling of urban vehicular accidents by the innovative use of ANN. Other results deal with model outputs: intersection complexity may determine a higher accident index depending on the regulation of intersection. The highest index for running over of pedestrian occurs at non-signalised intersections at night-time.

  15. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    International Nuclear Information System (INIS)

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-01-01

    Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was

  16. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024 (United States)

    2015-11-15

    Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was

  17. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery.

    Science.gov (United States)

    Yu, Victoria Y; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A; Sheng, Ke

    2015-11-01

    Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup

  18. Assessment of site-scale hydrogeological modelling possibilities in crystalline hard rock for safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J. [Cleanwater Hardrock Consulting, Corvallis, OR (United States); Luukkonen, A.

    2012-09-15

    This review describes the state-of-the-art in hydrogeological modelling for safety-case studies related to spent-fuel repositories in crystalline hard rock, focusing on issues of relevance for the KBS-3 disposal concept in Nordic environments. The review includes a survey of model capabilities and assumptions regarding groundwater flow processes, geological and excavation-related features, and boundary conditions for temperate, periglacial, and glacial climates. Modelling approaches are compared for research sites including the Stripa mine (Sweden), the Grimsel Test Site (Switzerland), the Whiteshell Underground Research Laboratory (Canada), the Aspo Hard Rock Laboratory and Simpevarp-Laxemar site (Sweden), the Forsmark site (Sweden), the Waste Isolation Pilot Plant site (USA), and Olkiluoto (Finland). Current hydrogeological models allow realistic representations, but are limited by availability of data to constrain their properties. Examples of calibrations of stochastic representations of heterogeneity are still scarce. Integrated models that couple flow and non-reactive transport are now well established, particularly those based on continuum representations. Models that include reactive transport are still mainly in the realm of research tools. Thus far, no single software tool allows fully coupled treatment of all relevant thermal, hydraulic, mechanical, and chemical transport processes in the bedrock, together with climate-related physical processes at the ground surface, and with explicit treatment of bedrock heterogeneity. Hence practical applications require combinations of models based on different simplifications. Key improvements can be expected in treatment of the unsaturated zone, simulation of heterogeneous infiltration at the surface, and hydromechanical coupling. Significant advances have already been made in the amounts and types of data that can be used in site-scale models, including large datasets to define topography and other surface

  19. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  20. Strangeness production in hadronic and nuclear collisions in the dual parton model

    International Nuclear Information System (INIS)

    Capella, A.; Tran Thanh Van, J.; Ranft, J.

    1993-01-01

    Λ, antiΛ and K s 0 production is studied in a Monte Carlo Dual Parton model for hadron-hadron, hadron-nucleus and nucleus-nucleus collisions with a SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation. Additionally, (qq)-(antiqantiq) production from the sea was introduced into the chain formation process with the same probability as for the q → qq branching within the chain decay process. This together with the popcorn mechanism of diquark fragmentation result in a new central component of hyperon production, which was not present in previous versions of the model. With these assumptions rapidity distributions and multiplicity ratios for strange particles in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions are compared to a comprehensive collection of experimental data. 5 figs., 2 tabs., 15 refs

  1. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    International Nuclear Information System (INIS)

    Springer, H.K.; Miller, W.O.; Levatin, J.L.; Pertica, A.J.; Olivier, S.S.

    2010-01-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their

  2. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    OpenAIRE

    Francés, Alain; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. Monteiro; Ardekani, Mohammad R. Mahmoudzadeh

    2014-01-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2)...

  3. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  4. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  5. Correlations in simple multi-string models of pp collisions at ISR energies

    International Nuclear Information System (INIS)

    Lugovoj, V.V.; Chudakov, V.M.

    1989-01-01

    Simple statistical simulation algorithms are suggested for formation and breaking of a few quark-gluon strings in inelastic pp collisions. Theoretical multiplicity distributions, semi-inclusive quasirapidity spectra, forward-backward correlations of charged secondaries and seagull effect agree well with the experimental data at ISR energies. In the framework of the model, the semi-inclusive two-particle correlations of quasirapidities depend upon the fraction of the spherical chains. The seagull effect is qualitatively interpretated

  6. Simple quantal model for collision-induced dissociation: An Airy basis calculation

    International Nuclear Information System (INIS)

    Hunt, P.M.; Sridharan, S.

    1982-01-01

    New matrix elements for the Airy continuum basis are employed to find quantum mechanical dissociation probabilities for the the forced Morse oscillator. The calculations performed illustrate the ease with which the continuously infinite Airy basis can be manipulated, and they illustrate the transition from vibrational enhancement to vibrational inhibition of diatomic breakup. The forced Morse oscillator model thus reproduces the behavior of more complicated collinear collision-induced dissociation systems

  7. Macroscopic damping model for zero degree energy distribution in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gao Chongshou; Wang Chengshing

    1993-01-01

    A macroscopic damping model is proposed to calculate the zero degree energy distribution in ultra-relativistic heavy ion collisions. The main features of the measured distributions are reproduced, good agreement is obtained in the middle energy region while overestimation results on the high energy side. The average energy loss coefficient of incident nucleons, varying in the reasonable region 0.2-0.6, depends on beam energy and target size

  8. Models of Alcohol and Other Drug Treatment for Consideration When Working with Deaf and Hard of Hearing Individuals.

    Science.gov (United States)

    Guthmann, Debra

    This paper discusses several models for treating chemical dependency in individuals who are deaf or hard of hearing. It begins by describing the 12-step model, a comprehensive, multi-disciplinary approach to the treatment of addiction which is abstinence oriented and based on the principles of Alcoholics Anonymous. This model includes group…

  9. Galilean invariance in the exponential model of atomic collisions

    International Nuclear Information System (INIS)

    del Pozo, A.; Riera, A.; Yaez, M.

    1986-01-01

    Using the X/sup n/ + (1s 2 )+He/sup 2+/ colliding systems as specific examples, we study the origin dependence of results in the application of the two-state exponential model, and we show the relevance of polarization effects in that study. Our analysis shows that polarization effects of the He + (1s) orbital due to interaction with X/sup (//sup n//sup +1)+/ ion in the exit channel yield a very small contribution to the energy difference and render the dynamical coupling so strongly origin dependent that it invalidates the basic premises of the model. Further study, incorporating translation factors in the formalism, is needed

  10. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.; Xie, Jianfei; Shishkova, Irina N.; Elwardani, Ahmed Elsaid; Heikal, Morgan Raymond

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation

  11. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    Science.gov (United States)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  12. Galilean invariance in the exponential model of atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    del Pozo, A.; Riera, A.; Yaez, M.

    1986-11-01

    Using the X/sup n//sup +/(1s/sup 2/)+He/sup 2+/ colliding systems as specific examples, we study the origin dependence of results in the application of the two-state exponential model, and we show the relevance of polarization effects in that study. Our analysis shows that polarization effects of the He/sup +/(1s) orbital due to interaction with X/sup (//sup n//sup +1)+/ ion in the exit channel yield a very small contribution to the energy difference and render the dynamical coupling so strongly origin dependent that it invalidates the basic premises of the model. Further study, incorporating translation factors in the formalism, is needed.

  13. Adiabatic analysis of collisions. III. Remarks on the spin model

    International Nuclear Information System (INIS)

    Fano, U.

    1979-01-01

    Analysis of a spin-rotation model illustrates how transitions between adiabatic channel states stem from the second, rather than from the first, rate of change of these states, provided that appropriate identification of channels and scaling of the independent variable are used. These remarks, like the earlier development of a post-adiabatic approach, aim at elucidating the surprising success of approximate separation of variables in the treatment of complex mechanical systems

  14. Collision dynamics of the coherent Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Rabello, M.L.C.; Toledo Piza, A.F.R. de.

    1985-01-01

    The anatomy of the dynamics of quantum correlations of two interacting subsystems described by the Jaynes-Cummings Model is studied, making use of a natural states decomposition, following an old suggestion by Schroedinger. The amplitude modulation of the fast Rabi oscillations which occur for a strong, coherent initial field is obtained from the spin intrinsic depolarization resulting from corrections to the mean field approximation. (Author) [pt

  15. Collision dynamics of the coherent Jaynes-Cumminings model

    International Nuclear Information System (INIS)

    Rabello, M.L.C.; Toledo Piza, A.F.R. de

    1984-01-01

    The anatomy of the dynamics of quantum correlations of two interacting subsystems described by the Jaynes-Cummings Model is studied, making use of a natural states decomposition, following an old suggestion by Schroedinger. The amplitude modulation of the fast Rabi oscillations which occur for a strong, coherent initial field is obtained from the spin intrinsic depolarization resulting from corrections to the mean field approximation. (Author) [pt

  16. Border Collision Bifurcations in a Generalized Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Lilia M. Ladino

    2016-01-01

    Full Text Available We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested.

  17. Nonequilibrium models of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Stoecker, H; Bratkovskaya, E L; Bleicher, M; Soff, S; Zhu, X

    2005-01-01

    We review the results from the various hydrodynamical and transport models on the collective flow observables from AGS to RHIC energies. A critical discussion of the present status of the CERN experiments on hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A GeV: here the hydrodynamic model has predicted the collapse of the v 1 -flow and of the v 2 -flow at ∼10 A GeV; at 40 A GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as evidence for a first-order phase transition at high baryon density ρ B . Moreover, the connection of the elliptic flow v 2 to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the away-side jet suppression can only partially ( 1 , v 2 closer to beam rapidity is related to the occurrence of a high density first order phase transition in the RHIC data at 62.5, 130 and 200 A GeV

  18. Oriented collision between 15B and 12C studied within Glauber model using microscopically calculated densities

    International Nuclear Information System (INIS)

    Singh, Vishal; Modi, Swati; Arumugam, P.

    2017-01-01

    Recent advancements in accelerator technology and polarized beams have created opportunities to study oriented collisions of deformed targets. We extend the Glauber model to calculate the interaction cross section for a spherical projectile and a deformed target at different orientation angles of the target. It has been found that the observed reaction cross sections of various systems at high energies can be reproduced with this model. We have used the relativistic mean field (RMF) theory to find the density distribution of nucleons in the projectile and target which are utilised in the Glauber model. We present the variation of interaction cross section of target and projectile with the orientation of deformed target

  19. A phenomenological model of deep-inelastic collisions between complex nuclei

    International Nuclear Information System (INIS)

    Siwek-Wilczynska, K.; Wilczynski, J.

    1976-01-01

    A simple model of heavy-ion collisions is proposed. Classical equations of motion with inclusion of a phenomenological two-body friction force are integrated numerically along trajectories. The nucleus-nucleus interaction potential which is used in the calculations includes deformation degrees of freedom in the exit channel. Both entrance and exit-channel potentials are based on the boundary conditions following the liquid-drop model. The existing data on fusion cross sections, and also the energy-angle distributions of deep-inelastic reactions are very well reproduced by the model. (author)

  20. MODELING THE EARLY AFTERGLOW IN THE SHORT AND HARD GRB 090510

    Energy Technology Data Exchange (ETDEWEB)

    Fraija, N.; Lee, W. H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, 04510 Ciudad de México, DF (Mexico); Veres, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Duran, R. Barniol, E-mail: nifraija@astro.unam.mx, E-mail: wlee@astro.unam.mx, E-mail: pv0004@uah.edu, E-mail: rbarniol@purdue.edu [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2016-11-01

    The bright, short, and hard GRB 090510 was detected by all instruments aboard the Fermi and Swift satellites. The multiwavelength observations of this burst presented similar features to the Fermi -LAT-detected gamma-ray bursts. In the framework of the external shock model of early afterglow, a leptonic scenario that evolves in a homogeneous medium is proposed to revisit GRB 090510 and explain the multiwavelength light curve observations presented in this burst. These observations are consistent with the evolution of a jet before and after the jet break. The long-lasting LAT, X-ray, and optical fluxes are explained in the synchrotron emission from the adiabatic forward shock. Synchrotron self-Compton emission from the reverse shock is consistent with the bright LAT peak provided that the progenitor environment is entrained with strong magnetic fields. It could provide compelling evidence of magnetic field amplification in the neutron star merger.

  1. The phase behavior of a hard sphere chain model of a binary n-alkane mixture

    International Nuclear Information System (INIS)

    Malanoski, A. P.; Monson, P. A.

    2000-01-01

    Monte Carlo computer simulations have been used to study the solid and fluid phase properties as well as phase equilibrium in a flexible, united atom, hard sphere chain model of n-heptane/n-octane mixtures. We describe a methodology for calculating the chemical potentials for the components in the mixture based on a technique used previously for atomic mixtures. The mixture was found to conform accurately to ideal solution behavior in the fluid phase. However, much greater nonidealities were seen in the solid phase. Phase equilibrium calculations indicate a phase diagram with solid-fluid phase equilibrium and a eutectic point. The components are only miscible in the solid phase for dilute solutions of the shorter chains in the longer chains. (c) 2000 American Institute of Physics

  2. Time-dependent shell-model theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Ayik, S.; Noerenberg, W.

    1982-01-01

    A transport theory is formulated within a time-dependent shell-model approach. Time averaging of the equations for macroscopic quantities lead to irreversibility and justifies weak-coupling limit and Markov approximation for the (energy-conserving) one- and two-body collision terms. Two coupled equations for the occupation probabilities of dynamical single-particle states and for the collective variable are derived and explicit formulas for transition rates, dynamical forces, mass parameters and friction coefficients are given. The applicability of the formulation in terms of characteristic quantities of nuclear systems is considered in detail and some peculiarities due to memory effects in the initial equilibration process of heavy-ion collisions are discussed. (orig.)

  3. Multichannel approach to the Glauber model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Lenzi, S.M.; Zardi, F.; Vitturi, A.

    1990-01-01

    A formalism is developed in order to describe, within the Glauber model, the scattering processes between heavy ions in situations involving several coupled channels. The approach is based on a suitable truncation of the number of nuclear states which can be excited at each microscopic nucleon-nucleon collision. The set of coupled equations for the S-matrix elements of the conventional reaction theory is replaced by simple matrix relations, only involving the nucleon-nucleon scattering amplitude and the nuclear densities and transition densities. This method avoids the difficulties arising from the combinatorial aspects of the multiple scattering theories, the slow convergence of the series, and the problems of center-of-mass correlations. We discuss some specific examples of multichannel collisions where the multiple-scattering series can be summed to give analytic expressions for the scattering amplitude. We finally explicate the formalism for the perturbative treatment of mutual excitation and charge-exchange processes

  4. Studying the collision energy dependence of elliptic and triangular flow with a hybrid model

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, Jussi [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Goethe Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    Elliptic flow has been one of the key observables for establishing the finding of the quark-gluon plasma (QGP) at the highest energies of Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). As a sign of collectively behaving matter, the elliptic flow is expected to decrease at lower beam energies, where the QGP is not produced. However, in the recent RHIC beam energy scan, it has been found that the inclusive charged hadron elliptic flow changes relatively little in magnitude within the energy range 7.7-39 GeV per nucleon-nucleon collision. We study the collision energy dependence of the elliptic and triangular flow utilizing a Boltzmann+hydrodynamics hybrid model. Such a hybrid model provides a natural framework for the transition from high collision energies, where the hydrodynamical description is essential, to smaller energies, where the hadron transport dominates. This approach is thus suitable for investigating the relative importance of these two mechanisms for the production of the collective flow at different beam energies.

  5. A particle-in-cell method for modeling small angle Coulomb collisions in plasmas

    International Nuclear Information System (INIS)

    Parker, S.E.

    1989-01-01

    We propose a computational method to self-consistently model small angle collisional effects. This method may be added to standard Particle-In-Cell (PIC) plasma simulations to include collisions, or as an alternative to solving the Fokker-Planck (FP) equation using finite difference methods. The distribution function is represented by a large number of particles. The particle velocities change due to the drag force, and the diffusion in velocity is represented by a random process. This is similar to previous Monte-Carlo methods except we calculate the drag force and diffusion tensor self- consistently. The particles are weighted to a grid in velocity space and associated ''Poisson equations'' are solved for the Rosenbluth potentials. The motivation is to avoid the very time consuming method of Coulomb scattering pair by pair. First the approximation for small angle Coulomb collisions is discussed. Next, the FP-PIC collision method is outlined. Then we show a test of the particle advance modeling an electron beam scattering off a fixed ion background. 4 refs

  6. The Mathematical Model High Energy Collisions Process Hadron-Nucleus

    International Nuclear Information System (INIS)

    Wojciechowski, A.; Strugalska-Gola, E.; Strugalski, Z.

    2002-01-01

    During the passage high energy hadron by the heavy nucleus emitted are nucleons and many other particles from which most more group are nucleons and mesons π + π - π 0 . in this work we will present the mathematical model which is a simplified description of basic processes in the interior of the nucleus during passing of the hadron by the nucleus. Result of calculations we will compare with experimental results. Experimental data are based on photographs of 180 litre xenon bubble chambers (180 1 KKP) of Institute of Theoretical and Experimental Physics in Moscow (ITEF, Moscow) irradiated with the beam of mesons π - with momentum 3.5 GeV/c. (author)

  7. Many-electron model for multiple ionization in atomic collisions

    International Nuclear Information System (INIS)

    Archubi, C D; Montanari, C C; Miraglia, J E

    2007-01-01

    We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data

  8. Many-electron model for multiple ionization in atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C D [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Montanari, C C [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Miraglia, J E [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina)

    2007-03-14

    We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data.

  9. Accurate Treatment of Collisions and Water-Delivery in Models of Terrestrial Planet Formation

    Science.gov (United States)

    Haghighipour, Nader; Maindl, Thomas; Schaefer, Christoph

    2017-10-01

    It is widely accepted that collisions among solid bodies, ignited by their interactions with planetary embryos is the key process in the formation of terrestrial planets and transport of volatiles and chemical compounds to their accretion zones. Unfortunately, due to computational complexities, these collisions are often treated in a rudimentary way. Impacts are considered to be perfectly inelastic and volatiles are considered to be fully transferred from one object to the other. This perfect-merging assumption has profound effects on the mass and composition of final planetary bodies as it grossly overestimates the masses of these objects and the amounts of volatiles and chemical elements transferred to them. It also entirely neglects collisional-loss of volatiles (e.g., water) and draws an unrealistic connection between these properties and the chemical structure of the protoplanetary disk (i.e., the location of their original carriers). We have developed a new and comprehensive methodology to simulate growth of embryos to planetary bodies where we use a combination of SPH and N-body codes to accurately model collisions as well as the transport/transfer of chemical compounds. Our methodology accounts for the loss of volatiles (e.g., ice sublimation) during the orbital evolution of their careers and accurately tracks their transfer from one body to another. Results of our simulations show that traditional N-body modeling of terrestrial planet formation overestimates the amount of the mass and water contents of the final planets by over 60% implying that not only the amount of water they suggest is far from being realistic, small planets such as Mars can also form in these simulations when collisions are treated properly. We will present details of our methodology and discuss its implications for terrestrial planet formation and water delivery to Earth.

  10. Multilevel models for evaluating the risk of pedestrian-motor vehicle collisions at intersections and mid-blocks.

    Science.gov (United States)

    Quistberg, D Alex; Howard, Eric J; Ebel, Beth E; Moudon, Anne V; Saelens, Brian E; Hurvitz, Philip M; Curtin, James E; Rivara, Frederick P

    2015-11-01

    Walking is a popular form of physical activity associated with clear health benefits. Promoting safe walking for pedestrians requires evaluating the risk of pedestrian-motor vehicle collisions at specific roadway locations in order to identify where road improvements and other interventions may be needed. The objective of this analysis was to estimate the risk of pedestrian collisions at intersections and mid-blocks in Seattle, WA. The study used 2007-2013 pedestrian-motor vehicle collision data from police reports and detailed characteristics of the microenvironment and macroenvironment at intersection and mid-block locations. The primary outcome was the number of pedestrian-motor vehicle collisions over time at each location (incident rate ratio [IRR] and 95% confidence interval [95% CI]). Multilevel mixed effects Poisson models accounted for correlation within and between locations and census blocks over time. Analysis accounted for pedestrian and vehicle activity (e.g., residential density and road classification). In the final multivariable model, intersections with 4 segments or 5 or more segments had higher pedestrian collision rates compared to mid-blocks. Non-residential roads had significantly higher rates than residential roads, with principal arterials having the highest collision rate. The pedestrian collision rate was higher by 9% per 10 feet of street width. Locations with traffic signals had twice the collision rate of locations without a signal and those with marked crosswalks also had a higher rate. Locations with a marked crosswalk also had higher risk of collision. Locations with a one-way road or those with signs encouraging motorists to cede the right-of-way to pedestrians had fewer pedestrian collisions. Collision rates were higher in locations that encourage greater pedestrian activity (more bus use, more fast food restaurants, higher employment, residential, and population densities). Locations with higher intersection density had a lower

  11. A magnetic model for low/hard state of black hole binaries

    Science.gov (United States)

    Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng

    2016-03-01

    A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.

  12. Modelling of residual stresses in valves Norem hard-facing alloys: a material characterization issue

    International Nuclear Information System (INIS)

    Mathieu, J.P.; Arnoldi, F.; Gauthier, E.; Beaurin, G.

    2011-01-01

    Replacement of cobalt-based hard-facing alloys (Stellite) is of high interest within the topic of reduction of human radiation exposure during field-work. Iron-based hard-facing alloys, such as Norem, are considered as good replacement candidates. Their wear characteristics are known to be quite equivalent to Stellite but are counter-balanced by lack of feedback in the field, especially about their resistance/toughness to brutal thermal shocks (60 C - 280 C for primary water). Norem alloys show a solid-solution strengthened austenitic dendrites matrix with a continuous network of eutectic and non-eutectic carbides at the grain boundaries. Toughness evaluation also requires information about residual stresses due to the welding (deposition) process: this work aims at furnishing tools for this purpose. First part of the work involved a microstructural study in order to compare the as-received material to other Norem samples previously observed in EDF's works and literature. A characterization of the different phase evolutions after heating and fast cooling of Norem is then made, in order to characterize whether metallurgical aspects have to be considered in the mechanical part during welding modelling: it appears that no strong solid-solid phase transformation may occur in welding situation. Tensile characterization is then performed on bulk PTAW (Plasma Transferred Arc Welding) specimens. A simplified welding simulation is eventually conducted on different axis-symmetric geometry and on real valve geometry in order to define a representative sample that will be used for further investigation on residual stresses. (authors)

  13. Modelling of transport and collisions between rigid bodies to simulate the jam formation in urban flows

    Directory of Open Access Journals (Sweden)

    S Hadji

    2008-09-01

    Full Text Available This study deals with the simulation of transport and interaction betweenbodies considered as a rectangular shape particles, in urban flow. We usedan hydrodynamic two-dimensional finite elements model coupled to theparticles model based on Maxey-Riley equations, and taking into accountof contact between bodies. The finite element discretization is based onthe velocity field richer than pressure field, and the particles displacementsare computed by using a rigid body motion method. A collision strategy isalso developed to handle cases in which bodies touch.

  14. New space--time model for hadron--nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bialkowski, G.; Chiu, C.B.; Tow, D.M.

    1976-12-01

    A new space-time model for hadron-nucleus collisions is proposed, where particles at the instant of creation are immature and their maturity rate is enhanced in the presence of other hadronic matter, as in a nucleus. With only one free parameter, the model can explain dn/sub A//sup p//d eta, dn/sub A//sup pi//d eta, R/sub A//sup p/(E/sub L/), and the A-dependences of sigma/sub in/sup pA/ and sigma/sub in/sup pi A/

  15. Classical model with pionic degrees of freedom for the description of high energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Kunz, J.

    1982-01-01

    In this thesis the classical model is extended in order to regard the inelastic processes important in the heavy ion collisions of the considered energy range. For this a classical pion field was coupled to the nucleons via the pseudo-scalar #betta# 5 -interactions. Nucleon and pion fields were treated in a completely relativistic way. The equations of motion were analytically studied for the one-nucleon system. From the statical solution the bare mass of the nucleon was determined, and its dependence on both parameters of this modell, the coupling constant and the cut-off momentum of the form factor, was considered. (orig./HSI) [de

  16. Transport theory for deeply inelastic heavy-ion collisions within the statistical model

    International Nuclear Information System (INIS)

    Shlomo, S.

    1978-01-01

    The theory I am going to describe has been developed recently by Agassi, Ko and Weidenmueller. It is based on a random-matrix model for the form factor (FF) which couples a collective degree of freedom, taken to be the distance anti r between the two ions, with the intrinsic degrees of freedom. This study of dissipative phenomena in a microsystem was triggered by the success of the simple friction and diffusion models in describing experimental data on deeply inelastic collisions. I plan to describe the underlying physical assumptions, to outline the theoretical developments and to show some very recent results. (orig.) [de

  17. Study regarding seat’s rigidity during rear end collisions using a MADYMO occupant model

    Science.gov (United States)

    Ionut Radu, Alexandru; Cofaru, Corneliu; Tolea, Bogan; Popescu, Mihaela

    2017-10-01

    The aim of this paper is to study the effects of different front occupant backseat’s rigidities in the case of a rear end collision using a multibody virtual model of an occupant. Simulation will be conducted in PC Crash, the most common accident reconstruction software using a MADYMO multibody occupant to simulate kinematics and dynamic of the passenger. Different backseat torques will be used to see how this will influence the acceleration in the head and torso of the occupant. Also, a real crash test is made to analyze the kinematics of the occupant. We believe that the softer seat’s rigidity will reduce not only the head’s acceleration but also reduces the effect of „whiplash” upon the neck due to the fact that the backseat will rotate backwards increasing its displacement and absorb some of the energy generated by the collision. Although a softer seat could reduce the head’s acceleration, a broken seat will increase it due to the fact that the impact of the backseat with the vehicle’s rear seats will generate a second collision. So, in order to achieve a lower acceleration, a controlled torque is recommended and a controlled angular displacement of the backseat is to be used.

  18. Comparison of many bodied and binary collision cascade models up to 1 keV

    International Nuclear Information System (INIS)

    Schwartz, D.M.; Schiffgens, J.D.; Doran, D.G.; Odette, G.R.; Ariyasu, R.G.

    1976-01-01

    A quasi-dynamical code ADDES has been developed to model displacement cascades in copper for primary knockon atom energies up to several keV. ADDES is like a dynamical code in that it employs a many body treatment, yet similar to a binary collision code in that it incorporates the basic assumption that energy transfers below several eV can be ignored in describing cascade evolution. This paper is primarily concerned with (1) a continuing effort to validate the assumptions and specific parameters in the code by the comparison of ADDES results with experiment and with results from a dynamical code, and (2) comparisons of ADDES results with those from a binary collision code. The directional dependence of the displacement threshold is in reasonable agreement with the measurements of Jung et al. The behavior of focused replacement sequences is very similar to that obtained with the dynamical codes GRAPE and COMENT. Qualitative agreement was found between ADDES and COMENT for a higher energy (500 eV) defocused event while differences, still under study, are apparent in a 250 eV high index event. Comparisons of ADDES with the binary collision code MARLOWE show surprisingly good agreement in the 250 to 1000 eV range for both number and separation of Frenkel pairs. A preliminary observation, perhaps significant to displacement calculations utilizing the concept of a mean displacement energy, is the dissipation of 300 to 400 eV in a replacement sequence producing a single interstitial

  19. New Development on Modelling Fluctuations and Fragmentation in Heavy-Ion Collisions

    Science.gov (United States)

    Lin, Hao; Danielewicz, Pawel

    2017-09-01

    During heavy-ion collisions (HIC), colliding nuclei form an excited composite system. Instabilities present in the system may deform the shape of the system exotically, leading to a break-up into fragments. Many experimental efforts have been devoted to the nuclear multifragmentation phenomenon, while traditional HIC models, lacking in proper treatment of fluctuations, fall short in explaining it. In view of this, we are developing a new model to implement realistic fluctuations into transport simulation. The new model is motivated by the Brownian motion description of colliding particles. The effects of two-body collisions are recast in one-body diffusion processes. Vastly different dynamical paths are sampled by solving Langevin equations in momentum space. It is the stochastic sampling of dynamical paths that leads to a wide spread of exit channels. In addition, the nucleon degree of freedom is used to enhance the fluctuations. The model has been tested in reactions such as 112Sn + 112Sn and 58Ni + 58Ni, where reasonable results are yielded. An exploratory comparison on the 112Sn + 112Sn reaction at 50 MeV/nucleon with two other models, the stochastic mean-field (SMF) and the antisymmetrized molecular dynamics (AMD) models, has also been conducted. Work supported by the NSF Grant No. PHY-1403906.

  20. Dynamical initial-state model for relativistic heavy-ion collisions

    Science.gov (United States)

    Shen, Chun; Schenke, Björn

    2018-02-01

    We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. We also present the implementation of the model with 3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic simulation.

  1. The Development of an IT Governance Maturity Model for Hard and Soft Governance

    NARCIS (Netherlands)

    Smits, Daniël; van Hillegersberg, Jos; Devos, Jan; DeHaes, Steven

    2014-01-01

    To be able to advance in maturity, organizations should pay attention to both the hard and soft aspects of governance. Current literature on IT governance (ITG) is mostly directed at the hard part of governance, focusing on structures and processes. The soft part of governance is related to social

  2. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  3. Kobayashi-Maskawa type of hard-CP-violation model with three-generation Majorana neutrinos

    International Nuclear Information System (INIS)

    Cheng, H.

    1986-01-01

    Within the framework of the Kobayashi-Maskawa (KM) type of hard CP-violation model with three-generation Majorana neutrinos, we point out that on-shell CP-violation phenomena (i.e., CP-violating effects taking place in on-shell processes), which are characteristic of Majorana neutrinos, can only occur in total-lepton-number-conserving reactions, and are unobservably small. Off-shell CP-nonconserving effects which arise from gauge bosons are undetectable, but those which are mediated by Higgs bosons could be seen in certain rare decays. It is emphasized that CP-odd effects intrinsic to Majorana behavior depend not only on the two CP-violating Majorana phases but also on the KM phase. We then demonstrate why the KM model, which has rich implications in the hadronic sector, leads to no observable CP-violating effects in leptonic processes (except in neutrino oscillations) directly related to the CP-odd KM phase

  4. A Coupled Thermo-Hydro-Mechanical Model of Jointed Hard Rock for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhuang

    2014-01-01

    Full Text Available Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.

  5. Quantification of the specific yield in a two-layer hard-rock aquifer model

    Science.gov (United States)

    Durand, Véronique; Léonardi, Véronique; de Marsily, Ghislain; Lachassagne, Patrick

    2017-08-01

    Hard rock aquifers (HRA) have long been considered to be two-layer systems, with a mostly capacitive layer just below the surface, the saprolite layer, and a mainly transmissive layer underneath, the fractured layer. Although this hydrogeological conceptual model is widely accepted today within the scientific community, it is difficult to quantify the respective storage properties of each layer with an equivalent porous medium model. Based on an HRA field site, this paper attempts to quantify in a distinct manner the respective values of the specific yield (Sy) in the saprolite and the fractured layer, with the help of a deterministic hydrogeological model. The study site is the Plancoët migmatitic aquifer located in north-western Brittany, France, with piezometric data from 36 observation wells surveyed every two weeks for eight years. Whereas most of the piezometers (26) are located where the water table lies within the saprolite, thus representing the specific yield of the unconfined layer (Sy1), 10 of them are representative of the unconfined fractured layer (Sy2), due to their position where the saprolite is eroded or unsaturated. The two-layer model, based on field observations of the layer geometry, runs with the MODFLOW code. 81 values of the Sy1/Sy2 parameter sets were tested manually, as an inverse calibration was not able to calibrate these parameters. In order to calibrate the storage properties, a new quality-of-fit criterion called ;AdVar; was also developed, equal to the mean squared deviation of the seasonal piezometric amplitude variation. Contrary to the variance, AdVar is able to select the best values for the specific yield in each layer. It is demonstrated that the saprolite layer is about 2.5 times more capacitive than the fractured layer, with Sy1 = 10% (7% < Sy1 < 15%) against Sy2 = 2% (1% < Sy2 < 3%), in this particular example.

  6. Energy and centrality dependence of dN_c_h/dη and dE_T/dη in heavy-ion collisions from √(s_N_N) = 7.7 GeV to 5.02 TeV

    International Nuclear Information System (INIS)

    Nath Mishra, Aditya; Sahoo, Raghunath; Sahoo, Pragati; Pareek, Pooja; Behera, Nirbhay K.; Nandi, Basanta K.

    2016-01-01

    The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7 GeV to 5.02TeV. A two-component model approach has been adopted to quantify the soft and hard components of particle production, coming from nucleon participants and binary nucleon-nucleon collisions, respectively. Within experimental uncertainties, the hard component contributing to the particle production has been found not to show any clear collision energy dependence from RHIC to LHC. The effect of centrality and collision energy in particle production seems to factor out with some degree of dependency on the collision species. The collision of uranium-like deformed nuclei opens up new challenges in understanding the energy-centrality factorization, which is evident from the centrality dependence of transverse energy density, when compared to collision of symmetric nuclei. (orig.)

  7. Energy and centrality dependence of dN{sub ch}/dη and dE{sub T}/dη in heavy-ion collisions from √(s{sub NN}) = 7.7 GeV to 5.02 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nath Mishra, Aditya; Sahoo, Raghunath; Sahoo, Pragati; Pareek, Pooja; Behera, Nirbhay K. [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India); Nandi, Basanta K. [Indian Institute of Technology Bombay, Department of Physics, Mumbai (India)

    2016-10-15

    The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7 GeV to 5.02TeV. A two-component model approach has been adopted to quantify the soft and hard components of particle production, coming from nucleon participants and binary nucleon-nucleon collisions, respectively. Within experimental uncertainties, the hard component contributing to the particle production has been found not to show any clear collision energy dependence from RHIC to LHC. The effect of centrality and collision energy in particle production seems to factor out with some degree of dependency on the collision species. The collision of uranium-like deformed nuclei opens up new challenges in understanding the energy-centrality factorization, which is evident from the centrality dependence of transverse energy density, when compared to collision of symmetric nuclei. (orig.)

  8. 4M Overturned Pyramid (MOP Model Utilization: Case Studies on Collision in Indonesian and Japanese Maritime Traffic Systems (MTS

    Directory of Open Access Journals (Sweden)

    Wanginingastuti Mutmainnah

    2016-07-01

    Full Text Available 4M Overturned Pyramid (MOP model is a new model, proposed by authors, to characterized MTS which is adopting epidemiological model that determines causes of accidents, including not only active failures but also latent failures and barriers. This model is still being developed. One of utilization of MOP model is characterizing accidents in MTS, i.e. collision in Indonesia and Japan that is written in this paper. The aim of this paper is to show the characteristics of ship collision accidents that occur both in Indonesian and Japanese maritime traffic systems. There were 22 collision cases in 2008–2012 (8 cases in Indonesia and 14 cases in Japan. The characteristics presented in this paper show failure events at every stage of the three accident development stages (the beginning of an accident, the accident itself, and the evacuation process.

  9. Diffusion model analyses of the experimental data of 12C+27Al, 40Ca dissipative collisions

    International Nuclear Information System (INIS)

    SHEN Wen-qing; QIAO Wei-min; ZHU Yong-tai; ZHAN Wen-long

    1985-01-01

    Assuming that the intermediate system decays with a statistical lifetime, the general behavior of the threefold differential cross section d 3 tau/dZdEdtheta in the dissipative collisions of 68 MeV 12 C+ 27 Al and 68.6 MeV 12 C+ 40 Ca system is analyzed in the diffusion model framework. The lifetime of the intermediate system and the separation distance for the completely damped deep-inelastic component are obtained. The calculated results and the experimental data of the angular distributions and Wilczynski plots are compared. The probable reasons for the differences between them are briefly discussed

  10. High energy nuclear collisions

    Indian Academy of Sciences (India)

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  11. An evaluation of collision models in the Method of Moments for rarefied gas problems

    Science.gov (United States)

    Emerson, David; Gu, Xiao-Jun

    2014-11-01

    The Method of Moments offers an attractive approach for solving gaseous transport problems that are beyond the limit of validity of the Navier-Stokes-Fourier equations. Recent work has demonstrated the capability of the regularized 13 and 26 moment equations for solving problems when the Knudsen number, Kn (where Kn is the ratio of the mean free path of a gas to a typical length scale of interest), is in the range 0.1 and 1.0-the so-called transition regime. In comparison to numerical solutions of the Boltzmann equation, the Method of Moments has captured both qualitatively, and quantitatively, results of classical test problems in kinetic theory, e.g. velocity slip in Kramers' problem, temperature jump in Knudsen layers, the Knudsen minimum etc. However, most of these results have been obtained for Maxwell molecules, where molecules repel each other according to an inverse fifth-power rule. Recent work has incorporated more traditional collision models such as BGK, S-model, and ES-BGK, the latter being important for thermal problems where the Prandtl number can vary. We are currently investigating the impact of these collision models on fundamental low-speed problems of particular interest to micro-scale flows that will be discussed and evaluated in the presentation. Engineering and Physical Sciences Research Council under Grant EP/I011927/1 and CCP12.

  12. Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy

    Science.gov (United States)

    Mallik, S.; Das Gupta, S.; Chaudhuri, G.

    2016-04-01

    This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.

  13. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    International Nuclear Information System (INIS)

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-01-01

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed

  14. Productivity of "collisions generate heat" for reconciling an energy model with mechanistic reasoning: A case study

    Science.gov (United States)

    Scherr, Rachel E.; Robertson, Amy D.

    2015-06-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a byproduct of individual particle collisions, which is represented in science education research literature as an obstacle to learning. We demonstrate that in this instructional context, the idea that individual particle collisions generate thermal energy is not an obstacle to learning, but instead is productive: it initiates intellectual progress. Specifically, this idea initiates the reconciliation of the teachers' energy model with mechanistic reasoning about adiabatic compression, and leads to a canonically correct model of the transformation of kinetic energy into thermal energy. We claim that the idea's productivity is influenced by features of our particular instructional context, including the instructional goals of the course, the culture of collaborative sense making, and the use of certain representations of energy.

  15. Modeling of finite systems irradiated by intense ultrashort hard X-ray pulses

    Energy Technology Data Exchange (ETDEWEB)

    Jurek, Zoltan [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Ziaja, Beata [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland); Santra, Robin [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2013-07-01

    Large number of experiments have already been carried out at the existing hard X-Ray Free-Electron Laser facilities (LCLS, SACLA) during the recent years. Their great success generates even higher anticipation for the forthcoming X-ray sources (European XFEL). Single molecule imaging and nanoplasma formation are the challenging projects with XFELs that investigate the interaction of finite, small objects, e.g. single molecules, atomic clusters with intense X-ray radiation. Accurate modelling of the time evolution of such irradiated systems is required in order to understand the current experiments and to inspire new directions of experimental investigation. In this presentation we report on our theoretical molecular-dynamics tool able to follow non-equilibrium dynamics within finite systems irradiated by intense X-ray pulses. We introduce the relevant physical processes, present computational methods used, discuss their limitations and also the specific constraints on calculations imposed by experimental conditions. Finally, we conclude with a few simulation examples.

  16. Meson effective mass in the isospin medium in hard-wall AdS/QCD model

    Energy Technology Data Exchange (ETDEWEB)

    Mamedov, Shahin [Gazi University, Department of Physics, Ankara (Turkey); Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azerbaijan National Academy of Sciences, Institute of Physics, Baku (Azerbaijan)

    2016-02-15

    We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ, a{sub 1}, an π mesons. (orig.)

  17. Development of FB-MultiPier dynamic vessel-collision analysis models, phase 2 : [summary].

    Science.gov (United States)

    2014-07-01

    When collisions between large vessels and bridge : supports occur, they can result in significant : damage to bridge and vessel. These collisions : are extremely hazardous, often taking lives on : the vessel and the bridge. Direct costs of repair : a...

  18. Modelling the continuous cooling transformation diagram of engineering steels using neural networks. Part II. Microstructure and hardness

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, P.J. van der; Wang, J. [Delft Univ. of Technology (Netherlands); Sietsma, J.; Zwaag, S. van der [Delft Univ. of Technology, Lab. for Materials Science (Netherlands)

    2002-12-01

    The neural network model of Van der Wolk et al. (2002) describes the effect of composition on the phase regions of the continuous cooling transformation (CCT) diagram, yet does not consider the fractions of microstructural components and the hardness data that are often quoted in CCT diagrams. In the present paper, the construction of two more neural network models, one for the fractions of ferrite, pearlite, bainite and martensite in the microstructure, and one for the hardness after cooling, using the data of 338 and 412 diagrams, respectively. The accuracy of each model was found to be similar to the expected experimental error; moreover, the models were found to be mutually consistent, although they have been constructed independently. Furthermore, the trends in these properties for alloying elements can be quantified with the models, and are largely in line with metallurgical expectations. (orig.)

  19. Overall momentum balance and redistribution of the lost energy in asymmetric dijet events in 2.76 A TeV Pb-Pb collisions with a multiphase transport model

    Science.gov (United States)

    Gao, Zhan; Luo, Ao; Ma, Guo-Liang; Qin, Guang-You; Zhang, Han-Zhong

    2018-04-01

    The overall transverse momentum balance and the redistribution of the lost energy from hard jets for asymmetric dijet events in PbPb collisions at 2.76 A TeV at the LHC is studied within a multiphase transport (AMPT) model. A detailed analysis is performed for the projected transverse momentum 〈p/T ||〉 contributed from the final charged hadrons carrying different transverse momenta and emitted from different angular directions. We find that the transverse momentum projection 〈p/T ||〉 in the leading jet direction is mainly contributed by hard hadrons (pT>8.0 GeV /c ) in both peripheral and central PbPb collisions, while the opposite direction in central collisions is dominated by soft hadrons (pT=0.5 -2.0 GeV /c ). The study of in-cone and out-of-cone contributions to 〈p/T ||〉 shows that these soft hadrons are mostly emitted at large angles away from the dijet axis. Our AMPT calculation is in qualitative agreement with the CMS measurements and the primary mechanism for the energy transported to large angles in the AMPT model is the elastic scattering at the partonic stage. Future studies including also inelastic processes should be helpful in understanding the overestimation of the magnitudes of in-cone and out-of-cone imbalances from our AMPT calculations, and shed light on different roles played by radiative and collisional processes in the redistribution of the lost energy from hard jets.

  20. The underlying event in hard scattering processes

    International Nuclear Information System (INIS)

    Field, R.

    2002-01-01

    The authors study the behavior of the underlying event in hard scattering proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo models. The underlying event is everything except the two outgoing hard scattered jets and receives contributions from the beam-beam remnants plus initial and final-state radiation. The data indicate that neither ISAJET or HERWIG produce enough charged particles (with p T > 0.5 GeV/c) from the beam-beam remnant component and that ISAJET produces too many charged particles from initial-state radiation. PYTHIA which uses multiple parton scattering to enhance the underlying event does the best job describing the data

  1. Ship Domain Model for Multi-ship Collision Avoidance Decision-making with COLREGs Based on Artificial Potential Field

    Directory of Open Access Journals (Sweden)

    TengFei Wang

    2017-03-01

    Full Text Available A multi-ship collision avoidance decision-making and path planning formulation is studied in a distributed way. This paper proposes a complete set of solutions for multi-ship collision avoidance in intelligent navigation, by using a top-to-bottom organization to structure the system. The system is designed with two layers: the collision avoidance decision-making and the path planning. Under the general requirements of the International Regulations for Preventing Collisions at Sea (COLREGs, the performance of distributed path planning decision-making for anti-collision is analyzed for both give-way and stand-on ships situations, including the emergency actions taken by the stand-on ship in case of the give-way ship’s fault of collision avoidance measures. The Artificial Potential Field method(APF is used for the path planning in details. The developed APF method combined with the model of ship domain takes the target ships’ speed and course in-to account, so that it can judge the moving characteristics of obstacles more accurately. Simulation results indicate that the system proposed can work effectiveness.

  2. Effect of hard second-phase particles on the erosion resistance of model alloys

    International Nuclear Information System (INIS)

    Kosel, T.H.; Aptekar, S.S.

    1986-01-01

    The dependence of erosion rate on second phase volume fraction (SPVF) has been studied for Cu/Al/sub 2/O/sub 3/ and Cu/WC(W/sub 2/C) model alloys produced by pressing and sintering. The intention was to investigate the reasons for the poor contribution to erosion resistance made by large hard second phase particles (SPP) in other studies. The results show that for Cu/Al/sub 2/O/sub 3/ alloys, the erosion rate generally increased with SPVF, demonstrating a negative contribution to erosion resistance. This occurred despite the fact that the measured erosion rate of monolithic Al/sub 2/O/sub 3/ was lower by one to two orders of magnitude than that of the pure matrix. Changing from severe erosion with large erodent particles at high velocity to mild conditions with small erodent at low velocity caused a change from depression of the SPPs to protrusion from the surface, with some improvement of the relative erosion resistance compared to the pure matrix. For Cu/WC(W/sub 2/C) alloys, changing from severe to mild erosion conditions caused a change from an increase of erosion with SPVF to a decrease. The results are discussed in terms of the increased microfracture of the unsupported edges of the second phase particles compared to a flat single-phase surface. This edge is consistent with the results, and explains observations not predicted by existing theories for erosion of single-phase materials. A model is introduced which predicts a new averaging law for the erosion rate of a two-phase alloy in terms of erosion rates of its constituent phases

  3. Calibrating a multi-model approach to defect production in high energy collision cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.; Diaz de la Rubia, T.

    1994-01-01

    A multi-model approach to simulating defect production processes at the atomic scale is described that incorporates molecular dynamics (MD), binary collision approximation (BCA) calculations and stochastic annealing simulations. The central hypothesis is that the simple, fast computer codes capable of simulating large numbers of high energy cascades (e.g., BCA codes) can be made to yield the correct defect configurations when their parameters are calibrated using the results of the more physically realistic MD simulations. The calibration procedure is investigated using results of MD simulations of 25 keV cascades in copper. The configurations of point defects are extracted from the MD cascade simulations at the end of the collisional phase, thus providing information similar to that obtained with a binary collision model. The MD collisional phase defect configurations are used as input to the ALSOME annealing simulation code, and values of the ALSOME quenching parameters are determined that yield the best fit to the post-quenching defect configurations of the MD simulations. ((orig.))

  4. Various models for pion probability distributions from heavy-ion collisions

    International Nuclear Information System (INIS)

    Mekjian, A.Z.; Mekjian, A.Z.; Schlei, B.R.; Strottman, D.; Schlei, B.R.

    1998-01-01

    Various models for pion multiplicity distributions produced in relativistic heavy ion collisions are discussed. The models include a relativistic hydrodynamic model, a thermodynamic description, an emitting source pion laser model, and a description which generates a negative binomial description. The approach developed can be used to discuss other cases which will be mentioned. The pion probability distributions for these various cases are compared. Comparison of the pion laser model and Bose-Einstein condensation in a laser trap and with the thermal model are made. The thermal model and hydrodynamic model are also used to illustrate why the number of pions never diverges and why the Bose-Einstein correction effects are relatively small. The pion emission strength η of a Poisson emitter and a critical density η c are connected in a thermal model by η/n c =e -m/T <1, and this fact reduces any Bose-Einstein correction effects in the number and number fluctuation of pions. Fluctuations can be much larger than Poisson in the pion laser model and for a negative binomial description. The clan representation of the negative binomial distribution due to Van Hove and Giovannini is discussed using the present description. Applications to CERN/NA44 and CERN/NA49 data are discussed in terms of the relativistic hydrodynamic model. copyright 1998 The American Physical Society

  5. MODELING DISPERSION FROM CHEMICALS RELEASED AFTER A TRAIN COLLISION IN GRANITEVILLE, SOUTH CAROLINA

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Chuck Hunter, C; Robert Addis, R; Matt Parker, M

    2006-08-07

    The Savannah River National Laboratory's (SRNL) Weather INformation and Display (WIND) System was used to provide meteorological and atmospheric modeling/consequence assessment support to state and local agencies following the collision of two Norfolk Southern freight trains on the morning of January 6, 2005. This collision resulted in the release of several toxic chemicals to the environment, including chlorine. The dense and highly toxic cloud of chlorine gas that formed in the vicinity of the accident was responsible for nine fatalities, and caused injuries to more than five hundred others. Transport model results depicting the forecast path of the ongoing release were made available to emergency managers in the county's Unified Command Center shortly after SRNL received a request for assistance. Support continued over the ensuing two days of the active response. The SRNL also provided weather briefings and transport/consequence assessment model results to responders from South Carolina Department of Health and Environmental Control (SCDHEC), the Savannah River Site's (SRS) Emergency Operations Center (EOC), Department of Energy Headquarters, and hazmat teams dispatched from the SRS. Although model-generated forecast winds used in consequence assessments conducted during the incident were provided at 2-km horizontal grid spacing during the accident response, a high-resolution Regional Atmospheric Modeling System (RAMS, version 4.3.0) simulation was later performed to examine potential influences of local topography on plume migration. The detailed RAMS simulation was used to determine meteorology using multiple grids with an innermost grid spacing of 125 meters. Results from the two simulations are shown to generally agree with meteorological observations at the time; consequently, local topography did not significantly affect wind in the area. Use of a dense gas dispersion model to simulate localized plume behavior using the higher resolution

  6. Improved elastic collision modeling in DEGAS 2 for low-temperature plasmas

    International Nuclear Information System (INIS)

    Kanzleiter, Randall J.; Stotler, Daren P.; Karney, Charles F. F.; Steiner, Don

    2000-01-01

    Recent emphasis on low-temperature divertor operations has focused attention on proper treatment of neutral-elastic collisions in low-temperature environments. For like species collisions, as in D + +D, quantum mechanical indistinguishability precludes differentiation of small-angle elastic scattering from resonant charge exchange for collision energies + +D 2 are included for the first time. An integration technique is utilized that reduces the total collision cross section while keeping the other transport cross sections invariant. The inclusion of ion-molecular elastic collisions results in significant increases in energy exchange between background ions and neutral test species

  7. Intent-Estimation- and Motion-Model-Based Collision Avoidance Method for Autonomous Vehicles in Urban Environments

    Directory of Open Access Journals (Sweden)

    Rulin Huang

    2017-04-01

    Full Text Available Existing collision avoidance methods for autonomous vehicles, which ignore the driving intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban environments because of their high false detection rates of collisions with vehicles on winding roads and the missed detection rate of collisions with maneuvering vehicles. This study introduces an intent-estimation- and motion-model-based (IEMMB method to address these disadvantages. First, a state vector is constructed by combining the road structure and the moving state of detected vehicles. A Gaussian mixture model is used to learn the maneuvering patterns of vehicles from collected data, and the patterns are used to estimate the driving intent of the detected vehicles. Then, a desirable long-term trajectory is obtained by weighting time and comfort. The long-term trajectory and the short-term trajectory, which are predicted using a constant yaw rate motion model, are fused to achieve an accurate trajectory. Finally, considering the moving state of the autonomous vehicle, collisions can be detected and avoided. Experiments have shown that the intent estimation method performed well, achieving an accuracy of 91.7% on straight roads and an accuracy of 90.5% on winding roads, which is much higher than that achieved by the method that ignores the road structure. The average collision detection distance is increased by more than 8 m. In addition, the maximum yaw rate and acceleration during an evasive maneuver are decreased, indicating an improvement in the driving comfort.

  8. An Effective Scheduling-Based RFID Reader Collision Avoidance Model and Its Resource Allocation via Artificial Immune Network

    Directory of Open Access Journals (Sweden)

    Shanjin Wang

    2016-01-01

    Full Text Available Radio frequency identification, that is, RFID, is one of important technologies in Internet of Things. Reader collision does impair the tag identification efficiency of an RFID system. Many developed methods, for example, the scheduling-based series, that are used to avoid RFID reader collision, have been developed. For scheduling-based methods, communication resources, that is, time slots, channels, and power, are optimally assigned to readers. In this case, reader collision avoidance is equivalent to an optimization problem related to resource allocation. However, the existing methods neglect the overlap between the interrogation regions of readers, which reduces the tag identification rate (TIR. To resolve this shortage, this paper attempts to build a reader-to-reader collision avoidance model considering the interrogation region overlaps (R2RCAM-IRO. In addition, an artificial immune network for resource allocation (RA-IRO-aiNet is designed to optimize the proposed model. For comparison, some comparative numerical simulations are arranged. The simulation results show that the proposed R2RCAM-IRO is an effective model where TIR is improved significantly. And especially in the application of reader-to-reader collision avoidance, the proposed RA-IRO-aiNet outperforms GA, opt-aiNet, and PSO in the total coverage area of readers.

  9. A collision avoidance model for two-pedestrian groups: Considering random avoidance patterns

    Science.gov (United States)

    Zhou, Zhuping; Cai, Yifei; Ke, Ruimin; Yang, Jiwei

    2017-06-01

    Grouping is a common phenomenon in pedestrian crowds and group modeling is still an open challenging problem. When grouping pedestrians avoid each other, different patterns can be observed. Pedestrians can keep close with group members and avoid other groups in cluster. Also, they can avoid other groups separately. Considering this randomness in avoidance patterns, we propose a collision avoidance model for two-pedestrian groups. In our model, the avoidance model is proposed based on velocity obstacle method at first. Then grouping model is established using Distance constrained line (DCL), by transforming DCL into the framework of velocity obstacle, the avoidance model and grouping model are successfully put into one unified calculation structure. Within this structure, an algorithm is developed to solve the problem when solutions of the two models conflict with each other. Two groups of bidirectional pedestrian experiments are designed to verify the model. The accuracy of avoidance behavior and grouping behavior is validated in the microscopic level, while the lane formation phenomenon and fundamental diagrams is validated in the macroscopic level. The experiments results show our model is convincing and has a good expansibility to describe three or more pedestrian groups.

  10. Studies of nucleus-nucleus collisions with a schematic liquid-drop model and one-body dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Donangelo, R; Canto, L F

    1986-03-24

    The inclusion of an asymmetry friction term into the dissipation function of the schematic model of nuclear collisions due to WJ Swiatecki is found to change some of the earlier predictions of the model, in particular the scaling relation for the extra-push and extra-extra-push energies and the existence of a cliff phenomenon. (orig.).

  11. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control.

    Science.gov (United States)

    Bandyopadhyay, Promode R; Hansen, Joshua C

    2013-01-01

    Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing.

  12. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  13. The collision of a strong shock with a gas cloud: a model for Cassiopeia A

    International Nuclear Information System (INIS)

    Sgro, A.G.

    1975-01-01

    The result of the collision of the shock with the cloud is a shock traveling around the cloud, a shock transmitted into the cloud, and a shock reflected from the cloud. By equating the cooling time of the posttransmitted shock gas to the time required for the transmitted shock to travel the length of the cloud, a critical cloud density n/subc/ /sup prime/ is defined. For clouds with density greater than n/subc/ /sup prime/, the posttransmitted shock gas cools rapidly and then emits the lines of the lower ionization stages of its constituent elements. The structure of such and its expected appearance to an observer are discussed and compared with the quasi-stationary condensations of Cas A. Conversely, clouds with density less than n/subc//sup prime/ remain hot for several thousand years, and are sources of X-radiation whose temperatures are much less than that of the intercloud gas. After the transmitted shock passes, the cloud pressure is greater than the pressure in the surrounding gas, causing the cloud to expand and the emission to decrease from its value just after the collision. A model in which the soft X-radiation of Cas A is due to a collection of such clouds is discussed. The faint emission patches to the north of Cas A are interpreted as preshocked clouds which will probably become quasi-stationary condensations after being hit by the shock

  14. Modelling the many-body dynamics of heavy ion collisions. Present status and future perspective

    International Nuclear Information System (INIS)

    Hartnack, Ch.; Puri, R.K.; Aichelin, J.; Konopka, J.; Bass, S.A.; Stoecker, H.; Greiner, W.

    1996-01-01

    Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). It is shown that the same predictions can be obtained with several - numerically completely different and independently written -programs as far as the same model parameters are employed and the same basic approximations are made. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which differs among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given. (author)

  15. Production of excitons in grazing collisions of protons with LiF surfaces: An onion model

    Energy Technology Data Exchange (ETDEWEB)

    Miraglia, J. E.; Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Casilla de Correo 67, Sucursal 28, (C1428EGA) Buenos Aires (Argentina)

    2011-12-15

    In this work we evaluate the production of excitons of a lithium fluoride crystal induced by proton impact in the intermediate and high energy regime (from 100 keV to 1 MeV). A simple model is proposed to account for the influence of the Coulomb grid of the target by dressing crystal ions to transform them in what we call onions. The excited states of these onions can be interpreted as excitons. Within this model, total cross section and stopping power are calculated by using the first Born and the continuum distorted-wave (CDW) eikonal initial-state (EIS) approximations. We found that between 7 and 30 excitons per incident proton are produced in grazing collisions with LiF surfaces, becoming a relevant mechanism of inelastic transitions.

  16. Modelling the many-body dynamics of heavy ion collisions. Present status and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hartnack, Ch.; Puri, R.K.; Aichelin, J. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Konopka, J.; Bass, S.A.; Stoecker, H.; Greiner, W. [Johann Wolfgang Goethe Univ., Frankfurt am Main (Germany). Inst. fuer Theoretische Physik

    1996-12-31

    Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). It is shown that the same predictions can be obtained with several - numerically completely different and independently written -programs as far as the same model parameters are employed and the same basic approximations are made. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which differs among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given. (author). 86 refs.

  17. Classical model for nuclear collisions including the meson degree of freedom

    International Nuclear Information System (INIS)

    Babinet, R.; Kunz, J.; Mosel, U.; Wilets, L.

    1980-01-01

    Many different approaches have been taken to describe high energy heavy ion collisions. L. Wilets et al proposed a classical treatment of the problem. In his model non-relativistic nucleons move on classical trajectories. However, the Pauli-principle is simulated by a momentum dependent potential acting between the nucleons. This model is extended in two ways. The nucleons are coupled to a pionfield, which enables us to describe inelastic processes. Nucleons and pionfiled are treated completely relativistically, this also assures Lorentz invariance. We aim at a set of classical equations of motion describing the interacting system of nucleons and pionfield. These classical equations should have a quantum mechanical basis. Further, they should contain such fundamental properties of the pion-nucleon system as the Δ(3,3)-resonance, at least in a qualitative manner. (orig./FKS)

  18. Sensitivity Analysis for Iceberg Geometry Shape in Ship-Iceberg Collision in View of Different Material Models

    Directory of Open Access Journals (Sweden)

    Yan Gao

    2014-01-01

    Full Text Available The increasing marine activities in Arctic area have brought growing interest in ship-iceberg collision study. The purpose of this paper is to study the iceberg geometry shape effect on the collision process. In order to estimate the sensitivity parameter, five different geometry iceberg models and two iceberg material models are adopted in the analysis. The FEM numerical simulation is used to predict the scenario and the related responses. The simulation results including energy dissipation and impact force are investigated and compared. It is shown that the collision process and energy dissipation are more sensitive to iceberg local shape than other factors when the elastic-plastic iceberg material model is applied. The blunt iceberg models act rigidly while the sharp ones crush easily during the simulation process. With respect to the crushable foam iceberg material model, the iceberg geometry has relatively small influence on the collision process. The spherical iceberg model shows the most rigidity for both iceberg material models and should be paid the most attention for ice-resist design for ships.

  19. A model independent method to deconvolve hard X-ray spectra

    International Nuclear Information System (INIS)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C.

    1984-01-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented. (orig.)

  20. Conceptual model for collision detection and avoidance for runway incursion prevention

    Science.gov (United States)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  1. A Habitat-based Wind-Wildlife Collision Model with Application to the Upper Great Plains Region

    Energy Technology Data Exchange (ETDEWEB)

    Forcey, Greg, M.

    2012-08-28

    Most previous studies on collision impacts at wind facilities have taken place at the site-specific level and have only examined small-scale influences on mortality. In this study, we examine landscape-level influences using a hierarchical spatial model combined with existing datasets and life history knowledge for: Horned Lark, Red-eyed Vireo, Mallard, American Avocet, Golden Eagle, Whooping Crane, red bat, silver-haired bat, and hoary bat. These species were modeled in the central United States within Bird Conservation Regions 11, 17, 18, and 19. For the bird species, we modeled bird abundance from existing datasets as a function of habitat variables known to be preferred by each species to develop a relative abundance prediction for each species. For bats, there are no existing abundance datasets so we identified preferred habitat in the landscape for each species and assumed that greater amounts of preferred habitat would equate to greater abundance of bats. The abundance predictions for bird and bats were modeled with additional exposure factors known to influence collisions such as visibility, wind, temperature, precipitation, topography, and behavior to form a final mapped output of predicted collision risk within the study region. We reviewed published mortality studies from wind farms in our study region and collected data on reported mortality of our focal species to compare to our modeled predictions. We performed a sensitivity analysis evaluating model performance of 6 different scenarios where habitat and exposure factors were weighted differently. We compared the model performance in each scenario by evaluating observed data vs. our model predictions using spearmans rank correlations. Horned Lark collision risk was predicted to be highest in the northwestern and west-central portions of the study region with lower risk predicted elsewhere. Red-eyed Vireo collision risk was predicted to be the highest in the eastern portions of the study region and in

  2. Turbulence-induced bubble collision force modeling and validation in adiabatic two-phase flow using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Subash L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Hibiki, Takashi; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Brooks, Caleb S. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Schlegel, Joshua P. [Nuclear Engineering Program, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buchanan, John R. [Bechtel Marine Propulsion Corporation, Bettis Laboratory, West Mifflin, PA 15122 (United States)

    2017-02-15

    Highlights: • Void distribution in narrow rectangular channel with various non-uniform inlet conditions. • Modeling of void diffusion due to bubble collision force. • Validation of new modeling in adiabatic air–water two-phase flow in a narrow channel. - Abstract: The prediction capability of the two-fluid model for gas–liquid dispersed two-phase flow depends on the accuracy of the closure relations for the interfacial forces. In previous studies of two-phase flow Computational Fluid Dynamics (CFD), interfacial force models for a single isolated bubble has been extended to disperse two-phase flow assuming the effect in a swarm of bubbles is similar. Limited studies have been performed investigating the effect of the bubble concentration on the lateral phase distribution. Bubbles, while moving through the liquid phase, may undergo turbulence-driven random collision with neighboring bubbles without significant coalescence. The rate of these collisions depends upon the bubble approach velocity and bubble spacing. The bubble collision frequency is expected to be higher in locations with higher bubble concentrations, i.e., volume fraction. This turbulence-driven random collision causes the diffusion of the bubbles from high concentration to low concentration. Based on experimental observations, a phenomenological model has been developed for a “turbulence-induced bubble collision force” for use in the two-fluid model. For testing the validity of the model, two-phase flow data measured at Purdue University are utilized. The geometry is a 10 mm × 200 mm cross section channel. Experimentally, non-uniform inlet boundary conditions are applied with different sparger combinations to vary the volume fraction distribution across the wider dimension. Examining uniform and non-uniform inlet data allows for the influence of the volume fraction to be studied as a separate effect. The turbulence-induced bubble collision force has been implemented in ANSYS CFX. The

  3. Growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model.

    Science.gov (United States)

    Bergamini, C V; Peralta, G H; Milesi, M M; Hynes, E R

    2013-09-01

    In this work, we studied the growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model consisting of a sterile extract of Reggianito cheese. To assess the influence of the primary starter and initial proteolysis level on these parameters, we prepared the extracts with cheeses that were produced using 2 different starter strains of Lactobacillus helveticus 138 or 209 (Lh138 or Lh209) at 3 ripening times: 3, 90, and 180 d. The experimental extracts were inoculated with Lb. plantarum I91; the control extracts were not inoculated and the blank extracts were heat-treated to inactivate enzymes and were not inoculated. All extracts were incubated at 34°C for 21 d, and then the pH, microbiological counts, and proteolysis profiles were determined. The basal proteolysis profiles in the extracts of young cheeses made with either strain tested were similar, but many differences between the proteolysis profiles of the extracts of the Lh138 and Lh209 cheeses were found when riper cheeses were used. The pH values in the blank and control extracts did not change, and no microbial growth was detected. In contrast, the pH value in experimental extracts decreased, and this decrease was more pronounced in extracts obtained from either of the young cheeses and from the Lh209 cheese at any stage of ripening. Lactobacillus plantarum I91 grew up to 8 log during the first days of incubation in all of the extracts, but then the number of viable cells decreased, the extent of which depended on the starter strain and the age of the cheese used for the extract. The decrease in the counts of Lb. plantarum I91 was observed mainly in the extracts in which the pH had diminished the most. In addition, the extracts that best supported the viability of Lb. plantarum I91 during incubation had the highest free amino acids content. The effect of Lb. plantarum I91 on the proteolysis profile of the extracts was marginal. Significant changes in the content of free

  4. On the algebraic theory of kink sectors: Application to quantum field theory models and collision theory

    International Nuclear Information System (INIS)

    Schlingemann, D.

    1996-10-01

    Several two dimensional quantum field theory models have more than one vacuum state. An investigation of super selection sectors in two dimensions from an axiomatic point of view suggests that there should be also states, called soliton or kink states, which interpolate different vacua. Familiar quantum field theory models, for which the existence of kink states have been proven, are the Sine-Gordon and the φ 4 2 -model. In order to establish the existence of kink states for a larger class of models, we investigate the following question: Which are sufficient conditions a pair of vacuum states has to fulfill, such that an interpolating kink state can be constructed? We discuss the problem in the framework of algebraic quantum field theory which includes, for example, the P(φ) 2 -models. We identify a large class of vacuum states, including the vacua of the P(φ) 2 -models, the Yukawa 2 -like models and special types of Wess-Zumino models, for which there is a natural way to construct an interpolating kink state. In two space-time dimensions, massive particle states are kink states. We apply the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic scattering states. We show that for special configurations of n kinks the scattering states describe n freely moving non interacting particles. (orig.)

  5. Bayesian model comparison for one-dimensional azimuthal correlations in 200GeV AuAu collisions

    Directory of Open Access Journals (Sweden)

    Eggers Hans C.

    2016-01-01

    Full Text Available In the context of data modeling and comparisons between different fit models, Bayesian analysis calls that model best which has the largest evidence, the prior-weighted integral over model parameters of the likelihood function. Evidence calculations automatically take into account both the usual chi-squared measure and an Occam factor which quantifies the price for adding extra parameters. Applying Bayesian analysis to projections onto azimuth of 2D angular correlations from 200 GeV AuAu collisions, we consider typical model choices including Fourier series and a Gaussian plus combinations of individual cosine components. We find that models including a Gaussian component are consistently preferred over pure Fourier-series parametrizations, sometimes strongly so. For 0–5% central collisions the Gaussian-plus-dipole model performs better than Fourier Series models or any other combination of Gaussian-plus-multipoles.

  6. A parallel Discrete Element Method to model collisions between non-convex particles

    Directory of Open Access Journals (Sweden)

    Rakotonirina Andriarimina Daniel

    2017-01-01

    Full Text Available In many dry granular and suspension flow configurations, particles can be highly non-spherical. It is now well established in the literature that particle shape affects the flow dynamics or the microstructure of the particles assembly in assorted ways as e.g. compacity of packed bed or heap, dilation under shear, resistance to shear, momentum transfer between translational and angular motions, ability to form arches and block the flow. In this talk, we suggest an accurate and efficient way to model collisions between particles of (almost arbitrary shape. For that purpose, we develop a Discrete Element Method (DEM combined with a soft particle contact model. The collision detection algorithm handles contacts between bodies of various shape and size. For nonconvex bodies, our strategy is based on decomposing a non-convex body into a set of convex ones. Therefore, our novel method can be called “glued-convex method” (in the sense clumping convex bodies together, as an extension of the popular “glued-spheres” method, and is implemented in our own granular dynamics code Grains3D. Since the whole problem is solved explicitly, our fully-MPI parallelized code Grains3D exhibits a very high scalability when dynamic load balancing is not required. In particular, simulations on up to a few thousands cores in configurations involving up to a few tens of millions of particles can readily be performed. We apply our enhanced numerical model to (i the collapse of a granular column made of convex particles and (i the microstructure of a heap of non-convex particles in a cylindrical reactor.

  7. Concept of an enhanced V2X pedestrian collision avoidance system with a cost function-based pedestrian model.

    Science.gov (United States)

    Kotte, Jens; Schmeichel, Carsten; Zlocki, Adrian; Gathmann, Hauke; Eckstein, Lutz

    2017-05-29

    State-of-the-art collision avoidance and collision mitigation systems predict the behavior of pedestrians based on trivial models that assume a constant acceleration or velocity. New sources of sensor information-for example, smart devices such as smartphones, tablets, smartwatches, etc.-can support enhanced pedestrian behavior models. The objective of this article is the development and implementation of a V2Xpedestrian collision avoidance system that uses new information sources. A literature review of existing state-of-the-art pedestrian collision avoidance systems, pedestrian behavior models in advanced driver assistance systems (ADAS), and traffic simulations is conducted together with an analysis of existing studies on typical pedestrian patterns in traffic. Based on this analysis, possible parameters for predicting pedestrian behavior were investigated. The results led to new requirements from which a concept was developed and implemented. The analysis of typical pedestrian behavior patterns in traffic situations showed the complexity of predicting pedestrian behavior. Requirements for an improved behavior prediction were derived. A concept for a V2X collision avoidance system, based on a cost function that predicts pedestrian near future presence, and its implementation is presented. The concept presented considers several challenges such as information privacy, inaccuracies of the localization, and inaccuracies of the prediction. A concept for an enhanced V2X pedestrian collision avoidance system was developed and introduced. The concept uses new information sources such as smart devices to improve the prediction of the pedestrian's presence in the near future and considers challenges that come along with the usage of these information sources.

  8. Modeling of Principal Flank Wear: An Empirical Approach Combining the Effect of Tool, Environment and Workpiece Hardness

    Science.gov (United States)

    Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan

    2016-10-01

    Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.

  9. A neural computational model for animal's time-to-collision estimation.

    Science.gov (United States)

    Wang, Ling; Yao, Dezhong

    2013-04-17

    The time-to-collision (TTC) is the time elapsed before a looming object hits the subject. An accurate estimation of TTC plays a critical role in the survival of animals in nature and acts as an important factor in artificial intelligence systems that depend on judging and avoiding potential dangers. The theoretic formula for TTC is 1/τ≈θ'/sin θ, where θ and θ' are the visual angle and its variation, respectively, and the widely used approximation computational model is θ'/θ. However, both of these measures are too complex to be implemented by a biological neuronal model. We propose a new simple computational model: 1/τ≈Mθ-P/(θ+Q)+N, where M, P, Q, and N are constants that depend on a predefined visual angle. This model, weighted summation of visual angle model (WSVAM), can achieve perfect implementation through a widely accepted biological neuronal model. WSVAM has additional merits, including a natural minimum consumption and simplicity. Thus, it yields a precise and neuronal-implemented estimation for TTC, which provides a simple and convenient implementation for artificial vision, and represents a potential visual brain mechanism.

  10. Efficient solution of three-body quantum collision problems: Application to the Temkin-Poet model

    International Nuclear Information System (INIS)

    Jones, S.; Stelbovics, Andris T.

    2002-01-01

    We have developed a variable-spacing finite-difference algorithm that rapidly propagates the general solution of Schroedinger's equation to large distances (whereupon it can be matched to asymptotic solutions, including the ionization channel, to extract the desired scattering quantities). The present algorithm, when compared to Poet's corresponding fixed-spacing algorithm [R. Poet, J. Phys. B 13, 2995 (1980); S. Jones and A. T. Stelbovics, Phys. Rev. Lett. 84, 1878 (2000)], reduces storage by 98% and computation time by 99.98%. The method is applied to the Temkin-Poet electron-hydrogen model collision problem. Complete results (elastic, inelastic, and ionization) are obtained for low (17.6 eV), intermediate (27.2, 40.8, and 54.4 eV), and high (150 eV) impact energies

  11. Collision-model approach to steering of an open driven qubit

    Science.gov (United States)

    Beyer, Konstantin; Luoma, Kimmo; Strunz, Walter T.

    2018-03-01

    We investigate quantum steering of an open quantum system by measurements on its environment in the framework of collision models. As an example we consider a coherently driven qubit dissipatively coupled to a bath. We construct local nonadaptive and adaptive as well as nonlocal measurement scenarios specifying explicitly the measured observable on the environment. Our approach shows transparently how the conditional evolution of the open system depends on the type of the measurement scenario and the measured observables. These can then be optimized for steering. The nonlocal measurement scenario leads to maximal violation of the used steering inequality at zero temperature. Further, we investigate the robustness of the constructed scenarios against thermal noise. We find generally that steering becomes harder at higher temperatures. Surprisingly, the system can be steered even when bipartite entanglement between the system and individual subenvironments vanishes.

  12. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    Science.gov (United States)

    Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun

    2017-12-01

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.

  13. Standard-model predictions for W-pair production in electron-positron collisions

    International Nuclear Information System (INIS)

    Beenakker, W.; Denner, A.

    1994-03-01

    We review the status of the theoretical predictions for W-pair production in e + e - collisions within the electroweak standard model (SM). We first consider for on-shell W-bosons the lowest-order cross-section within the SM, the general effects of anomalous couplings, the radiative corrections within the SM, and approximations for them. Then we discuss the inclusion of finite-width effects in lowest order and the existing results for radiative corrections to off-shell W-pair production, and we outline the general strategy to calculate radiative corrections within the pole scheme. We summarize the theoretical predictions for the total and partial W-boson widths including radiative corrections and discuss the quality of an improved Born approximation. Finally we provide a general discussion of the structure-function method to calculate large logarithmic higher-order corrections associated with collinear photon radiation. (orig.)

  14. Development of three-dimensional patient face model that enables real-time collision detection and cutting operation for a dental simulator.

    Science.gov (United States)

    Yamaguchi, Satoshi; Yamada, Yuya; Yoshida, Yoshinori; Noborio, Hiroshi; Imazato, Satoshi

    2012-01-01

    The virtual reality (VR) simulator is a useful tool to develop dental hand skill. However, VR simulations with reactions of patients have limited computational time to reproduce a face model. Our aim was to develop a patient face model that enables real-time collision detection and cutting operation by using stereolithography (STL) and deterministic finite automaton (DFA) data files. We evaluated dependence of computational cost and constructed the patient face model using the optimum condition for combining STL and DFA data files, and assessed the computational costs for operation in do-nothing, collision, cutting, and combination of collision and cutting. The face model was successfully constructed with low computational costs of 11.3, 18.3, 30.3, and 33.5 ms for do-nothing, collision, cutting, and collision and cutting, respectively. The patient face model could be useful for developing dental hand skill with VR.

  15. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  16. Modeling the locomotion of the African trypanosome using multi-particle collision dynamics

    International Nuclear Information System (INIS)

    Babu, Sujin B; Stark, Holger

    2012-01-01

    The African trypanosome is a single flagellated micro-organism that causes the deadly sleeping sickness in humans and animals. We study the locomotion of a model trypanosome by modeling the spindle-shaped cell body using an elastic network of vertices with additional bending rigidity. The flagellum firmly attached to the model cell body is either straight or helical. A bending wave propagates along the flagellum and pushes the trypanosome forward in its viscous environment, which we simulate with the method of multi-particle collision dynamics. The relaxation dynamics of the model cell body due to a static bending wave reveals the sperm number from elastohydrodynamics as the relevant parameter. Characteristic cell body conformations for the helically attached flagellum resemble experimental observations. We show that the swimming velocity scales as the root of the angular frequency of the bending wave reminiscent of predictions for an actuated slender rod attached to a large viscous load. The swimming velocity for one geometry collapses on a single master curve when plotted versus the sperm number. The helically attached flagellum leads to a helical swimming path and a rotation of the model trypanosome about its long axis as observed in experiments. The simulated swimming velocity agrees with the experimental value. (paper)

  17. Hard processes in photon-photon interactions

    International Nuclear Information System (INIS)

    Duchovni, E.

    1985-03-01

    In this thesis, the existence of hard component in two-photon collisions is investigated. Due to the relative simplicity of the photon, such processes can be exactly calculated in QCD. Untagged (low Q 2 ) two-photon events are used. This leads to relatively high statistics, but to severe background problem due mainly to e + e - annihilation. The background contamination is reduced to a tolerable level using a special set of cuts. Moreover, the remaining contamination is shown to be calculable with a small systematic error. A large number of events of the hard ''γγ'' type is found. An attempt to explain these events using the simplest QCD diagram (the Born term) is done. This process is found to be capable of explaining only a 1/4 of the data. Other options like the constituent intercharge model, integer charged quarks, and higher order diagrams are therefore also discussed. The large cross-section for the production of ρ 0 ρ 0 pairs in ''γγ'' collisions has not been understood yet. Inorder to look at closely related processes, a search for φρ 0 and φφ was initiated. The cross-section for θπ + π - was found to be sizeable. Only upper limits for the production of φρ 0 and φφ are obtained

  18. Collision kernels in the eikonal approximation for Lennard-Jones interaction potential

    International Nuclear Information System (INIS)

    Zielinska, S.

    1985-03-01

    The velocity changing collisions are conveniently described by collisional kernels. These kernels depend on an interaction potential and there is a necessity for evaluating them for realistic interatomic potentials. Using the collision kernels, we are able to investigate the redistribution of atomic population's caused by the laser light and velocity changing collisions. In this paper we present the method of evaluating the collision kernels in the eikonal approximation. We discuss the influence of the potential parameters Rsub(o)sup(i), epsilonsub(o)sup(i) on kernel width for a given atomic state. It turns out that unlike the collision kernel for the hard sphere model of scattering the Lennard-Jones kernel is not so sensitive to changes of Rsub(o)sup(i) as the previous one. Contrary to the general tendency of approximating collisional kernels by the Gaussian curve, kernels for the Lennard-Jones potential do not exhibit such a behaviour. (author)

  19. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model

    OpenAIRE

    Li, M.; Konstantinova, J.; Xu, G.; He, B.; Aminzadeh, V.; Xie, J.; Wurdemann, H.; Althoefer, K.

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by slidin...

  20. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  1. The effect of rotational and translational energy exchange on tracer diffusion in rough hard sphere fluids.

    Science.gov (United States)

    Kravchenko, Olga; Thachuk, Mark

    2011-03-21

    A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."

  2. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions

    Science.gov (United States)

    Jutzi, M.; Asphaug, E.; Gillet, P.; Barrat, J.-A.; Benz, W.

    2013-02-01

    Asteroid 4 Vesta seems to be a major intact protoplanet, with a surface composition similar to that of the HED (howardite-eucrite-diogenite) meteorites. The southern hemisphere is dominated by a giant impact scar, but previous impact models have failed to reproduce the observed topography. The recent discovery that Vesta's southern hemisphere is dominated by two overlapping basins provides an opportunity to model Vesta's topography more accurately. Here we report three-dimensional simulations of Vesta's global evolution under two overlapping planet-scale collisions. We closely reproduce its observed shape, and provide maps of impact excavation and ejecta deposition. Spiral patterns observed in the younger basin Rheasilvia, about one billion years old, are attributed to Coriolis forces during crater collapse. Surface materials exposed in the north come from a depth of about 20 kilometres, according to our models, whereas materials exposed inside the southern double-excavation come from depths of about 60-100 kilometres. If Vesta began as a layered, completely differentiated protoplanet, then our model predicts large areas of pure diogenites and olivine-rich rocks. These are not seen, possibly implying that the outer 100 kilometres or so of Vesta is composed mainly of a basaltic crust (eucrites) with ultramafic intrusions (diogenites).

  3. Influences of variables on ship collision probability in a Bayesian belief network model

    International Nuclear Information System (INIS)

    Hänninen, Maria; Kujala, Pentti

    2012-01-01

    The influences of the variables in a Bayesian belief network model for estimating the role of human factors on ship collision probability in the Gulf of Finland are studied for discovering the variables with the largest influences and for examining the validity of the network. The change in the so-called causation probability is examined while observing each state of the network variables and by utilizing sensitivity and mutual information analyses. Changing course in an encounter situation is the most influential variable in the model, followed by variables such as the Officer of the Watch's action, situation assessment, danger detection, personal condition and incapacitation. The least influential variables are the other distractions on bridge, the bridge view, maintenance routines and the officer's fatigue. In general, the methods are found to agree on the order of the model variables although some disagreements arise due to slightly dissimilar approaches to the concept of variable influence. The relative values and the ranking of variables based on the values are discovered to be more valuable than the actual numerical values themselves. Although the most influential variables seem to be plausible, there are some discrepancies between the indicated influences in the model and literature. Thus, improvements are suggested to the network.

  4. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    Science.gov (United States)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2) located west of Salamanca (Spain). The area was selected because of hard-rock hydrogeology, semi-arid climate and scarcity of groundwater resources. The proposed methodology consisted of three main steps. First, we detected the main hydrogeological features at the catchment scale by processing: (i) a high resolution digital terrain model to map lineaments and to outline fault zones; and (ii) high-resolution, multispectral satellite QuickBird and WorldView-2 images to map the outcropping granite. Second, we characterized at the local scale the hydrogeological features identified at step one with: i) ground penetrating radar (GPR) to assess groundwater table depth complementing the available monitoring network data; ii) 2D electric resistivity tomography (ERT) and frequency domain electromagnetic (FDEM) to retrieve the hydrostratigraphy along selected survey transects; iii) magnetic resonance soundings (MRS) to retrieve the hydrostratigraphy and aquifer parameters at the selected survey sites. In the third step, we drilled 5 boreholes (25 to 48 m deep) and performed slug tests to verify the hydrogeophysical interpretation and to calibrate the MRS parameters. Finally, we compiled and integrated all acquired data to define the geometry and parameters of the Sardón aquifer at the catchment scale. In line with a general conceptual model of hard rock aquifers, we identified two main hydrostratigraphic layers: a saprolite layer and a fissured layer. Both layers were intersected and drained by

  5. Rapidity distributions in unequal nuclei collision at high energies and hydrodynamical model

    International Nuclear Information System (INIS)

    Zhuang Pengfei; Wang Zhengqing

    1987-01-01

    The mechanism of high-energy A'-A collision (A > A', A' 1/3 >> 1) and the space-time evolution of the fluid formed in the collision are analysed. The corresponding 1 + 1 dimensional hydrodynamical equations are established. The average rapidity distributions are estimated and compared with some cosmic ray events. The origin of the nonsymmetry of rapidity distribution is explained

  6. A correlated-cluster model and the ridge phenomenon in hadron–hadron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Lozano, Miguel-Angel, E-mail: Miguel.Angel.Sanchis@ific.uv.es [Instituto de Física Corpuscular (IFIC) and Departamento de Física Teórica, Centro Mixto Universitat de València-CSIC, Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain); Sarkisyan-Grinbaum, Edward, E-mail: sedward@cern.ch [Experimental Physics Department, CERN, 1211 Geneva 23 (Switzerland); Department of Physics, The University of Texas at Arlington, Arlington, TX 76019 (United States)

    2017-03-10

    A study of the near-side ridge phenomenon in hadron–hadron collisions based on a cluster picture of multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation in this context provided that clusters are produced in a correlated manner in the collision transverse plane.

  7. 2D numerical model of particle-bed collision in fluid-particle flows over bed

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Chára, Zdeněk; Vlasák, Pavel

    2006-01-01

    Roč. 44, č. 1 (2006), s. 70-78 ISSN 0022-1686 R&D Projects: GA AV ČR IAA2060201 Institutional research plan: CEZ:AV0Z20600510 Keywords : saltation * particle-bed collision * collision angle * bed roughness Subject RIV: BK - Fluid Dynamics Impact factor: 0.527, year: 2006

  8. A correlated-cluster model and the ridge phenomenon in hadron-hadron collisions

    CERN Document Server

    Sanchis-Lozano, Miguel-Angel

    2017-03-10

    A study of the near-side ridge phenomenon in hadron-hadron collisions based on a cluster picture of multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation in this context provided that clusters are produced in a correlated manner in the collision transverse plane.

  9. Free-parameterless model of high energy particle collisions with atomic nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1982-01-01

    In result of studies, it has been discovered that: a) Intensive emission of fast nucleons of kinetic energy from 20 to 400 MeV proceeds independently of the pion production process; b) The particle production in hadron-nucleon collisions is mediated by intermediate objects produced first in a 2 → 2 type endoergic reaction and decaying after lifetime tausub(g) > or approximately 10 - 22 s into commonly known resonances and particles; c) Inside of massive enough atomic nuclei quasi-onedimensional cascades of the intermediate objects can develop; d) A definite simple connection exists between the characteristics of the secondaries appearing in hadron-nucleus collision events and corresponding hadron-nucleon collision events, the target-nucleus size and the nucleon density distribution in it. The yield of the hadron-nucleus collisions is described in a convincing manner in terms of the hadron-nucleon collision data by means of simple formulas

  10. Measurement of Biocolloid Collision Efficiencies for Granular Activated Carbon by Use of a Two-Layer Filtration Model

    Science.gov (United States)

    Paramonova, Ekaterina; Zerfoss, Erica L.; Logan, Bruce E.

    2006-01-01

    Point-of-use filters containing granular activated carbon (GAC) are an effective method for removing certain chemicals from water, but their ability to remove bacteria and viruses has been relatively untested. Collision efficiencies (α) were determined using clean-bed filtration theory for two bacteria (Raoutella terrigena 33257 and Escherichia coli 25922), a bacteriophage (MS2), and latex microspheres for four GAC samples. These GAC samples had particle size distributions that were bimodal, but only a single particle diameter can be used in the filtration equation. Therefore, consistent with previous reports, we used a particle diameter based on the smallest diameter of the particles (derived from the projected areas of 10% of the smallest particles). The bacterial collision efficiencies calculated using the filtration model were high (0.8 ≤ α ≤ 4.9), indicating that GAC was an effective capture material. Collision efficiencies greater than unity reflect an underestimation of the collision frequency, likely as a result of particle roughness and wide GAC size distributions. The collision efficiencies for microspheres (0.7 ≤ α ≤ 3.5) were similar to those obtained for bacteria, suggesting that the microspheres were a reasonable surrogate for the bacteria. The bacteriophage collision efficiencies ranged from ≥0.2 to ≤0.4. The predicted levels of removal for 1-cm-thick carbon beds ranged from 0.8 to 3 log for the bacteria and from 0.3 to 1.0 log for the phage. These tests demonstrated that GAC can be an effective material for removal of bacteria and phage and that GAC particle size is a more important factor than relative stickiness for effective particle removal. PMID:16885264

  11. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.

    Science.gov (United States)

    Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai

    2011-01-01

    Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.

  12. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present Monte-Carlo simulations for heavy-ion collisions combining PYTHIA and the McGill-AMY formalism to describe the evolution of hard partons in a soft background, modelled using hydrodynamic simulations. MARTINI generates full event configurations in the high p T region that take into account thermal QCD and QED effects as well as effects of the evolving medium. This way it is possible to perform detailed quantitative comparisons with experimental observables.

  13. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation coefficient and temperature gradient inside droplets. It is pointed out that for the parameters typical for Diesel engine-like conditions, the heat flux in the kinetic region is a linear function of the vapour temperature at the outer boundary of this region, but practically does not depend on vapour density at this boundary for all models, including and not including the effects of inelastic collisions, and including and not including the effects of a non-unity evaporation coefficient. For any given temperature at the outer boundary of the kinetic region the values of the heat flux are shown to decrease with increasing numbers of internal degrees of freedom of the molecules. The rate of this decrease is strong for small numbers of these degrees of freedom but negligible when the number of these degrees exceeds 20. This allows us to restrict the analysis to the first 20 arbitrarily chosen degrees of freedom of n-dodecane molecules when considering the effects of inelastic collisions. The mass flux at this boundary decreases almost linearly with increasing vapour density at the same location for all above-mentioned models. For any given vapour density at the outer boundary of the kinetic region the values of the mass flux are smaller for the model, taking into account the contribution of internal degrees of freedom, than for the model ignoring these degrees of freedom. It is shown that the effects of inelastic collisions lead to stronger increase in the predicted droplet evaporation time in Diesel engine-like conditions relative to the hydrodynamic model, compared with the similar increase predicted by the kinetic model considering only elastic collisions. The effects of a non-unity evaporation coefficient are shown to be

  14. Explosion-evaporation model for fragment production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.; Randrup, J.

    1981-01-01

    Nuclear collisions at intermediate energies may create transient systems of hot nuclear matter that decay into many nuclear fragments. The disassembly of such a nuclear fireball is described as a two-stage process. In the primary explosion stage the system quickly fragments into nucleons and composite nuclei according to the available phase space. The explosion produces excited nuclei with half-lives longer than the time associated with the breakup. In the secondary evaporation stage, these nuclei decay, first by sequential emission of light particles (neutrons, protons, alphas), later by electromagnetic radiation. The secondary stage in general changes the relative abundancies of the various fragment species. This general feature makes it essential to take account of the composite fragments before using d/p as a measure of the entropy of the initial source. The formation of unbound nuclei at the explosion stage also has the desirable effect of enhancing the final abundancies of particularly stable nuclei, e.g., 4 He. For neutron-excessive sources the presence of composite nuclei amplifies the ratio of observed neutrons and protons; this effect persists for heavier mirror systems. Predictions of the model are qualitatively compared to available experimental data. The model offers a convenient way to augment existing dynamical models, such as intra-nuclear cascade and nuclear fluid dynamics, to yield actual nuclear fragments rather than merely matter distributions

  15. A NEW ALGORITHM FOR SELF-CONSISTENT THREE-DIMENSIONAL MODELING OF COLLISIONS IN DUSTY DEBRIS DISKS

    International Nuclear Information System (INIS)

    Stark, Christopher C.; Kuchner, Marc J.

    2009-01-01

    We present a new 'collisional grooming' algorithm that enables us to model images of debris disks where the collision time is less than the Poynting-Robertson (PR) time for the dominant grain size. Our algorithm uses the output of a collisionless disk simulation to iteratively solve the mass flux equation for the density distribution of a collisional disk containing planets in three dimensions. The algorithm can be run on a single processor in ∼1 hr. Our preliminary models of disks with resonant ring structures caused by terrestrial mass planets show that the collision rate for background particles in a ring structure is enhanced by a factor of a few compared to the rest of the disk, and that dust grains in or near resonance have even higher collision rates. We show how collisions can alter the morphology of a resonant ring structure by reducing the sharpness of a resonant ring's inner edge and by smearing out azimuthal structure. We implement a simple prescription for particle fragmentation and show how PR drag and fragmentation sort particles by size, producing smaller dust grains at smaller circumstellar distances. This mechanism could cause a disk to look different at different wavelengths, and may explain the warm component of dust interior to Fomalhaut's outer dust ring seen in the resolved 24 μm Spitzer image of this system.

  16. Mechanics of train collision

    Science.gov (United States)

    1976-04-30

    A simple and a more detailed mathematical model for the simulation of train collisions are presented. The study presents considerable insight as to the causes and consequences of train motions on impact. Comparison of model predictions with two full ...

  17. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Science.gov (United States)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  18. Photon-photon and photon-hadron processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Baron, N.C.

    1993-11-01

    Photon-photon and photon-hadron interactions in relativistic heavy ion collisions are studied in the framework of the impact parameter dependent equivalent photon approximation. Improvements of this method, like formfactor inclusion and geometrical modifications are developed. In disruptive relativistic heavy ion collisions where the heavy ions overlapp during the collision, electromagnetic processes are an important background to other mechanisms. In peripheral (non-disruptive) relativistic heavy ion collisions where the ions pass each other without strong interactions, the electromagnetic processes can be studied in their pure form. The lepton pair production is an important diagnostic tool in relativistic heavy ion collisions. The coherent γγ lepton pair production is therefore extensively studied in disruptive but also in non-disruptive collisions. The effects of strong interactions on the coherent γγ lepton pair production in disruptive collisions are discussed in terms of a simple stopping model. Coherent γγ dielectron production contributes to the dilepton production in high energy hadron-hadron collisions. As an example, the coherent dielectron production in π - p collisions is studied in terms of the equivalent photon approximation. Peripheral ultrarelativistic heavy ion collisions open up new possibilities for γγ physics. Taking into account γA background reactions, typical γγ processes in the relevant invariant mass ranges are discussed. The extreme high energy part of the equivalent photon spectrum leads to hard photon-parton reactions. As a potential tool to investigate the gluon distribution function of nucleons, thee q anti q production via the γg fusion in ultrarelativistic heavy ion collisions is studied. It is the purpose of this work to investigate how photon-photon and photon-hadron reactions in relativistic heavy ion collisions may contribute to the understanding of QCD and the standard model. (orig.) [de

  19. The effective Schroedinger equation of the optical model of composite nuclei elastic collisions

    International Nuclear Information System (INIS)

    Mondragon, A.; Hernandez, E.

    1980-01-01

    An effective hamiltonian for elastic collisions between composite nuclei is obtained from the Schroedinger equation of the complete many-body system and its fully antisymmetric wave functions by means of a projection operator technique. This effective hamiltonian, defined in such a way that it has to reproduce the scattering amplitude in full detail, including exchange effects, is explicitly Galilean invariant. The effective interaction operator is a function of the relative distance between the centers of mass of the colliding nuclei and the constants of the motion of the whole system. The interaction operator of the optical model is obtained next, requiring as usual, that it reproduces the average over the energy of the scattering amplitude and keeping the Galilean invariance. The resulting optical potential operator has some terms identical to those obtained in the Resonating Group Method, and others coming from the elimination of all non elastic channels and the delayed elastic scattering. This result makes the relation existing among the projection operator method to the Feshbach and the cluster model equations of motion for positive energies (RGM) explicit. The additional interaction terms due to the flux loss in the elastic channel are non-local, and non-hermitean operators expressed in terms of the transition amplitudes and the density of states of the compound nucleus in such a way that an approximate evaluation, in a systematic fashion, seems possible. Theangular momentum dependence of the optical potential operator is discussed in some detail. (author)

  20. Ionic wave propagation and collision in an excitable circuit model of microtubules

    Science.gov (United States)

    Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  1. Workshop on electronic and ionic collision cross sections needed in the modeling of radiation interactions with matter: proceedings

    International Nuclear Information System (INIS)

    1984-05-01

    The term modeling in the Workship title refers to the mathematical analysis of the consequences of many collision processes for characterizing the physical stage of radiation actions. It requires as input some knowledge of collision cross sections. Traditionally, work on cross sections and work on the modeling are conducted by separate groups of scientists. It was the purpose of the Workshop to bring these two groups together in a forum that would promote effective communication. Cross-section workers described the status of their work and told what data were available or trustworthy. Modeling workers told what kind of data were needed or were most important. Twenty-two items from the workshop were prepared separately for the data base

  2. Workshop on electronic and ionic collision cross sections needed in the modeling of radiation interactions with matter: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    The term modeling in the Workship title refers to the mathematical analysis of the consequences of many collision processes for characterizing the physical stage of radiation actions. It requires as input some knowledge of collision cross sections. Traditionally, work on cross sections and work on the modeling are conducted by separate groups of scientists. It was the purpose of the Workshop to bring these two groups together in a forum that would promote effective communication. Cross-section workers described the status of their work and told what data were available or trustworthy. Modeling workers told what kind of data were needed or were most important. Twenty-two items from the workshop were prepared separately for the data base.

  3. Models of nanoparticles movement, collision, and friction in chemical mechanical polishing (CMP)

    Energy Technology Data Exchange (ETDEWEB)

    Ilie, Filip, E-mail: filip@meca.omtr.pub.ro [Polytechnic University of Bucharest, Department of Machine Elements and Tribology (Romania)

    2012-03-15

    Nanoparticles have been widely used in polishing slurry such as chemical mechanical polishing (CMP) process. The movement of nanoparticles in polishing slurry and the interaction between nanoparticles and solid surface are very important to obtain an atomic smooth surface in CMP process. Polishing slurry contains abrasive nanoparticles (with the size range of about 10-100 nm) and chemical reagents. Abrasive nanoparticles and hydrodynamic pressure are considered to cause the polishing effect. Nanoparticles behavior in the slurry with power-law viscosity shows great effect on the wafer surface in polishing process. CMP is now a standard process of integrated circuit manufacturing at nanoscale. Various models can dynamically predict the evolution of surface topography for any time point during CMP. To research, using a combination of individual nanoscale friction measurements for CMP of SiO{sub 2}, in an analytical model, to sum these effects, and the results scale CMP experiments, can guide the research and validate the model. CMP endpoint measurements, such as those from motor current traces, enable verification of model predictions, relating to friction and wear in CMP and surface topography evolution for different types of CMP processes and patterned chips. In this article, we explore models of the microscopic frictional force based on the surface topography and present both experimental and theoretical studies on the movement of nanoparticles in polishing slurry and collision between nanoparticles, as well as between the particles and solid surfaces in time of process CMP. Experimental results have proved that the nanoparticle size and slurry properties have great effects on the polishing results. The effects of the nanoparticle size and the slurry film thickness are also discussed.

  4. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  5. Crystallization of hard spheres revisited. II. Thermodynamic modeling, nucleation work, and the surface of tension.

    Science.gov (United States)

    Richard, David; Speck, Thomas

    2018-06-14

    Combining three numerical methods (forward flux sampling, seeding of droplets, and finite-size droplets), we probe the crystallization of hard spheres over the full range from close to coexistence to the spinodal regime. We show that all three methods allow us to sample different regimes and agree perfectly in the ranges where they overlap. By combining the nucleation work calculated from forward flux sampling of small droplets and the nucleation theorem, we show how to compute the nucleation work spanning three orders of magnitude. Using a variation of the nucleation theorem, we show how to extract the pressure difference between the solid droplet and ambient liquid. Moreover, combining the nucleation work with the pressure difference allows us to calculate the interfacial tension of small droplets. Our results demonstrate that employing bulk quantities yields inaccurate results for the nucleation rate.

  6. Characterization of volatile compounds produced by Lactobacillus helveticus strains in a hard cheese model.

    Science.gov (United States)

    Cuffia, Facundo; Bergamini, Carina V; Wolf, Irma V; Hynes, Erica R; Perotti, María C

    2018-01-01

    Starter cultures of Lactobacillus helveticus used in hard cooked cheeses play an important role in flavor development. In this work, we studied the capacity of three strains of L. helveticus, two autochthonous (Lh138 and Lh209) and one commercial (LhB02), to grow and to produce volatile compounds in a hard cheese extract. Bacterial counts, pH, profiles of organic acids, carbohydrates, and volatile compounds were analyzed during incubation of extracts for 14 days at 37 ℃. Lactobacilli populations were maintained at 10 6 CFU ml -1 for Lh138, while decreases of approx. 2 log orders were found for LhB02 and Lh209. Both Lh209 and LhB02 slightly increased the acetic acid content whereas mild increase in lactic acid was produced by Lh138. The patterns of volatiles were dependent on the strain which reflect their distinct enzymatic machineries: LhB02 and Lh209 produced a greater diversity of compounds, while Lh138 was the least producer strain. Extracts inoculated with LhB02 and Lh 209 were characterized by ketones, esters, alcohols, aldehydes, and acids, whereas in the extracts with Lh138 the main compounds belonged to aromatic, aldehydes, and ketones groups. Therefore, Lh209 and LhB02 could represent the best cheese starters to improve and intensify the flavor, and even a starter composed by combinations of LhB02 or Lh209 with Lh138 could also be a strategy to diversify cheese flavor.

  7. Rapidity distributions in unequal nuclei collision at high energies and hydrodynamic model

    International Nuclear Information System (INIS)

    Zhuang Pengfei; Wang Zhengqing; Liu Liansou

    1986-01-01

    The mechanism of high-energy A'-A collisions (A>A', A'sup(1/3)>>1) and the space-time evolution of the fluid formed in the collision are analysed. The corresponding 1+1 dimensional hydrodynamic equations are set up. The average rapidity distributions are estimated and compared with cosmic ray data. The origin of the unsymmetry of rapidity distributions is explained. (orig.)

  8. Transverse momentum spectra of hadrons in p + p collisions at CERN SPS energies from the UrQMD transport model

    Science.gov (United States)

    Ozvenchuk, V.; Rybicki, A.

    2018-05-01

    The UrQMD transport model, version 3.4, is used to study the new experimental data on transverse momentum spectra of π±, K±, p and p bar produced in inelastic p + p interactions at SPS energies, recently published by the NA61/SHINE Collaboration. The comparison of model predictions to these new measurements is presented as a function of collision energy for central and forward particle rapidity intervals. In addition, the inverse slope parameters characterizing the transverse momentum distributions are extracted from the predicted spectra and compared to the corresponding values obtained from NA61/SHINE distributions, as a function of particle rapidity and collision energy. A complex pattern of deviations between the experimental data and the UrQMD model emerges. For charged pions, the fair agreement visible at top SPS energies deteriorates with the decreasing energy. For charged K mesons, UrQMD significantly underpredicts positive kaon production at lower beam momenta. It also underpredicts the central rapidity proton yield at top collision energy and overpredicts antiproton production at all considered energies. We conclude that the new experimental data analyzed in this paper still constitute a challenge for the present version of the model.

  9. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chong-Qiang; Zhang, Chun-Jian [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Jun [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2017-12-15

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic {sup 197}Au + {sup 197}Au collisions at √(s{sub NN}) = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200 GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings. (orig.)

  10. Collision risk-capacity tradeoff analysis of an en-route corridor model

    Directory of Open Access Journals (Sweden)

    Ye Bojia

    2014-02-01

    Full Text Available Flow corridors are a new class of trajectory-based airspace which derives from the next generation air transportation system concept of operations. Reducing the airspace complexity and increasing the capacity are the main purposes of the en-route corridor. This paper analyzes the collision risk-capacity tradeoff using a combined discrete–continuous simulation method. A basic two-dimensional en-route flow corridor with performance rules is designed as the operational environment. A second-order system is established by combining the point mass model and the proportional derivative controller together to simulate the self-separation operations of the aircrafts in the corridor and the operation performance parameters from the User Manual for the Base of Aircraft Data are used in this research in order to improve the reliability. Simulation results indicate that the aircrafts can self-separate from each other efficiently by adjusting their velocities, and rationally setting the values of some variables can improve the rate and stability of the corridor with low risks of loss of separation.

  11. Production of Kaon and Λ in Nucleus-Nucleus Collisions at Ultrarelativistic Energy from a Blast-Wave Model

    International Nuclear Information System (INIS)

    Chen, J. H.; Zhang, S.; Ma, Y. G.; Zhong, C.

    2015-01-01

    The particle production of Kaon and Λ is studied in nucleus-nucleus collisions at relativistic energy based on a chemical equilibrium blast-wave model. The transverse momentum spectra of Kaon and Λ at the kinetic freeze-out stage from our model are in good agreement with the experimental results. The kinetic freeze-out parameters of temperature (T kin ) and radial flow parameter ρ 0 are presented for the FOPI, RHIC, and LHC energies. And the resonance decay effect is also discussed. The systematic study for beam energy dependence of the strangeness particle production will help us to better understand the properties of the matter created in heavy-ion collisions at the kinetic freeze-out stage

  12. Hard processes in hadronic interactions

    International Nuclear Information System (INIS)

    Satz, H.; Wang, X.N.

    1995-01-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks' duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley

  13. Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Bok, H.-H.; Kim, S.N.; Suh, D.W. [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Barlat, F., E-mail: f.barlat@postech.ac.kr [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Lee, M.-G., E-mail: myounglee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul (Korea, Republic of)

    2015-02-25

    A non-isothermal phase transformation kinetics model obtained by modifying the well-known JMAK approach is proposed for application to a low carbon boron steel (22MnB5) sheet. In the modified kinetics model, the parameters are functions of both temperature and cooling rate, and can be identified by a numerical optimization method. Moreover, in this approach the transformation start and finish temperatures are variable instead of the constants that depend on chemical composition. These variable reference temperatures are determined from the measured CCT diagram using dilatation experiments. The kinetics model developed in this work captures the complex transformation behavior of the boron steel sheet sample accurately. In particular, the predicted hardness and phase fractions in the specimens subjected to a wide range of cooling rates were validated by experiments.

  14. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    Science.gov (United States)

    Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.

    2012-02-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.

  15. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.

    Science.gov (United States)

    Cicchino, Jessica B; McCartt, Anne T

    2015-01-01

    Crash avoidance technologies have the potential to prevent or mitigate many crashes, but their effectiveness depends on drivers' acceptance and proper use. Owners of 2011 Dodge Charger, Dodge Durango, and Jeep Grand Cherokee vehicles were interviewed about their experiences with their vehicles' technologies. Interviews were conducted in April 2013 with 215 owners of Dodge and Jeep vehicles with adaptive cruise control and forward collision warning and 215 owners with blind spot monitoring and rear cross-path detection. Most owners said that they always keep each collision avoidance technology turned on, and more than 90% of owners with each system would want the technology again on their next vehicle. The majority believed that the systems had helped prevent a collision; this ranged from 54% of drivers with forward collision warning to more than three-quarters with blind spot monitoring and rear cross-path detection. Some owners reported behavioral changes with the systems, but over-reliance on them is not prevalent. Reported use of the systems varied by the age and gender of the driver and duration of vehicle ownership to a greater degree than in previous surveys of luxury Volvo and Infiniti vehicles with collision avoidance technologies. Notably, drivers aged 40 and younger were most likely to report that forward collision warning had alerted them multiple times and that it had prevented a collision and that they follow the vehicle ahead less closely with adaptive cruise control. Reports of waiting for the alert from forward collision warning before braking were infrequent but increased with duration of ownership. However, these reports could reflect confusion of the system with adaptive cruise control, which alerts drivers when braking is necessary to maintain a preset speed or following distance but a crash is not imminent. Consistent with previous surveys of luxury vehicle owners with collision avoidance technologies, acceptance and use remains high among

  16. Improved classification and visualization of healthy and pathological hard dental tissues by modeling specular reflections in NIR hyperspectral images

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots, which are difficult to diagnose. Near-infrared (NIR) hyperspectral imaging is a new promising technique for early detection of demineralization which can classify healthy and pathological dental tissues. However, due to non-ideal illumination of the tooth surface the hyperspectral images can exhibit specular reflections, in particular around the edges and the ridges of the teeth. These reflections significantly affect the performance of automated classification and visualization methods. Cross polarized imaging setup can effectively remove the specular reflections, however is due to the complexity and other imaging setup limitations not always possible. In this paper, we propose an alternative approach based on modeling the specular reflections of hard dental tissues, which significantly improves the classification accuracy in the presence of specular reflections. The method was evaluated on five extracted human teeth with corresponding gold standard for 6 different healthy and pathological hard dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized regions. Principal component analysis (PCA) was used for multivariate local modeling of healthy and pathological dental tissues. The classification was performed by employing multiple discriminant analysis. Based on the obtained results we believe the proposed method can be considered as an effective alternative to the complex cross polarized imaging setups.

  17. Assessment of a combination between hard structures and sand nourishment eastern of Damietta harbor using numerical modeling

    Directory of Open Access Journals (Sweden)

    A.M. Khalifa

    2017-12-01

    Full Text Available Damietta harbor was constructed in 1982 as an inland harbor with its 15 m depth navigation channel and two jetties acting like an obstacle to not allow sediment deposition in the harbor. On the other hand, they significantly affect the northern coast shoreline and hinder the sediment circulation in Damietta promontory. Satellite images show that new headlands are being implemented in the coastal shores of As-senaneyah. The proposed project consists of implementation of four headlands with length of 160 m, spacing of 400 m and using 150,000 m3 nourishment in those spacing between the hard structures only once during the construction time. Litpack 1D-model is used to predict shoreline responses to number of different five scenarios considered as combination between hard structures such as headlands and sand nourishment. A total number of 32 profiles were used to assess the shoreline changes along Gamasa, Damietta and Ras El-bar resort from 2010 to 2015. This study prevails a high erosion rate of the eastern and western shorelines of the proposed headlands. Nourishment of 200,000 m3/year is found to be a reasonable solution due to simplicity of being attained from Damietta harbor’s annual dredged materials which was reported to be average of 1 million m3/year. Keywords: Numerical modeling, Damietta harbor, Egyptian shoreline changes, Inland harbor

  18. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    International Nuclear Information System (INIS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-01-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections

  19. Particle–particle collisions in the Lagrangian modelling of saltating grains By ROBERT J. BIALIK, Journal of Hydraulic Research, Vol. 49, No. 1 (2011), pp. 23–31

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay

    2012-01-01

    Roč. 50, č. 2 (2012), s. 251-252 ISSN 0022-1686 Institutional research plan: CEZ:AV0Z20600510 Keywords : saltation * spherical particle * particle-particle collision * numerical model Subject RIV: BK - Fluid Dynamics

  20. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    Science.gov (United States)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, consuming classical MD calculations. This approach also sheds light on the universality

  1. 3D Lagrangian Model of Particle Saltation in an Open Channel Flow with Emphasis on Particle-Particle Collisions

    Science.gov (United States)

    Moreno, P. A.; Bombardelli, F. A.

    2012-12-01

    Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three

  2. Comparison of the binary logistic and skewed logistic (Scobit) models of injury severity in motor vehicle collisions.

    Science.gov (United States)

    Tay, Richard

    2016-03-01

    The binary logistic model has been extensively used to analyze traffic collision and injury data where the outcome of interest has two categories. However, the assumption of a symmetric distribution may not be a desirable property in some cases, especially when there is a significant imbalance in the two categories of outcome. This study compares the standard binary logistic model with the skewed logistic model in two cases in which the symmetry assumption is violated in one but not the other case. The differences in the estimates, and thus the marginal effects obtained, are significant when the assumption of symmetry is violated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Probability of Ship on Collision Courses Based on the New PAW Using MMG Model and AIS Data

    Directory of Open Access Journals (Sweden)

    I Putu Sindhu Asmara

    2015-03-01

    Full Text Available This paper proposes an estimation method for ships on collision courses taking crash astern maneuvers based on a new potential area of water (PAW for maneuvering. A crash astern maneuver is an emergency option a ship can take when exposed to the risk of a collision with other ships that have lost control. However, lateral forces and yaw moments exerted by the reversing propeller, as well as the uncertainty of the initial speed and initial yaw rate, will move the ship out of the intended stopping position landing it in a dangerous area. A new PAW for crash astern maneuvers is thus introduced. The PAW is developed based on a probability density function of the initial yaw rate. Distributions of the yaw rates and speeds are analyzed from automatic identification system (AIS data in Madura Strait, and estimated paths of the maneuvers are simulated using a mathematical maneuvering group model.

  4. Molecular dynamics study of amorphous pocket formation in Si at low energies and its application to improve binary collision models

    International Nuclear Information System (INIS)

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes; Lopez, Pedro

    2007-01-01

    In this paper, we present classical molecular dynamics results about the formation of amorphous pockets in silicon for energy transfers below the displacement threshold. While in binary collision simulations ions with different masses generate the same number of Frenkel pairs for the same deposited nuclear energy, in molecular dynamics simulations the amount of damage and its complexity increase with ion mass. We demonstrate that low-energy transfers to target atoms are able to generate complex damage structures. We have determined the conditions that have to be fulfilled to produce amorphous pockets, showing that the order-disorder transition depends on the particular competition between melting and heat diffusion processes. We have incorporated these molecular dynamics results in an improved binary collision model that is able to provide a good description of damage with a very low computational cost

  5. Atomic-orbital expansion model for describing ion-atom collisions at intermediate and low energies

    International Nuclear Information System (INIS)

    Lin, C.D.; Fritsch, W.

    1983-01-01

    In the description of inelastic processes in ion-atom collisions at moderate energies, the semiclassical close-coupling method is well established as the standard method. Ever since the pioneering work on H + + H in the early 60's, the standard procedure is to expand the electronic wavefunction in terms of molecular orbitals (MO) or atomic orbitals (AO) for describing collisions at, respectively, low or intermediate velocities. It has been recognized since early days that traveling orbitals are needed in the expansions in order to represent the asymptotic states in the collisions correctly. While the adoption of such traveling orbitals presents no conceptual difficulties for expansions using atomic orbitals, the situation for molecular orbitals is less clear. In recent years, various forms of traveling MO's have been proposed, but conflicting results for several well-studied systems have been reported

  6. Assessment of ion-atom collision data for magnetic fusion plasma edge modelling

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1990-01-01

    Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2-200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated. 42 refs., 1 fig., 4 tabs

  7. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  8. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  9. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  10. Advanced optical modeling of TiN metal hard mask for scatterometric critical dimension metrology

    Science.gov (United States)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten

    2017-03-01

    The majority of scatterometric production control models assume constant optical properties of the materials and only dimensional parameters are allowed to vary. However, this assumption, especially in case of thin-metal films, negatively impacts model precision and accuracy. In this work we focus on optical modeling of the TiN metal hardmask for scatterometry applications. Since the dielectric function of TiN exhibits thickness dependence, we had to take this fact into account. Moreover, presence of the highly absorbing films influences extracted thicknesses of dielectric layers underneath the metal films. The later phenomenon is often not reflected by goodness of fit. We show that accurate optical modeling of metal is essential to achieve desired scatterometric model quality for automatic process control in microelectronic production. Presented modeling methodology can be applied to other TiN applications such as diffusion barriers and metal gates as well as for other metals used in microelectronic manufacturing for all technology nodes.

  11. Model-based schedulability analysis of safety critical hard real-time Java programs

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Kragh-Hansen, Henrik; Olsen, Petur

    2008-01-01

    verifiable by the Uppaal model checker [23]. Schedulability analysis is reduced to a simple reachability question, checking for deadlock freedom. Model-based schedulability analysis has been developed by Amnell et al. [2], but has so far only been applied to high level specifications, not actual...

  12. Periodic and Aperiodic Close Packing: A Spontaneous Hard-Sphere Model.

    Science.gov (United States)

    van de Waal, B. W.

    1985-01-01

    Shows how to make close-packed models from balloons and table tennis balls to illustrate structural features of clusters and organometallic cluster-compounds (which are of great interest in the study of chemical reactions). These models provide a very inexpensive and tactile illustration of the organization of matter for concrete operational…

  13. A Hard Constraint Algorithm to Model Particle Interactions in DNA-laden Flows

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D; Miller, G H; Bybee, M D

    2006-08-01

    We present a new method for particle interactions in polymer models of DNA. The DNA is represented by a bead-rod polymer model and is fully-coupled to the fluid. The main objective in this work is to implement short-range forces to properly model polymer-polymer and polymer-surface interactions, specifically, rod-rod and rod-surface uncrossing. Our new method is based on a rigid constraint algorithm whereby rods elastically bounce off one another to prevent crossing, similar to our previous algorithm used to model polymer-surface interactions. We compare this model to a classical (smooth) potential which acts as a repulsive force between rods, and rods and surfaces.

  14. Composite population kernels in ytterbium-buffer collisions studied by means of laser-saturated absorption

    International Nuclear Information System (INIS)

    Zhu, X.

    1986-01-01

    We present a systematic study of composite population kernels for 174 Yb collisions with He, Ar, and Xe buffer gases, using laser-saturation spectroscopy. 174 Yb is chosen as the active species because of the simple structure of its 1 S 0 - 3 P 1 resonance transition (lambda = 556 nm). Elastic collisions are modeled by means of a composite collision kernel, an expression of which is explicitly derived based on arguments of a hard-sphere potential and two-category collisions. The corresponding coupled population-rate equations are solved by iteration to obtain an expression for the saturated-absorption line shape. This expression is fit to the data to obtain information about the composite kernel, along with reasonable values for other parameters. The results confirm that a composite kernel is more general and realistic than a single-component kernel, and the generality in principle and the practical necessity of the former are discussed

  15. Modelling and nonlinear shock waves for binary gas mixtures by the discrete Boltzmann equation with multiple collisions

    International Nuclear Information System (INIS)

    Bianchi, M.P.

    1991-01-01

    The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation

  16. Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, D.; Naka, Y.; Fukagata, K. [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Obi, S., E-mail: obsn@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-06-15

    The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.

  17. Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom

    DEFF Research Database (Denmark)

    Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.

    1991-01-01

    A two-dimensional Monte Carlo simulation method based on the NpT ensemble and the Voronoi tesselation, which was previously developed for single-species hard-disk systems, is extended, along with a version of scaled-particle theory, to many-component mixtures. These systems are unusual in the sense...... and internal degrees of freedom leads to a rich phase structure that includes solid-liquid transitions (governed by the translational variables) as well as transitions involving changes in average disk size (governed by the internal variables). The relationship between these two types of transitions is studied...... by the method in the case of a binary mixture, and results are presented for varying disk-size ratios and degeneracies. The results are also compared with the predictions of the extended scaled-particle theory. Applications of the model are discussed in relation to lipid monolayers spread on air...

  18. Search for the Chiral Magnetic Effect in Heavy-Ion Collisions and Quantification of the Background with the AMPT Model

    Science.gov (United States)

    Bryon, Jacob

    2017-09-01

    The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.

  19. Effects of disinfecting alginate impressions on the scratch hardness of stone models.

    Science.gov (United States)

    Hiraguchi, Hisako; Nakagawa, Hisami; Wakashima, Mitsuru; Miyanaga, Kohichi; Saigo, Masataka; Nishiyama, Minoru

    2006-03-01

    This study investigated the effects of disinfecting alginate impressions on the scratch depth of resultant stone models. Eleven brands of alginate impression material and two disinfectants, 1% sodium hypochlorite and 2% glutaraldehyde, were used. Impressions were immersed in disinfectant solutions or stored in sealed bags after spraying with disinfectants, and then poured with a type V dental stone. The scratch depth of the stone model obtained from disinfected impression was measured. The storage of alginate impressions after spraying with disinfectants did not increase the scratch depth of resultant stone models. However, the effect of immersion in disinfectants on scratch depth varied with the brand of the alginate impression material.

  20. Diffractive and non-diffractive wounded nucleons and final states in pA collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif [Department of Astronomy and Theoretical Physics,Sölvegatan 14A, S-223 62 Lund (Sweden)

    2016-10-25

    We review the state-of-the-art of Glauber-inspired models for estimating the distribution of the number of participating nucleons in pA and AA collisions. We argue that there is room for improvement in these model when it comes to the treatment of diffractive excitation processes, and present a new simple Glauber-like model where these processes are better taken into account. We also suggest a new way of using the number of participating, or wounded, nucleons to extrapolate event characteristics from pp collisions, and hence get an estimate of basic hadronic final-state properties in pA collisions, which may be used to extract possible nuclear effects. The new method is inspired by the Fritiof model, but based on the full, semi-hard multiparton interaction model of PYTHIA8.

  1. Usefulness of a collision term for the guiding center-plasma model

    International Nuclear Information System (INIS)

    Bertrand, Pierre; Baumann, Germain

    1976-01-01

    Difficulties occurring in the treatment of the guiding-center-plasma equations by means of the spectral method, are connected to the finite number of Fourier components which must be retained. It is shown that the introduction of viscosity-like collisions will remove appreciably the numerical difficulties, without destroying the interesting phenomena [fr

  2. Coupling constant corrections in a holographic model of heavy ion collisions

    NARCIS (Netherlands)

    Grozdanov, Sašo; Schee, Wilke van der

    2017-01-01

    We initiate a holographic study of coupling-dependent heavy ion collisions by analysing for the first time the effects of leading-order, inverse coupling constant corrections. In the dual description, this amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We

  3. Electronics Modeling and Design for Cryogenic and Radiation Hard Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and...

  4. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  5. Thermo-hydro mechanical modeling in unsaturated hard clay: application to nuclear waste storage

    International Nuclear Information System (INIS)

    Jia, Y.

    2006-07-01

    This work presents an elastoplastic damage model for argillite in unsaturated conditions. A short resume of experimental investigations is presented in the first part. The results obtained show an important plastic deformation coupled with damage induced by initiation and growth of microcracks. Influences of water content on the mechanical behaviour are also investigated. Based on experimental data and micro-mechanical considerations, a general constitutive model is proposed for the poro-mechanical behavior of argillite in unsaturated conditions. The time dependent creep has also been incorporated in they model. The performance of the model is examined by comparing numerical simulation with experimental data in various load paths under saturated and unsaturated conditions. Finally, the model is applied to hydro-mechanical coupling study of the REP experiment and thermo-hydro-mechanical coupling study of the HE-D experiment. A good agreement is obtained between experimental data and numerical predictions. It has been shown that the proposed model describe correctly the main features of the mechanical behaviour of unsaturated rocks. (author)

  6. Incorporating Road Crossing Data into Vehicle Collision Risk Models for Moose (Alces americanus) in Massachusetts, USA.

    Science.gov (United States)

    Zeller, Katherine A; Wattles, David W; DeStefano, Stephen

    2018-05-09

    Wildlife-vehicle collisions are a human safety issue and may negatively impact wildlife populations. Most wildlife-vehicle collision studies predict high-risk road segments using only collision data. However, these data lack biologically relevant information such as wildlife population densities and successful road-crossing locations. We overcome this shortcoming with a new method that combines successful road crossings with vehicle collision data, to identify road segments that have both high biological relevance and high risk. We used moose (Alces americanus) road-crossing locations from 20 moose collared with Global Positioning Systems as well as moose-vehicle collision (MVC) data in the state of Massachusetts, USA, to create multi-scale resource selection functions. We predicted the probability of moose road crossings and MVCs across the road network and combined these surfaces to identify road segments that met the dual criteria of having high biological relevance and high risk for MVCs. These road segments occurred mostly on larger roadways in natural areas and were surrounded by forests, wetlands, and a heterogenous mix of land cover types. We found MVCs resulted in the mortality of 3% of the moose population in Massachusetts annually. Although there have been only three human fatalities related to MVCs in Massachusetts since 2003, the human fatality rate was one of the highest reported in the literature. The rate of MVCs relative to the size of the moose population and the risk to human safety suggest a need for road mitigation measures, such as fencing, animal detection systems, and large mammal-crossing structures on roadways in Massachusetts.

  7. CORONA, JET, AND RELATIVISTIC LINE MODELS FOR SUZAKU/RXTE/CHANDRA-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE

    International Nuclear Information System (INIS)

    Nowak, Michael A.; Trowbridge, Sarah N.; Davis, John E.; Hanke, Manfred; Wilms, Joern; Markoff, Sera B.; Maitra, Dipankar; Tramper, Frank; Pottschmidt, Katja; Coppi, Paolo

    2011-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard 'low states'. Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the 'focused wind' from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2 . All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2 .

  8. Hard scattering and jet physics in connection with real photons

    International Nuclear Information System (INIS)

    Pretzl, K.P.

    1983-01-01

    This report contains a summary of the physics discussed in the working groups on (a) jet physics at the SPS in hadron-hadron collisions, (b) hard scattering with incident real photons and (c) large psub(T) prompt photons in hadron-hadron collisions. (orig.)

  9. Study of a model Fermi liquid interacting via a hard-core repulsive potential and an attractive tail

    International Nuclear Information System (INIS)

    Ng, Tai Kai; Singwi, K.S.

    1986-02-01

    In this paper we present an extensive microscopic study of the collective and single-particle properties of a model Fermi liquid whose particles interact via a repulsive hard-core potential and an attractive tail. The model system is intended to simulate liquid 3 He. The study is based on an approximate scheme of Singwi, Tosi, Land and Sjoelander (STLS) which was devised to treat correlations in Coulomb Fermi liquids. The primary aim of this study is to learn whether the model system is capable of reproducing some of the salient features observed in normal liquid 3 He, and about the role of the repulsive and attractive parts of the potential. We have calculated the Landau parameters F 0 /sup s/ and F 0 /sup a/ and their variation with pressure, the wave number and pressure dependence of the spin-symmetric and spin-anti-symmetric polarization potentials, pressure dependence of the dispersion of the zero sound, the static structure factors and the quasiparticle mass. Although we make no quantitative claims when comparing our calculations with experiments in real liquid 3 He, we do conclude that our model system within the framework of the STLS scheme can account qualitatively for the latter. Besides, since the theory is microscopic in nature and is parameter free, it has enabled us to understand better the role of the repulsive and the attractive parts of the bare potential in determining the properties of liquid 3 He. 27 figs., 2 tabs

  10. The modeler's influence on calculated solubilities for performance assessments at the Aespoe hard-rock laboratory

    International Nuclear Information System (INIS)

    Emren, A.T.; Arthur, R.; Glynn, P.D.; McMurry, J.

    1999-01-01

    Four researchers were asked to provide independent modeled estimates of the solubility of a radionuclide solid phase, specifically Pu(OH) 4 , under five specified sets of conditions. The objectives of the study were to assess the variability in the results obtained and to determine the primary causes for this variability. In the exercise, modelers were supplied with the composition, pH and redox properties of the water and with a description of the mineralogy of the surrounding fracture system. A standard thermodynamic data base was provided to all modelers. Each modeler was encouraged to use other data bases in addition to the standard data base and to try different approaches to solving the problem. In all, about fifty approaches were used, some of which included a large number of solubility calculations. For each of the five test cases, the calculated solubilities from different approaches covered several orders of magnitude. The variability resulting from the use of different thermodynamic data bases was in most cases, far smaller than that resulting from the use of different approaches to solving the problem

  11. Development of a collision induced dissociation ion cyclotron resonance spectrometer

    International Nuclear Information System (INIS)

    Fan, Y.N.

    1982-01-01

    A transient analysis ion cyclotron resonance spectrometer is developed to investigate the phenomena of collision induced dissociation. The Fourier transform method and the modified maximum entropy spectral analysis or covariance least square method are implemented in measuring the mass spectrum of the ion ensemble. The Fourier transform method can be used in quantitative analysis while the maximum entropy method as developed here is useful for qualitative analysis only. The cyclotron resonance frequency, relaxation time constant, and the relative ion population are observable from the Fourier transform spectrum. These parameters are very important in investigating collision induced dissociation process and other topics in gas phase chemistry. The ion cyclotron resonance spectrometer is not only developed to study fragments and their abundance from a parent ion, but also to determine the threshold energy and reaction cross section in the collision induced dissociation process. When hard sphere model is used in the ion-molecule collision, the radius of acetone ion measured from the reactive cross section is 2.2 angstrom which is very close to the physical dimension of acetone. The threshold energy for acetone ion in collision induced dissociation process is 1.8 eV which is similar to the result obtained by the angle-resolved mass spectrometer

  12. Diffractive hard scattering and the SSC

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-01-01

    Events in high energy hadron collisions are discussed that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 12 refs., 6 figs

  13. Collision Mechanics

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Servis, D.P.; Zhang, Shengming

    1999-01-01

    The first section of the present report describes the procedures that are being programmed at DTU for evaluation of the external collision dynamics. Then follows a detailed description of a comprehensive finite element analysis of one collision scenario for MS Dextra carried out at NTUA. The last...

  14. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.

    1995-09-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  15. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  16. arXiv Spin models in complex magnetic fields: a hard sign problem

    CERN Document Server

    de Forcrand, Philippe

    2018-01-01

    Coupling spin models to complex external fields can give rise to interesting phenomena like zeroes of the partition function (Lee-Yang zeroes, edge singularities) or oscillating propagators. Unfortunately, it usually also leads to a severe sign problem that can be overcome only in special cases; if the partition function has zeroes, the sign problem is even representation-independent at these points. In this study, we couple the N-state Potts model in different ways to a complex external magnetic field and discuss the above mentioned phenomena and their relations based on analytic calculations (1D) and results obtained using a modified cluster algorithm (general D) that in many cases either cures or at least drastically reduces the sign-problem induced by the complex external field.

  17. Geomass: geological modelling analysis and simulation software for the characterisation of fractured hard rock environments

    International Nuclear Information System (INIS)

    White, M.J.; Humm, J.P.; Todaka, N.; Takeuchi, S.

    1998-01-01

    This paper presents the development and functionality of a suite of applications which are being developed to support the geological investigations in the Tono URL. GEOMASS will include 3D geological modelling, 3D fluid flow and solute transport and 3D visualisation capabilities. The 3D geological modelling in GEOMASS will be undertaken using a commercially available 3D geological modelling system, EarthVision. EarthVision provides 3D mapping, interpolation, analysis and well planning software. It is being used in the GEOMASS system to provide the geological framework (structure of the tectonic faults and stratigraphic and lithological contacts) to the 3D flow code. It is also being used to gather the geological data into a standard format for use throughout the investigation programme. The 3D flow solver to be used in GEOMASS is called Frac-Affinity. Frac-Affinity models the 3D geometry of the flow system as a hybrid medium, in which the rock contains both permeable, intact rock and fractures. Frac-Affinity also performs interpolation of heterogeneous rock mass property data using a fractal based approach and the generation of stochastic fracture networks. The code solves for transient flow over a user defined sub-region of the geological framework supplied by EarthVision. The results from Frac-Affinity are passed back to EarthVision so that the flow simulation can be visualized alongside the geological structure. This work-flow allows rapid assessment of the role of geological features in controlling flow. This paper will present the concepts and approach of GEOMASS and illustrate the practical application of GEOMASS using data from Tono

  18. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Emren, A.T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1999-02-01

    In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb`s phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry

  19. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Emren, A.T.

    1999-02-01

    In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb's phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry

  20. Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions

    Science.gov (United States)

    Carpenter, J. Russell; Markley, F. Landis

    2013-01-01

    A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.

  1. Biogeochemical Reactive Transport Model of the Redox Zone Experiment of the sp Hard Rock Laboratory in Sweden

    International Nuclear Information System (INIS)

    Molinero-Huguet, Jorge; Samper-Calvete, F. Javier; Zhang, Guoxiang; Yang, Changbing

    2004-01-01

    Underground facilities are being operated by several countries around the world for performing research and demonstration of the safety of deep radioactive waste repositories. The ''sp'' Hard Rock Laboratory is one such facility launched and operated by the Swedish Nuclear Fuel and Waste Management Company where various in situ experiments have been performed in fractured granites. One such experiment is the redox zone experiment, which aimed at evaluating the effects of the construction of an access tunnel on the hydrochemical conditions of a fracture zone. Dilution of the initially saline groundwater by fresh recharge water is the dominant process controlling the hydrochemical evolution of most chemical species, except for bicarbonate and sulfate, which unexpectedly increase with time. We present a numerical model of water flow, reactive transport, and microbial processes for the redox zone experiment. This model provides a plausible quantitatively based explanation for the unexpected evolution of bicarbonate and sulfate, reproduces the breakthrough curves of other reactive species, and is consistent with previous hydrogeological and solute transport models

  2. Hydrodynamic modeling of 3He–Au collisions at sNN=200 GeV

    Directory of Open Access Journals (Sweden)

    Piotr Bożek

    2015-07-01

    Full Text Available Collective flow and femtoscopy in ultrarelativistic 3He–Au collisions are investigated within the 3+1-dimensional (3+1D viscous event-by-event hydrodynamics. We evaluate elliptic and triangular flow coefficients as functions of the transverse momentum. We find the typical long-range ridge structures in the two-particle correlations in the relative azimuth and pseudorapidity, in the pseudorapidity directions of both Au and 3He. We also make predictions for the pionic interferometric radii, which decrease with the transverse momentum of the pion pair. All features found hint on collectivity of the dynamics of the system formed in 3He–Au collisions, with hydrodynamics leading to quantitative agreement with the up-to-now released data.

  3. Gelation in a model 1-component system with adhesive hard-sphere interactions

    Science.gov (United States)

    Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman

    2012-02-01

    Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).

  4. Reducing Moose-Vehicle Collisions through Salt Pool Removal and Displacement: an Agent-Based Modeling Approach

    OpenAIRE

    Paul D. Grosman; Jochen A. G. Jaeger; Pascale M. Biron; Christian Dussault; Jean-Pierre Ouellet

    2009-01-01

    Between 1990 and 2002, more than 200 moose-vehicle collisions occurred each year in Quebec, including about 50/yr in the Laurentides Wildlife Reserve. One cause is the presence of roadside salt pools that attract moose near roads in the spring and summer. Using the computer simulation technique of agent-based modeling, this study investigated whether salt pool removal and displacement, i.e., a compensatory salt pool set up 100 to 1500 m away from the road shoulder, would reduce the number of ...

  5. Diffusion model analyses of the experimental data of /sup 12/C+/sup 27/Al, /sup 40/Ca dissipative collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weng-qing, SHEN; Wei-men, QIAO; Yong-tai, ZHU; Wen-long, ZHAN

    1984-11-01

    Assuming that the intermediate system decays with a statistical lifetime, the general behavior of the threefold differential cross section d/sup 3/sigma/dZEdtheta in the dissipative collisions of 68 MeV /sup 12/C+/sup 27/Al and 68.6 MeV /sup 12/C+/sup 40/Ca system are analyzed in the diffusion model framework. The lifetime of the intermediate system and the separation distance for the completely damped deep inelastic component are obtained. The calculated results and the experimental data of the angular distributions and Wilczynski plots are compared. The probable reasons of the differences between them are briefly discussed.

  6. CDW-EIS model for single-electron capture in ion-atom collisions involving multielectronic targets

    International Nuclear Information System (INIS)

    Abufager, P N; MartInez, A E; Rivarola, R D; Fainstein, P D

    2004-01-01

    A generalization of the continuum distorted wave eikonal initial state (CDW-EIS) approximation, for the description of single-electron capture in ion-atom collisions involving multielectronic targets is presented. This approximation is developed within the framework of the independent electron model taking particular care of the representation of the bound and continuum target states. Total cross sections for single-electron capture from the K-shell of He, Ne and Ar noble gases by impact of bare ions are calculated. Present results are compared to previous CDW-EIS ones and to experimental data

  7. Reducing Moose-Vehicle Collisions through Salt Pool Removal and Displacement: an Agent-Based Modeling Approach

    Directory of Open Access Journals (Sweden)

    Paul D. Grosman

    2009-12-01

    Full Text Available Between 1990 and 2002, more than 200 moose-vehicle collisions occurred each year in Quebec, including about 50/yr in the Laurentides Wildlife Reserve. One cause is the presence of roadside salt pools that attract moose near roads in the spring and summer. Using the computer simulation technique of agent-based modeling, this study investigated whether salt pool removal and displacement, i.e., a compensatory salt pool set up 100 to 1500 m away from the road shoulder, would reduce the number of moose-vehicle collisions. Moose road crossings were used as a proxy measure. A GPS telemetry data set consisting of approximately 200,000 locations of 47 moose over 2 yr in the Laurentides Wildlife Reserve was used as an empirical basis for the model. Twelve moose were selected from this data set and programmed in the model to forage and travel in the study area. Five parameters with an additional application of stochasticity were used to determine moose movement between forest polygons. These included food quality; cover quality, i.e., protection from predators and thermal stress; proximity to salt pools; proximity to water; and slope. There was a significant reduction in road crossings when either all or two thirds of the roadside salt pools were removed, with and/or without salt pool displacement. With 100% salt pool removal, the reduction was greater (49% without compensatory salt pools than with them (18%. When two thirds of the salt pools were removed, the reduction was the same with and without compensatory salt pools (16%. Although moose-vehicle collisions are not a significant mortality factor for the moose population in the Laurentides Wildlife Reserve, in areas with higher road densities, hunting pressure, and/or predator densities it could mean the difference between a stable and a declining population, and salt pool removal could be part of a good mitigation plan to halt population declines. This model can be used, with improvements such as

  8. A RECONNECTION-DRIVEN MODEL OF THE HARD X-RAY LOOP-TOP SOURCE FROM FLARE 2004 FEBRUARY 26

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, Dana; Qiu, Jiong; Brewer, Jasmine [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-12-20

    A compact X-class flare on 2004 February 26 showed a concentrated source of hard X-rays at the tops of the flare’s loops. This was analyzed in previous work and interpreted as plasma heated and compressed by slow magnetosonic shocks (SMSs) generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. These simulations corroborate the prior hypothesis that slow-mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, but at lower temperatures. X-ray light curves and spectra are synthesized by convolving the results from a single TFT simulation with the rate at which flux is reconnected, as measured through motion of flare ribbons, for example. These agree well with light curves observed by RHESSI and GOES and spectra from RHESSI . An image created from a superposition of TFT model runs resembles one produced from RHESSI observations. This suggests that the HXR loop-top source, at least the one observed in this flare, could be the result of SMSs produced in fast reconnection models like Petschek’s.

  9. Hard And Soft QCD Physics In ATLAS

    Directory of Open Access Journals (Sweden)

    Adomeit Stefanie

    2014-04-01

    Full Text Available Hard and soft QCD results using proton-proton collisions recorded with the ATLAS detector at the LHC are reported. Charged-particle distributions and forward-backward correlations have been studied in low-luminosity minimum bias data taken at centre-of-mass energies of √s = 0.9, 2.36 and 7 TeV. Recent measurements on underlying event characteristics using charged-particle jets are also presented. The results are tested against various phenomenological soft QCD models implemented in Monte-Carlo generators. A summary of hard QCD measurements involving high transverse momentum jets is also given. Inclusive jet and dijet cross-sections have been measured at a centre-of-mass energy of 7 TeV and are compared to expectations based on NLO pQCD calculations corrected for non-perturbative effects as well as to NLO Monte Carlo predictions. Recent studies exploiting jet substructure techniques to identify hadronic decays of boosted massive particles are reported.

  10. Diffractive heavy quark production in AA collisions at the LHC at NLO

    Science.gov (United States)

    Machado, M. M.; Ducati, M. B. Gay; Machado, M. V. T.

    2011-07-01

    The single and double diffractive cross sections for heavy quarks production are evaluated at NLO accuracy for hadronic and heavy ion collisions at the LHC. Diffractive charm and bottom production is the main subject of this work, providing predictions for CaCa, PbPb and pPb collisions. The hard diffraction formalism is considered using the Ingelman-Schlein model where a recent parametrization for the Pomeron structure function (DPDF) is applied. Absorptive corrections are taken into account as well. The diffractive ratios are estimated and theoretical uncertainties are discussed. Comparison with competing production channels is also presented.

  11. Direct-photon spectrum and elliptic flow produced from Pb+Pb collisions at √{sN N}=2.76 TeV at the CERN Large Hadron Collider within an integrated hydrokinetic model

    Science.gov (United States)

    Naboka, V. Yu.; Sinyukov, Yu. M.; Zinovjev, G. M.

    2018-05-01

    The photon transverse momentum spectrum and its anisotropy from Pb+Pb collisions at the CERN Large Hadron Collider energy √{sN N}=2.76 TeV are investigated within the integrated hydrokinetic model (iHKM). Photon production is accumulated from the different processes at the various stages of relativistic heavy ion collisions: from the primary hard photons of very early stage of parton collisions to the thermal photons from equilibrated quark-gluon and hadron gas stages. Along the way a hadronic medium evolution is treated in two distinct, in a sense opposite, approaches: chemically equilibrated and chemically frozen system expansion. Studying the centrality dependence of the results obtained allows us to conclude that a relatively strong transverse momentum anisotropy of thermal radiation is suppressed by prompt photon emission which is an isotropic. We find out that this effect is getting stronger as centrality increases because of the simultaneous increase in the relative contribution of prompt photons in the soft part of the spectra. The substantial results obtained in iHKM with nonzero viscosity (η /s =0.08 ) for photon spectra and v2 coefficients are mostly within the error bars of experimental data, but there is some systematic underestimation of both observables for the near central events. We claim that a situation could be significantly improved if an additional photon radiation that accompanies the presence of a deconfined environment is included. Since a matter of a space-time layer where hadronization takes place is actively involved in anisotropic transverse flow, both positive contributions to the spectra and v2 are considerable, albeit such an argument needs further research and elaboration.

  12. Prediction of the hardness profile of an AISI 4340 steel cylinder heat-treated by laser - 3D and artificial neural networks modelling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Hadhri, Mahdi; Ouafi, Abderazzak El; Barka, Noureddine [University of Quebec, Rimouski (Canada)

    2017-02-15

    This paper presents a comprehensive approach developed to design an effective prediction model for hardness profile in laser surface transformation hardening process. Based on finite element method and Artificial neural networks, the proposed approach is built progressively by (i) examining the laser hardening parameters and conditions known to have an influence on the hardened surface attributes through a structured experimental investigation, (ii) investigating the laser hardening parameters effects on the hardness profile through extensive 3D modeling and simulation efforts and (ii) integrating the hardening process parameters via neural network model for hardness profile prediction. The experimental validation conducted on AISI4340 steel using a commercial 3 kW Nd:Yag laser, confirm the feasibility and efficiency of the proposed approach leading to an accurate and reliable hardness profile prediction model. With a maximum relative error of about 10 % under various practical conditions, the predictive model can be considered as effective especially in the case of a relatively complex system such as laser surface transformation hardening process.

  13. Prediction of the hardness profile of an AISI 4340 steel cylinder heat-treated by laser - 3D and artificial neural networks modelling and experimental validation

    International Nuclear Information System (INIS)

    Hadhri, Mahdi; Ouafi, Abderazzak El; Barka, Noureddine

    2017-01-01

    This paper presents a comprehensive approach developed to design an effective prediction model for hardness profile in laser surface transformation hardening process. Based on finite element method and Artificial neural networks, the proposed approach is built progressively by (i) examining the laser hardening parameters and conditions known to have an influence on the hardened surface attributes through a structured experimental investigation, (ii) investigating the laser hardening parameters effects on the hardness profile through extensive 3D modeling and simulation efforts and (ii) integrating the hardening process parameters via neural network model for hardness profile prediction. The experimental validation conducted on AISI4340 steel using a commercial 3 kW Nd:Yag laser, confirm the feasibility and efficiency of the proposed approach leading to an accurate and reliable hardness profile prediction model. With a maximum relative error of about 10 % under various practical conditions, the predictive model can be considered as effective especially in the case of a relatively complex system such as laser surface transformation hardening process

  14. Ω and ϕ in Au + Au collisions at and 11.5 GeV from a multiphase transport model

    Science.gov (United States)

    Ye, Y. J.; Chen, J. H.; Ma, Y. G.; Zhang, S.; Zhong, C.

    2017-08-01

    Within the framework of a multiphase transport model, we study the production and properties of Ω and ϕ in Au + Au collisions with a new set of parameters for and with the original set of parameters for . The AMPT model with string melting provides a reasonable description at , while the default AMPT model describes the data well at . This indicates that the system created at top RHIC energy is dominated by partonic interactions, while hadronic interactions become important at lower beam energy, such as . The comparison of N(Ω++Ω-)/[2N(ϕ)] ratio between data and calculations further supports the argument. Our calculations can generally describe the data of nuclear modification factor as well as elliptic flow. Supported by National Natural Science Foundation of China (11421505, 11520101004, 11220101005, 11275250, 11322547), Major State Basic Research Development Program in China (2014CB845400, 2015CB856904) and Key Research Program of Frontier Sciences of CAS (QYZDJSSW-SLH002)

  15. SU-E-T-64: CG-Based Radiation Therapy Simulator with Physical Modeling for Avoidance of Collisions Between Gantry and Couch Or Patient

    International Nuclear Information System (INIS)

    Yamanouchi, M; Arimura, H; Yuda, I

    2014-01-01

    Purpose: It is time-consuming and might cause re-planning to check couch-gantry and patient-gantry collisions on a radiotherapy machine when using couch rotations for non-coplanar beam angles. The aim of this study was to develop a computer-graphics (CG)-based radiation therapy simulator with physical modeling for avoidance of collisions between gantry and couch or patient on a radiotherapy machine. Methods: The radiation therapy simulator was three-dimensionally constructed including a radiotherapy machine (Clinac iX, Varian Medical Systems), couch, and radiation treatment room according to their designs by using a physical-modeling-based computer graphics software (Blender, free and open-source). Each patient was modeled by applying a surface rendering technique to their planning computed tomography (CT) images acquired from 16-slice CT scanner (BrightSpeed, GE Healthcare). Immobilization devices for patients were scanned by the CT equipment, and were rendered as the patient planning CT images. The errors in the collision angle of the gantry with the couch or patient between gold standards and the estimated values were obtained by fixing the gantry angle for the evaluation of the proposed simulator. Results: The average error of estimated collision angles to the couch head side was -8.5% for gantry angles of 60 to 135 degree, and -5.5% for gantry angles of 225 to 300 degree. Moreover, the average error of estimated collision angles to the couch foot side was -1.1% for gantry angles of 60 to 135 degree, and 1.4% for gantry angles of 225 to 300 degree. Conclusion: The CG-based radiation therapy simulator could make it possible to estimate the collision angle between gantry and couch or patient on the radiotherapy machine without verifying the collision angles in the radiation treatment room

  16. Microstructure evolution of irradiated tungsten: Crystal effects in He and H implantation as modelled in the Binary Collision Approximation

    International Nuclear Information System (INIS)

    Hou, M.; Ortiz, C.J.; Becquart, C.S.; Domain, C.; Sarkar, U.; Debacker, A.

    2010-01-01

    It is important to develop an understanding of the evolution of W microstructure the conditions the International Thermonuclear Experimental Reactor (ITER) as well as the DEMOnstration Power Plan (DEMO), and modelling techniques can be very helpful. In this paper, the Binary Collision Approximation of Molecular Dynamics as implemented in the Marlowe code is used to model the slowing down of atomic helium and hydrogen on tungsten in the 1-100 keV range. The computed helium and Frenkel Pairs (FP) distributions are then used as input for the simulation of isochronal annealing experiments with an Object Kinetic Monte Carlo (OKMC) model. Parameterisation is discussed in a companion paper to this one. To model inelastic energy losses beyond the Lindhard regime, a new module has been implemented in the Marlowe code which is presented here, along with a discussion on various parameters of the model important in the modelling of channelled trajectories. For a given total inelastic stopping cross section, large differences in low energy channelling ranges are identified depending on whether inelastic energy loss is considered to be purely continuous or to also occur during the atomic collisions. In polycrystals, the channelling probability is shown to be significant over the whole range of slowing down energies considered. Channelling together with short replacement sequences has the effect of reducing the FP production efficiency by more than a factor two in polycrystalline as compared with an hypothetical structureless tungsten. This has a crucial effect on the helium isochronal desorption spectra predicted by the OKMC simulations. Those predicted with structureless tungsten are at variance with experiment, due to the overestimation of He trapping on the radiation induced defects.

  17. Microstructure evolution of irradiated tungsten: Crystal effects in He and H implantation as modelled in the Binary Collision Approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, M., E-mail: mhou@ulb.ac.b [Physique des Solides Irradies et des Nanostructures CP234, Universite Libre de Bruxelles, Bd du Triomphe, B-1050 Brussels (Belgium); Ortiz, C.J. [Laboratorio Nacional de Fusion por Confinamiento Magnetico, CIEMAT, E-28040 Madrid (Spain); Becquart, C.S. [Unite Materiaux Et Transformations (UMET), UMR 8207, Universite de Lille 1, F-59655 Villeneuve d' Ascq Cedex (France); Domain, C. [EDF-R and D Departement MMC, Les Renardieres, F-77818 Moret sur Loing Cedex (France); Sarkar, U. [Physics Department, Assam University, Silchar (India); Debacker, A. [Unite Materiaux Et Transformations (UMET), UMR 8207, Universite de Lille 1, F-59655 Villeneuve d' Ascq Cedex (France)

    2010-08-15

    It is important to develop an understanding of the evolution of W microstructure the conditions the International Thermonuclear Experimental Reactor (ITER) as well as the DEMOnstration Power Plan (DEMO), and modelling techniques can be very helpful. In this paper, the Binary Collision Approximation of Molecular Dynamics as implemented in the Marlowe code is used to model the slowing down of atomic helium and hydrogen on tungsten in the 1-100 keV range. The computed helium and Frenkel Pairs (FP) distributions are then used as input for the simulation of isochronal annealing experiments with an Object Kinetic Monte Carlo (OKMC) model. Parameterisation is discussed in a companion paper to this one. To model inelastic energy losses beyond the Lindhard regime, a new module has been implemented in the Marlowe code which is presented here, along with a discussion on various parameters of the model important in the modelling of channelled trajectories. For a given total inelastic stopping cross section, large differences in low energy channelling ranges are identified depending on whether inelastic energy loss is considered to be purely continuous or to also occur during the atomic collisions. In polycrystals, the channelling probability is shown to be significant over the whole range of slowing down energies considered. Channelling together with short replacement sequences has the effect of reducing the FP production efficiency by more than a factor two in polycrystalline as compared with an hypothetical structureless tungsten. This has a crucial effect on the helium isochronal desorption spectra predicted by the OKMC simulations. Those predicted with structureless tungsten are at variance with experiment, due to the overestimation of He trapping on the radiation induced defects.

  18. Centrality Dependence of Hadron Multiplicities in Nuclear Collisions in the Dual Parton Model

    CERN Document Server

    Capella, A

    2001-01-01

    We show that, even in purely soft processes, the hadronic multiplicity in nucleus-nucleus interactions contains a term that scales with the number of binary collisions. In the absence of shadowing corrections, this term dominates at mid rapidities and high energies. Shadowing corrections are calculated as a function of impact parameter and the centrality dependence of mid-rapidity multiplicities is determined. The multiplicity per participant increases with centrality with a rate that increases between SPS and RHIC energies, in agreement with experiment.

  19. On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres

    International Nuclear Information System (INIS)

    Capitelli, M.; Cappelletti, D.; Colonna, G.; Gorse, C.; Laricchiuta, A.; Liuti, G.; Longo, S.; Pirani, F.

    2007-01-01

    The interaction energy in systems (atom-atom, atom-ion and atom-molecule) involving open-shell species, predicted by a phenomenological method, is used for collision integral calculations. The results are compared with those obtained by different authors by using the complete set of quantum mechanical interaction potentials arizing from the electronic configurations of separate partners. A satisfactory agreement is achieved, implying that the effect of deep potential wells, present in some of the chemical potentials, is cancelled by the effect of strong repulsive potentials

  20. A three-dimensional model for lubricant depletion under sliding condition on bit patterned media of hard disk drives

    Science.gov (United States)

    Wu, Lin

    2018-05-01

    In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.

  1. The power of hard-sphere models: explaining side-chain dihedral angle distributions of Thr and Val.

    Science.gov (United States)

    Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne

    2012-05-16

    The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Using environmental niche modeling to find suitable habitats for the Hard-ground Barasingha in Madhya Pradesh, India

    Directory of Open Access Journals (Sweden)

    C. P. Singh

    2015-09-01

    Full Text Available The subspecies of Swamp Deer, the Hard-ground Barasingha (Rucervus duvaucelii branderi Pocock, is presently found only in Kanha Tiger Reserve (KTR in Madhya Pradesh, India. This subspecies is highly vulnerable to extinction, and reintroduction in suitable sites is the need of the hour.  Environmental niche models (GARP, SVM, ED, CSM aimed at providing a detailed prediction of species distribution by relating presence of species to 19 bioclimatic indices were developed, using swamp deer occurrence records in KTR. The predictions were appropriately weighted with the prevailing LU/LC classes to identify suitable habitats in Madhya Pradesh, India. The result shows that the southern region of Madhya Pradesh is suitable for the sustenance of Barasingha with varying degrees of habitability. Vicarious validation shows that most of these forest areas were the same as that of historical records dating back to 50 years. However, land use maps can help identify areas where this subspecies can be reintroduced. 

  3. Reaching out to the hard to reach: using a science centre model to deliver public engagement with research.

    Science.gov (United States)

    Gagen, M.; Allton, C.; Bryan, W. A.; O'Leary, M.

    2017-12-01

    Science communication is at an all-time high but public faith in expertise is low. However, within this climate of suspicion, research scientists remain a publicly trusted expert group. While there is both academic and public appetite for Public Engagement with Research (PER), there are barriers to reaching a wide range of publics. Attempts to connect the public with research often end up targeting the `already engaged'; the hard-to-reach remain just that. Engaging scientific curiosity in a wider demographic is crucial to promote scientific curiosity, itself known to profoundly counter the politically motivated reasoning that threatens informed debate around contemporary environmental issues. This requires the creation of opportunities for the public to engage with research in places in which they feel they belong. We report here on an 8 month pilot of a science centre model for PER. Oriel Science (www.orielscience.co.uk) is a research-led science exhibition in Swansea city centre delivering Swansea University's PER and run by academics and student ambassadors. Oriel Science (Oriel is Gallery in Welsh) received 16,000 visitors in 8 months, 40% of whom had no previous interaction with the university or its research and >40% of whom came from socio-economically deprived areas. We report on the public engagement leadership we enabled, working with 18 research groups over 8 months and our achievements in giving a broad range of publics the most direct access to participate in contemporary science.

  4. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    NARCIS (Netherlands)

    Tanvir Hassan, S.M.; Lubczynski, M.; Niswonger, R.G.; Su, Zhongbo

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic

  5. Modelling and analysis of tool wear and surface roughness in hard turning of AISI D2 steel using response surface methodology

    Directory of Open Access Journals (Sweden)

    M. Junaid Mir

    2018-01-01

    Full Text Available The present work deals with some machinability studies on tool wear and surface roughness, in finish hard turning of AISI D2 steel using PCBN, Mixed ceramic and coated carbide inserts. The machining experiments are conducted based on the response surface methodology (RSM. Combined effects of three cutting parameters viz., cutting speed, cutting time and tool hardness on the two performance outputs (i.e. VB and Ra, are explored employing the analysis of variance (ANOVA.The relationship(s between input variables and the response parameters are determined using a quadratic regression model. The results show that the tool wear was influenced principally by the cutting time and in the second level by the cutting tool hardness. On the other hand, cutting time was the dominant factor affecting workpiece surface roughness followed by cutting speed. Finally, the multiple response optimizations of tool wear and surface roughness were carried out using the desirability function approach (DFA.

  6. Modeling of non-ideal hard permanent magnets with an affine-linear model, illustrated for a bar and a horseshoe magnet

    Science.gov (United States)

    Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.

    2017-11-01

    This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.

  7. Consumers’ Collision Insurance Decisions

    DEFF Research Database (Denmark)

    Austin, Laurel; Fischhoff, Baruch

    Using interviews with 74 drivers, we elicit and analyse how people think about collision coverage and, more generally, about insurance decisions. We compare the judgments and behaviours of these decision makers to the predictions of a range of theoretical models: (a) A model developed by Lee (200...

  8. Studies of the underlying-event properties and of hard double parton scattering with the ATLAS detector

    CERN Document Server

    Kuprash, Oleg; The ATLAS collaboration

    2017-01-01

    A correct modelling of the underlying event in proton-proton collisions is important for the proper simulation of kinematic distributions of high-energy collisions. The ATLAS collaboration extended previous studies at 7 TeV with a leading track or jet or Z boson by a new study at 13 TeV, measuring the number and transverse-momentum sum of charged particles as a function of pseudorapidity and azimuthal angle in dependence of the reconstructed leading track. These measurements are sensitive to the underlying-event as well as the onset of hard emissions. The results are compared to predictions of several MC generators. + Inclusive four-jet events produced in proton--proton collisions at a center-of-mass energy of 7 TeV have been analyzed for the presence of hard double parton scattering collected with the ATLAS detector. The contribution of hard double parton scattering to the production of four-jet events has been extracted using an artificial neural network. The assumption was made that hard double parton scat...

  9. Hydrodynamic modeling of the deconfinement phase transition in heavy-ion collisions in the NICA-FAIR energy domain

    International Nuclear Information System (INIS)

    Merdeev, A. V.; Satarov, L. M.; Mishustin, I. N.

    2011-01-01

    We use (3 + 1) dimensional ideal hydrodynamics to describe the space-time evolution of strongly interacting matter created in Au + Au and Pb + Pb collisions. The model is applied for the domain of bombarding energies 1-160 GeV/nucleon which includes future NICA (Dubna) and FAIR (Darmstadt) experiments. Two equations of state are used, the first one corresponding to resonance hadron gas and the second one including the deconfinement phase transition. The initial state is represented by two Lorentz-boosted nuclei. Dynamic trajectories of matter in the central box of the system are analyzed. They can be well represented by a fast shock-wave compression followed by a relatively slow isentropic expansion. The parameters of collective flows and hadronic spectra are calculated under assumption of the isochronous freeze-out. It is shown that the deconfinement phase transition leads to broadening of proton rapidity distributions, increase of elliptic flows, and formation of the directed antiflow in the central rapidity region. These effects are most pronounced at bombarding energies around 10 GeV/nucleon, when the system spends the longest time in the mixed phase. From the comparison with three-fluid calculations we conclude that the transparency effects are not so important in central collisions at NICA-FAIR energies (below 30 GeV/nucleon).

  10. Electron transfer in keV Li+-Na*(3p) collisions: Pt.2. Molecular basis model

    International Nuclear Information System (INIS)

    Machholm, M.; Courbin, C.

    1996-01-01

    The velocity dependence of state-to-state integral cross sections for electron transfer and excitation in Li + -Na(3s, 3p) collisions is studied in the 0.05-0.3 au velocity range using the impact parameter semi-classical method and a 28-state molecular orbital basis model including a common translation factor. The initial orbital alignment dependence of electron transfer is in fair agreement with recent experiments and with atomic orbital model calculations. The main electron transfer channel from Na*(3p) is to the Li*(2p) states. The integral cross sections from an aligned or oriented Na*(3p) state to an aligned or oriented Li*(2p) state and vice versa and the corresponding alignment and orientation parameters are presented as a function of the impact velocity. (author)

  11. Searching for the doubly charged scalars in the Georgi-Machacek model via γγ collisions at the ILC

    Science.gov (United States)

    Cao, Jun; Li, Yu-Qi; Liu, Yao-Bei

    2018-04-01

    The Georgi-Machacek (GM) model predicts the existence of the doubly-charged scalars H5±±, which can be seen the typical particles in this model and their diboson decay channels are one of the most promising ways to discover such new doubly-charged scalars. Based on the constraints of the latest combined ATLAS and CMS Higgs boson diphoton signal strength data at 2σ confidence level, we focus on the study of the triple scalar production in γγ collisions at the future International Linear collider (ILC): γγ → hH5++H 5‑‑, where the production cross-sections are very sensitive to the triple scalar coupling parameter ghHH. Considering the typical same-sign diboson decay modes for the doubly-charged scalars, the possible final signals might be detected via this process at the future ILC experiments.

  12. Measurement of the forward energy flow in pp collisions at [Formula: see text].

    Science.gov (United States)

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Diniz Batista, P; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meier, F; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    The energy flow created in pp collisions at [Formula: see text] is studied within the pseudorapidity range 1.9< η <4.9 with data collected by the LHCb experiment. The measurements are performed for inclusive minimum-bias interactions, hard scattering processes and events with an enhanced or suppressed diffractive contribution. The results are compared to predictions given by Pythia-based and cosmic-ray event generators, which provide different models of soft hadronic interactions.

  13. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Sara; Kompany-Zareh, Mohsen, E-mail: kmpz@dr.com

    2016-02-04

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation−emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model. - Highlights: • Hard restricted trilinear decomposition (HrTD) was introduced for model-based analysis of three-way rank deficient data. • DNA hybridization was investigated by two-dimensional fluorescence spectroscopy and soft/hard multi-way techniques. • Restricted Tucker3 analysis enabled accurate estimation of pure FRET profiles in the hybridized form. • HrTD was successfully employed to estimate kinetic and equilibrium parameters of DNA hybridization system. • The performance of the proposed methods in response to different physical stimuli was successfully evaluated.

  14. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  15. Semiclassical calculation for collision induced dissociation. III. Restricted two dimensional Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.

    1980-01-01

    A semiclassical procedure previously used for collinear CID calculations is applied to the perpendicular collisions (2D, no rotation, zero impact parameter) of a Morse homonuclear diatomic molecule and an atom, interacting via an exponential repulsive potential. Values of the dissociation probability (P/sup diss/) are given as a function of total energy (E/sub t/) and initial vibrational state (n 1 =0,1,3,5) for a system with three identical masses. The results are compared with the P/sup diss/ previously reported for an identical one dimensional system. We find: (a) quasiclassical P/sup diss/ that are a good approximation to the semiclassical ones, if CID is classically allowed, (b) vibrational enhancement of CID, and (c) energetic thresholds for dissociation similar to the ones found in the collinear case

  16. Electromagnetic radiation from nuclear collisions at RHIC energies

    CERN Document Server

    Turbide, Simon; Frodermann, Evan; Heinz, Ulrich

    2008-01-01

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  17. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    Science.gov (United States)

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  18. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    Results from the Modular Algorithm for Relativistic Treatment of heavy IoN Interactions (MARTINI) are presented. This comprehensive event generator for the hard and penetrating probes in high energy nucleus-nucleus collisions employs a time evolution model for the soft background, PYTHIA 8.1 and the McGill-AMY parton evolution scheme including radiative as well as elastic processes. It generates full event configurations in the high p T region, allowing to perform the same processing as with experimental data, such as multi-particle correlation analyses and full jet reconstruction. (author)

  19. Theoretical modeling developed to evaluate the hardness and reduced modulus for the C/a-Si composite film using nanoindentation tests

    International Nuclear Information System (INIS)

    Han, C.-F.; Lin, J.-F.; Chung, C.-K.; Wu, B.-H.

    2008-01-01

    A general mechanical model, which is composed of the mechanical models employed to describe the contact behaviors and deformations arising in all layers (including the substrate), is successfully developed in the present study for multilayer specimens in order to evaluate the contact projected area by a theoretical model, and thus the hardness and reduced modulus, using nanoindentation tests. The governing differential equations for the depth solutions of the indenter tip formed at all layers of the specimen under their contact load are developed individually. The influence of the material properties of the substrate on a multilayer specimen's hardness and reduced modulus at various indentation depths can thus be evaluated. Transition and pop-in occurred at depths near, but still before, the C (top layer)/a-Si (buffer layer) interface and the a-Si/Si (substrate) interface, respectively. Using the present analysis, the depths corresponding to the transition and pop-in behaviors can be predicted effectively

  20. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  1. Double hard scattering without double counting

    International Nuclear Information System (INIS)

    Diehl, Markus; Gaunt, Jonathan R.

    2017-02-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  2. An empirical tool to evaluate the safety of cyclists: Community based, macro-level collision prediction models using negative binomial regression.

    Science.gov (United States)

    Wei, Feng; Lovegrove, Gordon

    2013-12-01

    Today, North American governments are more willing to consider compact neighborhoods with increased use of sustainable transportation modes. Bicycling, one of the most effective modes for short trips with distances less than 5km is being encouraged. However, as vulnerable road users (VRUs), cyclists are more likely to be injured when involved in collisions. In order to create a safe road environment for them, evaluating cyclists' road safety at a macro level in a proactive way is necessary. In this paper, different generalized linear regression methods for collision prediction model (CPM) development are reviewed and previous studies on micro-level and macro-level bicycle-related CPMs are summarized. On the basis of insights gained in the exploration stage, this paper also reports on efforts to develop negative binomial models for bicycle-auto collisions at a community-based, macro-level. Data came from the Central Okanagan Regional District (CORD), of British Columbia, Canada. The model results revealed two types of statistical associations between collisions and each explanatory variable: (1) An increase in bicycle-auto collisions is associated with an increase in total lane kilometers (TLKM), bicycle lane kilometers (BLKM), bus stops (BS), traffic signals (SIG), intersection density (INTD), and arterial-local intersection percentage (IALP). (2) A decrease in bicycle collisions was found to be associated with an increase in the number of drive commuters (DRIVE), and in the percentage of drive commuters (DRP). These results support our hypothesis that in North America, with its current low levels of bicycle use (macro-level CPMs. Copyright © 2012. Published by Elsevier Ltd.

  3. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos.

    Science.gov (United States)

    New, Leslie; Bjerre, Emily; Millsap, Brian; Otto, Mark C; Runge, Michael C

    2015-01-01

    Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6

  4. An Effective Scheduling-Based RFID Reader Collision Avoidance Model and Its Resource Allocation via Artificial Immune Network

    OpenAIRE

    Wang, Shanjin; Li, Zhonghua; He, Chunhui; Li, Jianming

    2016-01-01

    Radio frequency identification, that is, RFID, is one of important technologies in Internet of Things. Reader collision does impair the tag identification efficiency of an RFID system. Many developed methods, for example, the scheduling-based series, that are used to avoid RFID reader collision, have been developed. For scheduling-based methods, communication resources, that is, time slots, channels, and power, are optimally assigned to readers. In this case, reader collision avoidance is equ...

  5. Structural properties of hard disks in a narrow tube

    International Nuclear Information System (INIS)

    Varga, S; Gurin, P; Balló, G

    2011-01-01

    Positional ordering of a two-dimensional fluid of hard disks is examined in tubes so narrow that only nearest neighbor interactions take place. Using the exact transfer-matrix method the transverse and longitudinal pressure components and the correlation function are determined numerically. Fluid–solid phase transition does not occur even in the widest tube, where the method just loses its exactness, but the appearance of a dramatic change in the equation of state and the longitudinal correlation function shows that the system undergoes a structural change from a fluid to a solid-like order. The pressure components show that the collisions are dominantly longitudinal at low densities, while they are transverse in the vicinity of the close packing density. The transverse correlation function shows that the size of solid-like domains grows exponentially with increasing pressure and the correlation length diverges at close packing. It is possible to find an analytically solvable model by expanding the contact distance up to first order. The approximate model, which corresponds to a system of hard parallel rhombuses, behaves very similarly to the system of hard disks

  6. Study of electron-molecule collisions via the finite-element method and R-matrix propagation technique: Model exchange

    International Nuclear Information System (INIS)

    Abdolsalami, F.; Abdolsalami, M.; Gomez, P.

    1994-01-01

    We have applied the finite-element method to electron-molecule collisions. All the calculations are done in the body frame within the fixed-nuclei approximation. A model potential, which is added to the static and polarization potential, has been used to represent the exchange effect. The method is applied to electron-H 2 scattering and the eigenphase sums and the cross sections obtained are in very good agreement with the corresponding results from the linear-algebraic approach. Finite-element calculations of the R matrix in the region where the static and exchange interactions are strong, however, has about one-half to one-fourth of the memory requirement of the linear-algebraic technique

  7. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marbach, Johannes

    2012-09-20

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  8. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    International Nuclear Information System (INIS)

    Marbach, Johannes

    2012-01-01

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  9. Principle component analysis (PCA) and second-order global hard-modelling for the complete resolution of transition metal ions complex formation with 1,10-phenantroline

    Energy Technology Data Exchange (ETDEWEB)

    Shariati-Rad, Masoud [Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of); Hasani, Masoumeh, E-mail: hasani@basu.ac.ir [Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of)

    2009-08-19

    Second-order global hard-modelling was applied to resolve the complex formation between Co{sup 2+}, Ni{sup 2+}, and Cd{sup 2+} cations and 1,10-phenantroline. The highly correlated spectral and concentration profiles of the species in these systems and low concentration of some species in the individual collected data matrices prevent the well-resolution of the profiles. Therefore, a collection of six equilibrium data matrices including series of absorption spectra taken with pH changes at different reactant ratios were analyzed. Firstly, a precise principle component analysis (PCA) of different augmented arrangements of the individual data matrices was used to distinguish the number of species involved in the equilibria. Based on the results of PCA, the equilibria included in the data were specified and second-order global hard-modelling of the appropriate arrangement of six collected equilibrium data matrices resulted in well-resolved profiles and equilibrium constants. The protonation constant of the ligand (1,10-phenantroline) and spectral profiles of its protonated and unprotonated forms are the additional information obtained by global analysis. For comparison, multivariate curve resolution-alternating least squares (MCR-ALS) was applied to the same data. The results showed that second-order global hard-modelling is more convenient compared with MCR-ALS especially for systems with completely known model. It can completely resolve the system and the concentration profiles which are closer to correct ones. Moreover, parameters showing the goodness of fit are better with second-order global hard-modelling.

  10. Principle component analysis (PCA) and second-order global hard-modelling for the complete resolution of transition metal ions complex formation with 1,10-phenantroline

    International Nuclear Information System (INIS)

    Shariati-Rad, Masoud; Hasani, Masoumeh

    2009-01-01

    Second-order global hard-modelling was applied to resolve the complex formation between Co 2+ , Ni 2+ , and Cd 2+ cations and 1,10-phenantroline. The highly correlated spectral and concentration profiles of the species in these systems and low concentration of some species in the individual collected data matrices prevent the well-resolution of the profiles. Therefore, a collection of six equilibrium data matrices including series of absorption spectra taken with pH changes at different reactant ratios were analyzed. Firstly, a precise principle component analysis (PCA) of different augmented arrangements of the individual data matrices was used to distinguish the number of species involved in the equilibria. Based on the results of PCA, the equilibria included in the data were specified and second-order global hard-modelling of the appropriate arrangement of six collected equilibrium data matrices resulted in well-resolved profiles and equilibrium constants. The protonation constant of the ligand (1,10-phenantroline) and spectral profiles of its protonated and unprotonated forms are the additional information obtained by global analysis. For comparison, multivariate curve resolution-alternating least squares (MCR-ALS) was applied to the same data. The results showed that second-order global hard-modelling is more convenient compared with MCR-ALS especially for systems with completely known model. It can completely resolve the system and the concentration profiles which are closer to correct ones. Moreover, parameters showing the goodness of fit are better with second-order global hard-modelling.

  11. A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao

    2016-01-01

    Highlights: • Eclat data mining algorithm is used to determine the possible predictors. • Support vector machine is converted into a ridge regularization problem. • Hard penalty selects the number of radial basis functions to simply the structure. • Glowworm swarm optimization is utilized to determine the optimal parameters. - Abstract: For a portion of the power which is generated by grid connected photovoltaic installations, an effective solar irradiation forecasting approach must be crucial to ensure the quality and the security of power grid. This paper develops and investigates a novel model to forecast 30 daily global solar radiation at four given locations of the United States. Eclat data mining algorithm is first presented to discover association rules between solar radiation and several meteorological factors laying a theoretical foundation for these correlative factors as input vectors. An effective and innovative intelligent optimization model based on nonlinear support vector machine and hard penalty function is proposed to forecast solar radiation by converting support vector machine into a regularization problem with ridge penalty, adding a hard penalty function to select the number of radial basis functions, and using glowworm swarm optimization algorithm to determine the optimal parameters of the model. In order to illustrate our validity of the proposed method, the datasets at four sites of the United States are split to into training data and test data, separately. The experiment results reveal that the proposed model delivers the best forecasting performances comparing with other competitors.

  12. Evaluating a Health Belief Model-Based Educational Program for School Injury Prevention among Hard-of-Hearing/Deaf High School Students

    Directory of Open Access Journals (Sweden)

    Fatemeh Vejdani-Aram

    2015-03-01

    Full Text Available Background and Objectives: While all students are vulnerable to injuries, such vulnerability may even be higher in the deaf and hard-of-hearing students. Therefore, this study evaluated a health belief model-based educational program to prevent school injuries among deaf and hard-of-hearing high school students. Materials and Methods: This quasi-experimental study was conducted on all deaf and hard-of-hearing students who attended two special schools in Hamadan (Iran during 2014. They were randomly assigned to either the intervention group (n = 23 or the control group (n =