WorldWideScience

Sample records for hanford seismic monitoring

  1. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  2. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  3. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  4. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  5. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  6. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  7. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  8. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  9. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  10. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  11. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  12. First Quarter Hanford Seismic Report for Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.; Valenta, Michelle M.

    2001-02-27

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 477 triggers during the first quarter of fiscal year (FY) 2001 on the data acquisition system. Of these triggers, 176 were earthquakes. Forty-five earthquakes were located in the HSN area; 1 earthquake occurred in the Columbia River Basalt Group, 43 were earthquakes in the pre-basalt sediments, and 1 was earthquakes in the crystalline basement. Geographically, 44 earthquakes occurred in swarm areas, 1 earthquake was on a major structure, and no earthquakes were classified as random occurrences. The Horse Heaven Hills earthquake swarm area recorded all but one event during the first quarter of FY 2001. The peak of the activity occurred over December 12th, 13th, and 14th when 35 events occurred. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2001.

  13. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, fourteen local earthquakes were recorded during the third quarter of fiscal year 2008. The largest event recorded by the network during the third quarter (May 18, 2008 - magnitude 3.7 Mc) was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, five earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and three earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, eight earthquakes occurred in swarm areas and six earthquakes were classified as random events. The largest event recorded by the network during the third quarter occurred on May 18 (magnitude 3.7 Mc) and was located approximately 17 km east of Prosser at a depth of 20.5 km. This earthquake was the highest magnitude event recorded in the 46-47 N. latitude / 119-120 W. longitude sector since 1975

  14. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  15. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and

  16. First Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  17. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  18. Third Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-09-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just

  19. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  20. Annual Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-12-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2009, the Hanford Seismic Network recorded nearly 3000 triggers on the seismometer system, which included over 1700 seismic events in the southeast Washington area and an additional 370 regional and teleseismic events. There were 1648 events determined to be local earthquakes relevant to the Hanford Site. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Recording of the Wooded Island events began in January with over 250 events per month through June 2009. The frequency of events decreased starting in July 2009 to approximately 10-15 events per month through September 2009. Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with 47 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.3 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The highest-magnitude event (3.0Mc

  1. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  2. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  3. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  4. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-07-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  5. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest activity

  6. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    International Nuclear Information System (INIS)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-01-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  7. Annual Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.; Devary, Joseph L.; Hartshorn, Donald C.

    2010-12-27

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island

  8. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-11-09

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 270 triggers during the second quarter of fiscal year (FY) 1999 and 229 triggers during the third quarter on the primary recording system. During the second quarter, 22 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 6 were earthquakes in the crystalline basement, and 5 were quarry blasts. Two earthquakes appear to be related to major geologic structures, eight earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. During the third quarter, 23 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 4 were earthquakes in the pre-basalt sediments, 4 were earthquakes in the crystalline basement, and 4 were quarry blasts. Five earthquakes occurred in known swarm areas, six earthquakes formed a new swarm near the Horse Heavens Hills and Presser, Washington, and eight earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second or third quarters of FY 1999.

  9. Second Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-06-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 90 local earthquakes during the second quarter of FY 2010. Eighty-one of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2010). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (3.0 Mc) occurred February 4, 2010 at depth 2.4 km. The average depth of the Wooded Island events during the quarter was 1.6 km with a maximum depth estimated at 3.5 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford Strong Motion Accelerometer (SMA) network was triggered several times

  10. Quarterly seismic monitoring report 96B

    International Nuclear Information System (INIS)

    Reidel, S.P.

    1996-01-01

    This report summarizes the location, magnitude, and other pertinent information on earthquakes recorded on and near the Hanford Site by Westinghouse Seismic Monitoring during the period encompassing January 1, 1996 to March 31, 1996

  11. Hanford Seismic Annual Report and Fourth Quarter Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    AC Rohay; DC Hartshorn; SP Reidel

    1999-12-07

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network. (EWRN) consist of 40 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. A major reconfiguration of the HSN was initiated at the end of this quarter and the results will be reported in the first quarter report for next fiscal year (FY2000). For the HSN, there were 390 triggers during the fourth quarter of fiscal year(FY) 1999 on the primary recording system. With the implementation of dual backup systems during the second quarter of the fiscal year and an overall increase observed in sensitivity, a total of 1632 triggers were examined, identified, and processed during this fiscal year. During the fourth quarter, 24 seismic events were located by the HSN within the reporting region of 46 degrees to 47 degrees north latitude and 119 degrees to 120 degrees west longitude 9 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 10 were earthquakes in the crystalline basement; and 2 were quarry blasts. One earthquake appears to be related to a major geologic structure, 14 earthquakes occurred in known swarm areas, and 7 earthquakes were random occurrences.

  12. Seismic (SSE) evaluation for the 291Z stack at the Hanford Site -- Addition of environmental monitoring penetrations

    International Nuclear Information System (INIS)

    Baxter, J.T.

    1994-01-01

    The purpose of this 291Z stack analysis is to determine the structural effects of chipping additional holes into the stacks concrete walls. The proposed holes are for new environmental monitoring sample probes to be installed at three different elevations. The approximate elevations proposed at this time are 50 ft, 135 ft and 175 ft. There will be four holes required at each of the elevations to support two sample probes extending across the diameter of the stack. A structural sensitivity study has been completed to assess the effect of the proposed holes on the baseline seismic qualification of the stack completed by URS/John A. Blume ampersand Associates, Engineers, San Francisco, California (URS/Blume) in August, 1988. Results of the sensitivity study indicate that the stack would still have adequate structural moment capacity if the new holes were drilled cutting the vertical strength reinforcing steel, or if existing penetrations added since original construction have inadvertently cut vertical rebars. For current and future modifications, no vertical rebar should be cut. A limited number of horizontal rebar, no more than 2, may be cut at the new hole locations without significantly influencing the stack structural shear capacity. New penetrations in the 291Z stack should not be located below elevation 47 ft., 4 in. due to rebar layout and the fact that maximum seismic structural loads occur below this elevation. No vertical rebar should be cut when chipping the new penetrations in the stack concrete wall for the environmental monitoring equipment. Wind load qualification was reviewed. Seismic loads govern over wind loads for all structural load cases; therefore no additional wind analyses are required

  13. First Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-03-29

    The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 81 local earthquakes during the first quarter of FY 2010. Sixty-five of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2009d). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (2.5 Mc) occurred on December 22 at depth 2.1 km. The average depth of the Wooded Island events during the quarter was 1.4 km with a maximum depth estimated at 3.1 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford SMA network was triggered several times by these events and the SMA recordings are discussed in section 6.0. During the last year some Hanford employees working within a few miles of the swarm area and individuals living directly across the Columbia River from the swarm center have reported feeling many of the larger magnitude events. Strong motion accelerometer (SMA) units installed directly above the swarm area at ground surface measured peak ground accelerations approaching 15% g, the largest values recorded at Hanford. This corresponds to strong shaking of the ground, consistent with what people in the local area have reported. However, the duration and magnitude of these swarm events should not result in any structural damage to facilities. The USGS performed a geophysical survey using satellite

  14. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  15. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  16. Environmental monitoring at Hanford for 1984

    International Nuclear Information System (INIS)

    Price, K.R.; Carlile, J.M.V.; Dirkes, R.L.; Jaquish, R.E.; Trevathan, M.S.; Woodruff, R.K.

    1985-05-01

    Environmental surveillance activities performed by the Pacific Northwest Laboratory for the Department of Energy's Hanford Site for 1984 are discussed in this report. Samples of environmental media were collected in support of the Hanford Environmental Monitoring Program to determine radionuclide concentrations in the Hanford environs. Radiological impacts in terms of radiation dose equivalents as a result of Hanford operations are also discussed. Gross beta radioactivity concentrations in airborne particulates at all sampling locations were lower in 1984 than during 1983 as a result of declining levels of worldwide fallout. Slightly higher levels of 85 Kr and 129 I were noted at several onsite and offsite locations. The sampling location in close proximity to the PUREX plant also detected increased 3 H. Very low levels of radionuclides were detected in samples of Columbia River water during 1984. An extensive groundwater monitoring program was performed for the Hanford Site during 1984. The 3 H and nitrate plumes continued to move slowly toward the Columbia River. All 3 H results were within applicable concentration guides. Samples of deer, rabbits, game birds, waterfowl and fish were collected onsite or in the Columbia River at locations where the potential for radionuclide uptake was most likely, or at the nearest locations where wildlife samples were available. Radioisotope levels were measured. Dose rates from external penetrating radiation measured in the vicinity of residential areas were similar to those observed in the previous years, and no contribution from Hanford activities could be identified. An assessment of the 1984 potential radiological impacts attributable to the Hanford operations indicated that measured and calculated radiation doses to the public continued to be low, and well below applicable regulatory limits. 21 refs., 48 figs., 83 tabs

  17. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  18. Environmental monitoring at Hanford for 1984. Supplement

    International Nuclear Information System (INIS)

    Price, K.R.; Carlile, J.M.V.; Dirkes, R.L.; Jaquish, R.E.; Trevathan, M.S.; Woodruff, R.K.

    1986-01-01

    A range fire started on private land on August 10, 1984, and burned northward onto the Department of Energy's Hanford Site. Environmental monitoring results from air samples collected during and after the fire indicated that no radioactive materials different from normal levels were present in the air

  19. Environmental monitoring at Hanford for 1987

    International Nuclear Information System (INIS)

    Jacquish, R.E.; Mitchell, P.J.

    1988-05-01

    Envoronmental monitoring activities performed on the Hanford Site for 1987 are discussed in this report. Samples of environmental media were collected to determine radionuclide and chemical concentrations at locations in the geographical area. Results are discussed in detail in subsequent sections of this report. Surveillance of radioactivity in the Hanford vicinity during 1987 indicated concentrations well below applicable DOE and US Environmental Protection Agency (EPA) standards. Radioactive materials released from Hanford operations were generally indistinguishable above background in the offsite environment. Continued influence from the 1986 reactor accident at the Chernobyl Nuclear Power Station in the USSR was not apparent this year. Chemical concentrations in air were below applicable standards established by the EPA and the State of Washington. Chemicals detected in the ground water beneath the Site can be attributed to both Site operations and natural background levels. Several chemicals regulated by the EPA and the State of Washington exceeded EPA drinking water standards (DWS). 106 refs., 71 figs., 110 tabs

  20. Environmental monitoring at Hanford for 1986

    International Nuclear Information System (INIS)

    1987-05-01

    Environmental monitoring at the Hanford Site is conducted by the Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of the levels of radionuclides and radiation attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor the status of chemical materials on the Site and in the Columbia River. This report represents a single, comprehensive source of environmental monitoring data collected during 1986 by PNL's Environmental monitoring Group in the offsite and onsite environments. Appendix A contains data and data summaries for results obtained during 1986 that include statistical estimates of variation. Information in Appendix A is intended for readers with a scientific interest or for those who wish to evaluate results in a manner not included here. 71 refs., 66 figs., 17 tabs

  1. Seismic hazard assessment of the Hanford region, Eastern Washington State

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Power, M.S.; Swan, F.H. III

    1985-01-01

    A probabilistic seismic hazard assessment was made for a site within the Hanford region of eastern Washington state, which is characterized as an intraplate region having a relatively low rate of seismic activity. Probabilistic procedures, such as logic trees, were utilized to account for the uncertainties in identifying and characterizing the potential seismic sources in the region. Logic trees provide a convenient, flexible means of assessing the values and relative likelihoods of input parameters to the hazard model that may be dependent upon each other. Uncertainties accounted for in this way include the tectonic model, segmentation, capability, fault geometry, maximum earthquake magnitude, and earthquake recurrence rate. The computed hazard results are expressed as a distribution from which confidence levels are assessed. Analysis of the results show the contributions to the total hazard from various seismic sources and due to various earthquake magnitudes. In addition, the contributions of uncertainties in the various source parameters to the uncertainty in the computed hazard are assessed. For this study, the major contribution to uncertainty in the computed hazard are due to uncertainties in the applicable tectonic model and the earthquake recurrence rate. This analysis serves to illustrate some of the probabilistic tools that are available for conducting seismic hazard assessments and for analyzing the results of these studies. 5 references, 7 figures

  2. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.

  3. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  4. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Justin W. [Mission Support Alliance LLC, Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance LLC, Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance LLC, Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  5. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Hartman, Mary J.; Dresel, P. Evan; Lindberg, Jon W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  6. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  7. The data collection component of the Hanford Meteorology Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  8. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  9. Seismic qualification of safety class components in non-reactor nuclear facilities at Hanford site

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1989-01-01

    This paper presents the methods used during the walkdowns to compile as-built structural information to seismically qualify or verify the seismic adequacy of safety class components in the Plutonium Finishing Plant complex. The Plutonium finishing Plant is a non-reactor nuclear facility built during the 1950's and was designed to the Uniform Building Code criteria for both seismic and wind events. This facility is located at the US Department of Energy Hanford Site near Richland, Washington

  10. Feasibility of the Shallow High Resolution Seismic Reflection Technique for Use at the Hanford Site

    International Nuclear Information System (INIS)

    S.M., Narbutovskih.

    1993-01-01

    Data obtained during site characterization should be useful to assess the need for remediation, to evaluate and design effective remedial plans, and to allow long-term monitoring to discern remediation effectiveness. A valuable environmental tool that incorporates this data is a model that describes groundwater and vadose zone flow and transport characteristics. Data on geology and hydrology combined with information on contaminant sources are incorporated into these conceptual models that delineate the relative significance of the various fluid migration pathways. Downstream these same models also support risk assessment, remediation design, and long-term assessment of remediation effectiveness. Consequently, the building of coherent, accurate vadose zone and groundwater models is fundamental to a successful remediation. Among the important requirements for these models is accurate knowledge of flow domain boundaries and soil characteristics. At the Hanford Site, this knowledge is obtained primarily from borehole data, which provides information only at a point. In the high energy flood and fluvial deposits found at the Hanford Site, it can, at times, be difficult to correlate lithologic horizons between boreholes. Where there is no borehole control, our understanding of the geometry of hydrogeologic boundaries and thus of fluid migration paths is limited. Surface geophysical techniques are generally used to provide a measure of geologic control between boreholes. In particular, the seismic reflection method has the potential to provide the greatest resolution of the subsurface hydrogeology between and beyond boreholes

  11. Regional Seismic Threshold Monitoring

    National Research Council Canada - National Science Library

    Kvaerna, Tormod

    2006-01-01

    ... model to be used for predicting the travel times of regional phases. We have applied these attenuation relations to develop and assess a regional threshold monitoring scheme for selected subregions of the European Arctic...

  12. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  13. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  14. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  15. Recovery and evaluation of historical environmental monitoring data at Hanford

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that populations could have received from the nuclear operations at the Hanford site since 1944. The Environmental Monitoring Data Task within HEDR is charged with assembling, evaluating, and summarizing key historical measurements of radionuclide concentrations in the environment on and around the Hanford site. The recovery and evaluation of historical environmental monitoring data are integral parts of the environmental dose reconstruction process. The data generated through historical environmental monitoring programs may be critical in the development of dose modeling codes and in performing a meaningful environmental pathway analysis. In addition, environmental monitoring data are essential in the verification of model calculations and in the validation of the model itself. The paper a task logic flowchart illustrating how the process evolves within the Environmental Monitoring Data Task and the interaction with other project tasks. The reconstruction of such data presents numerous challenges, many of which are not generally encountered in typical scientific studies. This paper discusses the process of reconstructing historical environmental monitoring data at Hanford. Several of the difficulties encountered during this process are presented. Items that may be beneficial and should be considered in performing such a task are identified

  16. Integrated environmental monitoring program at the Hanford Site

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1990-08-01

    The US Department of Energy's Hanford Site, north of Richland, Washington, has a mission of defense production, waste management, environmental restoration, advanced reactor design, and research development. Environmental programs at Hanford are conducted by Pacific Northwest Laboratory (PNL) and the Westinghouse Hanford Company (WHC). The WHC environmental programs include the compliance and surveillance activities associated with site operations and waste management. The PNL environmental programs address the site-wide and the of-site areas. They include the environmental surveillance and the associated support activities, such as dose calculations, and also the monitoring of environmental conditions to comply with federal and state environmental regulations on wildlife and cultural resources. These are called ''independent environmental programs'' in that they are conducted completely separate from site operations. The Environmental Surveillance and Oversight Program consists of the following projects: surface environmental surveillance; ground-water surveillance; wildlife resources monitoring; cultural resources; dose overview; radiation standards and calibrations; meteorological and climatological services; emergency preparedness

  17. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  18. Environmental monitoring at Hanford by the state of Washington

    International Nuclear Information System (INIS)

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L.

    1990-01-01

    The Department of Social and Health Services' Office of Radiation Protection (ORP), Washington State's radiation control agency, has a mandate to protect the public from radiation. In 1985, ORP was instructed by the legislature to establish a statewide environmental radiological base line, beginning with Hanford, to verify federal environmental programs, and to enforce federal and state Clean Air Acts. The primary mission of the agency is to protect public health by active involvement in Hanford monitoring and oversight. The state's program was designed not to duplicate but to supplement existing programs and to identify any sampling gaps or problems. Split, side-by-side, and independent samples are collected, with analysis performed by the state's own laboratory. Media sampled have included surface and drinking water, seep and ground water, fruits and vegetables, milk, soils, and air particulates; ambient radiation levels have been determined. Special activities have included split sampling of river seeps with multiple agencies, preliminary dose assessment of early Hanford releases, investigations of 129 I in the environment and in Franklin County drinking water, verification of U.S. Department of Energy (DOE) data on erroneous alarms at the Hanford Plutonium Uranium Extraction Plant, split sampling with a DOE headquarters survey, and participation in several General Accounting Office investigations and a National Academy of Sciences review. The independence of ORP programs guarantees that the public has access to environmental data on the activities of DOE and its contractors. We will describe the interrelationship of ORP and Hanford programs and present results of ORP activities

  19. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  20. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  1. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  2. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  3. Hanford Site groundwater monitoring for fiscal year 1996

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems

  4. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  5. Statistical application of groundwater monitoring data at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.; Hodges, F.N.

    1993-09-01

    Effective use of groundwater monitoring data requires both statistical and geohydrologic interpretations. At the Hanford Site in south-central Washington state such interpretations are used for (1) detection monitoring, assessment monitoring, and/or corrective action at Resource Conservation and Recovery Act sites; (2) compliance testing for operational groundwater surveillance; (3) impact assessments at active liquid-waste disposal sites; and (4) cleanup decisions at Comprehensive Environmental Response Compensation and Liability Act sites. Statistical tests such as the Kolmogorov-Smirnov two-sample test are used to test the hypothesis that chemical concentrations from spatially distinct subsets or populations are identical within the uppermost unconfined aquifer. Experience at the Hanford Site in applying groundwater background data indicates that background must be considered as a statistical distribution of concentrations, rather than a single value or threshold. The use of a single numerical value as a background-based standard ignores important information and may result in excessive or unnecessary remediation. Appropriate statistical evaluation techniques include Wilcoxon rank sum test, Quantile test, ''hot spot'' comparisons, and Kolmogorov-Smirnov types of tests. Application of such tests is illustrated with several case studies derived from Hanford groundwater monitoring programs. To avoid possible misuse of such data, an understanding of the limitations is needed. In addition to statistical test procedures, geochemical, and hydrologic considerations are integral parts of the decision process. For this purpose a phased approach is recommended that proceeds from simple to the more complex, and from an overview to detailed analysis

  6. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  7. The Westinghouse Hanford Company Operational Environmental Monitoring Program CY-93

    International Nuclear Information System (INIS)

    Schmidt, J.W.

    1993-10-01

    The Operational Environmental Monitoring Program (OEMP) provides facility-specific environmental monitoring to protect the environment adjacent to facilities under the responsibility of Westinghouse Hanford Company (WHC) and assure compliance with WHC requirements and local, state, and federal environmental regulations. The objectives of the OEMP are to evaluate: compliance with federal (DOE, EPA), state, and internal WHC environmental radiation protection requirements and guides; performance of radioactive waste confinement systems; and trends of radioactive materials in the environment at and adjacent to nuclear facilities and waste disposal sites. This paper identifies the monitoring responsibilities and current program status for each area of responsibility

  8. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  9. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  10. Monitoring fish, wildlife, radionuclides and chemicals at Hanford, Washington

    International Nuclear Information System (INIS)

    Gray, R.H.

    1989-02-01

    Concern about the effects of potential releases from nuclear and non-nuclear activities on the US Department of Energy's Hanford Site in southeastern Washington has evolved over four decades into a comprehensive environmental monitoring and surveillance program. The program includes field sampling, and chemical and physical analyses of air, surface and ground water, fish, wildlife, soil, foodstuffs, and natural vegetation. In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined, usually during the breeding season. Data from monitoring efforts are used to assess the environmental impacts of Hanford operations and calculate the overall radiological dose to humans onsite, at the Site perimeter, or residing in nearby communities. Chinook salmon (Oncorhynchus tshawytscha) spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter nesting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is also increasing. Nesting Canada goose (Branta canadensis) and great blue heron (Ardea herodias), and various other animals, e.g., mule deer (Odocoileus hemionus) and coyotes (Canis latrans) are common. Measured exposure to penetrating radiation and calculated radiation doses to the public are well below applicable regulatory limits. 35 refs., 4 figs

  11. Hanford Site groundwater monitoring: Setting, sources and methods

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2000-01-01

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports

  12. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  13. Westinghouse Hanford Company Operational Environmental Monitoring. Annual report, CY 1993

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1994-07-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1993 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite conditions, the differences are less than in previous years. At certain locations on or directly adjacent to nuclear facilities and waste sites, levels can be several times higher than offsite conditions

  14. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  15. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  16. Hanford coring bit temperature monitor development testing results report

    International Nuclear Information System (INIS)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks

  17. Generation of artificial earthquake time histories for seismic design at Hanford, Washington

    International Nuclear Information System (INIS)

    Salmon, M.W.; Kuilanoff, G.

    1991-01-01

    The purpose of the development of artificial time-histories is to provide the designer with ground motion estimates which will meet the requirements of the design guidelines at the Hanford site. In particular, the artificial time histories presented in this paper were prepared to assist designers of the Hanford Waste Vitrification Plant (HWVP) with time histories that envelop the requirements for both a large magnitude earthquake (MI > 6.0) and a small magnitude, near-field earthquake (MI < 5. 0). A background of the requirements for both the large magnitude and small magnitude events is presented in this paper. The work done in generating time histories which produce response spectra matching those of the design seismic events is also presented. Finally, some preliminary results from studies performed using the small-magnitude near-filed earthquake time-history are presented

  18. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  19. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  20. Measurement Of Compressional-Wave Seismic Velocities In 29 Wells At The Hanford Site

    International Nuclear Information System (INIS)

    Peterson, S.W.

    2010-01-01

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  1. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT. DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh

  2. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  3. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  4. Hanford Site groundwater monitoring for Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  5. Hanford Site groundwater monitoring for Fiscal Year 1997

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium's ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level

  6. Data Analysis and reduction in Hanford's corrosion monitoring systems

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995. The project is designed to integrate EN-based corrosion monitoring into the site's corrosion monitoring strategy. In order to monitor multiple tanks, a major focus of this project has been to automate the data collection and analysis process. Data collection and analysis from the early EN corrosion monitoring equipment (241-AZ-101 and 241-AN-107) was primarily performed manually by a trained operator skilled in the analysis of EN data. Thousands of raw data files were collected, manually sorted and stored. Further statistical analysis of these files was performed by manually stripping out data from thousands of raw data files and calculating statistics in a spreadsheet format. Plotting and other graphical display analyses were performed by manually exporting data from the data files or spreadsheet into another plotting or presentation software package. In 1999, an Amulet/PRP system was procured and employed on the 241-AN-102 corrosion monitoring system. A duplicate system was purchased for use on the upcoming 241-AN-105 system. A third system has been procured and will eventually be used to upgrade the 241-AN-107 system. The Amulet software has greatly improved the automation of waste tank EN data analysis. In contrast with previous systems, the Amulet operator no longer has to manually collect, sort, store, and analyze thousands of raw EN data files. Amulet writes all data to a single database. Statistical analysis, uniform corrosion rate, and other derived parameters are automatically calculated in Amulet from the raw data while the raw data are being collected. Other improvements in plotting and presentation make inspection of the data a much quicker and relatively easy task. These and other improvements have greatly improved the speed at which EN data can be analyzed in addition to improving the quality of the final interpretation. The increase in data automation offered

  7. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon

  8. Reprocessing and interpretation, seismic reflection data: Hanford Site, Pasco Basin, south central Washington

    International Nuclear Information System (INIS)

    Berkman, E.

    1983-01-01

    The purpose of this project was to reprocess, evaluate, and reinterpret 14 line miles of seismic reflection data acquired at the Hanford Site. Regional and area-specific geology has been reviewed, the data acquisition parameters as they relate to the limitations inherent in the data have been discussed, and the reprocessing procedures have been described in detail along with an evaluation of the original processing. After initial testing, the focus of the reprocessing was placed on resolution of the geologic horizons at and near the top of the basalt. The reprocessed seismic data shows significant improvement over the original processing. The improvement is the result of the integrated processing and interpretation approach where each processing step has been tested in sequence and the intermediate results examined carefully in accordance with the project goals. The interpretation procedure placed strong reliance upon synthetic seismograms and models calculated based upon the physical parameters of the subsurface materials, and upon associated geophysical (reflection, gravity, magnetic) data. The final interpretation of the seismic data is in agreement with the structural contour maps based primarily on borehole information. The seismic interpretation has added important detail concerning areas which should be considered for further study. 60 figs., 1 tab

  9. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  10. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABBOTT FG; CARPENTER BG; RINKER MW

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  11. Hanford, Washington: Monitoring to assess the state of the environment

    International Nuclear Information System (INIS)

    Gray, R.H.

    1992-01-01

    Environmental monitoring has been ongoing at the US Department of Energy's Hanford Site for almost 5 years. Concentrations of airborne radionuclides at the Site perimeter, and concentrations of radionuclides and nonradiological water quality in the Columbia River are in compliance with applicable standards. Radionuclide levels in food stuffs irrigated with river water taken downstream of the Site, most onsite wildlife samples, and soils and vegetation from both on- and off-site locations are typical of those attributable to worldwide fallout. The calculated dose potentially received by a maximally exposed individual, using worst-case assumptions for all routes of exposure, was 0.05 mrem/yr in 1989. The average per capita whole-body effective dose to people, based on a population of 340,000 living within 80 km (50 mi) of the Site, was <0.01 to 0.03 mrem annually from 1985 through 1989. Chinook salmon (Oncorhynchus tshawytscha) spawning in Hanford Reach of the Columbia River has increased in recent years with a con-comitant increase in winter roosting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is also increasing. Nesting Canada goose (Branta canadensis), great blue heron (Ardea herodias), various plants and other animals, e.g., mule deer (Odocoileus hemionus), and coyotes (Canis latrans) are common

  12. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  13. Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project

    International Nuclear Information System (INIS)

    Rieger, JoAnne T.; Hartman, Mary J.

    2005-01-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State

  14. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-ANSYS BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  15. Seismic monitoring of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  16. Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance, Richland, WA (United States); Nugent, John J. [Mission Support Alliance, Richland, WA (United States)

    2014-02-10

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  17. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  18. Design of second generation Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    Edgemon, G.L.

    1998-01-01

    The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (< 1 Hz) and

  19. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  20. Hanford Environmental Monitoring Program schedule for samples, analyses, and measurements for calendar year 1985

    International Nuclear Information System (INIS)

    Blumer, P.J.; Price, K.R.; Eddy, P.A.; Carlile, J.M.V.

    1984-12-01

    This report provides the CY 1985 schedule of data collection for the routine Hanford Surface Environmental Monitoring and Ground-Water Monitoring Programs at the Hanford Site. The purpose is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5484.1. The routine sampling schedule provided herein does not include samples scheduled to be collected during FY 1985 in support of special studies, special contractor support programs, or for quality control purposes. In addition, the routine program outlined in this schedule is subject to modification during the year in response to changes in site operations, program requirements, or unusual sample results

  1. HEIS: An integrated information system for environmental restoration and monitoring at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Tzemos, S.; Kissinger, B.

    1991-11-01

    The US Department of Energy`s Hanford Site has about 1500 waste sites that contain a complex mixture of chemical and radioactive contaminants. After many years of environmental monitoring to assess the impact of Hanford operations to the environment, the Site`s mission is shifting to environmental restoration. The Hanford Environmental Information System (HEIS) is being developed to provide advanced tools to (1) support environmental restoration and routine site-wide monitoring, and (2) aid the scientists in understanding and conducting the restoration efforts. This paper describes some of the highlights and distinctive features of HEIS.

  2. HEIS: An integrated information system for environmental restoration and monitoring at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Tzemos, S.; Kissinger, B.

    1991-11-01

    The US Department of Energy's Hanford Site has about 1500 waste sites that contain a complex mixture of chemical and radioactive contaminants. After many years of environmental monitoring to assess the impact of Hanford operations to the environment, the Site's mission is shifting to environmental restoration. The Hanford Environmental Information System (HEIS) is being developed to provide advanced tools to (1) support environmental restoration and routine site-wide monitoring, and (2) aid the scientists in understanding and conducting the restoration efforts. This paper describes some of the highlights and distinctive features of HEIS.

  3. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds

  4. ANZA Seismic Network- From Monitoring to Science

    Science.gov (United States)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local

  5. Seismic monitoring: a unified system for research and verifications

    International Nuclear Information System (INIS)

    Thigpen, L.

    1979-01-01

    A system for characterizing either a seismic source or geologic media from observational data was developed. This resulted from an examination of the forward and inverse problems of seismology. The system integrates many seismic monitoring research efforts into a single computational capability. Its main advantage is that it unifies computational and research efforts in seismic monitoring. 173 references, 9 figures, 3 tables

  6. Real-time monitoring of Hanford nuclear waste

    International Nuclear Information System (INIS)

    McNeece, S.G.; Glasscock, J.A.; Rosnick, C.K.

    1979-10-01

    Two minicomputers are used to perform real time monitoring of radioactive waste storage tanks on the Hanford Nuclear Reservation. The Computer Automated Surveillance System, CASS, consists of a network of six field microprocessors, a central microprocessor and two central Eclipse minicomputers. The field microprocessors are each responsible for monitoring alarm sensors, liquid levels and temperatures. The field microprocessors report alarm conditions immediately to the central microprocessor. The central minicomputer reports all alarm conditions to the user terminals, requests data from the field on a scheduled and requested basis, and generates reports. It handles all requests for information from the user and stores all incoming data for historical purposes. The CASS software consists of five major segments: (1) process creation, (2) report generation, (3) file updating, (4) terminal communication, and (5) microprocessor communication. Since CASS must operate 24 hours a day, 7 days a week, the system cannot be allowed to abnormally terminate. For this reason all processes are started by the creation process. Having a single process responsible for creating all other processes provides the ability to detect a failure of a subordinate process and to automatically restart the failed process. The report generation process schedules reports, requests the data to be gathered to produce the reports, forms the reports, and distributes the reports to the user terminals. The file updating process handles all data file modifications. There is a terminal communication process for each user terminal which is responsible for printing scheduled reports and for allowing the user to request information from the CASS system. The microprocessor communication process handles all communication with the central microprocessor

  7. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    DIEDIKER, L.P.

    1999-07-29

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  8. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    International Nuclear Information System (INIS)

    DIEDIKER, L.P.

    1999-01-01

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years

  9. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J. [and others

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  10. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  11. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs

  12. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    Science.gov (United States)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  13. Westinghouse Hanford Company operational environmental monitoring annual report, calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Fassett, J.W.; Johnson, A.R.; Johnson, V.G.; Markes, B.M.; McKinney, S.M.; Moss, K.J.; Perkins, C.J.; Richterich, L.R.

    1995-08-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1994 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  14. Westinghouse Hanford Company operational environmental monitoring annual report - calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W., Westinghouse Hanford

    1996-07-30

    This document summarizes the results of the Westinghouse Hanford Company (WHC) near-facility operational environmental monitoring for 1995 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water,groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  15. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  16. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System

    Science.gov (United States)

    ,

    1999-01-01

    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  17. GSETT-3: testing the experimental international seismic monitoring system

    International Nuclear Information System (INIS)

    Ringdal, Frode

    1995-01-01

    Global seismic monitoring system has been developed by the Conference on Disarmaments (CDs) ad hoc group of scientific experts to consider international cooperative measures to detect and identify seismic events (the GSE), based in Geneva. In the course of its work, the GSE has conducted two large-scale global technical tests, Global Seismic Events Technical Test-1 (GSETT-1) in 1984 and GSETT-2 in 1991. The GSE has now embarked upon its third and most ambitious technical test, GSETT-3, which will encompass the development, testing and evaluation of a working prototype of the eventual Comprehensive Test Ban Treaty (CTBT) seismic monitoring system

  18. Downhole seismic monitoring with Virtual Sources

    Science.gov (United States)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Huge quantities of remaining oil and gas reserves are located in very challenging geological environments covered by salt, basalt or other complex overburdens. Conventional surface seismology struggles to deliver images necessary to economically explore them. Even if those reserves are found by drilling successful production critically depends on our ability to ``see" in real time where fluids are drawn from and how pressure changes throughout the reservoirs. For relatively simple overburdens surface time-lapse (4D) seismic monitoring became industry choice for aerial reservoir surveillance. For complex overburdens, 4D seismic does not have enough resolution and repeatability to answer the questions of reservoir engineers. For instance, often reservoir changes are too small to be detected from surface or these changes occur in such pace that all wells will be placed before we can detect them which greatly reduces the economical impact. Two additional challenges are present in real life that further complicate active monitoring: first, near-surface condition do change between the surveys (water level movement, freezing/thawing, tide variations etc) and second, repeating exact same acquisition geometry at the surface is difficult in practice. Both of these things may lead to false 4D response unrelated to reservoir changes. Virtual Source method (VSM) has been recently proposed as a way to eliminate overburden distortions for imaging and monitoring. VSM acknowledges upfront that our data inversion techniques are unable to unravel the details of the complex overburdens to the extent necessary to remove the distortions caused by them. Therefore VSM advocates placing permanent downhole geophones below that most complex overburden while still exciting signals with a surface sources. For instance, first applications include drilling instrumented wells below complicated near-surface, basalt or salt layer. Of course, in an ideal world we would prefer to have both downhole

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in

  20. Summary of radiological monitoring of Columbia River water along the Hanford Reach, 1980 through 1989

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1994-02-01

    The Surface Environmental Surveillance Project (SESP) is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) at the Hanford Site in southeastern Washington State. The Columbia River monitoring program, conducted as part of the SESP, provides a historical record of contaminant concentrations in the river attributable to natural causes, worldwide fallout, and operations conducted at the Hanford Site. In addition to ongoing monitoring, special studies are conducted periodically to enhance the understanding of the transport and fate of contaminants in the river. The Columbia River monitoring program includes sampling of river water, river sediment, river-bank springs entering the river, and various types of aquatic biota found in or along the river. These samples are analyzed for radiological constituents and a wide range of chemical parameters. This report describes the water sampling component of the overall Columbia River monitoring program conducted during the years 1980 through 1989 and summarizes the radiological results generated through the program during this time period. The only radionuclides found in the river that were consistently influenced by Hanford were tritium and iodine-129. Strontium-90 and uranium, also attributable to Hanford operations, were present in localized areas within the river near ground-water discharge points; however, these contaminants are quickly dispersed within the river to concentrations similar to background

  1. Quality assurance project plan for ground water monitoring activities managed by Westinghouse Hanford Company. Revision 3

    International Nuclear Information System (INIS)

    Stauffer, M.

    1995-11-01

    This quality assurance project plan (QAPP) applies specifically to the field activities and laboratory analysis performed for all RCRA groundwater projects conducted by Hanford Technical Services. This QAPP is generic in approach and shall be implemented in conjunction with the specific requirements of individual groundwater monitoring plans

  2. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    International Nuclear Information System (INIS)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W.

    2013-01-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  3. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    Energy Technology Data Exchange (ETDEWEB)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

    2013-07-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  4. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  5. A Plan to Develop and Demonstrate Electrochemical Noise Based Corrosion Monitoring Systems in Hanford Site Waste Tanks

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This document describes changes that need to be made to the site's authorization basis and technical concerns that need to be resolved before proceduralized use of Electrochemical Noise based corrosion monitoring systems is fully possible at the Hanford Site

  6. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    Science.gov (United States)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  7. Soil Water Balance and Recharge Monitoring at the Hanford Site – FY 2010 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

    2010-10-27

    This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

  8. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  9. Performace Of Multi-Probe Corrosion Monitoring Systems At The Hanford Site

    International Nuclear Information System (INIS)

    Carothers, K.D.; Boomer, K.D.; Anda, V.S.; Dahl, M.M.; Edgemon, G.L.

    2010-01-01

    Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

  10. 200-BP-1 Prototype Hanford Barrier -- 15 Years of Performance Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Draper, Kathryn E.; Link, Steven O.; Clayton, Ray E.

    2011-09-30

    Monitoring is an essential component of engineered barrier system design and operation. A composite capacitive cover, including a capillary break and an evapotranspiration (ET) barrier at the Hanford Site, is generating data that can be used to help resolve these issues. The prototype Hanford barrier was constructed over the 216-B-57 Crib in 1994 to evaluate surface-barrier constructability, construction costs, and physical and hydrologic performance at the field scale. The barrier has been routinely monitored between November 1994 and September 1998 as part of a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) treatability test of barrier performance for the 200 BP 1 Operable Unit. Since FY 1998, monitoring has focused on a more limited set of key water balance, stability, and biotic parameters. In FY 2009, data collection was focused on: (1) water-balance monitoring, consisting of precipitation, runoff, soil moisture storage, and drainage measurements with evapotranspiration calculated by difference; (2) stability monitoring, consisting of asphalt-layer-settlement, basalt-side-slope-stability, and surface-elevation measurements; (3) vegetation dynamics; and (4) animal use. September 2009 marked 15 years since the start of monitoring and the collection of performance data. This report describes the results of monitoring activities during the period October 1, 2008, through September 30, 2009, and summarizes the 15 years of performance data collected from September 1994 through September 2009.

  11. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  12. A quantitative method for groundwater surveillance monitoring network design at the Hanford Site

    International Nuclear Information System (INIS)

    Meyer, P.D.

    1993-12-01

    As part of the Environmental Surveillance Program at the Hanford Site, mandated by the US Department of Energy, hundreds of groundwater wells are sampled each year, with each sample typically analyzed for a variety of constituents. The groundwater sampling program must satisfy several broad objectives. These objectives include an integrated assessment of the condition of groundwater and the identification and quantification of existing, emerging, or potential groundwater problems. Several quantitative network desip objectives are proposed and a mathematical optimization model is developed from these objectives. The model attempts to find minimum cost network alternatives that maximize the amount of information generated by the network. Information is measured both by the rats of change with respect to time of the contaminant concentration and the uncertainty in contaminant concentration. In an application to tritium monitoring at the Hanford Site, both information measures were derived from historical data using time series analysis

  13. New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Peter Morse [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-20

    Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can be used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.

  14. Engineering Task Plan for Fourth Generation Hanford Corrosion Monitoring System

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Engineering Task Plan (ETP) describes the activities associated with the installation of cabinets containing corrosion monitoring equipment on tanks 241-AN-102 and 241-AN-107. The new cabinets (one per tank) will be installed adjacent to existing corrosion probes already installed in riser WST-RISER-016 on both tanks. The corrosion monitoring equipment to be installed utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring systems are designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the systems also facilitate the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates

  15. Anisotropic analysis for seismic sensitivity of groundwater monitoring wells

    Science.gov (United States)

    Pan, Y.; Hsu, K.

    2011-12-01

    Taiwan is located at the boundaries of Eurasian Plate and the Philippine Sea Plate. The movement of plate causes crustal uplift and lateral deformation to lead frequent earthquakes in the vicinity of Taiwan. The change of groundwater level trigged by earthquake has been observed and studied in Taiwan for many years. The change of groundwater may appear in oscillation and step changes. The former is caused by seismic waves. The latter is caused by the volumetric strain and reflects the strain status. Since the setting of groundwater monitoring well is easier and cheaper than the setting of strain gauge, the groundwater measurement may be used as a indication of stress. This research proposes the concept of seismic sensitivity of groundwater monitoring well and apply to DonHer station in Taiwan. Geostatistical method is used to analysis the anisotropy of seismic sensitivity. GIS is used to map the sensitive area of the existing groundwater monitoring well.

  16. Dynamic characteristics of background seismic noise according to records of nuclear monitoring seismic stations in Kazakstan

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Sinyova, Z.I.; Komarov, I.I.; Mikhailova, N.N.

    1998-01-01

    The seismic stations of Kazakstan, included into nuclear monitoring network (see fig.1) are equipped with broad hand seismometers; seismic data are recorded in digital format. All this allows to investigate spectral and time characteristics of seismic background noise in very large frequency diapason (more than 3-5 orders), for all three components of oscillation vector. The spectral density of background seismic noise for vertical and both horizontal components (fig.2) was calculated for all of the observation points. The regular features of structure of noise spectra, inherent for all of the studied observation points, as well as some features, specific for studied places were found. The curves of spectral noise density were compared with global noise model, determined by the data of Global Seismological Network (GSN)

  17. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  18. Pennsylvania seismic monitoring network and related tectonic studies

    International Nuclear Information System (INIS)

    Alexander, S.S.

    1991-06-01

    This report summarizes the results of the operation of the Pennsylvania Seismic Monitoring Network during the interval May 1, 1983--March 31, 1985 to monitor seismic activity in Pennsylvania and surrounding areas, to characterize the earthquake activity in terms of controlling tectonic structures and related tectonic stress conditions in the crust, and to obtain improved crustal velocity models for hypocentral determinations. Most of the earthquake activity was concentrated in the Lancaster, PA area. The magnitude 4.2 mainshock that occurred there on April 23, 1984 was the largest ever recorded instrumentally and its intensity of VI places it among the largest in the historic record for that area. Other activity during the monitoring interval of this report was confined to eastern Pennsylvania. The very large number of quarry explosions that occur regularly in Pennsylvania account for most of the seismic events recorded and they provide important crustal velocity data that are needed to obtain accurate hypocenter estimates. In general the earthquakes that occurred are located in areas of past historic seismicity. Block-tectonic structures resulting from pre-Ordovician tectonic displacements appear to influence the distribution of contemporary seismicity in Pennsylvania and surrounding areas. 17 refs., 5 figs

  19. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    Science.gov (United States)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  20. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Science.gov (United States)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  1. Advances in crosshole seismic instrumentation for dam safety monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Anderlini, G.; Anderlini, C. [BC Hydro, Burnaby, BC (Canada); Taylor, R. [RST Instruments Ltd., Coquitlam, BC (Canada)

    2009-07-01

    Since 1996, crosshole shear wave velocity measurements have been performed annually at the WAC Bennett Dam in order to monitor the performance of the dam core and integrity of the 1997 sinkhole repairs. As the testing showed to be responsive to embankment conditions and capable of detecting subtle changes, the testing program was expanded to include the development of an electrical shear wave source capable of carrying out crosshole seismic testing in Mica and Revelstoke Dams over distances of 100 metres and depths of 250 metres. This paper discussed the development and capabilities of the crosshole seismic instrumentation and presented preliminary results obtained during initial testing. Specific topics that were discussed included conventional crosshole seismic equipment; design basics; description of new crosshole seismic equipment; and automated in-situ crosshole seismic system (ACSS) system description and operation. It was concluded that the ACSS and accompanying electrical shear wave source, developed as part of the project, has advanced and improved on traditional crosshole seismic equipment. 7 refs., 9 figs.

  2. Functions and requirements for Hanford single-shell tank leakage detection and monitoring

    International Nuclear Information System (INIS)

    Cruse, J.M.; Ohl, P.C.

    1995-01-01

    This document provides the initial functions and requirements for leakage detection and monitoring applicable to past and potential future leakage from the Hanford Site's 149 single-shell high-level waste tanks. This mission is a part of the overall mission of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineering principles are being applied to this effort. This document reflects the an initial step in the systems engineering approach to decompose the mission into primary functions and requirements. The document is considered approximately 30% complete relative to the effort required to produce a final version that can be used to support demonstration and/or procurement of technologies. The functions and requirements in this document apply to detection and monitoring of below ground leaks from SST containment boundaries and the resulting soil contamination. Leakage detection and monitoring is invoked in the TWRS Program in three fourth level functions: (1) Store Waste, (2) Retrieve Waste, and (3) Disposition Excess Facilities (as identified in DOE/RL-92-60 Rev. 1, Tank Waste Remediation System Functions and Requirements)

  3. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C.J.

    1997-08-05

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  4. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  5. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    Science.gov (United States)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  6. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  7. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring

  8. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    International Nuclear Information System (INIS)

    2006-01-01

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require

  9. Trade study of leakage detection, monitoring, and mitigation technologies to support Hanford single-shell waste retrieval

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    The U.S. Department of Energy has established the Tank Waste Remediation System to safely manage and dispose of low-level, high-level, and transuranic wastes currently stored in underground storage tanks at the Hanford Site in Eastern Washington. This report supports the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone No. M-45-08-T01 and addresses additional issues regarding single-shell tank leakage detection, monitoring, and mitigation technologies and provide an indication of the scope of leakage detection, monitoring, and mitigation activities necessary to support the Tank Waste Remedial System Initial Single-shell Tank Retrieval System project

  10. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  11. Annual report for RCRA groundwater monitoring projects at Hanford site facilities for 1994

    International Nuclear Information System (INIS)

    1995-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the U.S. Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1993 and September 1994. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  12. Seismic monitoring of the unstable rock slope at Aaknes, Norway

    Science.gov (United States)

    Roth, M.; Blikra, L. H.

    2009-04-01

    The unstable rock slope at Aaknes has an estimated volume of about 70 million cubic meters, and parts of the slope are moving at a rate between 2-15 cm/year. Amongst many other direct monitoring systems we have installed a small-scale seismic network (8 three-component geophones over an area of 250 x 150 meters) in order to monitor microseismic events related to the movement of the slope. The network has been operational since November 2005 with only a few short-term outages. Seismic data are transferred in real-time from the site to NORSAR for automatic detection processing. The resulting detection lists and charts and the associated waveform are forwarded immediately to the early warning centre of the Municipality of Stranda. Furthermore, we make them available after a delay of about 10-15 minutes on our public project web page (http://www.norsar.no/pc-47-48-Latest-Data.aspx). Seismic monitoring provides independent and complementary data to the more direct monitoring systems at Aaknes. We observe increased seismic activity in periods of heavy rain fall or snow melt, when laser ranging data and extensometer readings indicate temporary acceleration phases of the slope. The seismic network is too small and the velocity structure is too heterogeneous in order to obtain reliable localizations of the microseismic events. In summer 2009 we plan to install a high-sensitive broadband seismometer (60 s - 100 Hz) in the middle of the unstable slope. This will allow us to better constrain the locations of the microseismic events and to investigate potential low-frequency signals associated with the slope movement.

  13. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  14. Transmission of low-magnitude seismic excitation into Hanford Site structures

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1989-01-01

    Several Hanford Site buildings were analyzed using simplified models to gain insight as to what extent the free field motion of a small-magnitude earthquake is transmitted into building structures as a result of soil-structure interaction effects. Building selection included the Plutonium Processing Plant, B-Plant and the Fast Flux Test Facility containment which represented a variety of stiffnesses, weights, and embedments. An artificial time history for the free field has a peak response at 13 Hz. This motion represents a median for magnitude 4 and 4.5 earthquakes, respectively. Floor response spectra were compared with results from analyses to design basis ground motions using the same structural models. Considerable attenuation of the small-magnitude free-field motion was found in the case of stiff, deeply embedded structures. This attenuation is attributed to kinematic interaction in addition to attenuation with depth in the free field. Even with such attenuation, there are exceptions where small magnitude responses exceed design basis responses. They are generally associated with 10 to 20 Hz modes with vertical motion

  15. Seismic monitoring experiment of raise boring in 2014

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  16. Seismic monitoring experiment of raise boring in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AaF-Consult Oy, Espoo (Finland)

    2015-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  17. Local seismic monitoring east and north of Toronto - Volume 1

    International Nuclear Information System (INIS)

    Mohajer, A.A.; Doughty, M.

    1996-08-01

    Monitoring of small magnitude ('micro') earthquakes in a dense local network is one of the techniques used to delineate currently active faults and seismic sources. The conventional wisdom is that smaller, but more frequent, seismic events normally occur on active fault planes and a log linear empirical relation between frequency and magnitude can be used to estimate the magnitude and recurrence (frequency) of the larger events. A program of site-specific seismic monitoring has been supported by the AECB since 1991, to investigate the feasibility of microearthquake detection in suburban areas of east Toronto in order to assess the rate activity of local events in the vicinity of the nuclear power plants at Pickering and Darlington. For deployment of the seismic stations at the most favorable locations an extensive background noise survey was carried out. This survey involved measuring and comparing the amplitude response of the ambient vibration caused by natural phenomena (e.g. wind blow, water flow, wave action) or human activities such as farming, mining and industrial work at 25 test sites. Subsequently, a five-station seismic network, with a 30 km aperture, was selected between the Pickering and Darlington nuclear power plants on Lake Ontario, to the south, and Lake Scugog to the north. The detection threshold obtained for two of the stations allows recording of local events M L =0-2, a magnitude range which is usually not detected by regional seismic networks. An analysis of several thousand triggered signals resulted in the identification of about 120 local events, which can not be assigned to any source other than the natural release of crustal stresses. The recurrence frequency of these microearthquakes shows a linear relationship which matches that of larger events in the last two centuries in this region. The preliminary results indicate that the stress is currently accumulating and is being released within clusters of small earthquakes

  18. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Waste Burial Grounds

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    2000-01-01

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  19. Offsite radiation doses summarized from Hanford environmental monitoring reports for the years 1957-1984

    International Nuclear Information System (INIS)

    Soldat, J.K.; Price, K.R.; McCormack, W.D.

    1986-02-01

    Since 1957, evaluations of offsite impacts from each year of operation have been summarized in publicly available, annual environmental reports. These evaluations included estimates of potential radiation exposure to members of the public, either in terms of percentages of the then permissible limits or in terms of radiation dose. The estimated potential radiation doses to maximally exposed individuals from each year of Hanford operations are summarized in a series of tables and figures. The applicable standard for radiation dose to an individual for whom the maximum exposure was estimated is also shown. Although the estimates address potential radiation doses to the public from each year of operations at Hanford between 1957 and 1984, their sum will not produce an accurate estimate of doses accumulated over this time period. The estimates were the best evaluations available at the time to assess potential dose from the current year of operation as well as from any radionuclides still present in the environment from previous years of operation. There was a constant striving for improved evaluation of the potential radiation doses received by members of the public, and as a result the methods and assumptions used to estimate doses were periodically modified to add new pathways of exposure and to increase the accuracy of the dose calculations. Three conclusions were reached from this review: radiation doses reported for the years 1957 through 1984 for the maximum individual did not exceed the applicable dose standards; radiation doses reported over the past 27 years are not additive because of the changing and inconsistent methods used; and results from environmental monitoring and the associated dose calculations reported over the 27 years from 1957 through 1984 do not suggest a significant dose contribution from the buildup in the environment of radioactive materials associated with Hanford operations

  20. Water Monitoring Report for the 200 W Area Tree Windbreak, Hanford Site Richland, Washington

    International Nuclear Information System (INIS)

    Gee, Glendon W.; Carr, Jennifer S.; Goreham, John O.; Strickland, Christopher E.

    2002-01-01

    Water inputs to the vadose zone from irrigation of a tree windbreak in the 200 W Area of the Hanford Site were monitored during the summer of 2002. Water flux and soil-water contents were measured within the windbreak and at two locations just east of the windbreak to assess the impact of the irrigation on the vadose zone and to assist in optimizing the irrigation applications. In May 2002, instrumentation was placed in auger holes and backfilled with local soil. Sensors were connected to a data acquisition system (DAS), and the data were telemetered to the laboratory via digital modem in late June 2002. Data files and graphics were made web accessible for instantaneous retrieval. Precipitation, drip irrigation, deep-water flux, soil-water content, and soil-water pressures have been monitored on a nearly continuous basis from the tree-line site since June 26, 2002.

  1. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  2. Connection with seismic networks and construction of real time earthquake monitoring system

    International Nuclear Information System (INIS)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S.

    2000-12-01

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system

  3. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-DYTRAN BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN FLAT-TOP TANKS

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2007-01-01

    The work reported in this document was performed in support of a project entitled ''Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work herein was motivated by review comments from a Project Review Meeting held on March 20-21, 2006. One of the recommendations from that meeting was that the effects of the interaction between the tank liquid and the roof be further studied (Rinker, Deibler, Johnson, Karri, Pilli, Abatt, Carpenter, and Hendrix - Appendix E of RPP-RPT-28968, Rev. 1). The reviewers recommended that solutions be obtained for seismic excitation of flat roof tanks containing liquid with varying headspace between the top of the liquid and the tank roof. It was recommended that the solutions be compared with simple, approximate procedures described in BNL (1995) and Malhotra (2005). This report documents the results of the requested studies and compares the predictions of Dytran simulations to the approximate procedures in BNL (1995) and Malhotra (2005) for flat roof tanks. The four cases analyzed all employed a rigid circular cylindrical flat top tank with a radius of 450 in. and a height of 500 in. The initial liquid levels in the tank were 460,480,490, and 500 in. For the given tank geometry and the selected seismic input, the maximum unconstrained slosh height of the liquid is slightly greater than 25 in. Thus, the initial liquid level of 460 in. represents an effectively roofless tank, the two intermediate liquid levels lead to intermittent interaction between the liquid and tank roof, and the 500 in. liquid level represents a completely full tank with no sloshing. Although this work was performed in support of the

  4. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT DYTRAN BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN FLAT TOP TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2007-02-16

    The work reported in this document was performed in support of a project entitled ''Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work herein was motivated by review comments from a Project Review Meeting held on March 20-21, 2006. One of the recommendations from that meeting was that the effects of the interaction between the tank liquid and the roof be further studied (Rinker, Deibler, Johnson, Karri, Pilli, Abatt, Carpenter, and Hendrix - Appendix E of RPP-RPT-28968, Rev. 1). The reviewers recommended that solutions be obtained for seismic excitation of flat roof tanks containing liquid with varying headspace between the top of the liquid and the tank roof. It was recommended that the solutions be compared with simple, approximate procedures described in BNL (1995) and Malhotra (2005). This report documents the results of the requested studies and compares the predictions of Dytran simulations to the approximate procedures in BNL (1995) and Malhotra (2005) for flat roof tanks. The four cases analyzed all employed a rigid circular cylindrical flat top tank with a radius of 450 in. and a height of 500 in. The initial liquid levels in the tank were 460,480,490, and 500 in. For the given tank geometry and the selected seismic input, the maximum unconstrained slosh height of the liquid is slightly greater than 25 in. Thus, the initial liquid level of 460 in. represents an effectively roofless tank, the two intermediate liquid levels lead to intermittent interaction between the liquid and tank roof, and the 500 in. liquid level represents a completely full tank with no sloshing. Although this work was performed

  5. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  6. A seismic monitoring system for response and failure of structures with intentionally reduced seismic strength

    International Nuclear Information System (INIS)

    Takanashi, Koichi; Ohi, Kenichi

    1988-01-01

    A group of steel and reinforced concrete scaled structures with intentionally reduced seismic strength to 1/3 to 1/2 were constructed in 1983 for long term observation in order to collect precise data of earthquake response and grasp failure mechanisms during earthquakes. A monitoring system was installed in the structures as well as in the surrounding soil. Some reliable data have been successfully recorded since then, which can be available for verification of analytical models. (author)

  7. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  8. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global

  9. Romanian Data Center: A modern way for seismic monitoring

    Science.gov (United States)

    Neagoe, Cristian; Marius Manea, Liviu; Ionescu, Constantin

    2014-05-01

    The main seismic survey of Romania is performed by the National Institute for Earth Physics (NIEP) which operates a real-time digital seismic network. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Mark l4c, Ranger, gs21, Mark l22) and acceleration sensors (Episensor Kinemetrics). The data are transmitted at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for the Black Sea tsunami events. NIEP is a data acquisition node for the seismic network of Moldova (FDSN code MD) composed of five seismic stations. NIEP has installed in the northern part of Bulgaria eight seismic stations equipped with broadband sensors and Episensors and nine accelerometers (Episensors) installed in nine districts along the Danube River. All the data are acquired at NIEP for Early Warning System and for primary estimation of the earthquake parameters. The real-time acquisition (RT) and data exchange is done by Antelope software and Seedlink (from Seiscomp3). The real-time data communication is ensured by different types of transmission: GPRS, satellite, radio, Internet and a dedicated line provided by a governmental network. For data processing and analysis at the two data centers Antelope 5.2 TM is being used running on 3 workstations: one from a CentOS platform and two on MacOS. Also a Seiscomp3 server stands as back-up for Antelope 5.2 Both acquisition and analysis of seismic data systems produce information about local and global parameters of earthquakes. In addition, Antelope is used for manual processing (event association, calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV, etc.), generating

  10. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  11. GISMO: A MATLAB toolbox for seismic research, monitoring, & education

    Science.gov (United States)

    Thompson, G.; Reyes, C. G.; Kempler, L. A.

    2017-12-01

    GISMO is an open-source MATLAB toolbox which provides an object-oriented framework to build workflows and applications that read, process, visualize and write seismic waveform, catalog and instrument response data. GISMO can retrieve data from a variety of sources (e.g. FDSN web services, Earthworm/Winston servers) and data formats (SAC, Seisan, etc.). It can handle waveform data that crosses file boundaries. All this alleviates one of the most time consuming part for scientists developing their own codes. GISMO simplifies seismic data analysis by providing a common interface for your data, regardless of its source. Several common plots are built-in to GISMO, such as record section plots, spectrograms, depth-time sections, event count per unit time, energy release per unit time, etc. Other visualizations include map views and cross-sections of hypocentral data. Several common processing methods are also included, such as an extensive set of tools for correlation analysis. Support is being added to interface GISMO with ObsPy. GISMO encourages community development of an integrated set of codes and accompanying documentation, eliminating the need for seismologists to "reinvent the wheel". By sharing code the consistency and repeatability of results can be enhanced. GISMO is hosted on GitHub with documentation both within the source code and in the project wiki. GISMO has been used at the University of South Florida and University of Alaska Fairbanks in graduate-level courses including Seismic Data Analysis, Time Series Analysis and Computational Seismology. GISMO has also been tailored to interface with the common seismic monitoring software and data formats used by volcano observatories in the US and elsewhere. As an example, toolbox training was delivered to researchers at INETER (Nicaragua). Applications built on GISMO include IceWeb (e.g. web-based spectrograms), which has been used by Alaska Volcano Observatory since 1998 and became the prototype for the USGS

  12. 200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Years 2005 Through 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Link, Steven O.; Strickland, Christopher E.; Draper, Kathryn E.; Clayton, Ray E.

    2008-02-01

    A prototype Hanford barrier was deployed over the 216-B-57 Crib at the Hanford Site in 1994 to prevent percolation through the underlying waste and to minimize spreading of buried contaminants. This barrier is being monitored to evaluate physical and hydrologic performance at the field scale. This report summarizes data collected during the period FY 2005 through FY 2007. In FY 2007, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance, including precipitation, runoff, storage, drainage, and deep percolation. Owing to a hiatus in funding in FY 2005 through 2006, data collected were limited to automated measurements of the water-balance components. For the reporting period (October 2004 through September 2007) precipitation amount and distribution were close to normal. The cumulative amount of water received from October 1994 through September 2007 was 3043.45 mm on the northern half of the barrier, which is the formerly irrigated treatment, and 2370.58 mm on the southern, non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of around 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. For the reporting period, the total drainage from the soil-covered plots ranged from near zero amounts under the soil-covered plots to almost 20 mm under the side slopes. Over the 13-yr monitoring period, side slope drainage accounted for about 20 percent of total precipitation while the soil-covered plots account for only 0.12 mm total. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys show the barrier and protective side slopes to be stable. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation

  13. Monitoring Seasonal Changes in Permafrost Using Seismic Interferometry

    Science.gov (United States)

    James, S. R.; Knox, H. A.; Abbott, R. E.

    2015-12-01

    The effects of climate change in polar regions and their incorporation in global climate models has recently become an area of great interest. Permafrost holds entrapped greenhouse gases, e.g. CO2 and CH4, which are released to the atmosphere upon thawing, creating a positive feedback mechanism. Knowledge of seasonal changes in active layer thickness as well as long term degradation of permafrost is critical to the management of high latitude infrastructures, hazard mitigation, and increasing the accuracy of climate predictions. Methods for effectively imaging the spatial extent, depth, thickness, and discontinuous nature of permafrost over large areas are needed. Furthermore, continuous monitoring of permafrost over annual time scales would provide valuable insight into permafrost degradation. Seismic interferometry using ambient seismic noise has proven effective for recording velocity changes within the subsurface for a variety of applications, but has yet to be applied to permafrost studies. To this end, we deployed 7 Nanometrics Trillium posthole broadband seismometers within Poker Flat Research Range, located 30 miles north of Fairbanks, Alaska in a zone of discontinuous permafrost. Approximately 2 years worth of nearly continuous ambient noise data was collected. Using the python package MSNoise, relative changes in velocity were calculated. Results show high amounts of variability throughout the study period. General trends of negative relative velocity shifts can be seen between August and October followed by a positive relative velocity shift between November and February. Differences in relative velocity changes with both frequency and spatial location are also observed, suggesting this technique is sensitive to permafrost variation with depth and extent. Overall, short and long term changes in shallow subsurface velocity can be recovered using this method proposing seismic interferometry is a promising new technique for permafrost monitoring. Sandia

  14. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    DB Barnett

    2000-01-01

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  15. The Canarian Seismic Monitoring Network: design, development and first result

    Science.gov (United States)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.

    2017-04-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  16. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  17. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  18. The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, T.Y.; Cho, B.H. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of); Kang, T.G.; Kim, H.M.; Kim, Y.S.; Oh, S.M.; Kang, Y.S. [Korea Electric Power Data Network Co., Seoul (Korea, Republic of)

    1997-12-31

    Due to aging of the imported seismic monitoring system of Uljin of t 1 and 2 units it is difficult for this system to provide enough functions needed for the security of seismic safety and the evaluation of the earthquake data from the seismic instrumentation. For this reason, it is necessary to replace the seismic monitoring system of Uljin 1 and 2 units with a new system which has the localized and upgraded hardware and corresponding software. In the part of standardization of existing seismic monitoring system, furthermore, it is necessary to develop the seismic wave analysis system which incorporate newly developed software and can real-timely analyze the seismic wave. This report is the finial product of research project ``The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2`` which have been performed from June 1996 to June 1997 by KEPRI and KDN. Main accomplishments - Review of regulatory criteria for seismic monitoring system -Analysis and upgrade of hardware system -Analysis and upgrade of software system - Development of seismic wave analysis system. (author). 17 refs., 49 figs., 6 tabs.

  19. Seismic monitoring of the Creys-Malville plant - Problems raised by the seismic behaviour of a fast breeder reactor

    International Nuclear Information System (INIS)

    Descleve, P.; Barrau, P.

    1988-01-01

    CREYS-MALVILLE reached full power in December 1986 and is presently the largest sodium cooled reactor in operation. Well established procedures of safety evaluation have been used for the design but for a large size reactor special attention must be paid to the effects of seismic disturbances. This paper describes the seismic protection and monitoring system of the plant, the core behaviour which is specific to fast reactors and the test performed to verify the analyses. Finally the seismic impact on the construction can be established as an indication for future plants. (author)

  20. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2009-01-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor bolt

  1. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT-BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.

    2009-01-01

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor

  2. A guidebook for the operation and maintenance of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung; Kim, Hyung Kyoo

    2003-09-01

    Systems and structures related to HANARO safety are classified as seismic category I. Since 1995, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system into a new digital Seismic Monitoring Analysis System(SMAS) that can offer precise and detail information of the earthquake signals. This newly developed SMAS is operating at the HANARO instrument room to acquire and analyze the signal of an earthquake. This document is a guidebook for the operation and maintenance of the SMAS. The first chapter gives an outline of the SMAS. The second chapter describes functional capability and specification of the hardware. Chapters 3 and 4 describe starting procedure of the SMAS and how to operate the seismic monitoring program, respectively. Chapter 5 illustrates the seismic analysis algorithm used in the SMAS. The way of operating the seismic analysis program is described in chapter 6. Chapter 7 illustrates the calibration procedure for data acquisition module. Chapter 8 describes the symptoms of common malfunctions and its countermeasure suited to the occasions.

  3. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    Science.gov (United States)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion

  4. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  5. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    Energy Technology Data Exchange (ETDEWEB)

    Burge, Scott R. [Burge Environmental, Inc., 6100 South Maple Avenue, no. 114, Tempe, AZ, 85283 (United States); O' Hara, Matthew J. [Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99352 (United States)

    2013-07-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated

  6. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    International Nuclear Information System (INIS)

    Burge, Scott R.; O'Hara, Matthew J.

    2013-01-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated system as an

  7. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report, July 1--September 30, 1989

    International Nuclear Information System (INIS)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality

  8. Connection with seismic networks and construction of real time earthquake monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-12-15

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system.

  9. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial

  10. The GNSS Component of the Seismic Monitoring System in Chile

    Science.gov (United States)

    Barrientos, S. E.

    2016-12-01

    Chile is amongst the most seismically active countries in the world. Since mid-XVI Century, a magnitude 8 or more earthquake has taken place every dozen of years, as an average. In the last 100 years, more than ten events with magnitudes around 8 or larger have taken place in this part of world. Three events with M>8 have taken place only in the last six years. The largest earthquake ever recorded took place in May, 1960, in southern Chile. Such extreme seismic activity is the result of the interaction of the Nazca, Antarctic, Scotia and South American plates in southwestern South America where Chile is located. These megathrust earthquakes exhibit long rupture regions reaching several hundreds of km with fault displacements of several tens of meters. At least eighteen of these earthquakes have generated local tsunamis with runups larger than 4 m -including events in 2010, 2014 and 2015- therefore it is mandatory to establish a system with capabilities to rapidly evaluate the tsunamigenic potential of these events. In 2013, the newly created National Seismological Center (CSN) of the University of Chile was tasked to upgrade the countrýs seismic network by increasing the numbers of real-time monitoring stations. The most important change to previous practices is the establishment of a GNSS network composed by 130 devices, in addition to the incorporation of 65 new collocated broadband and strong motion instruments. Additional 297 strong motion instruments for engineering purposes complement the system. Forty units -of the 130 devices- present an optional RTX capability, where satellite orbits and clock corrections are sent to the field device producing a 1-Hz position stream at 4-cm level. First records of ground displacement -using this technology-were recorded at the time of the largest aftershock (Mw=7.6) of the sequence that affected northern Chile in 2014. The CSN is currently developing automatic detectors and amplitude estimators of displacement from the

  11. Evolution of seismic monitoring systems of nuclear power plants. Improvements and practical applications

    International Nuclear Information System (INIS)

    Sanchez Cabanero, J. G.; Jimenez Juan, A.

    2010-01-01

    The II. NN. Spanish have a seismic monitoring system (SVS) covering two objectives relevant to nuclear security: determining earthquake leave operation, and specific data that serve to limit or reduce the uncertainties associated with the seismic source, the site and design. Since its construction, the major SVS II. NN. have been equipped with the best time of seismic instrumentation to record earthquakes strong, but with limited resolution for recording in the free field and appropriately moderate earthquakes.

  12. Proposed Construction of Boulder Seismic Station Monitoring Sites, Boulder, Wyoming. Environmental Assessment

    Science.gov (United States)

    2009-02-01

    boreholes at the Boulder Seismic Station for research, development, test, and evaluation (RDT&E) as part of the U.S. Nuclear Treaty monitoring...14 LIST OF FIGURES Figure 1. Location of the proposed Boulder Seismic Station, borehole locations and associated buffers...juncture of Spring Creek and Scab Creek Road (Figure 1). Currently, the Boulder Seismic Station has a 13-element array of seismometers on the property

  13. Monitoring of geothermal fields by seismic networks. Guidelines and chances; Monitoring geothermaler Felder durch seismische Netzwerke. Vorgaben und Chancen

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Geophysikalisches Inst.; Gaucher, Emmanuel [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Abt. Geothermie

    2012-07-01

    The monitoring of geothermal power plants requires seismic networks in order to quantify ground motions at the earth's surface in the case of a possible micro seismicity or to describe spatio-temporal seismicity distribution in the reservoir. The first case requires official needs. The second case may help to develop the reservoirs. An optimal configuration of the seismic network may adequate for both tasks. It also can be a chance for a long-term investment for the overall benefit.

  14. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States); Thornburg, Jon A. [Paulsson, Inc., Van Nuys, CA (United States); He, Ruiqing [Paulsson, Inc., Van Nuys, CA (United States)

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  15. A Seismic Transmission System for Continuous Monitoring of the Lithosphere : A Proposition

    NARCIS (Netherlands)

    Unger, R.

    2002-01-01

    The main objective of this thesis is to enhance earthquake prediction feasibility. We present the concept and the design layout of a novel seismic transmission system capable of continuously monitoring the Lithosphere for changes in Earth physics parameters governing seismic wave propagation.

  16. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  17. 200-BP-1 Prototype Hanford Barrier - 15 Years of Performance Monitoring

    International Nuclear Information System (INIS)

    Ward, Anderson L.; Link, Steven O.; Draper, Kathryn E.; Clayton, Ray E.

    2009-01-01

    Engineered surface barriers are recognized as a remedial alternative to the removal, treatment and disposal of near-surface contaminants at a variety of waste sites within the DOE complex. One issue impacting their acceptance by stakeholders the use of limited data to predict long-term performance. In 1994, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using natural materials. Monitoring has been almost continuous for the last 15 yrs and has focused on barrier stability, vegetative cover, plant and animal intrusion, and the components of the water balance, including precipitation, runoff, storage, drainage, and percolation. The total precipitation received from October 1994 through August 2008 was 3311 mm on the northern half (formerly irrigated), and 2638 mm on the southern, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing in the winter and decreasing in the spring and summer to a lower limit of around 100 mm, regardless of precipitation, in response to evapotranspiration. Topographic surveys show the barrier and side slopes to be stable and the pea-gravel admix has proven effective in minimizing erosion through the creation of a desert pavement during deflationary periods. Three runoff events have been observed but the 600-mm design storage capacity has never been exceeded. Total percolation ranged from near zero amounts under the soil-covered plots to over 600 mm under the side slopes. The asphaltic concrete prevented any of this water from reaching the buried waste thereby eliminating the driving force for the contaminant remobilization. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation although the number of species decreased from 35 in 1994 to 10 in 2009. Ample evidence of insect and small mammal use suggests that the barrier is behaving like a recovering ecosystem. In September 2008, the north half of the

  18. 200-BP-1 Prototype Hanford Barrier - 15 Years of Performance Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Link, Steven O.; Draper, Kathryn E.; Clayton, Ray E.

    2009-09-01

    Engineered surface barriers are recognized as a remedial alternative to the removal, treatment and disposal of near-surface contaminants at a variety of waste sites within the DOE complex. One issue impacting their acceptance by stakeholders the use of limited data to predict long-term performance. In 1994, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using natural materials. Monitoring has been almost continuous for the last 15 yrs and has focused on barrier stability, vegetative cover, plant and animal intrusion, and the components of the water balance, including precipitation, runoff, storage, drainage, and percolation. The total precipitation received from October 1994 through August 2008 was 3311 mm on the northern half (formerly irrigated), and 2638 mm on the southern, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing in the winter and decreasing in the spring and summer to a lower limit of around 100 mm, regardless of precipitation, in response to evapotranspiration. Topographic surveys show the barrier and side slopes to be stable and the pea-gravel admix has proven effective in minimizing erosion through the creation of a desert pavement during deflationary periods. Three runoff events have been observed but the 600-mm design storage capacity has never been exceeded. Total percolation ranged from near zero amounts under the soil-covered plots to over 600 mm under the side slopes. The asphaltic concrete prevented any of this water from reaching the buried waste thereby eliminating the driving force for the contaminant remobilization. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation although the number of species decreased from 35 in 1994 to 10 in 2009. Ample evidence of insect and small mammal use suggests that the barrier is behaving like a recovering ecosystem. In September 2008, the north half of the

  19. Monitoring Seismic Velocity Change to Explore the Earthquake Seismogenic Structures

    Science.gov (United States)

    Liao, C. F.; Wen, S.; Chen, C.

    2017-12-01

    Studying spatial-temporal variations of subsurface velocity structures is still a challenge work, but it can provide important information not only on geometry of a fault, but also the rheology change induced from the strong earthquake. In 1999, a disastrous Chi-Chi earthquake (Mw7.6; Chi-Chi EQ) occurred in central Taiwan and caused great impacts on Taiwan's society. Therefore, the major objective of this research is to investigate whether the rheology change of fault can be associated with seismogenic process before strong earthquake. In addition, after the strike of the Chi-Chi EQ, whether the subsurface velocity structure resumes to its steady state is another issue in this study. Therefore, for the above purpose, we have applied a 3D tomographic technique to obtain P- and S-wave velocity structures in central Taiwan using travel time data provided by the Central Weather Bureau (CWB). One major advantage of this method is that we can include out-of-network data to improve the resolution of velocity structures at deeper depths in our study area. The results show that the temporal variations of Vp are less significant than Vs (or Vp/Vs ratio), and Vp is not prominent perturbed before and after the occurrence of the Chi-Chi EQ. However, the Vs (or Vp/Vs ratio) structure in the source area demonstrates significant spatial-temporal difference before and after the mainshock. From the results, before the mainshock, Vs began to decrease (Vp/Vs ratio was increased as well) at the hanging wall of Chelungpu fault, which may be induced by the increasing density of microcracks and fluid. But in the vicinities of Chi-Chi Earthquake's source area, Vs was increasing (Vp/Vs ratio was also decreased). This phenomenon may be owing to the closing of cracks or migration of fluid. Due to the different physical characteristics around the source area, strong earthquake may be easily nucleated at the junctional zone. Our findings suggest that continuously monitoring the Vp and Vs (or

  20. The passive seismic aftershock Monitoring system: testing program and preliminary results

    International Nuclear Information System (INIS)

    Mokhtari, M.

    2005-01-01

    The paper is dedicated to testing program (phase of the passive seismic aftershock monitoring system with RefTek equipment (Refraction Technology, Inc., USA) for On-Site Inspection purposes that was carried out near Vienna International Centre in 2000. Equipment and applied software are described. Testing results were analyzed; in particular, least needs in maintenance personnel during operation. Development perspectives of passive seismic aftershock monitoring system for On-Site Inspection have been discussed. (author)

  1. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  2. 200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Linville, Jenifer K.; Keller, Jason M.; Seedahmed, Gamal H.

    2005-01-03

    In FY 2004, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance. Monitored water-balance components included precipitation, runoff, storage, drainage, and deep percolation. Precipitation in FY 2004 was 26 percent less than in FY 2003 but was still higher than normal. The seasonal distribution in precipitation was also different from the previous year with a 43 percent reduction in spring precipitation and a 46 percent increase in summer precipitation. The cumulative amount of water received from October 1994, through September 2004, was 2,559.58 mm on the northern half of the barrier, which is the formerly irrigated treatment, and 1,886.71 mm on the southern non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of about 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. Total drainage from the soil-covered plots range from 2.9E-4 mm to 0.22 mm or 0.003 6 0.004 percent of precipitation. Side-slope drainage was much higher at 20.9 6 2.3 percent of precipitation from the gravel and 18.6 6 5.1 percent from the riprap. There was no runoff from the barrier, but runoff from the BY tank farm following a thunderstorm in May eroded a 45-inch-deep channel into the structural fill at the toe of the riprap slope. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys were conducted on the barrier surface, including the two settlement gauges and 12 creep gauges on the riprap slope using aerial photogrammetry (AP) and a global positioning system (GPS). Comparing the aerial photogrammetry (AP) and global positioning system (GPS) surveys with the traditional survey shows the barrier and side slopes to be stable. Both AP and GPS show potential for

  3. The roles of the seismic safety and monitoring systems in the PEC fast reactor

    International Nuclear Information System (INIS)

    Masoni, P.; Di Tullio, E.M.; Massa, B.; Martelli, A.; Sano, T.

    1988-01-01

    Two different seismic systems are foreseen in the case of PEC: the seismic safety system, that provides the automatic scram, and the seismic monitoring system. During earthquake, three triaxial seismic switches are triggered if a threshold value of the ground acceleration is exceeded. In this case, the signals from the seismic switches are processed by the safety system (with a 2/3 logic) and the shutdown system is triggered. Peak acceleration is the parameter used by the safety system to quantify the seismic event. This way, however, no information is obtained with regard to earthquake frequency content. Thus, reactor safety is guaranteed by adopting a threshold considerably lower than the Z.P.A. of the Design Basis Earthquake. Furthermore, in the case of significant earthquakes, the seismic motion is measured by about 20 triaxial accelerometers, located both in the free field and on the plant's structures. Data are digitazed and recordered by the seismic monitoring system. This system also elaborates the recordered time-histories providing floor response spectra and compares such spectra to the design values. The above-mentioned elaborations and comparisons are performed in short time for two triaxial measuring positions, thus allowing the Operator to immediately get a more complete information on the seismic event. The complete set of data recorded by the seismic monitoring system also allows the actual dynamic response of the plant to be determined and compared to the design values. On the basis of this comparison the necessary safety analysis can be carried out to verify whether the design limits of the plant were respected: in the positive case the reactor can be restarted. (author)

  4. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  5. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  6. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma

    Science.gov (United States)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2017-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic

  7. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    Science.gov (United States)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  8. Spectral characteristics of seismic noise using data of Kazakhstan monitoring stations

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Komarov, I.I.

    2006-01-01

    Spectral specifications of seismic noise research for PS23-Makanchi, Karatau, Akbulak, AS057-Borovoye and new three-component station AS059-Aktyubinsk was done. Spectral noise density models were obtained for day and night time and spectral density values variation. Noise close to low-level universal noise model is peculiar for all stations, which provides their high efficiency while seismic monitoring. Noise parameters dependence on seismic receivers installation conditions was investigated separately. Based on three stations (Makanchi, Borovoye, and Aktyubinsk), spectral density change features are shown after borehole equipment installation. (author)

  9. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    International Nuclear Information System (INIS)

    De Freitas, J M

    2011-01-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance. (topical review)

  10. Passive seismic monitoring at the ketzin CCS site -Magnitude estimation

    NARCIS (Netherlands)

    Paap, B.F.; Steeghs, T.P.H.

    2014-01-01

    In order to allow quantification of the strength of local micro-seismic events recorded at the CCS pilot site in Ketzin in terms of local magnitude, earthquake data recorded by standardized seismometers were used. Earthquakes were selected that occurred in Poland and Czech Republic and that were

  11. Towards Quantification of Glacier Dynamic Ice Loss through Passive Seismic Monitoring

    Science.gov (United States)

    Köhler, A.; Nuth, C.; Weidle, C.; Schweitzer, J.; Kohler, J.; Buscaino, G.

    2015-12-01

    Global glaciers and ice caps loose mass through calving, while existing models are currently not equipped to realistically predict dynamic ice loss. This is mainly because long-term continuous calving records, that would help to better understand fine scale processes and key climatic-dynamic feedbacks between calving, climate, terminus evolution and marine conditions, do not exist. Combined passive seismic/acoustic strategies are the only technique able to capture rapid calving events continuously, independent of daylight or meteorological conditions. We have produced such a continuous calving record for Kronebreen, a tidewater glacier in Svalbard, using data from permanent seismic stations between 2001 and 2014. However, currently no method has been established in cryo-seismology to quantify the calving ice loss directly from seismic data. Independent calibration data is required to derive 1) a realistic estimation of the dynamic ice loss unobserved due to seismic noise and 2) a robust scaling of seismic calving signals to ice volumes. Here, we analyze the seismic calving record at Kronebreen and independent calving data in a first attempt to quantify ice loss directly from seismic records. We make use of a) calving flux data with weekly to monthly resolution obtained from satellite remote sensing and GPS data between 2007 and 2013, and b) direct, visual calving observations in two weeks in 2009 and 2010. Furthermore, the magnitude-scaling property of seismic calving events is analyzed. We derive and discuss an empirical relation between seismic calving events and calving flux which for the first time allows to estimate a time series of calving volumes more than one decade back in time. Improving our model requires to incorporate more precise, high-resolution calibration data. A new field campaign will combine innovative, multi-disciplinary monitoring techniques to measure calving ice volumes and dynamic ice-ocean interactions simultaneously with terrestrial laser

  12. New seismic array solution for earthquake observations and hydropower plant health monitoring

    Science.gov (United States)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  13. HANFORD DOUBLE-SHELL TANK (DST) THERMAL and SEISMIC PROJECT-BUCKLING EVALUATION METHODS and RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.

    2007-01-01

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to

  14. Hanford strong motion accelerometer network: A summary of the first months of operation

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1997-01-01

    The Hanford Seismic Monitoring Network consists of two designs of equipment and sites: seismometer sites and strong motion accelerometer (SMA) sites. Seismometer sites are designed to locate earthquakes on and near the Hanford Site and determine their magnitude and hypocenter location. The US Department of Energy (DOE) Order 5480.28, Natural Phenomena Hazards (DOE 1993) requires that facilities or sites that have structures or components in Performance Category 2 with hazardous material, and all Performance Category 3 and 4 facilities shall have instrumentation or other means to detect and record the occurrence and severity of seismic events. In order to comply with DOE Order 5480.28, the Hanford Seismic Monitoring Network seismometer sites needed to be complemented with strong motion accelerometers to record the ground motion at specific sites. The combined seismometer sites and strong motion accelerometer sites provide the Hanford Site with earthquake information to comply with DOE Order 5480.28. The data from these instruments will be used by the PHMC staff to assess the damage to facilities following a significant earthquake

  15. Learnings from the Monitoring of Induced Seismicity in Western Canada over the Past Three Years

    Science.gov (United States)

    Yenier, E.; Moores, A. O.; Baturan, D.; Spriggs, N.

    2017-12-01

    In response to induced seismicity observed in western Canada, existing public networks have been densified and a number of private networks have been deployed to closely monitor the earthquakes induced by hydraulic fracturing operations in the region. These networks have produced an unprecedented volume of seismic data, which can be used to map pre-existing geological structures and understand their activation mechanisms. Here, we present insights gained over the past three years from induced seismicity monitoring (ISM) for some of the most active operators in Canada. First, we discuss the benefits of high-quality ISM data sets for making operational decisions and how their value largely depends on choice of instrumentation, seismic network design and data processing techniques. Using examples from recent research studies, we illustrate the key role of robust modeling of regional source, attenuation and site attributes on the accuracy of event magnitudes, ground motion estimates and induced seismicity hazard assessment. Finally, acknowledging that the ultimate goal of ISM networks is assisting operators to manage induced seismic risk, we share some examples of how ISM data products can be integrated into existing protocols for developing effective risk management strategies.

  16. Hanford well custodians. Revision 1

    International Nuclear Information System (INIS)

    Schatz, A.L.; Underwood, D.J.

    1995-01-01

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993

  17. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  18. Feasibility study and technical proposal for seismic monitoring of tunnel boring machine in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Lakio, A. (AF-Consult Ltd, Vantaa (Finland))

    2009-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine (TBM) has been investigated. Characteristics of the seismic signal generated by the raise boring machine are described. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. The presented technical proposal for seismic monitoring of TBM in Olkiluoto is capable to detect and locate TBM coming outside the ONKALO area about two months before it would reach the ONKALO. (orig.)

  19. Feasibility study and technical proposal for seismic monitoring of tunnel boring machine in Olkiluoto

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2009-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine (TBM) has been investigated. Characteristics of the seismic signal generated by the raise boring machine are described. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. The presented technical proposal for seismic monitoring of TBM in Olkiluoto is capable to detect and locate TBM coming outside the ONKALO area about two months before it would reach the ONKALO. (orig.)

  20. Seismic monitoring of in situ combustion process in a heavy oil field

    International Nuclear Information System (INIS)

    Zadeh, Hossein Mehdi; Srivastava, Ravi P; Vedanti, Nimisha; Landrø, Martin

    2010-01-01

    Three time-lapse 3D seismic surveys are analysed to monitor the effect of in situ combustion, a thermal-enhanced oil recovery process in the Balol heavy oil reservoir in India. The baseline data were acquired prior to the start of the in situ combustion process in four injection wells, while the two monitor surveys were acquired 1 and 2 years after injection start, respectively. We present the results of baseline and second monitor surveys. Fluid substitution studies based on acoustic well logs predict a seismic amplitude decrease at the top reservoir and an increase at the base reservoir. Both the amplitude dimming at the top reservoir and the brightening at the base reservoir are observed in the field data. The extent of the most pronounced 4D anomaly is estimated from the seismic amplitude and time shift analysis. The interesting result of seismic analysis is that the anomalies are laterally shifted towards the northwest, rather than the expected east, from the injector location suggesting a northwest movement of the in situ combustion front. No clear evidence of air leakage into other sand layers, neither above nor below the reservoir sand, is observed. This does not necessarily mean that all the injected air is following the reservoir sand, especially if the thief sand layers are thin. These layers might be difficult to observe on seismic data

  1. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    Science.gov (United States)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  2. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  3. Estimation of reliability of seismic and electromagnetic monitoring in seismic active areas by diffraction tomography

    Directory of Open Access Journals (Sweden)

    V. N. Troyan

    2001-01-01

    Full Text Available This paper presents the algorithms and results of the numerical simulation of the solution of a 2-D inverse problem on the restoration of seismic parameters and electrical conductivity of local inhomogeneities by the diffraction tomography method based upon the first order Born approximation. The direct problems for the Lame and Maxwell equations are solved by the finite difference method. Restoration of inhomogeneities which are not very weak is implemented with the use of a small number of receivers (source-receiver pairs.

  4. Local seismic activity monitored at King Sejong Station, Antarctica

    OpenAIRE

    Lee,Duk Kee; Kim,Yea Dong; Nam,Sang Heon; Jin,Young Keun

    1998-01-01

    Source location estimation from single station earthquake data collected at King Sejong Station (62°13'3l"N, 58°47'07"W) from 1995 to 1996 provides seismic activity around King Sejong Station. Analysis of local events, less than 1.5°in angular epicentral distance, finds epicenters located near the Shackleton Fracture Zone, the South Shetland Platform, Deception Island, and North Bransfield Basin. Estimated magnitudes range from 2.2 to 4.5 on the Richter scale, averaging 4.0 in North Bransfiel...

  5. Passive seismic monitoring of the Bering Glacier during its last surge event

    Science.gov (United States)

    Zhan, Z.

    2017-12-01

    The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.

  6. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS, DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    International Nuclear Information System (INIS)

    ANDA, V.S.; EDGEMON, G.L.; HAGENSEN, A.R.; BOOMER, K.D.; CAROTHERS, K.G.

    2009-01-01

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation

  7. A dense microseismic monitoring network in Korea for uncovering relationship between seismic activity and neotectonic features

    Science.gov (United States)

    Kang, T.; Lee, J. M.; Kim, W.; Jo, B. G.; Chung, T.; Choi, S.

    2012-12-01

    A few tens of surface traces indicating movements in Quaternary were found in the southeastern part of the Korean Peninsula. Following both the geological and engineering definitions, those features are classified into "active", in geology, or "capable", in engineering, faults. On the other hand, the present-day seismicity of the region over a couple of thousand years is indistinguishable on the whole with the rest of the Korean Peninsula. It is therefore of great interest whether the present seismic activity is related to the neotectonic features or not. Either of conclusions is not intuitive in terms of the present state of seismic monitoring network in the region. Thus much interest in monitoring seismicity to provide an improved observation resolution and to lower the event-detection threshold has increased with many observations of the Quaternary faults. We installed a remote, wireless seismograph network which is composed of 20 stations with an average spacing of 10 km. Each station is equipped with a three-component Trillium Compact seismometer and Taurus digitizer. Instrumentation and analysis advancements are now offering better tools for this monitoring. This network is scheduled to be in operation over about one and a half year. In spite of the relatively short observation period, we expect that the high density of the network enables us to monitor seismic events with much lower magnitude threshold compared to the preexisting seismic network in the region. Following the Gutenberg-Richter relationship, the number of events with low magnitude is logarithmically larger than that with high magnitude. Following this rule, we can expect that many of microseismic events may reveal behavior of their causative faults, if any. We report the results of observation which has been performed over a year up to now.

  8. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  9. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-10-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  10. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1999-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals). The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM. (author)

  11. Hanford Spent Nuclear Fuel Project evaluation of multi-canister overpack venting and monitoring options during staging of K basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wiborg, J.C.

    1995-12-01

    This engineering study recommends whether multi-canister overpacks containing spent nuclear fuel from the Hanford K Basins should be staged in vented or a sealed, but ventable, condition during staging at the Canister Storage Building prior to hot vacuum conditioning and interim storage. The integrally related issues of MCO monitoring, end point criteria, and assessing the practicality of avoiding venting and Hot Vacuum Conditioning for a portion of the spent fuel are also considered.

  12. Ground-water monitoring compliance projects for Hanford Site Facilities: Progress report for the period April 1--June 30, 1988: Volume 1, Text

    International Nuclear Information System (INIS)

    1988-09-01

    This is Volume 1 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses the projects; Volume 2 provides as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area and near the 216-A-36B Crib

  13. Data Analysis of Seismic Sequence in Central Italy in 2016 using CTBTO- International Monitoring System

    Science.gov (United States)

    Mumladze, Tea; Wang, Haijun; Graham, Gerhard

    2017-04-01

    The seismic network that forms the International Monitoring System (IMS) of the Comprehensive Nuclear-test-ban Treaty Organization (CTBTO) will ultimately consist of 170 seismic stations (50 primary and 120 auxiliary) in 76 countries around the world. The Network is still under the development, but currently more than 80% of the network is in operation. The objective of seismic monitoring is to detect and locate underground nuclear explosions. However, the data from the IMS also can be widely used for scientific and civil purposes. In this study we present the results of data analysis of the seismic sequence in 2016 in Central Italy. Several hundred earthquakes were recorded for this sequence by the seismic stations of the IMS. All events were accurately located the analysts of the International Data Centre (IDC) of the CTBTO. In this study we will present the epicentral and magnitude distribution, station recordings and teleseismic phases as obtained from the Reviewed Event Bulletin (REB). We will also present a comparison of the database of the IDC with the databases of the European-Mediterranean Seismological Centre (EMSC) and U.S. Geological Survey (USGS). Present work shows that IMS data can be used for earthquake sequence analyses and can play an important role in seismological research.

  14. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2007- Appendix 2

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Craig J.; Dorsey, Michael; Mckinney, Stephen M.; Wilde, Justin W.; Duncan, Joanne P.

    2008-10-13

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant (PFP), Canister Storage Building (CSB), and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  15. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  16. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    Science.gov (United States)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the

  17. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  18. Washington Closure Hanford Report of Settlement Monitoring of the ERDF Landfill

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Cameron

    2008-07-30

    This report summarizes the results of the ERDF Settlement Monitoring Program conducted between August 9, 2007, and April 29, 2008, on the 35-foot and 70-foot levels of the ERDF landfill. The purpose of this monitoring program was to verify that the materials already placed under the 35-foot and 70-foot levels satisfy the settlement criteria of the conceptual cap design.

  19. Passive seismic data management and processing to monitor heavy oil steaming operations

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.R.; Wang, L. [Society of Petroleum Engineers, Richardson, TX (United States)]|[ExxonMobil Upstream Research Co., Houston, TX (United States); Searles, K.H.; Smith, R.J.; Keith, C.M. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Imperial Oil Ltd., Burnaby, BC (Canada)

    2008-10-15

    Cyclic steam injection (CSS) is a cost-effective means to produce heavy oil at the Cold Lake field in Alberta, Canada. The primary obstacle to economic production is the high viscosity of the bitumen. However the bitumen viscosity decreases significantly with temperature. Steam is injected at fracturing conditions, resulting in dilation and recompaction which propagates stress and strain fields in the overburden. An important design consideration involves the mechanical loads on wells resulting from this production process. A seismic production monitoring system was developed in 1995 in the Cold Lake field in order to provide early detection of casing failures and possible fracturing of the overburden. The method was shown to detect a high percentage of casing failures in the production monitoring system. This paper discussed the use and application of methods developed for passive seismic data analysis. The Cold Lake passive seismic system (CLPS) has evolved into an integrated process with a daily workflow. Personnel have identified roles and responsibilities. The paper provided a discussion of the development of a web-based platform running on the operator's internal network called PSWeb. The progression of work in microseismic monitoring of fracture stimulation treatments was also discussed along with the development of FIDO, which used graphical event processing methods to facilitate data analysis and interpretation. Further development of these tools is ongoing to improve casing failure detection and to incorporate more information from seismic data to understand the impact of the CSS process on overburden integrity. 15 refs., 12 figs., 1 appendix.

  20. Acceptance Test Report for Fourth-Generation Hanford Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  1. SURFACE GEOPHYSICAL EXPLORATION DEVELOPING NONINVASIVE TOOLS TO MONITOR PAST LEAKS AROUND HANFORD TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    MYERS DA; RUCKER DF; LEVITT MT; CUBBAGE B; NOONAN GE; MCNEILL M; HENDERSON C

    2011-06-17

    A characterization program has been developed at Hanford to image past leaks in and around the underground storage tank facilities. The program is based on electrical resistivity, a geophysical technique that maps the distribution of electrical properties of the subsurface. The method was shown to be immediately successful in open areas devoid of underground metallic infrastructure, due to the large contrast in material properties between the highly saline waste and the dry sandy host environment. The results in these areas, confirmed by a limited number of boreholes, demonstrate a tendency for the lateral extent of the underground waste plume to remain within the approximate footprint of the disposal facility. In infrastructure-rich areas, such as tank farms, the conventional application of electrical resistivity using small point-source surface electrodes initially presented a challenge for the resistivity method. The method was then adapted to directly use the buried infrastructure as electrodes for both transmission of electrical current and measurements of voltage. For example, steel-cased wells that surround the tanks were used as long electrodes, which helped to avoid much of the infrastructure problems. Overcoming the drawbacks of the long electrode method has been the focus of our work over the past seven years. The drawbacks include low vertical resolution and limited lateral coverage. The lateral coverage issue has been improved by supplementing the long electrodes with surface electrodes in areas devoid of infrastructure. The vertical resolution has been increased by developing borehole electrode arrays that can fit within the small-diameter drive casing of a direct push rig. The evolution of the program has led to some exceptional advances in the application of geophysical methods, including logistical deployment of the technology in hazardous areas, development of parallel processing resistivity inversion algorithms, and adapting the processing tools

  2. Passive monitoring for near surface void detection using traffic as a seismic source

    Science.gov (United States)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  3. Crosshole seismic measurements to characterise and monitor the internal condition of embankment dams

    Energy Technology Data Exchange (ETDEWEB)

    Vazinkhoo, S. [Horizon Engineering Inc., North Vancouver, BC (Canada); Gaffran, P. [BC Hydro, Burnaby, BC (Canada)

    2002-12-01

    A sinkhole was discovered at the Bennett Dam in June 1996. The discovery was immediately followed by an investigation consisting 14 geophysical techniques, of which crosshole seismic testing was the most successful. The Bennett Dam Sinkhole Investigation Project resulted in remedial action which involved compaction grouting to repair the defects. Crosshole seismic testing has been carried out annually since 1996 to verify that the integrity of the repaired zone is being maintained. Large amounts of data have been collected since initial testing to augment other acquired data from more conventional geotechnical techniques. Both data sets have provided a unique opportunity to correlate seismic velocities to mechanical soil properties. The condition of the dam can now be readily assessed through the prediction of seismic velocities for a range of soil properties at any point in the dam. The study has resulted in a better understanding of measured velocities with respect to dam behaviour. Results confirm that seismic velocity testing is a useful, non-intrusive tool for monitoring the performance of embankment dams. 13 refs., 2 tabs., 8 figs.

  4. A test of a global seismic system for monitoring earthquakes and underground nuclear explosions

    International Nuclear Information System (INIS)

    Bowman, J.R.; Muirhead, K.; Spiliopoulos, S.; Jepsen, D.; Leonard, M.

    1993-01-01

    Australia is a member of the Group of Scientific Experts (GSE) to consider international cooperative measures to detect and identify events, an ad hoc group of the United Nations Conference on Disarmament. The GSE conducted a large-scale technical test (GSETT-2) from 22 April to 9 June 1991 that focused on the exchange and analysis of seismic parameter and waveform data. Thirty-four countries participated in GSETT-2, and data were contributed from 60 stations on all continents. GSETT-2 demonstrated the feasibility of collecting and transmitting large volumes (around 1 giga-byte) of digital data around the world, and of producing a preliminary bulletin of global seismicity within 48 hours and a final bulletin within 7 days. However, the experiment also revealed the difficulty of keeping up with the flow of data and analysis with existing resources. The Final Event Bulletins listed 3715 events for the 42 recording days of the test, about twice the number reported routinely by another international agency 5 months later. The quality of the Final Event Bulletin was limited by the uneven spatial distribution of seismic stations that contributed to GSETT-2 and by the ambiguity of associating phases detected by widely separated stations to form seismic events. A monitoring system similar to that used in GSETT-2 could provide timely and accurate reporting of global seismicity. It would need an improved distribution of stations, application of more conservative event formation rules and further development of analysis software. 8 refs., 9 figs

  5. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    Science.gov (United States)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  6. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    International Nuclear Information System (INIS)

    RH Visser

    2000-01-01

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities

  7. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  8. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest's Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values

  9. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    Science.gov (United States)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located 20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  10. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  11. A multi-disciplinary approach for the structural monitoring of Cultural Heritages in a seismic area

    Science.gov (United States)

    Fabrizia Buongiorno, Maria; Musacchio, Massimo; Guerra, Ignazio; Porco, Giacinto; Stramondo, Salvatore; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Doumaz, Fawzi; Giovanna Bianchi, Maria; Luzi, Guido; Ilaria Pannaccione Apa, Maria; Montuori, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Gervasi, Anna; Bonali, Elena; Romano, Dolores; Falcone, Sergio; La Piana, Carmelo

    2014-05-01

    In the recent years, the concepts of seismic risk vulnerability and structural health monitoring have become very important topics in the field of both structural and civil engineering for the identification of appropriate risk indicators and risk assessment methodologies in Cultural Heritages monitoring. The latter, which includes objects, building and sites with historical, architectural and/or engineering relevance, concerns the management, the preservation and the maintenance of the heritages within their surrounding environmental context, in response to climate changes and natural hazards (e.g. seismic, volcanic, landslides and flooding hazards). Within such a framework, the complexity and the great number of variables to be considered require a multi-disciplinary approach including strategies, methodologies and tools able to provide an effective monitoring of Cultural Heritages form both scientific and operational viewpoints. Based on this rationale, in this study, an advanced, technological and operationally-oriented approach is presented and tested, which enables measuring and monitoring Cultural Heritage conservation state and geophysical/geological setting of the area, in order to mitigate the seismic risk of the historical public goods at different spatial scales*. The integration between classical geophysical methods with new emerging sensing techniques enables a multi-depth, multi-resolution, and multi-scale monitoring in both space and time. An integrated system of methodologies, instrumentation and data-processing approaches for non-destructive Cultural Heritage investigations is proposed, which concerns, in detail, the analysis of seismogenetic sources, the geological-geotechnical setting of the area and site seismic effects evaluation, proximal remote sensing techniques (e.g. terrestrial laser scanner, ground-based radar systems, thermal cameras), high-resolution aerial and satellite-based remote sensing methodologies (e.g. aeromagnetic surveys

  12. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  13. Monitoring and impact mitigation during a 4D seismic survey near a population of gray whales off Sakhalin Island, Russia

    NARCIS (Netherlands)

    Bröker, Koen Cornelis Arthur; Gailey, Glenn; Muir, Judy; Racca, Roberto

    2015-01-01

    A 4D seismic survey was conducted in 2010 near the feeding grounds of gray whales off Sakhalin Island, Russia. To minimize disruptions to the whales’ feeding activity and enhance understanding of the potential impacts of seismic surveys on gray whales Eschrichtius robustus, an extensive monitoring

  14. Reengineering Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success.

  15. Reengineering Hanford

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success

  16. Time-Lapse Monitoring of Subsurface Fluid Flow using Parsimonious Seismic Interferometry

    KAUST Repository

    Hanafy, Sherif

    2017-04-21

    A typical small-scale seismic survey (such as 240 shot gathers) takes at least 16 working hours to be completed, which is a major obstacle in case of time-lapse monitoring experiments. This is especially true if the subject that needs to be monitored is rapidly changing. In this work, we will discuss how to decrease the recording time from 16 working hours to less than one hour of recording. Here, the virtual data has the same accuracy as the conventional data. We validate the efficacy of parsimonious seismic interferometry with the time-lapse mentoring idea with field examples, where we were able to record 30 different data sets within a 2-hour period. The recorded data are then processed to generate 30 snapshots that shows the spread of water from the ground surface down to a few meters.

  17. Vibration monitoring of long bridges and their expansion joints and seismic devices

    Directory of Open Access Journals (Sweden)

    Islami Kleidi

    2015-01-01

    Full Text Available This paper presents a number of recently installed Structural Health Monitoring (SHM systems: a on a 2km double suspension bridge; b on a long railway viaduct that has experienced cracking; and c on a steel arch bridge in a seismically active area. Damage detection techniques have been applied based on high-frequency measurements of vibrations, pressure and strain, enabling a proper understanding of the structures’ behaviour to be gained. The diverse range of applications presented, designed in collaboration with structure owners and design engineers, includes damage detection on expansion joints of suspension bridges, crack analysis and correlation with accelerations of high-speed trains, and high-frequency performance monitoring of seismic devices. These case studies, based on both static and dynamic approaches, demonstrate the usefulness and ease of use of such systems, and the enormous gains in efficiency they offer.

  18. Seismic and radon monitoring of Algocen site at Elliot Lake

    International Nuclear Information System (INIS)

    1981-03-01

    Remedial works to reduce radon/radon daughters to acceptable levels in houses in Elliot Lake have been going on for the last three years under the Atomic Energy Control Board (AECB) remedial action program. In December 1978, a routine inspection of treated houses showed extensions to cracks already filled, and the opening up of filled cracks. The homeowners attributed this to the blasting operations for building construction which were going on in town at that time. This prompted the need to monitor any subsequent major scale blasting in the town and to record the damages in nearby houses. This report presents the results of monitoring one such major blasting operation which was carried out between March 1979 and June 1979 for the building of the Algocen Shopping Mall east of Hutchison Avenue. The AECB were concerned about the possible damage to the houses along Hutchison Avenue which had already received remedial treatment to prevent the entry of radon gas, and authorized DSMA/Acres to record the level of vibrations and damages in these houses during the blasting period. (author)

  19. Vibration monitoring of long bridges and their expansion joints and seismic devices

    OpenAIRE

    Islami Kleidi

    2015-01-01

    This paper presents a number of recently installed Structural Health Monitoring (SHM) systems: a) on a 2km double suspension bridge; b) on a long railway viaduct that has experienced cracking; and c) on a steel arch bridge in a seismically active area. Damage detection techniques have been applied based on high-frequency measurements of vibrations, pressure and strain, enabling a proper understanding of the structures’ behaviour to be gained. The diverse range of applications presented, desig...

  20. Reprint of "Seismic monitoring of the Plosky Tolbachik eruption in 2012-2013 (Kamchatka Peninsula Russia)"

    Science.gov (United States)

    Senyukov, S. L.; Nuzhdina, I. N.; Droznina, S. Ya.; Garbuzova, V. T.; Kozhevnikova, T. Yu.; Sobolevskaya, O. V.; Nazarova, Z. A.; Bliznetsov, V. E.

    2015-12-01

    The active basaltic volcano Plosky Tolbachik (Pl. Tolbachik) is located in the southern part of the Klyuchevskoy volcano group on the Kamchatka Peninsula. The previous 1975-1976 Great Tolbachik Fissure Eruption (1975-1976 GTFE) occurred in the southern sector of Pl. Tolbachik. It was preceded by powerful earthquakes with local magnitudes between 2.5 and 4.9 and it was successfully predicted with a short-term forecast. The Kamchatka Branch of Geophysical Survey (KBGS) of the Russian Academy of Science (RAS) began to publish the results of daily seismic monitoring of active Kamchatka volcanoes on the Internet in 2000. Unlike the 1975-1976 GTFE precursor, (1) seismicity before the 2012-2013 Tolbachik Fissure Eruption (2012-2013 TFE) was relatively weak and earthquake magnitudes did not exceed 2.5. (2) Precursory earthquake hypocenters at 0-5 km depth were concentrated mainly under the southeastern part of the volcano. (3) The frequency of events gradually increased in September 2012, and rose sharply on the eve of the eruption. (4) According to seismic data, the explosive-effusive 2012-2013 TFE began at 05 h 15 min UTC on November 27, 2012; the outbreak occurred between the summit of the Pl. Tolbachik and the Northern Breakthrough of the 1975-1976 GTFE. (5) Because of bad weather, early interpretations of the onset time and the character of the eruption were made using seismological data only and were confirmed later by other monitoring methods. The eruption finished in early September 2013. This article presents the data obtained through real-time seismic monitoring and the results of retrospective analysis, with additional comments on the future monitoring of volcanic activity.

  1. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  2. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    Science.gov (United States)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  3. FINAL PROJECT REPORT: A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    Energy Technology Data Exchange (ETDEWEB)

    Lee Slater

    2011-08-15

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing ~60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along ~3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in

  4. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1996-01-01

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed

  5. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  6. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    Science.gov (United States)

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  7. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Science.gov (United States)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  8. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Directory of Open Access Journals (Sweden)

    S. Uyeda

    2001-01-01

    Full Text Available Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity. The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 – 40 Hz and meteorological recordings, together with seismo-acoustic (∆F = 30 – 1000 Hz and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 – 30 Hz, three-component electric potential variations ( ∆F 1.0 Hz, and VLF transmitter’s signal perturbations ( ∆F ~ 10 – 40 kHz.

  9. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  10. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  11. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  12. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  13. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  14. Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS

    Science.gov (United States)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.

    2013-12-01

    We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust

  15. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    Science.gov (United States)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing

  16. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  17. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  18. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    International Nuclear Information System (INIS)

    Warren, N. Jill

    2002-01-01

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Benson, Jody; Hanson, Stephanie; Mark, Carol; Wetovsky, Marvin A.

    2004-01-01

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions

    International Nuclear Information System (INIS)

    Warren, N. Jill; Chavez, Francesca C.

    2001-01-01

    These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A [Editor

    2004-09-21

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Mendius, E. Louise

    2003-01-01

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements

    Science.gov (United States)

    Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.

    2001-12-01

    As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.

  10. SW England seismic monitoring for the HDR geothermal programme in Cornwall 1989 to September 1991

    International Nuclear Information System (INIS)

    Walker, A.B.

    1992-01-01

    The potential for earthquakes to be triggered by fluid injected into boreholes has been recognised for 25 years and natural earthquakes in Cornwall have been reported for over 250 years. As a result, the Geothermal Steering Committee advising the Hot Dry Rock project recommended that background seismic monitoring be undertaken around the HDR experimental site at Rosemanowes. A network of seismographs was established for this purpose by the British Geological Survey (BGS) in late 1980 and has been operated continuously through September 1991. The primary aim of the network has been to provide an independent, continuous assessment of all vibrational transients in order to discriminate between those caused by the Hot Dry Rock experiments and those of natural origin or from other man-made sources. In this respect, the work provides an insurance against claims that extraneous seismic activity is related to those experiments. (author)

  11. Geophysical Monitoring at the CO2SINK Site: Combining Seismic and Geoelectric Data

    Science.gov (United States)

    Giese, R.; Lüth, S.; Cosma, C.; Juhlin, C.; Kiessling, D.; Schütt, H.; Schöbel, B.; Schmidt-Hattenberger, C.; Schilling, F.; Co2SINK Group

    2009-04-01

    The CO2SINK project at the German town of Ketzin (near Berlin), is aimed at a pilot storage of CO2, and at developing and testing efficient integrated monitoring procedures (physical, chemical, and biological observations) for assessing the processes triggered within the reservoir by a long term injection operation. In particular, geophysical methods as seismic and geoelectric measurements have delivered the structural framework, and they enable to observe the reaction of the reservoir and the caprock to CO2 propagation at locations which are not accessible for direct observations. We report on the seismic monitoring program of the CO2SINK project which comprises baseline and repeat observations at different scales in time and space, combined with comprehensive geoelectrical monitoring performed in the Ketzin wells and on the surface. The main objectives of the 3D seismic survey (carried out in spring 2005) were to provide the structural model around the location of the Ketzin wells, to verify earlier geologic interpretations of structure based on vintage 2D seismic and borehole data, as well as providing a baseline for future seismic surveys. The uppermost 1000 m are well imaged and show an anticlinal structure with an east-west striking central graben on its top. The 3D baseline survey was extended by VSP (vertical seismic profiling), MSP (moving source profiling) on 7 profiles, and crosshole tomographic measurements. 2D "star" measurements were carried out on the 7 MSP profiles in order to tie-in the down-hole surveys with the 3D baseline survey. These measurements provide enhanced resolution in time (faster and more cost effective than a full 3D survey) and space (higher source and receiver frequencies). Three crosshole measurements were performed, one baseline survey in May 2008, and two repeats in July and August 2008, respectively. A third crosshole repeat is planned for a later stage in the project when a steady state situation has been reached in the

  12. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    Science.gov (United States)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  13. Natural phenomena analyses, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1989-01-01

    Probabilistic seismic hazard studies completed for the Washington Public Power Supply System's Nuclear Plant 2 and for the US Department of Energy's N Reactor sites, both on the Hanford Site, suggested that the Lawrence Livermore National Laboratory seismic exposure estimates were lower than appropriate, especially for sites near potential seismic sources. A probabilistic seismic hazard assessment was completed for those areas that contain process and/or waste management facilities. the lower bound magnitude of 5.0 is used in the hazard analysis and the characteristics of small-magnitude earthquakes relatively common to the Hanford Site are addressed. The recommended ground motion for high-hazard facilities is somewhat higher than the Lawrence Livermore National Laboratory model and the ground motion from small-magnitude earthquakes is addressed separately from the moderate- to large-magnitude earthquake ground motion. The severe wind and tornado hazards determined for the Hanford Siste are in agreement with work completed independently using 43 years of site data. The low-probability, high-hazard, design-basis flood at the Hanford Site is dominated by dam failure on the Columbia River. Further evaluation of the mechanisms and probabilities of such flooding is in progress. The Hanford Site is downwind from several active Cascade volcanoes. Geologic and historical data are used to estimate the ashfall hazard

  14. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Priolo, Enrico; Rinaldi, Antonio Pio; Clinton, John F.; Stabile, Tony A.; Dost, Bernard; Fernandez, Mariano Garcia; Wiemer, Stefan; Dahm, Torsten

    2017-06-01

    Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.

  15. Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site-FY 1999

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1999-01-01

    The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 21 wells surrounding the facility. During FY 1999, average tritium activities in most wells declined from average activities in 1998. The exception was deep well 69948-77C, where tritium results were at an all-time high (77,000 pCi/L) as a result of the delayed penetration of effluent deeper into the aquifer. Of the 12 constituents with permit enforcement limits, which are monitored in SALDS proximal wells, all were within limits during FY 1999. Water level measurements in nearby wells indicate that a small hydraulic mound exists around the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. Evaluation of this condition indicates that the network is currently adequate for tracking potential effects of the SALDS on the groundwater. Recommendations include the discontinuation of ammonia, benzene, tetrahydrofuran, and acetone from the regular groundwater constituent list; designating background well 299-W8-1 as a tritium-tracking well only, and the use of quadruplicate averages of field pH, instead of a single laboratory measurement, as a permit compliance parameter

  16. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    Science.gov (United States)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  17. Effective seismic acceleration measurements for low-cost Structural Health Monitoring

    Science.gov (United States)

    Pentaris, Fragkiskos; Makris, John P.

    2015-04-01

    There is increasing demand on cost effective Structural Health Monitoring systems for buildings as well as important and/or critical constructions. The front end for all these systems is the accelerometer. We present a comparative study of two low cost MEMS accelaration sensors against a very sensitive, high dynamic range strong motion accelerometer of force balance type but much more expensive. A real experiment was realized by deploying the three sesnors in a reinforced concrete building of the premises of TEI of Crete at Chania Crete, an earthquake prone region. The analysis of the collected accelararion data from many seismic events indicates that all sensors are able to efficiently reveal the seismic response of the construction in terms of PSD. Furthermore, it is shown that coherence diagrams between excitation and response of the building under study, depict structural characteristics but also the seismic energy distribution. This work is supported by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled "Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC)" and is co-financed by the European Union (European Social Fund) and Greek national funds.

  18. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    International Nuclear Information System (INIS)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan; Riyanto, Erwin

    2015-01-01

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia

  19. Advances in crosshole seismic measurements to characterise and monitor the internal condition of embankment dams

    Energy Technology Data Exchange (ETDEWEB)

    Vazinkhoo, S.; Anderlini, C.; Gaffran, P. [BC Hydro, Burnaby, BC (Canada); Jefferies, M. [Golder Associates Ltd., Vancouver, BC (Canada)

    2008-07-01

    The WAC Bennett Dam Sinkhole investigation project was launched in June 1996 in British Columbia following the discovery of a sinkhole. This paper provided information on crosshole seismic velocity testing that was conducted at the WAC Bennett Dam, along with background information on the methods developed to interpret the results of crosshole seismic testing that has been conducted on an annual basis at the dam since 1996. Additional laboratory and field testing conducted at the Mica and Revelstoke dams were also reviewed with particular focus on how the results have improved the interpretation and assessment methods. This paper described the laboratory testing program which consisted of bender element tests, in which shear wave velocities were measured under controlled void ratio, stress and fines content conditions, and critical state triaxial tests to determine the Critical State Lines (CSLs). It was concluded that crosshole seismic shear wave velocity measurements have proven to be a very useful tool for monitoring void ratio and stress conditions at the WAC Bennett Dam and continue to be employed at the dam on an annual basis. Variations in shear wave velocity can be correlated to local construction features at the WAC Bennett and other BC Hydro dams. 16 refs., 4 tabs., 7 figs.

  20. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan [WISFIR Laboratory, Earth Physics and Complex System Division, Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Riyanto, Erwin [Geotechnical and Hydrology PT. Freeport Indonesia wonbin-ww@hotmail.com (Indonesia)

    2015-04-16

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia.

  1. Status of initial phase of site-specific seismic monitoring: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Rohay, A.C.

    1981-01-01

    This report presents the status of the initial phase of site-specific seismic monitoring work conducted under the Basalt Waste Isolation Project. This work is currently organized under two main elements: (1) a portable array; and (2) a baseline data collection array. Progress toward the development of each array is discussed along with an interpretation of preliminary data obtained from the test of a borehole seismometer at potential repository depths. The text is supplemented by nine figures and one table. 9 figs., 1 tab

  2. Study on the seismic monitoring system development against the adjacent countries nuclear test

    International Nuclear Information System (INIS)

    Min, Kyung Sik; Ahn, Jong Sung; Lee, Jong Wook; Chang, In Soon; Seo, In Seok; Kwak, Eun Ho

    1995-12-01

    The project was carried out to construct foundation for the monitoring of the neighboring countries's nuclear test by seismic method. For this, we collected, organized and analyzed the information about the Comparative Test Ban Treaty (CTBT) and investigated theoretical backgrounds of the elastic wave generation by the Nuclear test and the identification of the nuclear tests from the natural earthquakes. And the computer system was setup to obtain realtime data from the broadband seismograph in Inchon of the Korean Meteorological Agency. 15 refs. (Author)

  3. Seismic monitoring at the Decatur, Ill., CO2 sequestration demonstration site

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Walter, Steve R.; Ellsworth, William L.

    2014-01-01

    The viability of carbon capture and storage (CCS) to reduce emissions of greenhouse gases depends on the ability to safely sequester large quantities of CO2 over geologic time scales. One concern with CCS is the potential of induced seismicity. We report on ongoing seismic monitoring by the U.S. Geological Survey (USGS) at a CCS demonstration site in Decatur, IL, in an effort to understand the potential hazards posed by injection-induced seismicity associated with geologic CO2 sequestration. At Decatur, super-critical CO2 is injected at 2.1 km depth into the 550-m-thick Mt. Simon Sandstone, which directly overlies granitic basement. The primary sealing cap rock is the Eau Claire Shale, a 100- to 150-m-thick unit at a depth of roughly 1.5 km. The USGS seismic network consists of 12 stations, three of which have surface accelerometers and three-component borehole geophones. We derived a one-dimensional velocity models from a vertical seismic profile acquired by Archer-Daniels-Midland (ADM) and the Illinois State Geological Survey (ISGS) to a depth of 2.2 km, tied into shallow acoustic logs from our borehole stations and assuming a 6 km/sec P-wave velocity for granite below 2.2 km. We further assume a constant ratio of P- to S-wave velocities of 1.83, as derived from velocity model inversions. We use this velocity model to locate seismic events, all of which are within the footprint of our network. So far magnitudes of locatable events range from Mw = -1.52 to 1.07. We further improved the hypocentral precision of microseismic events when travel times and waveforms are sufficiently similar by employing double-difference relocation techniques, with relative location errors less than 80 m horizontally and 100 m vertically. We observe tend to group in three distinct clusters: ∼0.4 to 1.0 km NE, 1.6 to 2.4 km N, and ∼1.8 to 2.6 km WNW from the injection well. The first cluster of microseismicity forms a roughly linear trend, which may represent a pre-existing geologic

  4. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  5. Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation

    Science.gov (United States)

    Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.

    2017-12-01

    The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre

  6. A report on upgraded seismic monitoring stations in Myanmar: Station performance and site response

    Science.gov (United States)

    Thiam, Hrin Nei; Min Htwe, Yin Myo; Kyaw, Tun Lin; Tun, Pa Pa; Min, Zaw; Htwe, Sun Hninn; Aung, Tin Myo; Lin, Kyaw Kyaw; Aung, Myat Min; De Cristofaro, Jason; Franke, Mathias; Radman, Stefan; Lepiten, Elouie; Wolin, Emily; Hough, Susan E.

    2017-01-01

    Myanmar is in a tectonically complex region between the eastern edge of the Himalayan collision zone and the northern end of the Sunda megathrust. Until recently, earthquake monitoring and research efforts have been hampered by a lack of modern instrumentation and communication infrastructure. In January 2016, a major upgrade of the Myanmar National Seismic Network (MNSN; network code MM) was undertaken to improve earthquake monitoring capability. We installed five permanent broadband and strong‐motion seismic stations and real‐time data telemetry using newly improved cellular networks. Data are telemetered to the MNSN hub in Nay Pyi Taw and archived at the Incorporated Research Institutions for Seismology Data Management Center. We analyzed station noise characteristics and site response using noise and events recorded over the first six months of station operation. Background noise characteristics vary across the array, but indicate that the new stations are performing well. MM stations recorded more than 20 earthquakes of M≥4.5 within Myanmar and its immediate surroundings, including an M 6.8 earthquake located northwest of Mandalay on 13 April 2016 and the Mw 6.8 Chauk event on 24 August 2016. We use this new dataset to calculate horizontal‐to‐vertical spectral ratios, which provide a preliminary characterization of site response of the upgraded MM stations.

  7. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  8. Seismic monitoring of small alpine rockfalls – validity, precision and limitations

    Directory of Open Access Journals (Sweden)

    M. Dietze

    2017-10-01

    Full Text Available Rockfall in deglaciated mountain valleys is perhaps the most important post-glacial geomorphic process for determining the rates and patterns of valley wall erosion. Furthermore, rockfall poses a significant hazard to inhabitants and motivates monitoring efforts in populated areas. Traditional rockfall detection methods, such as aerial photography and terrestrial laser scanning (TLS data evaluation, provide constraints on the location and released volume of rock but have limitations due to significant time lags or integration times between surveys, and deliver limited information on rockfall triggering mechanisms and the dynamics of individual events. Environmental seismology, the study of seismic signals emitted by processes at the Earth's surface, provides a complementary solution to these shortcomings. However, this approach is predominantly limited by the strength of the signals emitted by a source and their transformation and attenuation towards receivers. To test the ability of seismic methods to identify and locate small rockfalls, and to characterise their dynamics, we surveyed a 2.16 km2 large, near-vertical cliff section of the Lauterbrunnen Valley in the Swiss Alps with a TLS device and six broadband seismometers. During 37 days in autumn 2014, 10 TLS-detected rockfalls with volumes ranging from 0.053 ± 0.004 to 2.338 ± 0.085 m3 were independently detected and located by the seismic approach, with a deviation of 81−29+59 m (about 7 % of the average inter-station distance of the seismometer network. Further potential rockfalls were detected outside the TLS-surveyed cliff area. The onset of individual events can be determined within a few milliseconds, and their dynamics can be resolved into distinct phases, such as detachment, free fall, intermittent impact, fragmentation, arrival at the talus slope and subsequent slope activity. The small rockfall volumes in this area require significant supervision during data

  9. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  10. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    Science.gov (United States)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  11. The SISMA Project: A pre-operative seismic hazard monitoring system.

    Science.gov (United States)

    Massimiliano Chersich, M. C.; Amodio, A. A. Angelo; Francia, A. F. Andrea; Sparpaglione, C. S. Claudio

    2009-04-01

    Galileian Plus is currently leading the development, in collaboration with several Italian Universities, of the SISMA (Seismic Information System for Monitoring and Alert) Pilot Project financed by the Italian Space Agency. The system is devoted to the continuous monitoring of the seismic risk and is addressed to support the Italian Civil Protection decisional process. Completion of the Pilot Project is planned at the beginning of 2010. Main scientific paradigm of SISMA is an innovative deterministic approach integrating geophysical models, geodesy and active tectonics. This paper will give a general overview of project along with its progress status and a particular focus will be put on the architectural design details and to the software implementation choices. SISMA is built on top of a software infrastructure developed by Galileian Plus to integrate the scientific programs devoted to the update of seismic risk maps. The main characteristics of the system may be resumed as follow: automatic download of input data; integration of scientific programs; definition and scheduling of chains of processes; monitoring and control of the system through a graphical user interface (GUI); compatibility of the products with ESRI ArcGIS, by mean of post-processing conversion. a) automatic download of input data SISMA needs input data such as GNSS observations, updated seismic catalogue, SAR satellites orbits, etc. that are periodically updated and made available from remote servers through FTP and HTTP. This task is accomplished by a dedicated user configurable component. b) integration of scientific programs SISMA integrates many scientific programs written in different languages (Fortran, C, C++, Perl and Bash) and running into different operating systems. This design requirements lead to the development of a distributed system which is platform independent and is able to run any terminal-based program following few simple predefined rules. c) definition and scheduling of

  12. Summary of the Hanford Site Environmental Report for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2006-09-28

    This small booklet provides highlights of the environmental monitoring at the Hanford Site during 2005. It is a summary of the information contained in the larger report: Hanford Site Environmental Monitoring for Calendar Year 2005.

  13. Toward 2D Seismic Wavefield Monitoring: Seismic Gradiometry for Long-Period Seismogram and Short-Period Seismogram Envelope applied to the Hi-net Array

    Science.gov (United States)

    Maeda, T.; Nishida, K.; Takagi, R.; Obara, K.

    2015-12-01

    The high-sensitive seismograph network Japan (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km. We can observe long-period seismic wave propagation as a 2D wavefield with station separations shorter than wavelength. In contrast, short-period waves are quite incoherent at stations, however, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. We attempted to characterize seismic waveform at long-period and its envelope at short-period as 2D wavefield by applying seismic gradiometry. We applied the seismic gradiometry to a synthetic long-period (20-50s) dataset prepared by numerical simulation in realistic 3D medium at the Hi-net station layout. Wave amplitude and its spatial derivatives are estimated by using data at nearby stations. The slowness vector, the radiation pattern and the geometrical spreading are extracted from estimated velocity, displacement and its spatial derivatives. For short-periods at shorter than 1 s, seismogram envelope shows temporal and spatial broadening through scattering by medium heterogeneity. It is expected that envelope shape may be coherent among nearby stations. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in estimating the slowness vector from the seismogram envelope as well as long-period waveforms by synthetic test, without using phase information. Our preliminarily results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to grasp wave

  14. Seismic displacements monitoring for 2015 Mw 7.8 Nepal earthquake with GNSS data

    Science.gov (United States)

    Geng, T.; Su, X.; Xie, X.

    2017-12-01

    The high-rate Global Positioning Satellite System (GNSS) has been recognized as one of the powerful tools for monitoring ground motions generated by seismic events. The high-rate GPS and BDS data collected during the 2015 Mw 7.8 Nepal earthquake have been analyzed using two methods, that are the variometric approach and Precise point positioning (PPP). The variometric approach is based on time differenced technique using only GNSS broadcast products to estimate velocity time series from tracking observations in real time, followed by an integration procedure on the velocities to derive the seismic event induced displacements. PPP is a positioning method to calculate precise positions at centimeter- or even millimeter-level accuracy with a single GNSS receiver using precise satellite orbit and clock products. The displacement motions with accuracy of 2 cm at far-field stations and 5 cm at near-field stations with great ground motions and static offsets up to 1-2 m could be achieved. The multi-GNSS, GPS + BDS, could provide higher accuracy displacements with the increasing of satellite numbers and the improvement of the Position Dilution of Precision (PDOP) values. Considering the time consumption of clock estimates and the precision of PPP solutions, 5 s GNSS satellite clock interval is suggested. In addition, the GNSS-derived displacements are in good agreement with those from strong motion data. These studies demonstrate the feasibility of real-time capturing seismic waves with multi-GNSS observations, which is of great promise for the purpose of earthquake early warning and rapid hazard assessment.

  15. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    Science.gov (United States)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of

  16. Fluor Hanford Project Focused Progress at Hanford

    International Nuclear Information System (INIS)

    HANSON, R.D.

    2000-01-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL)

  17. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  18. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  19. Virtual Seismometers for Induced Seismicity Monitoring and Full Moment Tensor Inversion

    Science.gov (United States)

    Morency, C.; Matzel, E.

    2016-12-01

    Induced seismicity is associated with subsurface fluid injection, and puts at risk efforts to develop geologic carbon sequestration and enhanced geothermal systems. We are developing methods to monitor the microseismically active zone so that we can ultimately identify faults at risk of slipping. The virtual seismometer method (VSM) is an interferometric technique that is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. VSM works by virtually placing seismometers inside a micro events cloud, where we can focus on properties directly between induced micro events, and effectively replacing each earthquake with a virtual seismometer recording all the others. Here, we show that the cross-correlated signals from seismic wavefields triggered by two events and recorded at the surface are a combination of the strain field between these two sources times a moment tensor. Based on this relationship, we demonstrate how we can use these measured cross-correlated signals to invert for full moment tensor. The advantage of VSM is to allow to considerably reduce the modeled numerical domain to the region directly around the micro events cloud, which lowers computational cost, permits to reach higher frequency resolution, and suppresses the impact of the Earth structural model uncertainties outside the micro events cloud. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Geomechanics for interpreting SAGD monitoring using micro-seismicity and surface tiltmeters

    International Nuclear Information System (INIS)

    De Pater, H.; De Koning, J.; Maxwell, S.; Walters, D.

    2008-01-01

    This paper described a procedures for history matching surface movements resulting from the warm-up phases of a steam assisted gravity drainage (SAGD) project in Saskatchewan. Surface movements were measured using tilt meters that covered the area influenced by the steam injection processes. A thermal reservoir model was then coupled to a geo-mechanical model in order to calculate the surface movements. Surface heave was computed by matching a minimum curvature surface to the tilt vectors. Surface heave data were extracted in order to facilitate comparisons between observed and simulated heave. Injection constraints were defined from measured injection rates in order to match pressure histories. The study showed that the coupled model accurately interpreted monitoring data. Seismic signatures indicated strike slip and potential overthrust fault slippage or casing failures. Uplift was largest at the heel of the well. Results were explained by reservoir heterogeneities. Surface heave was accurately measured using the tiltmeters. Micro-seismic data were used to constrain failure mechanisms and provide information needed to identify conformance and potential cap rock breaches. It was concluded that the model can be used effectively to optimize injection conformance and recovery. 10 refs., 4 tabs., 28 figs

  1. Explosion Monitoring with Machine Learning: A LSTM Approach to Seismic Event Discrimination

    Science.gov (United States)

    Magana-Zook, S. A.; Ruppert, S. D.

    2017-12-01

    The streams of seismic data that analysts look at to discriminate natural from man- made events will soon grow from gigabytes of data per day to exponentially larger rates. This is an interesting problem as the requirement for real-time answers to questions of non-proliferation will remain the same, and the analyst pool cannot grow as fast as the data volume and velocity will. Machine learning is a tool that can solve the problem of seismic explosion monitoring at scale. Using machine learning, and Long Short-term Memory (LSTM) models in particular, analysts can become more efficient by focusing their attention on signals of interest. From a global dataset of earthquake and explosion events, a model was trained to recognize the different classes of events, given their spectrograms. Optimal recurrent node count and training iterations were found, and cross validation was performed to evaluate model performance. A 10-fold mean accuracy of 96.92% was achieved on a balanced dataset of 30,002 instances. Given that the model is 446.52 MB it can be used to simultaneously characterize all incoming signals by researchers looking at events in isolation on desktop machines, as well as at scale on all of the nodes of a real-time streaming platform. LLNL-ABS-735911

  2. Monitoring methane emission of mud volcanoes by seismic tremor measurements: a pilot study

    Directory of Open Access Journals (Sweden)

    D. Albarello

    2012-12-01

    Full Text Available A new approach for estimating methane emission at mud volcanoes is here proposed based on measurements of the seismic tremor on their surface. Data obtained at the Dashgil mud volcano in Azerbaijan reveal the presence of energy bursts characterized by well-determined features (i.e. waveforms, spectra and polarization properties that can be associated with bubbling at depth. Counting such events provides a possible tool for monitoring gas production in the reservoir, thus minimizing logistic troubles and representing a cheap and effective alternative to more complex approaches. Specifically, we model the energy bursts as the effect of resonant gas bubbles at depth. This modelling allows to estimate the dimension of the bubbles and, consequently, the gas outflow from the main conduit in the assumption that all emissions from depth occur by bubble uprising. The application of this model to seismic events detected at the Dashgil mud volcano during three sessions of measurements carried out in 2006 and 2007 provides gas flux estimates that are in line with those provided by independent measurements at the same structure. This encouraging result suggests that the one here proposed could be considered a new promising, cheap and easy to apply tool for gas flux measurements in bubbling gas seepage areas.

  3. Piezoelectric dynamic strain monitoring for detecting local seismic damage in steel buildings

    International Nuclear Information System (INIS)

    Kurata, Masahiro; Li, Xiaohua; Fujita, Kohei; Yamaguchi, Mayako

    2013-01-01

    This research presents a methodology for damage detection along with a sensing system for monitoring seismic damage in steel buildings. The system extracts the location and extent of local damage, such as fracture at a beam–column connection, from changes in the bending moment distribution in a steel moment-resisting frame. We developed a dynamic strain-based sensing system utilizing piezoelectric film sensors and wireless sensing techniques to estimate the bending moments resisted by individual structural members under small amplitude loadings such as ambient vibrations and minor earthquakes. We introduce a new damage index that extracts local damage information from the comparative study of the dynamic strain responses of the structural members before and after a large earthquake event. The damage detection scheme was examined both analytically and numerically using a simple frame example. Then, the entire local damage detection scheme was verified through a series of vibration tests using a one-quarter-scale steel testbed that simulated seismic damage at member ends. (paper)

  4. Geomechanics for interpreting SAGD monitoring using micro-seismicity and surface tiltmeters

    Energy Technology Data Exchange (ETDEWEB)

    De Pater, H.; De Koning, J.; Maxwell, S. [Pinnacle Technologies, Calgary, AB (Canada); Walters, D. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada)

    2008-10-15

    This paper described a procedures for history matching surface movements resulting from the warm-up phases of a steam assisted gravity drainage (SAGD) project in Saskatchewan. Surface movements were measured using tilt meters that covered the area influenced by the steam injection processes. A thermal reservoir model was then coupled to a geo-mechanical model in order to calculate the surface movements. Surface heave was computed by matching a minimum curvature surface to the tilt vectors. Surface heave data were extracted in order to facilitate comparisons between observed and simulated heave. Injection constraints were defined from measured injection rates in order to match pressure histories. The study showed that the coupled model accurately interpreted monitoring data. Seismic signatures indicated strike slip and potential overthrust fault slippage or casing failures. Uplift was largest at the heel of the well. Results were explained by reservoir heterogeneities. Surface heave was accurately measured using the tiltmeters. Micro-seismic data were used to constrain failure mechanisms and provide information needed to identify conformance and potential cap rock breaches. It was concluded that the model can be used effectively to optimize injection conformance and recovery. 10 refs., 4 tabs., 28 figs.

  5. INL Seismic Monitoring Annual Report: January 1, 2007 - December 31, 2007

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Payne; N. S. Carpenter; J. M. Hodges; R. G. Berg

    2008-09-01

    During 2007, the INL Seismic Monitoring Program evaluated 2,515 earthquakes from around the world, the western United States, and local region of the eastern Snake River Plain. 671 earthquakes and man-made blasts occurred within the local region outside and within a 161-km (or 100-mile) radius of INL. Of these events, eleven were small to moderate size earthquakes ranging in magnitude from 3.0 to 4.8. 341 earthquakes occurred within the 161-km radius of INL and the majority of these earthquakes were located in active regions of the Basin and Range Province that surrounds the ESRP. Three earthquakes were located within the ESRP at Craters of the Moon National Monument. The earthquakes were of Mc 0.9, 1.4, and 1.8. Since 1972, INL has recorded 36 small-magnitude microearthquakes (M < 2.0) within the ESRP.

  6. Detection and localization capability of an urban seismic sinkhole monitoring network

    Science.gov (United States)

    Becker, Dirk; Dahm, Torsten; Schneider, Fabian

    2017-04-01

    Microseismic events linked to underground processes in sinkhole areas might serve as precursors to larger mass dislocation or rupture events which can cause felt ground shaking or even structural damage. To identify these weak and shallow events, a sensitive local seismic monitoring network is needed. In case of an urban environment the performance of local monitoring networks is severely compromised by the high anthropogenic noise level. We study the detection and localization capability of such a network, which is already partly installed in the urban area of the city of Hamburg, Germany, within the joint project SIMULTAN (http://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/simultan/). SIMULTAN aims to monitor a known sinkhole structure and gain a better understanding of the underlying processes. The current network consists of six surface stations installed in the basement of private houses and underground structures of a research facility (DESY - Deutsches Elektronen Synchrotron). During the started monitoring campaign since 2015, no microseismic events could be unambiguously attributed to the sinkholes. To estimate the detection and location capability of the network, we calculate synthetic waveforms based on the location and mechanism of former events in the area. These waveforms are combined with the recorded urban seismic noise at the station sites. As detection algorithms a simple STA/LTA trigger and a more sophisticated phase detector are used. While the STA/LTA detector delivers stable results and is able to detect events with a moment magnitude as low as 0.35 at a distance of 1.3km from the source even under the present high noise conditions the phase detector is more sensitive but also less stable. It should be stressed that due to the local near surface conditions of the wave propagation the detections are generally performed on S- or surface waves and not on P-waves, which have a significantly lower amplitude. Due to the often

  7. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    Science.gov (United States)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal

  8. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  9. Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array

    DEFF Research Database (Denmark)

    Hiemer, Stefan; Rössler, Dirk; Scherbaum, Frank

    2012-01-01

    The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation...

  10. Application of Newly Developed Rotational Sensor for Monitoring of Mining Induced Seismic Events in The Karvina region

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Knejzlík, Jaromír; Lednická, Markéta

    2013-01-01

    Roč. 10, č. 2 (2013), s. 197-205 ISSN 1214-9705 Institutional support: RVO:68145535 Keywords : rotational ground motion * rotational sensor * seismic monitoring Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_09_Kalab_197-205.pdf

  11. Four years of experience with a permanent seismic monitoring array at the Ketzin CO2 storage pilot site

    NARCIS (Netherlands)

    Paap, B.F.; Verdel, A.R.; Meekes, J.A.C.; Steeghs, T.P.H.; Vandeweijer, V.P.; Neele, F.P.

    2014-01-01

    CO2 was injected into a saline aquifer near the town of Ketzin in Germany from July 2008 to August 2013. To monitor CO2- migration close to the injection well, TNO installed a fixed 2D seismic array of 120 meters length in 2009, with 3- component (3- C) geophones at the surface, 4-component

  12. Correlation between Earthquakes and AE Monitoring of Historical Buildings in Seismic Areas

    Directory of Open Access Journals (Sweden)

    Giuseppe Lacidogna

    2015-12-01

    Full Text Available In this contribution a new method for evaluating seismic risk in regional areas based on the acoustic emission (AE technique is proposed. Most earthquakes have precursors, i.e., phenomena of changes in the Earth’s physical-chemical properties that take place prior to an earthquake. Acoustic emissions in materials and earthquakes in the Earth’s crust, despite the fact that they take place on very different scales, are very similar phenomena; both are caused by a release of elastic energy from a source located in a medium. For the AE monitoring, two important constructions of Italian cultural heritage are considered: the chapel of the “Sacred Mountain of Varallo” and the “Asinelli Tower” of Bologna. They were monitored during earthquake sequences in their relative areas. By using the Grassberger-Procaccia algorithm, a statistical method of analysis was developed that detects AEs as earthquake precursors or aftershocks. Under certain conditions it was observed that AEs precede earthquakes. These considerations reinforce the idea that the AE monitoring can be considered an effective tool for earthquake risk evaluation.

  13. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  14. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations

    International Nuclear Information System (INIS)

    Gu, Haichang; Song, Gangbing; Moslehy, Yashar; Mo, Y L; Sanders, David

    2010-01-01

    In this paper, a recently developed multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations. Two circular reinforced concrete columns instrumented with smart aggregates were fabricated and tested with a recorded seismic excitation at the structural laboratory at the University of Nevada—Reno. In the tests, the smart aggregates were used to perform multiple monitoring functions that included dynamic seismic response detection, structural health monitoring and white noise response detection. In the proposed health monitoring approach, a damage index was developed on the basis of the comparison of the transfer function with the baseline function obtained in the healthy state. A sensor-history damage index matrix is developed to monitor the damage evolution process. Experimental results showed that the acceleration level can be evaluated from the amplitude of the dynamic seismic response; the damage statuses at different locations were evaluated using a damage index matrix; the first modal frequency obtained from the white noise response decreased with increase of the damage severity. The proposed multi-functional smart aggregates have great potential for use in the structural health monitoring of large-scale concrete structures

  15. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates

  16. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates

  17. Public involvement in environmental surveillance at Hanford

    International Nuclear Information System (INIS)

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation's first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford's perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools

  18. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  19. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  20. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  1. Natural Gas Storage Seismic Monitoring Suivi sismique des stockages de gaz naturel

    Directory of Open Access Journals (Sweden)

    Mari J.L.

    2011-02-01

    Full Text Available IFP Energies nouvelles, CGGVeritas and GDF Suez have conducted together, since 1980, a series of seismic monitoring experiments in order to detect and follow the movements of the gas plume in natural gas geologic storages. Surface and well seismic surveys were carried out at different stages of the storage life. Permanent receiver arrays have been set down in wells. Permanent sources have been designed. Sources and receivers have been used to follow continuously the storage cycle during several years, providing time measurement accuracy within a tenth of a millisecond. Gas intrusion into an aquifer leads to an increase in the arrival times of reflections beneath the storage reservoir and to a variation of the reflection amplitudes at top and bottom of the reservoirs. Progressive variations of the seismic parameters may be followed during the initial infill period. Further movements of the gas plume with the annual in/out cycles are more difficult to follow, because of the simultaneous presence of gas and water in the pores. Arrival time variations of some tenths of a millisecond may be detected and measured. Saturations, using accurate picking of the arrival times, can be estimated in favourable cases. Because of the higher density of carbon dioxide, when stored in a supercritical phase, sensitivity of the seismic parameters, velocity, density and acoustic impedance to saturation variations will be about twice smaller for CO2 storages than it is for methane. IFP Energies nouvelles, la CGGVeritas et GDF Suez ont mené ensemble, depuis 1980, de nombreuses expériences de monitoring sismique afin de détecter et de suivre les mouvements du gaz dans des stockages géologiques de gaz naturel. Des acquisitions ont été réalisées à différents stades de la vie du stockage tant en sismique de surface qu’en sismique de puits. Des antennes de récepteurs permanentes ont été construites et implantées dans des puits. Des sources permanentes ont

  2. Seismic Monitoring with NetQuakes: The First 75 in the Pacific Northwest

    Science.gov (United States)

    Bodin, P.; Vidale, J. E.; Luetgert, J. H.; Malone, S. D.; Delorey, A. A.; Steele, W. P.; Gibbons, D. A.; Walsh, L. K.

    2011-12-01

    NetQuakes accelerographs are relatively inexpensive Internet-aware appliances that we are using as part of our regional seismic monitoring program in the Pacific Northwest Seismic Network (PNSN). To date we have deployed approximately 65 units. By the end of 2011, we will have at least 75 systems sited and operating. The instruments are made by Swiss manufacturer GeoSig, Ltd., and have been obtained by PNSN through several cooperative programs with the US Geological Survey (USGS). The NetQuakes systems have increased the number of strong-motion stations in the Pacific Northwest by ~50%. NetQuakes instruments connect to the Internet via wired or wireless telemetry, obtain accurate timing vie Network Time Protocol, and are designed to be located in the ground floor of houses or small buildings. At PNSN we have concentrated on finding NetQuakes hosts by having technologically savvy homeowners self-identify as a response to news reports about the NetQuakes project. Potential hosts are prioritized by their proximity to target sites provided by a regional panel of experts who studied the region's strong-ground-motion monitoring needs. Recorded waveforms, triggered by strong motion or retrieved from a buffer of continuous data, are transmitted to Menlo Park, and then on to PNSN in Seattle. Data are available with latency of a few minutes to a little over an hour, and are automatically incorporated with the rest of PNSN network data for analysis and the generation of earthquake products. Triggered data may also be viewed by the public via the USGS website, [http://earthquake.usgs.gov/monitoring/netquakes/map/pacnw]. We present examples of ground motion recordings returned to date. Local earthquakes up to M4 (at a distance of ~60 km) reveal interesting patterns of local site effects. The 11 March M9 Tohoku, Japan earthquake produced ground motions recorded on the PNSN accelerographs, including many NetQuakes systems, that reveal the extent and severity of basin

  3. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    Science.gov (United States)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  4. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  5. Seismic monitoring of ground caving processes associated with longwall mining of coal

    International Nuclear Information System (INIS)

    Hatherly, P.; Luo, X.; Dixon, R.; McKavanagh, B.

    1997-01-01

    At the Gordonstone Coal Mine in Central Queensland, Australia, a microseismic monitoring study was undertaken to investigate the extent of ground failure caused by longwall mining. Twenty seven triaxial geophones were deployed in three vertical boreholes and over a six week period more than 1200 events were recorded. The seismicity correlated with periods of longwall production and occurred mainly within the 250 m wide mining panel. There was an arcuate zone of activity which extended from behind the face, at the sides of the panel and up to 70 m ahead of the face in the middle. There was lesser activity to a depth of about 30 m into the floor. The focal mechanisms show that reverse faulting was dominant. The presence of activity and reverse faulting ahead of the face was an unexpected result. However, piezometer readings at the time of the study and subsequent numerical modelling have supported this finding. This was the first detailed microseismic monitoring study of caving in an Australian underground coal mine. 9 refs., 6 figs

  6. INL Seismic Monitoring Annual Report: January 1, 2013 to December 31, 2013

    International Nuclear Information System (INIS)

    Payne, Suzette Jackson; Bockholt, Blaine Matthew; Hodges, Jed M; Berg, Robert Gene

    2016-01-01

    During 2013, the Idaho National Laboratory (INL) recorded 14,011 independent triggers and 7,355 triggers were manmade blasts and distant, regional, and local earthquakes. Within the region, the INL Seismic Monitoring program located 2,085 earthquakes and 150 man-made blasts. Near and within the 161-km radius of INL, 38 of these earthquakes had small to moderate size magnitudes that ranged from 3.0 to 4.2. Residents near 19 of the M>3.0 earthquakes reported ground shaking affects of these earthquakes to the U.S. Geological Survey. Also, five new seismic stations with broadband seismometers and accelerometers were installed near INL facility areas. These new stations were installed to collect earthquake data that can be used in future INL probabilistic seismic hazard analyses to reduce uncertainties of ground motion models. In 2013, 1,013 earthquakes were located within the 161-km radius of INL and three occurred within the eastern Snake River Plain (ESRP). The earthquakes included three swarms and a mainshock-aftershock sequence. The earthquakes were located northwest of the INL in the Basin and Range regions of Idaho and Montana and southeast of the ESRP in the Basin and Range region along the Idaho-Wyoming border. A swarm of >180 earthquakes occurred at Driggs, Idaho; the largest events had local magnitudes (ML) of 2.8 and 3.1 and were felt by residents. A less intense swarm of 64 earthquakes was located west of Jackson, Wyoming along the Idaho-Wyoming border. The largest event was a MW 3.8 that was felt by local residents. Southeast of Pocatello, Idaho an earthquake of ML 4.2 was followed by 18 aftershocks that included a ML 3.6. Both earthquakes were felt by residents near to the epicenters. Three earthquakes occurred within the ESRP and three other earthquakes were located at the northwest edge of the ESRP. The coda magnitude (Mc) 1.3 earthquake was located in the center of ESRP north of the Great Rift and at a depth of 45 km. To the west, an earthquake of Mc 0

  7. INL Seismic Monitoring Annual Report: January 1, 2013 to December 31, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette Jackson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bockholt, Blaine Matthew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hodges, Jed M [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berg, Robert Gene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    During 2013, the Idaho National Laboratory (INL) recorded 14,011 independent triggers and 7,355 triggers were manmade blasts and distant, regional, and local earthquakes. Within the region, the INL Seismic Monitoring program located 2,085 earthquakes and 150 man-made blasts. Near and within the 161-km radius of INL, 38 of these earthquakes had small to moderate size magnitudes that ranged from 3.0 to 4.2. Residents near 19 of the M>3.0 earthquakes reported ground shaking affects of these earthquakes to the U.S. Geological Survey. Also, five new seismic stations with broadband seismometers and accelerometers were installed near INL facility areas. These new stations were installed to collect earthquake data that can be used in future INL probabilistic seismic hazard analyses to reduce uncertainties of ground motion models. In 2013, 1,013 earthquakes were located within the 161-km radius of INL and three occurred within the eastern Snake River Plain (ESRP). The earthquakes included three swarms and a mainshock-aftershock sequence. The earthquakes were located northwest of the INL in the Basin and Range regions of Idaho and Montana and southeast of the ESRP in the Basin and Range region along the Idaho-Wyoming border. A swarm of >180 earthquakes occurred at Driggs, Idaho; the largest events had local magnitudes (ML) of 2.8 and 3.1 and were felt by residents. A less intense swarm of 64 earthquakes was located west of Jackson, Wyoming along the Idaho-Wyoming border. The largest event was a MW 3.8 that was felt by local residents. Southeast of Pocatello, Idaho an earthquake of ML 4.2 was followed by 18 aftershocks that included a ML 3.6. Both earthquakes were felt by residents near to the epicenters. Three earthquakes occurred within the ESRP and three other earthquakes were located at the northwest edge of the ESRP. The coda magnitude (Mc) 1.3 earthquake was located in the center of ESRP north of the Great Rift and at a depth of 45 km. To the west, an earthquake of Mc 0

  8. Advancing internal erosion monitoring using seismic methods in field and laboratory studies

    Science.gov (United States)

    Parekh, Minal L.

    embankment surface. Analysis of root mean squared amplitude and AE threshold counts indicated activity focused at the toe in locations matching the sand boils. This analysis also compared the various detection methods employed at the 2012 test to discuss a timeline of detection related to observable behaviors of the structure. The second area of research included designing and fabricating an instrumented laboratory apparatus for investigating active seismic wave propagation through soil samples. This dissertation includes a description of the rigid wall permeameter, instrumentation, control, and acquisitions systems along with descriptions of the custom-fabricated seismic sensors. A series of experiments (saturated sand, saturated sand with a known static anomaly placed near the center of the sample, and saturated sand with a diminishing anomaly near the center of the sample) indicated that shear wave velocity changes reflected changes in the state of stress of the soil. The mean effective stress was influenced by the applied vertical axial load, the frictional interaction between the soil and permeameter wall, and the degree of preloading. The frictional resistance was sizeable at the sidewall of the permeameter and decreased the mean effective stress with depth. This study also included flow tests to monitor changes in shear wave velocities as the internal erosion process started and developed. Shear wave velocity decreased at voids or lower density zones in the sample and increased as arching redistributes loads, though the two conditions compete. Finally, the social and political contexts surrounding nondestructive inspection were considered. An analogous approach utilized by the aerospace industry was introduced: a case study comparing the path toward adopting nondestructive tools as standard practices in monitoring aircraft safety. Additional lessons for dam and levee safety management were discussed from a Science, Technology, Engineering, and Policy (STEP

  9. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    Energy Technology Data Exchange (ETDEWEB)

    Peter Swanson; Collin Stewart; Wendell Koontz [NIOSH, Spokane, WA (USA). Spokane Research Laboratory

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  10. Feasibility of 4D multicomponent seismic methods for monitoring CO2 storage in the Redwater Leduc Reef, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Sodagar, Taher M.; Lawton, Don C. [University of Calgary, Calgary, Alberta (Canada)], email: tmysodag@ucalgary.ca

    2011-07-01

    The study area lies northeast of Edmonton, Alberta, in the Redwater region. The Redwater reef complex is roughly triangular and has an area of about 527 km2. It is found at a depth of about 1000 m and its thickness varies from 160 to 300 m. The main task of the study was a mapping, based on seismic character, of the facies variations that are found in the Redwater Leduc reef and a characterization of the reef members and formations below the reef with the help of a 3D geological model of the southern margin of the Redwater reef. A major goal targeted the Upper Leduc member interval, where time-lapse 3D multicomponent seismic modeling with 40% CO2 saturation was performed. Results showed fairly good amplitude differences at the top and base of this interval; this confirmed that the CO2 saturation within the Redwater reef can be monitored by repeated 3D multicomponent seismic surveys.

  11. Passive seismic monitoring of natural and induced earthquakes: case studies, future directions and socio-economic relevance

    Science.gov (United States)

    Bohnhoff, Marco; Dresen, Georg; Ellsworth, William L.; Ito, Hisao; Cloetingh, Sierd; Negendank, Jörg

    2010-01-01

    An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.

  12. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    Science.gov (United States)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  13. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  14. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    Science.gov (United States)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  15. Mud volcano monitoring and seismic events along the North Anatolian Fault (Sea of Marmara)

    Science.gov (United States)

    Javad Fallahi, Mohammad; Lupi, Matteo; Mazzini, Adriano; Polonia, Alina; D'Alessandro, Antonino; D'Anna, Giuseppe; Gasperini, Luca

    2017-04-01

    The Sea of Marmara, a pull-apart basin formed along the northern strand of the North Anatolian Fault (NAF) system, is considered a seismic gap, that will be filled in the next decades by a large magnitude (M>7) earthquake, close to the Istanbul Metropolitan area (12 million inhabitants). For this reason, several marine geological and geophysical studies have been carried out in this region, starting from the destructive 1999 Mw 7.4 Izmit earthquake, to gather information relative to seismogenic potential of major fault strands. Together with these studies, in the frame of EC projects (i.e., MarmESONET and Marsite, among others), an intensive program of long-term monitoring of seismogenic faults was carried out using seafloor observatories deployed during several expeditions led by Italian, French and Turkish groups. These expeditions included MARM2013, on board of the R/V Urania, of the Italian CNR, when four ocean bottom seismometers (OBS) were deployed in the central part of the Sea of Marmara, at depths between 550 and 1000 m. One of the main aims of the experiment was to assess the long-term seismic activity along an active segment of the NAF, which connects the central and the western basins (depocenters), where the principal deformation zone appears relatively narrow and almost purely strike-slip. The present study shows the results of processing and analysis of continuous data records from these OBS stations during 50 days. We were able to detect seismic signal produced by an active mud volcano located close to the NAF trace, from about 3 to 6 km of distance from the OBS stations. Additionally, we captured the May 24, 2014, Mw 6.9 strike-slip earthquake occurred in the northern Aegean Sea between Greece and Turkey, which caused serious damage on the Turkish island of Imbros and the cities of Edirne and Çanakkale, as well as on the Greek island of Lemnos. The earthquake nucleated on the westward continuation of the NAF system in the NE Aegean Sea, and was

  16. Feasibility study for seismic monitoring of gas injection; Atsunyu gasu monitaringu no kanosei hyoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, A.; Ogawa, T.; Yokota, T.; Shimada, N.; Onozuka, S.; Kono, F.; Miyagi, T. [Japan National Oil Corp., Tokyo (Japan)

    1998-10-30

    In this study, seismic monitoring of injected gas in a carbonate reservoir was investigated using multidisciplinary approach which consisted of geological/reservoir modeling, reservoir flow simulation, rock physics and seismic modeling. A case study was conducted over Lower Cretaceous carbonate reservoir offshore Abu Dhabi. The gas saturation and reservoir pressure data were obtained from the reservoir flow simulation. The velocity data of dry rock samples under the various conditions were also obtained from rock physics study. These outputs were converted to the velocity model using Gassmann's equation. The calculated velocity from Gassmann's equation is well correlated with velocity from laboratory measurements. Therefore we con confirm that the Gassmann's equation is applicable to estimate the velocity of the gas saturated reservoir rock. Based on the velocity model, synthetic seismic sections before and after gas injection were constructed in order to verify the influence of gas flood. As the results, amplitude difference between the two synthetic seismograms was observed at top and bottom reflectors of the reservoir zone. This amplitude variation is caused by both gas saturation change and pressure change. Although further investigation is needed to detect the cause of the variation, this study indicates the possibility of seismic reservoir monitoring. (author)

  17. Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source

    Science.gov (United States)

    Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe

    2018-05-01

    Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.

  18. Theoretical models for crustal displacement assessment and monitoring in Vrancea-Focsani seismic zone by integrated remote sensing and local geophysical data for seismic prognosis

    International Nuclear Information System (INIS)

    Zoran, Maria; Ciobanu, Mircea; Mitrea, Marius Gabriel; Talianu, Camelia; Cotarlan, Costel; Mateciuc, Doru; Radulescu, Florin; Biter Mircea

    2002-01-01

    The majority of strong Romanian earthquakes has the origin in Vrancea region. Subduction of the Black Sea Sub-Plate under the Pannonian Plate produces faulting processes. Crustal displacement identification and monitoring is very important for a seismically active area like Vrancea-Focsani. Earthquake displacements are very well revealed by satellite remote sensing data. At the same time, geomorphologic analysis of topographic maps is carried out and particularly longitudinal and transverse profiles are constructed, as well as structural-geomorphologic maps. Faults are interpreted by specific features in nature of relief, straightness of line of river beds and their tributaries, exits of springs, etc. Remote sensing analysis and field studies of active faults can provide a geologic history that overcomes many of the shortcomings of instrumental and historic records. Our theoretical models developed in the frame of this project are presented as follows: a) Spectral Mixture Analysis model of geomorphological and topographic characteristics for Vrancea region proposed for satellite images analysis which assumes that the different classes present in a pixel (image unit) contribute independently to its reflectance. Therefore, the reflectance of a pixel at a particular frequency is the sum of the reflectances of the components at that frequency. The same test region in Vrancea area is imaged at several different frequencies (spectral bands), leading to multispectral observations for each pixel. It is useful to merge different satellite data into a hybrid image with high spatial and spectral resolution to create detailed images map of the abundance of various materials within the scene based on material spectral fingerprint. Image fusion produces a high-resolution multispectral image that is then unmixed into high-resolution material maps. b) Model of seismic cross section analysis which is applied in seismic active zones morphology. Since a seismic section can be

  19. Perspectives of Cross-Correlation in Seismic Monitoring at the International Data Centre

    Science.gov (United States)

    Bobrov, Dmitry; Kitov, Ivan; Zerbo, Lassina

    2014-03-01

    We demonstrate that several techniques based on waveform cross-correlation are able to significantly reduce the detection threshold of seismic sources worldwide and to improve the reliability of arrivals by a more accurate estimation of their defining parameters. A master event and the events it can find using waveform cross-correlation at array stations of the International Monitoring System (IMS) have to be close. For the purposes of the International Data Centre (IDC), one can use the spatial closeness of the master and slave events in order to construct a new automatic processing pipeline: all qualified arrivals detected using cross-correlation are associated with events matching the current IDC event definition criteria (EDC) in a local association procedure. Considering the repeating character of global seismicity, more than 90 % of events in the reviewed event bulletin (REB) can be built in this automatic processing. Due to the reduced detection threshold, waveform cross-correlation may increase the number of valid REB events by a factor of 1.5-2.0. Therefore, the new pipeline may produce a more comprehensive bulletin than the current pipeline—the goal of seismic monitoring. The analysts' experience with the cross correlation event list (XSEL) shows that the workload of interactive processing might be reduced by a factor of two or even more. Since cross-correlation produces a comprehensive list of detections for a given master event, no additional arrivals from primary stations are expected to be associated with the XSEL events. The number of false alarms, relative to the number of events rejected from the standard event list 3 (SEL3) in the current interactive processing—can also be reduced by the use of several powerful filters. The principal filter is the difference between the arrival times of the master and newly built events at three or more primary stations, which should lie in a narrow range of a few seconds. In this study, one event at a

  20. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    Science.gov (United States)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an

  1. Hanford Site Environmental Report for calendar year 1992

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality

  2. Hanford Site Environmental Report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  3. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  4. INL Seismic Monitoring Annual Report: January 1, 2011 - December 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Payne; J. M. Hodges; R. G. Berg; D. F. Bruhn

    2012-12-01

    During 2011, the Idaho National Laboratory Seismic Monitoring Program evaluated 21,928 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 2,063 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these events, 16 were small-to-moderate size earthquakes ranging in magnitude (M) from 3.0 to 4.4. Within the 161-km radius, the majority of 941 earthquakes (M < 4.4) occurred in the active regions of the Basin and Range Province with only six microearthquakes occurring in the Snake River Plain. In the northern and southeastern Basin and Range, eight earthquake swarms occurred and included over 325 events. Five of the Snake River Plain earthquakes were located within and near the northern and southern ends of the Great Rift volcanic rift zone. All have anomalously deep focal depths (16 to 38 km) and waveforms indicative of fluid movement at mid- and lower-crustal levels and are a continuation of activity observed at Craters of the Moon National Monument since 2007. Since 1972, the Idaho National Laboratory has recorded 55 small-magnitude microearthquakes (M = 2.2) within the eastern Snake River Plain and 25 deep microearthquakes (M = 2.3) in the vicinity of Craters of the Moon National Monument.

  5. INL Seismic Monitoring Annual Report: January 1, 2012 - December 31, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Payne, S. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bruhn, D. F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hodges, J. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berg, R. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    During 2012, the Idaho National Laboratory Seismic Monitoring Program evaluated 17,329 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 1,460 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these earthquakes, 16 had small-to-moderate size magnitudes (M) from 3.0 to 3.6. Within the 161-km radius, the majority of 695 earthquakes (M < 3.6) occurred in the active regions of the Basin and Range Provinces adjacent to the eastern Snake River Plain. Only 11 microearthquakes occurred within the Snake River Plain, four of which occurred in Craters of the Moon National Monument. The earthquakes had magnitudes from 1.0 to 1.7 and occurred at deep depths (11-24 km). Two events with magnitudes less than 1.0 occurred within the Idaho National Laboratory boundaries and had depths less than 10 km.

  6. Identification of Natural Oscillation Modes for Purposes of Seismic Assessment and Monitoring of HPP Dams

    Energy Technology Data Exchange (ETDEWEB)

    Kuz’menko, A. P., E-mail: apkuzm@gmail.com; Saburov, S. V., E-mail: saburov58@yandex.ru [Russian Academy of Sciences, Computer Equipment Design Technology Institute, Siberian Branch (Russian Federation)

    2016-07-15

    The paper puts forward a method for processing data from detailed seismic assessments of HPP dams (dynamic tests). A detailed assessment (hundreds of observation points in dam galleries) is performed with consideration of operating dam equipment and the microseismic noise. It is shown that dynamic oscillation characteristics (natural oscillation frequencies and modes in the main dam axes, the velocities of propagation of elastic waves with given polarization, and so on.) can be determined with sufficient accuracy by using complex transfer functions and pulse characteristics. Monitoring data is processed using data from a detailed assessment, taking account of identified natural oscillation modes and determined ranges of natural frequencies. The spectra of characteristic frequencies thus obtained are used to choose substitution models and estimate the elastic characteristics of the “dam – rock bed” construction system, viz., the modulus of elasticity (the Young modulus), the Poisson ratio, the dam section stiffness with respect to shear, tension and compression and the elastic characteristics of the rock foundation.

  7. Comparison Of Vented And Absolute Pressure Transducers For Water-Level Monitoring In Hanford Site Central Plateau Wells

    International Nuclear Information System (INIS)

    Mcdonald, J.P.

    2011-01-01

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  8. RESULTS OF TRITIUM TRACKING AND GROUNDWATER MONITORING AT THE HANFORD SITE 200 AREA STATE APPROVED LAND DISPOSAL SITE. FISCAL YEAR 2008

    International Nuclear Information System (INIS)

    Erb, D.B.

    2008-01-01

    The Hanford Site's 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which cannot be removed by the ETF prior to the wastewater being discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During the first 11 months of fiscal year 2008 (FY08) (September 1, 2007, to July 31, 2008), approximately 75.15 million L (19.85 million gal) of water were discharged to the SALDS. Groundwater monitoring for tritium and other constituents, as well as water-level measurements, is required for the SALDS by State Waste Discharge Permit Number ST-4500 (Ecology 2000). The current monitoring network consists of three proximal (compliance) monitoring wells and nine tritium-tracking wells. Quarterly sampling of the proximal wells occurred in October 2007 and in January/February 2008, April 2008, and August 2008. The nine tritium-tracking wells, including groundwater monitoring wells located upgradient and downgradient of the SALDS, were sampled in January through April 2008. Water-level measurements taken in the three proximal SALDS wells indicate that a small groundwater mound is present beneath the facility, which is a result of operational discharges. The mound increased in FY08 due to increased ETF discharges from treating groundwater from extraction wells at the 200-UP-l Operable Unit and the 241-T Tank Farm. Maximum tritium activities increased by an order of magnitude at well 699-48-77A (to 820,000 pCi/L in April 2008) but remained unchanged in the other two proximal wells. The increase was due to higher quantities of tritium in wastewaters that were treated and discharged in FY07 beginning to appear at the proximal wells. The FY08 tritium activities for the other two proximal wells were 68,000 pCi/L at well 699-48-77C (October 2007) and 120,000 pCi/L at well 699-48-77D (October 2007). To date, no indications of a tritium incursion from the

  9. Hanford Site environmental surveillance data report for calendar year 1995

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data

  10. The ADN project : an integrated seismic monitoring of the northern Ecuadorian subduction

    Science.gov (United States)

    Nocquet, Jean-Mathieu; Yepes, Hugo; Vallee, Martin; Mothes, Patricia; Regnier, Marc; Segovia, Monica; Font, Yvonne; Vaca, Sandro; Bethoux, Nicole; Ramos, Cristina

    2010-05-01

    The subduction of the Nazca plate beneath South America has caused one of the largest megathrust earthquake sequence during the XXth century with three M>7.7 earthquakes that followed the great 1906 (Mw = 8.8) event. Better understanding the processes leading to the occurrence of large subduction earthquakes requires to monitor the ground motion over a large range of frequencies. We present a new network (ADN) developed under a collaboration between the IRD-GeoAzur (Nice, France) and the IG-EPN (Quito, Ecuador). Each station of the ADN network includes a GPS recording at 5 Hz, an accelerometer and a broadband seismometer. CGPS data will quantify the secular deformation induced by elastic locking along the subduction interface, enabling a detailed modelling of the coupling distribution. CGPS will be used to monitor any transient deformation induced by Episodic Slip Event along the subduction, together with broadband seismometers that can detect any tremors or seismic signatures that may accompany them. In case of any significant earthquake, 5 Hz GPS and accelerometer will provide near field data for earthquake source detailed study. Finally, the broadband seismometers will be used for study of the microseismicity and structure of the subduction zone. The network includes 9 stations, operating since 2008 and covering the coastal area from latitude 1.5°S to the Colombian border. In this poster, we will present preliminary assessment of the data, first hypocenters location, magnitude and focal mechanism determination, as well as results about an episodic slip event detected in winter 2008.

  11. Seismic Monitoring To Assess Performance Of Structures In Near-Real Time: Recent Progress

    International Nuclear Information System (INIS)

    Celebi, Mehmet

    2008-01-01

    Earlier papers have described how observed data from classical accelerometers deployed in structures or from differential GPS with high sampling ratios deployed at roofs of tall buildings can be configured to establish seismic health monitoring of structures. In these configurations, drift ratios 1 are the main parametric indicator of damage condition of a structure or component of a structure.Real-time measurement of displacements are acquired either by double integration of accelerometer time-series data, or by directly using GPS. Recorded sensor data is then related to the performance level of a building. Performance-based design method stipulates that for a building the amplitude of relative displacement of the roof of a building (with respect to its base) indicates its performance.Usually, drift ratio is computed using relative displacement between two consecutive floors. When accelerometers are used, a specific software is used to compute displacements and drift ratios in realtime by double integration of accelerometer data from several floors. However, GPS-measured relative displacements are limited to being acquired only at the roof with respect to its reference base. Thus, computed drift ratio is the average drift ratio for the whole building. Until recently, the validity of measurements using GPS was limited to long-period structures (T>1 s) because GPS systems readily available were limited to 10-20 samples per seconds (sps) capability. However, presently, up to 50 sps differential GPS systems are available on the market and have been successfully used to monitor drift ratios [1,2]--thus enabling future usefulness of GPS to all types of structures. Several levels of threshold drift ratios can be postulated in order to make decisions for inspections and/or occupancy.Experience with data acquired from both accelerometers and GPS deployments indicates that they are reliable and provide pragmatic alternatives to alert the owners and other authorized parties

  12. Local Technical Resources for Development of Seismic Monitoring in Caucasus and Central Asia - GMSys2009 Data Acquisition System

    Science.gov (United States)

    Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.

    2012-12-01

    Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a

  13. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates

  14. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    Science.gov (United States)

    Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth C.; Denlinger, Roger P.

    2016-01-01

    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.

  15. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    Science.gov (United States)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local

  16. Seismic aftershock monitoring for on-site inspection purposes. Experience from Integrated Field Exercise 2008.

    Science.gov (United States)

    Labak, P.; Arndt, R.; Villagran, M.

    2009-04-01

    One of the sub-goals of the Integrated Field Experiment in 2008 (IFE08) in Kazakhstan was testing the prototype elements of the Seismic aftershock monitoring system (SAMS) for on-site inspection purposes. The task of the SAMS is to collect the facts, which should help to clarify nature of the triggering event. Therefore the SAMS has to be capable to detect and identify events as small as magnitude -2 in the inspection area size up to 1000 km2. Equipment for 30 mini-arrays and 10 3-component stations represented the field equipment of the SAMS. Each mini-array consisted of a central 3-component seismometer and 3 vertical seismometers at the distance about 100 m from the central seismometer. The mini-arrays covered approximately 80% of surrogate inspection area (IA) on the territory of former Semipalatinsk test site. Most of the stations were installed during the first four days of field operations by the seismic sub-team, which consisted of 10 seismologists. SAMS data center comprised 2 IBM Blade centers and 8 working places for data archiving, detection list production and event analysis. A prototype of SAMS software was tested. Average daily amount of collected raw data was 15-30 GB and increased according to the amount of stations entering operation. Routine manual data screening and data analyses were performed by 2-6 subteam members. Automatic screening was used for selected time intervals. Screening was performed using the Sonoview program in frequency domain and using the Geotool and Hypolines programs for screening in time domain. The screening results were merged into the master event list. The master event list served as a basis of detailed analysis of unclear events and events identified to be potentially in the IA. Detailed analysis of events to be potentially in the IA was performed by the Hypoline and Geotool programs. In addition, the Hyposimplex and Hypocenter programs were also used for localization of events. The results of analysis were integrated

  17. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Gee, Glendon W.; Ward, Anderson L.; Ritter, Jason C.; Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-01-01

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001)

  18. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT-SENSITIVITY OF DOUBLE-SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    International Nuclear Information System (INIS)

    Mackey, T.C.; Abatt, F.G.; Johnson, K.I.

    2009-01-01

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10 3 Pa and 4.135 x 10 9 Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks and tanks

  19. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    Energy Technology Data Exchange (ETDEWEB)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This

  20. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    Science.gov (United States)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress

  1. Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies

    Science.gov (United States)

    Tonnellier, Alice; Helmstetter, Agnès; Malet, Jean-Philippe; Schmittbuhl, Jean; Corsini, Alessandro; Joswig, Manfred

    2013-06-01

    This work focuses on the characterization of seismic sources observed in clay-shale landslides. Two landslides are considered: Super-Sauze (France) and Valoria (Italy). The two landslides are developed in reworked clay-shales but differ in terms of dimensions and displacement rates. Thousands of seismic signals have been identified by a small seismic array in spite of the high-seismic attenuation of the material. Several detection methods are tested. A semi-automatic detection method is validated by the comparison with a manual detection. Seismic signals are classified in three groups based on the frequency content, the apparent velocity and the differentiation of P and S waves. It is supposed that the first group of seismic signals is associated to shearing or fracture events within the landslide bodies, while the second group may correspond to rockfalls or debris flows. A last group corresponds to external earthquakes. Seismic sources are located with an automatic beam-forming location method. Sources are clustered in several parts of the landslide in agreement with geomorphological observations. We found that the rate of rockfall and fracture events increases after periods of heavy rainfall or snowmelt. The rate of microseismicity and rockfall activity is also positively correlated with landslide displacement rates. External earthquakes did not influence the microseismic activity or the landslide movement, probably because the earthquake ground motion was too weak to trigger landslide events during the observation periods.

  2. Seismic Monitoring Prior to and During DFDP-2 Drilling, Alpine Fault, New Zealand: Matched-Filter Detection Testing and the Real-Time Monitoring System

    Science.gov (United States)

    Boese, C. M.; Chamberlain, C. J.; Townend, J.

    2015-12-01

    In preparation for the second stage of the Deep Fault Drilling Project (DFDP) and as part of related research projects, borehole and surface seismic stations were installed near the intended DFDP-2 drill-site in the Whataroa Valley from late 2008. The final four borehole stations were installed within 1.2 km of the drill-site in early 2013 to provide near-field observations of any seismicity that occurred during drilling and thus provide input into operational decision-making processes if required. The basis for making operational decisions in response to any detected seismicity had been established as part of a safety review conducted in early 2014 and was implemented using a "traffic light" system, a communications plan, and other operational documents. Continuous real-time earthquake monitoring took place throughout the drilling period, between September and late December 2014, and involved a team of up to 15 seismologists working in shifts near the drill-site and overseas. Prior to drilling, records from 55 local earthquakes and 14 quarry blasts were used as master templates in a matched-filter detection algorithm to test the capabilities of the seismic network for detecting seismicity near the drill site. The newly detected microseismicity was clustered near the DFDP-1 drill site at Gaunt Creek, 7.4 km southwest of DFDP-2. Relocations of these detected events provide more information about the fault geometry in this area. Although no detectable seismicity occurred within 5 km of the drill site during the drilling period, the region is capable of generating earthquakes that would have required an operational response had they occurred while drilling was underway (including a M2.9 event northwest of Gaunt Creek on 15 August 2014). The largest event to occur while drilling was underway was of M4.5 and occurred approximately 40 km east of the DFDP-2 drill site. In this presentation, we summarize the setup and operations of the seismic network and discuss key

  3. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  4. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  5. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs

  6. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  7. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  8. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs

  9. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  10. Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array

    Science.gov (United States)

    Hiemer, Stefan; Roessler, Dirk; Scherbaum, Frank

    2012-04-01

    The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes ( M L 0.0). In the course of this work, the main temporal features (frequency-magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg-Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.

  11. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Application of Soviet PNE Data to the Improvement of Seismic Monitoring Capability

    National Research Council Canada - National Science Library

    Murphy, John

    2004-01-01

    .... and the Russian Institute for Dynamics of the Geospheres to use regional seismic data recorded from Soviet PNE test and nearby earthquakes and mining events to assess the applicability of various...

  13. Obtaining Unique, Comprehensive Deep Seismic Sounding Data Sets for CTBT Monitoring and Broad Seismological Studies

    National Research Council Canada - National Science Library

    Morozov, Igor B; Morozova, Elena A; Smithson, Scott B

    2007-01-01

    .... The data include 3-component records from 22 Peaceful Nuclear Explosions (PNEs) and over 500 chemical explosions recorded by a grid of linear, reversed seismic profiles covering a large part of Northern Eurasia...

  14. Microseismic monitoring of CO2-injection-induced seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-03

    This presentation's Objectives: Studying moment tensors of microseismic sources; Imaging fracture zones and subsurface structure; Obtaining three-dimension seismic velocity model and improved moment tensors.

  15. Results of 1999 Spectral Gamma-Ray and Neutron Moisture Monitoring of Boreholes at Specific Retention Facilities in the 200 East Area, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    DG Horton; RR Randall

    2000-01-18

    Twenty-eight wells and boreholes in the 200 East Are% Hanford Site, Washington were monitored in 1999. The monitored facilities were past-practice liquid waste disposal facilities and consisted of six cribs and nineteen ''specific retention'' cribs and trenches. Monitoring consisted of spectral gamma-ray and neutron moisture logging. All data are included in Appendix B. The isotopes {sup 137}Cs, {sup 60}Co, {sup 235}U, {sup 238}U, and {sup 154}Eu were identified on spectral gamma logs from boreholes monitoring the PUREX specific retention facilities; the isotopes {sup 137}Cs, {sup 60}Co, {sup 125}Sb, and {sup 154}Eu were identified on the logs from boreholes at the BC Controlled Area cribs and trenches; and {sup 137}Cs, {sup 60}Co, and {sup 125}Sb were, identified on the logs from boreholes at the BX specific retention trenches. Three boreholes in the BC Controlled Area and one at the BX trenches had previous spectral gamma logs available for comparison with 1999 logs. Two of those logs showed that changes in the subsurface distribution of {sup 137}CS and/or {sup 60}Co had occurred since 1992. Although the changes are not great, they do point to continued movement of contaminants in the vadose zone. The logs obtained in 1999 create a larger baseline for comparison with future logs. Numerous historical gross gamma logs exist from most of the boreholes logged. Qualitative comparison of those logs with the 1999 logs show many substantial changes, most of which reflect the decay of deeper short-lived isotopes, such as {sup 106}Ru and {sup 125}Sb, and the much slower decay of shallower and longer-lived isotopes such as {sup 137}Cs. The radionuclides {sup 137}Cs and {sup 60}Co have moved in two boreholes since 1992. Given the amount of movement and the half-lives of the isotopes, it is expected that they will decay to insignificant amounts before reaching groundwater. However, gamma ray logging cannot detect many of the contaminants of interest such

  16. Real-time monitoring of seismicity and deformation during the Bárdarbunga rifting event and associated caldera subsidence

    Science.gov (United States)

    Jónsdóttir, Kristín; Ófeigsson, Benedikt; Vogfjörd, Kristín; Roberts, Matthew; Barsotti, Sara; Gudmundsson, Gunnar; Hensch, Martin; Bergsson, Bergur; Kjartansson, vilhjálmur; Erlendsson, Pálmi; Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Guðmundsson, Magnús; Sigmundsson, Freysteinn; Árnadóttir, Thóra; Heimisson, Elías; Hjorleifsdóttir, Vala; Soring, Jón; Björnsson, Bogi; Oddsson, Björn

    2015-04-01

    We present a monitoring overview of a rifting event and associated caldera subsidence in a glaciated environment during the Bárðarbunga volcanic crisis. Following a slight increase in seismicity and a weak deformation signal, noticed a few months before the unrest by the SIL monitoring team, an intense seismic swarm began in the subglacial Bárðarbunga caldera on August 16 2014. During the following two weeks, a dyke intruded into the crust beneath the Vatnajökull ice cap, propagating 48 km from the caldera to the east-north-east and north of the glacier where an effusive eruption started in Holuhraun. The eruption is still ongoing at the time of writing and has become the largest eruption in over 200 years in Iceland. The dyke propagation was episodic with a variable rate and on several occasions low frequency seismic tremor was observed. Four ice cauldrons, manifestations of small subglacial eruptions, were detected. Soon after the swarm began the 7x11 km wide caldera started to subside and is still subsiding (although at slower rates) and has in total subsided over 60 meters. Unrest in subglacial volcanoes always calls for interdisciplinary efforts and teamwork plays a key role for efficient monitoring. Iceland has experienced six subglacial volcanic crises since modern digital monitoring started in the early 90s. With every crisis the monitoring capabilities, data interpretations, communication and information dissemination procedures have improved. The Civil Protection calls for a board of experts and scientists (Civil Protection Science Board, CPSB) to share their knowledge and provide up-to-date information on the current status of the volcano, the relevant hazards and most likely scenarios. The evolution of the rifting was monitored in real-time by the joint interpretation of seismic and cGPS data. The dyke propagation could be tracked and new, updated models of the dyke volume were presented at the CPSB meetings, often daily. In addition, deformation

  17. TRACKING CLEAN UP AT HANFORD

    International Nuclear Information System (INIS)

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  18. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    Science.gov (United States)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  19. Monitoring of seismic events from a specific source region using a single regional array: A case study

    Science.gov (United States)

    Gibbons, S. J.; Kværna, T.; Ringdal, F.

    2005-07-01

    In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-} k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from

  20. The April 16th 2016 Pedernales Earthquake and Instituto Geofisico efforts for improving seismic monitoring in Ecuador

    Science.gov (United States)

    Ruiz, M. C.; Alvarado, A. P.; Hernandez, S.; Singaucho, J. C.; Gabriela, P.; Landeureau, A.; Perrault, M.; Acero, W.; Viracucha, C.; Plain, M.; Yepes, H. A.; Palacios, P.; Aguilar, J.; Mothes, P. A.; Segovia, M.; Pacheco, D. A.; Vaca, S.

    2016-12-01

    On April 16th, 2016, Ecuador's coastal provinces were struck by a devastating earthquake with 7.8 Mw magnitude. This event caused the earthquake-related largest dead toll in Ecuador (663 fatalities) since 1987 inland event. It provoked also a widespread destruction of houses, hotels, hospitals, affecting economic activities. Damaged was very worthy in the city of Pedernales, one of the nearest localities to the epicenter. Rupture area extended about a 100 km from the southern limit marked by the aftershock area of the 1998, 7.1 Mw earthquake to its northern limit controlled by the Punta Galera-Mompiche seismic zone, which is one of the several elongated swarms oriented perpendicular to the trench that occurred since 2007. Historical accounts of the Ecuador Colombia subduction zone have few mentions of felt earthquakes in the XVIII and XIX century likely related to poor communication and urban settlements in this area. A cycle of noticeable earthquakes began in 1896, including the 1906 8.8 Mw event and three earthquakes with magnitudes larger than 7.7 in the period 1942-1979, that preceded the 2016 earthquake. The Instituto Geofiísico of the Escuela Politécnica Nacional (IGEPN) has been monitoring the coastal area through the National Seismic Network (RENSIG) since 30 years back and recently enhanced through SENASCYT and SENPLADES supported projects. International collaboration from Japanese JICA and French IRD also contributed to expand the network and implement research projects in the area. Nowadays, the RENSIG has 135 seismic stations including 105 broadband and 5 strong motion velocimeters. Processing performed by Seiscomp3 software allows an automatic distribution of seismic parameters. A joint cooperation between IGEPN, the Navy Oceanographic Institute and the National Department for Risk Management is in charge of tsunami monitoring.

  1. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  2. Overview of the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described

  3. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  4. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  5. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  6. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  7. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  8. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed

  9. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Well subject area of the Hanford Environmental Information System (HEIS) manages data relevant to wells, boreholes and test pits constructed at the Hanford Site for soil sampling, geologic analysis and/or ground-water monitoring, and sampling for hydrochemical and radiological analysis. Data stored in the Well subject area include information relevant to the construction of the wells and boreholes, structural modifications to existing wells and boreholes, the location of wells, boreholes and test pits, and the association of wells, boreholes and test pits with organization entities such as waste sites. Data resulting from ground-water sampling performed at wells are stored in tables in the Ground-Water subject area. Geologic data collected during drilling, including particle sizing and interpretative geologic summaries, are stored in tables in the Geologic subject area. Data from soil samples taken during the drilling or excavation and sent for chemical and/or radiological analysis are stored in the Soil subject area

  10. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993

  11. Summary of the Hanford Site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, R.W.; O`Connor, G.P.; Dirkes, R.L. [eds.] [comps.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality.

  12. Summary of the Hanford Site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Hanf, R.W.; O'Connor, G.P.; Dirkes, R.L.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality

  13. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    Science.gov (United States)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  14. Westinghouse Hanford Company environmental surveillance annual report

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Johnson, A.R.; McKinney, S.M.; Perkins, C.J.; Webb, C.R.

    1992-07-01

    This document presents the results of near-facility operational environmental monitoring in 1991 of the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State, as performed by Westinghouse Hanford Company. These activities are conducted to assess and to control the impacts of operations on the workers and the local environment and to monitor diffuse sources. Surveillance activities include sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys are taken at waste disposal sites, radiologically controlled areas, and roads

  15. Time-Lapse Monitoring of Subsurface Fluid Flow using Parsimonious Seismic Interferometry

    KAUST Repository

    Hanafy, Sherif; Li, Jing; Schuster, Gerard T.

    2017-01-01

    of parsimonious seismic interferometry with the time-lapse mentoring idea with field examples, where we were able to record 30 different data sets within a 2-hour period. The recorded data are then processed to generate 30 snapshots that shows the spread of water

  16. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  17. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  18. Broadband seismic deployments in East Antarctica: IPY contribution to monitoring the Earth’s interiors

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    2014-06-01

    Full Text Available “Deployment of broadband seismic stations on the Antarctica continent” is an ambitious project to improve the spatial resolution of seismic data across the Antarctic Plate and surrounding regions. Several international collaborative programs for the purpose of geomonitoring were conducted in Antarctica during the International Polar Year (IPY 2007-2008. The Antarctica’s GAmburtsev Province (AGAP; IPY #147, the GAmburtsev Mountain SEISmic experiment (GAMSEIS, a part of AGAP, and the Polar Earth Observing Network (POLENET; IPY #185 were major contributions in establishing a geophysical network in Antarctica. The AGAP/GAMSEIS project was an internationally coordinated deployment of more than 30 broadband seismographs over the crest of the Gambursev Mountains (Dome-A, Dome-C and Dome-F area. The investigations provide detailed information on crustal thickness and mantle structure; provide key constraints on the origin of the Gamburtsev Mountains; and more broadly on the structure and evolution of the East Antarctic craton and subglacial environment. From GAMSEIS and POLENET data obtained, local and regional seismic signals associated with ice movements, oceanic loading, and local meteorological variations were recorded together with a significant number of teleseismic events. In this chapter, in addition to the Earth’s interiors, we will demonstrate some of the remarkable seismic signals detected during IPY that illustrate the capabilities of broadband seismometers to study the sub-glacial environment, particularly at the margins of Antarctica. Additionally, the AGAP and POLENET stations have an important role in the Federation of Digital Seismographic Network (FDSN in southern high latitude.

  19. Hanford Environmental Information System (HEIS) user's manual

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. Data stored in the HEIS are collected under several regulatory programs. Currently these include the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the Resource Conservation and Recovery Act of 1976 (RCRA); and the Ground-Water Environmental Surveillance Project, managed by the Pacific Northwest Laboratory. The HEIS is an information system with an inclusive database. The manual, the HEIS User's Manual, describes the facilities available to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines

  20. Master schedule for CY-1979 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Houston, J.R.; Eddy, P.A.

    1978-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site, as conducted by the Environmental Evaluation Section of Battelle, Pacific Northwest Laboratory for the Department of Energy (DOE), is given. Modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, and to monitor Hanford operations for compliance with applicable environmental criteria and Washington State Water Quality Standards. Air quality data are obtained in a separate program administered by the Hanford Environmental Health Foundation. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Water quality data for Hanford Site potable water systems are published each year by the Hanford Environmental Health Foundation. The data collected are available in routine reports issued by the Environmental Evaluations staff. Groundwater data and evaluation are reported in the series, ''Radiological Status of the Groundwater Beneath the Hanford Project for...,'' the latest issue being PNL-2624 for CY-1977. Data from locations within the plant boundaries are presented in the annual ''Environmental Status of the Hanford Site for...'' report series, the most recent report being PNL-2677 for 1977. Data from offsite locations are presented in the annual ''Environmental Surveillance at Hanford for...'' series of reports, the latest being PNL-2614 for 1977

  1. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  2. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  3. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  4. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. HEIS is an information system with an inclusive database. Although the database is the nucleus of the system, HEIS also provides user access software: query-by-form data entry, extraction, and browsing facilities; menu-driven reporting facilities; an ad hoc query facility; and a geographic information system (GIS). These features, with the exception of the GIS, are described in this manual set. Because HEIS contains data from the entire Hanford Site, many varieties of data are included and have.been divided into subject areas. Related subject areas comprise several volumes of the manual set. The manual set includes a data dictionary that lists all of the fields in the HEIS database, with their definitions and a cross reference of their locations in the database; definitions of data qualifiers for analytical results; and a mapping between the HEIS software functions and the keyboard keys for each of the supported terminals or terminal emulators

  5. Formation of Ground Truth Databases and Related Studies and Regional Seismic Monitoring Research

    Science.gov (United States)

    2006-06-01

    experiments (1997-1999) in the former Semipalatinsk test site , Proceedings of the 22nd Annual DoDLDOE Seismic Research Symposium, Vol. I, U. S. Department of...DefenselEnergy, 55-66. Kim, Won-Young (1998), Waveform Data Information Product: Calibration Explosions at Semipalatinsk Test Site , Kazakstan...from the aftershocks of a 100 ton chemical explosion at the Degelen, Kazakh Test Site on 22 August 1998 (Omega-1). Epicentral locations, based on P

  6. High-resolution seismic monitoring of rockslide activity in the Illgraben, Switzerland

    Science.gov (United States)

    Burtin, Arnaud; Hovius, Niels; Dietze, Michael; McArdell, Brian

    2014-05-01

    Rockfalls and rockslides are important geomorphic processes in landscape dynamics. They contribute to the evolution of slopes and supply rock materials to channels, enabling fluvial incision. Hillslope processes are also a natural hazard that we need to quantify and, if possible, predict. For these reasons, it is necessary to determine the triggering conditions and mechanisms involved in rockfalls. Rainfall is a well-known contributor since water, through soil moisture or pore pressure, may lead to the inception and propagation of cracks and can induce slope failure. Water can also affect slope stability through effects of climatic conditions such as the fluctuations of temperature around the freezing point. During the winter of 2012, we have recorded with a seismic array of 8 instruments substantial rockslide activity that affected a gully in the Illgraben catchment in the Swiss Alps. Three stations were positioned directly around the gully with a nearest distance of 400 m. The period of intense activity did not start during a rainstorm as it is common in summer but during a period of oscillation of temperatures around the freezing point. The activity did not occur in a single event but lasted about a week with a decay in time of the event frequency. Many individual events had two distinct seismic signals, with first, a short duration phase of about 10 s at frequencies below 5 Hz that we interpret as a slope failure signature, followed by a second long duration signal of > 60 s at frequencies above 10 Hz that we attribute to the propagation of rock debris down the slope. Thanks to the array of seismic sensors, we can study the fine details of this rockslide sequence by locating the different events, determining their distribution in time, and systematic quantification of seismic metrics (energy, duration, intensity...). These observations are compared to independent meteorological constrains and laser scan data to obtain an estimate of the volume mobilized by the

  7. A new generation of multichannel seismic apparatus and its practical application in standalone and array monitoring

    Czech Academy of Sciences Publication Activity Database

    Brož, Milan; Štrunc, Jaroslav

    2011-01-01

    Roč. 8, č. 3 (2011), s. 345-352 ISSN 1214-9705 R&D Projects: GA ČR GA103/07/1522 Institutional research plan: CEZ:AV0Z30460519 Keywords : analog-to-digital converter * seismic array * weak event Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/03_11/16_Broz.pdf

  8. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  9. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  10. A Dynamic Programming Model for Optimizing Frequency of Time-Lapse Seismic Monitoring in Geological CO2 Storage

    Science.gov (United States)

    Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.

    2005-12-01

    Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic

  11. Hanford Site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.] [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality.

  12. Hanford Site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality

  13. Modeling of time-lapse multi-scale seismic monitoring of CO2 injected into a fault zone to enhance the characterization of permeability in enhanced geothermal systems

    Science.gov (United States)

    Zhang, R.; Borgia, A.; Daley, T. M.; Oldenburg, C. M.; Jung, Y.; Lee, K. J.; Doughty, C.; Altundas, B.; Chugunov, N.; Ramakrishnan, T. S.

    2017-12-01

    Subsurface permeable faults and fracture networks play a critical role for enhanced geothermal systems (EGS) by providing conduits for fluid flow. Characterization of the permeable flow paths before and after stimulation is necessary to evaluate and optimize energy extraction. To provide insight into the feasibility of using CO2 as a contrast agent to enhance fault characterization by seismic methods, we model seismic monitoring of supercritical CO2 (scCO2) injected into a fault. During the CO2 injection, the original brine is replaced by scCO2, which leads to variations in geophysical properties of the formation. To explore the technical feasibility of the approach, we present modeling results for different time-lapse seismic methods including surface seismic, vertical seismic profiling (VSP), and a cross-well survey. We simulate the injection and production of CO2 into a normal fault in a system based on the Brady's geothermal field and model pressure and saturation variations in the fault zone using TOUGH2-ECO2N. The simulation results provide changing fluid properties during the injection, such as saturation and salinity changes, which allow us to estimate corresponding changes in seismic properties of the fault and the formation. We model the response of the system to active seismic monitoring in time-lapse mode using an anisotropic finite difference method with modifications for fracture compliance. Results to date show that even narrow fault and fracture zones filled with CO2 can be better detected using the VSP and cross-well survey geometry, while it would be difficult to image the CO2 plume by using surface seismic methods.

  14. Seismic monitoring of an Underground Repository in Salt - Results of the measurements at the Gorleben Exploratory mine

    International Nuclear Information System (INIS)

    Altmann, Jurgen

    2013-01-01

    We have measured seismic and acoustic signals from various mining activities in the Gorleben exploratory mine in Germany, underground at -840 m and at the surface, tasked by the German Support Programme to the IAEA, in order to provide basic knowledge on the detectability of undeclared activities. During 7 weeks total nearly all sources of sound and vibration available in the mine were covered, with sensors at several positions and sources at several sites, sometimes with background signals from on-going exploration elsewhere. The peak-to-peak values of vibration velocity, referred to 100 m distance, range from tenths of micro metres/second for a hand-held chain saw via few μm/s to tens of μm/s for other tools such as picking, for vehicles, drilling and sledge-hammer blows. A grader with compactor plates produces hundreds, and a blast shot around one hundred thousand μm/s. The last two sources could be detected at the surface, too, at about 1.1 km slant distance; blasts were even seen at 5-6 km distance. The signal strengths vary by a factor 2 to 5 for similar conditions. Fitted by a power law, the decrease with distance is with an exponent mostly between -2 and -1. Spectra of seismic signals from periodic sources (such as percussion drilling or vehicle engines) show harmonic series. Rock removal, e.g. by drilling, produces broad-band excitation up to several kilohertz. Acoustic-seismic coupling is relevant. Monitoring could be done with an underground geophone “fence” around the repository, e.g. 500 m from the salt-dome margin and possibly in the salt 1 km off the repository. With that excavation by drilling and blasting could be detected by a simple amplitude criterion. Under which conditions excavation by tunnel boring machine or road header machine and other weaker activities could be detected needs to be studied.

  15. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  16. Active Seismic Monitoring Using High-Power Moveable 40-TONS Vibration Sources in Altay-Sayn Region of Russia

    Science.gov (United States)

    Soloviev, V. M.; Seleznev, V. S.; Emanov, A. F.; Kashun, V. N.; Elagin, S. A.; Romanenko, I.; Shenmayer, A. E.; Serezhnikov, N.

    2013-05-01

    The paper presents data of operating vibroseismic observations using high-power stationary 100-tons and moveable 40-tons vibration sources, which have been carried out in Russia for 30 years. It is shown that investigations using high-power vibration sources open new possibilities for study stressedly-deformed condition of the Earth`s crust and the upper mantle and tectonic process in them. Special attention is given to developing operating seismic translucences of the Earth`s crust and the upper mantle using high-power 40-tons vibration sources. As a result of experimental researches there was proved high stability and repeatability of vibration effects. There were carried out long period experiments of many days with vibration source sessions of every two hours with the purpose of monitoring accuracy estimation. It was determined, that repeatability of vibroseismic effects (there was researched time difference of repeated sessions of P- and S-waves from crystal rocks surface) could be estimated as 10-3 - 10-4 sec. It is ten times less than revealed here annual variations of kinematic parameters according to regime vibroseismic observations. It is shown, that on hard high-speed grounds radiation spectrum becomes narrowband and is dislocated to high frequency; at the same time quantity of multiple high-frequency harmonic is growing. At radiation on soft sedimentary grounds (sand, clay) spectrum of vibration source in near zone is more broadband, correlograms are more compact. there Correspondence of wave fields from 40-tons vibration sources and explosions by reference waves from boundaries in he Earth`s crust and the upper mantle at record distance of 400 km was proved by many experiments in various regions of Russia; there was carried out the technique of high-power vibration sources grouping for increase of effectiveness of emanation and increase of record distance. According to results of long-term vibroseismic monitoring near Novosibirsk (1997-2012) there are

  17. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs

  18. New seismic monitoring observation system and data accessibility at Syowa Station

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    1999-03-01

    Full Text Available The seismic observation system at Syowa Station, East Antarctica was fully replaced in the wintering season of the 38th Japanese Antarctic Research Expedition (JARE-38 in 1996-1998. The old seismographic vault constructed in 1970 was closed at the end of JARE-38 because of cumulative damage to the inner side of the vault by continuous flowing in of water from walls in summer and its freezing in winter. All the seismometers were moved to a new seismographic hut (69°00′24.0″S, 39°35′06.0″E and 20m above mean sea level in April 1997. Seismic signals of the short-period (HES and broadband (STS-1 seismometers in the new hut are transmitted to the Earth Science Laboratory (ESL via analog cable 600m in length. The new acquisition system was installed in the ESL with 6-channel 24-bit A/D converters for both sensor signals. All digitized data are automatically transmitted from the A/D converter to a workstation via TCP/IP protocol. After parallel observations with the old acquisition system by personal computers and the new system during the wintering season of JARE-38,the main system was changed to the new one, which has some advantages for both the reduction of daily maintenance efforts and the data transport/communication processes via Internet by use of LAN at the station. In this report, details of the new seismographic hut and the recording system are described. Additionally, the seismic data accessibility for public use, including Internet service, is described.

  19. Satellite Monitoring of Accumulation of Strain in the Earth's Crust Related to Seismic and Volcanic Activity

    Science.gov (United States)

    Arellano-Baeza, A. A.

    2009-12-01

    Our studies have shown that the strain energy accumulation deep in the Earth’s crust that precedes seismic and volcanic activity can be detected by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.

  20. Development of a software for monitoring of seismic activity through the analysis of satellite images

    Science.gov (United States)

    Soto-Pinto, C.; Poblete, A.; Arellano-Baeza, A. A.; Sanchez, G.

    2010-12-01

    A software for extraction and analysis of the lineaments has been developed and applied for the tracking of the accumulation/relaxation of stress in the Earth’s crust due to seismic and volcanic activity. A lineament is a straight or a somewhat curved feature in a satellite image, which reflects, at least partially, presence of faults in the crust. The technique of lineament extraction is based on the application of directional filters and Hough transform. The software has been checked for several earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, analyzing temporal sequences of the ASTER/TERRA multispectral satellite images for the regions around an epicenter. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changes significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion.

  1. Evaluation of Seismic Response Trends from Long-Term Monitoring of Two Instrumented RC Buildings Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Faheem Butt

    2012-01-01

    Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.

  2. Application of Double-Difference Seismic Tomography to Carbon Sequestration Monitoring at the Aneth Oil Field, Utah

    Directory of Open Access Journals (Sweden)

    Nino Ripepi

    2013-10-01

    Full Text Available Double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA of sequestered CO2. A total of 1211 seismic events were recorded from a borehole array consisting of 23 geophones. Artificial velocity models were created to determine the likelihood of detecting a CO2 plume with an unfavorable event and receiver arrangement. In tests involving artificially modeled ray paths through a velocity model, ideal event and receiver arrangements clearly show velocity reductions. When incorporating the unfavorable event and station locations from the Aneth Unit into synthetic models, the ability to detect velocity reductions is greatly diminished. Using the actual, recorded travel times, the Aneth Unit results show differences between a synthetic baseline model and the travel times obtained in the field, but the differences do not clearly indicate a region of injected CO2. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage, and a more detailed baseline velocity model.

  3. Fundamental aspects of the integration of seismic monitoring with numerical modelling.

    CSIR Research Space (South Africa)

    Mendecki, AJ

    2001-06-01

    Full Text Available of the physical state of the rock- mass. ! It must be equipped with the capability of converting the parameters of a real seismic event into a corresponding model-compatible input in the form of an additional loading on the rock-mass. ! It must allow... for an unambiguous identification and quantification of Aseismic events @ among the model-generated data. Structure of an integrated numerical model The functionality interrelations between the different components of a software package designed to implement...

  4. Master schedule for CY-1983 Hanford environmental surveillance routine sampling program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.; Dirkes, R.L.

    1982-12-01

    The current schedule of data collection for the routine Hanford environmental surveillance and ground-water monitoring programs at the Hanford Site is presented. The purpose of the programs is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs. Radiological monitoring data are reported for air (particulate filter and gases/vapor), Columbia River water, sanitary water, onsite pond water, foodstuffs (whole milk, leafy vegetables, fruit, wheat/alfalfa, beef, poultry/eggs), wildlife, soil and vegetation, and direct radiation. Information is also given for on site radiation control audit surveys (roadway, railway, aerial, and waste disposal sites, and the Hanford ground-water monitoring program