WorldWideScience

Sample records for hanford radiological protection

  1. Hanford radiological protection support services annual report 1996

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.

    1997-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  2. Hanford radiological protection support services annual report for 1991

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Leonwich, J.A.; Lynch, T.P.

    1992-07-01

    Various Hanford sitewide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy, Richland Field Office and Hanford contractors are described In this annual report for calendar year 1991. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable

  3. Hanford Radiological Protection Support Services Annual Report for 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Timothy P.; Bihl, Donald E.; Johnson, Michelle L.; Maclellan, Jay A.; Piper, Roman K.

    2001-05-07

    During calendar year 2000, the Pacific Northwest National Laboratory performed its customary radiological protection support services in support of the U.S. Department of Energy Richland Operations Office and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo monitoring, 4) radiological records, 5) instrument calibration and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology. Each program summary describes the routine operations, program changes and improvements, program assessments, supporting technical studies, and professional activities.

  4. Hanford Radiological Protection Support Services Annual Report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    DE Bihl; JA MacLellan; ML Johnson; RK Piper; TP Lynch

    1999-05-14

    During calendar year (CY) 1998, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations OffIce (RL) and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo measurements, 4) radiological records, 5) instrument calibra- tion and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology (MST). The services were provided under a number of projects as summarized here.

  5. Hanford Radiological Protection Support Services annual report for 1992

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Lynch, T.P.

    1993-07-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Field Office and Hanford contractors are described in this annual report of calendar year 1992. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  6. Hanford radiological protection support services. Annual report for 1995

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Carbaugh, E.H.

    1996-05-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  7. Hanford radiological protection support services annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

    1998-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  8. Hanford radiological protection support services annual report for 1990

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Freolich, T.J.; Leonowich, J.A.; Lynch, T.P.

    1991-07-01

    Various Hanford site-wide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy-Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1990. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable. 22 refs., 10 figs., 19 tabs

  9. Hanford Radiological Protection Support Services annual report for 1993

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Olsen, P.C.

    1994-07-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1993. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  10. Hanford radiological protection support services annual report for 1997

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

    1998-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  11. Hanford radiological protection support services annual report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.

    1997-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  12. Hanford Radiological Protection Support Services Annual Report for 1999

    Energy Technology Data Exchange (ETDEWEB)

    TP Lynch; DE Bihl; ML Johnson; MA MacLellan; RK Piper

    2000-05-19

    During calendar year (CY) 1999, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations Office (RL) and the Hanford contractors. These services included: (1) external dosimetry, (2) internal dosimetry, (3) in vivo measurements, (4) radiological records, (5) instrument calibration and evaluation, and (6) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST). The services were provided under a number of programs as summarized here. Along with providing site-wide nuclear accident and environmental dosimetry capabilities, the Hanford External Dosimetry Program (HEDP) supports Hanford radiation protection programs by providing external radiation monitoring capabilities for all Hanford workers and visitors to help ensure their health and safety. Processing volumes decreased in CY 1999 relative to prior years for all types of dosimeters, with an overall decrease of 19%. During 1999, the HEDP passed the National Voluntary Laboratory Accreditation Program (NVLAP) performance testing criteria in 15 different categories. HEDP computers and processors were tested and upgraded to become Year 2000 (Y2K) compliant. Several changes and improvements were made to enhance the interpretation of dosimeter results. The Hanford Internal Dosimetry Program (HIDP) provides for the assessment and documentation of occupational dose from intakes of radionuclides at the Hanford Site. Performance problems carried over from CY 1998 continued to plague the in vitro bioassay contractor. A new contract was awarded for the in vitro bioassay program. A new computer system was put into routine operation by the in vivo bioassay program. Several changes to HIDP protocols were made that were related to bioassay grace periods, using field data to characterize the amount of alpha activity present and using a new default particle

  13. Hanford Radiological Protection Support Services Annual Report for 1999

    International Nuclear Information System (INIS)

    TP Lynch; DE Bihl; ML Johnson; MA MacLellan; RK Piper

    2000-01-01

    During calendar year (CY) 1999, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations Office (RL) and the Hanford contractors. These services included: (1) external dosimetry, (2) internal dosimetry, (3) in vivo measurements, (4) radiological records, (5) instrument calibration and evaluation, and (6) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST). The services were provided under a number of programs as summarized here. Along with providing site-wide nuclear accident and environmental dosimetry capabilities, the Hanford External Dosimetry Program (HEDP) supports Hanford radiation protection programs by providing external radiation monitoring capabilities for all Hanford workers and visitors to help ensure their health and safety. Processing volumes decreased in CY 1999 relative to prior years for all types of dosimeters, with an overall decrease of 19%. During 1999, the HEDP passed the National Voluntary Laboratory Accreditation Program (NVLAP) performance testing criteria in 15 different categories. HEDP computers and processors were tested and upgraded to become Year 2000 (Y2K) compliant. Several changes and improvements were made to enhance the interpretation of dosimeter results. The Hanford Internal Dosimetry Program (HIDP) provides for the assessment and documentation of occupational dose from intakes of radionuclides at the Hanford Site. Performance problems carried over from CY 1998 continued to plague the in vitro bioassay contractor. A new contract was awarded for the in vitro bioassay program. A new computer system was put into routine operation by the in vivo bioassay program. Several changes to HIDP protocols were made that were related to bioassay grace periods, using field data to characterize the amount of alpha activity present and using a new default particle

  14. Hanford radiological protection support services annual report for 1987

    International Nuclear Information System (INIS)

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1988-08-01

    This report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1987 by Pacific Northwest Laboratory in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standards or industry committees are also discussed. The programs covered provide services in the areas of: external dosimetry, internal dosimetry, in vivo measurements, instrument calibration and evaluation, calibration of radiation sources traceable to the National Bureau of Standards, and radiological records. 21 refs., 10 figs., 12 tabs

  15. Hanford radiological protection support services annual report for 1988

    International Nuclear Information System (INIS)

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1989-06-01

    The report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1988 by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standard or industry committees are also listed. The programs covered provide services in the areas of (1) internal dosimetry, (2) in vivo measurements, (3) external dosimetry, (4) instrument calibration and evaluation, (5) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards), and (6) radiological records. 23 refs., 15 figs., 15 tabs

  16. Toxicology profiles of chemical and radiological contaminants at Hanford

    International Nuclear Information System (INIS)

    Harper, B.L.; Strenge, D.L.; Stenner, R.D.; Maughan, A.D.; Jarvis, M.K.

    1995-07-01

    This document summarizes toxicology information required under Section 3.3 (Toxicity Assessment) of HSRAM, and can also be used to develop the short toxicology profiles required in site assessments (described in HSRAM, Section 3.3.5). Toxicology information is used in the dose-response step of the risk assessment process. The dose-response assessment describes the quantitative relationship between the amount of exposure to a substance and the extent of toxic injury or disease. Data are derived from animal studies or, less frequently, from studies in exposed human populations. The risks of a substance cannot be ascertained with any degree of confidence unless dose-response relations are quantified. This document summarizes dose-response information available from the US Environmental Protection Agency (EPA). The contaminants selected for inclusion in this document represent most of the contaminants found at Hanford (both radiological and chemical), based on sampling and analysis performed during site investigations, and historical information on waste disposal practices at the Hanford Site

  17. Toxicology profiles of chemical and radiological contaminants at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Harper, B.L.; Strenge, D.L.; Stenner, R.D.; Maughan, A.D.; Jarvis, M.K.

    1995-07-01

    This document summarizes toxicology information required under Section 3.3 (Toxicity Assessment) of HSRAM, and can also be used to develop the short toxicology profiles required in site assessments (described in HSRAM, Section 3.3.5). Toxicology information is used in the dose-response step of the risk assessment process. The dose-response assessment describes the quantitative relationship between the amount of exposure to a substance and the extent of toxic injury or disease. Data are derived from animal studies or, less frequently, from studies in exposed human populations. The risks of a substance cannot be ascertained with any degree of confidence unless dose-response relations are quantified. This document summarizes dose-response information available from the US Environmental Protection Agency (EPA). The contaminants selected for inclusion in this document represent most of the contaminants found at Hanford (both radiological and chemical), based on sampling and analysis performed during site investigations, and historical information on waste disposal practices at the Hanford Site.

  18. Development and maintenance of the Hanford Site Radiological Control Manual

    International Nuclear Information System (INIS)

    Munson, L.H.; Selby, J.M.; Vargo, G.J.; Clark, D.L.

    1993-04-01

    In June 1992 the US Department of Energy (DOE) issued DOE N5480.6, Radiological Control, which set forth DOE's Radiological Control Program and established the framework for its implementation at sites nationwide. Accompanying the Order was the DOE Radiological Control Manual (DOE RCM), which provided the detailed requirements for the program. The Order also mandated Field Office issuance of site-specific radiological control manuals by December 1, 1992. This paper presents the approach taken to develop, review, approve, implement, and subsequently maintain the site-specific manual for the DOE Richland Field Office (RL) at Hanford Site

  19. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    International Nuclear Information System (INIS)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy's Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; 60 Co and 9O Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of 137 Cs, 238 Pu, 239,240 Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area)

  20. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy`s Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; {sup 60}Co and {sup 9O}Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area).

  1. Efficacy of rock doves at the Hanford site, Washington, as radiological indicators

    Energy Technology Data Exchange (ETDEWEB)

    Houser, M.R.

    1996-02-01

    Site faithfulness and general movement patterns of five rock dove (Columba livia) flocks were estimated in order to evaluate their efficacy as radiological indicators on the Hanford Site. Of 367 individually marked birds, 311 were resighted or recaptured at least once during onsite and offsite monitoring. Average site faithfulness for all flocks from resightings was 87.1% and was not significantly different than a hypothesized 90% site faithful distribution. Average site faithfulness from pooled resightings and recaptures was 91.3%, which was also not significantly different than a 90% distribution. Since Hanford rock doves exhibit site faithfulness and can be easily monitored, I conclude that they can be used as radiological indicators. I found 107 birds at 21 different locations during offsite surveys in agricultural areas adjacent to the Hanford Site. Mean movement distances from capture areas to offsite locations for each of the five flocks were significantly different. Mean movement distances from capture areas to offsite locations for each flock were highly correlated with closest possible distances for each flock. Mean movement directions from capture areas to offsite locations for each flock were significantly different than random movement patterns for each flock.

  2. Efficacy of rock doves at the Hanford site, Washington, as radiological indicators

    International Nuclear Information System (INIS)

    Houser, M.R.

    1996-02-01

    Site faithfulness and general movement patterns of five rock dove (Columba livia) flocks were estimated in order to evaluate their efficacy as radiological indicators on the Hanford Site. Of 367 individually marked birds, 311 were resighted or recaptured at least once during onsite and offsite monitoring. Average site faithfulness for all flocks from resightings was 87.1% and was not significantly different than a hypothesized 90% site faithful distribution. Average site faithfulness from pooled resightings and recaptures was 91.3%, which was also not significantly different than a 90% distribution. Since Hanford rock doves exhibit site faithfulness and can be easily monitored, I conclude that they can be used as radiological indicators. I found 107 birds at 21 different locations during offsite surveys in agricultural areas adjacent to the Hanford Site. Mean movement distances from capture areas to offsite locations for each of the five flocks were significantly different. Mean movement distances from capture areas to offsite locations for each flock were highly correlated with closest possible distances for each flock. Mean movement directions from capture areas to offsite locations for each flock were significantly different than random movement patterns for each flock

  3. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  4. Radiological protection

    International Nuclear Information System (INIS)

    Azorin N, J.; Azorin V, J. C.

    2010-01-01

    This work is directed to all those people related with the exercise of the radiological protection and has the purpose of providing them a base of knowledge in this discipline so that they can make decisions documented on technical and scientist factors for the protection of the personnel occupationally exposed, the people in general and the environment during the work with ionizing radiations. Before de lack of a text on this matter, this work seeks to cover the specific necessities of our country, providing a solid presentation of the radiological protection, included the bases of the radiations physics, the detection and radiation dosimetry, the radiobiology, the normative and operational procedures associates, the radioactive wastes, the emergencies and the transport of the radioactive material through the medical and industrial applications of the radiations, making emphasis in the relative particular aspects to the radiological protection in Mexico. The book have 16 chapters and with the purpose of supplementing the given information, are included at the end four appendixes: 1) the radioactive waste management in Mexico, 2-3) the Mexican official standards related with the radiological protection, 4) a terms glossary used in radiological protection. We hope this book will be of utility for those people that work in the investigation and the applications of the ionizing radiations. (Author)

  5. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  6. Environmental and ground-water surveillance at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  7. Environmental and ground-water surveillance at Hanford

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Luttrell, S.P.

    1995-01-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment

  8. Survey of radiological contaminants in the near-shore environment at the Hanford Site 100-N Area reactor

    International Nuclear Information System (INIS)

    Van Verst, S.P.; Albin, C.L.; Patton, G.W.; Blanton, M.L.; Poston, T.M.; Cooper, A.T.; Antonio, E.J.

    1998-09-01

    Past operations at the Hanford Site 100-N Area reactor resulted in the release of radiological contaminants to the soil column, local groundwater, and ultimately to the near-shore environment of the Columbia River. In September 1997, the Washington State Department of Health (WDOH) and the Hanford Site Surface Environmental Surveillance Project (SESP) initiated a special study of the near-shore vicinity at the Hanford Site's retired 100-N Area reactor. Environmental samples were collected and analyzed for radiological contaminants ( 3 H, 90 Sr, and gamma/ emitters), with both the WDOH and SESP analyzing a portion of the samples. Samples of river water, sediment, riverbank springs, periphyton, milfoil, flying insects, clam shells, and reed canary grass were collected. External exposure rates were also measured for the near-shore environment in the vicinity of the 100-N Area. In addition, samples were collected at background locations above Vernita Bridge

  9. Summary of radiological monitoring of Columbia River water along the Hanford Reach, 1980 through 1989

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1994-02-01

    The Surface Environmental Surveillance Project (SESP) is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) at the Hanford Site in southeastern Washington State. The Columbia River monitoring program, conducted as part of the SESP, provides a historical record of contaminant concentrations in the river attributable to natural causes, worldwide fallout, and operations conducted at the Hanford Site. In addition to ongoing monitoring, special studies are conducted periodically to enhance the understanding of the transport and fate of contaminants in the river. The Columbia River monitoring program includes sampling of river water, river sediment, river-bank springs entering the river, and various types of aquatic biota found in or along the river. These samples are analyzed for radiological constituents and a wide range of chemical parameters. This report describes the water sampling component of the overall Columbia River monitoring program conducted during the years 1980 through 1989 and summarizes the radiological results generated through the program during this time period. The only radionuclides found in the river that were consistently influenced by Hanford were tritium and iodine-129. Strontium-90 and uranium, also attributable to Hanford operations, were present in localized areas within the river near ground-water discharge points; however, these contaminants are quickly dispersed within the river to concentrations similar to background

  10. Introduction of radiological protection; Pengenalan kepada perlindungan radiologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: basic principles of radiological protection , dose limit which was suggested, stochastic and nonstochastic effects, equivalent dose and alternative of it`s calculation, limit for the publics, ICRP (International Commission for Radiological Protection) recommendations, and the principles of radiological protection. Dangerous radiation sources also briefly summarized i.e. x-ray generators, reactor nucleus.

  11. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  12. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov [Washington State Department of Ecology, N. 4601 Monroe, Spokane, WA 99205-1295 (United States); Verst, Scott Van [Washington State Department of Health, Olympia, WA (United States); Rochette, Elizabeth A. [Washington State Department of Ecology, Richland, WA (United States)

    2010-02-15

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from the Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA

  13. PROTECTING GROUNDWATER & THE COLUMBIA RIVER AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2006-06-29

    Along the remote shores of the Columbia River in southeast Washington state, a race is on. Fluor Hanford, a prime cleanup contractor to the U.S. Department of Energy (DOE) at the Hanford Site, is managing a massive, multi-faceted project to remove contaminants from the groundwater before they can reach the Columbia. Despite the daunting nature and size of the problem--about 80 square miles of aquifer under the site contains long-lived radionuclides and hazardous chemicals--significant progress is being made. Many groups are watching, speaking out, and helping. A large. passionate, diverse, and geographically dispersed community is united in its desire to protect the Columbia River--the eighth largest in the world--and have a voice in Hanford's future. Fluor Hanford and the DOE, along with the US. Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology) interact with all the stakeholders to make the best decisions. Together, they have made some remarkable strides in the battle against groundwater contamination under the site.

  14. Hanford Site River Protection Project (RPP) High-Level Waste Storage

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc

  15. Application of Biota Dose Assessment Committee Methodology to Assess Radiological Risk to Salmonids in the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Poston, Ted M.; Antonio, Ernest J.; Peterson, Robert E.

    2002-01-01

    Protective guidance for biota in the U.S. Department of Energy's Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota is based on population level protection guides of 10 or 1 mGy.d-1, respectively. Several 'ecologically significant units' of Pacific salmon are listed under the Endangered Species Act. The Middle Columbia Steelhead unit is endangered and the adult steelhead spawn in the reach. The reach also supports one of the largest spawning populations of fall chinook salmon in the Northwest. The existence of the major spawning areas in the Hanford Reach has focused considerable attention on their ecological health by the U.S. Department of Energy, other federal and state regulatory agencies, and special interest groups. Dose assessments for developing salmonid embryos were performed for the hypothetical exposure to tritium, strontium-90, technetium-99, iodine-129, and uranium isotopes at specific sites on the Hanford Reach. These early life stages are potentially exposed in some areas of the Hanford Reach to radiological contaminants that enter the river via shoreline seeps and upwelling through the river substrate. At the screening level, one site approached the dose guideline of 10 mGy.d-1 established with the RAD-BCG methodology and exceeded a precautionary benchmark of 2.5 mGy.d-1. Special status of listed species affords these populations more consideration when assessing potential impacts of exposure to radionuclides and other contaminants associated with the Hanford Site operations. The evolution of dose benchmarks for aquatic organisms and consideration of precautionary principal and cumulative impacts are discussed in this paper.

  16. Radiological protection in interventional radiology

    International Nuclear Information System (INIS)

    Padovani, R.

    2001-01-01

    Interventional radiology (IR) reduces the need for many traditional interventions, particularly surgery, so reducing the discomfort and risk for patients compared with traditional systems. IR procedures are frequently performed by non-radiologist physicians, often without the proper radiological equipment and sufficient knowledge of radiation protection. Levels of doses to patients and staff in IR vary enormously. A poor correlation exists between patient and staff dose, and large variations of dose are reported for the same procedure. The occurrence of deterministic effects in patients is another peculiar aspect of IR owing to the potentially high skin doses of some procedures. The paper reviews the use of IR and the radiological protection of patients and staff, and examines the need for new standards for IR equipment and the training of personnel. (author)

  17. Radiological Protection Science and Application

    International Nuclear Information System (INIS)

    Janssens, Augustin; ); Mossman, Ken; Morgan, Bill

    2016-01-01

    Since the discovery of radiation at the end of the 19. century, the health effects of exposure to radiation have been studied more than almost any other factor with potential effects on human health. The NEA has long been involved in discussions on the effects of radiation exposure, releasing two reports in 1994 and 2007 on radiological protection science. This report is the third in this state-of-the-art series, examining recent advances in the understanding of radiation risks and effects, particularly at low doses. It focuses on radiobiology and epidemiology, and also addresses the social science aspects of stakeholder involvement in radiological protection decision making. The report summarises the status of, and issues arising from, the application of the International System of Radiological Protection to different types of prevailing circumstances. Reports published by the NEA Committee on Radiation Protection and Public Health (CRPPH) in 1998 and 2007 provided an overview of the scientific knowledge available at that time, as well as the expected results from further research. They also discussed the policy implications that these results could have for the radiological protection system. The 2007 report highlighted challenges posed by developments in relation to medical exposure and by intentions to include the environment (i.e. non-human species), within the scope of the radiological protection system. It also addressed the need to be able to respond to a radiological terrorist attack. This report picks up on where the 1998 and 2007 reports left off, and addresses the state of the art in radiological prevention science and application today. It is divided into five chapters. Firstly, following broadly the structural topics from the 1998 and 2007 reports, the more purely scientific aspects of radiological protection are presented. These include cancer risk of low dose and dose rates, non-cancer effects and individual sensitivity. In view of the increasing

  18. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs

  19. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  20. Hanford Site groundwater monitoring for fiscal year 1996

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems

  1. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-01

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  2. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  3. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  4. Radiological protection act, 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This Act provides for the establishment of the Radiological Protection Institute of Ireland and dissolves An Bord Fuinnimh Nuicleigh (the Board), transferring its assets and liabilities to the Institute. It sets out a range of radiation protection measures to be taken by various Ministers in the event of a radiological emergency and gives effect at national level to the Assistance Convention, the Early Notification Convention and the Physical Protection Convention. The Institute is the competent Irish authority for the three Conventions. (NEA) [fr

  5. Radiological protection and quality control for diagnostic radiology in China

    International Nuclear Information System (INIS)

    Baorong, Yue

    2008-01-01

    Full text: There are 43,000 diagnostic departments, nearly 70,000 X-ray diagnostic facilities, 7,000 CT, 250 million for the annual total numbers of X-ray examinations, 120,000 occupationally exposed workers in diagnostic radiology. 'Basic standards for protection against ionizing radiation and for the safety of radiation sources' is promulgated on October, 2002. This basic standard follows the BSS. 'Rule on the administration of radio-diagnosis and radiotherapy', as a order of the Ministry of Health No. 46, is promulgated by Minister of Health on January 24, 2006. It includes general provisions, requirements and practice, establishment and approval of radio-diagnosis and radiotherapy services, safeguards and quality assurance, and so on. There are a series of radiological protection standards and quality control standards in diagnostic radiology, including 'radiological protection standard for the examination in X-ray diagnosis', 'radiological health protection standards for X-ray examination of child-bearing age women and pregnant women', 'radiological protection standards for the children in X-ray diagnosis', 'standards for radiological protection in medical X-ray diagnosis', 'specification for radiological protection monitoring in medical X-ray diagnosis', 'guide for reasonable application of medical X-ray diagnosis', 'general aspects for quality assurance in medical X-ray image of diagnosis', 'specification of image quality control test for the medical X-ray diagnostic equipment', 'specification of image quality assurance test for X-ray equipment for computed tomography', 'specification for testing of quality control in computed radiography (CR)' and 'specification for testing of quality control in X-ray mammography'. With the X-ray diagnostic equipment, there are acceptant tests, status tests and routing tests in large hospitals. It is poor for routing test in middle and smaller hospitals. CT is used widely in diagnostic radiology, however most workers in CT

  6. The future policy for radiological protection

    International Nuclear Information System (INIS)

    2003-01-01

    The international system of radiological protection is currently being revised with the aim of making it more coherent and concise. The International Commission on Radiological Protection (ICRP) has published its draft reflections on the system's evolution, and has opened discussions with the radiological protection community in order to seek a broad range of stakeholder input. This open dialogue will help bring about a common level of understanding of the issues at stake and contribute to the evolution of new ICRP recommendations. These proceedings present a significant block of stakeholder input, comprising the views of policy makers, regulators, radiological protection professionals, industry and representatives of both non-governmental and intergovernmental organisations. (author)

  7. An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.; Price, K.L.; Newcomer, D.R.

    1991-03-01

    West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of {sup 3}H and {sup 99}Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of {sup 235}U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated {sup 235}U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs.

  8. An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site

    International Nuclear Information System (INIS)

    Poston, T.M.; Price, K.L.; Newcomer, D.R.

    1991-03-01

    West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of 3 H and 99 Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of 235 U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated 235 U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs

  9. Radiological protection system in the era of nuclear renaissance expectation for development of radiological protection system

    International Nuclear Information System (INIS)

    Toyomatsu, Hideki

    2008-01-01

    The current radiological protection system, which was established mainly by the ICRP and UNSCEAR, has contributed to the prevention of potential radiological health hazards, and has been a fundamental concept during the development of nuclear energy. Through a detailed discussion regarding the new ICRP recommendations, the world nuclear industry has reached a consensus that the current radiological protection system keeps its integrity in principle although it involves some remaining issues, such as the disposal of radioactive waste. In order to maximize the advantages of nuclear energy while keeping the integrity of radiological protection system, it is essential to address the characteristics of radiation, which is specific to nuclear energy, so that nuclear energy can coexist with other energy sources. The three basic principles of radiological protection (i.e., justification, optimization and dose limits), which were completed in the 1990 recommendations of ICRP, should be retained as the basic concepts for the future radiological protection system in order to maintain the continuity and consistency of the radiological protection system. The radiological protection system can be furthermore developed only by combining the above three principles with best practices extracted from utilities' field experience. The significant reduction of radiation exposures received by members of the public and radiation workers in the field has resulted from the efforts by the world utilities to achieve the optimization. In order to correctly apply the theory to the work practices, it is essential to see how the theory is practically used in the field. Such a process should be also emphasized in the revision work of the IAEA Basic Safety Standards (BSS), which is currently under progress. Integrating the theory in the work practices is the key to the true development of nuclear renaissance, which could lead to the establishment of the nuclear safety regime. (author)

  10. Science and values in radiological protection: impact on radiological protection decision making

    International Nuclear Information System (INIS)

    Salomaa, Sisko; Pinak, Miroslav

    2008-01-01

    Full text: This work summarises the main ideas and achievements of the Science and Values in Radiological Protection Workshop that was held on 15-17 January 2008 in Helsinki, Finland. In the view of developing of new radiological applications and emerging scientific phenomena it has been recognized a need to develop a shared understanding of emerging challenges for radiological protection among scientific and regulatory communities, public and other concerned stake holders. In response to this the Committee of Radiation Protection and Public Health of the OECD Nuclear Energy Agency and Radiation and Nuclear Safety Authority of Finland tried to initiate a process of longer-term reflection on scientific and societal issues that might challenge radiological protection in the coming years. Among general issues like radiological policy issues, improvement of understanding between research and policy communities, sharing views on emerging scientific issues, there were addressed several scientific issues, like non-targeted effects, individual sensitivity; and circulatory diseases. The main focus of these discussions was to elaborate potential 'what if' scenarios and propose feasible solutions at various levels. These discussions addressed effects that are not direct and evident consequence of the initial lesions produced at the cellular and DNA level like bystander responses, genomic instability, gene induction, adaptive responses and low dose. Particular interest was paid to an extrapolation of risk estimates to low doses and role of Linear Non-Threshold theory in setting regulatory principles. Individual radio-sensitivity and identification of genes that are suspected of having an influence on it were also discussed in one of the Breakout Sessions. Another Breakout Session addressed circulatory diseases. There is emerging evidence in the A-bomb survivors and in other exposed groups that ionising radiation also causes other diseases than cancer, such as circulatory

  11. Practical radiation protection for radiography

    International Nuclear Information System (INIS)

    Hubbard, S.K.; Proudfoot, E.A.

    1978-01-01

    Nondestructive Testing Applications and Radiological Engineering at the Hanford Engineering Development Laboratory have developed radiation protection procedures, radiation work procedures, and safe practice procedures to assure safe operation for all radiographic work. The following topics are discussed: training in radiation safety; radiation exposure due to operations at Hanford; safeguards employed in laboratory radiography; field radiographic operations; and problems

  12. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  13. Reengineering and health physics within the project Hanford management contract

    International Nuclear Information System (INIS)

    Atencio, E.M.

    1997-01-01

    The impending transition of the Hartford Site management and operations (M ampersand O) contract to a management and integrating (M ampersand I) contract format, together with weak radiological performance assessments by external organizations and reduced financial budgets prompted the 're-engineering' of the previous Hanford prime contractor Radiological Control (Rad Con) organization. This paper presents the methodology, identified areas of improvements, and results of the re-engineering process. The conversion from the M ampersand O to the M ampersand I contract concept resulted in multiple independent Rad Con organizations reporting to separate major contractors who are managed by an integrating contractor. This brought significant challenges when establishing minimum site standards for sitewide consistency, developing roles and responsibilities, and maintaining site Rad Con goals. Championed by the previous contractor's Rad Con Director, Denny Newland, a five month planning effort was executed to address the challenges of the M ampersand I and to address identified weaknesses. Fluor Daniel Hanford assumed the responsibility as integrator of the Project Hanford Management Contract on October 1, 1996. The Fluor Daniel Hanford Radiation Protection Director Jeff Foster presents the results of the re-engineering effort, including the significant cost savings, process improvements, field support improvements, and clarification of roles and responsibilities that have been achieved

  14. Training on Radiological Protection in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2004-01-01

    Since they were created in 1973 and 1988 respectively, the Superior Center of Nuclear Studies (CSEN) of the Peruvian Institute of Nuclear Energy (IPEN), together with the Peruvian Radioprotection Society (SPR) have carried out different training courses on radiological protection so that people can work safely with ionizing radiations in medicine, industry and investigation. Additionally, radiological protection is taught to pre graduate students of Medical Technology in four Universities. These courses are a must since national regulations demand that people working with ionizing radiations have an authorization, which is granted by the Technical Office of the National Authority - the technical organ of IPEN - after the candidate demonstrates that he or she knows the specific use of the technique using radiations, as well as all aspects related to safety and radiological protection. The analysis of the radiological protection programs is presented in this document. These programs were carried out by CSEN, during the last 30 years, and by the SRP, and they allowed the training of more than 2200 and 1500 people in the country, respectively. The content of both courses is aimed at specific work with radiations (diagnostic radiology, dental radiology, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges, gamma irradiator, etc..) and fulfill the regulatory requirements. The Universities have different programs on radiological protection for the students of Medical Technology. (Author)

  15. The future policy for radiological protection

    International Nuclear Information System (INIS)

    2004-01-01

    At the end of the 1990's, the International Commission on Radiological Protection (ICRP) launched a process for establishing new recommendations, which are expected to serve as guidelines for national systems of radiological protection. Currently the ICRP's proposed recommendations are being subjected to extensive stakeholder comment and modifications. The NEA Committee on Radiation Protection and Public Health (CRPPH) has been actively involved in this process. Part of the Committee's work has been to undertake collaborative efforts with the ICRP through, for example, the organisation of broad stakeholder fora. The first of these, held in Taormina, Italy in 2002, focused on the development of a policy basis for the radiological protection of the environment. The second forum, held in Lanzarote, Spain in April 2003, addressed the latest concepts and approaches in the ICRP proposed recommendations for a system of radiological protection. During this meeting, the ICRP listened to the views of various stakeholder groups, including radiological protection regulators, environmental protection ministries, the nuclear power industry and NGOs. As a result, the ICRP modified its proposals to better reflect stakeholder needs and wishes. This report presents the outcomes of the discussions, examining what the ICRP proposed and how its proposals have been affected and modified as a result of stakeholder input. (author)

  16. Radiologic protection in intensive therapy units

    International Nuclear Information System (INIS)

    Andrea, H.; Juliana, C.; Gerusa, R.; Laurete, M.B.; Suelen, S.; Derech, Rodrigo D.A.

    2013-01-01

    The discovery of X-ray was a great achievement for humanity, especially for the medical community. In Intensive Care Units (ICUs), the RX tests, performed with mobile devices, add immense value to the diagnosis of inpatients who do not have the option to carry them out of bed. Following the technology and its improvements, fatalities arose from misuse of ionizing radiation, which mostly gave up for lack of knowledge of the biological effects caused by them, which leads to fear among professionals and often prevents a quick job and effectively by professionals of radiological techniques. The research it is a systematic review of the literature and justified by the scarcity of materials that reflect on the radiological protection in ICUs. For this study we found the Virtual Health Library (VHL) and Pubmed were indexed terms radiological protection and intensive care units, the search in Portuguese and English terms were used radiological protection and intensive care unit. The study aims to inform professionals of ICUs on the main aspects that refer to X-rays in hospital beds, the standards of radiological protection and personal protective equipment, thus avoiding possible damage to the biological health of workers, addressing subjects in rules and laws about the X radiation, emphasizing the protection of professionals in intensive care. It is clear, finally, that little research is conducted in the context of radiological protection of workers ICU's and this is a place that receives daily RX equipment, deserving more attention to protect the worker. (author)

  17. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Fendel, H.; Stieve, F.E.

    1983-01-01

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG) [de

  18. Perception of radiological technicians on radiation protection

    International Nuclear Information System (INIS)

    Viana, E.; Borges, L.M.; Camozzato, T.S.C.

    2017-01-01

    The objective of this study was to know the professionals' perception of radiological techniques about radiation protection in the work process in Nuclear Medicine. The research was carried out with nine professionals of the radiological techniques of two private institutions located in the South of Brazil. An interview was applied through recording and transcription. The analysis of the data took place through a thematic analysis. The professionals' perception of radiological techniques regarding the radiological protection in the work process is evidenced when professionals mention the basic rules of radiation protection: time, shielding and distance as attitudes used to minimize the exposure to ionizing radiation. However, it was verified the fragility in the knowledge about the norms and legislation of the radiological protection

  19. Worker radiological protection: occupational medical aspects

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan; Fernandez Gomez, Isis Maria

    2008-01-01

    Radiation exposures experienced by workers are widely explained. The first evidences of biological effects, the implications for human health and the radiological protection have been covered. The conceptual structure that covers the radiological protection and adequate protection without limiting benefits, the scientific basis of radiology, the benefits and risks of the radiological protection are specified. The effective per capita doses are exposed in medical uses both for Latin America and for other regions in the average radiology, dental radiology, nuclear medicine and radiotherapy. The manners of occupational exposures in the medicine are presented. Industrial uses have also its average effective dose in the industrial irradiation, industrial radiography and radioisotopes production. Within the natural radiation the natural sources can significantly contribute to occupational exposure and have their average effective dose. Occupational medical surveillance to be taken into industrial sites is detailed. In addition, the plan of international action for the solution of dilemmas of occupational exposures is mentioned and the different dilemmas of radioactive exposure are showed. The external irradiation, the acute diseases by radiations, the cutaneous syndrome of the chronic radiation, the radioactive contamination, the internal radioactive contamination, the combined lesion and accidental exposures are also treated [es

  20. GENII [Generation II]: The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs

  1. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  2. Principles to establish a culture of the radiological protection

    International Nuclear Information System (INIS)

    Tovar M, V. M.

    2013-10-01

    The term of Culture of the Radiological Protection means the way in which the radiological protection is founded, regulated, managed, preserved and perceived in the job places, with the use of the ionizing radiations, in the industry, in medicine and in any daily activity that reflects the activities, beliefs, perceptions, goals and values that all the involved parts concern in relation to the radiological protection. The principles to establish a culture of the radiological protection that should be established by the professionals of the radiological protection, following the recommendations of the International Radiological Protection Association (IRPA) are presented. (author)

  3. Training in radiological protection: Curricula and programming

    International Nuclear Information System (INIS)

    1964-01-01

    An important activity of the International Atomic Energy Agency is the promotion of training in radiological protection. Through its organized training courses, its fellowship training programme and its field experts, the Agency has assisted many Member States to train an essential group of scientists in radiological protection. Many Member States are now developing their own national training programmes in radiological protection and this report has been prepared to provide the guidance that may be required in this development. In the report the various types of training which are encountered in a radiological protection programme are fully discussed, curricula are suggested and examples of established training courses are annexed

  4. Occupational radiological protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Mota, H.C.

    1983-01-01

    The following topics are discussed: occupational expossure (the ALARA principle, dose-equivalent limit, ICRP justification); radiological protection planning (general aspects, barrier estimation) and determination of the occupational expossures (individual monitoring). (M.A.) [pt

  5. Proceedings of the Session of Radiological Protection in Medicine

    International Nuclear Information System (INIS)

    2016-01-01

    The Argentine Society for Radiation Protection has organized the Radiological Protection Session in Medicine 2016 in order to continue with the radiological update on specific radiological topics in radiology, nuclear medicine and interventional medicine, as well as to optimize the radiological protection of workers, patients and the public. [es

  6. Environmental monitoring at Hanford by the state of Washington

    International Nuclear Information System (INIS)

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L.

    1990-01-01

    The Department of Social and Health Services' Office of Radiation Protection (ORP), Washington State's radiation control agency, has a mandate to protect the public from radiation. In 1985, ORP was instructed by the legislature to establish a statewide environmental radiological base line, beginning with Hanford, to verify federal environmental programs, and to enforce federal and state Clean Air Acts. The primary mission of the agency is to protect public health by active involvement in Hanford monitoring and oversight. The state's program was designed not to duplicate but to supplement existing programs and to identify any sampling gaps or problems. Split, side-by-side, and independent samples are collected, with analysis performed by the state's own laboratory. Media sampled have included surface and drinking water, seep and ground water, fruits and vegetables, milk, soils, and air particulates; ambient radiation levels have been determined. Special activities have included split sampling of river seeps with multiple agencies, preliminary dose assessment of early Hanford releases, investigations of 129 I in the environment and in Franklin County drinking water, verification of U.S. Department of Energy (DOE) data on erroneous alarms at the Hanford Plutonium Uranium Extraction Plant, split sampling with a DOE headquarters survey, and participation in several General Accounting Office investigations and a National Academy of Sciences review. The independence of ORP programs guarantees that the public has access to environmental data on the activities of DOE and its contractors. We will describe the interrelationship of ORP and Hanford programs and present results of ORP activities

  7. Radiological Protection Miscellaneous Provisions Act 2014

    International Nuclear Information System (INIS)

    Irish Legislation

    2014-07-01

    This Act provides for the dissolution of the Radiological Protection Institute of Ireland and the transfer of all its functions, assets, liabilities and staff to the Environmental Protection Agency, to give effect to the Amendment to the Convention on the Physical Protection of Nuclear Material done at Vienna on 8 July 2005, to amend the Radiological Protection Act 1991, the Environmental Protection Agency Act 1992 and certain other enactments, and to provide for matters connected therewith

  8. Strengthening the scientific basis of radiological protection

    International Nuclear Information System (INIS)

    Lazo, Edward

    2016-01-01

    The overarching objective of the radiological protection system is to contribute to an appropriate level of protection against the harmful effects of radiation exposure, without unjustifiably limiting the desired results from the human activity causing exposure. Such a balance is achieved by understanding as best as possible the scientific characteristics of radiation exposure and the related health effects, and by taking this knowledge into consideration when judging which protection decisions will ensure the best balance between social and economic aspects and risks. In general, the existing radiological protection system, on which national regulations are built in virtually every country in the world, works well and does not underestimate protection needs for either individuals or exposed populations as a whole. The latest International Commission on Radiological Protection (ICRP) recommendations, which define this protection system, were formed after a long and open dialogue with the public, where expert views were actively collected and discussed at national, regional and international levels. Although the radiological protection system is very effective, and there is no current need for a prompt revision, it is important nonetheless to keep a watchful eye on the latest scientific results, and to work to ensure that the entire radiological protection community is kept up to date on evolving and emerging scientific issues. In this way, potential or actual scientific changes can be appropriately identified and in turn can stimulate reflection on changes that might be needed in the protection system, in policy, in regulation and in practice. Such reflection should benefit from the input of other scientific disciplines and interested stakeholders. To contribute to this process, the NEA Committee on Radiological Protection and Public Health (CRPPH) has periodically reviewed and released reports on the state of the art in radiological protection science (see NEA

  9. Evolution of the system of radiological protection

    International Nuclear Information System (INIS)

    2004-01-01

    The development of new radiological protection recommendations by the International Commission on Radiological Protection (ICRP) continues to be a strategically important undertaking, both nationally and internationally. With the growing recognition of the importance of stakeholder aspects in radiological protection decision making, regional and cultural aspects have also emerged as having potentially significant influence on how protection of the public, workers and the environment are viewed. Differing cultural aspects should therefore be considered by the ICRP in its development of new recommendations. Based on this assumption, the NEA organised the Asian Regional Conference on the Evolution of the System of Radiological Protection to express and explore views from the Far East. Held in Tokyo on 24-25 October 2002, the conference included presentations by the ICRP Chair as well as by radiological protection experts from Japan, the Republic of Korea, China and Australia. The distinct views and needs of these countries were discussed in the context of their regional and cultural heritages. These views, along with a summary of the conference results, are presented in these proceedings. (author)

  10. Characterization plan for the Hanford Generating Plant (HGP)

    International Nuclear Information System (INIS)

    Marske, S.G.

    1996-09-01

    This characterization plan describes the sample collection and sample analysis activities to characterize the Hanford Generating Plant and associated solid waste management units (SWMUs). The analytical data will be used to identify the radiological contamination in the Hanford Generating Plant as well as the presence of radiological and hazardous materials in the SWMUs to support further estimates of decontamination interpretation for demolition

  11. Advanced radiological protection course 1993: 15 November - 3 December

    International Nuclear Information System (INIS)

    1993-01-01

    This pamphlet describes an advanced radiological protection course organised by the NRPB and aimed at experienced health physicists and others who have worked in radiological protection for some years. A knowledge of basic radiological protection is assumed. The course concentrates on developing awareness of the policies and philosophy upon which radiological protection is based. Emphasis is given to managerial and professional responsibilities in radiological protection and to involvement with problems of industrial and public relations. The 1994 course is 3 - 21st October. (Author)

  12. Hanford Site grundwater protection management program

    International Nuclear Information System (INIS)

    1989-10-01

    Groundwater protection has emerged over the past few years as a national priority that has been promulgated in a variety of environmental regulations at both the state and federal level. In order to effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy (DOE) requires all DOE facilities to prepare separate groundwater protection program descriptions and plans (groundwater activities were formerly included as a subpart of environmental protection programs). This document is for the Hanford Site located in the state of Washington. The DOE Order specifies that the groundwater protection management program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. 14 refs., 19 figs., 2 tabs

  13. The Society for Radiological Protection - 40 years on from 1963

    International Nuclear Information System (INIS)

    Dunster, H John

    2003-01-01

    The Society for Radiological Protection was created in 1963 at a time when the structure of radiological protection in the United Kingdom was already well established. From its creation 40 years ago to the present, most of the features of British radiological protection stem from the recommendations of the International Commission on Radiological Protection. This review of the development of radiological protection has been produced to celebrate the 40 years of the Society's support of radiological protection, both in the United Kingdom and internationally. (review)

  14. Continuing training in radiological protection as an effective means of avoiding radiological accidents

    International Nuclear Information System (INIS)

    Lima, C.M.A.; Pelegrineli, S.Q.; Martins, G.; Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    it is notorious that one of the main causes of radiological accidents is the lack of knowledge of radiological protection of workers. In order to meet the needs of professionals in acquiring a solid base in radiological protection and safety, was created in 2013, by the Casa Branca School / SP and technically supported by the company MAXIM Cursos, the 'Post-Graduation Course Lato Sensu de Radiological Protection in Medical, Industrial and Nuclear Applications', which offers a broad improvement in radiation protection. The course of 380 hours and duration of 18 months is divided into 13 modules, including theoretical classes, in person and online using the virtual classroom and practical training in radiation protection in general. In the end students should present a monograph, guided by a course teacher and reviewed by an Examining Bank. Five classes have been formed in these four years, totaling 92 students. In all, 51 monographs have been defended on topics of technical and scientific interest. For this, the Faculty consists of 25 professors, being 9 Doctors, 13 Masters and 3 Specialists in Radiological Protection

  15. Requirements to obtain the recognition of radiological protection experts

    International Nuclear Information System (INIS)

    Arguelles, R.; Villarroel, R.; Senderos, V.; Campos, R.; Pinos, M.; Ponjuan, G.; Franco, P.; Rueda, D.

    2003-01-01

    The scope of this paper is to summarize the general requirements related to education, training and skill of the individual to obtain the recognition of radiological protection experts on ionizing radiation (experts on radiological protection- RP). There has been established two levels according to the grade of responsibility: Qualified expert provided with a diploma given by de Nuclear Safety Council. Technician expert on radiological protection whose certification is made by the Qualified expert that supervise their work. To obtain the diploma of qualified expert is required an official degree, a title of Architecture, Engineering or equivalent in case of no national degrees; specific training on radiological protection (300 hours) and the knowledge on safety and radiological protection of the facilities to be supervised. Three years of experience on radiological protection must be proved. To get the recognition of technician expert on radiological protection is required Formacion Profesional de Grado Superior or equivalent and specific training on safety and radiological protection. Knowledge on basis and principles of radiological protection are required. According to the type of the facilities to be supervised there are two models: A model: to deal with facilities included in RD 1836/1999 (nuclear and radioactive facilities). B model: to deal with medical X rays facilities approved under RD 1891/1991 three months of experience on the selected model must be proved. (Author)

  16. National Radiological Protection Board accounts 1986-87

    International Nuclear Information System (INIS)

    1987-05-01

    The 1986-87 accounts of the Radiological Protection Board are presented in accordance with the Radiological Protection Act 1970. The report of the Comptroller and Auditor General is also given. (U.K.)

  17. National Radiological Protection Board accounts 1986-87

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The 1986-87 accounts of the Radiological Protection Board are presented in accordance with the Radiological Protection Act 1970. The report of the Comptroller and Auditor General is also given. (U.K.).

  18. Non-destructive in situ measurement of radiological distributions in Hanford Site waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1996-01-01

    Measurement of radiological materials in defense nuclear waste stored in underground tanks at the Hanford Site is being used to indicate material distributions. Both safety assessment and future processing challenges are dependent on knowledge of the distribution kinds, and quantities of various key components. Data from CdTe and neutron detector measurements are shown and correlated with physical sampling and laboratory results. The multiple assay approach is shown to increase the confidence about the material distributions. As a result, costs of physical sampling and destructive analyses can be controlled while not severely limiting the uncertainty of results

  19. Hanford protective barriers program: Status of asphalt barrier studies - FY 1989

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.

    1989-11-01

    The Hanford Protective Barrier Program is evaluating alternate barriers to provide a means of meeting stringent water infiltration requirements. One type of alternate barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick. Evaluations of these barriers were initiated in FY 1988, and, based on laboratory studies, two asphalt formulations were selected for further testing in small-tube lysimeters: a hot rubberized asphalt and an admixture of cationic asphalt emulsion and concrete sand containing 24 wt% residual asphalt. Eight lysimeters containing asphalt seals were installed as part of the Small Tube Lysimeter Test Facility on the Hanford Site. Two control lysimeters containing Hanford sand with a surface gravel treatment were also installed for comparison. 5 refs., 13 figs., 1 tab

  20. Science and Values in Radiological Protection

    International Nuclear Information System (INIS)

    Lochard, J.; Eggermont, G.; Britt-Marie, Drottz Sjoberg; Tirmarche, M.; Geard, Ch.R.; Atkinson, M.; Murith, Ch.; Grant, K.G.; Luccioni, C.; Mays, C.; Sisko, Salomaa; Kelly, N.G.; Oughton, D.; Shannoun, F.; Grant, K.G.; Cooper, J.; Mays, C.; Weiss, V.; Oughton, D.; Kazuo, Sakai; Carroll, S.

    2010-01-01

    The workshop provides a forum for exchange of information and experience among regulators, scientists and governmental and non-governmental organisations in the areas of radiological protection and public health. This is the second in the series of NEA workshops on this subject. The first Science and Values in Radiological Protection workshop was held in Helsinki in January 2008 and hosted by the Radiation and Nuclear Safety Authority of Finland (STUK). The workshop focussed on developing a shared understanding between various stakeholders and identifying the elements of a framework more suited to the integration of new scientific and technological developments and socio-political considerations in radiological protection. This second workshop focusses on radiological protection issues that are currently facing us, and that continue to pose challenges to our world today. This document gathers the available slides of the presentations given at the workshop: - Science and Values in Radiological Protection: Towards a Framework (Jacques Lochard): This talk makes the link with the Science and Values in Radiological Protection workshop in Helsinki, and lay out the overall goals of the present workshop. It explains the format of plenary/break-out sessions. - Public Health Perspective in Radiological Protection in Challenging Topical Areas (Gilbert Eggermont): This talk gives more detail on the choice of the three case topics and the linkage to public health concerns in radiological protection. It makes a specific link with Helsinki workshop findings and the CRPPH Expert Group on the Public Health. Perspective in Radiological Protection work. - Civil Society Needs (Britt-Marie Drottz Sjoeberg): This talk briefly reviews the radiation protection concerns and communication needs of civil society. It points out different categories of stakeholders and their understanding of radiation risks implied by the three case topics. It addresses the question of how radiological

  1. Research and development in radiological protection

    International Nuclear Information System (INIS)

    Butragueno, J. L.; Villota, C.; Gutierrez, C.; Rodriguez, A.

    2004-01-01

    The objective of Radiological Protection is to guarantee that neither people, be they workers or members of the public, or the environment are exposed to radiological risks considered by society to be unacceptable. Among the various resources available to meet this objective is Research and Development (R and D), which is carried out in three areas: I. Radiological protection of persons: (a) knowledge of the biological effects of radiations, in order to determine the relationship that exists between radiation exposure dose and its effects on health; (b) the development of new personal dosimetry techniques in order to adapt to new situations, instrumental techniques and information management technologies allowing for better assessment of exposure dose; and (c) development of the principle of radiological protection optimisation (ALARA), which has been set up internationally as the fundamental principle on which radiological protection interventions are based. II. Assessment of environmental radiological impact, the objective of which is to assess the nature and magnitude of situations of exposure to ionising radiations as a result of the controlled or uncontrolled release of radioactive material to the environment, and III.Reduction of the radiological impact of radioactive wastes, the objective of which is to develop radioactive material and waste management techniques suitable for each situation, in order to reduce the risks associated with their definitive management or their release to the environment. Briefly described below are the strategic lines of R and D of the CSN, the Electricity Industry, Ciemat and Enresa in the aforementioned areas. (Author)

  2. Evolution of the system of radiological protection

    International Nuclear Information System (INIS)

    2005-11-01

    One of the main challenges facing radiological protection experts is how to integrate radiological protection within modern concepts of and approaches to risk governance. It is within this context that the International Commission on Radiological Protection (ICRP) decided to develop new general recommendations to replace its Publication 60 recommendations of 1990. In the process of developing these new recommendations, the views of the ICRP have evolved significantly, largely due to stakeholder involvement that has been actively solicited by the ICRP. In this regard, it was upheld during the First Asian Regional Conference organised by the NEA in October 2002 that the implementation of the new system must allow for regional, societal and cultural differences. In order to ensure appropriate consideration of these differences, the NEA organised the Second Asian Regional Conference on the Evolution of the System of Radiological Protection. Held in Tokyo on 28-29 July 2004, the conference included presentations by the ICRP Chair as well as by radiological experts from Australia, China, Japan and Korea. Within their specific cultural and socio-political milieu, Asia-Pacific and western ways of thought on how to improve the current system of radiological protection were presented and discussed. These ways of thinking, along with a summary of the conference results, are described in these proceedings. (author)

  3. Aspects of radiological protection in nuclear installations

    International Nuclear Information System (INIS)

    Hunt, J.G.; Oliveira Filho, D.S.; Rabello, P.N.P.

    1987-01-01

    Due to the short term, long term and genetic effects of radiation, the work with radioactive materials requires special protection measures. The objective of radiological protection is to assure the occupational health of the workers by maintaining the dose levels as low as reasonably achievable. The radiological protection measures implanted in the NUCLEBRAS fuel element factory are described. The philosophy and practical measures taken are explained, and a comparison between radiation protection and industrial safety norms is made. The result of this work shows that the radiological safety of the element factory is assured. (author) [pt

  4. Radiological Protection Plan an ethic responsibility

    International Nuclear Information System (INIS)

    Huhn, Andrea; Vargas, Mara Ambrosina de Oliveira

    2014-01-01

    The Radiological Protection Plan - PPR, quoted by the Regulatory Standard 32, requires to be maintained at the workplace and at the disposal of the worker's inspection the PPR, for it to be aware of their work environment and the damage that can be caused by misuse of ionizing radiation. Objective: to discuss the interface between PPR and ethical reflection. Method: this is a reflective study. Discussion and results: regulatory norm 32 points out that the worker who conducts activities in areas where there are sources of ionizing radiation should know the risks associated with their work. However, it is considered that the sectors of hospital radiology the multidisciplinary health team is exposed to ionizing radiation and has not always aware of the harm caused by it, so end up unprotected conduct their activities. Concomitantly, recent studies emphasize the radiological protection and concern for the dangers of radiation on humans, but rather refer to the legislation about the radiological protection. In this context an ethical reflection is necessary, seeking to combine work ethics liability to care in protecting themselves and the other with the institutional conditions for this protection becomes effective

  5. Radiological protection and its organization in radiotherapy

    International Nuclear Information System (INIS)

    Gaona, E.; Canizal, C.; Garcia, M.A.

    1996-01-01

    By means of a research carried out in Radiotherapy Centers in Mexico City, divided in 7 public institutions and 5 private, aspects related to the radiological safety and its organization in radiotherapy were evaluated. The population being studied was: medical and technical personnel, that works in the selected radiotherapy centers. The survey was made with 36 dichotomic variables, being obtained 90 surveys. The personnel characteristics are: 76% works for more than 3 years in radiotherapy, 93% has updated information about radiological protection, 67% knows the general radiological safety regulations, 93% knows the radiological emergency project and 95% makes use of personal dosemeter. As result of this research we found that the main problems that the radiological protection have are: lack of personnel training in radiological protection, although the 93% states to have updated information, the few number of persons that takes part in clinical meetings and professional associations. (authors). 7 refs., 3 tabs

  6. Virtual pilot course in radiological protection

    International Nuclear Information System (INIS)

    Gonzalez Romero, Angela Maria; Plazas, Maria Cristina

    2008-01-01

    Full text: The radiological protection performs vital importance in the fields medically, industrially and environmental. The X-rays and the radioactive materials used in medicine have allowed to realize important progresses and to develop new technologies skills for the diagnosis, the therapy and the prevention of diseases. Having in it counts tells the risks associated with the ionizing radiations, it is required legally that the personnel that intervenes in the different procedures has the necessary knowledge of radiological protection to assure that the use of radiations in the medical practice should carry out of ideal form, at the right moment and adopting all the necessary measures to guarantee the best protection, so much of the occupationally exposed personnel, since as, like of the patients and the public in general. The virtual environments for the construction of the knowledge like it is the virtual university, allows presenting an effective alternative in the learning of different areas and in this particular case of the radiological protection. With the aim lens to give response to these needs there is implemented this pilot virtual course year based on the current course of radiological protection that is dictated in the Mastery in Medical Physics of the National University of Colombia, sedate Bogota. The purpose of this virtual course is to use as academic and bibliographical support on radiological protection, as well as to answer to the needs of initial formation that the professionals have, to acquire a solid base in the mentioned matter. It has been conceived so that it provides theoretical formation, so much scientific as technology and that contemplates the recommendations and international and national procedure on radiological protection and some applications. Given the incorporation of the technologies of information and communication that in the academic area it has brought with it not only to give support to the curricular activities but

  7. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  8. [Regulating radiological protection and the role of health authorities].

    Science.gov (United States)

    Arias, César F

    2006-01-01

    This article summarizes the development of protection against ionizing radiation and explains current thinking in the field. It also looks at the decisive role that regulatory agencies for radiological protection must play and the important contributions that can be made by health authorities. The latter should take an active part in at least three aspects: the formal education of health personnel regarding radiological protection; the medical care of individuals who are accidentally overexposed, and the radiological protection of patients undergoing radiological procedures. To this end, health professionals must possess sufficient knowledge about radiological protection, promote the use of proper equipment, and apply the necessary quality assurance procedures. Through their effective intervention, national health authorities can greatly contribute to reducing unnecessary doses of radiation during medical procedures involving radiation sources and decrease the chances that radiological accidents will take place.

  9. History and Organizations for Radiological Protection.

    Science.gov (United States)

    Kang, Keon Wook

    2016-02-01

    International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection.

  10. Radiological protection Program of CDTN

    International Nuclear Information System (INIS)

    1983-01-01

    Radiological protection program of CDTN, its purposes and rules, responsabilities, physical control, monitoring, personnel radiation protection, radiation sources and radioactive wastes control, emergency and accidents and siting are described. (C.M.) [pt

  11. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    Science.gov (United States)

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  12. Radiological protection of the unborn child. Recommendation of the Commission on Radiological Protection and scientific grounds

    International Nuclear Information System (INIS)

    Sarenio, O.

    2006-01-01

    The Commission on Radiological Protection was asked to give advice on the practical implications of the absorption of the maximum possible activity values that, under the Radiological Protection Ordinance, may be incorporated in women of child-bearing age occupationally exposed to radiation with regard to incorporation monitoring and compliance with the dose limit for the protection of the unborn child. An unborn child's conceivable level of exposure to radiation in the least favourable case due to continuous and single incorporations of radionuclides in the mother was determined on a nuclide-specific basis by the Federal Office for Radiation Protection with the aid of the mathematical metabolic models provided in ICRP 88. At the proposal of the Commission on Radiological Protection, the Federal Office for Radiation Protection considered the following very conservative scenarios: - the mother's maximum possible exposure due to a continuous intake of activity over 10 years prior to the pregnancy and in the first 10 weeks postconception based on the limits set out in the Radiological Protection Ordinance; - the mother's maximum possible exposure due to a single intake at the most unfavourable time in the first 10 weeks postconception based on the limits set out in the Radiological Protection Ordinance. Examination of these scenarios found that, with a few exceptions, the dose to the unborn child attributable to the incorporation of radiation in the mother summed up over 70 years is less than that to the mother. The committed effective dose to the unborn child from certain radionuclides may exceed the value of 1 mSv when the dose to the mother reaches the maximum limit. The Commission on Radiological Protection was therefore asked 1. to examine whether compliance with the limit of 1 mSv effective dose is sufficient for the protection of the unborn child or whether any additional limitation is required for individual organs, 2. to discuss the implications for

  13. Hanford Site Composite Analysis Technical Approach Description: Groundwater Pathway Dose Calculation.

    Energy Technology Data Exchange (ETDEWEB)

    Morgans, D. L. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Lindberg, S. L. [Intera Inc., Austin, TX (United States)

    2017-09-20

    The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”

  14. ICRP PUBLICATION 121: Radiological Protection in Paediatric Diagnostic and Interventional Radiology

    International Nuclear Information System (INIS)

    Khong, P-L.; Ringertz, H.; Donoghue, V.; Frush, D.; Rehani, M.; Appelgate, K.; Sanchez, R.

    2013-01-01

    Paediatric patients have a higher average risk of developing cancer compared with adults receiving the same dose. The longer life expectancy in children allows more time for any harmful effects of radiation to manifest, and developing organs and tissues are more sensitive to the effects of radiation. This publication aims to provide guiding principles of radiological protection for referring clinicians and clinical staff performing diagnostic imaging and interventional procedures for paediatric patients. It begins with a brief description of the basic concepts of radiological protection, followed by the general aspects of radiological protection, including principles of justification and optimisation. Guidelines and suggestions for radiological protection in specific modalities – radiography and fluoroscopy, interventional radiology, and computed tomography – are subsequently covered in depth. The report concludes with a summary and recommendations. The importance of rigorous justification of radiological procedures is emphasised for every procedure involving ionising radiation, and the use of imaging modalities that are non-ionising should always be considered. The basic aim of optimisation of radiological protection is to adjust imaging parameters and institute protective measures such that the required image is obtained with the lowest possible dose of radiation, and that net benefit is maximised to maintain sufficient quality for diagnostic interpretation. Special consideration should be given to the availability of dose reduction measures when purchasing new imaging equipment for paediatric use. One of the unique aspects of paediatric imaging is with regards to the wide range in patient size (and weight), therefore requiring special attention to optimisation and modification of equipment, technique, and imaging parameters. Examples of good radiographic and fluoroscopic technique include attention to patient positioning, field size and adequate collimation

  15. [Radiation protection in interventional radiology].

    Science.gov (United States)

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses.

  16. Radiological protection in medicine: work of ICRP Committee 3

    International Nuclear Information System (INIS)

    Vañó, E.; Cosset, J.M.; Rehani, M.M.

    2012-01-01

    Committee 3 of the International Commission on Radiological Protection (ICRP) is concerned with protection in medicine, and develops recommendations and guidance on the protection of patients, staff, and the public against radiation exposure in medicine. This paper presents an overview of the work of Committee 3 over recent years, and the work in progress agreed at the last annual meeting in Bethesda, MD in October 2011. The reports published by ICRP dealing with radiological protection in medicine in the last 10 years cover topics on: education and training in radiological protection; preventing accidental exposures in radiation therapy; dose to patients from radiopharmaceuticals; radiation safety aspects of brachytherapy; release of patients after therapy with unsealed radionuclides; managing patient dose in digital radiology and computed tomography; avoidance of radiation injuries from medical interventional procedures; pregnancy and medical radiation; and diagnostic reference levels in medical imaging. Three new reports will be published in the coming months dealing with aspects of radiological protection in fluoroscopically guided procedures outside imaging departments; cardiology; and paediatric radiology. The work in progress agreed by Committee 3 is also described.

  17. International Society of Radiology and Radiation Protection

    International Nuclear Information System (INIS)

    Standertskjoeld-Nordenstam, C.G.

    2001-01-01

    The purpose of the International Society of Radiology (ISR), as being the global organization of radiologists, is to promote and help co-ordinate the progress of radiology throughout the world. In this capacity and as a co-operating organization of the IAEA, the ISR has a specific responsibility in the global radiological protection of patients. Globally, there are many users of medical radiation, and radiology may be practised in the most awkward circumstances. The individuals performing X ray studies as well as those interpreting them may be well trained, as in industrialized parts of the world, but also less knowledgeable, as in developing areas. The problems of radiological protection, both of patients and of radiation workers, still exist, and radiation equipment is largely diffused throughout the world. That is why a conference like this is today as important as ever. Radiation protection is achieved through education, on the one hand, and legislation, on the other. Legislation and regulation are the instruments of national authorities. The means of the ISR are education and information. Good radiological practice is something that can be taught. The ISR is doing this mainly through the biannual International Congress of Radiology (ICR), now arranged in an area of radiological need; the three previous ICRs were in China, in India and in South America; the next one is going to be in Mexico in 2002. The goal of the ICR is mainly to be an instructive and educational event, especially designed for the needs of its surrounding region. The ISR is aiming at producing educational material. The International Commission on Radiological Education (ICRE), as part of the ISR, is launching the production of a series of educational booklets, which also include radiation protection. The ICRE is actively involved in shaping and organizing the educational and scientific programme of the ICRs

  18. Fifty years of radiological protection

    International Nuclear Information System (INIS)

    2007-01-01

    On 21 March 1957, the Steering Committee for Nuclear Energy of the Organisation for European Economic Co-operation established the Working Party on Public Health and Safety. From this early date onwards, radiological protection formed a central part of the work of what was to become the OECD Nuclear Energy Agency. Now, 50 years later, the Committee on Radiation Protection and Public Health (CRPPH) has commissioned this historical review of half a century of work and accomplishments. Over this period, the key topics in radiological protection have been identified, debated and addressed by the CRPPH. This report brings this history to life, presenting the major questions in the context of their time, and of the personalities who worked to address them. The developments and views of the past condition how we are able to assess and manage radiological risks today, as well as how we may adjust to challenges that will or could emerge in the coming years. This heritage is thus an important element for the CRPPH to consider as it looks forward to its next 50 years of accomplishments. (author)

  19. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    2012-01-01

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  20. Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment Alternatives March 2000

    International Nuclear Information System (INIS)

    WODRICH, D.D.

    2000-01-01

    The U.S. Department of Energy (DOE) is currently planning to retrieve, pretreat, immobilize and safely dispose of 53 million gallons of highly radioactive waste currently stored in underground tanks at Hanford Site. The DOE plan is a two-phased approach to privatizing the processing of hazardous and radioactive waste. Phase 1 is a proof-of-concept/commercial demonstration-scale effort whose objectives are to: demonstrate, the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. The Phase 1 effort consists of Part A and Part B. On September 25, 1996 (Reference 1), DOE signed a contract with BNFL, Inc. (BNFL) to commence with Phase 1, Part A. In August 1998, BNFL was authorized to proceed with Phase I, Part 6-1, a 24-month design phase that will-provide sufficient engineering and financial maturity to establish fixed-unit prices and financing terms for tank waste processing services in privately-owned and -operated facilities. By August 2000, DOE will decide whether to authorize BNFL to proceed with construction and operation of the proposed processing facilities, or pursue a different path. To support of the decision, DOE is evaluating alternatives to potentially enhance the BNFL tank waste processing contract, as well as, developing an alternate path forward should DOE decide to not continue the BNFL contract. The decision on whether to continue with the current privatization strategy (BNFL contract) or to pursue an alternate can not be made until the evaluation process leading up to the decision on whether to authorize BNFL to proceed with construction and operation (known as the Part 8-2 decision) is completed. The evaluation process includes reviewing and evaluating the information BNFL is

  1. Radiologic protection: technical and legal aspects

    International Nuclear Information System (INIS)

    Pinto, A.V.A.

    1987-01-01

    Radiologic units are described with the aim to decodify the technical dosimetric language. The legal aspect of radiologic protection in Brazil is reported. Information about help in case of radiation accident is presented. (M.A.C.) [pt

  2. Training in radiological protection

    International Nuclear Information System (INIS)

    Medina G, E.

    2014-08-01

    In the Peru, according to the current regulations, people that work with ionizing radiations should have an authorization (individual license), which is granted by the Technical Office of the National Authority that is the technical body of the Instituto Peruano de Energia Nuclear (IPEN) manager of the control of ionizing radiations in the country. The individual license is obtained after the applicant fulfills the requested requirements, as having safety knowledge and radiological protection. Since its founding in 1972, the Centro Superior de Estudios Nucleares (CSEN) of the IPEN has carried out diverse training courses in order to that people can work in a safe way with ionizing radiations in medicine, industry and research, until the year 2013 have been organized 2231 courses that have allowed the training of 26213 people. The courses are organized according to the specific work that is carried out with radiations (medical radio-diagnostic, dental radiology, nuclear medicine, radiotherapy, industrial radiography, nuclear meters, logging while drilling, etc.). In their majority the courses are directed to people that will make use of radiations for first time, but refresher courses are also granted in the topic. The CSEN also carries out the Master degree programs highlighting the Second Professional Specialization in Radiological Protection carried out from the year 2004 with the support of the National University of Engineering. To the present has been carried out 2 programs and there is other being developed. In this work is shown the historical evolution of the radiological protection courses as well as the important thing that they are to work in a safe way in the country. (Author)

  3. Radiological Protection Act 1970

    International Nuclear Information System (INIS)

    1970-01-01

    This Act provides for the establishment of a Radiological Protection Board to undertake research and advise on protection from radiation hazards. Its functions include provision of advice to Government departments with responsibilities in relation to protection of sectors of the community or the community as a whole against the hazards of ionizing radiation. The Act, which lays down that the Board shall replace certain departments concerned with radiation protection, repeals several Sections of the Radioactive Substances Act 1948 and the Science and Technology Act 1965. (NEA) [fr

  4. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site's non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small

  5. Account 1983-1984. [National Radiological Protection Board

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Account prepared pursuant to section 3 (4) of the Radiological Protection Act 1970 of the receipts and payments of the National Radiological Protection Board for the year ended 31st March 1984; together with the Report of the Comptroller and Auditor General thereon. (In continuation of House of Commons Paper No. 149 of 1983-84).

  6. Enhanced radiological work planning; TOPICAL

    International Nuclear Information System (INIS)

    DECKER, W.A.

    1999-01-01

    The purpose of this standard is to provide Project Hanford Management Contractors (PHMC) with guidance for ensuring radiological considerations are adequately addressed throughout the work planning process. Incorporating radiological controls in the planning process is a requirement of the Hanford Site Radiological Control Manual (HSRCM-I), Chapter 3, Part 1. This standard is applicable to all PHMC contractors and subcontractors. The essential elements of this standard will be incorporated into the appropriate site level work control standard upon implementation of the anticipated revision of the PHMC Administration and Procedure System

  7. Second Professional Specialization in Radiological Protection in Peru

    International Nuclear Information System (INIS)

    Medina-Gironzini, E.

    2004-01-01

    Considering that professionals with studies, training and experience in Radiological Protection as a Second Professional Specialization must be recognized, the Peruvian Institute of Nuclear Energy (IPEN), which is the institution responsible for the promotion and control of ionizing radiations in the country, has sign a specific agreement with the Universidad Nacional Mayor de San Marcos, in order to develop these courses. They are based on the content of the Post Graduate Course on Radiological Protection and Nuclear Safety of the Universidad de Buenos Aires, in Argentina, where more than 360 people from 27 different countries have been trained in the last 20 years. People who have a professional degree in Sciences or Engineering, and who fulfill the requirements demanded by the University, study this Second Professional Specialization in Radiological Protection. The studies last 2 years and the courses cover the following subjects: Nuclear Physics, Basic Mathematics, Basic Biology, Radiation Sources, Interaction between Radiation and Matter, Radiation Detection and Measurement, Biological effects of ionizing radiations, Radiological protection in the use of radiations in industry and medicine, Regulatory aspects, and nuclear safety - radiological protection interface. IPEN has taken the responsibility to carry out these studies due to its experience in the organization, together with different Universities, of six Masters in Nuclear Energy, four Masters in Medical Physics, one Master in Nuclear Physics, one Master in Nuclear Chemistry, and two Specialization in Nuclear Medicine. For this purpose, IPEN has the Superior Center of Nuclear Studies (CSEN), which has trained more than 2200 people in radiological protection in more than 30 years. CSEN is the first center in the country to train people in the area of nuclear energy and radiological protection. It has the best staff of professors with a both a great education and professional experience, as well as

  8. Second Professional Specialization in Radiological Protection in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Gironzini, E.

    2004-07-01

    Considering that professionals with studies, training and experience in Radiological Protection as a Second Professional Specialization must be recognized, the Peruvian Institute of Nuclear Energy (IPEN), which is the institution responsible for the promotion and control of ionizing radiations in the country, has sign a specific agreement with the Universidad Nacional Mayor de San Marcos, in order to develop these courses. They are based on the content of the Post Graduate Course on Radiological Protection and Nuclear Safety of the Universidad de Buenos Aires, in Argentina, where more than 360 people from 27 different countries have been trained in the last 20 years. People who have a professional degree in Sciences or Engineering, and who fulfill the requirements demanded by the University, study this Second Professional Specialization in Radiological Protection. The studies last 2 years and the courses cover the following subjects: Nuclear Physics, Basic Mathematics, Basic Biology, Radiation Sources, Interaction between Radiation and Matter, Radiation Detection and Measurement, Biological effects of ionizing radiations, Radiological protection in the use of radiations in industry and medicine, Regulatory aspects, and nuclear safety - radiological protection interface. IPEN has taken the responsibility to carry out these studies due to its experience in the organization, together with different Universities, of six Masters in Nuclear Energy, four Masters in Medical Physics, one Master in Nuclear Physics, one Master in Nuclear Chemistry, and two Specialization in Nuclear Medicine. For this purpose, IPEN has the Superior Center of Nuclear Studies (CSEN), which has trained more than 2200 people in radiological protection in more than 30 years. CSEN is the first center in the country to train people in the area of nuclear energy and radiological protection. It has the best staff of professors with a both a great education and professional experience, as well as

  9. Proceedings of the National Conference on Radiological Protection

    International Nuclear Information System (INIS)

    2014-01-01

    The Radioprotection Argentine Society (SAR) was organized the National Conference on Radiation Protection in 2014, in order to inform to the technical and scientific community about the scopes on radiation protection. The principal treated topics were the following: radiological protection in medical applications, radiology, nuclear medicine, radiotherapy, nuclear fuel cycle, industrial gammagraphy, oil well logging.

  10. ICRP Publication 139: Occupational Radiological Protection in Interventional Procedures.

    Science.gov (United States)

    López, P Ortiz; Dauer, L T; Loose, R; Martin, C J; Miller, D L; Vañó, E; Doruff, M; Padovani, R; Massera, G; Yoder, C

    2018-03-01

    In recent publications, such as Publications 117 and 120, the Commission provided practical advice for physicians and other healthcare personnel on measures to protect their patients and themselves during interventional procedures. These measures can only be effective if they are encompassed by a framework of radiological protection elements, and by the availability of professionals with responsibilities in radiological protection. This framework includes a radiological protection programme with a strategy for exposure monitoring, protective garments, education and training, and quality assurance of the programme implementation. Professionals with responsibilities in occupational radiological protection for interventional procedures include: medical physicists; radiological protection specialists; personnel working in dosimetry services; clinical applications support personnel from the suppliers and maintenance companies; staff engaged in training, standardisation of equipment, and procedures; staff responsible for occupational health; hospital administrators responsible for providing financial support; and professional bodies and regulators. This publication addresses these elements and these audiences, and provides advice on specific issues, such as assessment of effective dose from dosimeter readings when an apron is worn, estimation of exposure of the lens of the eye (with and without protective eyewear), extremity monitoring, selection and testing of protective garments, and auditing the interventional procedures when occupational doses are unusually high or low (the latter meaning that the dosimeter may not have been worn).

  11. Philosophy of radiological protection and radiation hazard protection law

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kawano, Takao

    2013-01-01

    The radiation protection and the human safety in radiation facilities are strictly controlled by law. There are rules on the radiation measurement, too. In the present review, philosophy of the radiological protection and the radiation hazard protection law is outlined with reference to ICRP recommendations. (J.P.N.)

  12. Westinghouse Hanford Company environmental surveillance annual report

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Johnson, A.R.; McKinney, S.M.; Perkins, C.J.; Webb, C.R.

    1992-07-01

    This document presents the results of near-facility operational environmental monitoring in 1991 of the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State, as performed by Westinghouse Hanford Company. These activities are conducted to assess and to control the impacts of operations on the workers and the local environment and to monitor diffuse sources. Surveillance activities include sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys are taken at waste disposal sites, radiologically controlled areas, and roads

  13. Guidelines for selection of radiological protective head covering

    International Nuclear Information System (INIS)

    Galloway, G.R. Jr.

    1995-08-01

    The hood is recognized throughout the nuclear industry as the standard radiological protective head covering for use in radioactively contaminated work environments. As of June 15, 1995, hoods were required for all activities performed in contaminated areas at the Y-12 Plant. The use of hoods had historically been limited to those radiological activities with a high potential for personnel contamination. Due to the large size of many posted contaminated areas at the Y-12 Plant, and compounding safety factors, requirements for the use of hoods are being reevaluated. The purpose of the evaluation is to develop technically sound guidelines for the selection of hoods when prescribing radiological protective head covering. This report presents the guidelines for selection of radiological protective hoods

  14. Board's system of publications. [National Radiological Protection Board

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, M J [National Radiological Protection Board, Harwell (UK)

    1978-07-01

    The purpose of each of the several classes of publication issued by the National Radiological Protection Board is stated. The classes are: advice on standards for protection, emergency reference levels, technical reports, instrument evaluation reports, annual research and development reports, three-yearly reports on the work of the NRPB, miscellaneous specialist booklets, publications for the layman, radiological protection bulletin, information sheets, and brochures.

  15. Some aspects of radiological protection in uranium mines

    International Nuclear Information System (INIS)

    Palacios, E.; Napolitano, C.M.

    1978-01-01

    The basic principles of radiation protection recommended by the International Commission on Radiological Protection - ICRP are presented and the main radiological risks for the uranium mining workers are discussed. Finally some criteria for planning the radioactive waste management in uranium mines are given [pt

  16. Hanford Site environmental surveillance data report for calendar year 1995

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data

  17. Hanford Site environmental surveillance data report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  18. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 1, Conceptual representation

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-12-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes code logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 72 refs., 15 figs., 34 tabs.

  19. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 1, Conceptual representation

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-12-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes code logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 72 refs., 15 figs., 34 tabs

  20. Managing risk at Hanford

    International Nuclear Information System (INIS)

    Hesser, W.A.; Stillwell, W.G.; Rutherford, W.A.

    1994-01-01

    Clearly, there is sufficient motivation from Washington for the Hanford community to pay particular attention to the risks associated with the substantial volumes of radiological, hazardous, and mixed waste at Hanford. But there is also another reason for emphasizing risk: Hanford leaders have come to realize that their decisions must consider risk and risk reduction if those decisions are to be technically sound, financially affordable, and publicly acceptable. The 560-square miles of desert land is worth only a few thousand dollars an acre (if that) -- hardly enough to justify the almost two billion dollars that will be spent at Hanford this year. The benefit of cleaning up the Hanford Site is not the land but the reduction of potential risk to the public and the environment for future generations. If risk reduction is our ultimate goal, decisions about priority of effort and resource allocation must consider those risks, now and in the future. The purpose of this paper is to describe how Hanford is addressing the issues of risk assessment, risk management, and risk-based decision making and to share some of our experiences in these areas

  1. Protection of staff in interventional radiology

    International Nuclear Information System (INIS)

    Melkamu, M. A.

    2013-04-01

    This project focuses on the interventional radiology. The main objective of this project work was to provide a guidance and advice for occupational exposure and hospital management to optimize radiation protection safety and endorse safety culture. It provides practical information on how to minimize occupational exposure in interventional radiology. In the literature review all considerable parameters to reduce dose to the occupationally exposed are well discussed. These parameters include dose limit, risk estimation, use of dosimeter, personal dose record keeping, analysis of surveillance of occupational dose, investigation levels, and proper use of radiation protection tools and finally about scatter radiation dose rate. In addition the project discusses the ways to reduce occupational exposure in interventional radiology. The methods for dose reduction are minimizing fluoroscopic time, minimizing the number of fluoroscopic image, use of patient dose reduction technologies, use of collimation, planning interventional procedures, positioning in low scattered areas, use of protective shielding, use of appropriate fluoroscopic imaging equipment, giving training for the staff, wearing the dosimeters and know their own dose regularly, and management commitment to quality assurance and quality control system and optimization of radiation protection of safety. (author)

  2. Radiological protection report 2012

    International Nuclear Information System (INIS)

    2013-06-01

    Two years after the massive release of radiation from the nuclear power plants at Fukushima Dai-ichi, the repercussions continue to preoccupy the radiological and emergency protection community, both in Switzerland and internationally. In Switzerland the Swiss Federal Nuclear Safety Inspectorate (ENSI) has initiated measures as part of the European Union Stress Tests and has its own Fukushima Action Plan. In this Annual Report, ENSI focuses on radiological protection in Swiss nuclear facilities. The average individual dose has changed little compared with previous years. At 0.7 mSv, it is significantly below the limit both for persons exposed to radiation during their work (20 mSv) and the annual average rate of exposure for the population in Switzerland as a whole (5.5 mSv). In terms of collective doses, the extensive maintenance work at the Leibstadt power plant (KKL) resulted in a doubling of rates compared with recent years. However, in the remaining nuclear facilities the rates have not changed significantly. The highest individual dose during the year under review was 13 mSv. Exposure rates in 2012 for all those exposed to radiation during work in facilities subject to ENSI surveillance were below the maximum limit. Greater attention is now being given to work in high and variable radiation fields and in difficult conditions. Swiss nuclear facilities continue to operate a consistent radiological protection approach. Measuring equipment plays an important role in radiological protection. Having conducted a range of inspections and comparative measurements of aerosol-iodine filters and waste water sampling together with measurements in the field of personal dosimetry, ENSI has concluded that the required measuring equipment for radiological protection exists, that this equipment is correctly used and provides reliable data. ENSI maintains a test laboratory that analyses samples from nuclear facilities and their immediate vicinity and also conducts field

  3. Identification of contaminants of concern in Hanford ground waters

    International Nuclear Information System (INIS)

    Sherwood, D.R.; Evans, J.C.; Bryce, R.W.

    1990-01-01

    More than 1,500 waste-disposal sites have been identified at the U.S. Department of Energy Hanford Site. At the request of the U.S. Environmental Protection Agency, these sites were aggregated into four administrative areas for listing on the National Priority List. Within the four aggregate areas, 646 inactive sites were selected for further evaluation using the Hazard Ranking System (HRS). Evaluation of inactive waste sites by HRS provided valuable insight to design a focused radiological- and hazardous-substance monitoring network. Hanford Site-wide ground-water monitoring was expanded to address not only radioactive constituents but also hazardous chemicals. The HRS scoring process considers the likelihood of ground-water contamination from past disposal practices at inactive waste sites. The network designed to monitor ground water at those facilities identified 129 I, 99 Tc, 90 Sr, uranium, chromium, carbon tetrachloride, and cyanide

  4. New nuclear build and evolving radiological protection challenges

    International Nuclear Information System (INIS)

    Lazo, T.

    2010-01-01

    Many trends and indicators suggest that the use of nuclear power for generating electricity will increase, perhaps significantly, in the coming 10 to 20 years and beyond. Any such expansion will not take place in a static scientific or social context, but rather in the midst of ongoing changes in many relevant fields, radiological protection, radioactive waste management and nuclear safety to name a few. Regarding radiological protection, this evolution can be characterised in many different ways, but can conveniently be described as having scientific and socially driven aspects. These may well pose challenges to radiological protection (RP) policy, regulation and application in the future

  5. Radiologic protection in pediatric radiology: ICRP recommendations

    International Nuclear Information System (INIS)

    Sanchez, Ramon; Khong, Pek-Lan; Ringertz, Hans

    2013-01-01

    ICRP has provided an updated overview of radiation protection principles in pediatric radiology. The authors recommend that staff, radiologists, medical physicists and vendors involved in pediatric radiology read this document. For conventional radiography, the report gives advice on patient positioning, immobilization, shielding and appropriate exposure conditions. It describes extensively the use of pulsed fluoroscopy, the importance of limiting fluoroscopy time, and how shielding and geometry must be used to avoid unnecessary radiation to the patient and operator. Furthermore, the use of fluoroscopy in interventional procedures with emphasis on dose reduction to patients and staff is discussed in light of the increasing frequency, complexity and length ofthe procedures. CT is the main reason that medical imaging in several developed countries is the highest annual per capita effective radiation dose from man-made sources. The ICRP report gives extensive descriptions of how CT protocols can be optimized to minimize radiation exposure in pediatric patients. The importance of balancing image quality with acceptable noise in pediatric imaging and the controversies regarding the use of protective shielding in CT are also discussed.

  6. Evaluation of the effectiveness of gonad protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Kawaura, Chiyo; Aoyama, Takahiko; Koyama, Shuji

    2004-01-01

    In the present study we describes the evaluation of the effectiveness of gonad protection in diagnostic radiology based on the measurement of organ and the effective doses with and without lead clothing to gonads. We devised in-phantom dosimetry system and measured organ and effective doses in x-ray radiography and CT examinations with the new dosimetry system. From the data of organ and the effective doses we assessed the effectiveness of radiological protection by the use of lead clothing to gonads. Although in chest radiography and chest CT examinations, the effectiveness of radiological protection was not found, in the case of hip joint radiography (AP), gonad doses decreased remarkably by using lead clothing. The effectiveness of radiological protection, i.e. the ratio of the decreased dose to the dose value without protection, in testis and ovary were found to be 91.4% and 68.0%, respectively. It was also found that gonad doses observed with and without gonad protection were extremely lower than those of threshold for sterility recommended by the International Commission on Radiological Protection 60 (ICRP Publ. 60). (author)

  7. [Evaluation of the effectiveness of gonad protection in diagnostic radiology].

    Science.gov (United States)

    Kawaura, Chiyo; Aoyama, Takahiko; Koyama, Shuji

    2004-01-01

    In the present study we describe the evaluation of the effectiveness of gonad protection in diagnostic radiology based on the measurement of organ and the effective doses with and without lead clothing to gonads. We devised in-phantom dosimetry system and measured organ and effective doses in x-ray radiography and CT examinations with the new dosimetry system. From the data of organ and the effective doses we assessed the effectiveness of radiological protection by the use of lead clothing to gonads. Although in chest radiography and chest CT examinations, the effectiveness of radiological protection was not found, in the case of hip joint radiography (AP), gonad doses decreased remarkably by using lead clothing. The effectiveness of radiological protection, i.e. the ratio of the decreased dose to the dose value without protection, in testis and ovary were found to be 91.4% and 68.0%, respectively. It was also found that gonad doses observed with and without gonad protection were extremely lower than those of threshold for sterility recommended by the International Commission on Radiological Protection 60 (ICRP Publ. 60).

  8. Environmental monitoring at Hanford for 1984

    International Nuclear Information System (INIS)

    Price, K.R.; Carlile, J.M.V.; Dirkes, R.L.; Jaquish, R.E.; Trevathan, M.S.; Woodruff, R.K.

    1985-05-01

    Environmental surveillance activities performed by the Pacific Northwest Laboratory for the Department of Energy's Hanford Site for 1984 are discussed in this report. Samples of environmental media were collected in support of the Hanford Environmental Monitoring Program to determine radionuclide concentrations in the Hanford environs. Radiological impacts in terms of radiation dose equivalents as a result of Hanford operations are also discussed. Gross beta radioactivity concentrations in airborne particulates at all sampling locations were lower in 1984 than during 1983 as a result of declining levels of worldwide fallout. Slightly higher levels of 85 Kr and 129 I were noted at several onsite and offsite locations. The sampling location in close proximity to the PUREX plant also detected increased 3 H. Very low levels of radionuclides were detected in samples of Columbia River water during 1984. An extensive groundwater monitoring program was performed for the Hanford Site during 1984. The 3 H and nitrate plumes continued to move slowly toward the Columbia River. All 3 H results were within applicable concentration guides. Samples of deer, rabbits, game birds, waterfowl and fish were collected onsite or in the Columbia River at locations where the potential for radionuclide uptake was most likely, or at the nearest locations where wildlife samples were available. Radioisotope levels were measured. Dose rates from external penetrating radiation measured in the vicinity of residential areas were similar to those observed in the previous years, and no contribution from Hanford activities could be identified. An assessment of the 1984 potential radiological impacts attributable to the Hanford operations indicated that measured and calculated radiation doses to the public continued to be low, and well below applicable regulatory limits. 21 refs., 48 figs., 83 tabs

  9. Radiological respiratory protection in Angra-1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Amaral, Marcos A. do

    1996-01-01

    The present paper has the purpose to describe the actual situation of the Radiological respiratory Protection in Angra I Nuclear Power Plant, the difficulties found and the goals to achieve, in order of the radiological protection excellence. (author)

  10. Radiological protection in underground uranium mines

    International Nuclear Information System (INIS)

    Napolitano, Celia Marina

    1978-01-01

    The radiosanitary hazards that workers of an uranium ore can suffer were studied. The more used control methods for the the evaluation of doses received by the workers was studied too. It was developed a technique using the scintillation chamber method for the detection of radon. Emanation and diffusion methods were used for extraction of radon from water. A program of radiological protection based on ICRP recommendation was analysed for uranium mines. This program includes: ventilation needs calculation methods, a study of radiological protection optimization based on 'cost-benefit' analysis, a monitoring plan and a study about radioactive waste management. (author)

  11. Radiological protection of the patient in the diagnostic X-ray

    International Nuclear Information System (INIS)

    Araujo, A.M.C. de

    1983-01-01

    Measures and procedures are given in relation to the radiological protection of the patient in diagnostic radiology. Technical and physical factors of the patient protection are discussed, as radiation beam properties, size of the irradiation field, shieldings, control of the scattered radiation that reaches the imaging record system, films, ecrans and radiographic film processing. General recommendations about the radiation protection of the patient in diagnostic radiology are given. (M.A.) [pt

  12. Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site

    International Nuclear Information System (INIS)

    Millsap, William J.; Brush, Daniel J.

    2013-01-01

    This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using 'background makers'; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra

  13. Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Millsap, William J.; Brush, Daniel J.

    2013-11-13

    This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using "background makers"; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra.

  14. Mission and activities of the International Commission on Radiological Protection

    International Nuclear Information System (INIS)

    Clements, C.H.

    2018-01-01

    The International Commission on Radiological Protection (ICRP), formed in 1928, develops the System of Radiological Protection for the public benefit. The objective of the recommendations is to contribute to an appropriate level of protection for people and the environment against the harmful effects of radiation exposure without unduly limiting the individual or societal benefits of activities involving radiation. In developing its recommendations, ICRP considers advances in scientific knowledge, evolving social values, and practical experience. These recommendations are the basis of radiological protection standards and practice worldwide

  15. 1988 Hanford riverbank springs characterization report

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1990-12-01

    This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similar to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception 90 Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs

  16. Radiological protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, B

    1974-01-01

    Information that would allow an assessment of the standard of radiological protection in dentistry in the United Kingdom is sparse. The National Radiological Protection Board (previously the Radiological Protection Service) has provided a monitoring and advisory service to dentists for many years but very limited use has been made of this service. In a recent survey, 114 dentists were visited in representative practices in South East England and it was established that only 6.5% of dentists in general practice do not use radiography as an adjunct to their practice (Smith, 1969). In the 88 x-ray sets which were examined, 24% had less than the recommended thickness of aluminium filtration, while 25% had a fixed field size which was larger than necessary for dental radiography; in addition, 27% of the timers were found to have an error of greater than 20% in repetition of the pre-set exposure time. The exposure rate at the cone tip of a dental x-ray unit is generally in the range 1 to 4 R/s. A fault in the timer unit coupled with a failure on the part of the dentist to notice that x-rays are being generated (normally indicated by a red warning light) would rapidly lead to excessive exposure of the patient. Furthermore, a dentist continually holding films in the mouth of his patient would certainly incur a dose well in excess of the permissible hand dose, assuming anaverage work load for the x-ray equipment. Three case histories are given to illustrate the type of hazard that might arise from faulty equipment or bad operating technique.

  17. Surface soil contamination standards for Rockwell Hanford Operations

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1981-01-01

    The 200 Areas of the Hanford site contain soils contaminated with levels of radioactivity ranging from fallout concentrations to levels requiring radiological controls. Some contamination is more or less uniformly distributed, and some occurs as discrete specks or spots of activity. Because of the acute need for standards, the Rockwell Environmental Protection (EP) Group proceeded to develop standards; these were approved by Rockwell in October 1979. It must be emphasized that these standards are only applicable to the 200 Areas of the Hanford site or other areas under Rockwell's jurisdiction. It is assumed that access to these areas will always be restricted and that land-use restrictions will be maintained. Contamination limits for areas used by the general public would normally be lower than the limits derived in this case. It appears that the Rockwell standards divided by a factor of 5 to 10 may be reasonable contamination guidelines for the general environment

  18. Westinghouse Hanford Company environmental surveillance annual report -- 200/600 Areas

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Huckfeldt, C.R.; Johnson, A.R.; McKinney, S.M.

    1990-06-01

    This document presents the results of near-field environmental surveillance as performed by Westinghouse Hanford Company in 1989 for the Operations Area of the Hanford Site, Richland, Washington. These activities were conducted in the 200 and 600 Areas to assess operational control on the work environment. Surveillance activities included external radiation measurements and radiological surveys of waste disposal sites, radiological control areas, and roads, as well as sampling and analysis of ambient air, surface water, groundwater, sediments, soil, and biota. 15 refs., 3 figs., 1 tab

  19. SCK CEN'S International School for Radiological Protection (ISRP): communicating the aspects of radiological protection

    International Nuclear Information System (INIS)

    Coeck, M.; Majakowski, I.; Verachtert, C.; Meskens, G.

    2006-01-01

    Full text: Thanks to its thorough experience in the field of peaceful applications of nuclear science and technology, radiological protection and radiobiology, the Belgian nuclear research centre S.C.K. E.N. has garnered a reputation as an outstanding centre of research, training and education. Functioning as a task force within S.C.K. E.N., the international school for Radiological Protection (i.s.R.P.) initiates and manages training and research projects and contributes to related activities on national and international level. I.s.R.P. activities are situated on three axes: Coordination and organisation of training and education programmes on radiological protection The i.s.R.P. training activities deal with all aspects of radiological protection and are directed to the private, medical and industrial nuclear sector, national and international policy organisations, the political and academic world and the general public. Courses are also organised in cooperation with technical high schools, universities and public and private health services. In addition, i.s.R.P. is involved in international research networks and training programmes, such as those of the European Commission and the IAEA. The i.s.R.P. team of lecturers includes technicians, physicists, biologists, medical doctors, engineers and social scientists, who all bring insights and ideas from their specific background into the course programmes. As S.C.K. E.N. staff members, they have a solid knowledge and experience in their field, and can thus directly transfer their theoretical knowledge and practical experience to the various courses. Course programmes are composed together with the customer, drawing from the set of basic and expertise course modules and completed with technical visits. The basic modules textbooks exist in Dutch, French and English. In addition, all course modules and visits can be lectured and guided in Dutch, French or English. Research on trans-disciplinary aspects of education

  20. Environmental surveillance at Hanford for CY-1975 data

    International Nuclear Information System (INIS)

    Blumer, P.J.; Fix, J.J.; Speer, D.R.

    1976-04-01

    This document contains detailed data collected by the Hanford Environmental Surveillance program during 1975. Environmental Surveillance responsibilities at Hanford are divided between Hanford Environmental Health Foundation (HEHF) and Battelle-Northwest (BNW). HEHF is responsible for measuring all nonradiological air quality and sanitary water parameters of interest. BNW is responsible for measuring radiological parameters in all environmental media of significance and for measuring both radiological and nonradiological parameters of Columbia River water and ground water. A brief description of the method and location of sample collection during 1975 is included. Data are tabulated on the content of specific radionuclides in surface air. Columbia River water, drinking water, ground water, foods, fish, and wild animals. Data are also included on content of NO 2 and SO 2 in air, nitrates in Columbia River water, ground water, and drinking water, and water quality of samples of Columbia River water collected at various sampling locations

  1. Radiological protection at particle accelerators: An overview

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1991-01-01

    Radiological protection began with particle accelerators. Many of the concerns in the health physics profession today were discovered at accelerator laboratories. Since the mid-1940s, our understanding has progressed through seven stages: observation of high radiation levels; shielding; development of dosimetric techniques; studies of induced activity and environmental impact; legislative and regulatory concerns; and disposal. The technical and scientific aspects of accelerator radiation safety are well in hand. In the US, there is an urgent need to move away from a ''best available technology'' philosophy to risk-based health protection standards. The newer accelerators will present interesting radiological protection issues, including copious muon production and high LET (neutron) environments

  2. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety, Regional Meeting on International Radiation Protection Association (IRPA)and 3. Peruvian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    1995-10-01

    There we show works of the Third Regional Meeting on Radiological and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin americans specialists talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation. More than 225 works were presented on the meeting

  3. Operational Radiological Protection and Aspects of Optimisation

    International Nuclear Information System (INIS)

    Lazo, E.; Lindvall, C.G.

    2005-01-01

    Since 1992, the Nuclear Energy Agency (NEA), along with the International Atomic Energy Agency (IAEA), has sponsored the Information System on Occupational Exposure (ISOE). ISOE collects and analyses occupational exposure data and experience from over 400 nuclear power plants around the world and is a forum for radiological protection experts from both nuclear power plants and regulatory authorities to share lessons learned and best practices in the management of worker radiation exposures. In connection to the ongoing work of the International Commission on Radiological Protection (ICRP) to develop new recommendations, the ISOE programme has been interested in how the new recommendations would affect operational radiological protection application at nuclear power plants. Bearing in mind that the ICRP is developing, in addition to new general recommendations, a new recommendation specifically on optimisation, the ISOE programme created a working group to study the operational aspects of optimisation, and to identify the key factors in optimisation that could usefully be reflected in ICRP recommendations. In addition, the Group identified areas where further ICRP clarification and guidance would be of assistance to practitioners, both at the plant and the regulatory authority. The specific objective of this ISOE work was to provide operational radiological protection input, based on practical experience, to the development of new ICRP recommendations, particularly in the area of optimisation. This will help assure that new recommendations will best serve the needs of those implementing radiation protection standards, for the public and for workers, at both national and international levels. (author)

  4. Herbert M. Parker: Publications and contributions to radiological and health physics

    International Nuclear Information System (INIS)

    Kathren, R.L.; Baalman, R.W.; Bair, W.J.

    1986-01-01

    For more than a half century, Herbert M. Parker was a leading force in radiological physics. As a scientist, he was codeveloper of a systematic dosimetry scheme for implant therapy and the innovative proposer of radiological units with unambiguous physical and biological bases. He made seminal contributions to the development of scientifically based radiation protection standards and, as an administrator and manager as well as scientist, helped the Hanford Laboratories to achieve preeminance in several areas, including radiation biology, radioactive waste disposal, and environmental radioactivity. This volume brings together, sometimes from obscure sources, his works

  5. Current evaluation of the information about Radiological Protection in Internet

    International Nuclear Information System (INIS)

    Ruiz-Cruces, R.; Marco, M.; Villanueva, I.

    2003-01-01

    To analyze the current situation about the pedagogic information on radiological protection training which could be found in Internet. More than 756 web-pages have been visited in Internet about Radiological Protection in the nuclear and medical fields, providing information mainly focusing on information to the members of the public. In this search were used internet Searching Appliance (as Copernicus, Google and Scirus), using key words related with this subject (as Radiological Protection and Health Safety), getting the internet address of organizations, societies and investigation groups. Only a low percentage (less than 5 per cent) of these addresses content information on Radiological Protection for the members of the public, including information about the regulator Organizations, and which are the objectives for protection of the members of the public against ionization radiation (from the point of view of the use of the ionization radiation in the medical and nuclear field). This work attempts to propose the use of internet as a tool for informing the members of the public in matter of radiological protection, as first link in the chain of the training and education. (Author)

  6. Training for Radiation Protection in Interventional Radiology

    International Nuclear Information System (INIS)

    Bartal, G.; Sapoval, M.; Ben-Shlomo, A.

    1999-01-01

    Program in radiological equipment has incorporated more powerful x-ray sources into the standard Fluoroscopy and CT systems. Expanding use of interventional procedures carries extensive use of fluoroscopy and CT which are both associated with excessive radiation exposure to the patient and personnel. During cases of Intravenous CT Angiography and direct Intraarterial CT Angiography, one may substitute a substantial number of diagnostic angiography checks. Basic training in interventional radiology hardly includes some of the fundamentals of radiation protection. Radiation Protection in Interventional Radiology must be implemented in daily practice and become an integral part of procedure planning strategy in each and every case. Interventional radiological most master all modern imaging modalities in order to choose the most effective, but least hazardous one. In addition, one must be able to use various imaging techniques (Fluoroscopy, CTA, MM and US) as a stand-alone method, as well as combine two techniques or more. Training programs for fellows: K-based simulation of procedures and radiation protection. Special attention should be taken in the training institutions and a basic training in radiation protection is advised before the trainee is involved in the practical work. Amendment of techniques for balloon and stent deployment with minimal use of fluoroscopy. Attention to the differences between radiation protection in cardiovascular and nonvascular radiology with special measures that must be taken for each one of them (i.e., peripheral angiography vs. stenting, Endo luminal Aortic Stent Graft, or nonvascular procedures such as biliary or endo urological stenting or biliary intervention). A special emphasis should be put on the training techniques of Interventional Radiologists, both beginners and experienced. Patient dose monitoring by maintaining records of fluoroscopic time is better with non-reset timer, but is optional. Lee of automated systems that

  7. Radiological protection for the dental practice

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia; Loria Meneses, Luis Guillermo

    2007-01-01

    This work offers a didactical material, of easy reading and without mathematical complexity, about the fundamentals of the radiological protection in the dental area. It is dedicated to the personnel of the Ministerio de Salud, responsible to realize radiological inspection in dentistry clinics of the country. It is recommended to consult other bibliographical references if it is wished to extend about a particular subject [es

  8. The teaching of Radiological Protection in actual society

    International Nuclear Information System (INIS)

    Lorenzo, Nestor Pedro de

    1996-01-01

    The use more and more frequent of radiations in different areas of the daily life generate a growing necessity of competent professionals and technicians qualified in Health Physics. The teaching of the Radiological Protection does not limit only to the instruction in scientists topics that quality to the professionals in the resolution of problems or the application of techniques, must qualified also the students in the diffusion of the own problems of the radiological protection. The content of different courses of radiological protection given in the Instituto Bailer's ( a join between the National University of Cuyo and the National Commission of Atomic Energy) guided to different groups of students or professionals are also introduced. Finally, some of the examples used in order to clarify practical situations are shown. (author)

  9. Radiological protection of the environment: the path forward to a new policy?

    International Nuclear Information System (INIS)

    2002-01-01

    The international system of radiological protection is currently being revised with the aim of making it more coherent and concise. During the revision process, particular attention is being given to the development of an explicit system for the radiological protection of the environment in addition to that of human beings. In order to support the ongoing discussions of the international community of radiological protection experts, these proceedings try to answer the questions: Is there an international rationale behind the wish to protect the environment from radiation? Do we have enough scientific information to develop and define a broadly accepted policy? What are the socio-political dynamics, beyond science, that will influence policy on radiological protection of the environment? What are the characteristics of the process for developing a system of radiological protection of the environment? These proceedings comprise the views of a broad range of invited speakers, including policy makers, regulators, radiological protection and environmental protection professionals, industry, social scientists and representatives of both non-governmental and intergovernmental organisations. (author)

  10. Ethical values in radiological protection

    International Nuclear Information System (INIS)

    Oughton, D.H.

    1996-01-01

    Issues like consent, equity, control and responsibility are important for an ethical evaluation of radiation risks. This paper discusses the incorporation of ethical values in radiological protection policy and compares how ICRP recommendations promote their use in practice and intervention cases. The paper contends that in cases of intervention, where the overall aim is dose reduction, social and ethical factors are often alluded to when evaluating costs of an action. However, possible ethical or social benefits of intervention measures are seldom raised. On the other hand, when assessing a practice, wherein the net effect is an increase in radiation dose, one is more likely to find an appeal to ethical factors on the benefits side of the equation than with the costs. The paper concludes that all decisions concerning radiological protection should consider both positive and negative ethical aspects. (author)

  11. Independent auto evaluation of an operative radiological protection program

    International Nuclear Information System (INIS)

    Medrano L, M.A.; Rodriguez C, C.C.; Linares R, D.; Zarate M, N.; Zempoalteca B, R.

    2006-01-01

    The program of operative radiological protection of a nuclear power plant consists of multiple procedures and associate tasks that have as purpose the radiological protection of the workers of the power station. It is for this reason that the constant evaluation of the one it programs it is an important tool in the identification of their weaknesses (and strengths), so they can be assisted appropriately. In this work the main elements of the program of independent auto evaluation of the program of operative radiological protection of the Laguna Verde Central that has been developed and implemented by the National Institute of Nuclear Research are described. (Author)

  12. Conditions of radiological protection in the health unities

    International Nuclear Information System (INIS)

    Sa, L.R.B.S.; Neto, A.T.; Pires, A.; Azevedo, H.F.; Boasquevisque, E.M.

    1987-01-01

    The objective of this study was explained which conditions is practiced for occupational and environmental radiological protection. Fifteen hospitables and ambulatories services, pertaining to the public system are studies, verifying that the professional group that are preoccupied with the radioprotection conditions are the assistants services and technician. The common knowledge about Basic Standards of Radiological Protection was also observed, of which is rather precarious. (C.G.C.) [pt

  13. Recent perspectives on optimisation of radiological protection

    International Nuclear Information System (INIS)

    Robb, J.D.; Croft, J.R.

    1992-01-01

    The ALARA principle as a requirement in radiological protection has evolved from its theoretical roots. Based on several years work, this paper provides a backdrop to practical approaches to ALARA for the 1990s. The key step, developing ALARA thinking so that it becomes an integral part of radiological protection programmes, is discussed using examples from the UK and France, as is the role of tools to help standardise judgements for decision-making. In its latest recommendations, ICRP have suggested that the optimisation of protection should be constrained by restrictions on the doses to individuals. This paper also considers the function of such restrictions for occupational, public and medical exposure, and in the design process. (author)

  14. ICRP Publication 138: Ethical Foundations of the System of Radiological Protection.

    Science.gov (United States)

    Cho, K-W; Cantone, M-C; Kurihara-Saio, C; Le Guen, B; Martinez, N; Oughton, D; Schneider, T; Toohey, R; ZöLzer, F

    2018-02-01

    Despite a longstanding recognition that radiological protection is not only a matter of science, but also ethics, ICRP publications have rarely addressed the ethical foundations of the system of radiological protection explicitly. The purpose of this publication is to describe how the Commission has relied on ethical values, either intentionally or indirectly, in developing the system of radiological protection with the objective of presenting a coherent view of how ethics is part of this system. In so doing, it helps to clarify the inherent value judgements made in achieving the aim of the radiological protection system as underlined by the Commission in Publication 103. Although primarily addressed to the radiological protection community, this publication is also intended to address authorities, operators, workers, medical professionals, patients, the public, and its representatives (e.g. NGOs) acting in the interest of the protection of people and the environment. This publication provides the key steps concerning the scientific, ethical, and practical evolutions of the system of radiological protection since the first ICRP publication in 1928. It then describes the four core ethical values underpinning the present system: beneficence/ non-maleficence, prudence, justice, and dignity. It also discusses how these core ethical values relate to the principles of radiological protection, namely justification, optimisation, and limitation. The publication finally addresses key procedural values that are required for the practical implementation of the system, focusing on accountability, transparency, and inclusiveness. The Commission sees this publication as a founding document to be elaborated further in different situations and circumstances.

  15. Principles of radiological protection: new paradigms

    International Nuclear Information System (INIS)

    Ximenes, Edmir; Guimaraes, Maria Ines Calil Cury

    2009-01-01

    Full text: The relationships of workers, patients and physicians to the basic principles of radiological protection were given in this work an historical introduction that emphasizes their development from their beginnings to the current period. The evolution of scientific knowledge as regards the benefits and injuries resulting from the use of the ionizing radiation in human activities is the main focus of the work. These principles (justification, optimization and limitation) are presented in order to offer a broader view of their application fields. The principle of the optimization receives the contribution of techniques aimed to help the decision used in radiological protection. The principle of the limitation of doses is helped by the concept of limit specifically linked to a given segment of the population or a given human activity. Regarding the current relationship between physicians and patients a change of philosophy is discussed in what concerns the radiation dose supplied that should be the minimum one in relation to the diagnosis or cure objectives. The administration of radiation must follow the recommendations of ICRP - International Commission on Radiological Protection. The radiation can bring benefits if used with rationality, efficacy and care. The radiation should not be feared, but respected. (author)

  16. Evolution of the radiological protection paradigms

    International Nuclear Information System (INIS)

    Sordi, Gian Maria A.A.

    2009-01-01

    We consider as initial radiological protection paradigms those in vigour after the release of the atomic energy for pacific usages in 1955. In that occasion, only one paradigm was introduced, presently named dose limitation system. After arguing about the basis that raised the paradigm, we introduced the guidance, that is, the measurements to be implemented to comply with the paradigm. In that occasion, they were two, i.e., the radiation dose monitoring and the workplace classification. Afterwards, the reasons that caused the radiological protection paradigms changes in force until 1995 are discussed. The initial paradigm was modified introducing the justification and the optimization principles, adding that the radiological protection should be economical and effective. The guidance also increased to four: personal monitoring, workplace classification, reference level and workers classification. Afterwards, we give the main justifications for the present paradigms that besides the formers were added the dose constraints, the potential exposure and the annual risk limits. Due to these modifications, the workers classifications were eliminated from the guidance, but the potential exposure and the search for the dose constraints were added. Eventually, we discuss the tendencies for the next future and the main changes introduced by the ICRP in the Publication 103, 2007. (author)

  17. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology

    International Nuclear Information System (INIS)

    Mori, Hiroshige

    2015-01-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses’ annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units’ pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses. (practical matter)

  18. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology.

    Science.gov (United States)

    Mori, Hiroshige

    2015-06-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses' annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units' pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses.

  19. Radiological protection in nucleus reactor; Perlindungan radiologi di reaktor nukleus

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: radiological protection problems of reactor 1. in operation 2. types of reactor i.e. power reactors, research reactors, etc. 3. during maintenance and installation of fuels. 4. nuclear fuels.

  20. Radiological Protection (Amendment) Act, 2002. Number 3 of 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This Act amends the Radiological Protection Acts, 1991 and 1995, and provides for the making of grants out of funds provided by the legislature for remediation works for houses having certain levels of radon gas and for the administration by the Radiological Protection Institute of Ireland of such grants and to provide for related matters

  1. Coincidence of needs in radiological and toxicological protection

    International Nuclear Information System (INIS)

    Osborne, R.V.

    1988-01-01

    Research needs for radiological protection and research programs that have evolved to meet these needs parallel closely those in the chemical toxicology field. The similarity of these needs is described as perceived from the radiological side. Further, the frame work for radiologically-related research, out lines of the research programs, and the development of the facilities at Chalk River Nuclear Labs were presented

  2. Radiation protection study of radiology medical workers in radiodiagnosis area

    International Nuclear Information System (INIS)

    Gaona, E.; Canizal, C.; Garcia, M.A.; Orozco, M.; Rincon, A.; Padilla, Y.; Martinez, A.

    1996-01-01

    Aspects related to radiological safety and its organization in radiodiagnosis were evaluated by means of scanning carried out in 18 hospitals of Mexico City, divided in 11 public institutions and 7 private ones. The population being studied was: hospital personnel that works in radiodiagnosis. The survey was made with 31 dichotomic variables, being obtained 132 surveys. The personnel characteristics are 83% works in public institutions, 49% works in radiodiagnosis, 3% has an academic degree, 13% is member of a hospital professional association, 13% has updated information on radiological protection, 36% was trained, 45% works for more than 2 years, 52% uses personal dosemeter, less than the 20% knows about the fundamentals of the radiological protection and 24% states to suffer from biological radiation effects, due to the exposure to x-rays. As result of the study, it was found that the main problems that the radiological protection has, are: lack of training programs in radiological protection and supervision, medical surveillance and the few number of persons that takes part in clinical meetings and professional associations. (authors). 7 refs., 3 tabs

  3. Education and Training in the Field of Radiological Protection

    International Nuclear Information System (INIS)

    Meskens, G.

    2002-01-01

    The International School for Radiological Protection (isRP) was founded within SCK-CEN in 1996 and organises training programmes on radiological protection for nuclear workers and staff. In 2001, isRP organised twelve courses for Belgian and foreign organisations active in the nuclear and non-nuclear field. The report gives an overview of the main activities in 2001

  4. Radiological protection principles concerning the safeguard, use or release of contaminated materials, buildings, areas or dumps from uranium mining. Recommendations of the Commission on Radiological Protection with explanations

    International Nuclear Information System (INIS)

    Mueller-Neumann, M.

    1992-01-01

    The volume presents the full texts of the SSK Recommendations addressing the aspects and problems involved, and which can be separately retrieved from the database: 1) Radiological protection principles concerning the release of scrap from the shut-down of uranium mining plants; 2) Radiological protection principles concerning the release for industrial use of areas contaminated from uranium mining; 3) Radiological protection principles concerning the use for forest and agricultural purposes and as public gardens (parks) and residential areas of areas contaminated from uranium mining; 4) Radiological protection principles concerning the safeguard and use of mine dumps; 5) Radiological protection principles concerning the release for further commercial or industrial use of buildings used for commercial or industrial purposes and the disposal of building debris from uranium mining and milling; 6) Radiological protection principles concerning the release for general use of reusable equipment and installations from uranium mining. The following appendices round up the material: 1) Radiation exposure from mining in Saxony and Thuringia and its evaluation (Summary of the results of consultations during the 1990 closed meeting); 2) Radiological protection principles for the limitation of the radiation exposure of the public to radon and its daughters; 3) Epidemiological studies on the health state of the inhabitants of the mining region and the miners in Saxony and Thuringia. (orig.) [de

  5. Evaluation of radiological protection aspects in radiodiagnostic rooms in Mexico City

    International Nuclear Information System (INIS)

    Escobar A, L.; Vizuet G, J.; Ruiz, M.A.

    1996-01-01

    The preliminary results of an evaluation of radiological protection carried out in radiology services of different hospitals of Mexico are shown. The evaluated points were: relative aspects of the room, operation parameters of operation of the equipment, work procedures and training about radiological protection for the equipment operators. (authors). 2 refs., 1 fig

  6. Key issues concerning changes in the radiological protection system: some thoughts from the French Society for Radiation Protection (SFRP)

    International Nuclear Information System (INIS)

    Schieber, C.; Cordoliani, Y.S.

    2002-01-01

    In 1999, the International Radiological Protection Association (IRPA) asked for contributions to the debate on future changes to the radiological protection system proposed by the International Commission on Radiological Protection (ICRP). In response, the Board of the French Society for Radiation Protection (SFRP) created a working group to deal specifically with this issue. It met on several occasions between April and July and its findings were presented at the IRPA Congress in May 2000. They were also published in the French journal Radioprotection and in the British Journal of Radiological Protection. To further its discussions, the Board of the SFRP decided to create a second working group which became operational in September 2001. It has around 20 members representing the major players in the radiological protection field in France: authorities, experts and professionals from the nuclear, medical and research fields as well as one association representative (the list of members can be found at the end of this document). The working group was set up to produce proposals relating to the key issues likely to be raised, particularly by the ICRP, concerning the development of new radiological protection recommendations. The members of the working group analysed the ICRP memorandum published in the June 2001 edition of the Journal of Radiological Protection and used their own experience to determine what these key issues would be. The following issues were discussed: General thoughts on the new radiological protection system proposed by the ICRP, Individual and collective approaches to the radiological risk, Comparison with chemical risk management, Radiological protection of the environment, Changes in exposure levels and units of measurement. This paper, which has been approved by the Board of the SFRP, gives the main conclusions of the working group on the key issues in these areas. It is intended to reflect the various opinions expressed during the groups

  7. Services of radiological protection: as sizing the human and material resources

    International Nuclear Information System (INIS)

    Rueda Guerrero, M. D.; Sierra Perler, I.; Lorenzo Perez, P.

    2014-01-01

    Discussion of radiological protection in the Middle Health has formed a task force to develop a technical document recommendatory to help plan and evaluate resources radiological protection services. (Author)

  8. Westinghouse Hanford Company Environmental surveillance annual report--200/600 Areas

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Huckfeldt, C.R.; Johnson, A.R.; McKinney, S.M.

    1991-06-01

    This document presents the results of near-field environmental surveillance in 1990 of the Operations Area of the Hanford Site, in south central Washington State, as performed by Westinghouse Hanford Company. These activities are conducted in the 200 and 600 Areas to assess and control the impacts of operations on the workers and the local environment. Surveillance activities include sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys are taken of waste disposal sites, radiological control areas, and roads. 16 refs., 3 figs., 1 tab

  9. Radiological protection report 2016

    International Nuclear Information System (INIS)

    2017-06-01

    In the radiological protection report 2016, the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an overview of the radiological protection in its area of supervision. Part A of the report deals with protecting the staff of nuclear power plants from the dangers of ionising radiation. It also includes a list of the personal doses accumulated by the staff, broken down using various parameters. Applying the optimisation imperative, it has been proved possible to significantly reduce the annual collective doses in Switzerland's nuclear power plants since they came on stream thanks to major efforts by the operators. In 2016, a total of 6,153 people measured accumulated 2,877 person-mSv. The collective doses have reached a low level corresponding to the radiological condition of the plants and the scope of the work required to be performed in controlled zones (e.g. non-destructive materials testing). ENSI will continue to follow the trend for collective doses and assess the reasons for local variances as well as for measures initiated. The individual doses for people employed in ENSI's area of supervision in 2016 showed a maximum figure of 10 mSv and a mean value of 0.5 mSv which was significantly below the dose limit of 20 mSv for occupational radiation exposure. The discharge of radioactive substances with the exhaust air and waste water from nuclear power plants are dealt with in Part B of the report. In 2016, nuclear power plant operators again met the admissible release limits set by the authorities, in some cases by a considerable margin. The emissions of Swiss nuclear power plants led to a dose of less than 0.01 mSv per year in the direct neighbourhood. A comparison with the average annual radiation dose for the Swiss population of 5.5 mSv shows that the relevant contribution from nuclear power plants lies in the area of one percent of this figure. Effluents from Swiss nuclear power plants were also below the target of 1 GBq per year set by ENSI

  10. Evaluation of the conditions and practices of radiological protection technicians in radiology, according to Ordinance 453

    International Nuclear Information System (INIS)

    Costa, Rogerio Ferreira da

    2013-01-01

    Professionals in radiology suffer whole body exposure to low doses for long periods . The system of radiological protection should keep exposures below recommended thresholds, thus avoiding the stochastic effects that can be triggered with any dose level value, and there is not a threshold for induction of the same. Therefore it is important to use personal dosimeter for monitoring doses and protective equipment. The increase in procedures using ionizing radiation in recent years has been noted with concern, since many companies are not complying with the standards of protection. This is because some procedures may be performed without the need of surgery, which presents a greater risk to the patient. Furthermore, Brazilians are being exposed to radiation without necessity. The reasons range from radiological equipment miscalibrated to poorly trained staff. Thus we evaluate the conditions and practices of radiation protection technicians in radiology according to Ordinance 453 in Goiania, GO, Brazil. Through a descriptive survey with a quantitative approach, we used the technique of gathering information based on a questionnaire. From this survey, we identified the procedures used by radiation protection professionals and concluded that there are failures in the procedures for protecting patients and accompanying and in the training of the professionals. (author)

  11. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety. Radiological protection in Latin America and the Caribbean. Vol. 1,2

    International Nuclear Information System (INIS)

    1996-08-01

    Two volumes contain more than 183 complete papers presented during the Third Regional Meeting on Radiological Protection and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin american specialist talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  12. The mandate and work of ICRP Committee 3 on radiological protection in medicine.

    Science.gov (United States)

    Miller, D L; Martin, C J; Rehani, M M

    2018-01-01

    The mandate of Committee 3 of the International Commission on Radiological Protection (ICRP) is concerned with the protection of persons and unborn children when ionising radiation is used in medical diagnosis, therapy, and biomedical research. Protection in veterinary medicine has been newly added to the mandate. Committee 3 develops recommendations and guidance in these areas. The most recent documents published by ICRP that relate to radiological protection in medicine are 'Radiological protection in cone beam computed tomography' (ICRP Publication 129) and 'Radiological protection in ion beam radiotherapy' (ICRP Publication 127). A report in cooperation with ICRP Committee 2 entitled 'Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances' (ICRP Publication 128) has also been published. 'Diagnostic reference levels in medical imaging' (ICRP Publication 135), published in 2017, provides specific advice on the setting and use of diagnostic reference levels for diagnostic and interventional radiology, digital imaging, computed tomography, nuclear medicine, paediatrics, and multi-modality procedures. 'Occupational radiological protection in interventional procedures' was published in March 2018 as ICRP Publication 139. A document on radiological protection in therapy with radiopharmaceuticals is likely to be published in 2018. Work is in progress on several other topics, including appropriate use of effective dose in collaboration with the other ICRP committees, guidance for occupational radiological protection in brachytherapy, justification in medical imaging, and radiation doses to patients from radiopharmaceuticals (an update to ICRP Publication 128). Committee 3 is also considering the development of guidance on radiological protection in medicine related to individual radiosusceptibility, in collaboration with ICRP Committee 1.

  13. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Well subject area of the Hanford Environmental Information System (HEIS) manages data relevant to wells, boreholes and test pits constructed at the Hanford Site for soil sampling, geologic analysis and/or ground-water monitoring, and sampling for hydrochemical and radiological analysis. Data stored in the Well subject area include information relevant to the construction of the wells and boreholes, structural modifications to existing wells and boreholes, the location of wells, boreholes and test pits, and the association of wells, boreholes and test pits with organization entities such as waste sites. Data resulting from ground-water sampling performed at wells are stored in tables in the Ground-Water subject area. Geologic data collected during drilling, including particle sizing and interpretative geologic summaries, are stored in tables in the Geologic subject area. Data from soil samples taken during the drilling or excavation and sent for chemical and/or radiological analysis are stored in the Soil subject area

  14. Report by the work-group on radiation protection in interventional radiology. Recommendations related to the improvement of radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    2010-01-01

    This report aims at proposing recommendations for the improvement of the quality of radiation protection of workers and patients in the field of interventional radiology. These recommendations concern the training of health personnel, the application of the optimization principle to health professionals and patients, dosimetry and the definition of diagnosis reference levels. More particularly, these recommendations concern professions involved in interventional radiology, and take into account the experience of other European Union State members and recommendations made by the IAEA. The authors analyze the equipment, radiological actions, procedures and doses, practitioners, equipment used for radio-guided interventions. They discuss doses received by patients, patient monitoring and radio-induced lesions. Then, they address the role and training of the different interveners in radiation protection, the equipment maintenance issue, and personnel dosimetry and protection

  15. Environmental aspects at radiological protection in ArcelorMittal Monlevade

    International Nuclear Information System (INIS)

    Silva Filho, Cleber Marques; Soares Filho, Mauricio; Franco, Jose Otavio Andrade; Leite, Roberto Paulo; Goncalves, Breno Cunha; Costa, Jose Gustavo de Souza

    2010-01-01

    ArcelorMittal Monlevade Environmental Management of Radiological Protection is based on radiological protection team training, start up of radioactivity materials detection equipment in several steps of industrial processes and internal procedures according to CNEN - Nuclear Energy National Commission guidelines. At this way ArcelorMittal Monlevade seeks to guarantee the safety of employees, community, customers, equipment and the environment and their business. (author)

  16. The role of radiologic technologist in radiation protection and quality assurance programs

    International Nuclear Information System (INIS)

    Djurovic, B.; Spasci -Jokic, V.; Misovic, M.

    2001-01-01

    The most important sources of ionizing radiation for general public are medical sources. Good working protocols and radiological protections measurements provided significant reduction of patients and professional doses. Medical users of ionizing radiation are radiological technologists. The purpose of this paper is to point out to several facts and errors in radiation protection educational programs for radiological technologists. Medical College educational program covers main specific topics in radiation protection, but there are some omissions in training process. Radiological technologists must be actively involved in radiation protection. Following ethical standards they will reach higher standards than the law requires

  17. Radiological protection report 2007; Strahlenschutzbericht 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. It provides comprehensive data on radiation protection activities in Switzerland during 2007. This is the fourth annual summary report on the radiological protection issues regulated by the Inspectorate. It provides comprehensive data on doses for the staff and for individual jobs. It also includes year-to-year comparisons and comments on the continuing decline in collective and average doses for persons exposed to radiation in the course of their work. Radiation doses are commented on. Radiation in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities is commented on. The Swiss radiation measurement network is commented on and the results obtained are discussed. The Inspectorate concludes that radiological protection in Swiss nuclear facilities is carried out consistently and in compliance with existing legislation.

  18. Public involvement in environmental surveillance at Hanford

    International Nuclear Information System (INIS)

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation's first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford's perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools

  19. A new approach to authorization in the field of radiological protection

    International Nuclear Information System (INIS)

    2003-01-01

    Approaches to radiological protection have been evolving, particularly over the past several years. This has been driven by the emergence of modern concepts of and approaches to risk governance, and by calls from within the radiological protection community for the simplification and clarification of the existing system of protection, as based on the Recommendations of the International Commission on Radiological Protection (ICRP). The NEA Committee on Radiation Protection and Public Health (CRPPH) has been very active in developing its own suggestions as to how the system of radiological protection should evolve to better meet the needs of policy makers, regulators and practitioners. One of those suggestions is that a generic concept of 'regulatory authorization' of certain levels and types of exposure to radiation should replace the current and somewhat complicated concepts of exclusion, exemption and clearance. It has also been suggested that by characterising emerging sources and exposures in a screening process leading into the authorization process, regulatory authorities could develop a better feeling for the type and scale of stakeholder involvement that would be necessary to reach a widely accepted approach to radiological protection. In order to verify that these suggestions would make the system of radiological protection more understandable, easy to apply, and acceptable, independent consultants have 'road tested' the CRPPH concepts of authorization and characterisation. Their findings, which show that applying these concepts would represent significant improvement, are reproduced herein. Specific approaches for the application of the new CRPPH ideas are also illustrated in this report. (author)

  20. Basic principles of radiological protection

    International Nuclear Information System (INIS)

    Pina, Jorge Luiz Soares de; Fajardo, Patricia Wieland.

    1984-07-01

    The fundamentals of radiological protection are presented. The interaction of radiation with matter and with living systems as well as radioprotection procedures and units are described. 6 refs., 7 figs., 9 tabs of radioactive wastes from nuclear medicine in Brazil are presented. 7 refs., 3 figs., 2 tabs

  1. International Commission On Radiological Protection: recommendations relevant to the uranium industry

    International Nuclear Information System (INIS)

    Clement, C.H.

    2010-01-01

    The International Commission on Radiological Protection (ICRP) is an independent, international organization that advances for the public benefit the science of radiological protection, in particular by providing recommendations and guidance on all aspects of protection against ionizing radiation. This presentation touches on aspects of The 2007 Recommendations of the ICRP, a fundamental document that lays out the system of radiological protection for all exposure situations and types, and focuses on other recent publications relevant to the uranium industry. Of particular relevance are the 2009 ICRP Statement on Radon and the accompanying report on lung cancer risk from radon. (author)

  2. Radiological protection aspects of geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Kimura, Hideo

    1992-01-01

    A high-level radioactive waste, generated at a nuclear fuel reprocessing plant, will be disposed of deep, i.e., several hundred meters, within geological formations, to isolate it from the human environment. Since the waste contains significant amounts of long-lived radionuclides, such as Tc-99, I-129, Cs-135 and transuranic elements, the safety of its disposal, particularly as regards the requirement for the radiological protection of human and his environment even in the far future, is one of the essential subjects of all countries engaged in nuclear power production. The radiological protection system has long been established and applied to regulate radiation exposures to the public associated with a relatively short-term release of radioactive materials, during normal and accidental conditions, from nuclear installations such as a power plant and reprocessing plant. Radioactive waste disposal, which potentially offers a long-term radiological consequence on the public, inevitably produces a specific requirement, from the standpoint of radiological protection, that individuals and populations in the future should be accorded at least a current level of the protection. This requirement has caused a serious debate, among the community of radiological protection, on how to establish radiological protection standards and criteria, and how to establish safety assessment methodologies to demonstrate compliance with them. We have discussed in this paper on specific items such as numerical guides to indicate radiological consequences, time frames over which calculations of the consequences are to be carried out, uncertainties to be involved in the calculations, and safety assessment methodologies. (author)

  3. The regulation of the radiological protection in Mexico

    International Nuclear Information System (INIS)

    Eibenschutz H, J.

    2008-12-01

    The regulation antecedents in nuclear question in Mexico are placed in 1950, with the promulgation of L aw that declares national mining reserves the uranium deposits, thorium and the other substances of which obtains fissionable isotopes that can produce nuclear energy , instrument that stipulated the control of uranium, thorium, as to its it indicated it name, and other fissionable substances, on the part of the state, although they were without a doubt the respective institutions, the National Commission of Nuclear Energy in 1955, and the one of the National Commission of Nuclear Safety and Safeguards (CNSNS) in 1979, those that allowed the development of a prescribed frame in the nuclear and radiological areas. One characteristic of the regulation in radiological protection is the variety in the authorities type that have incidence in the regulation, as a result of the different approaches with which it can be approached. For example, in Mexico normative instruments with content in radiological protection exist and are watched over the Health Secretary, who is oriented to the protection of the patient, their relatives and the medical body; Work and Social Welfare Secretary, with a labor approach; Communications and Transport Secretary, which regulates the transport of nuclear and radioactive materials; Finance and Public Credit Secretary, who regulates the import and export of radioactive materials; Environment and Natural Resources Secretary, which regulates the environment protection; Energy Secretary who has responsibilities inside of the p rescribed law of article 27 constitutional in nuclear matter ; and within the energy sector, the CNSNS that expedite and watch the fulfillment of normative in radiological protection and nuclear safety. In order to resist effects of on regulation; frequently inter institutional agreements are carried out in which the areas of monitoring are agreed by each authority. The regulation in radiological protection demands the

  4. A project: 'Radiological protection in radiology', IAEA - Universidad Central de Venezuela

    International Nuclear Information System (INIS)

    Diaz, A.R.; Salazar, G.; Fermin, R.; Gonzalez, M.

    2001-01-01

    For several years a reference center of the UCV has been working on the project VEN/9/007 on dose reduction in diagnostic radiology sponsored by the IAEA. The dose and quality image was evaluated for different types of radiological study (conventional radiology, CT, mammography, interventional radiology) in different facilities at Caracas and others regions of the Venezuela. TL dosimeters were used to assess dose and reduction in dose. Based on the recommendations given by CEC documents on diagnostic quality criteria, a quality control program in radiological protection of patients and staff has been developed, for example: Pilot study by using TLD in personnel radiation monitoring. Comparative study between high and low kVp in chest. Evaluation and dose reduction in chest pediatric. Reduction of radiation dose in studies of billiards via Quality Image and reduction of the dose in studies of colon by enema. Radiation dose of staff in fluoroscopy procedures. Evaluation and dose reduction in dental radiography in public Institutions. A mammography accreditation program for Venezuela, applied to public hospitals. (author)

  5. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    DIEDIKER, L.P.

    1999-07-29

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  6. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    International Nuclear Information System (INIS)

    DIEDIKER, L.P.

    1999-01-01

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years

  7. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Mill, A.J.; Charles, M.W.; Wells, J.

    1978-04-01

    A review is presented of basic radiation physics with particular relevance to radiological protection. The processes leading to the production and absorption of ionising radiation are outlined, and the important dosimetric quantities and their units of measurements. The review is the first of a series of reports presenting the fundamentals necessary for an understanding of the basis of regulatory criteria such as those recommended by the ICRP. (author)

  8. Education and Training in the Field of Radiological Protection

    International Nuclear Information System (INIS)

    Meskens, G.

    2001-01-01

    The International School for Radiological Protection (isRP) was founded within SCK-CEN in 1996 and organises training programmes on radiological protection for nuclear workers and staff. In 2000, isRP organised eleven courses for Belgian and foreign organisations active in the nuclear and non-nuclear field. The report summarises major achievements in 2000 and outlines a number of recent initiates, in particular the development of a distance learning programme

  9. Radiological Protection and Environmental Monitoring in Bolivia

    International Nuclear Information System (INIS)

    MartInez Pacheco, J.

    1979-01-01

    The paper describes the main activities of the Department of Radiological Protection, Nuclear Energy Commission of Bolivia. The following topics are covered: organization, environmental control of air, water, milk and plants, personal dosimetry, instrumentation and calibration, protection in uranium mines. Standard setting and international cooperation aspects are also presented

  10. Westinghouse Hanford Company operational environmental monitoring annual report, calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Fassett, J.W.; Johnson, A.R.; Johnson, V.G.; Markes, B.M.; McKinney, S.M.; Moss, K.J.; Perkins, C.J.; Richterich, L.R.

    1995-08-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1994 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  11. Westinghouse Hanford Company operational environmental monitoring annual report - calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W., Westinghouse Hanford

    1996-07-30

    This document summarizes the results of the Westinghouse Hanford Company (WHC) near-facility operational environmental monitoring for 1995 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water,groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  12. Radiological protection objectives for the disposal of solid radioactive wastes

    International Nuclear Information System (INIS)

    1983-10-01

    Guidance is given on the standards to be used in the UK in decisions on the radiological acceptability of disposal methods for solid radioactive wastes. The radiological protection objectives given in the report are intended to be applied to all types of solid radioactive waste, and to all the disposal methods which are in use or under consideration. This guidance complements and extends previous Board advice on radiological protection objectives which apply to the control of routine discharges of gaseous and liquid effluents. (author)

  13. A new radiation exposure record system

    International Nuclear Information System (INIS)

    Lyon, M.; Berndt, V.L.; Trevino, G.W.; Oakley, B.M.

    1993-04-01

    The Hanford Radiological Records Program (HRRP) serves all Hanford contractors as the single repository for radiological exposure for all Hanford employees, subcontractors, and visitors. The program administers and preserves all Hanford radiation exposure records. The program also maintains a Radiation Protection Historical File which is a historical file of Hanford radiation protection and dosimetry procedures and practices. Several years ago DOE declared the existing UNIVAC mainframe computer obsolete and the existing Occupational Radiation Exposure (ORE) system was slated to be redeveloped. The new system named the Radiological Exposure (REX) System is described in this document

  14. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  15. e-Learning applications for radiological protection training

    International Nuclear Information System (INIS)

    Gonzalez, F.; Gomez-Arguello, B.; Callejo, J. L.

    2003-01-01

    The unattended training, through e-learning platforms, offers advantages in comparison with the traditional attended training, such as, freedom to study when, where and how the trance desires, the student is learning customization, a continuous self evaluation of the learning process and the rhythm of study, etc. To explore the possibilities of the radiological protection training in a WEB site, a first application for External Workers has been developed. The high number of students, their geographical dispersion and their different level of knowledge and experience arise attended training limitations in this area. In this article, the WEB course Basic Radiological Protection is presented and the results, preliminarily conclusions and lesson learnt are analysed. (Author) 7 refs

  16. Training in Radiation Protection for Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Guibelalde, E.

    2002-07-01

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  17. Training in Radiation Protection for Interventional Radiology

    International Nuclear Information System (INIS)

    Vano, E.; Guibelalde, E.

    2002-01-01

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  18. Guideline concerning specialist knowledge of radiological protection

    International Nuclear Information System (INIS)

    1991-09-01

    The regulation is to be applied to licenses according to paragraphs 3, 15, 16, 20, 20a of the Radiation Protection Law, paragraphs 6, 7, 9 of the Atomic Law, to notices according to paragraphs 4, 17 of the Radiation Protection Law as well as in the prospecting, mining and processing of radioactive minerals. It regulates the extent and evidence of the special knowledge required for radiation protection of radiological safety officers and personnel responsible for radiation protection. (UK)

  19. Radiological protection in computed tomography and cone beam computed tomography.

    Science.gov (United States)

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Use of the analytical tree technique to develop a radiological protection program

    International Nuclear Information System (INIS)

    Domenech N, H.; Jova S, L.

    1996-01-01

    The results obtained by the Cuban Center for Radiological Protection and Hygiene by using an analytical tree technique to develop its general operational radiation protection program are presented. By the application of this method, some factors such as the organization of the radiation protection services, the provision of administrative requirements, the existing general laboratories requirements, the viability of resources and the current documentation was evaluated. Main components were considered such as: complete normative and regulatory documentation; automatic radiological protection data management; scope of 'on the-job'and radiological protection training for the personnel; previous radiological appraisal for the safety performance of the works and application of dose constrains for the personnel and the public. The detailed development of the program allowed to identify the basic aims to be achieved in its maintenance and improvement. (authors). 3 refs

  1. Radiological protection of the environment from an NGO perspective

    International Nuclear Information System (INIS)

    Carroll, S.

    2008-01-01

    Non-governmental environmental organisations (environmental NGOs) may consider the issue of radiological protection of the environment differently to other interested parties such as regulators or industry. While environmental NGOs are broadly positive towards the current emphasis and engagement on radiological protection of the environment per se, there remain concerns about the precise meaning of the term and the ultimate objectives of the current initiatives. Various strategies are studied and discussed. The disposal of radioactive waste at sea is discussed and a case study presented. What the environmental NGOs are looking for is focused upon and various environmental protection systems are discussed (tk)

  2. 618-11 Burial Ground USRADS radiological surveys

    International Nuclear Information System (INIS)

    Wendling, M.A.

    1994-01-01

    This report summarizes and documents the results of the radiological surveys conducted from February 4 through February 10, 1993 over the 618-11 Burial Ground, Hanford Site, Richland, Washington. In addition, this report explains the survey methodology using the Ultrasonic Ranging and Data System (USRADS). The 618-11 Burial Ground radiological survey field task consisted of two activities: characterization of the specific background conditions and the radiological survey of the area. The radiological survey of the 618-11 Burial Ground, along with the background study, were conducted by Site Investigative Surveys Environmental Restoration Health Physics Organization of the Westinghouse Hanford Company. The survey methodology was based on utilization of the Ultrasonic Ranging and Data System (USRADS) for automated recording of the gross gamma radiation levels at or near six (6) inches and at three (3) feet from the surface soil

  3. Radiological protection report 2014; Strahlenschutzbericht 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    In its 11{sup th} Annual Report on Radiological Protection, the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides the public with information on dose rates for individuals professionally exposed to radiation, releases of radioactive material and the monitoring of environmental radiation. ENSI, as the regulatory body for nuclear facilities in Switzerland, is continuing to expand its information provision over and above that contained in the Radiological Protection Report. At 0.6 mSv per year, the average individual dose for professionally exposed persons remains significantly below the annual limit of 20 mSv specified by the Swiss Federal Council. It is also less than the average annual rate of natural environmental exposure of 5.5 mSv for the population in Switzerland as a whole. The highest individual dose during the year was 12 mSv. The collective doses lie within the range of past years. There is a trend towards higher collective doses at KKL. As a general rule, planning by the licensees of nuclear facilities in the field of radiological protection is of a high standard. Actual collective doses in 2014 at Beznau 1, Goesgen and Leibstadt were within 10% of projected exposure rates and at Beznau 2 and Muehleberg the doses were about 30% lower. Demands in terms of radiological protection were particularly high at Leibstadt and Beznau 1; at Leibstadt mainly as a result of a fuel cladding defect and at Beznau 1 because of the continuing elevated ambient rate for components in the primary circuit. ENSI concluded that the Swiss nuclear facilities continue to operate a consistent approach to radiological protection. In 2014, licensees of nuclear facilities remained within official release limits, in some cases by a significant margin. Liquid releases from Muehleberg were below the target value of 1 GBq per year set by ENSI on the basis of international recommendations. At the Central Interim Storage Facility (ZWILAG) and at the Paul Scherrer Institute (PSI

  4. Westinghouse Hanford Company Operational Environmental Monitoring. Annual report, CY 1993

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1994-07-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1993 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite conditions, the differences are less than in previous years. At certain locations on or directly adjacent to nuclear facilities and waste sites, levels can be several times higher than offsite conditions

  5. Radiological protection criteria risk assessments for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1982-01-01

    Radiological protection criteria for waste disposal options are currently being developed at the National Radiological Protection Board (NRPB), and, in parallel, methodologies to be used in assessing the radiological impact of these options are being evolved. The criteria and methodologies under development are intended to apply to all solid radioactive wastes, including the high-level waste arising from reprocessing of spent nuclear fuel (because this waste will be solidified prior to disposal) and gaseous or liquid wastes which have been converted to solid form. It is envisaged that the same criteria will be applied to all solid waste disposal options, including shallow land burial, emplacement on the ocean bed (sea dumping), geological disposal on land and sub-seabed disposal

  6. Radiological protection report 2012; Strahlenschutzbericht 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    Two years after the massive release of radiation from the nuclear power plants at Fukushima Dai-ichi, the repercussions continue to preoccupy the radiological and emergency protection community, both in Switzerland and internationally. In Switzerland the Swiss Federal Nuclear Safety Inspectorate (ENSI) has initiated measures as part of the European Union Stress Tests and has its own Fukushima Action Plan. In this Annual Report, ENSI focuses on radiological protection in Swiss nuclear facilities. The average individual dose has changed little compared with previous years. At 0.7 mSv, it is significantly below the limit both for persons exposed to radiation during their work (20 mSv) and the annual average rate of exposure for the population in Switzerland as a whole (5.5 mSv). In terms of collective doses, the extensive maintenance work at the Leibstadt power plant (KKL) resulted in a doubling of rates compared with recent years. However, in the remaining nuclear facilities the rates have not changed significantly. The highest individual dose during the year under review was 13 mSv. Exposure rates in 2012 for all those exposed to radiation during work in facilities subject to ENSI surveillance were below the maximum limit. Greater attention is now being given to work in high and variable radiation fields and in difficult conditions. Swiss nuclear facilities continue to operate a consistent radiological protection approach. Measuring equipment plays an important role in radiological protection. Having conducted a range of inspections and comparative measurements of aerosol-iodine filters and waste water sampling together with measurements in the field of personal dosimetry, ENSI has concluded that the required measuring equipment for radiological protection exists, that this equipment is correctly used and provides reliable data. ENSI maintains a test laboratory that analyses samples from nuclear facilities and their immediate vicinity and also conducts field

  7. Environmental and Radiological Protection Department - DEPRA

    International Nuclear Information System (INIS)

    1989-01-01

    The activities and purposes of the Environmental and Radiological Protection Dept. of the Institute of Radioprotection and Dosimetry form Brazilian CNEN are presented. It is also presented an historical review of its activities, its personnel and its sections. (J.A.M.M.)

  8. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    geographically dispersed community is united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  9. Master schedule for CY-1983 Hanford environmental surveillance routine sampling program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.; Dirkes, R.L.

    1982-12-01

    The current schedule of data collection for the routine Hanford environmental surveillance and ground-water monitoring programs at the Hanford Site is presented. The purpose of the programs is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs. Radiological monitoring data are reported for air (particulate filter and gases/vapor), Columbia River water, sanitary water, onsite pond water, foodstuffs (whole milk, leafy vegetables, fruit, wheat/alfalfa, beef, poultry/eggs), wildlife, soil and vegetation, and direct radiation. Information is also given for on site radiation control audit surveys (roadway, railway, aerial, and waste disposal sites, and the Hanford ground-water monitoring program

  10. Optimization in radiological protection

    International Nuclear Information System (INIS)

    Acosta Perez, Clarice de Freitas

    1996-01-01

    The optimization concept in radiation protection is, in its essence, practical. In each aspect that we deal with the man, it is necessary to take frequent decisions such as: what is the protection level to be pursued, since the protection levels under consideration provide doses lower than the appropriate annual limits. The optimization gives a basic framework of the minding that is appropriate to conduct to a balance kind of the resources available for the protection and protection level obtained against a multitude of factors and constrains in a manner to obtain the best result. In this work, was performed the optimization, from the radiation protection point of view, of a facility project who enclose two shielded hot cells where will be handled UO 2 small plate with 50% of U-235 burn-up, irradiated in the research swimming pool reactor, IEA-R1. To obtain this goal were specified the relevant factors and criteria, were applied the main techniques used in a decision-making in radiological protection, presently adopted and was performed a sensibility study of the factors and criteria used in this work. In order to obtain a greater agility in applying the techniques for decision-making was developed a micro computer program. (author)

  11. Training in radiological protection at the Institute of Naval Medicine

    International Nuclear Information System (INIS)

    Powell, P.E.; Robb, D.J.

    1991-01-01

    The Training Division at the Institute of Naval Medicine, Alverstoke, UK, provides courses in radiological protection for government and military personnel who are radiation protection supervisors, radiation safety officers, members of naval emergency monitoring teams and senior medical officers. The course programmes provide formal lectures, practical exercises and tabletop exercises. The compliance of the Ministry of Defence with the Ionising Radiations Regulations 1985 and the implementation of Ministry of Defence instructions for radiological protection rely to a large extent on its radiation protection supervisors understanding of the training he receives. Quality assurance techniques are therefore applied to the training. (author)

  12. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  13. Good practices in radiological protection at Narora Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, V.P.; Kumar, Sanjeev; Agrawal, Mitesh; Tiwari, S.K.; Kulhari, Praveen; Gupta, Ashok

    2016-01-01

    Radiological protection performance of nuclear power plant is assessed by collective exposure, individual average exposure, external/external exposure, personnel/surface contamination and reduction of radioactive wastes. Collective exposure is reduced by integrated comprehensive ALARA program in all aspects of nuclear plant operation and maintenance has reduced collective dose many folds. In the present paper, implementation of new good practices in Radiological Protection is presented

  14. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION and PLANNING FOR REVRIEVAL TREATMENT and EVENTUAL DISPOSAL AT WIPP

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-01

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP)

  15. Radiologic science for technologists: physics, biology, and protection

    International Nuclear Information System (INIS)

    Bushong, S.C.

    1980-01-01

    The second edition of a textbook primarily for students in radiologic technology is presented. Separate chapters discuss mammography, computed tomography, diagnostic ultrasound, and design of radiologic physics. Radiation protection is specifically presented in two chapters as well as being integrated throughout the text. The fundamentals of radiobiology, molecular and cellular effects of irradiation, and early and late radiation effects comprise four chapters

  16. Radiological protection and public health: crossbreeding

    International Nuclear Information System (INIS)

    Smeesters, Patrick; Pinak, Miroslav

    2008-01-01

    Full text: This paper summarizes the scope of activities, ongoing experience and current results of the Expert Group on the Public Health Perspective in Radiological Protection (EGPH) of the Committee of Radiological Protection and Public Health, OECD Nuclear Energy Agency. While the prime and general task of the EGPH group is looking at how the public health and radiation protection can better take an advantage of their respective perspectives, the following four areas have been explored in detail: a) Exposure to radon; b) Justification of medical exposures; c) Public health judgement and decision making based on new scientific evidence; and d) Management of individual differences. In most of these areas, a targeted telephone survey on public policies in selected countries was used for collecting information from stake holders (public, consumers groups, public health and radiation protection regulators, governmental bodies, medical practitioners, patients, scientific communities, NGOs, etc.). The presented paper also highlights key issues of collected information and summarises existing approaches and policies. The case study on exposure to radon collects national information on approaches to the management of domestic radon risks, focusing on the integration of radiation protection and public health aspects (quality of dwellings, overall quality of indoor air, perception of radon levels, position of radon risk in the pool of other risks). In the case of justification of medical exposures, the Group studies the applications of the justification principle in opportunistic screenings (responsibilities, management of the situation, risk assessment). The precautionary principle and its impact on policy judgement in the light of significant scientific uncertainties can have a large influence on radiological-protection decision making. The case study on public health judgement and decision making based on new scientific evidence is exploring how these uncertainties and

  17. Radiological protection and environmental management

    International Nuclear Information System (INIS)

    Perez Fonseca, A.

    2010-01-01

    From the beginning of its industrial activity twenty five years ago, the Juzbado Factory of Enusa Group has always upheld a strong commitment with Radiological Protection and environmental respect and protection. Consequently, the evolution of dose shows a downward trend over the years. Although production has been increased gradually, the average doses to workers have stayed below 1 mSv. In order to identify and prevent the potential environmental impacts of its industrial activity and minimize its impact on the surroundings, the facility develops and environmental management system according to UNE-EN-ISO 14001 since 1999. (Author)

  18. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Wells, J.; Mill, A.J.; Charles, M.W.

    1978-05-01

    The basic processes of living cells which are relevant to an understanding of the interaction of ionizing radiation with man are described. Particular reference is made to cell death, cancer induction and genetic effects. This is the second of a series of reports which present the fundamentals necessary for an understanding of the bases of regulatory criteria such as those recommended by the International Commision on Radiological Protection (ICRP). Others consider basic radiation physics and the biological effects of ionizing radiation. (author)

  19. Radiological protection in veterinary practice

    International Nuclear Information System (INIS)

    Konishi, Emiko; Tabara, Takashi; Kusama, Tomoko.

    1990-01-01

    To propose measures for radiological protection of veterinary workers in Japan, X-ray exposure of workers in typical conditions in veterinary clinics was assessed. Dose rates of useful beam and scattered radiation, worker exposure doses at different stations, and effectiveness of protective clothing were determined using TLD and ion chambers. As precausions against radiation, the following practices are important: (1) use of suitable and properly maintained X-ray equipment, (2) proper selection of safe working stations, (3) use of protective clothing. Regulations are necessary to restrict the use of X-rays in the veterinary field. Because the use of X-rays in the veterinary field is not currently controlled by law, the above precautions are essential for minimizing exposure of veterinary staff. (author)

  20. River Protection Project: Interface Management in the Multi Contract Project Environment at Hanford

    International Nuclear Information System (INIS)

    SHIKASHIO, L.A.

    2000-01-01

    The Office of River Protection (ORP) is implementing the River Protection Project (RPP) using two prime contractors. CH2M Hill Hanford Group, Inc. (CHG) is responsible for operating the existing tank system, delivering the waste feed to the waste treatment plant, and managing the resulting low- and high-level glass waste ''product'' through a performance-based fee type contract. A separate prime contractor will be responsible for designing, constructing and commissioning of a new Waste Treatment and Immobilization Plant (WTP), and preparing the waste for ultimate disposal. In addition to the prime contractors and their interfaces, the River Protection Project is being conducted on the Hanford Site, which is under the management of another DOE organization, DOE Richland Field Office (DOE-RL). The infrastructure and utilities are provided by DOE-RL, for example. In addition, there are multiple other technical interfaces with federal, state and other regulatory agencies that influence the management of the activities. This paper provides an overview of the approach employed by ORP to identify, coordinate, and manage the technical interfaces of RPP. In addition, this paper describes the approach and methodologies used to: Establish an overall framework for interface management. Establish the requirements for defining and managing interfaces for the prime contractors and DOE. Contractually requiring the prime contractors to control and manage the interfaces

  1. Work management to optimise occupational radiological protection

    International Nuclear Information System (INIS)

    Ahier, B.

    2009-01-01

    Although work management is no longer a new concept, continued efforts are still needed to ensure that good performance, outcomes and trends are maintained in the face of current and future challenges. The ISOE programme thus created an Expert Group on Work Management in 2007 to develop an updated report reflecting the current state of knowledge, technology and experience in the occupational radiological protection of workers at nuclear power plants. Published in 2009, the new ISOE report on Work Management to Optimise Occupational Radiological Protection in the Nuclear Power Industry provides up-to-date practical guidance on the application of work management principles. Work management measures aim at optimising occupational radiological protection in the context of the economic viability of the installation. Important factors in this respect are measures and techniques influencing i) dose and dose rate, including source- term reduction; ii) exposure, including amount of time spent in controlled areas for operations; and iii) efficiency in short- and long-term planning, worker involvement, coordination and training. Equally important due to their broad, cross-cutting nature are the motivational and organisational arrangements adopted. The responsibility for these aspects may reside in various parts of an installation's organisational structure, and thus, a multi-disciplinary approach must be recognised, accounted for and well-integrated in any work. Based on the operational experience within the ISOE programme, the following key areas of work management have been identified: - regulatory aspects; - ALARA management policy; - worker involvement and performance; - work planning and scheduling; - work preparation; - work implementation; - work assessment and feedback; - ensuring continuous improvement. The details of each of these areas are elaborated and illustrated in the report through examples and case studies arising from ISOE experience. They are intended to

  2. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs

  3. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. (ed.)

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs.

  4. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  5. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  6. Protecting people against radiation exposure in the event of a radiological attack

    International Nuclear Information System (INIS)

    Valentin, J.

    2005-01-01

    This report responds to a widely perceived need for professional advice on radiological protection measures to be undertaken in the event of a radiological attack. The report, which is mainly concerned with possible attacks involving 'radioactive dispersion devices', re-affirms the applicability of existing ICRP recommendations to such situations, should they ever occur. Many aspects of the emergency scenarios expected to arise in the event of a radiological attack may be similar to those that experience has shown can arise from radiological accidents, but there may also be important differences. For instance, a radiological attack would probably be targeted at a public area, possibly in an urban environment, where the presence of radiation is not anticipated and the dispersion conditions commonly assumed for a nuclear or radiological emergency, such as at a nuclear installation, may not be applicable. First responders to a radiological attack and other rescuers need to be adequately trained and to have the proper equipment for identifying radiation and radioactive contamination, and specialists in radiological protection must be available to provide advice. It may be prudent to assume that radiological, chemical, and/or biological agents are involved in an attack until it is proven otherwise. This calls for an 'all-hazard' approach to the response. In the aftermath of an attack, the main aim of radiological protection must be to prevent the occurrence of acute health effects attributable to radiation exposure (termed 'deterministic' effects) and to restrict the likelihood of late health effects (termed 'stochastic' effects) such as cancers and some hereditable diseases. A supplementary aim is to minimise environmental contamination from radioactive residues and the subsequent general disruption of daily life. The report notes that action taken to avert exposures is a much more effective protective measure than protective measure the provision of medical treatment

  7. Scientific issues and emerging challenges for radiological protection

    International Nuclear Information System (INIS)

    2007-01-01

    Scientific knowledge is constantly evolving as more advanced technologies become available and more in-depth research is carried out. Given the potential implications that new findings could have on policy decisions, in 1998 the NEA Committee on Radiation Protection and Public Health (CRPPH) performed a survey of state-of-the-art research in radiological protection science. This study suggested that, while the current system of radiological protection was well under-pinned by scientific understanding, growing knowledge in several areas could seriously impact policy and regulation. Ten years later, the CRPPH has again performed a survey of state-of-the-art research which reiterates and clarifies its earlier conclusions. This report summarises the results of this latest CRPPH assessment of radiological protection science. Specifically, it explains that knowledge of non-targeted and delayed effects, as well as of individual sensitivity, have been significantly refined over the past ten years. Although at this point there is still no scientific certainty in these areas, based on the most recent studies and results, the report strongly suggests that policy makers and regulatory authorities should consider possible impacts that could arise from research in the next few years. Further, the report identifies research areas that should be supported to more definitively answer scientific questions having the most direct impacts on policy choices. (author)

  8. Radiation protection in the intervenmtional radiology

    International Nuclear Information System (INIS)

    Becker, Benjamin V.; Lissek, Friedrich; Waldeck, Stephan

    2017-01-01

    Interventional radiology and neuroradiology covers a variety of diagnostic and therapeutic methods. A minimal invasive percutaneous access under imaging guidance is common for all these methods. The legal regulations for quality assurance are reviewed, technical possibilities for dose reduction and the importance of modern radiation protection procedures are discussed.

  9. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming

  10. Role and responsibilities of medical physicists in radiological protection of patients

    International Nuclear Information System (INIS)

    Niroomand-Rad, A.

    2001-01-01

    The paper provides a brief history of the International Organization for Medical Physics (IOMP), followed by some general comments on the radiological protection of patients. The importance of establishing scientific guidelines and professional standards is emphasized, as is the need to ensure the protection of patients undergoing radiation therapy. The responsibility of qualified medical physicists in the protection of patients in nuclear medicine and in diagnostic and interventional radiology is also discussed. (author)

  11. Radiological protection worker: occupational medical aspects

    International Nuclear Information System (INIS)

    Mora Ramirez, Erick

    2008-01-01

    International Organizations involved with radiation protection are presented in the first part. Also some documents related to the radiation that have been published by these organizations. Among the analyzed contents are the radiation and their patients, how to avoid the damage of radiation, pregnancy and exposure to medical radiation, effects of radiation, recommendations for the protection and safety standards. Occupational exposure is defined as the exposure received and understood by a worker during a period of work. In addition, it shows the types of occupational exposure, the protection that workers must have with the radiation, regulations, laws and the regulatory authority that protects the medical personnel in the uses of radiology [es

  12. Hanford well custodians. Revision 1

    International Nuclear Information System (INIS)

    Schatz, A.L.; Underwood, D.J.

    1995-01-01

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993

  13. Radiological protection program in x-ray diagnostic facilities

    International Nuclear Information System (INIS)

    Melara F, N.E.

    1996-01-01

    This paper presents a basic document to initiate a discussion which will originate a Unified Protocol in Latin America and the Caribbean for radiological protection in the installations of medical radiology. The following principal elements are considered an inherent part of radiology protection: 1. Quality control of equipment. 2. Conditions in the dark room which coincide in the quality of the image. Levels of patient exposure and the processes for the quality control of the processors are not discussed, and it is limited to the installation of radiographic medical x-ray equipment, stationary and mobile. Each point to be put into effect is presented in a diagram, frequency and criteria for acceptance. A detailed explanation of each point along with a clear explanation of the recommended method for each follows in the same order in which they are presented in the diagram. Finally adequate forms for easily acquiring data are presented. (author)

  14. Hanford Site background: Evaluation of existing soil radionuclide data

    International Nuclear Information System (INIS)

    1995-07-01

    This report is an evaluation of the existing data on radiological background for soils in the vicinity of the Hanford Site. The primary purpose of this report is to assess the adequacy of the existing data to serve as a radiological background baseline for use in environmental restoration and remediation activities at the Hanford Site. The soil background data compiled and evaluated in this report were collected by the Pacific Northwest Laboratory (PNL) and Washington State Department of Health (DOH) radiation surveillance programs in southeastern Washington. These two programs provide the largest well-documented, quantitative data sets available to evaluate background conditions at the Hanford Site. The data quality objectives (DQOs) considered in this evaluation include the amount of data, number of sampling localities, spatial coverage, number and types of radionuclides reported, frequency of reporting, documentation and traceability of sampling and laboratory methods used, and comparability between sets of data. Although other data on soil radionuclide abundances around the Hanford Site exist, they are generally limited in scope and lack the DQOs necessary for consideration with the PNL and DOH data sets. Collectively, these two sources provide data on the activities of 25 radionuclides and four other parameters (gross alpha, gross beta, total uranium, and total thorium). These measurements were made on samples from the upper 2.5 cm of soil at over 70 localities within the region

  15. The R+D radiological protection program in the European Communities

    International Nuclear Information System (INIS)

    Mingot Buades, F.

    1993-01-01

    The R+D program a radiological protection for the year 1992 has lied basically on three areas: I .- Radiological exposure of man II .- Radiation effects on man (evaluation, prevention and treatment) III.- Risks and management of radiation exposure

  16. Incremental Risks of Transporting NARM to the LLW Disposal Facility at Hanford

    International Nuclear Information System (INIS)

    Weiner, R.F.

    1999-01-01

    This study models the incremental radiological risk of transporting NARM to the Hanford commercial LLW facility, both for incident-free transportation and for possible transportation accidents, compared with the radiological risk of transporting LLW to that facility. Transportation routes are modeled using HIGHWAY 3.1 and risks are modeled using RADTRAN 4. Both annual population doses and risks, and annual average individual doses and risks are reported. Three routes to the Hanford site were modeled from Albany, OR, from Coeur d'Alene, ID (called the Spokane route), and from Seattle, WA. Conservative estimates are used in the RADTRAN inputs, and RADTRAN itself is conservative

  17. Mortality studies of Hanford workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1986-04-01

    Radiation exposures at Hanford have been deliberately limited as a protection to the worker. This means that if current estimates of radiation risks, which have been determined by national and international groups, are correct, it's highly unlikely that noticeable radiation-induced health effects will be identified among Hanford workers. 1 fig., 4 tabs

  18. Radiological Protection in Medicine

    International Nuclear Information System (INIS)

    Valetin, J.

    2011-01-01

    This report was prepared to underpin the Commission's 2007 Recommendations with regard to the medical exposure of patients, including their comforters and carers, and volunteers in biomedical research. It addresses the proper application of the fundamental principles (justification, optimisation of protection, and application of dose limits) of the Commission's 2007 Recommendations to these individuals. With regard to medical exposure of patients, it is not appropriate to apply dose limits or dose constraints, because such limits would often do more harm than good. Often, there are concurrent chronic, severe, or even life-threatening medical conditions that are more critical than the radiation exposure. The emphasis is then on justification of the medical procedures and on the optimisation of radiological protection. In diagnostic and interventional procedures, justification of procedures (for a defined purpose and for an individual patient), and management of the patient dose commensurate with the medical task, are the appropriate mechanisms to avoid unnecessary or unproductive radiation exposure. Equipment features that facilitate patient dose management, and diagnostic reference levels derived at the appropriate national, regional, or local level, are likely to be the most effective approaches. In radiation therapy, the avoidance of accidents is a predominant issue. With regard to comforters and carers, and volunteers in biomedical research, dose constraints are appropriate. Over the last decade, the Commission has published a number of documents that provided detailed advice related to radiological protection and safety in the medical applications of ionising radiation. Each of the publications addressed a specific topic defined by the type of radiation source and the medical discipline in which the source is applied, and was written with the intent of communicating directly with the relevant medical practitioners and supporting medical staff. This report

  19. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  20. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  1. Contribution to the optimization of worker's radiological protection in a uranium mine

    International Nuclear Information System (INIS)

    Lombard, J.; Oudiz, A.; Zettwoog, P.

    1984-04-01

    This report presents the results of an optimization study dealing with radiological protection in a uranium mine. The modelization of alpha contamination associated with short-lived radon daughter in a mine branch allows the comparison of various protection strategies by a cost-effectiveness analysis in view of determining the ''optimal'' protection strategy. The study points out the interest of the optimization procedure as a decision-aiding tool within the framework of radiological protection [fr

  2. Radiologic protection in intensive therapy units; Protecao radiologica em unidades de terapia intensiva

    Energy Technology Data Exchange (ETDEWEB)

    Andrea, H.; Juliana, C.; Gerusa, R.; Laurete, M.B.; Suelen, S., E-mail: andrea.huhn@ifsc.edu.br, E-mail: juliana@ifsc.edu.br, E-mail: gerusa@ifsc.edu.br, E-mail: laurete@ifsc.edu.br, E-mail: suelen.saraiva@ifsc.edu.br [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil); Derech, Rodrigo D.A., E-mail: dagostiniderech@gmail.com [Policlinica Municipal Sul, Florianopolis, SC (Brazil)

    2013-11-01

    The discovery of X-ray was a great achievement for humanity, especially for the medical community. In Intensive Care Units (ICUs), the RX tests, performed with mobile devices, add immense value to the diagnosis of inpatients who do not have the option to carry them out of bed. Following the technology and its improvements, fatalities arose from misuse of ionizing radiation, which mostly gave up for lack of knowledge of the biological effects caused by them, which leads to fear among professionals and often prevents a quick job and effectively by professionals of radiological techniques. The research it is a systematic review of the literature and justified by the scarcity of materials that reflect on the radiological protection in ICUs. For this study we found the Virtual Health Library (VHL) and Pubmed were indexed terms radiological protection and intensive care units, the search in Portuguese and English terms were used radiological protection and intensive care unit. The study aims to inform professionals of ICUs on the main aspects that refer to X-rays in hospital beds, the standards of radiological protection and personal protective equipment, thus avoiding possible damage to the biological health of workers, addressing subjects in rules and laws about the X radiation, emphasizing the protection of professionals in intensive care. It is clear, finally, that little research is conducted in the context of radiological protection of workers ICU's and this is a place that receives daily RX equipment, deserving more attention to protect the worker. (author)

  3. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  4. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    International Nuclear Information System (INIS)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose

  5. Training in radiological protection - a pool of practical exercises

    International Nuclear Information System (INIS)

    Croft, J.R.; Hudson, A.P.

    1981-01-01

    Courses in Radiological Protection have been organised at Leeds by the NRPB since its formation, and prior to that by the Leeds Centre of the Radiological Protection Service. From the outset it seemed essential that such courses should contain a practical element, and accordingly a number of exercises were drawn up. Since that time further exercises have been added, often in response to a specific requirement from a customer or group of customers. Most of the exercises have involved the design and construction of 'one-off' items of equipment, a number of which can be considered to represent interesting approaches towards radiological protection teaching. The construction of a 'second generation' of hardware has focused attention on the objectives and design features of the exercises, which in turn has prompted a desire to publish a series of short papers describing the pool of exercises that is currently available for inclusion in the various courses run by the NRPB Centres. The first of these papers puts the series into context and provides a background to the descriptions of specific exercises. (author)

  6. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Charles, M.W.; Wells, J.; Mill, A.J.

    1978-04-01

    A brief review is presented of the early and late effects of ionising radiation on man, with particular emphasis on those aspects of importance in radiological protection. The terminology and dose response curves, are explained. Early effects on cells, tissues and whole organs are discussed. Late somatic effects considered include cancer and life-span shortening. Genetic effects are examined. The review is the third of a series of reports which present the fundamentals necessary for an understanding of the basis of regulatory criteria, such as those of the ICRP. (u.K.)

  7. STRAPIR, an European initiative for optimizing radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    Vano, E.; Gonzalez, L.; Loon, R. van; Padovani, R.; Maccia, C.; Eggermont, G.

    1997-01-01

    In 1995, a European initiative for optimizing radiation protection in interventional radiology was proposed by 8 research groups. The project acronym was STPAPIR (Staff Radiation Protection in Interventional Radiology). Interventional Radiology involves an important number of specialists and their risk level is not well known, since dosimetric records exhibit important discrepancies. Many professionals using these techniques are not radiologists and the basic rules of radiation protection, known by radiologists, are not always correctly and completely followed, hence the use of protection devices is not as regular as desirable. Additionally, x-ray systems not specifically designed for interventional procedures are still used in many hospitals, what entails a significant occupational risk increase to the specialists. Some relevant questions for regulatory bodies are presented, namely, reliability of the actual data banks for occupational dosimetry, use of two personal dosimeters for assessing effective dose, actions to strengthen the systematic use of personal dosimeters and protection tools, proposals for specific training in radiation protection and use of x-ray systems specifically designed for interventional procedures, publication of reports about accidents and incidents, are also discussed. (author)

  8. Public competitive examination for radiology technologist: knowledge in radiation protection required in Brazil

    International Nuclear Information System (INIS)

    Oliveira, J.S.; Silva, K.R.; Gomes, A.S.

    2017-01-01

    Ionizing radiations are used in areas such as health, industry and safety, not only in the private sector, but also in the public. Thus, it is necessary the radiological protection, a set of studies and practices that increases the safety in these applications, where the professional involved is the technologist in radiology. The objective was to analyze the contents effectively required by the Brazilian public agencies in their competitions for radiology technologist, regarding the area of radiological protection, identifying their profile of requirement. It consisted of three stages: first, a survey of all the public competitions already carried out in the country up to the end of 2016, that requested a diploma of graduation in Technology in Radiology; second, all the specific questions were collected and grouped in an electronic text file; third, issues involving radiological protection were segregated, using as reference the 2017 edition of the National Nuclear Energy Commission's General Proof of Radioprotection Supervision. The results showed that almost 40% of the competition questions were about radiation protection. From this sampling, the topics most covered were: radiological safety (36%), fundamentals of atomic and nuclear physics (24%) and biological effects of radiation (16%). It is concluded that the competitions for radiologist technologist have the profile of concentration of exigency in radiological safety, fundamentals of atomic and nuclear physics and biological effects of the radiations

  9. History of the radiological protection in Mexico

    International Nuclear Information System (INIS)

    Ortiz M, J. R.

    2008-12-01

    The beginning in the use of the ionizing radiations goes back towards end of 19 century, when Wilhelm Roentgen discovers x-rays in 1985, finding that quickly founds also the new technology, which spreads to tabs of multiple applications anywhere in the world, some of very beneficial them of use like the radio diagnosis, but others of frivolous and commercial kind. As much in the beneficial uses as in the banal ones, the world also is begun to be aware that the ionizing radiations are a physical element that must be handled with precaution then also can induce injuries in the involved people, which is documented already in 1912. This characteristic is confirmed with the use of Radio-226 as source of ionizing radiation, in whose applications were observed some deleterious effects, which forces to take some measures of protection an intuitive and rather incipient way. The first attempt of limit was denominated erythema dose, that it was a concept of qualitative-subjective character when it is observed a reddening of the skin of the radiated zone. Just a short time later, with the invention of the detector Geiger and the possibility of measuring the radiation quantity received by the people, the limits are transformed into quantitative. lt is as well as it is born the radiological protection like scientific and technological discipline, and essential ally of the nuclear energy pacific applications , event in which the international organizations related to the subject play a very important role, in the middle of the 1920 decade. Since then radiological protection (RP) is in permanent evolution, keeping a balance between the people protection, the sources security and the benefits of the ionizing radiations applications. In Mexico, the nuclear energy taking height from the second half of 1950, when the National Commission of Nuclear Energy was created, it spent in his first years to functions that mainly were of investigation, but in which already appeared the RP like

  10. The protection of on-site personnel in the event of a radiological accident

    International Nuclear Information System (INIS)

    Morrey, M.; Simister, D.N.

    2003-01-01

    The National Radiological Protection Board (NPRB) is responsible in the UK for advising Government and other responsible bodies on the principles for responding to radiological emergencies. NRPB has published appropriate advice on the off-site protection of the public and on the protection of workers involved in taking mitigating actions to reduce the exposure of others. This paper puts forward a suggested framework for the protection of on-site personnel in the event of a radiological emergency which might include a criticality accident. This framework both dovetails with existing planning for the protection of members of the public off-site, and also takes account of specific differences between the situations on and off-site. (author)

  11. The provision of radiological protection services

    International Nuclear Information System (INIS)

    1965-01-01

    This publication is a code of practice for the provision or radiological protection services for establishments in which, or in part of which, work is primarily with radiation sources. It was prepared with the help of an international panel of experts and representatives of international organizations which have an interest in this field and was promulgated by the Director General of the Agency under the authority of the Board of Governors of the Agency as a code of practice in the framework of the Agency's Safety Standards. The Board of Governors also authorized the Director General to recommend to Member States that the code of practice be taken into account in the formulation of national regulations or recommendations. The Appendix to the code contains a number of examples of the organization of radiological protection services that have been provided by the members of the panel of experts. These examples do not form a part of the code of practice, but are intended to illustrate the methods of organization which have been adopted in different countries.

  12. Implications of tissue reactions for radiological protection

    International Nuclear Information System (INIS)

    Miyazaki, S.

    2013-01-01

    Cancer effects and risks at low doses from ionising radiation have been main issues within the field of radiological protection. In contrast, non-cancer effects and risks at low doses from ionising radiation are controversial topics within the field of radiation protection. These issues are discussed in ICRP Publication 118, 'ICRP Statement on Tissue Reactions.' Both non-cancer effects and risks are expected to become increasingly important to the system of radiation protection. Before this can happen, several factors must be considered: thorough characterization of the relationship between dose and risk; verification of the biological mechanisms for any noted excess risk; and adjustment of noted excess risks through the use of a detriment factor. It is difficult to differentiate the relatively small risks associated with radiation from other risk factors in the low-dose region of the dose response curve. Several recent papers also indicate the possibility of a non-linear dose response relationship for non-cancer effects. In addition, there are still many uncertainties associated with the biological mechanisms for non-cancer effects. Finally, it is essential to consider the incorporation of detriment into a well-defined system of radiological protection. Given the recent interest in non-cancer effects, it is essential to facilitate discussions in order to more clearly define dose limits within the existing system of radiation protection for both cancer and non-cancer effects. (author)

  13. Radiological protection and safety in medicine

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is presented a book published by ICRP ( International Commission Radiological Protection) that exposes the base principles of radiation protection, especially in medical sector. The exposure to ionizing radiations in medicine concerns the persons that profit by a diagnosis or a treatment but also the medical personnel, the patients family and the public. This publication 'CIPR 73' is more particularly adapted to the physicists and physicians implied in radiotherapy, medical imaging, in nuclear medicine and dentistry. It is also useful for the hospital establishments managers and to concerned national authorities. (N.C.)

  14. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs

  15. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 49 refs., 44 figs., 14 tabs

  16. Radiological protection and nuclear power plants

    International Nuclear Information System (INIS)

    Delpla, M.

    Dosimetric results obtained inside and outside nuclear power plants are examined with a review to proposing revision of the radiological protection standards. Dose limits are considered with regard to leukemia and genetic effects. Other topics discussed are: observed collective damage and mean risk; lethal exposure; healing and sign change of additional risk; and genetic effects of radiation on mice

  17. Guidelines for training and qualification of radiological protection technicians

    International Nuclear Information System (INIS)

    1987-08-01

    These guidelines, used in combination with plant-specific job analysis, provide the framework for a training and qualification program for radiological protection technicians at nuclear power plants. Radiological protection technicians are defined as those individuals, both plant and contractor, who will be engaged in the evaluation of radiological conditions in the nuclear plant and the implementation of the necessary radiological safety measures as they apply to nuclear plant workers and members of the general public. An important aspect of this work is recognizing and handling unusual situations involving radioactivity, including incidents related to degraded core conditions. These guidelines incorporate the results of an industry-wide job analysis and task analysis (JTA) combined with industry operating experience review. However, the industry-wide analyses did not identify all important academic and fundamental knowledge and skills. Further in-depth analysis by subject matter experts produced additional knowledge and skills that were added to these guidelines. All utilities should use these guidelines in conjunction with plant-specific and industry-wide JTA results to develop or validate their radiological protection technician training program. Plant-specific information should be used to establish appropriate training program content. This plant-specific information should reflect unique job duties, equipment, operating experience, and trainee entry-level qualifications. Revisions to these guidelines should be reviewed for applicability and incorporated into the training program using each utility's training system development (TSD) procedures. Plant-specific job analysis and task analysis data is essential to the development of performance-based training programs. These analyses are particularly useful in selecting tasks for training and in developing on-the-job training (OJT), laboratory training, and mock-up training. Qualification programs based on these

  18. Intervention levels for protective action in the radiological emergency

    International Nuclear Information System (INIS)

    Lee, G.Y.; Khang, B.O.; Lee, M.; Lee, J.T.

    1998-09-01

    In the event of nuclear accident or radiological emergency, the protective action based on intervention levels prepared in advance should be implemented in order to minimize the public hazard. There are several protective measures such as sheltering, evacuation, iodine prophylaxis, foodstuff restrictions, temporary relocation, permanent resettlement, etc. for protecting the public. The protective measures should be implemented on the basis of operational intervention level of action level. This report describes the basic principles of intervention and the methodology for deriving intervention levels, and also recommendations for the intervention levels suggested from IAEA, ICRP, WHO and EU are summarized to apply to the domestic radiological emergency. This report also contains a revision procedure of operational intervention levels to meet a difference accident condition. Therefore, it can be usefully applied to establish revised operational intervention levels considering or the regional characteristics of our country. (author). 20 refs

  19. Protecting people in Ireland from the harmful effects of radiation 2014 to 2015 - The Strategic Plan of the Radiological Protection Institute of Ireland

    International Nuclear Information System (INIS)

    McGarry, A.; McMahon, C.; Pollard, D.; Rafferty, B.; Ryan, T.

    2014-02-01

    This strategic plan has been written in the context of the merger with the Environmental Protection Agency. It addresses the delivery of radiological protection during the period spanning the transition from RPII to the Office of Radiological Protection in the EPA. The plan is focused on priorities for radiological protection and does not deal directly with corporate or support functions

  20. Research and development in radiological protection; Investigacion y desarrollo en proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Butragueno, J. L.; Villota, C.; Gutierrez, C.; Rodriguez, A.

    2004-07-01

    The objective of Radiological Protection is to gurantee that neither people, be they workers or members of the public, or the environment are exposed to radiological risks considered by society to be unacceptable. Among the various resources available to meet this objective is Research and Development (R and D), which is carried out in three areas: I. Radiological protection of persons: (a) knowledge of the biological effects of radiations, in order to determine the relationship that exists between radiation exposure dose and its effects on health; (b) the development of new personal dosimetry techniques in order to adapt to new situations, instrumental techniques and information managmenet technologies allowing for better assessment of exposure dose; and (c) development of the principle of radiological protection optimisation (ALARA), which has been set up internationally as the fundamental principle on which radiological protection interventions are based. II. Assessment of environmental radiological impact, the objective of which is to assess the nature and magnitude of situations of exposure to ionising radiations as a result of the controlled or uncontrolled release of radioactive material to the environment, and III.Reduction of the radiological impact of radioactive wastes, the objective of which is to develop radioactive material and waste management techniques suitable for each situation, in order to reduce the risks assocaited with their definitive managmenet or thier release to the environment. Briefly desribed below are the strategic lines of R and D of the CSN, the Electricity Industry, Ciemat and Enresa in the aforementioned areas. (Author)

  1. Hanford Atomic Products Operation monthly report for March 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-04-20

    This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.

  2. Radiological Protection Institute of Ireland activities and responsibilities

    International Nuclear Information System (INIS)

    1994-01-01

    This brochure describes the Radiological Protection Institute of Ireland's functions and responsibilities which relate principally to the monitoring of radioactivity in the environment and of radiation doses received by people occupationally or otherwise; regulation of the uses of ionising radiation in medicine, industry and elsewhere; assistance in developing national preparedness for response to a radiological emergency; and providing information and advice to government, other organisations and the general public on matters relating to ionising radiation. ills

  3. The evolution of the system of radiological protection: the programme of the Nea committee on radiation protection and public health

    International Nuclear Information System (INIS)

    Mundigl, S.

    2004-01-01

    The primary aim of radiological protection has always been to provide an appropriate standard of protection for the public and workers without unduly limiting the beneficial practices giving rise to radiation exposure. Over the past few decades, many studies concerning the effects of ionising radiation have been conducted, ranging from those that examine the effects of radiation on individual cells, to epidemiological studies that examine the effects on large populations exposed to different radiation sources. Using information gained from these studies to estimate the consequences of radiation exposure, together with the necessary social and economic judgements, the International Commission on Radiological Protection (ICRP) has put forward a series of recommendations to structure an appropriate system for radiological protection, and to ensure a high standard of protection for the public and for occupational exposed workers. The ICRP system of radiological protection that has evolved over the years now covers many diverse radiological protection issues. Emerging issues have been dealt with more or less on an individual basis resulting in an overall system, which while very comprehensive, is also complex. With such a complex system it is not surprising that some perceived inconsistencies or incoherence may lead to concerns that radiation protection issues are not being adequately addressed. Different stakeholders in decisions involving radiological protection aspects tend to focus on different elements of this perceived incoherence. To advance solutions to these issues, the OECD Nuclear Energy Agency (NEA) has been working for some time to contribute to the evolution of a new radiological protection system, through its Committee on Radiation Protection and Public Health (CRPPH). This group of senior regulators and expert practitioners has, throughout its existence, been interested in the development of recommendations by the ICRP. Recently, this interest has

  4. Training in radiological protection; Capacitacion en proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Medina G, E., E-mail: medina@ipen.gob.pe [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima 41 (Peru)

    2014-08-15

    In the Peru, according to the current regulations, people that work with ionizing radiations should have an authorization (individual license), which is granted by the Technical Office of the National Authority that is the technical body of the Instituto Peruano de Energia Nuclear (IPEN) manager of the control of ionizing radiations in the country. The individual license is obtained after the applicant fulfills the requested requirements, as having safety knowledge and radiological protection. Since its founding in 1972, the Centro Superior de Estudios Nucleares (CSEN) of the IPEN has carried out diverse training courses in order to that people can work in a safe way with ionizing radiations in medicine, industry and research, until the year 2013 have been organized 2231 courses that have allowed the training of 26213 people. The courses are organized according to the specific work that is carried out with radiations (medical radio-diagnostic, dental radiology, nuclear medicine, radiotherapy, industrial radiography, nuclear meters, logging while drilling, etc.). In their majority the courses are directed to people that will make use of radiations for first time, but refresher courses are also granted in the topic. The CSEN also carries out the Master degree programs highlighting the Second Professional Specialization in Radiological Protection carried out from the year 2004 with the support of the National University of Engineering. To the present has been carried out 2 programs and there is other being developed. In this work is shown the historical evolution of the radiological protection courses as well as the important thing that they are to work in a safe way in the country. (Author)

  5. Focal role of tolerability and reasonableness in the radiological protection system.

    Science.gov (United States)

    Schneider, T; Lochard, J; Vaillant, L

    2016-06-01

    The concepts of tolerability and reasonableness are at the core of the International Commission on Radiological Protection (ICRP) system of radiological protection. Tolerability allows the definition of boundaries for implementing ICRP principles, while reasonableness contributes to decisions regarding adequate levels of protection, taking into account the prevailing circumstances. In the 1970s and 1980s, attempts to find theoretical foundations in risk comparisons for tolerability and cost-benefit analysis for reasonableness failed. In practice, the search for a rational basis for these concepts will never end. Making a wise decision will always remain a matter of judgement and will depend on the circumstances as well as the current knowledge and past experience. This paper discusses the constituents of tolerability and reasonableness at the heart of the radiological protection system. It also emphasises the increasing role of stakeholder engagement in the quest for tolerability and reasonableness since Publication 103. © The International Society for Prosthetics and Orthotics.

  6. Science and Values in Radiological Protection - Helsinki, Finland, 15-17 January 2008. Workshop proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    Key scientific challenges arising from ongoing radiobiological research have been identified recently. From this scientific base, the possible implications for radiological protection science are expected to be further elaborated. Through discussions among members of various NEA committees, it is clear that there is a need for radiological protection policy makers, regulators and practitioners to better understand possible developments coming from radiological protection science. At the same time, there is also a need for radiological protection scientists to better understand the broad processes of radiological protection decision making and to better interact with these processes in terms of furnishing input coming from their research. Participants in this workshop will attempt to identify elements of a framework that are better suited for the integration of new scientific and technological developments and socio-political considerations into radiological protection. This workshop initiated a process of reflection and dialogue among researchers, policy makers and other stakeholders that will, in the longer term: - improve understanding in both the research and policy communities of what is at stake in the system of radiological protection as scientific knowledge and social values evolve; - contribute to the development of a more shared view of emerging scientific and societal challenges to radiological protection, taking into account existing differences; - identify research that will better inform decision makers' judgments on emerging issues; - be the first step in the identification of elements of a framework that is better suited for the integration of new scientific and technological developments and socio-political considerations into radiological protection; and - identify the most appropriate next steps in this process. To achieve the above objectives, selected examples of emerging radiological protection issues were addressed during the workshop. The

  7. Radiological protection standards in the United Kingdom

    International Nuclear Information System (INIS)

    Pochin, E.; McLean, A.S.; Richings, L.D.G.

    1976-09-01

    In view of the interest now being expressed in the means by which radiological protection standards are derived and applied, this report briefly outlines the roles of the international organisations involved, summarises the UK arrangements, and indicates the principal sources of relevant biological information. (author)

  8. Comparison between radiological protection against ionizing radiation and non ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1992-01-01

    Protection against IR and NIR developed in completely different ways because of the very different evolution of the techniques they involve. While as soon as 1928, the International Society of Radiology created the International Commission of Radiological Protection, we had to wait until 1977 to see the creation of the International Committee for NIR (INIRC) by IRPA. To compare protection against Ionizing Radiations and Non Ionizing Radiations we will first carry out a general analysis of its components and then we will draw the general conclusions leading to a quite comparable evolution. (author)

  9. Hanford cultural resources laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  10. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  11. Radiological Protection Criteria for the Safety of LILW Repository in Croatia

    International Nuclear Information System (INIS)

    Levanat, I.; Lokner, V.; Subasic, D.

    2000-01-01

    Preparations for a LILW repository development in Croatia, conducted by APO Hazardous Waste Management Agency, have reached a point where the first safety assessment of the prospective facility is being attempted. For evaluation of the calculated radiological impact in the assessed option of repository development, a set of radiological protection criteria should be included in the definition of the assessment context. The Croatian regulations do not explicitly require that the repository development be supported by such safety assessment process, and do not provide a specific set of radiological criteria intended for the repository assessment which would be suitable for the constrained optimization of protection. For the initial safety assessment iterations of the prospective repository, which will address long term performance of the facility for various design and other safety options, we propose to use relatively simple radiological protection criteria, consisting only of individual dose and risk constraints for the general population. The numerical values for these constraints are established in accordance with the recognized international recommendations and in compliance with all possibly relevant Croatian safety requirements. (author)

  12. Radiation protection of workers in radiological emergency situation. Proceedings of the technical day

    International Nuclear Information System (INIS)

    Rannou, Alain; Gosset, Eric; Lahaye, Thierry; Foucher, Laurent; Couasnon, Olivier; Bouchery, Pascal; Gaillard-Lecanu, Emmanuelle; Pectorin, Xavier; Fusil, Laurence; Boudergui, Karim; Adhemar, Bruno; Devin, Patrick; Mace, Jean-Reynald; Chevallier, Michel; Leautaud, Jean-Marc; LANCE, Benoit

    2015-03-01

    Following the Fukushima-Daichi accident, several actions have been taken in France from the lessons learnt from the accident: the elaboration of a national plan for the management of a major nuclear or radiological accident, and the safety complementary evaluations to be carried out by nuclear operators. As a complement to the measures to be implemented for the protection of the overall population in emergency radiological situation, the protection of workers mobilized for the management of the crisis has also to be taken into account in the framework of these measures. The French Society of Radiation Protection (SFRP) has organized a technical day to take stock of this question. The program comprises 4 topical sessions dealing with: the main actions taken at the national scale after the Fukushima-Daichi accident, the strategies and intervention means of nuclear operators in case of radiological emergency, the radiation protection R and D for the protection of intervenors in case of radiological emergency, and the main actions implemented at the international scale and their perspectives. This document brings together the abstracts and the presentations (slides) of the different talks given at the meeting: 1 - Health status and lessons learnt from the Fukushima accident - workers (Alain RANNOU, IRSN); 2 - National response plan to a major nuclear or radiologic accident (Eric GOSSET, SGDSN); 3 - Legal framework applicable to intervenors (Thierry LAHAYE, DGT); 4 - Prescriptions linked with complementary safety and liability studies (Laurent FOUCHER, ASN); 5 - EDF: radiological risk management in emergency situation (Pascal BOUCHERY, EDF); 6 - CEA: intervention strategy, means and radiation protection (Xavier PECTORIN, Laurence FUSIL - CEA); 7 - AREVA: FINA's Intervention and workers' radiation protection (Bruno ADHEMAR, Patrick DEVIN - AREVA); 8 - Intervention in radiological emergency situation: the INTRA (Robots intervention on accidents) economic

  13. Radiological protection report 2013; Strahlenschutzbericht 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    The public often regard radiation from nuclear facilities as more dangerous than that from natural sources or medicinal applications, but there is no scientific justification for this view. Operators of nuclear facilities endeavour to keep radiation releases at a level much below the limits specified in law. The latter are defined in such a way that the limit for public exposure to radiation is not exceeded even if very unfavourable assumptions were to apply. In its 10{sup th} Annual Report on Radiological Protection, the Swiss Federal Nuclear Safety Inspectorate (ENSI) analyses the release of radioactive materials from Swiss nuclear facilities. All nuclear facilities complied with the limits and in some cases by a very large margin. Fuel rod damage at the Leibstadt nuclear power station (KKL) did trigger higher releases of airborne iodine than in previous years. The Muehleberg power station must further reduce its waterborne releases of radiation. The Swiss Federal Office of Public Health (FOPH) has confirmed that these releases would not have affected public safety even if river or seawater had been used for drinking water. With the exception of the increase in the release of gaseous iodine at KKL, emissions from Swiss nuclear facilities were comparable with previous years and the annual dose to which young children in the immediate vicinity of nuclear facilities were exposed was less than 0.01 mSv. The main element contributing to these releases is the radioactive carbon isotope {sup 14}C produced by neutron reactions with nitrogen, carbon and oxygen. The low level of releases is due to the responsible actions of nuclear facilities in the fulfillment of their obligations with regard to radiological protection. The mean individual dose for those exposed to radiation during their work has not changed significantly in recent years and is at 0.6 mSv significantly below the limit for persons professionally exposed to radiation (20 mSv) and even the mean annual dose

  14. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  15. The work of ICRP on the ethical foundations of the system of radiological protection

    International Nuclear Information System (INIS)

    Cho, Kun-Woo

    2017-01-01

    The International Commission on Radiological Protection (ICRP) has established Task Group 94 (TG 94) to develop a publication on the ethical foundations of the system of radiological protection aiming to consolidate the basis of ICRP's recommendations, to improve the understanding of the system and to provide a basis for communication on radiation risk and its perception. Through the review of the publications of the Commission and the conduct of a series of workshops, TG 94 has identified the key components of the ethical theories and principles relevant to the system of radiological protection. The purpose of eliciting the ethical values underpinning the system of radiological protection is not only to clarify the rationale of the recommendations made by the Commission, but also to assist in discussions related to its practical implementation. The report nearing completion by TG 94 will present the key steps concerning the scientific, ethical and practical evolutions of the system of radiological protection since the first ICRP publication in 1928, describe the core ethical values underpinning the present system and address the key procedural aspects for its implementation. (authors)

  16. New recommendations from the International Commission on Radiological Protection-a review

    International Nuclear Information System (INIS)

    Wrixon, A D

    2008-01-01

    For almost half a century, the International Commission on Radiological Protection (ICRP) has revised its recommendations on radiological protection with an average frequency of about 10 years, building on the experience gained in their implementation. This has ensured that the recommendations remain up to date and fit for purpose and it is this that has led in turn to their wide acceptance internationally. Indeed, the 1990 version of the recommendations forms the basis of the international radiological protection standards and the systems of control of exposure to ionizing radiation in many countries throughout the world. This version introduced new concepts and a more holistic approach to radiological protection but marrying the different exposure situations into one coherent framework has proved not to be straightforward and further reflection seemed necessary in order to satisfy both those who are responsible for the development of the control systems as well as a broader audience. Review of the 1990 recommendations started around 1998 and, since then, many ideas have been explored and avenues followed. Eventually, new recommendations were agreed by the Commission at its meeting in Essen in March 2007. This paper provides a review of these new recommendations and their possible implications. (topical review)

  17. Radiological protection and the Fukushima Daiichi accident. Responses of the key international organisations

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Christopher

    2017-10-01

    The Fukushima Daiichi nuclear power plant accident in March 2011 shook the radiological protection world. All major organisations in the radiological protection field turned their eyes to Japan. Their actions, driven by their mandates, are reflected in their respective landmark reports on the accident. Reports of the International Commission on Radiological Protection, World Health Organisation, United Nations Scientific Committee on the Effects of Atomic Radiation, and International Atomic Energy Agency are summarised. Collaboration between key international organisations is strong, based in part on informal interactions which need to be backed up with formal relations to ensure solid long-term collaboration.

  18. Radiological protection report 2016; Strahlenschutzbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-15

    In the radiological protection report 2016, the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an overview of the radiological protection in its area of supervision. Part A of the report deals with protecting the staff of nuclear power plants from the dangers of ionising radiation. It also includes a list of the personal doses accumulated by the staff, broken down using various parameters. Applying the optimisation imperative, it has been proved possible to significantly reduce the annual collective doses in Switzerland's nuclear power plants since they came on stream thanks to major efforts by the operators. In 2016, a total of 6,153 people measured accumulated 2,877 person-mSv. The collective doses have reached a low level corresponding to the radiological condition of the plants and the scope of the work required to be performed in controlled zones (e.g. non-destructive materials testing). ENSI will continue to follow the trend for collective doses and assess the reasons for local variances as well as for measures initiated. The individual doses for people employed in ENSI's area of supervision in 2016 showed a maximum figure of 10 mSv and a mean value of 0.5 mSv which was significantly below the dose limit of 20 mSv for occupational radiation exposure. The discharge of radioactive substances with the exhaust air and waste water from nuclear power plants are dealt with in Part B of the report. In 2016, nuclear power plant operators again met the admissible release limits set by the authorities, in some cases by a considerable margin. The emissions of Swiss nuclear power plants led to a dose of less than 0.01 mSv per year in the direct neighbourhood. A comparison with the average annual radiation dose for the Swiss population of 5.5 mSv shows that the relevant contribution from nuclear power plants lies in the area of one percent of this figure. Effluents from Swiss nuclear power plants were also below the target of 1 GBq per year set by ENSI

  19. Assessment of Chemical and Radiological Vulnerabilities

    International Nuclear Information System (INIS)

    SETH, S.S.

    2000-01-01

    Following the May 14, 1997 chemical explosion at Hanford's Plutonium Reclamation Facility, the Department of Energy Richland Operations Office and its prime contractor, Fluor Hanford, Inc., completed an extensive assessment to identify and address chemical and radiological safety vulnerabilities at all facilities under the Project Hanford Management Contract. This was a challenging undertaking because of the immense size of the problem, unique technical issues, and competing priorities. This paper focuses on the assessment process, including the criteria and methodology for data collection, evaluation, and risk-based scoring. It does not provide details on the facility-specific results and corrective actions, but discusses the approach taken to address the identified vulnerabilities

  20. ICRP and radiological protection in medicine

    International Nuclear Information System (INIS)

    Cousins, Claire

    2017-01-01

    Standards in relation to radiological protection in medicine are well-documented, particularly with the recent update of the Basic Safety Standards. The principles of justification and optimisation remain key, as dose limitation is not applicable in medical practice. Appropriate justification relies on the knowledge, experience and discretion of the relevant medical practitioners and this may be overlooked in the race for diagnosis and treatment. One argument would be further regulation of medical exposures, although it is difficult to see how this could be imposed without denying patients essential investigations and treatments. Another contentious issue is individual patient dose management with the possible creation of a 'radiation passport'. Individual radiation susceptibility is a topic that has attracted much attention, but how to manage such persons, if identified, raises further questions. Communicating radiation risks and benefits to patients appropriately needs to be addressed, including who should be responsible for this, given accurate knowledge is a prerequisite. Ethics in radiological protection is also being widely discussed and this in relation to medical practice, which already involves numerous ethical issues, is likely to be open to debate in the near future. (authors)

  1. Issues around radiological protection of the environment and its integration with protection of humans: promoting debate on the way forward

    International Nuclear Information System (INIS)

    Brownless, G P

    2007-01-01

    This paper explores issues to consider around integrating direct, explicit protection of the environment into the current system of radiological protection, which is focused on the protection of humans. Many issues around environmental radiological protection have been discussed, and ready-to-use toolboxes have been constructed for assessing harm to non-human biota, but it is not clear how (or even if) these should be fitted into the current system of protection. Starting from the position that the current approach to protecting the environment (namely that it follows from adequately protecting humans) is generally effective, this paper considers how explicit radiological protection of the environment can be integrated with the current system, through developing a 'worked example' of how this could be done and highlighting issues peculiar to protection of the environment. The aim of the paper is to promote debate on this topic, with the ultimate aim of ensuring that any changes to the system are consensual and robust

  2. Status of radiation protection in interventional radiology. Assessment of inspections in 2009 by the ASN

    International Nuclear Information System (INIS)

    2011-01-01

    This report first describes the organization of inspections performed in health institutions, indicates the inspected establishments, the types of fixed installations in interventional radiology, the use of imagery in the operating theatre, and discusses the regulatory arrangements applicable to interventional radiology (in the Public Health Code, in the Labour Code). Then, the report discusses the results of inspections regarding radiation protection in interventional radiology: application of public health code arrangements (justification, patient training in radiation protection, radiological procedures and protocols, patient dosimetry monitoring), application of Labour Code arrangements (designation of the person with expertise in radiation protection, risk assessment and delimitation of monitored and controlled areas, workstation analysis, workers' training in radiation protection, individual protection equipment, workers' dosimetric monitoring, workers' medical monitoring, radiation protection technical controls), significant events, radiation protection in operating theatre. Propositions are stated regarding the differences noticed within or between the health establishments, the methodological and organisational difficulties faced by persons with expertise in radiation protection (PCR), the need of an interdisciplinary team

  3. Fluor Hanford ALARA Center is a D and D Resource

    International Nuclear Information System (INIS)

    Waggoner, L.O.

    2008-01-01

    The mission at the Hanford Nuclear Reservation changed when the last reactor plant was shut down in 1989 and work was started to place all the facilities in a safe condition and begin decontamination, deactivation, decommissioning, and demolition (D and D). These facilities consisted of old shutdown reactor plants, spent fuel pools, processing facilities, and 177 underground tanks containing 53 million gallons of highly radioactive and toxic liquids and sludge. New skills were needed by the workforce to accomplish this mission. By 1995, workers were in the process of getting the facilities in a safe condition and it became obvious improvements were needed in their tools, equipment and work practices. The Hanford ALARA Program looked good on paper, but did little to help contractors that were working in the field. The Radiological Control Director decided that the ALARA program needed to be upgraded and a significant improvement could be made if workers had a place they could visit that had samples of the latest technology and could talk to experienced personnel who have had success doing D and D work. Two senior health physics personnel who had many years experience in doing radiological work were chosen to obtain tools and equipment from vendors and find a location centrally located on the Hanford site. Vendors were asked to loan their latest tools and equipment for display. Most vendors responded and the Hanford ALARA Center of Technology opened on October 1, 1996. Today, the ALARA Center includes a classroom for conducting training and a mockup area with gloveboxes. Two large rooms have a containment tent, several glove bags, samples of fixatives/expandable foam, coating displays, protective clothing, heat stress technology, cutting tools, HEPA filtered vacuums, ventilation units, pumps, hydraulic wrenches, communications equipment, shears, nibblers, shrouded tooling, and several examples of innovative tools developed by the Hanford facilities. See Figures I and

  4. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  5. Notes on basic radiological protection. 2. ed.

    International Nuclear Information System (INIS)

    McDowell, D.J.

    1990-01-01

    A booklet has been compiled giving a basic guide to anyone who has to work with ionising radiations and radioactive and the nature of radiation, radiological units, biological radiation effects, legislation and radiation dose limits, radiation and contamination monitoring and finally methods of protection from both external and internal radiation. (UK)

  6. Hanford Site Environmental Report for calendar year 1992

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality

  7. Hanford Site Environmental Report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  8. Evaluation of the integrity of radiological protection clothing used in veterinary radiology

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Paola da Costa; Barros, Frieda Saicla; Costa, Douglas Siqueira da, E-mail: paah_dacosta@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Curso Superior de Tecnologia em Radiologia e Programa de Pos-Graduacao em Engenharia Biomedica

    2017-11-01

    This study aimed to evaluate the integrity of radiological protection clothing used by veterinarians in veterinary radiology facilities, and whether they are available in an adequate quantity for the team. Inspection was performed by palpation, followed by X-ray scanning in 189 clothing from 29 veterinary facilities. The results indicate that 5% of the clothes evaluated in this study were considered inadequate due to the failure of the integrity of the lead, being most lead aprons. All facilities have at least two lead aprons and one Thyroid protectors. 24% of the facilities have lead glasses, pointing to a risk to veterinarians by radiosensitivity of the eyes. Also, 24% of the facilities do not have lead gloves, which also presents a risk due to the hand's exposure to the primary beam. Most lead clothing has shield equivalence of 0.5mmPb. The method used in the study was effective in attesting the adequacy of lead clothing. It is recommended to periodically evaluate clothing to ensure that users are always protected. (author)

  9. Evaluation of the integrity of radiological protection clothing used in veterinary radiology

    International Nuclear Information System (INIS)

    Rosa, Paola da Costa; Barros, Frieda Saicla; Costa, Douglas Siqueira da

    2017-01-01

    This study aimed to evaluate the integrity of radiological protection clothing used by veterinarians in veterinary radiology facilities, and whether they are available in an adequate quantity for the team. Inspection was performed by palpation, followed by X-ray scanning in 189 clothing from 29 veterinary facilities. The results indicate that 5% of the clothes evaluated in this study were considered inadequate due to the failure of the integrity of the lead, being most lead aprons. All facilities have at least two lead aprons and one Thyroid protectors. 24% of the facilities have lead glasses, pointing to a risk to veterinarians by radiosensitivity of the eyes. Also, 24% of the facilities do not have lead gloves, which also presents a risk due to the hand's exposure to the primary beam. Most lead clothing has shield equivalence of 0.5mmPb. The method used in the study was effective in attesting the adequacy of lead clothing. It is recommended to periodically evaluate clothing to ensure that users are always protected. (author)

  10. Radiological protection issues arising during and after the Fukushima nuclear reactor accident

    International Nuclear Information System (INIS)

    González, Abel J; Akashi, Makoto; Sakai, Kazuo; Yonekura, Yoshiharu; Boice Jr, John D; Chino, Masamichi; Homma, Toshimitsu; Ishigure, Nobuhito; Kai, Michiaki; Kusumi, Shizuyo; Lee, Jai-Ki; Menzel, Hans-Georg; Niwa, Ohtsura; Yamashita, Shunichi; Weiss, Wolfgang

    2013-01-01

    Following the Fukushima accident, the International Commission on Radiological Protection (ICRP) convened a task group to compile lessons learned from the nuclear reactor accident at the Fukushima Daiichi nuclear power plant in Japan, with respect to the ICRP system of radiological protection. In this memorandum the members of the task group express their personal views on issues arising during and after the accident, without explicit endorsement of or approval by the ICRP. While the affected people were largely protected against radiation exposure and no one incurred a lethal dose of radiation (or a dose sufficiently large to cause radiation sickness), many radiological protection questions were raised. The following issues were identified: inferring radiation risks (and the misunderstanding of nominal risk coefficients); attributing radiation effects from low dose exposures; quantifying radiation exposure; assessing the importance of internal exposures; managing emergency crises; protecting rescuers and volunteers; responding with medical aid; justifying necessary but disruptive protective actions; transiting from an emergency to an existing situation; rehabilitating evacuated areas; restricting individual doses of members of the public; caring for infants and children; categorising public exposures due to an accident; considering pregnant women and their foetuses and embryos; monitoring public protection; dealing with ‘contamination’ of territories, rubble and residues and consumer products; recognising the importance of psychological consequences; and fostering the sharing of information. Relevant ICRP Recommendations were scrutinised, lessons were collected and suggestions were compiled. It was concluded that the radiological protection community has an ethical duty to learn from the lessons of Fukushima and resolve any identified challenges. Before another large accident occurs, it should be ensured that inter alia: radiation risk coefficients of

  11. Radiological protection issues arising during and after the Fukushima nuclear reactor accident.

    Science.gov (United States)

    González, Abel J; Akashi, Makoto; Boice, John D; Chino, Masamichi; Homma, Toshimitsu; Ishigure, Nobuhito; Kai, Michiaki; Kusumi, Shizuyo; Lee, Jai-Ki; Menzel, Hans-Georg; Niwa, Ohtsura; Sakai, Kazuo; Weiss, Wolfgang; Yamashita, Shunichi; Yonekura, Yoshiharu

    2013-09-01

    Following the Fukushima accident, the International Commission on Radiological Protection (ICRP) convened a task group to compile lessons learned from the nuclear reactor accident at the Fukushima Daiichi nuclear power plant in Japan, with respect to the ICRP system of radiological protection. In this memorandum the members of the task group express their personal views on issues arising during and after the accident, without explicit endorsement of or approval by the ICRP. While the affected people were largely protected against radiation exposure and no one incurred a lethal dose of radiation (or a dose sufficiently large to cause radiation sickness), many radiological protection questions were raised. The following issues were identified: inferring radiation risks (and the misunderstanding of nominal risk coefficients); attributing radiation effects from low dose exposures; quantifying radiation exposure; assessing the importance of internal exposures; managing emergency crises; protecting rescuers and volunteers; responding with medical aid; justifying necessary but disruptive protective actions; transiting from an emergency to an existing situation; rehabilitating evacuated areas; restricting individual doses of members of the public; caring for infants and children; categorising public exposures due to an accident; considering pregnant women and their foetuses and embryos; monitoring public protection; dealing with 'contamination' of territories, rubble and residues and consumer products; recognising the importance of psychological consequences; and fostering the sharing of information. Relevant ICRP Recommendations were scrutinised, lessons were collected and suggestions were compiled. It was concluded that the radiological protection community has an ethical duty to learn from the lessons of Fukushima and resolve any identified challenges. Before another large accident occurs, it should be ensured that inter alia: radiation risk coefficients of potential

  12. Master schedule for CY-1979 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Houston, J.R.; Eddy, P.A.

    1978-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site, as conducted by the Environmental Evaluation Section of Battelle, Pacific Northwest Laboratory for the Department of Energy (DOE), is given. Modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, and to monitor Hanford operations for compliance with applicable environmental criteria and Washington State Water Quality Standards. Air quality data are obtained in a separate program administered by the Hanford Environmental Health Foundation. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Water quality data for Hanford Site potable water systems are published each year by the Hanford Environmental Health Foundation. The data collected are available in routine reports issued by the Environmental Evaluations staff. Groundwater data and evaluation are reported in the series, ''Radiological Status of the Groundwater Beneath the Hanford Project for...,'' the latest issue being PNL-2624 for CY-1977. Data from locations within the plant boundaries are presented in the annual ''Environmental Status of the Hanford Site for...'' report series, the most recent report being PNL-2677 for 1977. Data from offsite locations are presented in the annual ''Environmental Surveillance at Hanford for...'' series of reports, the latest being PNL-2614 for 1977

  13. Studies on optimization of radiation protection for patients in diagnostic radiology

    International Nuclear Information System (INIS)

    Wei, Z.; Zhang, Q.; Li, W.; Li, K.; Wei, L.; Zong, X.; Qiang, Z.; Wu, Y.

    1994-01-01

    For the exposure of patients in diagnostic radiology, individual dose limit does not apply, but optimization of radiological protection may play a major role. This project has been carried out with the purpose of improving the protection of patients in medical diagnostic radiology in China utilizing the principles of optimization. Taking Sichuan, Shandong and Beijing as surveyed areas, we investigated the present situation of the protection of patients. In the survey, the patient doses were classified into practical dose, justified dose and optimized dose to evaluate the influences of managerial and equipment factors separately. The results show that there are some urgent protection problems in X-ray protection to be solved in the surveyed regions. This paper, however, points out that the prospects of reducing patient doses are encouraging provided that appropriate measures are adopted. For instance, taking proper managerial measures without radical change of existing equipments may reduce patient doses in chest fluoroscopy and radiography by 40% and 18% respectively; refitting some equipment may reduce the doses by 82.4% in chest fluoroscopy, 66% in chest radiography, and 80% in barium meal examination of the gastrointestinal (GI) tract. Using chest radiography instead of fluoroscopy supplemented by other protection measures may reduce the doses by 91.7%. Optimization analysis shows that adoption of the above measures conforms to the principle of optimization of radiation protection. (authors). 5 refs., 7 tabs

  14. Protective effect of lead aprons in medical radiology

    International Nuclear Information System (INIS)

    Huyskens, C.J.

    1995-01-01

    This article summarizes the results of an ongoing study regarding the protective effect that lead aprons, as used in medical radiology, have on the resulting effective dose for medical personnel. By means of model calculations we have analyzed the protection efficacy of lead aprons for various lead thicknesses, in function of tube potential and of variations in exposure geometry as they occur in practice. The degree of efficacy appears to be highly dependent on the fit of aprons because of the dominating influence of the equivalent dose of partially unshielded organs on the resulting effective dose. Also by model calculations we investigated the ratio between the effective dose and the operational quantify for personal dose monitoring. Our study enables the choice of appropriate correction factors for convering personal dosimetry measurements into effective dose, for typical exposure situations in medical radiology. (orig.) [de

  15. Statutory Instrument No 48 of 1992. Radiological Protection Act, 1991 (Establishment day) Order, 1992

    International Nuclear Information System (INIS)

    1992-03-01

    This order appoints 1st April 1992 as the day on which the Radiological Protection Institute of Ireland is established. From that day the Radiological Protection Institute of Ireland will take over the functions of An Bord Fuinnimh Nuicleigh

  16. Radiological Protection Plan an ethic responsibility; Plano de protecao radiologica e responsabilidade etica

    Energy Technology Data Exchange (ETDEWEB)

    Huhn, Andrea, E-mail: andrea.huhn@ifsc.edu.br [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil); Vargas, Mara Ambrosina de Oliveira, E-mail: mara@ccs.ufs.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2014-07-01

    The Radiological Protection Plan - PPR, quoted by the Regulatory Standard 32, requires to be maintained at the workplace and at the disposal of the worker's inspection the PPR, for it to be aware of their work environment and the damage that can be caused by misuse of ionizing radiation. Objective: to discuss the interface between PPR and ethical reflection. Method: this is a reflective study. Discussion and results: regulatory norm 32 points out that the worker who conducts activities in areas where there are sources of ionizing radiation should know the risks associated with their work. However, it is considered that the sectors of hospital radiology the multidisciplinary health team is exposed to ionizing radiation and has not always aware of the harm caused by it, so end up unprotected conduct their activities. Concomitantly, recent studies emphasize the radiological protection and concern for the dangers of radiation on humans, but rather refer to the legislation about the radiological protection. In this context an ethical reflection is necessary, seeking to combine work ethics liability to care in protecting themselves and the other with the institutional conditions for this protection becomes effective.

  17. Objectives of radiological environment protection in nuclear facilities

    International Nuclear Information System (INIS)

    Oberhausen, E.

    1976-01-01

    The aim of the radiological environment protection is to avoid risks to the health of the population. But the risks from radiation can only be considered in connection with spontaneously occuring malignancies. The comparison shows that according to the maximum permissible doses in the German Ordinance of Radiation Protection the risks of radiation injury are so low that they cannot be detected relative to the spontaneous malignancies. (orig.) [de

  18. Evolution of the radiological protection policy. Applications in developing countries. IPEN a case of study

    International Nuclear Information System (INIS)

    Gordon, A.M.P.L.; Sordi, G.M.A. A.

    2006-01-01

    This paper aims to show the radiological protection development in Brazil from the beginning, when President Joao Cafe Filho signed an agreement with the U.S.A. In this agreement, Brazil joined the 'Atoms for Peace' program established on August 3., 1955. Yet in 1955, Brazil participated as a foundation member in the International Atomic Energy Agency (IAEA). As a result, the Iea - 'Instituto de Energia Atomica'- was created on August 31., 1956 and a research reactor type swimming pool was installed to produce radioisotopes and prepare experts in the field of nuclear activities. This reactor is maintained in operation at the Instituto de Pesquisas Energeticas e Nucleares (IPEN), former Iea. Having the Iea as a case of study, we analyze the radiological protection evolution during the fifty years of its life. We correlate this development with the Brazilian National Nuclear Energy Commission (CNEN) Regulations. CNEN was also created in 1956. The first safety standard in Brazil was delivered in 1973. Therefore, this paper will focus the radiological protection development at national level. Both institutions followed the international radiological protection recommendations, under the difficulties imposed by the historical conditions of a developing country. In order to have an outline of the radiological protection development, we inform that it was started as a section of the Radiological Division at the Iea. At that time, the Iea had four divisions. The radiological protection was performed by four people, being two physicists and two technicians that accomplished all the duties. On that occasion, approximately 30 people operated the Iea. The work staff at IPEN increased, arriving to 1600 people in 1998, including 150 persons in the radiological protection activities. Nowadays, 1200 people, including 100 persons in the health physics duties operate the IPEN. (authors)

  19. Evolution of the radiological protection policy. Applications in developing countries. IPEN a case of study

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A.M.P.L.; Sordi, G.M.A. A. [Instituto de Pesquisas Energeticas e Nucleares - IPEN, Sao Paulo (Brazil)

    2006-07-01

    This paper aims to show the radiological protection development in Brazil from the beginning, when President Joao Cafe Filho signed an agreement with the U.S.A. In this agreement, Brazil joined the 'Atoms for Peace' program established on August 3., 1955. Yet in 1955, Brazil participated as a foundation member in the International Atomic Energy Agency (IAEA). As a result, the Iea - 'Instituto de Energia Atomica'- was created on August 31., 1956 and a research reactor type swimming pool was installed to produce radioisotopes and prepare experts in the field of nuclear activities. This reactor is maintained in operation at the Instituto de Pesquisas Energeticas e Nucleares (IPEN), former Iea. Having the Iea as a case of study, we analyze the radiological protection evolution during the fifty years of its life. We correlate this development with the Brazilian National Nuclear Energy Commission (CNEN) Regulations. CNEN was also created in 1956. The first safety standard in Brazil was delivered in 1973. Therefore, this paper will focus the radiological protection development at national level. Both institutions followed the international radiological protection recommendations, under the difficulties imposed by the historical conditions of a developing country. In order to have an outline of the radiological protection development, we inform that it was started as a section of the Radiological Division at the Iea. At that time, the Iea had four divisions. The radiological protection was performed by four people, being two physicists and two technicians that accomplished all the duties. On that occasion, approximately 30 people operated the Iea. The work staff at IPEN increased, arriving to 1600 people in 1998, including 150 persons in the radiological protection activities. Nowadays, 1200 people, including 100 persons in the health physics duties operate the IPEN. (authors)

  20. Global view on the radiological protection of patients: PAHO position paper

    International Nuclear Information System (INIS)

    Borras, C.

    2001-01-01

    The Pan American Health Organization/World Health Organization (PAHO/WHO), founded in 1902, initiated a radiological health programme in the 1950s. Within this programme, there are currently three lines of work: (a) radiology services; (b) radiation safety; and (c) radiological emergencies. Radiology services deals with health services for diagnostic and interventional imaging, and for radiation therapy. Radiation safety studies the three types of exposures to both ionizing and non-ionizing radiation: occupational; medical; and public. Radiological emergencies involve radioactive waste management programmes and emergency plans. The radiological protection of patients is addressed in each of these areas: (a) when analysing the infrastructure of radiology services; and (b) when determining medical exposures; and (c) when investigating overexposures in interventional or therapeutic procedures or under-doses in radiation therapy. (author)

  1. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  2. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  3. Accreditation of professionals for radiological protection in medical and dental radiology at Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Silva, Teogenes A. da; Pereira, Elton G.; Alonso, Thessa C.; Guedes, Elton C.; Goncalves, Elaine C.; Nogueira, Maria Angela A.

    2000-01-01

    The role of the CDTN/CNEN as far as the radiological protection services in the medical and dental radiology has changed a lot due to the new Regulatory Directives. The CDTN/CNEN was recognized as the regional reference center for providing not only radiological survey services, but to coordinate an accreditation procedure for professional persons to be accepted by the State Regulatory Authorities to work at Minas Gerais. All the new activities were formalized in a Cooperation Agreement between the CDTN/CNEN and the Regulatory Authority. This paper describes the accreditation procedure for candidates, the adopted requirements, the intercomparison results among measuring instruments and the main achievements during the first year of the Agreement. (author)

  4. Evaluation of the radiological protection in several departments of nuclear medicine

    International Nuclear Information System (INIS)

    Lopez Bejerano, G.; Jova Sed, L.

    2001-01-01

    For the evaluation of radiation protection, in several departments of nuclear medicine a survey was elaborated and applied that includes mainly: aspects of the licence and compliance with the requirements settled down in this, the program of individual radiological surveillance and their evaluation, functions that it completes the service of radiation protection, training program and the personnel's training, equipment and means of radiation protection, radiological surveillance program of the work areas, characteristics of the installation, radioactive waste management, quality assurance program, relative aspects to radiation protection in the procedures of diagnoses, as well as to pregnant patients and those related with the investigation of accidental medical exposures. The work makes a systematization and discussion of the state of compliance of the radiation protection requirements reflected in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) and the main recommendations are exposed to achieve in these departments the optimization of the radiation protection. (author)

  5. Evolution of the system of radiological protection

    International Nuclear Information System (INIS)

    2007-01-01

    The OECD Nuclear Energy Agency (NEA) has actively participated in discussions with the International Commission on Radiological Protection (ICRP) regarding the development of new recommendations that will replace those in ICRP Publication 60, which has long served as the international standard in this field. Part of this development process has involved the organisation of seven international workshops, including the First and Second Asian Regional Conferences on the Evolution of the System of Radiological Protection which took place in Tokyo, Japan in October 2002 and July 2004. The Third Asian Regional Conference was held on 5-6 July 2006, also in Tokyo. The main objective of these conferences was to ensure that the views and concerns of relevant Asian stakeholders, such as regulatory authorities, industry, professional societies and NGO, could be expressed and discussed with the ICRP. The three conferences provided the ICRP with specific views on how new recommendations could best be developed to address regulatory and implementation needs in the Asian context. These proceedings summarize the results and key discussions of the Third Asian Regional Conference. (author)

  6. Radiological protection report 2015; Strahlenschutzbericht 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    In the 2015 annual report on radiological protection, the Swiss Federal Nuclear Safety Inspectorate (ENSI) reports on occupational radiation doses, releases of radioactive material and the monitoring of environmental radiation in the areas subject to its surveillance. It concludes that Swiss nuclear facilities continue to maintain a consistent approach to radiological protection. ENSI has identified an increasing public interest in data concerning radiation and has therefore introduced a number of new concepts, such as the online availability of monthly nuclear power plant releases. There is also a new development concerning the data from the network for automatic measurement of dose rates in the vicinity of nuclear power plants (MADUK) which has been in operation since 1994. It is now possible to view dose rates since 1994 averaged over periods of ten minutes, one hour and one day. A special chapter of this report deals with {sup 14}C releases, which are the subject of enquiries from interested parties. The mean annual individual occupational radiation dose remains at 0.6 mSv, being significantly less than the mean annual radiation dose of the population in Switzerland of 5.5 mSv. The highest annual individual dose was almost 11 mSv so that once again in 2015 the annual limit of 20 mSv was not exceeded. The collective doses lie within the range of past years. However, the trend towards a higher collective dose noted at the Leibstadt Nuclear Power Plant has continued. Planning by the operators of nuclear facilities in the field of radiological protection is of a high standard so that the resulting collective doses generally closely match the projected values. In 2015, nuclear power plant operators have again complied with the release limits specified by the authorities, to some extent by a considerable margin. Emissions from Swiss nuclear power plants resulted in a dose of less than 0.01 mSv per year in their immediate surroundings. Liquid releases from Swiss

  7. Radiological protection of paediatric patients: An overview

    International Nuclear Information System (INIS)

    Ringertz, H.G.; Bremmer, S.

    2001-01-01

    Paediatric patients require special attention with respect to radiation protection, for various reasons. The difference between a 1 kg premature baby and a 100 kg teenager puts special demands on the radiographic techniques used, and the increased radiosensitivity of growing tissue and the patients' longer life expectancy put greater demands on the justification of the procedures to be carried out. The optimization procedure involves practical aspects such as immobilization, body build specific exposure parameters and body build specific anatomical knowledge. These and other aspects of paediatric radiological protection are discussed in this overview. (author)

  8. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Soil subject area of the Hanford Environmental Information System (HEIS) is to manage the data acquired from soil samples, both geologic and surface, and sediment samples. Stored in the Soil subject area are data relevant to the soil samples, laboratory analytical results, and field measurements. The two major types of data make up the Soil subject area are data concerning the samples and data about the chemical and/or radiologic analyses of soil samples

  9. Environmental surveillance at Hanford for CY-1974

    International Nuclear Information System (INIS)

    Fix, J.J.

    1975-04-01

    During 1974, the work at Hanford included N Reactor operation, nuclear fuel fabrication, liquid waste solidification, continued construction of the Fast Flux Test Facility, continued construction of Washington Public Power Supply System (WPPSS) No. 2 power reactor, Arid Lands Ecology studies, as well as continued use of a variety of research and laboratory facilities. Environmental data collected during 1974 showed continued compliance of Hanford operations with all applicable state and federal regulations. Levels of radioactivity in the atmosphere from Hanford operations at all offsite sampling locations were indistinguishable from levels due to natural causes and fallout from nuclear detonations in the atmosphere. Air quality measurements of NO 2 in the Hanford environs recorded a maximum yearly average concentration of 0.006 ppM or 12 percent of the ambient air standard. There was no indication that Hanford operations contributed significantly to these levels. All SO 2 results were less than the detection limit of 0.005 ppM or 25 percent of the ambient air quality standard. Routine radiological, chemical, biological, and physical analyses of Columbia River water upstream and downstream of the Hanford Reservation operations with the possible exception of water temperature. Levels of radioactivity were similar at both locations and were due to natural and fallout radioactivity. Estimates are included of the radiation dose to the human population within an 80-kilometer (50-mile) radius of the site during 1974. Methods used in calculations of the annual dose and 50-year dose commitment from radioactive effluents are discussed. (U.S.)

  10. Environmental protection: Researches in National Inst. of Radiological Sciences

    International Nuclear Information System (INIS)

    Fuma, S.; Ban-nai, T.; Doi, M.; Fujimori, A.; Ishii, N.; Ishikawa, Y.; Kawaguchi, I.; Kubota, Y.; Maruyama, K.; Miyamoto, K.; Nakamori, T.; Takeda, H.; Watanabe, Y.; Yanagisawa, K.; Yasuda, T.; Yoshida, S.

    2011-01-01

    Some studies for radiological protection of the environment have been made at the National Inst. of Radiological Sciences (NIRS). Transfer of radionuclides and related elements has been investigated for dose estimation of non-human biota. A parameter database and radionuclide transfer models have been also developed for the Japanese environments. Dose (rate)-effect relationships for survival, growth and reproduction have been investigated in conifers, Arabidopsis, fungi, earthworms, springtails, algae, duckweeds, daphnia and medaka. Also genome-wide gene expression analysis has been carried out by high coverage expression profiling (HiCEP). Effects on aquatic microbial communities have been studied in experimental ecosystem models, i.e., microcosms. Some effects were detected at a dose rate of 1 Gy day -1 and were likely to arise from inter-species interactions. The results obtained at NIRS have been used in development of frameworks for environmental protection by some international bodies, and will contribute to environmental protection in Japan and other Asian countries. (authors)

  11. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    International Nuclear Information System (INIS)

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon

  12. How can interventions for inhabitants be justified after a nuclear accident? An approach based on the radiological protection system of the international commission on radiological protection

    International Nuclear Information System (INIS)

    Takahara, Shogo; Homma, Toshimitsu; Yoneda, Minoru; Shimada, Yoko

    2016-01-01

    Management of radiation-induced risks in areas contaminated by a nuclear accident is characterized by three ethical issues: (1) risk trade-off, (2) paternalistic intervention and (3) individualization of responsibilities. To deal with these issues and to clarify requirements of justification of interventions for the purpose of reduction in radiation-induced risks, we explored the ethical basis of the radiological protection system of the International Commission on Radiological Protection (ICRP). The ICRP's radiological protection system is established based on three normative ethics, i.e. utilitarianism, deontology and virtue ethics. The three ethical issues can be resolved based on the decision-making framework which is constructed in combination with these ethical theories. In addition, the interventions for inhabitants have the possibility to be justified in accordance with two ways. Firstly, when the dangers are severe and far-reaching, interventions could be justified with a sufficient explanation about the nature of harmful effects (or beneficial consequences). Secondly, if autonomy of intervened-individuals can be promoted, those interventions could be justified. (author)

  13. Use of certification programs in the radiological protection of the patient

    International Nuclear Information System (INIS)

    Lucino, Sergio; Touzet, Rodolfo

    2008-01-01

    Full text: One of the main recommendations of the Congress of Malaga on Radiological Protection of the Patient is 'the qualification and training of the staff'. This goal cannot be reached in a country, in complete and systematic form, without the help of existing national programs who allow designing a program of continuous development of the professional capacities. This program must be able to adapt in permanent form to the needs of the Program of Radiological Protection of the Patient that change and evolve in constant form. In case of the Argentina it was adapted to these needs the 'National Program of Certification and Re-certification of medical professionals in Radiology and Radio-Diagnosis'. On the base of the existing program, general requirements were established for the radiological protection of the patient and in addition, special requirements for four specialties: a) General and pediatrics radiology; b) Computed tomography; c) Interventional radiology; d) Radiotherapy. The National Program of Certification was established in 1997 with a 'Top Permanent Council' formed by the National Minister of Health advised by a scientific council. It was also creates the 'National Council of Certification and professional Re-certification' integrated by the Minister of Education, the National Academy of Medicine, the Faculties of Medicine of the whole country, the medical Federations, the trade-union Associations and the Argentine Medical Association. The process of certification can be delegated to academic or university entities, medical colleges and medical chambers that have been recognized path and ethical conduct. The certification is voluntary but it becomes obligatory to be recognized as a specialist. The certification has duration of 5 years and is renewable on the basis of a system of credits that considers different elements of the developed activities and the written theoretical and practical evaluations. It is a transparent process where the ethical

  14. Proceedings of the 5. Regional congress on radiation protection and safety; 2. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress

    International Nuclear Information System (INIS)

    2001-01-01

    The Fifth Regional Congress on Radiation Protection and Nuclear Safety has been held in Recife (Brazil), from 29th April to 4th May 2001. The congress was hosted by the Brazilian Radiation Protection Society, under the joint sponsorship of FRALC and UFPE-DEN Department of Nuclear Energy. Its designation as a Regional IRPA Congress has been requested. The main purpose of the meeting was to bring together professionals from the industry, universities and research laboratories to present and discuss the latest research results, and to review the state of the art on applied and fundamental aspects of the radiation protection. These specialists have talked about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. In their discussions, also were included subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  15. Importance of establishing radiation protection culture in Radiology Department.

    Science.gov (United States)

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment.

  16. From a regulatory to a cultural approach in the field of radiological protection

    International Nuclear Information System (INIS)

    Boehler, M.-C.

    1995-01-01

    A radiological protection culture, which is seen to be a 'management' approach to individual and collective doses, based on the principle of optimisation is described with particular reference to the nuclear industry. The article discusses the fundamental role of the principle of optimisation, the legal nature of the principle of optimisation and the implementation of a radiological protection culture. (UK)

  17. 200-UP-2 operable unit radiological surveys

    International Nuclear Information System (INIS)

    Wendling, M.A.

    1994-01-01

    This report summarizes and documents the results of the radiological surveys conducted from August 17 through December 16, 1993 over a partial area of the 200-UP-2 Operable Unit, 200-W Area, Hanford Site, Richland, Washington. In addition, this report explains the survey methodology of the Mobile Surface Contamination Monitor 11 (MSCM-II) and the Ultra Sonic Ranging And Data System (USRADS). The radiological survey of the 200-UP-2 Operable Unit was conducted by the Site Investigative Surveys/Environmental Restoration Health Physics Organization of the Westinghouse Hanford Company. The survey methodology for the majority of area was based on utilization of the MSCM-II or the USRADS for automated recording of the gross beta/gamma radiation levels at or near six (6) inches from the surface soil

  18. International Commission on Radiological Protection. History, policies, procedures

    International Nuclear Information System (INIS)

    Lindell, Bo; Dunster, H.J.; Valentin, Jack; )

    2000-01-01

    This report briefly reviews the history, mode of operation, concepts, and current policies of the International Commission on Radiological Protection (ICRP). It touches upon the objectives of the Commission's recommendations, the quantities used, the biological basis of the Commission's policy, the quantitative basis for its risk estimates, the structure of the system of protection, some problems of interpretation and application in that system, and the need for stability, consistency, and clarity in the Commission's recommendations. (author)

  19. An Evolved System of Radiological Protection

    International Nuclear Information System (INIS)

    Kaneko, M.

    2004-01-01

    The current system of radiological protection based on the Linear No-Threshold (LNT) hypothesis has greatly contributed to the minimization of doses received by workers and members of the public. However, it has brought about r adiophobia a mong people and waste of resources due to over-regulation, because the LNT implies that radiation is harmful no matter how small the dose is. The author reviewed the results of research on health effects of radiation including major epidemiological studies on radiation workers and found no clear evidence of deleterious health effects from radiation exposures below the current maximum dose limits (50 mSv/y for workers and 5 mSv/y for members of the public), which have been adopted worldwide in the second half of the 20th century. Now that the existence of bio-defensive mechanisms such as DNA repair, apoptosis and adaptive response are well recognized, the linearity assumption cannot be said to be s cientific . Evidences increasingly imply that there are threshold effects in risk of radiation. A concept of practical thresholds or virtually safe doses will have to be introduced into the new system of radiological protection in order to resolve the low dose issues. Practical thresholds may be defined as dose levels below which induction of detectable radiogenic cancers or hereditary effects are not expected. If any workers and members of the public do not gain benefits from being exposed, excepting intentional irradiation for medical purposes, their radiation exposures should be kept below practical thresholds. On the assumption that the current dose limits are below practical thresholds and with no radiation detriments, there is no need of justification and optimization (ALARA) principles for occupational and public exposures. Then the ethical issue of justification to allow benefit to society to offset radiation detriments to individuals can be resolved. And also the ethical issue of optimization to exchange health or safety for

  20. Evaluation of radiation protection conditions in intraoral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, Cristiano; Barros, Frieda Saicla; Rocha, Anna Silvia Penteado Setti da, E-mail: miguel_cristianoch@yahoo.com.br [Universidade Tecnologica Federal do Parana (PPGEB/UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Biomedica; Tilly Junior, Joao Gilberto [Universidade Federal do Parana (UNIR/UFPR), Curitiba, PR (Brazil). Hospital de Clinicas. Unidade de Imagem e Radioterapia; Almeida, Claudio Domingues de [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2016-04-15

    Introduction: The dental radiology represents about 20% of human exposure to radiation in radio diagnostic. Although the doses practiced in intraoral dentistry are considered low, they should not be ignored due to the volume of the performed procedures. This study presents the radiation protection conditions for intraoral radiology in Curitiba - PR. Methods: Data was collected through a quantitative field research of a descriptive nature during the period between September of 2013 and December of 2014. The survey sample consisted of 97 dentists and 130 intraoral equipment. The data related to the equipment was collected using structured questions and quality control evaluations. The evaluations of the entrance skin dose, the size of the radiation field and the total filtration were performed with dosimetry kits provided and evaluated by IRD/CNEN. The exposure time and voltage were measured using noninvasive detectors. The occupational dose was verified by thermoluminescent dosimeters. The existence of personal protection equipment, the type of image processing and knowledge of dentists about radiation protection were verified through the application of a questionnaire. Results: Among the survey's results, it is important to emphasize that 90% of the evaluated equipment do not meet all the requirements of the Brazilian radiation protection standards. Conclusion: The lack of knowledge about radiation protection, the poor operating conditions of the equipment, and the image processing through visual method are mainly responsible for the unnecessary exposure of patients to ionizing radiation. (author)

  1. Hanford Cultural Resources Laboratory annual report for fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Wright, M.K.; Crist, M.E.; Cadoret, N.A.; Dawson, M.V.; Simmons, K.A.; Harvey, D.W.; Longenecker, J.G.

    1994-09-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Operations Office (DOE-RL) in 1987 as part of Pacific Northwest Laboratory (PNL). The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Agency of 1979, the Native American Grave Protection and Repatriation Act of 1990, and the American Indian Religious Freedom Act of 1978. The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan as a prioritized list of tasks to be undertaken to keep the DOE-RL in compliance with federal statutes, regulations, and guidelines. For FY 1993, these tasks were to: conduct cultural resource reviews pursuant to Section 106 of the NHPA; monitor the condition of known historic properties; identify, recover, and inventory artifacts collected from the Hanford Site; educate the public about cultural resources values and the laws written to protect them; conduct surveys of the Hanford Site in accordance with Section 110 of the NHPA. Research also was conducted as a spin-off of these tasks and is reported here.

  2. ERC Radiological Glovebag Program

    International Nuclear Information System (INIS)

    Nellesen, A.L.

    1997-07-01

    This document establishes the requirements and responsibilities for the standardized methods for installation, use, and dismantlement of glovebags within the Hanford Site Environmental Contractor Radiological Glovebag Program. This document addresses the following topics: Containment selection and fabrication, Glovebag fabrication, Containment installation and inspection, General glovebag containment work practices, Emergency situations, and Containment removal

  3. Radiation and man. From radiology to radiation protection

    International Nuclear Information System (INIS)

    2005-04-01

    Man first became aware of the invisible radiation surrounding him in 1895, when Wilhelm Roentgen showed that a photographic plate could be affected by an invisible radiation capable of passing through matter. He called this radiation 'X-rays' from X, the unknown. Doctors immediately saw the usefulness of this type of radiation and began to use it in medical research. This was the birth of radiology. 'Mankind has been exposed to radiation since his first appearance on Earth. We first became aware of this at the end of the 19. century'. However, it was not long before some of the doctors and radiologists treating their patients with X-rays began to fall ill. It began to be understood that exposure to high doses of radiation was dangerous and protective measures were necessary. From the 1920's onwards, international commissions were established to specify regulations for the use of radiation and for the radiological protection of personnel. (authors)

  4. Radiological protection in equine radiography and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoxall, A.T.

    1977-10-01

    The principles of radiological protection are summarised and consideration is then given to problems, which may confront the equine practitioner, in the fulfillment of these principles during diagnostic radiography of the limbs, head, and spine of the horse. The place of anaesthesia in such procedures is discussed and the special problems associated with therapeutic radiography of the horse are considered.

  5. Radiological protection criteria for waste management

    International Nuclear Information System (INIS)

    Hill, M.D.; Webb, G.A.M.

    1985-01-01

    In this paper the progress being made by international organisations towards the development of a consensus on the radiological protection criteria to be applied to waste management, and in particular waste disposal, is reviewed. Against this background, work on the development of criteria for use in the UK is described. It is concluded that an international consensus is emerging and that the criteria being recommended for use in the UK are consistent with current international views. (author)

  6. Radiological protection criteria for waste management

    International Nuclear Information System (INIS)

    Hill, M.D.; Webb, G.A.M.

    1985-01-01

    In this Paper the progress being made by international organizations towards the development of a consensus on the radiological protection criteria to be applied to waste management, and in particular waste disposal, is reviewed. Against this background, work on the development of criteria for use in the UK is described. It is concluded that an international consensus is emerging and that the criteria being recommended for use in the UK are consistent with current international views. (author)

  7. Networking as an efficient, modern way of favouring stakeholders' involvement in implementing good radiological protection

    International Nuclear Information System (INIS)

    Lefaure, Ch.; Janssens, A.; Mrabit, K.; Ahier, B.

    2006-01-01

    Since the publication of ICRP 22 and ICRP 26 in 1973 and 1977 respectively, the understanding and practical implementation of the concept of Optimisation of Radiation Protection known as ALARA ('as low as reasonably achievable') has developed considerably globally and particularly in Europe. In the 1990 ICRP 60 publication, ALARA was re-emphasised as the cornerstone of the radiological protection system. This is also an explicit requirement of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (International BSS) and EC Directive laying down the Basic Safety Standards for radiological protection (EURATOM Directive 96/29), as well as of most of the national regulations. Throughout the 1980's and early 1990's ALARA was integrated into many organisations' radiation protection programmes, particularly in the nuclear industry and mainly for managing occupational exposure. One of the main lessons identified from that period was that it was not possible to implement good radiological protection by relying only on technical rules and procedures summarised in the three words: 'Time-Distance-Shielding'. A fourth word, 'Commitment', was to be added as no radiological protection programme would be successful without the commitment of all concerned stakeholders: regulatory bodies, managers, workers, etc. The scope of this presentation is, through different international feedback experiences, to demonstrate how networking is an efficient, modern way of fostering stakeholders involvement in implementing good radiological protection. (authors)

  8. Training project on Radiological Protection in medicine. Use of new technologies

    International Nuclear Information System (INIS)

    Ruis-Cruces, R.; Perez-Martinez, M.; Pastor Vega, J. M.; Diez de los Rios Delgado, A.

    2003-01-01

    Radiological protection training addressed to physicians should start during the teaching graduate and postgraduate studies, and a third phase only for those physicians using X rays and radioactive sources in diagnosis and treatment of diseases. To show a training project addressed to the teaching graduate students based on the new technologies, such as web online and interactive CD-ROM. Development of a web-online including information in.pdf (adobe acrobat) format and additional tools (as data bases, videos, news and class meetings, FAQ, tutorials). Moreover, we propose to development an interactive CD-ROM which will be used as a practical tool to complete the obligatory subject on radiological protection in the University of Malaga (Spain). We show the preliminary phase of the project. The web-online is being developed with the Microsoft FrontPage software. The first version of the CR-ROM is being developed in html format. These tools based on new technologies will be a very important support for radiological protection training, which is recommended by International Organizations (EC Report R116 and IAE Action Plan 2002-2006). (Author) 4 refs

  9. Division of Radiological Protection : progress report, 1989-1991

    International Nuclear Information System (INIS)

    Gupta, B.L.; Nagarajan, P.S.; Bhatt, B.C.; Seethapathy, A.; Pradhan, A.S.; Vishwakarma, R.R.

    1992-01-01

    This report describes the work of the Division of Radiological Protection during 1989-91, for implementation of radiation safety in all institutions in the country using radiation sources for medical, industrial and research applications. It gives information about personnel monitoring using photographic film and TLD badges, neutron monitoring badges, dosimetric techniques developed, calibration techniques for high-dose irradiators, design and fabrication of special radiation protection instruments, advisory and licensing services, regulation and transport of radioactive materials, periodic protection survey, education and training related to radiation safety programmes. About 164 publications by the staff of this Division are listed. (author). 1 index., 1 tab

  10. FDH radiological design review guidelines

    International Nuclear Information System (INIS)

    Millsap, W.J.

    1998-01-01

    These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information

  11. FDH radiological design review guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Millsap, W.J.

    1998-09-29

    These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information.

  12. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M.; Rhoads, Kathleen

    2010-05-25

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.

  13. ICRP-26, the recommendations on radiological protection

    International Nuclear Information System (INIS)

    Jun, J.S.

    1983-01-01

    Since the last ICRP recommendations on radiological protection was pubished in 1966 as it's publication 9, the revised edition of the recommendations had first been published in 1977, accommodating up-to-date knowledge of radiobiology and operational experiences of radiation protection built up for over a decade. In this article, the new version of the recommendations is reviewed in comparison with those of the publication 9, while the corrections and modifications made afterward are introduced together with the recent trends and responses of the experts in various countries for the pracical adoption or legislation of the recommendations. (Author)

  14. 6. Regional Congress on Radiation Protection and Safety; 3. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress. Book of abstracts

    International Nuclear Information System (INIS)

    2003-11-01

    The 6th Regional Congress on Radiation Protection and Safety was organized by the Peruvian Radiation Protection Society and the Peruvian Institute of Nuclear Energy, held in Lima, Peru, between 9 and 13 of november of 2003. In this event, were presented 227 papers that were articulated in the following sessions: radiation natural exposure, biological effects of ionizing radiation, instruments and dosimetry, radiological emergency and accidents, occupational radiation protection, radiological protection in medical exposure, radiological environmental protection, legal aspects, standards and regulations, training, education and communication, radioactive waste management, radioactive material transport, nuclear safety and biological effects of non-ionizing radiation. (APC)

  15. Radiological protection aspects regarding to assistance of the cesium-137 radiation accident victims in Goiania

    International Nuclear Information System (INIS)

    Hunt, John Graham; Oliveira Filho, Denizart Silveira de; Rabelo, Paulo Ney Pamplona

    1997-01-01

    The radiological protection measures taken in the general hospital of Goiania (HGG/INAMPS) and in the FEBEM institution, due to the accident involving Cesium-137 are described, as well as the work of the IRD personnel in the areas of: radiological protection of the medical and auxiliary staff, contamination control of the ward, radiological monitoring of the patients, waste management, personnel and area decontamination and patient transportation. (author)

  16. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  17. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  18. Sampling on radiological protection training in diagnostic radiology

    International Nuclear Information System (INIS)

    Gaona, E.

    2001-01-01

    Radiological security aspects were evaluated in radiology departments from Mexico City. The study was carried out in two stages, the first one evaluated 40 departments just before the implementation of the new Official Mexican Standards related to Radiological Security and Quality Control in Radiology; in the second stage 33 departments were evaluated 2 years after those standards were implanted, showing a favorable impact of the training programs for the type of answers obtained [es

  19. L-035: EPR-First Responders: Basic Risk and Protection for First Responders to a Radiological Emergency

    International Nuclear Information System (INIS)

    2011-01-01

    There are some basic actions and self-protective actions to take in an radiological emergency. Radiation is detected with appropriate instrumentation and measuring the rate of exposure (Sv per hour) in contact with radioactive materials involved. Is important to note: Responsive to a radiological emergency, tool to identify radiological risks, radiation protection, radioactive symbol and instrumentation

  20. Enhancement of radiological protection through an internal quality assessment cycle

    International Nuclear Information System (INIS)

    Figueiredo, Filipe Morais de; Gama, Zenewton Andre da Silva

    2012-01-01

    Objective: To determine the level of quality in radiation protection of patients during radiological examination, evaluating the effectiveness of an intervention aimed at enhancing the quality of such a protection. Materials and Methods: A quality improvement cycle was implemented in a radiology service of the Regional Health Administration, in Algarve, Portugal. Based on six quality criteria, an initial evaluation was performed and followed by an intervention focused on the most problematic points (over an eight-month period) and a subsequent quality reassessment. A random sampling (n = 60) has allowed the authors to infer the point estimates and confidence intervals for each criterion, as well as calculating the statistical significance of the results by means of the Z-test. Results: Initially, deficiencies were observed in relation to all the quality criteria. After the intervention, a minimum relative improvement of 33% was observed in five of the six criteria, with statistical significance (p < 0.05) in two of them. The absolute frequency of noncompliance decreased from 38 (first evaluation) to 21 (second evaluation), corresponding to a 44.7% improvement. Conclusion: The first institutional evaluation cycle showed a seemingly incipient improvement margin. However, the implemented intervention was effective in stimulating good practices and improving the level of radiological protection of patients. (author)

  1. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-01-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H 2 , CO, NH 3 , CH 4 , and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  2. A multimedia - virtual reality based- tool for training in radiological protection

    International Nuclear Information System (INIS)

    Salve, R.; Castro, A.; Javier, Castelo; Francisco, Diaz; Francisco, Massana; Antonio, A. de; Herrero, P.

    2001-01-01

    This paper presents the work that has been carried out under the frame of the project PRVIR, promoted by DTN in co-operation with the UPM and Vandellos II NPP, as the pilot plant. The aim of the project is to make use of computer-based training in nuclear plants, taking advantage of multimedia resources and advanced computer graphics. The area that has been selected for this first training program is radiological protection fundamentals, and the end users of the program will be professionally exposed workers. The software can also be used for radiological protection concepts dissemination purposes. (author)

  3. A multimedia - virtual reality based- tool for training in radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Salve, R.; Castro, A. [DTN, Madrid (Spain); Antonio, A. de; Herrero, P. [UPM Facultad de Informatica, Madrid (Spain); Diaz, F.; Massana, F [Central Nuclear Vandellos 2, Tarragona (Spain)

    2001-07-01

    This paper presents the work that has been carried out under the frame of the project PRVIR, promoted by DTN in co-operation with the UPM and Vandellos II NPP, as the pilot plant. The aim of the project is to make use of computer-based training in nuclear plants, taking advantage of multimedia resources and advanced computer graphics. The area that has been selected for this first training program is radiological protection fundamentals, and the end users of the program will be professionally exposed workers. The software can also be used for radiological protection concepts dissemination purposes. (author)

  4. Statutory Instrument no. 1230, The National Radiological Protection Board (Extension of Functions) Order 1974

    International Nuclear Information System (INIS)

    1974-01-01

    This Order, which came into operation of 1st August 1974, extends the functions and powers of the National Radiological Protection Board, which was established by the Radiological Protection Act 1970 so as to cover research and the giving of advice on the dangers of radiation which is electromagnetic but not ionizing. (NEA) [fr

  5. SUPPLEMENTAL COLUMBIA RIVER PROTECTION ACTIVITIES AT THE DEPARTMENT OF ENERGY HANFORD SITE: 2006 TECHNICAL PEER REVIEW

    International Nuclear Information System (INIS)

    Looney, B; Dawn Kaback; Gene Leboeuf; Jason Mulvihill-Kuntz; Lynn Lefkoff

    2006-01-01

    Prompted by a $10 million Congressional allocation to identify supplemental actions to protect the Columbia River from groundwater contamination beneath the Hanford Reservation, the U. S. Department of Energy (DOE) Environmental Management (EM) Office of Clean-up Technology identified twenty-three potential technical projects and then down-selected ten of these for further evaluation. An independent expert peer review was conducted for the ten down-selected proposals. The review panel consisted of twenty-three recognized subject matter experts that broadly represented academia, industry, and federal laboratories. Of the initial ten proposals reviewed, one was given unconditional support, six were given conditional support, and three were not supported as proposed. Three additional proposals were then submitted by DOE for review--these proposals were structured, in part, to respond to the initial round of technical peer review comments. Peer reviews of these additional proposals provided conditional support. For those proposals that received conditional support, DOE requested specific implementation and work plans and assessed whether the plans adequately addressed the technical conditions identified by the review panel. The final list of technology proposals receiving support, or conditional support, primarily focused on understanding and reducing the potential impacts of uranium, chromium, and strontium from facilities adjacent to the Columbia River, with a secondary focus on understanding and limiting the future Columbia River impacts from the large carbon tetrachloride groundwater plume underlying and downgradient of the Hanford Central Plateau facilities. The results and recommendations of the peer reviews informed the final DOE project selections and supported implementation of the selected projects to protect the Columbia River and address groundwater contamination at Hanford

  6. SUPPLEMENTAL COLUMBIA RIVER PROTECTION ACTIVITIES AT THE DEPARTMENT OF ENERGY HANFORD SITE: 2006 TECHNICAL PEER REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B; Dawn Kaback; Gene Leboeuf; Jason Mulvihill-Kuntz; Lynn Lefkoff

    2006-12-20

    Prompted by a $10 million Congressional allocation to identify supplemental actions to protect the Columbia River from groundwater contamination beneath the Hanford Reservation, the U. S. Department of Energy (DOE) Environmental Management (EM) Office of Clean-up Technology identified twenty-three potential technical projects and then down-selected ten of these for further evaluation. An independent expert peer review was conducted for the ten down-selected proposals. The review panel consisted of twenty-three recognized subject matter experts that broadly represented academia, industry, and federal laboratories. Of the initial ten proposals reviewed, one was given unconditional support, six were given conditional support, and three were not supported as proposed. Three additional proposals were then submitted by DOE for review--these proposals were structured, in part, to respond to the initial round of technical peer review comments. Peer reviews of these additional proposals provided conditional support. For those proposals that received conditional support, DOE requested specific implementation and work plans and assessed whether the plans adequately addressed the technical conditions identified by the review panel. The final list of technology proposals receiving support, or conditional support, primarily focused on understanding and reducing the potential impacts of uranium, chromium, and strontium from facilities adjacent to the Columbia River, with a secondary focus on understanding and limiting the future Columbia River impacts from the large carbon tetrachloride groundwater plume underlying and downgradient of the Hanford Central Plateau facilities. The results and recommendations of the peer reviews informed the final DOE project selections and supported implementation of the selected projects to protect the Columbia River and address groundwater contamination at Hanford.

  7. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  8. Foundations in radiological protection and radiotherapy

    International Nuclear Information System (INIS)

    Morales M, F.

    2002-01-01

    The work is divided in three parts. The part 1 are a brief abstrac of some important concepts related with the cells. The part 2 speak in general of the biological effects of the ionizing radiations according to the recommendations of the international commission of radiological protection. The part 3 refer to radiobiological calculations applying the quadratic lineal pattern to the radiotherapy. These calculations are important in view of the fact that they are applied for the introduction of new outlines of treatments

  9. Radiological protection procedures for industrial applications of computed radiography

    International Nuclear Information System (INIS)

    Aquino, Josilto Oliveira de

    2009-03-01

    Due to its very particular characteristics, industrial radiography is responsible for roughly half of the relevant accidents in nuclear industry, in developed as well as in developing countries, according to the International Atomic Energy Agency (IAEA). Thus, safety and radiological protection in industrial gamma radiography have been receiving especial treatment by regulatory authorities of most Member States. The main objective of the present work was to evaluate, from the radioprotection point of view, the main advantages of computed radiography (CR) for filmless industrial radiography. In order to accomplish this, both techniques, i.e. conventional and filmless computed radiography were evaluated and compared through practical studies. After the studies performed at the present work it was concluded that computed radiography significantly reduces the inherent doses, reflecting in smaller restricted areas and costs, with consequent improvement in radiological protection and safety. (author)

  10. Hanford emergency management plan - release 15

    Energy Technology Data Exchange (ETDEWEB)

    CARPENTER, G.A.

    1999-07-19

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety.

  11. Hanford emergency management plan - release 15

    International Nuclear Information System (INIS)

    CARPENTER, G.A.

    1999-01-01

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety

  12. Contribution of the french society of radiological protection to the current reflections on the possible improvement of the radiological risk management system

    International Nuclear Information System (INIS)

    Lecomte, J.F.; Schieber, C.

    2000-01-01

    Following the invitation by IRPA to comment the article by Prof. R. Clarke entitled 'Control of Low Level Radiation Exposures: Time for a Change?', the Board of the French Radiological Protection Society (SFRP) has decided to set up a specific Working Group. This Group consists of some twenty members representing the stakeholders involved in radiological protection in France. Its goal is, starting from an analysis of R. Clarke's text, to formulate questions and proposals to assist ICRP in making its radiological protection system more understandable and more efficient. The aim of this review is not to restart from scratch but to consolidate and improve the existing system. The Working Group has therefore focused its thoughts on the following four points: 1. The basis of the radiological risk management system. In the absence of scientific certainty as to the effects of low doses of radiation, a prudent attitude has been adopted as to the manner of managing the radiological risk, based on the hypothesis that the dose-effect relationship is linear with no threshold. The Group discusses this basic assumption and its implications on the elaboration of the objectives of the radiological risk management system. 2. Exposure situations. Exposure situations are multifarious and the existing system divides them into categories for management purpose (e.g. practice/intervention; natural/artificial; medical/public/occupational; actual exposure/potential exposure; etc.). Some of these divisions are pertinent but some are less so and the Group examines if another way of conceptualising exposures situations could be more efficient. 3. Risk management indicators and tools. The radiological protection system provides the professionals with a series of indicators and tools, enabling them to manage exposure situations (dose, dose limit, dose constraint, individual dose, collective dose, investigation level, action level, interventional level, exemption level, clearance level

  13. Hanford prototype-barrier status report: FY 1995

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Ligotke, M.W.; Link, S.O.

    1995-11-01

    Surface barriers (or covers) have been proposed for use at the Hanford Site as a means to isolate certain waste sites that, for reasons of cost or worker safety or both, may not be exhumed. Surface barriers are intende to isolated the wastes from the accessible environment and to provide long-term protection to future populations that might use the Hanford Site. Currently, no ''proven'' long-term barrier system is available. For this reason, the Hanford Site Permanent Isolation Surface-Barrier Development Program (BDP) was organized to develop the technology needed to provide long-term surface barrier capability for the Hanford Site for the US Department of Energy (DOE). Designs have been proposed to meet the most stringent needs for long-term waste disposal. The objective of the current barrier design is to use natural materials to develop a protective barrier system that isolates wastes for at least 1000 years by limiting water, plant, animal, and human intrusion; and minimizing erosion. The design criteria for water drainage has been set at 0.5 mm/yr. While other design criteria are more qualitative, it is clear that waste isolation for an extended time is the prime objective of the design. Constructibility and performance. are issues that can be tested and dealt with by evaluating prototype designs prior to extensive construction and deployment of covers for waste sites at Hanford

  14. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford

  15. Implementation of procedures of radiological protection in the section of Radiology of the emergency Hospital of Porto Alegre-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzini, F.; Rizzati, M.R. [Emergency Hospital of Porto Alegre, HPS (Brazil)

    1998-12-31

    The Emergency Hospital of Porto Alegre (HPS) is one of the main reference centers for the population in the attendance of medical emergencies/urgencies. The Section of Radiology, which informs the patients clinical conditions based on radiological images, is the most demanded section of the hospital (81.43 % of the medical cases request radiological exams) in the aid of the diagnosis, in which excels for the search of the quality in the health branch. In this work are presented the procedures to have been implemented about radiological protection according to effective norm, methods, ways and conditions to satisfy the radiation workers and the internal and external patients. (Author)

  16. Implementation of procedures of radiological protection in the section of Radiology of the emergency Hospital of Porto Alegre-Brazil

    International Nuclear Information System (INIS)

    Lorenzini, F.; Rizzati, M.R.

    1998-01-01

    The Emergency Hospital of Porto Alegre (HPS) is one of the main reference centers for the population in the attendance of medical emergencies/urgencies. The Section of Radiology, which informs the patients clinical conditions based on radiological images, is the most demanded section of the hospital (81.43 % of the medical cases request radiological exams) in the aid of the diagnosis, in which excels for the search of the quality in the health branch. In this work are presented the procedures to have been implemented about radiological protection according to effective norm, methods, ways and conditions to satisfy the radiation workers and the internal and external patients. (Author)

  17. Quality assurance programs from laboratories offering radiological protection services

    International Nuclear Information System (INIS)

    Marrero Garcia, M.; Prendes Alonso, M.; Jova Sed, L.; Morales Monzon, J.A.

    1998-01-01

    The implementation of an adequate program for quality assurance in institutions servicing radiological protection programs will become an additional tool to achieve security targets included in that program. All scientific and technical services offered by CPHR employ quality assurance systems

  18. International conference to explore ways to improve radiological protection of patients

    International Nuclear Information System (INIS)

    2001-01-01

    The first international conference specifically focused on the radiological protection of patients will be held in Torremolinos (Malaga), Spain, next week, from 26 to 30 March 2001. The conference, formally titled, 'International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy', is being organized by the IAEA, hosted by the Government of Spain and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization. Medical applications of ionizing radiation are accepted world-wide as essential tools for keeping or restoring human health. However, they also represent by far the largest man-made source of radiation exposure. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) estimates that diagnostic medical applications of radiation account for about 95% of the exposure to radiation from man-made sources of radiation and about 12% of total exposure, which includes the exposures received from natural sources. More than 900 participants from 80 countries are expected to attend the conference. They cover a broad spectrum of expertise, including radiologists, nuclear medicine specialists, radiation oncologists, medical physicists, technologists/radiographers, radiological protection officers, equipment manufacturers, experts who develop standards for radiological equipment, hospital administrators and public health officials and representatives of professional societies. In addition, a number of patients who have undergone radiation treatment will represent patients' interests and a patient will chair one of the round table debates. The conclusions of the Conference will be incorporated into the IAEA's programme of work in the field of radiation safety and will be reported to the IAEA General Conference at its next meeting in September 2001

  19. The regulatory application of authorization in radiological protection

    International Nuclear Information System (INIS)

    Lazo, T.; Frullani, S.

    2004-01-01

    Authorization is the process used by governments and regulatory authorities to decide what regulatory controls or conditions, if any, should be applied to radioactive sources or radiation exposure situations in order to protect the public, workers and the environment appropriately. Over the years, governments and regulatory authorities have used various approaches to the authorization process under differing circumstances. Now, with the new draft recommendations from the International Commission on Radiological Protection (ICRP), there is the prospect of being able to use a single, simple and self-coherent approach for the process of regulatory authorization under all circumstances. Previously, the ICRP recommended the use of various approaches to manage radiological protection situations. For what were called practices, exposures were subject to limits, and optimisation was required below these limits. What were called interventions were subject to intervention levels, above which some action could be considered justified, and which should be optimised based on consideration of how much dose could be averted by the countermeasure considered. Radon in homes was subject to action levels, above which some sort of countermeasure could be recommended. These approaches are all philosophically distinct and logically constructed, but their differences, particularly in the types of numerical criteria used (limits, intervention levels, action levels, etc.) contributed to confusion and misunderstanding. (author)

  20. Radiological protection report 2008; Strahlenschutzbericht 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by ENSI in 2008. It provides comprehensive data on radiation protection activities in Switzerland during the year 2008. The first section of the report provides comprehensive data on radiation protection and deals with exposure rates for personnel and individual jobs. The authors note that, in recent years, both collective doses and average individual doses have declined by a factor of two. Radiation doses are commented on as being significantly lower than the maximum annual limit for persons exposed to radiation in the course of their work. Radiation in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities is commented on. The Swiss radiation measurement network is commented on and the results obtained are discussed. ENSI concludes that the new recommendations published by the International Commission on Radiological Protection (ICRP 103) did not necessitate any significant changes in its surveillance activities.

  1. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    Science.gov (United States)

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  2. ICRP PUBLICATION 122: Radiological Protection in Geological Disposal of Long-lived Solid Radioactive Waste

    International Nuclear Information System (INIS)

    Weiss, W.; Larsson, C-M.; McKenney, C.; Minon, J-P.; Mobbs, S.; Schneider, T.; Umeki, H.; Hilden, W.; Pescatore, C.; Vesterlind, M.

    2013-01-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission’s three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  3. Radiological Source Terms for Tank Farms Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  4. Final technical report: Atmospheric emission analysis for the Hanford Waste Vitrification plant

    International Nuclear Information System (INIS)

    Andrews, G.L.; Rhoads, K.C.

    1996-03-01

    This report is an assessment of chemical and radiological effluents that are expected to be released to the atmosphere from the Hanford Waste Vitrification Plant (HWVP). The report is divided into two sections. In the first section, the impacts of carbon monoxide (CO) and nitrogen oxides as NO 2 have been estimated for areas within the Hanford Site boundary. A description of the dispersion model used to-estimate CO and NO 2 average concentrations and Hanford Site meteorological data has been included in this section. In the second section, calculations were performed to estimate the potential radiation doses to a maximally exposed off-site individual. The model used to estimate the horizontal and vertical dispersion of radionuclides is also discussed

  5. Hanford Site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. (eds.)

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  6. Hanford Site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E.

    1991-01-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  7. Hanford Site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E. (eds.)

    1991-12-20

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  8. Hanford Site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  9. Radiological protection in industrial gamma scintigraphy facilities

    International Nuclear Information System (INIS)

    Rodriguez, M.; Suarez, S.

    2002-01-01

    Operational experience has shown that the mobile scintigraphy sector is not only that where individual doses are highest but also where there are the greatest number of high doses, overdoses and incidents. This fact highlights the need for improvement in the optimisation of radiological protection in the sector. In this context the CSN has adopted and implemented an action plan aimed at reducing doses to operation staff. (Author)

  10. Radiological protection in the use of radiotracers in industrial process

    International Nuclear Information System (INIS)

    Costa, M.L L.; Gomes, R.S.; Gomes, J.D.R.L.; Costa, E.L.C.; Thomé, Z.D.

    2017-01-01

    The use of radiotracers plays an important role to provide methods to optimize industrial process and improve product quality. An increase in the use of radiotracers investigations has been observed in Brazil, however, as there is no specific standard for the licensing of these facilities, generic radiation protection regulations have been used, but these are not comprehensive or technically suitable for this purpose. Regulatory inspections in radiotracer facilities have reported failures in disagreement with best practices for radiological safety, mainly in radioactive waste management and in the control of workplaces during radiotracer injections. In this work, an assessment of radiological protection aspects of radioactive tracers is performed, based on the licensing process of radiotracers facilities, as well as the experience of regulatory inspections and a review of international standards, pointing out relevant radiation safety aspects for working practices, procedures and protective measures before, during and after injections of radioactive tracers, in order to contribute to the future development of specific safety regulations on radiotracers in Brazil. (author)

  11. Radiological protection in the use of radiotracers in industrial process

    Energy Technology Data Exchange (ETDEWEB)

    Costa, M.L L.; Gomes, R.S.; Gomes, J.D.R.L.; Costa, E.L.C., E-mail: mara@cnen.gov.br, E-mail: rogeriog@cnen.gov.br, E-mail: jlopes@cnen.gov.br, E-mail: evaldo@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Thomé, Z.D., E-mail: zielithome@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The use of radiotracers plays an important role to provide methods to optimize industrial process and improve product quality. An increase in the use of radiotracers investigations has been observed in Brazil, however, as there is no specific standard for the licensing of these facilities, generic radiation protection regulations have been used, but these are not comprehensive or technically suitable for this purpose. Regulatory inspections in radiotracer facilities have reported failures in disagreement with best practices for radiological safety, mainly in radioactive waste management and in the control of workplaces during radiotracer injections. In this work, an assessment of radiological protection aspects of radioactive tracers is performed, based on the licensing process of radiotracers facilities, as well as the experience of regulatory inspections and a review of international standards, pointing out relevant radiation safety aspects for working practices, procedures and protective measures before, during and after injections of radioactive tracers, in order to contribute to the future development of specific safety regulations on radiotracers in Brazil. (author)

  12. Education and training in radiological protection for diagnostic and interventional procedures ICRP 113 in brief

    International Nuclear Information System (INIS)

    Salama, S.; Gomaa, M. A.; Alshoufi, J.H.

    2013-01-01

    The international commission on radiological protection (ICRP) is the primary body in protection against ionizing radiation. Among its latest publication is ICRP publication 113 e ducation and training in radiological protection for diagnostic and interventional procedures . This document introduces diagnostic and interventional medical procedures using ionizing radiations in deep details. The document is approved by the commission in October 2010 and translated into Arabic at December 2011. This work is a continuation of the efforts series to translate some of the most important of the radiological protection references into the Arabic; aiming to maximize the benefit. The previous translation include WHO handbook on indoor radon: a public health perspective, issued by world health organization 2009 and Radiation Protection in Medicine, ICRP Publication 105 2007 that translated into Arabic with support of Arab atomic energy authority at 2011.

  13. Radiological protection in two types of human activities and from potential exposure

    International Nuclear Information System (INIS)

    Li Deping

    1991-01-01

    The new ICPR recommendations emphasize the distinction in radiological protection in two different types of human activities, practice and intervention. The purpose of emphases and measures for controlling or reduction of exposure for each type of activity are discussed. Potential exposure is regarded as an part of radiological protection system in this new recommendations, in a practice, it can be significantly reduced by proper prevention and mitigation measures in design and management. It is pointed out that with modern safety technology, the probability of potential exposure situations can be lowered to many orders of magnitude, even though the estimated value of probability is not accurate. Situations requiring intervention and the principles in protection are also discussed

  14. Surveillance and radiological protection in the Hot Cell laboratory

    International Nuclear Information System (INIS)

    Ramirez, J.M.; Torre, J. De la; Garcia C, M.A.

    2004-01-01

    The Hot Cells Laboratory (LCC) located in the National Institute of Nuclear Research are an installation that was designed for the management at distance of 10,000 Curies of Co-60 or other radioactive materials with different values in activity. The management of such materials in the installation, implies to analyze and to determine the doses that the POE will receive as well as the implementation of protection measures and appropriate radiological safety so that is completed the specified by the ALARA concept. In this work it is carried out an evaluation of the doses to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of results is made with the program of surveillance and radiological protection implemented for the development of the works that carried out in the installation. (Author)

  15. Standarized input for Hanford environmental impact statements. Part II: site description

    International Nuclear Information System (INIS)

    Jamison, J.D.

    1982-07-01

    Information is presented under the following section headings: summary description; location and physiography; geology; seismology; hydrology; meteorology; ecology; demography and land use; and radiological condition. Five appendixes are included on the 100N, 200 east, 200 west, 300, and 400 areas. This report is intended to provide a description of the Hanford Site against which the environmental impacts of new projects at Hanford can be assessed. It is expected that the summary description amplified with material from the appropriate appendix, will serve as the basic site description section of environmental impact statements prepared to address the requirements of the National Environmental Policy Act

  16. Radiology standards for primary dental care: report by the Royal College of Radiologists and the National Radiological Protection Board

    International Nuclear Information System (INIS)

    Hudson, Tony

    1994-01-01

    In 1992 a joint venture between the Royal College of Radiologists (RCR) and the National Radiological Protection Board (NRPB) resulted in the formation of a Working Party (WP) to consider dental radiology. Although individual doses to patients are low, WP identified considerable scope for reducing the collective dose to patients and for improving the diagnostic quality of radiographs. The report published in the Documents of the NRPB series presents the WP conclusions in the form of guidelines that deal with all aspects of dental radiology in primary dental care. (Author)

  17. Analysis of conditions to safety and radiological protection of Brazilian research particle accelerators facilities

    International Nuclear Information System (INIS)

    Lourenco, Manuel Jacinto Martins

    2010-01-01

    Eleven institutions of education and research in Brazil use particle accelerators, which fulfill different functions and activities. Currently, these institutions employ a total of fifteen accelerators. In this paper, the object of study is the radiological protection of occupationally exposed individuals, the general public and the radiation safety of particle accelerators. Research facilities with accelerators are classified in categories I and II according to the International Atomic Energy Agency or groups IX and X in accordance with the Brazilian National Commission of Nuclear Energy. Of the 15 accelerators in use for research in Brazil, four belong to category I or group X and eleven belong to category II or group IX. The methodology presented and developed in this work was made through the inspection and assessment of safety and radiological protection of thirteen particle accelerators facilities, and its main purpose was to promote safer use of this practice by following established guidelines for safety and radiological protection. The results presented in this work showed the need to create a program, in our country, for the control of safety and radiological protection of this ionizing radiation practice. (author)

  18. Environmental surveillance at Hanford for CY-1974 data

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1975-04-01

    Data collected by the Hanford Environmental Surveillance program during 1974 are presented in tables. Data are included on radiological parameters measured in the atmosphere, Columbia River water, drinking water; radionuclides in soil and vegetation, fish and wildlife, and selected foodstuffs; measurements of external radiation doses; and nonradiological parameters measured in the atmosphere, drinking water, and Columbia River water. Methods of sample collection are described briefly. (U.S.)

  19. Radiological protection and the selection of management strategies for intermediate level wastes

    International Nuclear Information System (INIS)

    Hill, M.D.; Webb, G.A.M.

    1982-01-01

    This paper describes the steps involved in selecting management systems and an overall management strategy for intermediate level solid radioactive wastes. The radiological protection inputs to intermediate level waste management decisions are discussed, together with the results of preliminary radiological assessments of disposal options. Areas where further work is required are identified. (author)

  20. Hanford Site Environmental Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2009-09-15

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  1. Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2010-09-01

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  2. Hanford Site Environmental Report for Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2011-07-12

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.

  3. A common approach for radiological protection of humans and the environment

    International Nuclear Information System (INIS)

    Holm, L.-E.

    2004-01-01

    Protection of the environment is developing rapidly at the national and international level, but there are still no internationally agreed recommendations as to how radiological protection of the environment should be carried out. The International Commission on Radiological Protection (ICRP) is currently reviewing its existing recommendations for human protection. It has set up a task group with the aim of developing a protection policy for, and suggesting a framework of, the protection of the environment that could feed into its recommendations at the start of the 21st century. The task group will propose a framework for the protection of the environment from harmful effects of radiation, harmonising with the principles for the protection of humans. Although the task group has not yet finalised on the objectives for the environment, these might be to safeguard the environment by preventing or reducing the frequency of effects likely to cause early mortality, reduced reproductive success, or the occurrence of scorable DNA damage in individual fauna and flora to a level where they would have a negligible impact on conservation of species, maintenance of biodiversity, or the health and status of natural habitats or communities. To achieve these objectives, a set of reference dose models, reference dose per unit intake and reference organisms will be required

  4. Aspects of radiation protection to attend the victims of radiological accident with cesium 137 in Goiania

    International Nuclear Information System (INIS)

    Hunt, J.G.; Oliveira Filho, D.S. de; Rabello, P.N.P.

    1988-01-01

    The radiological protection measures taken in the general hospital of Goiania (HGG/INAMPS) and in the FEBEM institution, due do the accident involving cesium 137 are described, as well the work of the NUCLEI personnel in the areas of: radiological protection of the medical and auxiliary staff, contamination control of the ward, radiological monitoring of the patients, waste management, personnel and area decontamination and patient transportation. (author) [pt

  5. Hanford well remediation and decommissioning plan

    International Nuclear Information System (INIS)

    Ledgerwood, R.K.

    1993-01-01

    Protection of Hanford Site groundwater resources and assessment of the effects of their use or contamination upon public safety are required by federal and state regulations and U.S. Department of Energy (DOE) policy, (DOE, 1989). Compliance with constraints applicable to the use of existing wells requires assessment as to the suitability for use and needs for rehabilitation, remediation or decommissioning of existing groundwater wells and other boreholes potentially affecting aquifers beneath the Hanford Site. Approximately 3,500 groundwater wells and vadose zone boreholes had been drilled on the Hanford Site prior to 1989, over 2,900 still exist. Most of these boreholes were drilled prior to 1987 and do not conform to presently accepted construction standards intended to protect groundwater resources. Approximately 260 wells have been installed since 1987. These wells were constructed to current standards for well construction which mandate seals between the permanent casing and the formation to prevent potential migration of contaminated liquid. Several programs presently construct and/or utilize existing and newly drilled wells to provide characterization and groundwater monitoring data. The programs are summarized

  6. Biological effects and radiation protection in veterinary radiology: a literature review

    International Nuclear Information System (INIS)

    Rosa, P.C.; Siqueira, D.; Barros, F.S.

    2017-01-01

    Veterinary radiology is a tool of excellent diagnostic support. Besides X--ray, it counts on technological advances such as computed tomography, nuclear medicine and interventional radiology . It is common during X-ray practice to use exposure parameters with short times to avoid blurring by the movement of the animal, but the fact that the animals need to be immobilized during the exposures contribute significantly with the increase of the dose received by the professionals, whose biological risks are not yet well established as a result of exposure to other factors harmful to health, such as anesthetic gases, insecticides, zoonoses and others. For this reason, we sought to verify the main radiological risks to which veterinarians are exposed and the best means to guarantee radiological protection

  7. Transportation risk assessment of radioactive wastes generated by the N-Reactor stabilization program at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Wheeler, T.

    1994-12-01

    The potential radiological and nonradiological risks associated with specific radioactive waste shipping campaigns at the Hanford Site are estimated. The shipping campaigns analyzed are associated with the transportation of wastes from the N-Reactor site at the 200-W Area, both within the Hanford Reservation, for disposal. The analysis is based on waste that would be generated from the N-Reactor stabilization program

  8. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  9. Education and training in radiological protection: the activities of the isRP

    International Nuclear Information System (INIS)

    Coeck, M.

    2005-01-01

    The International School for Radiological Protection, a task force within SCK-CEN, co-ordinates and organises training programs on all aspects of radiological protection. IsRP courses are directed as well to the private sector as to the political and academic world and the general public. International meetings, publications and recommendations with regard to safety culture increasingly stress the importance of education and training in the field of radiological protection. In addition, the need to standardise and harmonise the recognition of skills and practices on a national and European level is emerging. In this sense, the objectives of isRP are threefold : (1) to continue the organisation of open courses and training-on-demand of which the programmes are made up according to the background level and training requirements of the participants, and this for the Belgian medical and industrial sector; (2) to come to a closer cooperation with national universities and high schools and relevant international institutions; (3) to contribute to a better harmonisation of training practice and of skills recognition on a national and European level

  10. Division of Radiological Protection progress report 1982-1988

    International Nuclear Information System (INIS)

    Gupta, B.L.; Bhat, R.M.; Narayan, G.R.

    1989-01-01

    This report describes the work of the Division of Radiological Protection during 2-88, for implementation of radiation safety in all institutions in the country using radiation sources for medical, industrial and research applications. It gives information about personnel monitoring using photographic film and TLD badges, neutron monitoring badges, dosimetric techniques developed, calibration facilities and maintenance of national standards for radiation and radioactivity, design and fabrication of special radiation protection instruments, development of coloured indicators for indentification of radiation sterilized medical products, advisory and licencing services, regulation and transport of radioactive materials, periodic protection survey, education and training related to radiation safety programmes. About 500 publications by the staff of this Division are listed. (author). 46 figs

  11. Course on radiology and radiation protection. 3. rev. enl. ed.

    International Nuclear Information System (INIS)

    1981-01-01

    This book shall serve as accompanying study text-book for students of medicine, who are in the clinical semesters in the course on radiology and radiation protection. The book deals in general with the field of radiology, starting from the physical and radiobiological fundamentals, through the large field of X-ray diagnostics and radiotherapy to nuclear medicine, including computerized tomography. Broad space is dedicated to radiation protection. A brief, strongly didactically divided text presents this large scientific field of knowledge in systematic order. It is illustrated by numerous tables and sketches, which shall facilitate understanding in cases of difficult problems. The book is completed by a detailed time table, by references to the essential and most important advancing literature and by a comprehensive subject index. (orig./HP) [de

  12. National Radiological Protection Board. Account 1991-92

    International Nuclear Information System (INIS)

    1992-01-01

    The Board was constituted as a public authority under the Radiological Protection Act 1970 with the functions of advancing the acquisition of knowledge about the protection of mankind from radiation hazards and providing information and advice to persons, including Government Departments, with responsibilities in the United Kingdom in relation to the protection from radiation hazards either of the community as a whole or particular sections of the community. The Board is also empowered to provide technical services to persons and groups of persons concerned with radiation hazards on a commercial basis. These accounts show that the surplus on ordinary activities amounted to 210k pounds; cash balances increased by 161k pounds to 748k pounds which includes 431k pounds held on behalf of European Partners under the CEC Association Agreement. The Board achieved the principal objectives which had been set out in the Corporate Plan. Demand for the provision of services and advice to industry and other public bodies continued at a constant level. Current major issues are the new Recommendations from the International Commission on Radiological Protection for control of exposure, and subsequent national recommendations on dose limitation; an increasing awareness of non-ionising radiation, and public exposures and aspects of radiation in the environment. In particular there has been a significant demand for radon surveys as part of a sponsored monitoring programme in the south-west which is largely responsible for the increase in income-earning activities. Further studies are being commissioned and it is likely, therefore, that the Board will continue to be involved in large-scale radon work in the immediate future. The financial objectives were attained with minor variances on the planned budget profiles. (UK)

  13. Training in radiological protection for nuclear programmes

    International Nuclear Information System (INIS)

    1975-01-01

    Many Member States are developing or already have developed their own national training programmes. The IAEA is actively involved in promoting training in radiological protection for nuclear programmes. The various types of training are fully discussed, with suggested curricula. An earlier report was published as Technical Reports Series No.31 in 1964. In 1973, new and additional information was received from Member States which is reflected in the present report. Training programmes are classified, according to those requiring training: specialists; persons whose work is closely related to radiological protection (administrators, public health officers and industrial health personnel, safety inspectors and engineers in nuclear installations, public service personnel); persons working with radiation; and the general public. Forms, scope and duration of training are discussed. Different types of training programmes are currently required for training of medical doctors (those providing medical surveillance for radiation workers and others dealing with public health aspects of radiation hazards), for technical supervisors, radiologists, and qualified workers in nuclear medicine, technological staff, administrators, persons working with radiation, and public service personnel. Standard curricula and desirable experiments and exercises are discussed. The organization of training together with the facilities, equipment and teaching staff required are considered, as is follow-up training. Annexes 1 to 4 give examples of training curricula and training courses available in various countries, a suggested syllabus for training of technical supervisors, and a bibliography consisting of 210 references dealing with general topics, nuclear radiation physics, radiochemistry and radiation chemistry, radiation biology and biophysics, dosimetry and health physics and radiation protection, medical aspects and toxicology, and environmental aspects

  14. Optimization of radiological protection in Spanish nuclear power plants

    International Nuclear Information System (INIS)

    O'Donnell, P.; Amor, I.; Butragueno, J.L.

    1997-01-01

    Optimizing the radiological protection of occupationally exposed nuclear power plant workers has become one further item in what is called the safety culture. Spanish facilities are implementing programme with this in mind, grounded on a personal motivation policy with the backing of a suitable organizational structure. (Author)

  15. Radiological protection in the Spanish nuclear industry under Franco, 1939-1975.

    Science.gov (United States)

    Menéndez-Navarro, Alfredo; Vázquez, Luis Sánchez

    2013-01-01

    In debates about nuclear controversy, the issue of occupational safety in radioactive facilities is rarely foregrounded; it has historically been relegated to second place compared to the attention given to potential harm to the general population. Aiming for, at least, partially filling this historiographical gap, this article deals with the development of occupational radiological protection in Spain under the dictatorship of General Franco (1939-1975). It covers the rise of radiological protection measures on an international level and the subsequent development of legislation in the case of Spain, a process that paralleled the growth of the nation's nuclear program. Finally, it explores the main evidence of the impact of ionizing radiation on Spain's working population.

  16. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    International Nuclear Information System (INIS)

    Prendergast-Kennedy, Ellen L.; Harvey, David W.

    2006-01-01

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  17. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Ellen P.; Harvey, David W.

    2006-09-08

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  18. Implications of science and technology on the radiological protection system

    International Nuclear Information System (INIS)

    Metivier, H.; LAZO, T.

    2006-01-01

    Full text of publication follows: The mission of the Nuclear Energy Agency (Nea) Committee on Radiation Protection and Public Health (C.R.P.P.H.) includes providing member -country governments with insight into evolving or emerging issues that could affect radiation protection policy, regulation or application. Although it can not be currently said that the scientific understanding of radiological risks has significantly changed recently, ongoing radio-biological and epidemiological research could challenge the conventional paradigm in the mid -term future. The C.R.P.P.H. finalized in March 2006 finalize a study of possible challenges and their implications. This study includes two principle areas: challenges arising from scientific developments; and, challenges to the implementation of radiation protection. This report updates the earlier C.R.P.P.H. report, 'Developments in Radiation Health Sciences and their Impact on Radiation Protection' (Nea 1998). Broadly speaking, ongoing radiation biology studies present the possibility that our current practice of summing various type s of exposures into a single value of effective dose is not scientifically supported because of significantly differing dose/response relationships (chronic vs. acute, internal vs. external, high Let versus low Let, etc.). In addition, non-targeted effects, and the possibility of individual hyper-sensitivity to radiation further challenge our current notion of the relationship between detriment and dose. Although there is no conclusive evidence for this at this time, the possible implications of such changes will be investigated to better prepare governments and the radiation protection community should sound scientific evidence emerge. In addition to these possible scientific challenges, the applications and events that would require radiological protection input are also evolving. In particular, the use of radiation in medicine, with new techniques and the spread of existing technologies

  19. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    Science.gov (United States)

    Belinato, W.; Souza, D. N.

    2011-10-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide "Medical radiology: security and performance of equipment." In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  20. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    International Nuclear Information System (INIS)

    Belinato, W.; Souza, D.N.

    2011-01-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide 'Medical radiology: security and performance of equipment.' In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  1. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, W. [Instituto Federal de Ensino Basico, Tecnico e Tecnologico da Bahia, Av. Amazonas, 1350-45030-220, Zabele, Vitoria da Conquista, BA (Brazil); Departamento de Fisica, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 Rosa Elze, Sao Cristovao, SE (Brazil); Souza, D.N., E-mail: divanizi@ufs.br [Departamento de Fisica, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 Rosa Elze, Sao Cristovao, SE (Brazil)

    2011-10-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide 'Medical radiology: security and performance of equipment.' In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  2. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  3. Radiological protection. Responsibility of the Safety Engineering Company

    International Nuclear Information System (INIS)

    Netto, A.L.

    1987-01-01

    This subject takes care of the Safety Engineering at the Radiologic Protection area on the X and Gama Rays Services. It mainly emphasis the case of that companies that, due do not have proper X and Gama Rays Services utilize partime task force on this area, but answer themselves for the safety of their employees in case of any accident occurence. (author) [pt

  4. Study on generic intervention levels for protecting the public in a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    Suzuki, Fabio Fumio

    2003-01-01

    After a nuclear accident or radiological emergency, several social and economical factors shall be considered for the actions to protect the public and to recover the environment. The application of the radiological protection principles on practices in intervention situations may lead to adoption of protective measures disproportional to the involved risk, compromising the resources available to more effective actions. This causes a negative impact on the population and may conduct to discredit about the protective measures and the lost of confidence on the authorities. In this context, the principles of radiological protection for interventions should be studied and analyzed for being adequately applied in accident situations or radiological emergencies that involves the country. These principles are constantly improved and the concept of generic intervention level plays an important role in the decision-making to protect the public. The costs involved to the protective measures for the public in Brazil were studied and cost benefit analysis techniques were applied to estimate the generic intervention levels for public protection applicable in the country. These results were compared to those values internationally recommended, as well to values obtained in a similar study accomplished for Japan. It was also performed a sensibility analysis of the results regarding a value and a simple analysis of the results considering the costs of the several protective measures. (author)

  5. Korean anatomical reference data for adults for use in radiological protection

    Science.gov (United States)

    Choi, Chansoo; Yeom, Yeon Soo; Nguyen, Thang Tat; Lee, Hanjin; Han, Haegin; Shin, Bangho; Zhang, Xujia; Kim, Chan Hyeong; Chung, Beom Sun

    2018-01-01

    For radiological protection from exposure to ionizing radiation, in which a population-averaged dose evaluation is used, establishing a system of reference anatomical and physiological data for a specific population of interest is important. Some studies were done in the past to establish Korean reference data; however, the data provided the mass values only for a limited number of organs/tissues. In addition, the standing height and total body mass are based on 20-year-old data. In the present study, a new set of Korean reference anatomical values was established for use in the radiological protection of Korean workers and members of the public. The established Korean reference data provide the masses of 58 organs/tissues, including those needed to calculate the effective dose, which were derived by collecting and analyzing various scientific reports in the literature and data. In addition, the data provide not only standing height and total body mass, but also 131 additional anthropometric parameters; these values were derived from the most recent Korean national survey project, 7 th Size Korea. The characteristics of the data were also compared with several other population data, including the Asian and the International Commission on Radiological Protection (ICRP) reference data.

  6. Radiological control FY 1995 site support program plan WBS 6.7.2.4

    International Nuclear Information System (INIS)

    1994-09-01

    The 1995 Site Support Program Plan (SSPP) brings year planning and execution year planning into a single document. The plan presented consists of the following four major sections: Overview and Introduction - Health physics has been renamed Radiological Control (RadCon) with the role of protecting workers, the public and the environment from the harmful effects of radiation resulting from the DOE Hanford Site Operations; Cost Baselines which contains cost, technical and schedule baselines; Execution Year work Plan - cost summaries and detailed descriptions of the work to be done; Appendix - including brief description of other project activities directly coupled to RadCon

  7. Radiological control FY 1995 site support program plan WBS 6.7.2.4

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The 1995 Site Support Program Plan (SSPP) brings year planning and execution year planning into a single document. The plan presented consists of the following four major sections: Overview and Introduction - Health physics has been renamed Radiological Control (RadCon) with the role of protecting workers, the public and the environment from the harmful effects of radiation resulting from the DOE Hanford Site Operations; Cost Baselines which contains cost, technical and schedule baselines; Execution Year work Plan - cost summaries and detailed descriptions of the work to be done; Appendix - including brief description of other project activities directly coupled to RadCon.

  8. The management of radiological protection in a multi-employer environment

    International Nuclear Information System (INIS)

    Rankine, Alex

    2000-01-01

    For more than 40 years the UKAEA has been a world leader in the field of nuclear power R and D, pioneering the world's first civil nuclear programme and developing new nuclear power reactor technologies. Now that the initial programme has been successfully completed, UKAEA is again leading the world by pioneering new approaches to managing nuclear liabilities. In this new role, UKAEA is making a significant use of other companies in carrying out its decommissioning tasks and in providing support services. Whilst bringing with it new ideas and useful outside experience, this approach has given new challenges to UKAEA in ensuring that the work is carried out safety and that UKAEA is able to continue to exercise it's responsibilities as site operator and nuclear site licensee. This paper draws upon the experience within UKAEA to explore the management of radiological protection in a multi-employer situation emphasising the importance of co-operation between radiological protection experts, the need to clarify roles and responsibilities and the importance of worker participation. It is concluded that properly managed such an arrangement can not only work but can strengthen radiation protection building on various parties' strengths and experiences. One particular area where considerable use of service contractors has been undertaken is in radiological protection support services. UKAEA has now some unique experience in UK and have demonstrated that again, with adequate and appropriate management arrangements a potential challenge can be turned into an advantage. It is vital however that UKAEA is able to demonstrate sufficient in-house knowledge and expertise to remain in control as the site Licensee. (author)

  9. Radiological respiratory protection in Angra-1 Nuclear Power Plant; Protecao respiratoria radiologica na Usina Nuclear de Angra

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Marcos A. do [Furnas Centrais Eletricas S.A., Angra dos Reis, RJ (Brazil). Central Nuclear de Angra I. Div. de Protecao Radiologica e Ambiental

    1996-07-01

    The present paper has the purpose to describe the actual situation of the Radiological respiratory Protection in Angra I Nuclear Power Plant, the difficulties found and the goals to achieve, in order of the radiological protection excellence. (author)

  10. Summary of the Hanford Site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Hanf, R.W.; O'Connor, G.P.; Dirkes, R.L.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality

  11. Summary of the Hanford Site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, R.W.; O`Connor, G.P.; Dirkes, R.L. [eds.] [comps.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality.

  12. Optimization in radiological protection; Otimizacao em radioprotecao

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Perez, Clarice de Freitas

    1996-07-01

    The optimization concept in radiation protection is, in its essence, practical. In each aspect that we deal with the man, it is necessary to take frequent decisions such as: what is the protection level to be pursued, since the protection levels under consideration provide doses lower than the appropriate annual limits. The optimization gives a basic framework of the minding that is appropriate to conduct to a balance kind of the resources available for the protection and protection level obtained against a multitude of factors and constrains in a manner to obtain the best result. In this work, was performed the optimization, from the radiation protection point of view, of a facility project who enclose two shielded hot cells where will be handled UO{sub 2} small plate with 50% of U-235 burn-up, irradiated in the research swimming pool reactor, IEA-R1. To obtain this goal were specified the relevant factors and criteria, were applied the main techniques used in a decision-making in radiological protection, presently adopted and was performed a sensibility study of the factors and criteria used in this work. In order to obtain a greater agility in applying the techniques for decision-making was developed a micro computer program. (author)

  13. Radiological Engineering: A graduate engineering - based curriculum for radiation protection

    International Nuclear Information System (INIS)

    Kearfott, K.J.; Wepfer, W.J.

    1994-01-01

    Several U.S. universities maintain formal graduate health physics curricula within their Colleges of Engineering. The term radiological engineering was coined to describe the discipline of applying engineering principles to the radiation protection aspects of nuclear technology. Radiological engineering programmes may require a specific core group of courses such as radiation biology, radiation protection practice, nuclear physics, radiation detectors, and radiation dosimetry. Students then might specialist in environmental, nuclear facilities or medical applications areas by selecting advanced courses and graduate design or research projects. In some instances the master's degree may be completed through remotely-delivered lectures. Such programmes promise to assist in educating a new group of engineering professionals dedicated to the safe utilisation of nuclear technology. The Georgis Institute of Technology's programme will serve as the specific example for this report. 8 refs., 1 fig

  14. Estimate of Hanford Waste Rheology and Settling Behavior

    International Nuclear Information System (INIS)

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

    2007-01-01

    The U.S. Department of Energy (DOE) Office of River Protection's Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory PNNL, Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted

  15. Nuclear medicine and its radiological protection in China

    International Nuclear Information System (INIS)

    Wu, J.

    2001-01-01

    The China Society of Nuclear Medicine was established on 27 May 1980. Since then, nuclear medicine in clinical diagnosis and therapy has been developed rapidly in China. So far there are more than 4000 members of the Society, and more than 350 sets of SPECT and 12 sets of PET have been installed and are busily running in clinic nowadays and about 1 million patients with different types of diseases have obtained nuclear medicine imaging examinations per year. Concerning the nuclear medicine therapy, a lot of patients with many types of diseases obtained benefit from radioisotope therapy. Accordingly, several Policies and Regulations have been enacted by the Government for the radiological protection. Furthermore, a special book titled 'Standardization in Diagnostic and Therapeutic Nuclear Medicine' has been promulgated in June, 1997 by the Health Administration of People's Republic of China, and this book is distributed to almost every nuclear medicine physician and technician in China for their reference in routine nuclear medicine work or research. In this book three parts of the contents are covered: Policies and Regulations for the radiological protection, basic knowledge and clinical nuclear medicine applications. (author)

  16. Radiological protection of the environment from the Swedish point of view

    International Nuclear Information System (INIS)

    Holm, Lars-Erik; Hubbard, Lynn; Larsson, Carl-Magnus; Sundell-Bergman, Synnoeve

    2002-01-01

    The current system of radiological protection is aimed at protecting human health, and largely neglects both the effects of radiation on the environment and the managerial aspects of environmental protection. The Swedish Radiation Protection Act was revised in 1988 and includes environmental protection as one of its aims. In practice, little guidance had been given in the regulations based on the Act until 1998, when the Swedish Radiation Protection Authority (SSI) formulated environmental aims in its regulations concerning protection of human health and the environment in connection to the final management of spent nuclear fuel and waste. These regulations focus on protection of biodiversity and biological resources, based on ecosystem characterisation. In a broader perspective, the Swedish Parliament established 15 national environmental quality objectives in 1999, covering all aspects of protecting the environment, including the effects of radiation. This paper reviews the background for radiological protection of the environment from both an international and a Swedish perspective, describing the aims and current activities in establishing a system for assessing environmental effects and their consequences that can be used in decision-making. Such activities are largely a result of the European Union research project FASSET (Framework for Assessment of Environmental Impact), carried out under the 5th Framework Programme of the Union. This work is complemented at the Swedish national level by government support to initiate a national environmental monitoring and assessment programme for characterising the radiation environment, which will provide the foundation for decision-making. (review)

  17. Radiological protection in medical facilities and applications and around accelerator facilities

    International Nuclear Information System (INIS)

    Reiners, C.; Harder, D.; Messerschmidt, O.

    1992-01-01

    The proceedings of the meeting of radiation protection experts present the invited papers, of which 37 have been analysed and indexed for retrieval from the database. The papers discuss a broad spectrum of topics in the field of radiologic safety, as e.g. the fundamentals of assessing the effects of low-level ionizing radiation, new releases of international recommendations, the legal basis of activities for an optimization of radiological protection, including the tasks of the radiation protection officers, and recent developments in dose monitoring and measurement. There are papers dealing with topical aspects of radiation protection around accelerators for radiotherapy or radionuclide production, and at accelerators in research and industry. Experts in the field of diagnostic X-ray examination present the latest knowledge contributing to minimizing the radiation exposure from conventional or from novel, digital examination techniques, and recent developments in the field of quality assurance. In connection with the handling of unsealed radioactive materials, there are some papers discussing the monitoring and limits of intakes of radionuclides by workers. (orig./HP) With 124 figs., 72 tabs [de

  18. Radiological Protection of Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.

    2011-01-01

    Full text: This lecture aims at presenting the state of the art of radiological protection of patients in nuclear medicine focusing on three aspects of interest where to achieve improvement. The hierarchy of the justification principle of the radiation protection is one of them. There seems for a change to be presented in the paradigm of the radiological protection of patients. The role of the physician who prescribes the medical practice becomes more relevant, together with the nuclear medicine specialist who should be co-responsible for the application of this justification principle. Regarding the doses optimization and the implementation of Dose Reference Level the involvement extends far beyond the physician and radioprotection officer. It is clear that the Medical Physicist is to play a very relevant role in the coordination of actions, as the nuclear medicine technician is to execute them. Another aspect to consider is patient specific dosimetry. It should become a routine practice through calculation of the absorbed dose based on biodistribution data. It should be assessed for each individual patient, as it depends on a number of patient-specific parameters, such as gender, size and the amount of fatty tissue in the body, as well as the extent and nature of the disease. In most cases, dosimetry calculations are not carried out and patients are administered standard levels of activity. There may be situations with a lack of knowledge on internal dosimetry as in many centers either none or only one or two medical physics experts are available. It shows that a formal training for experts in internal dosimetry at national level is required. However up to now, there has been no satisfactory correlation between absorbed dose estimates and patient response. Moreover, the radiation protection for the patient is not assured, as the dose values given are often numbers without connection to radiobiological and/or hematological findings. Pending tasks related to

  19. Standarized input for Hanford environmental impact statements. Part II: site description

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, J.D.

    1982-07-01

    Information is presented under the following section headings: summary description; location and physiography; geology; seismology; hydrology; meteorology; ecology; demography and land use; and radiological condition. Five appendixes are included on the 100N, 200 east, 200 west, 300, and 400 areas. This report is intended to provide a description of the Hanford Site against which the environmental impacts of new projects at Hanford can be assessed. It is expected that the summary description amplified with material from the appropriate appendix, will serve as the basic site description section of environmental impact statements prepared to address the requirements of the National Environmental Policy Act (NEPA).

  20. DEEP VADOSE ZONE CONTAMINATION DUE TO RELEASES FROM HANFORD SITE TANKS

    International Nuclear Information System (INIS)

    JARAYSI MN

    2008-01-01

    CH2M HILL Hanford Group, Inc. (the Hanford Tank Farm Operations contractor) and the Department of Energy's Office of River Protection have just completed the first phase of the Hanford Single-Shell Tank RCRA Corrective Action Program. The focus of this first phase was to characterize the nature and extent of past Hanford single-shell tank releases and to characterize the resulting fate and transport of the released contaminants. Most of these plumes are below 20 meters, with some reaching groundwater (at 60 to 120 meters below ground surface [bgs])

  1. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers.

    Science.gov (United States)

    Paolicchi, F; Miniati, F; Bastiani, L; Faggioni, L; Ciaramella, A; Creonti, I; Sottocornola, C; Dionisi, C; Caramella, D

    2016-04-01

    To evaluate radiation protection basic knowledge and dose assessment for radiological procedures among Italian radiographers A validated questionnaire was distributed to 780 participants with balanced demographic characteristics and geographic distribution. Only 12.1 % of participants attended radiation protection courses on a regular basis. Despite 90 % of radiographers stating to have sufficient awareness of radiation protection issues, most of them underestimated the radiation dose of almost all radiological procedures. About 5 % and 4 % of the participants, respectively, claimed that pelvis magnetic resonance imaging and abdominal ultrasound exposed patients to radiation. On the contrary, 7.0 % of the radiographers stated that mammography does not use ionising radiation. About half of participants believed that radiation-induced cancer is not dependent on age or gender and were not able to differentiate between deterministic and stochastic effects. Young radiographers (with less than 3 years of experience) showed a higher level of knowledge compared with the more experienced radiographers. There is a substantial need for radiographers to improve their awareness of radiation protection issues and their knowledge of radiological procedures. Specific actions such as regular training courses for both undergraduate and postgraduate students as well as for working radiographers must be considered in order to assure patient safety during radiological examinations. • Radiographers should improve their knowledge on radiation protection issues. • Only 12.1 % of participants attended radiation protection courses on a regular basis. • Specific actions must be considered in order to increase knowledge and awareness.

  2. International recommendations on scope of radiological protection regulations - ICRP Publication 104

    International Nuclear Information System (INIS)

    Stanescu, Gabriel; Avadanei, Camelia; Ghilea, Simion

    2011-01-01

    The system of radiological protection applies, in principle, to all exposures to ionising radiation. Nevertheless, in practice, the measures taken in order to control these exposures should be limited for pragmatic reasons. ICRP Publication 104 deals with the scope of radiological protection control measures and describes the instruments that can be used for this purpose: exclusion, exemption, clearance. This paper aims to present the ICRP recommendations on scope of regulations in all types of exposure situations: planned, emergency and existing. Also, there are discussed the instruments available to regulators in different exposure situations. Exclusion refers to the deliberate omission of exposure situations from the scope of regulatory requirements, and exemption refers to waiving regulatory requirements if their application is not warranted. A special case of exemption, termed 'clearance', refers to the relinquishing of regulatory control if such a control becomes unwarranted. Societal attitudes to the control of exposure situations are taken into account in determining what can be excluded or exempted from regulatory control. People have higher demands for controlling 'artificial' exposure situations than for dealing with 'natural' exposure situations. Therefore, account should be taken not only of the justification and optimisation of controlling measures, but also of the different expectations of those affected by the exposure situations. The recommendations in this report are intended to assist in defining what needs to be the subject of regulatory requirements for radiological protection and what does not. The application of regulatory controls should achieve a net benefit in protection; otherwise, regulatory control is not justified. Similarly, regulatory requirements should be applied in a manner that optimises protection, otherwise the application of regulatory requirements is not warranted. (authors)

  3. Wildlife studies on the Hanford site: 1994 Highlights report

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. [ed.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.

  4. Wildlife studies on the Hanford site: 1994 Highlights report

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population

  5. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  6. Core ethical values of radiological protection applied to Fukushima case: reflecting common morality and cultural diversities.

    Science.gov (United States)

    Kurihara, Chieko; Cho, Kunwoo; Toohey, Richard E

    2016-12-01

    The International Commission on Radiological Protection (ICRP) has established Task Group 94 (TG94) to develop a publication to clarify the ethical foundations of the radiological protection system it recommends. This TG identified four core ethical values which structure the system: beneficence and non-maleficence, prudence, justice, and dignity. Since the ICRP is an international organization, its recommendations and guidance should be globally applicable and acceptable. Therefore, first this paper presents the basic principles of the ICRP radiological protection system and its core ethical values, along with a reflection on the variation of these values in Western and Eastern cultural traditions. Secondly, this paper reflects upon how these values can be applied in difficult ethical dilemmas as in the case of the emergency and post-accident phases of a nuclear power plant accident, using the Fukushima case to illustrate the challenges at stake. We found that the core ethical values underlying the ICRP system of radiological protection seem to be quite common throughout the world, although there are some variations among various cultural contexts. Especially we found that 'prudence' would call for somewhat different implementation in each cultural context, balancing and integrating sometime conflicting values, but always with objectives to achieve the well-being of people, which is itself the ultimate aim of the radiological protection system.

  7. Code of practice and design principles for portable and transportable radiological protection systems

    International Nuclear Information System (INIS)

    Wells, F.H.; Powell, R.G.

    1980-10-01

    The Code of Practice and design principles for portable and transportable radiological protection systems are presented in three parts. Part 1 specifies the requirement for Radiological Protection Instrumentation (RPI) including operational characteristics and the effects of both a radiation and non-radiation environment. Part 2 satisfies the requirement for RPI equipment as regards the overall design, the availability, the reliability, the information display, the human factors, the power supplies, the manufacture and quality assurance, the testing and the cost. Part 3 deals with the supply, location and operation of the RPI equipment. (U.K.)

  8. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  9. Radiological protection issues in endovascular use of radiation sources

    International Nuclear Information System (INIS)

    2006-02-01

    The use of radiation from radioactive materials for cancer treatment is well established. However, examples of uses of radiation therapy for benign conditions have been limited. Placing a radioactive source in the blood vessel so as to irradiate the surrounding inner periphery of the vessel has been attempted in recent years to prevent restenosis after percutaneous coronary and peripheral interventions. This kind of endovascular application provides treatment options that are less invasive for various vascular conditions compared with open surgery. As a part of the International Atomic Energy Agency's (IAEA) function for providing for application of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) that were jointly sponsored by the IAEA, FAO, ILO, OECD/NEA, PAHO and WHO, the IAEA planned a coordinated research project (CRP) that was to start in 2002 on radiological protection problems in endovascular use of radiation sources. However, as experts soon realized that the interest in this modality was waning, the CRP was not initiated. Nevertheless, it was felt that it would be appropriate to compile the information available on radiological protection problems observed so far and their possible solutions. This work was seen as part of a broader IAEA programme that covered accident prevention in radiotherapy. Publications on this topic have included, inter alia, Lessons Learned from Accidental Exposures in Radiotherapy (Safety Reports Series No. 17); Accidental Overexposure of Radiotherapy Patients in Bialystok; Investigation of an Accidental Exposure of Radiotherapy Patients in Panama; Accidental Overexposure of Radiotherapy Patients in San Jose, Costa Rica; and Investigation of an Accidental Exposure of Radiotherapy Patients in Poland. Keeping in mind that endovascular applications involve specialists such as cardiologists, angiologists and surgeons, all of whom might not have a

  10. Design principles for radiological protection instrumentation systems

    International Nuclear Information System (INIS)

    Wells, F.H.; Powell, R.G.

    1981-02-01

    This Code of Practice takes the form of recommendations intended for designers and installers of Radiological Protection Instrumentation, and should also be of value to the newcomer to the R.P.I. field. Topics are discussed under the following headings: outline of R.P.I. requirements, specifying the requirement, satisfying the requirements, (overall design, availability and reliability, information display, human factors, power supplies, manufacture, quality assurance, testing, and cost analysis), supply, location and operation of the equipment, importance of documentation. (U.K.)

  11. The recommendations 2007 of the International Commission of Radiological Protection (ICRP)

    International Nuclear Information System (INIS)

    Sugier, A.; Lecomte, J.F.; Nenot, J.C.

    2007-01-01

    This article deals with the 2007 Recommendations of the International Commission on Radiological Protection (ICRP), in particular in the situations of emergency exposure, after an accident or to natural radioactivity. (authors)

  12. L-061: EPR--First responders: Risk and Protection radiological emergency

    International Nuclear Information System (INIS)

    2011-01-01

    This conference is about the basic risks, protection and the consequences in a radiological emergency. The first responders have to know the deterministic and stochastic effects in the health as well as the cancer risk due of the high radioactive doses exposure

  13. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C.J.

    1997-08-05

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  14. Summary of the Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2010-09-30

    This summary booklet summarizes the "Hanford Site Environmental Report for Calendar Year 2009." The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  15. Summary of the Hanford Site Environmental Report for Calendar Year 2008

    International Nuclear Information System (INIS)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2009-01-01

    This summary booklet summarizes the 'Hanford Site Environmental Report for Calendar Year 2008'. The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  16. Bechtel Hanford, Inc. network security plan for the environmental restoration contract

    International Nuclear Information System (INIS)

    McCaffrey, M.B.

    1997-01-01

    As part of the Computer Protection Program, this Network Security Plan identifies the specific security measures used to protect the Bechtel Hanford, Inc. (BHI) enterprise network. The network consists of the communication infrastructure and information systems used by BHI to perform work related to the Environmental Restoration Contract (ERC) at the Hanford Site. It provides electronic communication between the ERC-leased facilities in Richland, Washington and other facilities located on the Hanford Site. Network gateways to other site and offsite networks provide electronic communication with the rest of the Hanford community. The enterprise network is comprised of several individual networks that operate under different conditions and perform different functions. The principal network used by BHI is the Bechtel Local Area Network (BLAN). This document identifies specific security issues surrounding the BLAN and the measures BHI takes to protect it. The other BHI-operated networks are discussed from the perspective of the security impact they have on the BLAN. This plan addresses security for individual and shared computer systems connected to the BHI networks as well as the gateways between other site and external networks. It specifically does not address computer-based information systems that store or process particularly sensitive data, computer systems connected to other site networks (e.g., Hanford Local Area Network), or standalone computers located in ERC facilities

  17. Hanford Site environmental data for calendar year 1993--surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1994-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1993 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1993 by PNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries

  18. Hanford Site environmental data for calendar year 1994: Surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1995-07-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1994 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1994 b PNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries

  19. Hanford Site environmental data for calendar year 1994: Surface and Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1995-07-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1994 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1994 b PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

  20. Hanford Site environmental data for calendar year 1993--surface and Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1994-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1993 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1993 by PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

  1. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection

    International Nuclear Information System (INIS)

    Nenot, Jean-Claude; Brenot, Jean; Laurier, Dominique; Rannou, Alain; Thierry, Dominique

    2009-01-01

    These revised Recommendations for a System of Radiological Protection formally replace the Commission's previous, 1990, Recommendations; and update, consolidate, and develop the additional guidance on the control of exposure from radiation sources issued since 1990. Thus, the present Recommendations update the radiation and tissue weighting factors in the quantities equivalent and effective dose and update the radiation detriment, based on the latest available scientific information of the biology and physics of radiation exposure. They maintain the Commission's three fundamental principles of radiological protection, namely justification, optimisation, and the application of dose limits, clarifying how they apply to radiation sources delivering exposure and to individuals receiving exposure. The Recommendations evolve from the previous process-based protection approach using practices and interventions by moving to an approach based on the exposure situation. They recognise planned, emergency, and existing exposure situations, and apply the fundamental principles of justification and optimisation of protection to all of these situations. They maintain the Commission's current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They reinforce the principle of optimisation of protection, which should be applicable in a similar way to all exposure situations, subject to the following restrictions on individual doses and risks; dose and risk constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment

  2. Analysis of radiological protection and security in the radioactive diagnosis area in a third level hospital

    International Nuclear Information System (INIS)

    Azorin Vega, J.C.; Aazorin Nieto, J.; Rivera Montalvo, T.

    1998-01-01

    Results from the evaluation made to radiological security and protection conditions prevailing in 13 medical diagnosis rooms with X rays at the National Nutrition Institute Zlavador Zubiran (third level hospital), aiming to give adequate protection and radiological security devices to the staff exposed from that hospital and to comply fully with requirements set by the standards

  3. Hanford Site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.] [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality.

  4. Hanford Site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality

  5. Radiation protection during decommissioning of the salt cavern Asse II. Recommendations by the German Commission on radiological protection; Strahlenschutz bei der Stilllegung der Schachtanlage Asse II. Empfehlung der Strahlenschutzkommission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-09-15

    The recommendations by the German Commission on radiological protection concerning radiation protection during decommissioning of the salt cavern Asse II include the following issues: radiological consequences of non-controllable solution ingress, optional decommissioning modes, basis requirements of decommissioning, fact evaluation, determination of radiation exposure, radiological requirements for long-term safety, analysis of consequences and long-term safety demonstration, data and information, emergency protection, public transparency.

  6. Radiological protection in medicine. ICRP Publication 105

    International Nuclear Information System (INIS)

    2011-01-01

    This report was prepared to underpin the Commission's 2007 Recommendations with regard to the medical exposure of patients, including their comforters and carers, and volunteers in biomedical research. It addresses the proper application of the fundamental principles (justification, optimisation of protection, and application of dose limits) of the Commission's 2007 Recommendations to these individuals. With regard to medical exposure of patients, it is not appropriate to apply dose limits or dose constraints, because such limits would often do more harm than good. Often, there are concurrent chronic, severe, or even life-threatening medical conditions that are more critical than the radiation exposure. The emphasis is then on justification of the medical procedures and on the optimisation of radiological protection. In diagnostic and interventional procedures, justification of procedures (for a defined purpose and for an individual patient), and management of the patient dose commensurate with the medical task, are the appropriate mechanisms to avoid unnecessary or unproductive radiation exposure. Equipment features that facilitate patient dose management, and diagnostic reference levels derived at the appropriate national, regional, or local level, are likely to be the most effective approaches. In radiation therapy, the avoidance of accidents is a predominant issue. With regard to comforters and carers, and volunteers in biomedical research, dose constraints are appropriate. Over the last decade, the Commission has published a number of documents that provided detailed advice related to radiological protection and safety in the medical applications of ionising radiation. Each of the publications addressed a specific topic defined by the type of radiation source and the medical discipline in which the source is applied, and was written with the intent of communicating directly with the relevant medical practitioners and supporting medical staff. This report

  7. ICRP Publication 105. Radiological Protection in Medicine

    International Nuclear Information System (INIS)

    Aubert, Bernard; Biau, Alain; Derreumaux, Sylvie; Etard, Cecile; Rannou, Alain; Rehel, Jean-Luc; Roch, Patrice Elle a ete validee par le Professeur Jean-Marc Cosset

    2011-01-01

    This report was prepared to underpin the Commission's 2007 Recommendations with regard to the medical exposure of patients, including their comforters and carers, and volunteers in biomedical research. It addresses the proper application of the fundamental principles (justification, optimisation of protection, and application of dose limits) of the Commission's 2007 Recommendations to these individuals. With regard to medical exposure of patients, it is not appropriate to apply dose limits or dose constraints, because such limits would often do more harm than good. Often, there are concurrent chronic, severe, or even life-threatening medical conditions that are more critical than the radiation exposure. The emphasis is then on justification of the medical procedures and on the optimisation of radiological protection. In diagnostic and interventional procedures, justification of procedures (for a defined purpose and for an individual patient), and management of the patient dose commensurate with the medical task, are the appropriate mechanisms to avoid unnecessary or unproductive radiation exposure. Equipment features that facilitate patient dose management, and diagnostic reference levels derived at the appropriate national, regional, or local level, are likely to be the most effective approaches. In radiation therapy, the avoidance of accidents is a predominant issue. With regard to comforters and carers, and volunteers in biomedical research, dose constraints are appropriate. Over the last decade, the Commission has published a number of documents that provided detailed advice related to radiological protection and safety in the medical applications of ionising radiation. Each of the publications addressed a specific topic defined by the type of radiation source and the medical discipline in which the source is applied, and was written with the intent of communicating directly with the relevant medical practitioners and supporting medical staff. This

  8. The relationship between the expectation of life of workers and the evolution of radiological protection's norms

    International Nuclear Information System (INIS)

    Santos, Marcio Pereira

    2008-01-01

    Full text: With the evolution of the norms of radiological protection in the world in last the 20 years, the life expectancy of Workers increased in direct ratio. The technological advance of the equipment that uses radiation sources and the deepening in the studies and knowledge on the ionizing radiations- e consequent deleterious effect- had contributed significantly for the reduction of the doses received for the Workers in its daily hours of working. Methods: A simple analysis of data, comparing itself the past and the gift, becomes evident that, in if treating to radiological protection, the humanity walks for a new age, which hardly will retrocede. If before the radiological protection was understood as a concern only in the practical doctors, with emphasis in the immediate effects, today already becomes gift in all the practical ones, especially in that they put into motion the planet and its wealth, in the industry. Major Values: Modernity took the man to the daily dependence of the not ionizing radiations, each time inserted of the people's day. As similar to, the radiological protection today if makes gift in diverse practical, to guarantee the cares to be taken and the fulfilment of pertinent norms. The present study it looks for to evidence that last the 20 years- marked for accidents with radioactive sources- they had been essential for a reflection of the norms of radiological protection. Thus, workers, as well as the technological sector, changed it the new reality, either demanding bigger training technician for the practical ones, attention special in security and radiological protection, or same establishing more rigid norms, through the regulating agencies. In the present work had a projection of values of life expectancy of the population, the past until the present. Analyzing Tables, as much for workers how much for the members of the public is noticed that the radiological protection offers to one better quality of life to all those involved

  9. Protective equipment of radiological protection and the worker wear

    International Nuclear Information System (INIS)

    Cassia, Flor Rita de; Huhn, Andrea; Lima, Gelbcke Francine

    2013-01-01

    This qualitative research with workers of seven hemodynamic service of Santa Catarina, Brazil aimed to analyze the use of radiological protection equipment (RPE), as well as wear to the health of workers who use these causes. The study was conducted between March 2010 and November 2010, totaling approximately 30 hours of observations. Results showed resistance to the use of RPE and also showed wear to workers' health, mainly due to the weight and discomfort they cause, as may weigh 7-9 pounds, depending on the model used. Evidenced also the absence of workers due herniated disc, back pain, and other musculo skeletal problems. These complaints, in addition to being related to the use of these protective gear also related with the time that workers remain standing for long periods on certain procedures, such as angioplasty. Given these results, the research recommended the use of these devices with materials, that are already being produced, making lighter aprons, thus avoiding fatigue and back pain and also provide greater comfort by reducing workers' resistance to its use and its adverse consequences

  10. Radiological protection in the interventional techniques: experience in the Pain Clinic of the CIMEQ

    International Nuclear Information System (INIS)

    Guerrero C, M. C.; Benitez N, P. P.; Gonzalez G, Y.; Martinez G, A.; Gonzalez R, N.; Sanchez Z, L. R.

    2014-08-01

    The Pain Clinic of the CIMEQ offers treatment to patients with different pathologies, using interventional techniques as the radiology like visual guide to reach the target structure and to apply the election technique. The personnel that carry out these procedures are inserted in the program of radiological surveillance of the institution, reason for which a radiological event could be detected where the main physician responsible of the service was implied. In this work the results of an investigation are presented realized with the objective of to know the causes of the event and to determine the necessary measures to avoid that this repeats again. The investigation was oriented to three fundamental aspects: medical exam of the affected worker; evaluation of the operational procedures from the radiological protection view point; and dosimetric measurements simulating the real conditions of work for which were used ionization chamber, radiometer and PMMA mannequin. As a result of the medical exam was detected that the main physician of the service did not use during the execution of all the procedures the extremities dosimetry and that he presented a radio induced erythema in the right hand, reason for which he was separated of the activity with ionizing radiations, until the conclusion of the investigation. With relationship to the evaluation of the operational procedures from the radiological protection view point, was verified that the medical physician not carried out any collimation of the beam and he was located in the positions where the dose rate reached the maximum values, frequently introducing the hands in the direct beam; that which implied an overexposure of the superior extremities and a not optimized exposure for whole body. This result was proven with the realized experimental measurements, which gave dose estimated values in extremities of the order of the deterministic effects. The investigation facilitated to introduce modifications in the

  11. Evolution of the radiological protection paradigms; Evolucao dos paradigmas de protecao radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, Gian Maria A.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Pos-Graduacao em Tecnologia Nuclear], E-mail: gmsordi@ipen.br

    2009-10-15

    We consider as initial radiological protection paradigms those in vigour after the release of the atomic energy for pacific usages in 1955. In that occasion, only one paradigm was introduced, presently named dose limitation system. After arguing about the basis that raised the paradigm, we introduced the guidance, that is, the measurements to be implemented to comply with the paradigm. In that occasion, they were two, i.e., the radiation dose monitoring and the workplace classification. Afterwards, the reasons that caused the radiological protection paradigms changes in force until 1995 are discussed. The initial paradigm was modified introducing the justification and the optimization principles, adding that the radiological protection should be economical and effective. The guidance also increased to four: personal monitoring, workplace classification, reference level and workers classification. Afterwards, we give the main justifications for the present paradigms that besides the formers were added the dose constraints, the potential exposure and the annual risk limits. Due to these modifications, the workers classifications were eliminated from the guidance, but the potential exposure and the search for the dose constraints were added. Eventually, we discuss the tendencies for the next future and the main changes introduced by the ICRP in the Publication 103, 2007. (author)

  12. Work management to optimise occupational radiological protection

    International Nuclear Information System (INIS)

    Ahier, B.

    2009-01-01

    Occupational exposures at nuclear power plants worldwide have steadily decreased since the early 1990's. Regulatory pressures, technological advances, improved plant designs and operational procedures, as low as reasonably achievable (ALARA) culture and information exchange have contributed to this downward trend. However, with the continued ageing and possible life extensions of nuclear power plants, ongoing economic pressures, regulatory, social and political evolutions, and the potential of new nuclear build, the task of ensuring that occupational exposures are kept as low as reasonably achievable continues to present challenges to radiological protection professionals

  13. Application of radiological protection measures to meet different environmental protection criteria

    International Nuclear Information System (INIS)

    Copplestone, D.

    2012-01-01

    The International Commission on Radiological Protection (ICRP) recognises that there is no simple or single universal definition of ‘environmental protection’, and that the concept differs from country to country and from one circumstance to another. However, there is an increasing need to be able to demonstrate that the environment is protected from radioactive substances released under authorisation for various reasons, such as for wildlife conservation requirements, or wildlife management for commercial reasons, or simply as part of pollution control. The Commission is developing the concept of Representative Organisms, which may be identified from any specific legal requirements or from more general requirements to protect local habitats or ecosystems. Such organisms may be the actual objects of protection or they may be hypothetical, depending on the objectives of the assessment. They may be similar to, or even congruent with, one or more of the Reference Animals and Plants (RAPs). Where this is not the case, attempts can be made to consider the extent to which the Representative Organisms differ from the nearest RAP in terms of known radiation effects upon it, basic biology, radiation dosimetry, and pathways of exposure. This paper discusses the practical implications of such an approach.

  14. Long-Term Stewardship At DOE's Hanford Site - 12575

    International Nuclear Information System (INIS)

    Moren, R.J.; Grindstaff, K.D.

    2012-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)(1), which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S and M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation

  15. Code of practice and design principles for installed radiological protection systems

    International Nuclear Information System (INIS)

    Powell, R.G.

    1979-03-01

    For some years there has been comprehensive guidance documentation for Nuclear Reactor Instrumentation, but apparently no corresponding guide for designers and installers of Radiological Protection Instrumentation. A small group of instrumentation engineers discussed this lack of a suitable guide, and they examined the main points on which it should be based. This document attempts to present a comprehensive and detailed review of these points. It is intended to give an overall coverage and serve as a reference document for specific points; it should also be of value to the newcomer to the Radiological Protection Instrumentation field. This Code of Practice represents a standard of good practice and takes the form of recommendations only. Each installation must be assessed individually, and agreement on its suitability must be reached locally by the designers and the officers responsible for safety and operation. (author)

  16. Principles of the International Commission on Radiological Protection system of dose limitation

    International Nuclear Information System (INIS)

    Thorne, M.C.

    1987-01-01

    The formulation of a quantitative system of dose limitation based on ICRP principles of 'stochastic' and 'non-stochastic' effects requires that judgements be made on several factors including: relationships between radiation dose and the induction of deleterious effects for a variety of endpoints and radiation types; acceptable levels of risk for radiation workers and members of the public; and methods of assessing whether the cost of introducing protective measures is justified by the reduction in radiation detriment which they will provide. In the case of patients deliberately exposed to ionising radiations, the objectives of radiation protection differ somewhat from those applying to radiation workers and members of the public. For patients, risks and benefits relate to the same person and upper limits on acceptable risks may differ grossly from those appropriate to normal individuals. For these reasons, and because of its historical relationship with the International Congress of Radiology, the ICRP has given special consideration to radiation protection in medicine and has published reports on protection of the patient in diagnostic radiology and in radiation therapy. (author)

  17. Proceedings of the First European workshop on the ethical dimensions of the radiological protection system

    International Nuclear Information System (INIS)

    2013-12-01

    The System of radiological protection develops gradually integrating advances in knowledge about the effects of radiation, the feedback from its practical implementation in all relevant domains, as well as the evolution of the ethical and social values that shape community life in modern societies. Although there is a long tradition of ICRP to consider such values in the development of its Recommendations, there is a need to make them explicit. This should facilitate the understanding of the system for specialists and non-specialists in radiological protection and allow a renewed dialogue on its foundations, its objectives and rationality. It should also encourage the emergence of informed behaviours in society vis-a-vis radiations. In this perspective, ICRP has initiated a reflection in the recent years on the ethical dimensions of the radiological protection system. This reflection has highlighted the links between the fundamental principles of radiation protection (justification, optimization, limitation) and the theories of normative ethics. The recommendations of the Commission are designed to respect individual rights (deontological ethics), to promote the collective interest (utilitarian ethics) and favour vigilance and equity (virtue ethics). This reflection it also identified the interest for the analysis of the radiological protection system to distinguish the ethical values defining the standards by which action should be taken, the ethical procedures for integrating these values in decision making and in the implementation of the decisions, and the ethical behaviour corresponding to the values that are supposed to guide the conduct of the various actors. Because the radiation protection system is intended to be international, the reflection also emphasized the importance of promoting through the Recommendations, values common to different cultures such as autonomy, non-maleficence, beneficence and justice. The objective of the Workshop is to explore

  18. The radiological protection in the practice of industrial X-rays

    International Nuclear Information System (INIS)

    Jimenez C, I.; Carrasco C, R.

    2010-09-01

    The kindness of this technique of non destructive assays is very appreciative when the protection standards and radiological protection are completed faithfully, this work show in a succinct way the development through the years where have improved the equipment s, the procedures, the training and the regulation. This development has allowed reduce the dose to the occupational exposed personnel, to the public, but mainly the accidents incidence with loss of fingers, hands, legs and worker lives, children and the people in general. (Author)

  19. The work of the international commission on radiological protection

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1996-01-01

    ICRP was established in 1928 as the International X-ray and Radium Protection Committee. In 1950 the name was changed to reflect the wider scope of radiological protection. The present membership of the Main Commission and its four committees was established in July 1993 for the period 1993-1997. Their programmes of work are now nearing completion with the Committees having met four times and their progress is summarised. The Main Commission meets in November 1996, when one of the main topics will be the election of the new Commission and members of the four Committees for the period 1997-2001

  20. Radiological protection national system. Basic security rules

    International Nuclear Information System (INIS)

    1981-01-01

    This work has been prepared as the first one of a set of standards and regulations that will be enforced to provide the protection of men and the environment against the undesirable effects of ionizing radiations. It establishes, in the first place, the system of dose limits for the country and the principles of its utilization. It takes into account the CIPR's recommendations in this area and the mentioned frame of reference, it establishes further the necessary restrictions for the application of the limits to the professionally exposed workers, as well as to the isolated members of the public and the population in general. In addition it establishes the general conditions to be met for the implementation of radiological protection, among them, the classification of working areas and working conditions as well as the compulsory periodical medical surveillance. (H.D.N.)

  1. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety, Regional Meeting on International Radiation Protection Association (IRPA)and 3. Peruvian Meeting on Radiological Protection; 3. Congreso Regional sobre Seguridad Radiologica y Nuclear, Congreso Regional IRPA y 3. Congreso Peruano de Proteccion Radiologica. Libro de Resumenes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    There we show works of the Third Regional Meeting on Radiological and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin americans specialists talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation. More than 225 works were presented on the meeting.

  2. Formation in radiological protection of the personnel of sanitary installations in Peru

    International Nuclear Information System (INIS)

    Medina G, E.

    2006-01-01

    All the people that work with ionizing radiations should have a singular license according to that settled down in the effective legal standards in force in Peru. This authorization is granted by the Peruvian Institute of Nuclear Energy (IPEN) after the postulant demonstrates that he can work in sure form in the application where it uses ionizing radiations. From 1972 the Superior Center of Nuclear Studies (CSEN) of the IPEN it has carried out diverse training courses on radiological safety and protection in medicine, industry and research, such it is so until the year 2005 it has organized 458 courses where 5872 people have been qualified in the country. 75% of people was qualified in the period 2000 - 2005. The courses are organized according to the specific work with radiations and in the one case of medical radiodiagnostic, dental radiology, nuclear medicine and radiotherapy has been qualified 2337 people (doctors, medical technicians and technicians) by means of 174 courses made among the years 2000 at the 2005, corresponding 69,75% to people qualified in radiological protection in medical radiodiagnostic. (Author)

  3. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  4. Legislation and Organization of Radiological Protection in the Republic of Argentina

    International Nuclear Information System (INIS)

    Gonzalez, A.; Carrea, A.; Nowotny, G.

    1979-01-01

    The history of legislation and organization of radiological protection goes hack to 1950 in Argentina. The terms of references of the National Commission of Atomic Energy in Argentina are outlined and the actual organization of the authority is also presented. (author)

  5. Experience of the Argentine Radioprotection Society in training in radiological protection

    International Nuclear Information System (INIS)

    Bomben, A.M.

    2006-01-01

    From its creation in 1967, the Argentine Radioprotection Society (SAR) has as basic purpose promoting all the aspects related with the radiological protection and the nuclear safety. Due to the great increment in the use of radioactive sources in diverse areas, soon it was evident for the SAR the importance and necessity to promote the knowledge of the radioprotection approaches between the users of radioactive sources and ionizing radiations in all its application fields, be these industrial, academic or doctors. From the year 2000, the SAR comes organizing in regular and periodical form basic and specialized courses about radiological safety of radioactive sources for industrial use and profile of oil wells, among others. In this work, the characteristics of the different dictated courses are described whose programs have been developed keeping in mind the requirements of the competent authorities of Argentina. Also, statistical information on the dictated courses and its participants is presented. The number of dictated courses was incremented from 6 (year 2000) up to 16 (year 2005), being also increased significantly the number of participants for course. The dictated courses are theoretical-practical, with a duration average of 20 hs. The educational body is constituted by specialists in the different topics with recognized experience. Its given to the participants notes and support material, as well as copies of the material presented to develop the course. When concluding the courses, its deliver to the participants certifies of attendance and/or approval, as it corresponds. In their headquarters the SAR has didactic facilities and specific equipment for the dictation of the courses. Also accounts with the easiness of dictating those courses outside of their headquarters. This is particularly advantageous for companies or organizations that are seated in points far from the main cities and they should qualify in radiological safety to the personnel but, by

  6. Report of ICRP Task Group 80: 'radiological protection in geological disposal of long-lived solid radioactive waste'.

    Science.gov (United States)

    Weiss, W

    2012-01-01

    The report of International Commission on Radiological Protection (ICRP) Task Group 80 entitled 'Radiological protection in geological disposal of long-lived solid radioactive waste' updates and consolidates previous ICRP recommendations related to solid waste disposal (ICRP Publications 46, 77, and 81). The recommendations given in this report apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the 2007 system of radiological protection, described in ICRP Publication 103, can be applied in the context of the geological disposal of long-lived solid radioactive waste. The report is written as a self-standing document. It describes the different stages in the lifetime of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences application of the protection system over the different phases in the lifetime of a disposal facility is the level of oversight that is present. The level of oversight affects the capability to reduce or avoid exposures. Three main time frames have to be considered for the purpose of radiological protection: time of direct oversight when the disposal facility is being implemented and active oversight is taking place; time of indirect oversight when the disposal facility is sealed and indirect oversight is being exercised to provide additional assurance on behalf of the population; and time of no oversight when oversight is no longer exercised because memory is lost. Copyright © 2012. Published by Elsevier Ltd.

  7. Protecting and improving health through the radiological sciences. A report to the Surgeon General

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-04-01

    This is the third in a series of reports prepared by the-National Advisory Committee on Radiation for the Surgeon General of the Public Health Service. The first two were directed to the broad responsibilities of the Service in the field of radiation control and to problems concerned with the protection of the public against undue radiation exposure from contamination of the environment with radioactive materials. In this report the Committee traces the remarkable growth that has taken place in the uses of ionizing radiation in the health professions, in industry, and in other walks of life. It also notes a number of emerging problems which not only are of importance from the point of view of radiation protection, but also, if not alleviated, threaten the quality of medical care in the United States and the translation of the advances of atomic research into needed benefits for the people. These problems include (a) serious weaknesses in academic departments of radiology which have restricted efforts to provide adequate instruction of medical and post-doctoral students in the clinical applications of ionizing radiation, including radiation protection; and (b) an increasingly severe shortage of manpower in all branches of the radiological sciences. The magnitude and complexity of these problems are sufficiently great that a concerted effort is needed by the Public Health Service to correct them. The alleviation of the problems just cited is but a part of a more comprehensive series of responsibilities faced by the Service in the radiological sciences. The Service must play an important role in the prevention of undue exposure of the population from medical, occupational, and environmental sources of ionizing radiation; at the same time, it must actively support the development and application of radiological methods in the diagnosis and treatment of diseases. In order that the Service may effectively meet its enlarging responsibilities in the radiological sciences

  8. Protecting and improving health through the radiological sciences. A report to the Surgeon General

    International Nuclear Information System (INIS)

    1966-04-01

    This is the third in a series of reports prepared by the-National Advisory Committee on Radiation for the Surgeon General of the Public Health Service. The first two were directed to the broad responsibilities of the Service in the field of radiation control and to problems concerned with the protection of the public against undue radiation exposure from contamination of the environment with radioactive materials. In this report the Committee traces the remarkable growth that has taken place in the uses of ionizing radiation in the health professions, in industry, and in other walks of life. It also notes a number of emerging problems which not only are of importance from the point of view of radiation protection, but also, if not alleviated, threaten the quality of medical care in the United States and the translation of the advances of atomic research into needed benefits for the people. These problems include (a) serious weaknesses in academic departments of radiology which have restricted efforts to provide adequate instruction of medical and post-doctoral students in the clinical applications of ionizing radiation, including radiation protection; and (b) an increasingly severe shortage of manpower in all branches of the radiological sciences. The magnitude and complexity of these problems are sufficiently great that a concerted effort is needed by the Public Health Service to correct them. The alleviation of the problems just cited is but a part of a more comprehensive series of responsibilities faced by the Service in the radiological sciences. The Service must play an important role in the prevention of undue exposure of the population from medical, occupational, and environmental sources of ionizing radiation; at the same time, it must actively support the development and application of radiological methods in the diagnosis and treatment of diseases. In order that the Service may effectively meet its enlarging responsibilities in the radiological sciences

  9. Hanford Cultural Resources Laboratory annual report for Fiscal Year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.

    1992-08-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Field Office (RL) in 1987 as part of Pacific Northwest Laboratory. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Act of 1979 and the American Indian Religious Freedom Act of 1978. HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan (HCRMP) as a prioritized list of tasks to be undertaken to keep the RL in compliance with federal statutes, regulations and guidelines. For fiscal year 1991 these tasks were to (1) ensure compliance with NHPA Section 106, (2) monitor the condition of known archaeological sites, (3) evaluate cultural resources for potential nomination to the National Register of Historic Places, (4) educate the public about cultural resources, (5) conduct a sample archaeological survey of Hanford lands, and (6) gather ethnohistorical data from Indian elders. Research conducted as a spinoff from these tasks is also reported. The archaeological site monitoring program is designed to determine whether the RL`s cultural resource management and protection policies are effective; results are used in planning for cultural resource site management and protection. Forty-one sites were monitored during this fiscal year.

  10. Hanford Cultural Resources Laboratory annual report for Fiscal Year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.

    1992-08-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Field Office (RL) in 1987 as part of Pacific Northwest Laboratory. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Act of 1979 and the American Indian Religious Freedom Act of 1978. HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan (HCRMP) as a prioritized list of tasks to be undertaken to keep the RL in compliance with federal statutes, regulations and guidelines. For fiscal year 1991 these tasks were to (1) ensure compliance with NHPA Section 106, (2) monitor the condition of known archaeological sites, (3) evaluate cultural resources for potential nomination to the National Register of Historic Places, (4) educate the public about cultural resources, (5) conduct a sample archaeological survey of Hanford lands, and (6) gather ethnohistorical data from Indian elders. Research conducted as a spinoff from these tasks is also reported. The archaeological site monitoring program is designed to determine whether the RL's cultural resource management and protection policies are effective; results are used in planning for cultural resource site management and protection. Forty-one sites were monitored during this fiscal year.

  11. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1991-10-01

    The requirements for Westinghouse Hanford independent review of the Preliminary Safety Analysis Report (PSAR) are contained in Section 1.0, Subsection 4.3 of WCH-CM-4-46. Specifically, this manual requires the following: (1) Formal functional reviews of the HWVP PSAR by the future operating organization (HWVP Operations), and the independent review organizations (HWVP and Environmental Safety Assurance, Environmental Assurance, and Quality Assurance); and (2) Review and approval of the HWVP PSAR by the Tank Waste Disposal (TWD) Subcouncil of the Safety and Environmental Advisory Council (SEAC), which provides independent advice to the Westinghouse Hanford President and executives on matters of safety and environmental protection. 7 refs

  12. Medical preparedness and response in nuclear accidents. The health team's experience in joint work with the radiological protection area

    International Nuclear Information System (INIS)

    Maurmo, Alexandre Mesquita

    2007-01-01

    The interaction between the health and the radiological protection areas has proved fundamental, in our work experience, for the quality of response to victims of accidents, involving ionizing radiation. The conceptions and basic needs comprehension of the adequate response, on these two areas, have brought changes to the essential behavior related to the victim's care, the protection response, the environment and waste production. The joint task of health professionals and radiological protection staff, as first responders, demonstrates that it is possible to adjust practices and procedures. The training of professionals of the radiological protection area by health workers, has qualified them on the basic notions of pre-hospital attendance, entitling the immediate response to the victim prior to the health team arrival, as well as the discussion on the basic concepts of radiological protection with the health professionals, along with the understanding of the health area with its specific needs on the quick response to imminent death risk, or even the necessary procedures of decontamination. (author)

  13. Radiological Protection in Transition. Proceedings of the 14. Regular Meeting of the Nordic Society for Radiation Protection, NSFS

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, J; Cederlund, T; Drake, P; Finne, I E; Glansholm, A; Jaworska, A; Paile, W; Rahola, T [eds.

    2005-09-01

    These proceedings comprise the papers and posters presented at the 14th Regular Meeting of the Nordic Society for Radiation Protection, the theme of which was 'Radiological protection in transformation'. There were sessions on international developments and stakeholder involvement, on education, training, and measurements, on emergencies, on nuclear installations, on non-ionising radiation, on medical radiation, on industrial uses of radiation, on radiobiology, on natural sources of radiation, on non-nuclear waste, on NKS (Nordic Nuclear Safety Research), on radioecology and artificial radionuclides in the environment, and on regulatory and international activities. In addition to invited lectures and proffered papers, there were educational primer lessons in the mornings and several roundtable discussions. In all, there were almost 100 contributions from participants representing at least 10 different countries. The range of different topics covered, the scientific quality of the contributions, and the interest shown in this meeting reflect the high standing of radiological protection in the Nordic countries.

  14. Radiological Protection in Transition. Proceedings of the 14. Regular Meeting of the Nordic Society for Radiation Protection, NSFS

    International Nuclear Information System (INIS)

    Valentin, J.; Cederlund, T.; Drake, P.; Finne, I.E.; Glansholm, A.; Jaworska, A.; Paile, W.; Rahola, T.

    2005-09-01

    These proceedings comprise the papers and posters presented at the 14th Regular Meeting of the Nordic Society for Radiation Protection, the theme of which was 'Radiological protection in transformation'. There were sessions on international developments and stakeholder involvement, on education, training, and measurements, on emergencies, on nuclear installations, on non-ionising radiation, on medical radiation, on industrial uses of radiation, on radiobiology, on natural sources of radiation, on non-nuclear waste, on NKS (Nordic Nuclear Safety Research), on radioecology and artificial radionuclides in the environment, and on regulatory and international activities. In addition to invited lectures and proffered papers, there were educational primer lessons in the mornings and several roundtable discussions. In all, there were almost 100 contributions from participants representing at least 10 different countries. The range of different topics covered, the scientific quality of the contributions, and the interest shown in this meeting reflect the high standing of radiological protection in the Nordic countries

  15. Radiological Protection in Transition. Proceedings of the 14. Regular Meeting of the Nordic Society for Radiation Protection, NSFS

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, J.; Cederlund, T.; Drake, P.; Finne, I.E.; Glansholm, A.; Jaworska, A.; Paile, W.; Rahola, T. (eds.)

    2005-09-01

    These proceedings comprise the papers and posters presented at the 14th Regular Meeting of the Nordic Society for Radiation Protection, the theme of which was 'Radiological protection in transformation'. There were sessions on international developments and stakeholder involvement, on education, training, and measurements, on emergencies, on nuclear installations, on non-ionising radiation, on medical radiation, on industrial uses of radiation, on radiobiology, on natural sources of radiation, on non-nuclear waste, on NKS (Nordic Nuclear Safety Research), on radioecology and artificial radionuclides in the environment, and on regulatory and international activities. In addition to invited lectures and proffered papers, there were educational primer lessons in the mornings and several roundtable discussions. In all, there were almost 100 contributions from participants representing at least 10 different countries. The range of different topics covered, the scientific quality of the contributions, and the interest shown in this meeting reflect the high standing of radiological protection in the Nordic countries.

  16. The radiological protection in the nuclear medicine practice

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2010-09-01

    The nuclear medicine practice dates of the 1950 years, in this work the achievements reached as regards radiological protection are shown, although even lack a lot to make, the doses for the occupationally exposed personnel have decreased with lapsing of the years, thanks to the perception of the nuclear physicians to improve the administration techniques of the radioactive material, the decrease of administered activity and the unit doses use among the most remarkable advances. The changes in the equipment s technology to quantify the activity to administer, detection systems and image formation have demanded the development of the new professionals of the nuclear medicine that allows give protection to the patient. This improvement needs to consolidate with the appropriate normative development, the involved personnel qualification and the methods and procedures actualization to improve the protection of the occupationally exposed personnel, the public, the environment and the patient. (Author)

  17. Executive summary, Hanford Site Pollution Prevention Plan

    International Nuclear Information System (INIS)

    1992-08-01

    A pollution prevention plan is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Hanford Site Pollution Prevention Plan is designed to eliminate or minimize pollutant releases to all environmental media from all aspects of Site operations. These efforts offer increased protection of public health and the environment. This plan reflects the goals and policies for pollution prevention at the Hanford Site and represents an ongoing effort to make pollution prevention part of the Site operating philosophy. The plan encompasses hazardous waste only and excludes radioactive waste and radioactive mixed waste

  18. Trends in radionuclide concentrations for wildlife and food products near Hanford for the period 1971-1988

    International Nuclear Information System (INIS)

    Cadwell, L.L.; Eberhardt, L.E.; Price, K.R.; Carlile, D.W.

    1990-01-01

    We evaluated the Hanford environmental data base for trends in radionuclide concentrations in wildlife and food products sampled from 1971 through 1988 on or near the U.S. Department of Energy's Hanford Site in southeastern Washington. Although statistical analyses showed short-term changes, no upward trends in radionuclide concentrations were detected. Many samples showed a significant decline in some radionuclides, particularly for 137 Cs. Concentrations of 65 Zn also showed a downward trend in many samples. Cessation of atmospheric testing by the United States and the USSR in 1971 contributed to the decline in radionuclide levels in some samples. Contaminants discharged to the Columbia River at Hanford were reduced after shutdown of the last once-through cooling-water reactor in 1971. A decline in concentrations of 65 Zn in oysters from Willapa Bay and 60 Co and 65 Zn in mountain whitefish from the Hanford Reach of the Columbia River are attributable to reactor closure. There was also an apparent reduction in availability of radiological contamination to Hanford wildlife after decommissioning of waste-water disposal ponds and remediation of contaminated terrestrial sites

  19. Radiological protection of the worker in medicine and dentistry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The first three sections of this report concern general understanding of radiation protection, basic concepts for all workers, and practical problems common to all users of radiation in medicine and dentistry. The remaining sections cover specialist topics covering practical aspects in diagnostic radiology, dental radiography, the use of unsealed radionuclides (in the laboratory, diagnostic and therapeutic uses) balneotherapy, brachytherapy and external beam radiotherapy. (author).

  20. Radiological protection of the worker in medicine and dentistry

    International Nuclear Information System (INIS)

    1990-01-01

    The first three sections of this report concern general understanding of radiation protection, basic concepts for all workers, and practical problems common to all users of radiation in medicine and dentistry. The remaining sections cover specialist topics covering practical aspects in diagnostic radiology, dental radiography, the use of unsealed radionuclides (in the laboratory, diagnostic and therapeutic uses) balneotherapy, brachytherapy and external beam radiotherapy. (author)

  1. Comparison between radiological protection against ionizing radiation and non-ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1988-01-01

    The comparison of doctrines concerning protection against ionizing and non-ionizing radiation is a difficult task, because of the many areas in which it is applied. Radiological pollution has grown during the century, but its evolution has not been concomitant. This has resulted in a distortion that can be identified in the successive steps of the evaluation and protection against such radiation. For a better understanding, this discussion deals with the differences in interaction with matter and the induction of the related risks, on the varieties of protection systems and monitoring procedures

  2. ENETRAP: training and education in radiological protection

    International Nuclear Information System (INIS)

    Coeck, M.

    2006-01-01

    The development of a common European radiation protection and safety culture and, based on that, the mutual recognition of radiation protection courses and the acquired competencies of radiation protection experts (RPE) and officers (RPO) is becoming a real need. The ENETRAP project ('European Network for Education and Training in RAdiological Protection') aims at bringing together different ideas and approaches of education and training (E and T) in radiological protection (RP) in order to better integrate and harmonise national E and T activities on a European level. The project started in April 2005. 10 partners are involved in ENETRAP: SCK-CEN (coordinator), CEA-INSTN, FZK-FTU, BfS, ENEA, NRG, CIEMAT, HPA-RPD, UJF and UHI-NHC. These partners have years of experience with established E and T programmes and play an important role in the development of specific techniques such as e-learning or On-the-Job Training (OJT) related to RP. As a result of their fundamental scientific research, collaboration with industry and practical experience, the partners have a solid scientific knowledge of all aspects of RP and are ideally placed to transfer the know-how and estimate the needs in this field. The ENETRAP project aims at establishing a sustainable E and T infrastructure for RP as an essential component to combat the perceived decline in expertise and to ensure the continuation of the high level of RP knowledge. The main objectives of the ENETRAP project are (1) to better integrate existing E and T activities in the RP infrastructure of the European countries in order to combat the decline in both student numbers and teaching institutions, (2) to develop more harmonised approaches for E and T in RP in Europe, (3) to better integrate the national resources and capacities for E and T and (4) to provide the necessary competence and expertise for the continued safe use of radiation in industry, medicine and research. Any such infrastructure must ensure that provision is

  3. Hanford grout: predicting long-term performance

    International Nuclear Information System (INIS)

    Sewart, G.H.; Mitchell, D.H.; Treat, R.L.; McMakin, A.H.

    1987-01-01

    Grouted disposal is being planned for the low-level portion of liquid radioactive wastes at the Hanford site in Washington state. The performance of the disposal system must be such that it will protect people and the environment for thousands of years after disposal. To predict whether a specific grout disposal system will comply with existing and foreseen regulations, a performance assessment (PA) is performed. Long-term PAs are conducted for a range of performance conditions. Performance assessment is an inexact science. Quantifying projected impacts is especially difficult when only scant data exist on the behavior of certain components of the disposal system over thousands of years. To develop defensible results, we are honing the models and obtaining experimental data. The combination of engineered features and PA refinements is being used to ensure that Hanford grout will meet its principal goal: to protect people and the environment in the future

  4. Independent auto evaluation of an operative radiological protection program; Autoevaluacion independiente de un programa de proteccion radiologica operativa

    Energy Technology Data Exchange (ETDEWEB)

    Medrano L, M.A.; Rodriguez C, C.C.; Linares R, D.; Zarate M, N.; Zempoalteca B, R. [Gerencia Subsede Sureste Instituto Nacional de Investigaciones Nucleares, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: maam@nuclear.inin.mx

    2006-07-01

    The program of operative radiological protection of a nuclear power plant consists of multiple procedures and associate tasks that have as purpose the radiological protection of the workers of the power station. It is for this reason that the constant evaluation of the one it programs it is an important tool in the identification of their weaknesses (and strengths), so they can be assisted appropriately. In this work the main elements of the program of independent auto evaluation of the program of operative radiological protection of the Laguna Verde Central that has been developed and implemented by the National Institute of Nuclear Research are described. (Author)

  5. Hanford Site Environmental Report for Calendar Year 1998

    International Nuclear Information System (INIS)

    Dirkes, Roger L.; Hanf, Robert W.; Poston, Ted M.

    1999-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; (6) discuss the activities to ensure quality. More detailed information can be found in the body of the report, the cited references, and the appendixes.

  6. Postgraduate training in radiological protection by e-learning the technological platforms

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G., E-mail: gverdu@iqn.upv.es [Departamento de Ingeniera Quimica y Nuclear, Universidad Politcnica de Valencia (Spain); Mayo, P.; Alcaraz, D., E-mail: p.mayo@titaniast.com, E-mail: d.alcaraz@titaniast.com [TITANIA Servicios Teconologicos, Grupo Dominguis, Valencia (Spain); Campayo, J.M., E-mail: j.campayo@lainsa.com [LAINSA, Grupo Dominguis, Valencia, (Spain)

    2011-07-01

    The companies that are working in decontamination, dismantling and assessment in nuclear power plants, usually have their employees in different facilities far from its central offices. When there is a training in radiological protection applied to the nuclear field, it is difficult for these people the attendance to the course because of different reasons as the location of the formation centres which sometimes are not near from the nuclear facilities, so they usually cannot attend their daily work with the same effectiveness. In this work we present a postgraduate training in radiological protection supervised by Polytechnical University of Valencia (Spain) applied to nuclear and radioactive facilities by a technological platform developed in collaboration with the university. This platform is adapted and designed to different high level contents and applications in different areas and sections, related to a general part, radioactive facilities, nuclear facilities and advanced concepts. When the student finishes an area, an evaluation has to be done to prove the understanding of the lessons. We have included films of different activities as decontamination devices, radiation detectors..etc with the contents to make the explanations more understandable to the student. The course is complemented with a final review and exam that are not online to guarantee that the training is well finished. In addition the student has some practice related with different items explained during the training as the use of equipment in radiological protection tasks. This type of training is more flexitime and can be adapted to the necessities of each user, avoiding high costs and unnecessary displacements. (author)

  7. Postgraduate training in radiological protection by e-learning the technological platforms

    International Nuclear Information System (INIS)

    Verdu, G.; Mayo, P.; Alcaraz, D.; Campayo, J.M.

    2011-01-01

    The companies that are working in decontamination, dismantling and assessment in nuclear power plants, usually have their employees in different facilities far from its central offices. When there is a training in radiological protection applied to the nuclear field, it is difficult for these people the attendance to the course because of different reasons as the location of the formation centres which sometimes are not near from the nuclear facilities, so they usually cannot attend their daily work with the same effectiveness. In this work we present a postgraduate training in radiological protection supervised by Polytechnical University of Valencia (Spain) applied to nuclear and radioactive facilities by a technological platform developed in collaboration with the university. This platform is adapted and designed to different high level contents and applications in different areas and sections, related to a general part, radioactive facilities, nuclear facilities and advanced concepts. When the student finishes an area, an evaluation has to be done to prove the understanding of the lessons. We have included films of different activities as decontamination devices, radiation detectors..etc with the contents to make the explanations more understandable to the student. The course is complemented with a final review and exam that are not online to guarantee that the training is well finished. In addition the student has some practice related with different items explained during the training as the use of equipment in radiological protection tasks. This type of training is more flexitime and can be adapted to the necessities of each user, avoiding high costs and unnecessary displacements. (author)

  8. Hanford Cultural Resources Laboratory annual report for fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Wright, M.K.; Crist, M.E.; Longenecker, J.G.; O`Neil, T.K.; Dawson, M.V.

    1993-06-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Field Office (RL) in 1987 as part of Pacific Northwest Laboratory (PNL). The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site located in southcentral Washington, in a manner consistent with the National Historic Preservation Act Amended 1992 (NBPA), the Archaeological Resources Protection Act of 1979 (ARPA), the Native American Grave Protection and Repatriation Act of 1990 (NAGPRA), and the American Indian Religious Freedom Act of 1978 (AIRFA). The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan as a prioritized list of tasks to be undertaken to keep the RL in compliance with federal statutes, regulations, and guidelines. For FY 1992, these tasks were to (1) ensure compliance with NBPA Section 106, (2) monitor the condition of known archaeological sites, (3) evaluate cultural resources for potential nomination to the National Register of Historic Places, (4) educate the public about cultural resources, and (5) conduct a sample archaeological survey of Hanford lands. Research was also conducted as a spin-off of these tasks and is also reported here.

  9. Analysis of the criteria used by the International Commission on Radiological Protection to justify the setting of numerical protection level values.

    Science.gov (United States)

    2006-01-01

    This report compiles the various numerical protection level values published by the International Commission on Radiological Protection (ICRP) since its 1990 Recommendations (Publication 60). Several terms are used to denominate the protection levels: individual dose limit, 'maximum' individual dose, dose constraint, exemption level, exclusion level, action level, or intervention level. The reasons provided by the Commission for selecting the associated numerical values is quoted as far as available. In some cases the rationale is not totally explicit in the original ICRP report concerned; in such cases the Task Group that prepared the present report have proposed their own interpretation. Originally, this report was prepared by a Task Group at CEPN, a French research and development center, in behalf of IRSN, a French public expert body engaged in radiological protection and nuclear safety. It is published here with kind permission by CEPN and IRSN.

  10. Radiological Control Manual

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  11. Radiological Control Manual

    International Nuclear Information System (INIS)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records

  12. Education and training in radiological protection in the Argentine region- IAEA, toward a long term commitment

    International Nuclear Information System (INIS)

    Terrado, C.; Arbor G, A.; Bozzo, R.; Larcher, A.; Menossi, C.; Sajaroff, P.

    2006-01-01

    The Argentine Republic has extensive antecedents in education and training in radiological protection. From the beginning of the nuclear activity in the country was given preponderance to the aspects related with the radiological protection and the personnel's training involved in the employment of ionizing radiations. At the present time these educational activities already overcome the 50 years, there being accumulated a rich and important experience in the matter. In the country the organisms that have assigned by law the responsibility of the regulation and the control of practice them with ionizing radiations are the Nuclear Regulatory Authority and the Ministry of Health and Atmosphere of the Nation. The first one has the mission of protecting people of the noxious effects of the ionizing radiations derived of nuclear activities, the second is in charge of the control of the equipment dedicated specifically to generate X-rays. This includes the responsibility of elaborating, to emit and to make complete the regulations, standards and other corresponding requirements, in particular - in the mark of the present work - regarding to establish demands and to promote education activities and training in radiological protection. The sure use of the benefits that offers the nuclear development in its diverse applications implies to overturn resources, experience and dedication for the personnel's training. In that sense the Argentina has committed recently to undertake the necessary actions to constitute a Regional Center of Education and Training for Latin America and the Caribbean, taking advantage of the important experience obtained in more of 25 years of imparting graduate degree courses in radiological protection and nuclear safety with inter regional and regional character. With that purpose a process of self evaluation has begun (self appraisal), following the limits settled down by the International Atomic Energy Agency in the document 'Education and

  13. Release protocol to address DOE moratorium on shipments of waste generated in radiologically controlled areas

    International Nuclear Information System (INIS)

    Rathbun, L.A.; Boothe, G.F.

    1992-10-01

    On May 17, 1991 the US DOE Office of Waste Operations issued a moratorium on the shipment of hazardous waste from radiologically contaminated or potentially contaminated areas on DOE sites to offsite facilities not licensed for radiological material. This document describes a release protocol generated by Westinghouse Hanford submitted for US DOE approval. Topics considered include designating Radiological Materials Management Areas (RMMAs), classification of wastes, handling of mixed wastes, detection limits

  14. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    ARNOLD LD

    2009-09-25

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons of spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?

  15. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    International Nuclear Information System (INIS)

    Arnold, L.D.

    2009-01-01

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons of spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?

  16. Hanford Laboratories monthly activities report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This is the monthly report for the Hanford Laboratories Operation, January 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  17. Hanford Laboratories monthly activities report, May 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  18. Hanford Laboratories monthly activities report, July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-14

    This is the monthly report for the Hanford Laboratories Operation, July 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  19. Hanford Laboratories monthly activities report, April 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  20. Environmental monitoring at Hanford for 1987

    International Nuclear Information System (INIS)

    Jacquish, R.E.; Mitchell, P.J.

    1988-05-01

    Envoronmental monitoring activities performed on the Hanford Site for 1987 are discussed in this report. Samples of environmental media were collected to determine radionuclide and chemical concentrations at locations in the geographical area. Results are discussed in detail in subsequent sections of this report. Surveillance of radioactivity in the Hanford vicinity during 1987 indicated concentrations well below applicable DOE and US Environmental Protection Agency (EPA) standards. Radioactive materials released from Hanford operations were generally indistinguishable above background in the offsite environment. Continued influence from the 1986 reactor accident at the Chernobyl Nuclear Power Station in the USSR was not apparent this year. Chemical concentrations in air were below applicable standards established by the EPA and the State of Washington. Chemicals detected in the ground water beneath the Site can be attributed to both Site operations and natural background levels. Several chemicals regulated by the EPA and the State of Washington exceeded EPA drinking water standards (DWS). 106 refs., 71 figs., 110 tabs